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Abstract. As a natural extension of the SAT problem, different proof systems for quantified
Boolean formulas (QBF) have been proposed. Many of these extend a propositional system to
handle universal quantifiers.
By formalising the construction of the QBF proof system P+∀red from a propositional proof
system P (Beyersdorff, Bonacina & Chew, ITCS ‘16), we present a new technique for proving
proof size lower bounds in these systems. This lower bound technique relies only on two semantic
properties: the cost of a QBF, and the capacity of a proof. By examining the capacity of proofs in
several proof systems, we are able to use this technique to obtain lower bounds in these systems
based on cost alone.
As applications of this technique, we first prove exponential lower bounds for a new family of
simple QBFs representing equality. The main application is in proving exponential lower bounds
with high probability for a class of randomly generated QBFs, the first ‘genuine’ lower bounds
of this kind, which apply to the QBF analogues of resolution, Cutting Planes, and Polynomial
Calculus.

1 Introduction

Proof complexity and solving. The central question in proof complexity can be stated as
follows: Given a logical theory and a provable theorem, what is the size of the shortest proof?
This question bears tight connections to central problems in computational complexity [16,23]
and bounded arithmetic [22,43].

Proof complexity is intrinsically linked to recent noteworthy innovations in solving, owing
to the fact that any decision procedure implicitly defines a proof system for the underlying
language. Relating the two fields in this way is illuminating for the practitioner; proof-size
and proof-space lower bounds correspond directly to best-case running time and memory
consumption for the corresponding solver. Indeed, proof complexity theory has become the
main driver for the asymptotic comparison of practical solving implementations. However,
in line with neighbouring fields (such as computational complexity), it is the central task of
demonstrating lower bounds, and of developing general methods for showing such results, that
proves most challenging for theoreticians.

The desire for general techniques derives from the exceptional strength of modern im-
plementations. Cutting-edge advances in solving, spearheaded by unparalleled progress in
Boolean satisfiability (SAT), appear to provide a means for the efficient solution of computa-
tionally hard problems [56]. Contemporary SAT solvers routinely dispatch instances in millions
of clauses [45], and are effectively employed as NP-oracles in more complex settings [46]. The
state-of-the-art procedure is based on a propositional proof system called resolution, operating
on conjunctive normal form (CNF) instances using a technique known as conflict-driven clause
learning (CDCL) [52]. Besides furthering the intense study of resolution and its fragments [16],
the evident success has inevitably pushed research frontiers beyond the NP-completeness of
Boolean satisfiability.

Beyond propositional satisfiability. A case in point is the logic of quantified Boolean
formulas (QBF), a theoretically important class that forms the prototypical PSPACE-
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complete language [55]. QBF extends propositional logic with existential and universal quan-
tification, and consequently offers succinct encodings of concrete problems from conformant
planning [17, 29, 51], ontological reasoning [42], and formal verification [7], amongst other
areas [14, 26, 54]. There is a large body of work on practical QBF solving, and the relative
complexities of the associated resolution-type proof systems are well understood [4, 10,39].

The semantics of QBF has a neat interpretation as a two-player evaluation game. Given
a QBF Φ = Q · φ, the ∃- and ∀-players take turns to assign the existential and universal
variables of the formula following the order of the quantifier prefix Q. When all variables are
assigned, the ∃-player wins if the propositional formula φ is satisfied; otherwise, the ∀-player
takes the win. A folklore result states that a QBF is false if and only if the ∀-player can win the
evaluation game by force; that is, if and only if there exists a winning strategy for the universal
player. The concept of strategy extraction originates from QBF solving [36], whereby a winning
strategy ‘extracted’ from the proof certifies the truth or falsity of the instance. In practice it is
not merely the truth value of the QBF that is required – in real-world applications, certificates
provide further useful information [54].

A major paradigm in QBF practice is quantified conflict-driven clause learning (QCDCL)
[34], a natural extension of CDCL. The vast majority of QBF solvers build upon existing SAT
techniques in a similar fashion. Such a notion can hardly be surprising when one considers
that an existentially quantified QBF is merely a propositional formula; hence every QBF
implementation contains an embedded SAT solver by default. The novel challenge for the
QBF practitioner, therefore, and the real test of a solver’s strength, is in the handling of
universal quantification.

Proof-theoretic analysis of associated QBF proof systems makes this notion abundantly
clear. Consider QU-Resolution (QU-Res) [33,41], a well-studied QBF proof system that under-
pins QCDCL solving.1 That calculus simply extends propositional resolution with a universal
reduction rule, which allows universal literals to be deleted from clauses under certain con-
ditions. On existentially quantified QBFs, therefore, QU-Res is identical to resolution, and
proof-size lower bounds for the latter lift immediately to the former. From the viewpoint of
quantified logic, lower bounds obtained in this way are rightly considered non-genuine; they
belong in the realm of propositional proof complexity, and tell us nothing about the relative
strengths of resolution-based QBF solvers.

Universal reduction is applicable to many suitable propositional proof systems P, giving
rise to a general model for QBF systems in the shape of P+∀red [8], which augments the
propositional rules of P with the universal reduction rule ∀red. As a consequence, the phe-
nomenon of genuineness extends well beyond resolution. In this paper, in addition to resolution
we consider three stronger systems: Cutting Planes (CP), a well-studied calculus that works
with linear inequalities; the algebraic system Polynomial Calculus (with Resolution, PCR);
and Frege’s eponymous ‘textbook’ system for propositional logic. Their simulation order is
depicted in Figure 1.

What is generally desired (and seemingly elusive) in the QBF community is the develop-
ment of general techniques for genuine lower bounds. The current work embraces maximal
generality, and contributes a new technique for genuine QBF lower bounds in the general
setting of P+∀red.

When is a lower bound genuine? Naturally, the aforementioned objections to non-genuine
QBF lower bounds may be raised in the abstract setting of P+∀red, as that system encom-
passes the propositional proof system P. Indeed, given any unsatisfiable propositional formulas

1 The calculus QU-Res, proposed by Van Gelder in [33], generalises Q-Res, introduced by Kleine Büning et al.
in [41], by allowing resolution over universally quantified pivots.

2



that require large proofs in P, one can easily construct any number of contrived QBF families
– even with arbitrarily many quantifier alternations – each of which require large proofs in
P+∀red, but whose hardness stems from the original propositional formulas. That such lower
bounds ought to be identified as non-genuine was highlighted in [18] (cf. also [12]).

The essential point in such cases is that the proofs are large simply because they require
many propositional inferences, i.e. many applications of rules of P. Large proofs that do not
harbour propositional hardness of this type must therefore contain many universal reductions.
Thus, we are brought naturally to a pleasant characterisation of genuine hardness in P+∀red:
Genuinely hard QBFs require superpolynomially-many universal reduction steps; all other
lower bounds are non-genuine.2

In summary, a lower bound on the number of universal reduction steps is always genuine.
The technique we introduce in this paper works by counting universal reduction steps, and
we therefore deal exclusively in genuine results.

Random formulas. In the design and testing of solvers, large sets of formulas are needed
to make effective comparisons between different techniques and solvers. While many formulas
have been constructed by hand, often representing some combinatorial principle, it is of clear
benefit to have a procedure to randomly generate such formulas. The search for a better
understanding of when such formulas are likely to be true or false, and their likely hardness
for solvers, brings us to the study of the proof complexity of random CNFs and QBFs.

In propositional proof complexity, random 3-SAT instances, the most commonly studied
random CNFs, are relatively well understood. There is a constant r such that if a random CNF
on n variables contains more than rn clauses, then the CNF is unsatisfiable with probability
approaching 1 [32]; the upper bound for r has regularly been improved (see [27], and references
therein for previous upper bounds). Further, if the number of clauses is below n6/5−ε, the CNF
requires exponential-size resolution refutations with high probability [5]. Hardness results for
random CNFs are also known for Polynomial Calculus [2, 6] and for Cutting Planes [31,38].

In contrast, comparatively little is known about randomly generated QBFs. The addition
of universally quantified variables raises questions as to what model should be used to generate
such QBFs – care is needed to ensure a suitable balance between universal and existential
variables.3 The best studied model is that of (1,2)-QCNFs [19], for which bounds on the
threshold number of clauses needed for a false QBF were shown in [25]. However, to the best
of our knowledge, nothing has yet been shown on the proof complexity of randomly generated
QBFs. Proving such lower bounds constitutes the major application of our new technique.

2 Our contributions

The primary contribution of this work is the proposal of a novel and semantically-grounded
technique for proving genuine QBF lower bounds in P+∀red, representing a significant forward
step in the understanding of reasons for hardness in the proof complexity of quantified Boolean
formulas.

We exemplify the technique with a new family of hard QBFs, notable for their simplicity,
which we strongly suggest will henceforth occupy a prominent place in QBF proof complexity.
As our principal application we prove exponential lower-bounds in three concrete P+∀red
systems for a large class of randomly generated QBFs. This is the first time that genuine
lower bounds have been shown en masse for randomly generated QBFs. Lastly, we note that

2 This notion can be made formal, as in the oracle model of [12].
3 If any clause only contains universal variables, then there is a constant-size refutation using only this clause.
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Fig. 1. The simulation order of the four QBF proof systems featured in this paper. A proof system A p-simulates
the system B if each B-proof of a formula Φ can be translated in polynomial time into an A-proof of Φ [23]. If
neither A nor B p-simulates the other, then they are incomparable.

our technique can be applied to give a simple proof of lower bounds for a family of well known
QBFs from [41].

In addition, we also determine exact conditions on a so-called base system P by which
P+∀red is properly defined and receptive to our method. We detail our contributions below,
beginning with the lower bound technique, followed by several applications.

2.1 A new technique for genuine QBF lower bounds

Using an established approach (e.g. [48]), the soundness of P+∀red is proved by demonstrating
that a winning strategy for the ∀-player can be extracted from a refutation (Lemma 15).
However, with careful construction and analysis of the strategy extraction algorithm, we are
able to obtain a much more valuable result.

Given a P+∀red refutation π of a QBF Φ, strategy extraction works by first restricting
π according to the ∃-player’s move, then collecting the response for the ∀-player from some
line in π, and iterating until the evaluation game concludes. We therefore reason as follows:
A lower bound on the total number of responses contributed by π, coupled with an upper
bound on the number of responses contributed per line, yields a lower bound on the number
of lines in the refutation.

In light of this observation, we define the two measures called cost and capacity. The cost
of Φ is defined such that any winning strategy contains at least cost(Φ) responses to some
universal block. Cost, therefore, is a natural semantically-grounded measure that provides a
lower bound on the total number of extracted responses. The upper bound is given by the
capacity of π, a measure defined such that any response contributed from a given line in π
may be selected from a set of cardinality at most capacity(π).

Putting the two measures together, we obtain our main result, the Size-Cost-Capacity
Theorem.

Theorem 23 (Size-Cost-Capacity Theorem). Let P be a base system, and let π be a
P+∀red refutation of a QBF Φ. Then

|π| ≥ cost(Φ)

capacity(π)
.

We also show explicitly that Size-Cost-Capacity works by counting universal reduction
steps (Lemma 22), which illustrates that all results obtained by application of our technique
are genuine QBF lower bounds in the aforementioned sense.

4



Moving on, we prove that all QU-Res and CP+∀red refutations have capacity equal to 1
(Propositions 21 and 26). Hence, the Size-Cost-Capacity Theorem tells us that cost alone
gives an absolute lower bound on proof size there. The case for the QBF version of Poly-
nomial Calculus with Resolution (PCR+∀red) is much more challenging, and requires some
linear algebra, owing to the underlying algebraic composition of Polynomial Calculus (see
Subsection 6.2). Interestingly, it turns out that the capacity of a refutation there is no greater
than its size (Proposition 29), thus proof size is at least the square root of cost. Hence, we
obtain the following absolute proof-size lower bounds.

Corollaries 24 and 27. Let π be a QU-Res or CP+∀red refutation of a QBF Φ. Then
|π| ≥ cost(Φ).

Corollary 30. Let π be a PCR+∀red refutation of a QBF Φ. Then |π| ≥
√

cost(Φ).

Equipped with these results, showing that the cost of a QBF is superpolynomial yields
immediate proof-size lower bounds for all three systems simultaneously.

2.2 Applications of the technique

We demonstrate the effectiveness of our new technique on three applications.

A. The equality formulas: a non-trivial special case. In order to illustrate by example
the concept behind our technique – and before proving the general case – we first show a new
exponential lower bound for QU-Res. Our argument rests on two folklore propositions – the
component parts of the strategy extraction algorithm – and serves to highlight the important
points ahead of the more difficult general case. The result is likely of independent interest,
owing to the introduction of an interesting new family of hard QBFs.

Definition 2 (equality formulas). For n ∈ N, the nth equality formula is

Θ(n) := ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn ·

(
n∧
i=1

(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)

)
∧

(
n∨
i=1

ti

)
.

The equality formulas are so called because the only winning strategy for the ∀-player in
the evaluation game is as follows: play ui = xi for each i ∈ [n]. Consequently the winning
strategy is not only unique, it contains all 2n assignments to the universal variables. These
two properties in tandem are largely responsible for the apparent ease with which we prove
the following result.

Theorem 5. Let π be a QU-Res refutation of Θ(n). Then |π| ≥ 2n.

Whereas it is plausible that the equality formulas are the simplest to which our technique
applies, they are without doubt the simplest known hard QBFs. When considering QBF
proof complexity lower bounds, particularly in P+∀red systems, we must concern ourselves
with formulas with at least a Σ3 prefix, of which the equality formulas are one of the simplest
examples. If a QBF has a Σ2 prefix, then it is true if and only if the existential parts of
the clauses can all be satisfied, i.e. it is equivalent to a SAT problem. Similarly, a refutation
of a QBF with a Π2 prefix consists of a refutation of a subset of the existential clauses
corresponding to a particular assignment to the universal variables. A Π3 formula can also be
regarded as essentially a SAT problem using similar reductions as for both Σ2 and Π2, so Σ3

is the smallest prefix where we can expect to find genuine QBF lower bounds.
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Closer inspection reveals that this lower bound is of a very specific type – it is a genuine
QBF lower bound (the formulas are not harbouring propositional hardness) that does not
derive from a circuit lower bound (the winning strategy is not hard to compute in an associated
circuit class). In existing QBF literature, the only other example of such a family comes from
the famous formulas of Kleine Büning et al. [41] (cf. item C. below). Those formulas are
significantly more complex, and exhibit unbounded quantifier alternation compared to the
(bounded) Σ3 prefix of the equality formulas.

Once we have shown the technique in its full generality, we then use the exponential cost of
the equality formulas (Proposition 18) to conclude that they not only require exponential-size
refutations in QU-Res (as shown directly in Theorem 5), but even in the stronger systems
CP+∀red and PCR+∀red. They do however have linear-size refutations in Frege+∀red (Propo-
sition 31). It is interesting to note that the short refutations we give have exponential capacity.

B. The first hard random QBFs. For the major application of our technique, we define a
class of random QBFs and prove that, with high probability, they are hard in all three systems
QU-Res, CP+∀red and PCR+∀red. We generate instances that combine the overall structure
of the equality formulas with the literature’s existing model of random QBFs from [19].

Definition 32. For each 1 ≤ i ≤ n, let C1
i , . . . , C

cn
i be distinct clauses picked uniformly at

random from the set of clauses containing 1 literal from the set Xi = {x1i , . . . , xmi } and 2
literals from Yi = {y1i , . . . , yni }. Define the randomly generated QBF Q(n,m, c) as:

Q(n,m, c) := ∃Y1 . . . Yn∀X1 . . . Xn∃t1 . . . tn ·
n∧
i=1

cn∧
j=1

(
¬ti ∨ Cji

)
∧

n∨
i=1

ti.

The specification of how many existential and universal variables each clause should con-
tain is a common and necessary restriction on random QBFs [19, 25]. This prevents the oc-
currence of a clause containing only universal variables – if such a clause exists, there is a
constant size refutation of this clause alone in any P+∀red system. The motivation behind the
additional structure in the construction of Q(n,m, c) is that its truth value is equivalent to the
disjunction of its ‘component parts’; that is Q(n,m, c) ≡

∨n
i=1 Ψi, where Ψi := ∃Yi∀Xi·

∧cn
j=1C

j
i

for each i ∈ [n].
These Ψi are some of the simplest QBFs one can generate, so Q(n,m, c) is a natural choice

of random QBFs. Indeed, the model used to generate the clauses of Ψi is also used to generate
random QBFs for the evaluation of QBF solvers [15,49].

Drawing on the existing literature [20,25,58], we show that suitable choices of the param-
eters m and c force each Ψi to be false with high probability. The individual Ψi are essentially
equivalent to a random 2-SAT problem, and this step is just an application of results on the
satisfiability of such instances.

Moreover, we also prove a cost lower bound. Perhaps surprisingly, this cost lower bound
is constructed by applying results on the unsatisfiability of random 2-SAT instances [58] and
the truth of random (1,2)-QCNFs [25]. These results both concern only the truth value of the
corresponding formulas, and taken individually seem unrelated to cost. However, by carefully
choosing the number of clauses so as to allow the application of both results, we can construct
a cost lower bound using the following argument.

The Ψi are false with high probability, but rearranging the quantifiers to ∀Xi∃Yi ·
∧cn
j=1C

j
i

gives a QBF which is true with probability 1 − o(1). In other words, with high probability,
the universal response in Ψi must depend on the existential assignment. In particular, it must
change depending on the existential assignment, and so with probability 1 − o(1), linearly
many of the Ψi require at least two distinct responses in any winning strategy (Lemma 34).
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By refining our choice of m slightly, this allows us to conclude that Q(n,m, c), with high
probability, is a false QBF with large cost.

Proposition 39. Let 1 < c < 2 be a constant, and let m ≤ (1− ε) log2(n) for some constant
ε > 0. With probability 1− o(1), Q(n,m, c) is false and cost(Q(n,m, c)) = 2Ω(nε).

Invoking Theorem 23 yields immediate hardness results. The following theorem constitutes
the first proof-size lower bounds for random generated formulas in the QBF proof complexity
literature. We emphasize that these are genuine QBF lower bounds in the aforementioned
sense; they are not merely hard random CNFs lifted to QBF. As for any application of
Size-Cost-Capacity, the refutations are large precisely because they require many universal
reduction steps.

Theorem 40. Let 1 < c < 2 be a constant, and let m ≤ (1 − ε) log2(n) for some constant
ε > 0. With high probability, the randomly generated QBF Q(n,m, c) is false, and any QU-Res,
CP+∀red or PCR+∀red refutation of Q(n,m, c) requires size 2Ω(nε).

C. New proofs of known lower bounds. We conclude by using Size-Cost-Capacity to
provide a new proof of the hardness of the prominent QBFs of Kleine Büning, Karpinski
and Flögel [41]. We consider a common modification of the formulas, denoted by λ(n), which
consists of ‘doubling’ each universal variable. This modification is known to lift lower bounds
in Q-Res to lower bounds in QU-Res [4], where we can apply Size-Cost-Capacity.

By rearranging the quantifier prefix to quantify all the additional universal variables in
the penultimate quantifier block, we obtain a cost lower bound for this weaker formula, and
so prove the following result.

Corollary 43. Any QU-Res, CP+∀red or PCR+∀red proof of λ(n) requires size 2Ω(n).

As QU-Res lower bounds on these modified formulas are shown to be equivalent to Q-Res
lower bounds on the original formulas, our technique even proves the original lower bounds
from [41] (cf. also [10]), and provides some insight as to the source of this lower bound.

Generality of applicability. In order to present Size-Cost-Capacity in total generality, we
take the concept of P+∀red (introduced in [8] for a hierarchy of Frege systems) and formalise
exact conditions on P yielding a sound and complete QBF proof system. We identify three
natural properties that are sufficient: (a) The derivable axioms are semantically equivalent to
the input formula; (b) The system exhibits logical correctness and implicational completeness;
(c) The system is closed under restrictions. Any line-based propositional calculus possessing
all three properties is referred to as a base system (Definition 7). On account of the low-level
generality, the following theorem requires a non-trivial proof.

Theorem 11. If P is a base system, then P+∀red is a sound and complete QBF proof system.

Formalising the framework of base systems thus renders Size-Cost-Capacity applicable to
the complete spectrum of P+∀red systems. All the concrete propositional calculi considered
in this work (i.e. those appearing in Figure 1) are demonstrably base systems.

2.3 Relation to previous work

Strategy extraction for QBF lower bounds has been explored previously by exploiting con-
nections to circuit complexity [8, 10, 13]. In particular, [8] established tight relations between
circuit and proof complexity, lifting even strong circuit lower bounds for AC0[p] circuits [50,53]
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to QBF lower bounds for AC0[p]-Frege+∀red [8], which is unparalleled in the propositional do-
main. In fact, for strong proof systems such as Frege+∀red, this strategy extraction technique
is sufficient to prove any genuine QBF lower bound, in the sense that any superpolynomial
lower bound for Frege+∀red arises either due to a lower bound for Frege, or due to a lower
bound for Boolean circuits [13]. However for weaker systems such as QU-Res, this does not
hold and there exist lower bounds which are neither a propositional lower bound nor a circuit
lower bound [12]. The reasons underlying such hardness results are at present not well under-
stood. The development of techniques for, or a characterisation of, such lower bounds would
be an important step in QBF proof complexity.

The major drawback of the existing approach of [8, 10, 13], of course, is the rarity of
superpolynomial lower bounds from circuit complexity [59], especially for larger circuit classes
to which the stronger QBF proof systems connect. With Size-Cost-Capacity we employ a much
different approach to strategy extraction. Our technique is motivated by semantics and does
not interface with circuit complexity whatsoever. Instead, lower bounds are determined directly
from the semantic properties of the instance, and consequently we make advances out of the
reach of previous techniques.

2.4 Innovations and future perspectives

Our main conceptual innovation is the introduction of Size-Cost-Capacity, a semantically-
grounded general technique for proving genuine QBF lower bounds.

In this paper, we focus the technique on the P+∀red family of QBF calculi, and prove the
first known lower bounds for randomly generated QBFs. The primary appeal of the technique
is its semantic nature. We believe that lower bounds based on semantic properties of instances,
as opposed to syntactic properties of proofs, work to further our understanding of the hardness
phenomenon across the wider range of QBF proof systems. We strongly suggest that Size-
Cost-Capacity is applicable beyond P+∀red, and future work will likely establish the hardness
of random QBFs in even stronger QBF systems (for example in the expansion based calculus
IR-calc [9]).

Size-Cost-Capacity also opens new research avenues concerning the reasons for QBF hard-
ness – a topic that is currently insufficiently understood. By presenting the technique for
P+∀red in general, we are able (in certain cases) to associate large proofs with low capacity
and short proofs with high capacity. This goes some way towards explaining why the observed
dichotomy in Frege+∀red [13] breaks down for weaker systems such as QU-Res: the reduced
capacity introduces a new form of genuine QBF hardness. As such, our work opens the door
for a better understanding, and makes steps towards the complete characterisations of reasons
for hardness that are currently lacking in the literature.

2.5 Organisation of the paper

After dealing with preliminaries in Section 3, we give the direct proof of hardness for the equal-
ity formulas in Section 4. This is a relatively straightforward example of our new lower bound
technique, and is presented first to help illustrate the more general arguments of Section 5.

In Section 5, we give all the details of our lower bound technique and prove the Size-
Cost-Capacity Theorem. Subsections 5.1 and 5.2 provide low-level details pertaining to the
definition and completeness of P+∀red. If the reader wishes to skip such details, and go straight
to the lower-bound technique, they might begin with strategy extraction in Subsection 5.3.

Upper bounds on capacity for CP+∀red and PCR+∀red are the subject of Section 6, and
the material on random QBFs appears in Section 7. In Section 8, we provide a new proof
of some well-known QBF lower bounds using our new technique, and finally, we offer some
concluding thoughts in Section 9.
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3 Preliminaries

Quantified Boolean formulas. A quantified Boolean formula (QBF) in closed prenex form
is typically denoted Φ = Q·φ. In the quantifier prefix Q = Q1X1 . . .QnXn, the Xi are pairwise-
disjoint sets of Boolean variables (or blocks)4 each of which is quantified either existentially
or universally by the associated quantifier Qi ∈ {∃,∀}, and consecutive blocks are oppositely
quantified. The propositional part φ is a propositional formula all of whose variables vars(φ)
are quantified in Q. When this propositional formula is a CNF, the QBF is said to be in
prenex conjunctive normal form (PCNF).

By the variables of Φ we mean the set vars(Φ) =
⋃n
i=1Xi. The set of existential variables

of Φ, denoted vars∃(Φ), is the union of those Xi whose associated quantifier Qi is ∃, and we
define the universal variables of Φ similarly. The prefix Q imposes a linear order <Q on the
variables of Φ, such that xi <Q xj holds whenever xi ∈ Xi, xj ∈ Xj and i < j, in which case
we say that xi is left of xj (xj is right of xi) with respect to Q. We extend the linear order
<Q to sets of variables in the natural way.

A literal l is a Boolean variable x or its negation ¬x, and we write var(l) = x. A total
assignment τ to a set vars(τ) = X of Boolean variables is a function τ : X → {0, 1}, typically
represented as a set of literals in which the literal ¬x (resp. x) represents the assignment x 7→ 0
(resp. x 7→ 1). The set of all total assignments to X is denoted 〈X〉. A partial assignment to
X is a total assignment to a subset of X. The projection of τ to a set X ′ of Boolean variables
is the assignment {l ∈ τ : var(l) ∈ X ′}.

The restriction of Φ by an assignment τ is Φ[τ ] = Q[τ ]·φ[τ ], where Q[τ ] is obtained from Q
by removing each variable in vars(τ) and its associated quantifier, and φ[τ ] is the restriction of
φ by τ . Restriction of propositional formulas is defined by the conventional inductive semantics
of propositional logic; that is, φ[τ ] is obtained from φ by substituting each occurrence of a
variable in vars(τ) by its associated truth value, and simplifying the resulting formula in the
usual way.

QBF semantics. Semantics are neatly described in terms of strategies in the two-player
evaluation game. The game takes place over n rounds, during which the variables of a QBF
Φ = Q · φ are assigned strictly in the linear order of the prefix Q = ∃E1∀U1 · · · ∃En∀Un.5 In
the ith round, the existential player selects an assignment αi to Ei and the universal player
responds with an assignment βi to Ui. At the conclusion the players have constructed a total
assignment τ =

⋃n
i=1(αi ∪ βi) ∈ 〈vars(Φ)〉. The existential player wins iff φ[τ ] = >; the

universal player wins iff φ[τ ] = ⊥.

A strategy for the universal player details exactly how she should respond to all possible
moves of the existential player. Formally, a ∀-strategy for Φ is a function S : 〈vars∃(Φ)〉 →
〈vars∀(Φ)〉 that satisfies the following for each α, α′ ∈ dom(S) and each i ∈ [n]: if α and α′

agree on E1 ∪ · · · ∪Ei, then S(α) and S(α′) agree on U1 ∪ · · · ∪Ui.6 We say that S is winning
iff φ[α ∪ S(α)] = ⊥ for each α ∈ dom(S).

Proposition 1 (folklore). A QBF is false if and only if it has a winning ∀-strategy.

QBF resolution. A conjunctive normal form (CNF) formula is a conjunction of clauses,
each of which is a disjunction of literals. We represent a CNF as a set of clauses, and a clause
as a set of literals.

4 Whereas a block X = {x1, . . . , xm} is a set, it is written explicitly in a prefix as a string of variables x1 · · ·xm.
5 An arbitrary QBF can be written in this form by allowing E1 and Un to be empty.
6 Two assignments agree on a set if and only if their projections to that set are identical.
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Axiom: C
C is a clause in the matrix φ.

Weakening: C
C ∪W

Each variable appearing inW is in vars(Φ).
The consequent C∪W is non-tautologous.

Resolution:
C1 ∪ {x} C2 ∪ {¬x}

C1 ∪ C2

The resolvent C1 ∪ C2 is non-tautologous.

Universal reduction: C ∪ U
C

U contains only universal literals.
Each variable in U is right of all existential
variables in C, with respect to Q.

Fig. 2. The rules of QU-resolution. The input QBF is Φ = Q · φ, where φ is a propositional CNF containing
no tautologous clauses.

Resolution is a well-studied refutational proof system for propositional CNF formulas
with a single inference rule: the resolvent C1 ∪ C2 may be derived from clauses C1 ∪ {x} and
C2 ∪ {¬x}. Resolution is refutationally sound and complete: that is, the empty clause can be
derived from a CNF iff it is unsatisfiable.

QU-Resolution (QU-Res) [33, 41] is a resolution-based proof system for QBFs of the form
Φ = Q · φ, where φ is a CNF. The calculus supplements resolution with a universal reduction
rule which allows (literals in) universal variables to be removed from a clause C provided that
they are right of all existentials in C with respect to Q. Tautological clauses are explicitly
forbidden; for any variable x, one may not derive a clause containing both x and ¬x. The
rules of QU-Res are given in Figure 2. Note that we choose to include weakening of clauses as
a valid inference rule. Whereas this is not conventional,7 it is justified, since its inclusion is
consistent with the overall narrative of this paper.

A QU-Res-derivation of a clause C from Φ is a sequence C1, . . . , Cm of clauses in which
(a) each Ci is either introduced as an axiom (i.e. Ci ∈ φ) or is derived from previous clauses
in the sequence using resolution or universal reduction, and (b) the conclusion C = Cm is the
unique clause that is not an antecedent in the application of one of these inference rules. A
refutation of Φ is a derivation of the empty clause from Φ.

4 A QU-Res lower bound for the equality formulas

In this section, we introduce the equality formulas and sketch a direct proof of their hardness
in the well-known QBF proof system QU-Res. The material in this section is intended to illu-
minate, by means of an accessible example, the paradigm of round-based strategy extraction,
and our exploitation of it as a new lower-bound technique. For that reason, technical details
and formal proofs are omitted; formal proofs of the arguments used here are encompassed by
those in the following section on strategy extraction in P+∀red.

Equality formulas. The salient feature of the equality formulas, defined below, is that each
instance has a unique winning strategy, and the cardinality of its range is exactly 2n.

Definition 2 (equality formulas). For n ∈ N, the nth equality formula is

Θ(n) := ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn ·

(
n∧
i=1

(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)

)
∧

(
n∨
i=1

ti

)
.

7 A weakening step does not occur in the shortest QU-Res refutation of any QBF.
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Note that the propositional part of Θ(n) is the CNF consisting of the long clause {t1, . . . , tn}
and each pair of clauses {xi, ui,¬ti}, {¬xi,¬ui,¬ti} for i ∈ [n].

The equality formulas are false, and it is clear that there is only one winning strategy for
the universal player; namely, she must assign each ui the same value as the corresponding xi.
Proceeding this way, she forces all n unit clauses {¬ti} to be present on the board with only
the final block left to play. Then the existential player must lose, since satisfying all such unit
clauses entails falsifying the long clause {t1, . . . , tn}. This is indeed the only way to win, since
any other reply from the universal player would drop at least one unit clause, allowing her
opponent to satisfy the long clause.

The upshot of all this is that the existential player can force his opponent to play any
one of the total assignments to the universal variables. It follows that the range of the unique
winning ∀-strategy for Θ(n) is exactly the set 〈{u1, . . . , un}〉. Now, given a refutation π of
Θ(n), we will prove by appeal to strategy extraction that each element of that range appears
in π as a subset of some clause. Since no two elements can be subsets of the same clause (that
would produce a universal tautology), the size of π is at least |〈{u1, . . . , un}〉| = 2n.

Overview of round-based strategy extraction. Strategy extraction is an important QBF
paradigm that was motivated by solving certification (cf. [36,47]), and subsequently received
much attention in the literature [3, 8, 30, 48]. In this paper, we follow the algorithm given
in [36], which for the sake of clarity we refer to as round-based strategy extraction.

Given a QU-Res refutation of a PCNF, round-based strategy extraction is an iterative
procedure that returns a winning ∀-strategy. During the course of the game, the ∀-player
maintains a restriction of the refutation, from which her winning moves may be determined.
She need only do the following two things:

(a) restrict the refutation by the ∃-player’s move.
(b) ‘read off’ the response from the restricted refutation.

These two steps are simply repeated round by round until the game concludes.8

The correctness of the procedure rests on two corresponding propositions, which originate
from [36]:9 (a) QU-Res refutations are preserved by existential restrictions (Proposition 3);
(b) a winning response can be determined algorithmically from the refutation (Proposition 4).
To prove the hardness of Θ(n), we do not need to formalise QU-Res strategy extraction and
prove its correctness; it suffices to argue directly from these two propositions.

Direct proof of hardness. We briefly describe how to restrict a refutation by an existential
assignment. For each QU-Res refutation π of a PCNF Φ, and each partial assignment α to
the existential variables of Φ, we define the restricted refutation π[α] as follows: Let Ci be the
first clause in π for which Ci[α] = ⊥, and let πi be the subderivation of Ci. Then π[α] is the
sequence obtained by restricting each clause in πi by α, while removing all satisfied clauses.
QU-Res refutations are preserved by existential restrictions in the following sense.

Proposition 3. Let π be a QU-Res refutation of a PCNF Φ, and let α be a partial assignment
to the existential variables of Φ. Then π[α] is a QU-Res refutation of Φ[α].

Now, given a QBF whose first block U is universal, a winning move for the universal player
on block U can be determined easily from a QU-Res refutation, as follows. If the final step is
a universal reduction, select an assignment that falsifies all the reduced literals (this must be

8 In practice, the refutation is commonly restricted by the ∀-player’s move as well (cf. [36]), but this is not
strictly necessary.

9 That paper presents analogous results for the weaker system Q-Res.
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possible since universal tautologies are disallowed). Otherwise, if the final step is a resolution,
any assignment to U is a winning move.

Proposition 4. Let π be a non-trivial QU-Res refutation of a PCNF Φ whose first block U
is universal, and let β be a total assignment to U . If β falsifies the universal literals in the
penultimate clause of π, then Φ[β] is false.

To prove the lower bound we claim the following: In a refutation π of Θ(n), each total
assignment β to the universal variables appears as a subset of some clause. Since tautologies
are forbidden, the claim implies that π contains at least 2n clauses.

The claim is established from our two propositions and properties of Θ(n) as follows: Let
U be the universal variables of Θ(n), and let β be any total assignment to U . Now consider the
unique total assignment α to the existential variables {x1, . . . , xn} that satisfies α(xi) 6= β(ui)
for each i ∈ [n]. By Proposition 3, π[α] is a refutation of Θ(n)[α]. It is easy to verify that
π(n) is non trivial, so let C denote its penultimate clause. Now, by the uniqueness of the
countermodel for Θ(n), the only total assignment β′ to U for which Θ(n)[α][β′] is false must
satisfy β′(ui) = α(xi); that is, β′(ui) 6= β(ui) for each i ∈ [n]. Moreover, by Proposition 4, β′

is the only total assignment to U that falsifies the universal literals in C. It follows that β,
represented as a set of literals, is contained in C. The claim follows, since C is contained in a
clause of the original proof π by the definition of restriction.

Theorem 5. Let π be a QU-Res refutation of Θ(n). Then |π| ≥ 2n.

In a nutshell, Theorem 5 was proved by equating the minimum refutation size with the
cardinality of the range of a winning ∀-strategy for Θ(n). Our argument here was aided by two
facts: Θ(n) has a unique winning ∀-strategy and contains a single universal block. Of course,
neither fact holds for QBFs in general. Nonetheless, in the following section, we generalise the
method to prove an absolute proof-size lower bound for any instance in P+∀red.

5 A new lower bound technique for P+∀red

In this section, we develop a general technique for proof-size lower bounds in P+∀red, by
extrapolation from the method of Section 4. In Subsection 5.1, we first describe precisely
what we mean by a line-based propositional proof system P, and proceed to identify three
natural conditions by which P+∀red is a QBF proof system to which our technique applies.
The formal definition of P+∀red (adapted from [8]) and a proof of its completeness is provided
in Subsection 5.2. In Subsection 5.3, we formally define round-based strategy extraction for
P+∀red and prove its correctness. Finally, in Subsection 5.4 we state and prove our central
result, the Size-Cost-Capacity Theorem.

5.1 Line-based propositional proof systems

We associate the basic concept of a line-based propositional proof system P with the following
two features:

(a) A set of lines LP, containing at least the two lines > and ⊥ that represent trivial truth
and trivial falsity, respectively.

(b) A set of inference rules IP and an axiom function that maps each propositional formula
φ to a set of axioms AP(φ) ⊆ LP.

Following convention, a P-derivation from a propositional formula φ is a sequence π =
L1, . . . , Lm of lines from LP, in which each line Li is either an axiom from the set AP(φ),
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or may be derived from previous lines using an inference rule in IP. The final line Lm is called
the conclusion of π, and π is a refutation iff Lm = ⊥. For convenience, we insist that the first
occurrence of ⊥ in a refutation is at the conclusion.

In order to facilitate the restriction of P-derivations, we require two further features:

(c) A variables function that maps each line L ∈ LP to a finite set of Boolean variables
vars(L), satisfying vars(>) = vars(⊥) = ∅. Additionally, vars(L) ⊆ vars(φ) for each line L
in a P-derivation from φ.10

(d) A restriction operator (denoted by square brackets) that takes each line L ∈ LP, under
restriction by any partial assignment τ to vars(L), to a line L[τ ] ∈ LP. If τ is a total
assignment, then L[τ ] is either > or ⊥. Restriction of L by an arbitrary Boolean assignment
σ is defined as the restriction of L by the projection of σ to vars(L).

The purpose of the restriction operator is to encompass the natural semantics of P. For that
reason, we make the natural stipulation that restriction by a total assignment to the variables
of a line yields either trivial truth or trivial falsity. We may therefore associate with any line
L ∈ LP the Boolean function on vars(L) that computes the propositional models of L, with
respect to the semantics of the restriction operator for P.

Definition 6 (associated Boolean function). Let P be a line-based propositional proof
system and let L ∈ LP. The associated Boolean function for L is BL : 〈vars(L)〉 → {0, 1},
defined by

BL(τ) =

{
1, if L[τ ] = > ,
0, if L[τ ] = ⊥ .

Beyond the established notion of line-based, we identify three natural properties by which
P can be augmented with ∀-reduction, yielding a bona fide QBF proof system P+∀red. The
first of these guarantees that the propositional models of the axioms are exactly those of the
input formula, and the second guarantees soundness and completeness in the classical sense of
propositional logic.11 The third property ensures that the restriction operator behaves sensibly;
that is, the propositional models of the restricted line are computed by the restriction of the
associated Boolean function. We introduce the term base system for those possessing all three.

Definition 7 (base system). A base system P is a line-based propositional proof system
satisfying the following three properties:

(a) Axiomatic equivalence. For each propositional formula φ and each τ ∈ 〈vars(φ)〉,
φ[τ ] = > iff each A ∈ AP(φ) satisfies A[τ ] = >.

(b) Inferential equivalence. For each set of lines L ⊆ LP and each line L ∈ LP, L can be
derived from L iff L semantically entails L.

(c) Restrictive closure. For each L ∈ LP and each partial assignment τ to vars(L), the
Boolean functions BL[τ ] and BL|τ are identical.

As a first example, we note that resolution (with weakening) is a base system. The ax-
iomatic equivalence is trivial, as is inferential equivalence, which follows directly from implica-
tional completeness and logical correctness. Taking the conventional definitions of the variable

10 Note that this does not exclude extended Frege systems (EF), whose lines can be represented as Boolean
circuits as in [40, p. 71].

11 The (proof-complexity-theoretic) concepts of soundness and completeness for arbitrary proof systems in the
sense of Cook and Reckhow are weaker than their counterparts in propositional logic.
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L
L[β]

– β is a partial assignment to the universal variables of Φ.

– each universal in vars(β) is right of each existential in
vars(L), with respect to Q.

Fig. 3. The universal reduction rule, where Φ = Q · φ is the input QBF.

function and restriction operator, the restrictive closure of resolution is readily verified. This
is to be expected of course, since the restriction of clauses is based on a standard definition
of semantics in propositional logic.

We conclude the subsection with two useful propositions. From the definition of base
system, it does not follow that the order of successive restrictions of a line may be ignored (that
is, L[τ1][τ2] does not equal L[τ1 ∪ τ2] in general). However, it is a straightforward consequence
of restrictive closure that the associated Boolean function is preserved.

Proposition 8. Let P be a base system, let L ∈ LP, and let τ1, . . . , τn be pairwise variable-
disjoint, partial assignments to vars(L). Then the associated Boolean functions for L[τ1] · · · [τn]
and L[

⋃n
i=1 τi] are identical.

Proof. We have BL[τ1]···[τn] = (· · · (BL|τ1) · · · )|τn = BL|⋃n
i=1 τi

= BL[
⋃n
i=1 τi]

, by the restrictive
closure of P. ut

Finally, we show that a base system has the power to express disjunctions; that is, for
each assignment to Boolean variables, there exists a line in LP which is falsified only by that
assignment, or an extension of it.

Proposition 9. Let P be a base system, and let τ be an assignment to Boolean variables.
Then there exists a line L ∈ LP with vars(L) = vars(τ) for which BL is zero only at τ .

Proof. Let σ ∈ 〈vars(τ)〉, let φ =
∨
l∈τ ¬l and observe that φ[σ] = ⊥ iff σ = τ . By the

axiomatic equivalence of P, there is some A ∈ AP(φ) for which A[σ] = ⊥ iff σ = τ . Since A may
be introduced in a P-derivation from φ, we have vars(A) ⊆ vars(τ). Aiming for contradiction,
suppose that vars(A) ⊂ vars(τ), and let σ′ be the projection of σ to vars(A). Then, restriction
of A by any extension of σ′ returns ⊥, but at least one such extension is in 〈vars(τ)〉 and not
equal to τ , a contradiction. It follows that vars(A) = vars(τ), and BA is zero only at τ . ut

5.2 P+∀red: definition and completeness

Universal reduction is a widely used rule of inference in QBF proof systems, by which uni-
versal variables may be assigned under certain conditions. More precisely, a line L may be
restricted by an assignment to a universal variable u provided it is right of all the existentials
in vars(L), with respect to the prefix of the input QBF. By restrictive closure, the restriction
of a line by an assignment to u results in the exclusion of u from the domain of the asso-
ciated Boolean function. Universal reduction should therefore be viewed as a sound method
for deleting universal variables. We state the rule formally in Figure 3; note that we allow
multiple reductions in a single step (that is, restriction by a partial assignment) provided that
each individual universal variable is eligible.

The primary purpose of universal reduction is to lift a propositional proof system P to a
QBF system P+∀red, as in the following definition.
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Definition 10 (P+∀red [8]). Let P be a line-based propositional proof system. Then P+∀red
is the system consisting of the inference rules of P in addition to universal reduction, in
which references to the input formula φ in the rules of P are interpreted as references to the
propositional part of the input QBF Q · φ.

We extend our notation from P to P+∀red in the natural way, denoting the lines available in
P+∀red (syntactically equivalent to the lines available in P) by LP+∀red, and writing vars∃(L)
and vars∀(L) for the subsets of vars(L) consisting of the existentially and universally quantified
variables, respectively. Also, we observe that Res + ∀red and QU-Res are (virtually) identical
proof systems,12 and we will henceforth use the terms interchangeably.

In this subsection and the next, we prove that P+∀red is sound and complete for QBF if
P possesses the three properties of a base system.13

Theorem 11. If P is a base system, then P+∀red is a sound and complete QBF proof system.

The argument for completeness is straightforward. A winning ∀-strategy S for a false QBF
Φ can be represented equivalently as the set {α∪S(α) : α ∈ 〈vars∃(Φ)〉} of total assignments to
the variables of Φ. By Proposition 9, for each such element τ = α∪S(α), we can derive from Φ
some line in LP+∀red whose associated Boolean function is zero only at τ . By deriving such a line
for each α ∈ vars∃(Φ), we can faithfully represent the strategy S within a P+∀red-derivation
from Φ. Starting at the rightmost block, we successively ‘truncate’ this representation of the
strategy, using ∀-reduction to delete universal variables, and the implicational completeness
of P to remove existentials. At the final step, the strategy collapses completely, and we derive
trivial falsity.

Lemma 12. If P is a base system, then P+∀red is complete.

Proof. Let S be a winning ∀-strategy for a false QBF Φ = ∀U1∃E1 · · · ∀Un∃En ·φ. Further, let
S0 = {∅}, and, for each i ∈ [n], let Si be the set consisting of the projection of the assignments
{α ∪ S(α) : α ∈ 〈vars∃(Φ)〉} to the variables

⋃i
j=1(Uj ∪Ej) (informally, Si is the ‘truncation’

of S to the first i rounds). Finally, for each assignment τ to Boolean variables, we denote by
Lτ some fixed line in LP with vars(Lτ ) = vars(τ) for which BLτ is zero only at τ . Such a line
Lτ exists by Proposition 9.

We will prove by backwards induction on i ∈ {0, . . . , n} that Φ `P+∀red Lτ for each τ ∈ Si.
Hence we prove the theorem at the final step i = 0, since L∅ = ⊥.

For the base case i = n, we observe that φ[τ ] = ⊥ for each τ ∈ Sn, by definition of
winning ∀-strategy. Hence, by the axiomatic equivalence of P, in a P-derivation from φ we can
introduce, for each τ ∈ S, some axiom Aτ ∈ AP(φ) for which Aτ [τ ] = ⊥. Now, since Aτ � Lτ ,
we have Aτ `P Lτ by the implicational completeness of P. It follows that φ `P Lτ (and hence
Φ `P+∀red Lτ ) for each τ ∈ Sn.

For the inductive step, let i ∈ [n] and suppose that Φ `P+∀red Lτ for each τ ∈ Si. Further,
for each τ ∈ Si, let τ ′ and τ ′′ be the projection of τ to vars(τ) \ Ei and vars(τ) \ (Ui ∪ Ei)
respectively. We show that (a) Φ `P+∀red Lτ ′ follows from the implicational completeness of
P, and that (b) Lτ ′′ can be derived from Lτ ′ by ∀-reduction in a P+∀red derivation from Φ.
This completes the inductive step and the proof, since each assignment in Si−1 is equal to τ ′′

for some τ ∈ Si.
To show (a), let s(τ) = {σ1, . . . , σk} be the set of assignments in Si agreeing with τ on all

blocks left of Ei. We observe that Lσ1 , . . . , Lσk � Lτ ′ , since (by definition of ∀-strategy) s(τ)
contains the extension of τ ′ by each assignment to Ei. Hence, since each Lσi can be derived

12 The only difference between them is that it is allowable to derive universal tautologies and trivial truth in
Res + ∀red. Such inferences, however, are never useful.

13 We assume that restriction of lines in P can be computed in polynomial time.
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from Φ (by the inductive hypothesis), it follows that Φ `P+∀red Lτ ′ by the implicational
completeness of P.

To show (b), we let β be the projection of τ to Ui. Since vars(Lτ ′) contains no variable
right of Ui, in a P+∀red derivation from Φ we may derive Lτ ′ [β] from Lτ ′ by ∀-reduction.
We observe that BLτ ′ |β is the unique Boolean function on vars(τ ′′) that is zero only at τ ′′.
Moreover, by restrictive closure of P, the associated Boolean function for Lτ ′ [β] is identical
to BLτ ′ |β, and hence we have Lτ ′ [β] = Lτ ′′ . ut

5.3 Round-based strategy extraction in P+∀red

The argument for soundness of P+∀red by strategy extraction is less straightforward than the
argument for completeness. However, if we are careful enough with the details, we obtain not
only a proof of soundness, but the framework for an absolute lower bound on refutation size
(we take this up in the following subsection).

The principal notion of strategy extraction is that the ∀-player’s response (for any given
round) can be read off from a suitable restriction of the refutation; as we described in Sec-
tion 4, in QU-Res the response can be determined from the penultimate clause. In the general
setting of P+∀red, we seek a method of determining the response that does not depend upon
the particulars of P. We introduce the concept of a response map for this purpose. Strictly
speaking, given a line L ∈ LP+∀red and a total assignment α to the existential variables of L,
the response map returns a total assignment to the universal variables that is guaranteed to
falsify L[α], as long as such an assignment exists.

Definition 13 (response map). A response map R for P+∀red is any function with domain
{(L,α) : L ∈ LP+∀red, α ∈ 〈vars∃(L)〉} that maps each (L,α) to some β ∈ 〈vars∀(L)〉 such that
the following holds:

If BL|α is zero anywhere, then it is zero at β.

The case where P is resolution gives rise to a simple response map, since falsifying the
universal literals is guaranteed to falsify a clause under an existential restriction, whenever
possible. Hence, we simply take R(C,α) = {¬l : l ∈ C∀}, which demonstrates that the
response need not even depend on the existential restriction α. This is not the case for P+∀red
in general, where the expressive capacity of lines may be much greater than that of the
disjunctive Boolean functions associated with clauses.

Given an arbitrary response map for P+∀red, we can define an algorithm whose input
is a refutation of a QBF Φ and whose output is a winning ∀-strategy for that QBF. In a
nutshell, the algorithm works by round-by-round restriction of the refutation, whereby the
universal response for a given round is obtained by querying the response map on the first
non-tautological line containing no existential variables.

We proceed to define round-based strategy extraction for P+∀red. For the purpose of count-
ing universal reduction steps in the following subsection, we introduce the term reduction line
to refer to any line in π that is the antecedent in an application of universal reduction. For
convenience, we also consider the conclusion of π to be a reduction line. For each response
map R for P and each P+∀red refutation π of a QBF Φ = ∃E1∀U1 · · · ∃En∀Un · φ, we define
a set of functions

βR,πi : 〈vars∃(Φ)〉 → 〈Ui〉, for i ∈ [n],

that capture the ∀-player’s responses extracted from π. We define these functions inductively
as follows: First, let α ∈ 〈vars∃(Φ)〉, and let β0(α) = ∅. Then, for each i ∈ [n],

(a) let αi be the projection of α to Ei.
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(b) let Zi be the first reduction line in π for which

(i) vars∃(Zi) ⊆
⋃i
j=1Ej , and

(ii) Zi[
⋃i
j=1 αj ∪ β

R,π
j−1(α)] is not a tautology.

(c) let βR,πi (α) be the projection ofR(Zi, σi) to Ui, where σi is the projection of α to vars∃(Zi).

Note that the reduction line Zi always exists, since the conclusion of π is ⊥, vars(⊥) = ∅,
and ⊥[τ ] = ⊥ for any assignment τ (by the restrictive closure of P). The extracted strategy
is constructed by taking the union of the round-by-round responses for a given existential
assignment.

Definition 14 (round-based strategy extraction). Let R be a response map for a base
system P, and let π be a P+∀red refutation of a QBF Φ = ∃E1∀U1 · · · ∃En∀Un · φ. The
(round-based) extracted strategy for π with respect to R is

SR(Φ, π) : 〈vars∃(Φ)〉 → 〈vars∀(Φ)〉
α 7→

⋃n
i=1 β

R,π
i (α) .

Since it is clear that the strategy extraction algorithm terminates (each Zi exists), we need
only prove its correctness; that is, a winning ∀-strategy is indeed returned. In the following
proof, where the choice of R and π is clear, we omit the superscripts and use the function
symbols βi.

It is worth noting that we do not employ a generalisation of Proposition 3; that is, we
do not prove that a P+∀red refutation is preserved by a per-line existential restriction, as
is the case in QU-Res. Indeed, in the general setting, this proposition does not hold (extra
propositional inferences may need to be inserted to obtain a concrete P+∀red refutation).
Instead, the correctness of the strategy extraction algorithm is proved by analysis of the
associated Boolean functions of successive restrictions.

Lemma 15. Let R be a response map for a base system P, and let π be a P+∀red refutation
of a QBF Φ. Then the extracted strategy for π with respect to R is a winning ∀-strategy for Φ.

Proof. Let Φ = Q · φ, where Q = ∃E1∀U1 · · · ∃En∀Un, and let S be the extracted strategy for
π = L1, . . . , Lm with respect to R.

By construction, S is a ∀-strategy for Φ; that is, for each α, α′ ∈ 〈vars∃(Φ)〉, if α and α′

agree on the first i existential blocks, then S(α) and S(α′) agree on the first i universal blocks.
To see this, observe that the projection of both S(α) and S(α′) to

⋃i
j=1 Uj is

⋃i
j=1 βj(α).

It remains to show that S is winning; that is, for each α ∈ 〈vars∃(Φ)〉, α ∪ S(α) falsifies
φ. To that end, let α ∈ 〈vars∃(Φ)〉, and let τi =

⋃i
j=1(αj ∪ βj(α)) for each i ∈ [n]. Further,

for each line L in π, let LL be the set of lines in the subderivation of L. By induction on
i ∈ {0, . . . , n}, we prove the following two invariants for each L in the subderivation of Zi:

(1) If L was derived using an inference rule of P, then {L′[τi] : L′ ∈ LL} � L[τi];
(2) If L was derived by ∀-reduction, then BL[τi] = BL′[τi]|β for some L′ ∈ LL, where β is a

partial assignment to vars∀(Φ) with vars∃(L
′[τi]) <Q vars(β).

At the final step i = n we prove that S is indeed winning. To see this, note that τn is a total
assignment to vars(Φ), and hence Lj [τn] ∈ {>,⊥} for each j ∈ [m]. Aiming for a contradiction,
suppose that A[τn] = > for each axiom A of π. By invariants (1) and (2), it follows that
L[τn] = > for each L in the subderivation of Zn. However, we reach a contradiction, since
Zn[τn] = ⊥. To see this, recall that Zn[

⋃n
j=1 αj ∪ β

R,π
j−1 ] is not a tautology, and must therefore

be falsified by βn(α), by the definition of response map. It follows that there is some axiom A
in π with A[τn] = ⊥, and hence, by the axiomatic equivalence of P, φ[τn] = φ[α ∪ S(α)] = ⊥.
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We prove the invariants in turn. For the base cases i = 0, we define Z0 to be the conclusion
of π, and τ0 to be the empty assignment, so that the subderivation of Z0 is π itself, and
L[τ0] = L for each L in π.

For invariant (1), let L be a line in the subderivation of Zi that was derived using an
inference rule of P. The base case is established trivially, since LL � L by the logical correctness
of P. For the inductive step, let i ∈ [n]. Then {L′[τi−1] : L′ ∈ LL} � L[τi−1], by the inductive
hypothesis. Equivalently, we may say that BL[τi−1] is equal to 1 wherever every function
BL′[τi−1] is equal to 1. Moreover, for each L′ ∈ LL, we observe that

BL′[τi] = BL′[τi−1][αi∪βi(α)] = BL′[τi−1]|αi∪βi(α),

by Proposition 8 and the restrictive closure of P. It follows that BL[τi] is equal to 1 wherever
every function BL′[τi] is equal to 1. Therefore {L′[τi] : L′ ∈ LL} � L[τi], and invariant (1)
holds.

For invariant (2), let L = L′[β] be a line in the subderivation of Zi that was derived from
L′ by ∀-reduction. The base case i = 0 follows from the definition of ∀-reduction and the
restrictive closure of P. For the inductive step, let i ∈ [n], and consider two cases:

(i) Suppose that vars(L′) contains a variable right of Ei. Then vars(β) contains only
variables right of Ui, so τi and β are variable-disjoint assignments. It follows that

BL[τi] = BL′[β][τi] = BL′[τi][β] = BL′[τi]|β,

by Proposition 8 and restrictive closure.

(ii) On the other hand, suppose that vars∃(L
′) ⊆

⋃i
j=1Ej . Then L′[τi−1 ∪ αi] must be a

tautology, for otherwise L′ is Zi,
14 contradicting the assumption that L is in the subderivation

of Zi. Letting β′ = {l ∈ β : Ui <Q var(l)}, we show that BL[τi] = BL′[τi]|β′ , proving the
invariant. Observe that the associated Boolean function for L′[τi−1 ∪αi] is everywhere 1, and
hence

BL[τi−1∪αi] = BL[τi−1]|αi = (BL′[τi−1]|β)|αi = BL′[τi−1∪αi]|β

is also everywhere 1, by Proposition 8 and restrictive closure. Similarly, both functions

BL[τi] = BL[τi−1∪αi]|βi(α) and BL′[τi]|β′ = BL′[τi−1∪αi]|βi(α)∪β′

are everywhere 1; in fact, they are identical, since vars(L[τi]) = vars(L′[τi]) \ vars(β′). ut

If a strategy can be extracted from a P+∀red refutation, then the calculus is sound, hence
the following corollary.

Corollary 16. If P is a base system, then P+∀red is sound.

5.4 P+∀red lower bounds with the Size-Cost-Capacity Theorem

In this subsection, we use the machinery of round-based strategy extraction to prove the
central theorem for our lower bound technique. In Section 4, we proved the hardness of the
equality formulas Θ(n) in QU-Res by appealing to the minimum cardinality of the range of
a winning strategy. For Θ(n), the minimum cardinality is trivial to compute because the
winning strategy per instance is unique. Moreover, the direct proof of the lower bound was
aided by the fact the equality formulas have a Σ3 prefix, so that all universal variables appear
in a single block.

14 Note that τi ∪ αi =
⋃i
j=1(αj ∪ βj−1(α)), since β0(α) = ∅.
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In order to generalise that proof method to arbitrary instances, we require a more sophisti-
cated measure that accounts for the multiple responses collected during round-based strategy
extraction. Fit for this purpose, we define a measure called cost. The cost of a (false) QBF
is the minimum, over all winning strategies, of the largest number of responses for a single
universal block.

Definition 17 (cost). Let Φ = ∀U1∃E1 · · · ∀Un∃En · φ be a false QBF. Further, for each
winning ∀-strategy S for Φ and each i ∈ [n], let Si be the function that maps each α ∈
〈vars∃(Φ)〉 to the projection of S(α) to Ui, and let µ(S) = max{|rng(Si)| : i ∈ [n]}. The cost
of Φ is

cost(Φ) = min{µ(S) : S is a winning ∀-strategy for Φ}.

The cost of Θ(n) remains simple to compute. There is only one winning strategy and only
one universal block exhibiting 2n responses; hence cost(Θ(n)) = 2n.

Proposition 18. The cost of the nth equality formula is 2n.

In the present work, the important feature of round-based strategy extraction, for the
purpose of obtaining lower bounds based on cost, is that each extracted response βi(α) can
be associated with a line in the original refutation. The direct proof of hardness for Θ(n) in
QU-Res used the fact that each line can contribute at most one response. This, of course, does
not hold for P+∀red in general; however, any upper bound on the number of responses per
line will yield some lower bound on refutation size.

To that end, we define the concept of a response set for a line L ∈ LP+∀red, which is simply
the set of elements R(L,α) over all α ∈ 〈vars∃(Φ)〉 for some response map R for P+∀red.

Definition 19 (response set). Let R be a response map for a base system P, and let L ∈
LP+∀red. The set {R(L,α) : α ∈ 〈vars∃(L)〉} is a response set for L.

As we defined round-based strategy extraction relative to an arbitrary response map, we
may select one that minimises the size of the response sets for the lines of LP+∀red, and the
algorithm will still return a winning ∀-strategy, by Lemma 15. By selecting such a minimal
response map R, we will therefore limit the capacity for lines in the refutation to contribute
multiple responses to the extracted strategy. Therefore, we associate with each P derivation
the maximum number of responses that can be extracted from a single line in that derivation,
with respect to a minimal response map. This notion, which we call capacity, captures the
best-case upper bound we can place on the number of responses contributed per line.

Definition 20 (capacity). Let P be a base system, let π = L1, . . . , Lm be a P+∀red deriva-
tion, and let µ(Li) = min{|R| : R is a response set for Li}, for each i ∈ [m]. The capacity of
π is given by

capacity(π) = max{µ(Li) : i ∈ [m]} .

We saw earlier that resolution admits a response map for which the response to a given
line does not depend on the existential assignment α. As such, the minimum size of a response
set for any clause is 1; hence, if π is a resolution derivation, then capacity(π) = 1.

Proposition 21. Every QU-Res derivation has capacity equal to 1.

This fact, which demonstrates the lack of expressive power of clauses, states that there exists
an injection from extracted responses to lines in QU-Res refutations. Close inspection reveals
that this is exactly the notion we used in the direct proof of hardness for the equality formulas
(Theorem 5) in the previous section.

With definitions of cost and capacity in hand, it remains to state and prove the relationship
that yields a genuine refutation-size lower bound.
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Lemma 22. Let P be a base system, and let π be a P+∀red refutation of a QBF Φ. Then π
contains at least cost(Φ)/capacity(π) reduction lines.

Proof. Let R be a response map for P with the following property: For each L ∈ LP+∀red,

|{R(L,α) : α ∈ 〈vars∃(L)〉}| = min{|R| : R is a response set for L}.

Further, let Φ = ∀U1∃E1 · · · ∀Un∃En ·φ and let S be the extracted strategy for π with respect
to R.

Now, as in Definition 17, for each i ∈ [n], let Si be the function that maps each α ∈
〈vars∃(Φ)〉 to the projection of S(α) to Ui. Also, let j ∈ [n] such that |rng(Sj)| = max{|rng(Si)| :
i ∈ [n]}, and observe that |rng(Sj)| ≥ cost(Φ).

By construction of S, rng(Sj) = rng(βR,πj ), and each element of rng(βR,πj ) is the projection
to Ui of R(Zi, α) for some reduction line Zi in π and some α ∈ 〈vars∃(Φ)〉. For a fixed line L
in π, there can be at most capacity(π) elements in the set

{β ∈ rng(βR,πj ) : β is the projection of R(L,α) to Ui for some α ∈ 〈vars∃(Φ)〉}.

It follows that there are at least |rng(βR,πj )|/capacity(π) reduction lines in π. We hence prove

the theorem, since |rng(βR,πj )| = |rng(Sj)| ≥ cost(Φ). ut

Lemma 22 and its proof show formally that our technique works by counting the number
of universal reduction steps in the proof. Our main theorem is an immediate consequence, and
hence all results proved by application of Size-Cost-Capacity are genuine QBF lower bounds.

Theorem 23 (Size-Cost-Capacity Theorem). Let P be a base system, and let π be a
P+∀red refutation of a QBF Φ. Then

|π| ≥ cost(Φ)

capacity(π)
.

Since QU-Res derivations have unit capacity (Proposition 21), the Size-Cost-Capacity The-
orem tells us that cost alone is an absolute refutation-size lower bound in that system.

Corollary 24. Let π be a QU-Res refutation of a QBF Φ. Then |π| ≥ cost(Φ).

As a first application of Size-Cost-Capacity, we therefore obtain a simple proof of the
hardness of the equality formulas in QU-Res (Theorem 5), as a direct consequence of their
exponential cost (Proposition 18).

6 Capacity bounds

In this section, we demonstrate that this lower bound technique is widely applicable to QBF
proof systems by showing upper bounds on the capacity of proofs in the QBF versions of two
commonly studied propositional proof systems: Cutting Planes (Subsection 6.1) and Polyno-
mial Calculus with Resolution (Subsection 6.2). These proof systems represent two distinct
approaches to propositional proof systems, via integer linear programming and algebraic meth-
ods respectively. Both proof systems are known to simulate resolution, and similarly the QBF
proof systems obtained with the addition of the ∀-reduction rule both simulate QU-Res. Our
capacity upper bound for Polynomial Calculus proofs is particularly noteworthy as it is not
constant, but depends on the size of the proof. We conclude this section with an example of
the limits of this technique, namely a Frege proof with large capacity.
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6.1 Cutting Planes

The first proof system we analyse is Cutting Planes [24] and its extension to QBFs, CP+∀red
[11]. Inspired by integer linear programming, Cutting Planes translates a CNF into an equiv-
alent system of linear inequalities, and from these derives the contradiction 0 ≥ 1. Replacing
the axiom rules by any unsatisfiable set of inequalities, Cutting Planes is in fact complete for
any set of linear inequalities without integer solutions. However, for our purposes we focus
only on its use as a proof system for unsatisfiable CNFs.

Cutting Planes has two inference rules: the linear combination rule and the division rule.
The linear combination rule infers from two inequalities, some linear combination of these
inequalities with non-negative integer coefficients. The division rule allows division by any
integer c > 0 if c divides the coefficient of each variable; note that c need not divide the
constant term in the inequality.

Definition 25 (Cutting Planes [24]). A line L in a Cutting Planes (CP) proof is a linear
inequality a1x1 + . . . anxn ≥ A where vars(L) = {x1, . . . , xn} and a1, . . . , an, A ∈ Z.15

A Cutting Planes derivation of a line L ∈ LCP from a CNF φ consists of a sequence of
lines L1, . . . , Lm where Lm = L and each line Li ∈ LCP is either an instance of an axiom
rule, or is derived from the previous lines by an inference rule (Figure 4). A CP refutation of
φ is a derivation of 0 ≥ 1 from φ.

Clause Axiom: ∑
l∈C R(l) ≥ 1

for any clause C ∈ φ, where
R(x) = x, R(¬x) = 1− x

Boolean Axiom: x ≥ 0 −x ≥ −1 for any variable x

Linear combination:

∑
i aixi ≥ A

∑
i bixi ≥ B∑

i(αai + βbi)xi ≥ αA+ βB
for any α, β ∈ N

Division:

∑
i caixi ≥ A∑
i aixi ≥

⌈
A
c

⌉ for any non-zero c ∈ N

Fig. 4. The rules of the Cutting Planes proof system (CP)

It is straightforward to see that Cutting Planes p-simulates resolution. Indeed, it is strictly
stronger than resolution, as there are short CP proofs of the pigeonhole principle formulas,
which are known to require large proofs in resolution [37]. The same argument shows that
CP+∀red is exponentially stronger than QU-Res.

Despite the apparent strength of CP+∀red compared to QU-Res, any proof in CP+∀red
still only has unit capacity. This comes about as the left hand side of any inequality L is
simply a linear combination of variables. Any response evaluates the term biui either to 0 or
to bi. By assigning the values of u1, . . . , un according to the sign of their coefficients, there is
a response such that each term evaluates to min{0, bi}. This universal response minimises the
left hand side for any existential assignment, and so forms a response set of cardinality 1.

Proposition 26. For every CP+∀red derivation π, capacity(π) = 1.

15 For convenience and clarity, we may refer to lines in LCP or LCP+∀red using equivalent linear inequalities not
in this precise form. Similarly, the result of any ∀-reduction is expressed as a line of this form.
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Proof. We show that for any line L ∈ LCP+∀red, there is a response set of cardinality 1. It
follows that capacity(π) = 1 as for every L ∈ π, L ∈ LCP+∀red since π is a CP+∀red proof, so
every line L ∈ π has a response set of cardinality 1.

Let L ∈ LCP+∀red, with vars∃(L) = {x1, . . . , xm} and vars∀(L) = {u1, . . . , un}. Then L is
of the form

a1x1 + · · ·+ amxm + b1u1 + · · ·+ bnun ≥ C

for some constants ai, bj , C ∈ Z.
Define the response γL ∈ 〈vars∀(L)〉 which assigns to each variable ui the value sgn(bi),

where sgn : Z→ {0, 1} with sgn(x) = 0 if and only if x ≥ 0. This assignment includes in the
sum only those bi which are negative, thus minimising the value of the sum for any existential
assignment α ∈ 〈var∃(L)〉. It remains to show that the map R where R(L,α) = γL for all
L ∈ LCP+∀red and α ∈ 〈vars∃(L)〉 is a response map, and so for each line L ∈ π, {γL} is a
response set for L.

Fix an assignment α to vars∃(L); the restricted line L[α] is
∑m

i=1 aiα(xi) + b1u1 + · · · +
bnun ≥ C. Letting the constant D = C −

∑m
i=1 aiα(xi), we see that BL|α = BL[α] is zero

if and only if
∑n

j=1 bjuj < D. By the definition of γL,
∑n

j=1 bjγL(uj) =
∑

j:bj<0 bj , so∑n
j=1 bjγL(uj) ≤

∑n
j=1 bjβ(uj) for all β ∈ 〈vars∀(L)〉.

Suppose that for some β ∈ 〈vars∀(L)〉 we have BL|α(β) = 0. By the equivalence above, it
must be the case that

∑n
j=1 bjβ(uj) < D. The assignment γL is such that

∑n
j=1 bjγL(uj) ≤∑n

j=1 bjβ(uj) < D, and so BL|α(γL) = 0. We conclude that R is a response map for CP+∀red,
and that capacity(π) = 1 for any CP+∀red proof π ut

Since we have determined the capacity of any CP+∀red proof π, we can apply the Size-
Cost-Capacity Theorem (Theorem 23). This yields a lower bound on the size of CP+∀red
proofs of a QBF Φ determined solely by the cost of Φ.

Corollary 27. Let π be a CP+∀red refutation of a QBF Φ. Then |π| ≥ cost(Φ).

Hence, even in the stronger system of CP+∀red, we still have a straightforward proof that
refutations of the equality formulas require size 2n by looking at the cost of the formulas and
using Size-Cost-Capacity.

6.2 Polynomial Calculus

Polynomial Calculus [21] presents an algebraic approach to proving unsatisfiability. A CNF
φ is translated into a set of polynomials, for which any assignment where all polynomials
evaluate to zero corresponds to a satisfying assignment for φ, and vice versa. Replacing the
axiom rules with any finite set of polynomials over Q, Polynomial Calculus is complete for
any set of polynomials without a common zero, but here we consider Polynomial Calculus
only as a proof system for unsatisfiable CNFs.

Formally, Polynomial Calculus works with polynomial equations where the right hand side
is 0. A Polynomial Calculus refutation of a set of polynomials is a derivation of the equation
1 = 0, which is enough to show that the set of polynomials has no common solution. The
inference rules permit deriving any linear combination of two previous lines, or multiplying
any line by a single variable.

As a propositional proof system, Polynomial Calculus works with polynomials equivalent
to each clause in a CNF. Given a clause C in a CNF, the corresponding polynomial axiom is∏
l∈C V (l) = 0, where V (x) = x and V (¬x) = (1−x).16 We also include the axioms x2−x = 0

to ensure only Boolean solutions.

16 Assigning the algebraic variable x to 0 is therefore equivalent to assigning the corresponding Boolean variable
to 1, and vice versa. This ‘swapping’ of truth values is a common feature of algebraic proof systems.

22



Proof size in Polynomial Calculus is measured by the number of monomials in the lines of
the proof. By this measure of proof size, Polynomial Calculus cannot even simulate resolution,
as the clause ¬x1 ∨ · · · ∨ ¬xn would translate to (1 − x1) . . . (1 − xn) = 0, which contains 2n

monomials. As a result of this issue, a modification of Polynomial Calculus was introduced
in [1], using variables x̄ representing ¬x. The inference rules remain the same, but we add the
axioms x+ x̄− 1 = 0 for each x ∈ vars(φ) to ensure that x and x̄ take opposite values.

Definition 28 (Polynomial Calculus with Resolution [1]). Given a CNF φ, lines in a
PCR derivation from φ are polynomials in the variables {x, x̄ : x ∈ vars(φ)}. A PCR derivation
of a line L ∈ LPCR from a CNF φ is a sequence of lines L1, . . . , Lm in LPCR such that Lm = L,
and each Li is an instance of an axiom rule, or derived from previous lines by one of the
inference rules (Figure 5). A PCR refutation of φ is a derivation of the line 1 = 0.

Clause Axiom: ∏
l∈C V (l) = 0

for any clause C ∈ φ, where
V (x) = x, V (¬x) = x̄

Boolean Axiom: y2 − y = 0 x+ x̄− 1 = 0
for any y ∈ {x, x̄ : x ∈ vars(φ)}
for any x ∈ vars(φ)

Linear combination:
p(x) = 0 q(x) = 0

α · p(x) + β · q(x) = 0
for any α, β ∈ Q

Multiplication:
p(x) = 0

y · p(x) = 0
for any y ∈ {x, x̄ : x ∈ vars(φ)}

Fig. 5. The rules of Polynomial Calculus with Resolution (PCR)

As Polynomial Calculus with Resolution is clearly strictly stronger than Polynomial Cal-
culus, we focus here only on the version with Resolution. The capacity upper bounds shown,
and consequent proof size lower bounds, all hold for Polynomial Calculus as well.

In contrast to QU-Res and CP+∀red, not all proofs in PCR+∀red have unit capacity. This
can be seen by considering the line x(1−u) + (1−x)u = 0. This polynomial clearly evaluates
to 0 if and only if x = u, so the only winning response for u is to play u = 1−x. Both possible
responses are necessary in any response set for this line, so if a PCR+∀red proof π contains
such a line, then capacity(π) ≥ 2.

While the size of response sets required for lines in LPCR+∀red is in fact unbounded, the
size of a proof in PCR+∀red is not measured by the number of lines in the proof, but by the
number of monomials in the proof. It is thus sufficient to upper bound the size of a response
set for a line by the number of monomials in that line.

Proposition 29. If π is a PCR+∀red proof where each line contains at most M monomials,
then capacity(π) ≤M .

To prove this bound, the key observation is that the important feature for determining
whether a response is winning on a line L ∈ LPCR+∀red is the evaluation of the response on the
distinct monomials of L, rather than the assignment to the individual variables. Rather than
considering responses, we therefore consider the vectors of the values the responses take on
the distinct monomials in L. If two responses correspond to the same vector, these responses
are winning for precisely the same existential assignments, so only one need be in a response
set. For any given vector, at most one of the responses mapping to it will be in a minimal
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response set for L, so an upper bound on the size of a winning set of these vectors is sufficient
to upper bound the size of a response set for L.

If, for some existential assignment, a set of these vectors does not contain a winning
‘response’, we show that any vector in their span is not a winning response either. We can
therefore find a response set for which the corresponding vectors are linearly independent. As
these vectors have dimension at most M , this provides the upper bound.

Proof (of Proposition 29). To upper bound capacity(π), it is enough to find, for any line
L ∈ π, a response set of cardinality at most M . To this end, fix a line L ∈ π and write L as

N∑
j=1

fjvj = 0

where each fj is a polynomial (not necessarily a single monomial) in vars∃(L) and the vi are
distinct monomials in vars∀(L). Denote by fj [α] and vj [β] the values obtained by evaluating
fj , respectively vj , according to the assignments α ∈ 〈vars∃(L)〉, respectively β ∈ 〈vars∀(L)〉.

Observe that since L contains at most M monomials, N ≤ M . We construct a (partial)
response map RL : 〈vars∃(L)〉 → 〈vars∀(L)〉 for which the corresponding response set for L
has cardinality at most N . This generates a response set of size at most M for each line L ∈ π,
and so capacity(π) ≤M .

Enumerate the elements of 〈vars∃(L)〉 as 〈vars∃(L)〉 = {α1, . . . , αm}. We construct a se-
quence of functions RiL : {α1, . . . , αi} → 〈vars∀(L)〉 such that R0

L is the empty function, RiL
extends Ri−1L , and RmL is the partial response map RL above. Moreover, for each 0 ≤ i ≤ m,
|rng(RiL)| ≤ N , in particular |rng(RmL )| ≤ N .

The construction of the function RmL involves, in effect, going through each of the assign-
ments α ∈ 〈vars∃(L)〉 in turn and choosing a response. At each stage, if there is a suitable
response that has been chosen before, we choose it again as we are aiming for a response set
of minimal size. If there is no suitable previously chosen response, we show that from the
newly chosen response and the set of previously chosen responses, there is an injection into a
linearly independent subset of QN .

First, if BL|α is everywhere 1 for all α ∈ 〈vars∃(L)〉, then L[α] is a tautology. In this case,
all functions 〈vars∃(L)〉 → 〈vars∀(L)〉 are suitable partial response maps. Define RiL(α) = 0
for all 1 ≤ i ≤M and all α ∈ 〈vars∃(L)〉, whence |rng(RmL )| = 1 ≤M . Otherwise, we assume
without loss of generality that BL|α1 is not everywhere 1.

Let Ri := rng(RiL). For any β ∈ 〈vars∀(L)〉, denote by v[β] the vector (v1[β], . . . , vN [β]) ∈
{0, 1}N . Since the value of BL|α(β) is determined by the values of vj [β], it is clear in the
construction below that v[β] 6= v[β′] for any distinct β, β′ ∈ Ri. In constructing the functions
RiL, we show inductively that the set Vi = {v[β] : β ∈ Ri} is linearly independent (as a subset

of QN ). Since Vi ⊆ {0, 1}N , and |Vi| = |Ri|, this provides the upper bound on |Ri|.
The conditions above are clearly true for the empty function R0

L. Given a function Ri−1L ,
we define RiL as follows:

– If BL|αi is everywhere 1, i.e.
∑N

j=1 fj [αi]vj [β] = 0 for all β ∈ 〈vars∀(L)〉, any response

can be chosen for RiL(αi). Since i 6= 1, Ri−1 is non-empty, so define RiL(αi) = Ri−1l (α1),
whence Ri = Ri−1. As Vi = Vi−1 and Vi−1 is linearly independent, Vi must be linearly
independent.

– If BL|αi(β) = 0 for some β ∈ Ri−1, then define RiL(αi) = β. Now, as previously, Ri = Ri−1
and Vi is linearly independent as Vi = Vi−1.

– Else BL|αi is not everywhere 1, but BL|αi(β) = 1 for all β ∈ Ri−1. Suppose Ri−1 =
{β1, . . . , βk}, then there exists some βk+1 such that BL|αi(βk+1) = 0, since BL|αi is not
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everywhere 1. Define RiL(αi) = βk+1, with Ri = {β1, . . . , βk, βk+1}. We now need only
show that Vi = {v[βj ] : 1 ≤ j ≤ k + 1} is linearly independent.

For any 1 ≤ l ≤ k, BL|αi(βk+1) 6= BL|αi(βl), so v[βk+1] 6= v[βl]. Suppose there is some
linear dependence relation on Vi. Since Vi−1 is linearly independent, v[βk+1] must have a
non-zero coefficient in any such linear combination, hence there are constants c1, . . . , ck ∈
Q such that

∑k
t=1 ctv[βt] = v[βk+1]. If such constants exist, we can use the same constants

to construct a linear combination of the
∑N

j=1 fj [αi]vj [βt], by assumption all equal to zero,

summing to
∑N

j=1 fj [αi]vj [βk+1], which by choice of βk+1 is non-zero.

0 =

k∑
t=1

ct

N∑
j=1

fj [αi]vj [βt] =

N∑
j=1

fj [αi]

k∑
t=1

ctvj [βt] =

N∑
j=1

fj [αi]vj [βk+1] 6= 0

From this contradiction, we conclude that the constants ct do not exist, and thus that Vi
is a linearly independent set.

The set Vm forms a linearly independent set which is a subset of QN , so has cardinality
at most N . Since |Rm| = |Vm|, the map RL = RmL satisfies |rng(RL)| ≤ N ≤ M . Defining
R(L,α) = RL(α), we obtain a response map which produces a response set of size at most
M for any line L ∈ π. We conclude that capacity(π) ≤M . ut

The effect of this bound is to show that PCR+∀red proofs with large capacity also have
large size, as they must contain lines with a large number of monomials. This provides a lower
bound for PCR+∀red proofs of a QBF Φ based solely on cost(Φ), since small proofs also have
small capacity.

Corollary 30. Let π be a PCR+∀red refutation of a QBF Φ. Then |π| ≥
√

cost(Φ).

Proof. As the size of π is measured by the number of monomials, each line of π contains at
most |π|monomials, and so by Proposition 29, capacity(π) ≤ |π|. Applying Size-Cost-Capacity

(Theorem 23), we conclude that |π| ≥ cost(Φ)
|π| , i.e. |π| ≥

√
cost(Φ). ut

As for QU-Res and CP+∀red, this immediately gives a lower bound of 2Ω(n) for any proof
of the equality formulas in PCR+∀red.

6.3 Proofs with large capacity

We conclude this section by noting that our technique cannot be applied to some of the more
powerful proof systems. These proof systems use lines which are able to concisely express
more complex Boolean functions which require large response sets. The example we give is a
proof of the equality formulas in the proof system Frege+∀red. The Frege+∀red proof system
is the strongest proof system we discuss in this paper, and no superpolynomial lower bounds
on proof size are known in the propositional system Frege, nor in the QBF proof system
Frege+∀red.

A Frege proof system is a ‘textbook’ propositional proof system, in which lines are arbi-
trary formulas in propositional variables, the constants >,⊥ and the connectives ∧,∨,¬. The
rules of a Frege system comprise a set of axiom schemes and inference rules, which must be
implicationally complete [23]; all such systems are equivalent [23,43].

Proposition 31. There is a Frege+∀red refutation of the nth equality formula Θ(n) with size
O(n).
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Proof. From the lines xi ∨ ui ∨ ¬ti and ¬xi ∨ ¬ui ∨ ¬ti, there is a constant size Frege+∀red
derivation of the line Li = [(xi ∨ ui)∧ (¬xi ∨¬ui)]∨¬ti. Successively applying the resolution
rule, which Frege can simulate with constant size, to the lines Li and the line t1 ∨ · · · ∨ tn
results in the line

L =
n∨
i=1

[(xi ∨ ui) ∧ (¬xi ∨ ¬ui)] .

Let Km be the line
∨m
i=1[(xi ∨ ui) ∧ (¬xi ∨ ¬ui)], so Kn = L and K0 = ⊥. For any m,

Km−1 can be derived from Km by first ∀-reducing to obtain Km[um/0] ≡ Km−1 ∨ xm and
Km[um/1] ≡ Km−1 ∨ ¬xm, and then resolving these on xm.

Deriving each Km in turn from Km+1 provides a linear size refutation of L, and hence a
linear size refutation of Θ(n). ut

Let π be the Frege+∀red proof described above. By the Size-Cost-Capacity Theorem (The-
orem 23), we know that capacity(π) is of exponential size. We can show this directly by
considering the line L from π.

Any winning response for L to an assignment α ∈ 〈{x1, . . . , xn}〉 must falsify (xi ∨ ui) ∧
(¬xi ∨ ¬ui) for each 1 ≤ i ≤ n. The unique winning response to α is therefore to play β such
that β(ui) = α(xi). Since there are 2n distinct assignments in 〈{x1, . . . , xn}〉, any response set
for L must have size 2n, despite L being a Frege+∀red line of size polynomial in n.

7 Randomly generated formulas with large cost

In the previous section, we saw that Size-Cost-Capacity can be used to simultaneously show
lower bounds in many different QBF proof systems simply by examining the cost of QBFs.
We now use this new lower bound technique to construct a class of randomly generated QBFs
which with high probability are false and have large cost. By showing a lower bound on cost,
we immediately obtain lower bounds on proof size in QU-Res, CP+∀red and PCR+∀red for
these random QBFs.

We begin by defining a class of random formulas, for which we show a cost lower bound
for appropriate values of the parameters m and c.

Definition 32. For each 1 ≤ i ≤ n, let C1
i , . . . , C

cn
i be distinct clauses picked uniformly at

random from the set of clauses containing 1 literal from the set Xi = {x1i , . . . , xmi } and 2
literals from Yi = {y1i , . . . , yni }. Define the randomly generated QBF Q(n,m, c) as:

Q(n,m, c) := ∃Y1 . . . Yn∀X1 . . . Xn∃t1 . . . tn ·
n∧
i=1

cn∧
j=1

(
¬ti ∨ Cji

)
∧

n∨
i=1

ti.

Specifying that clauses contain a given number of literals from different sets may seem
unusual, especially to readers familiar with random SAT instances, however it is widely used in
the study of randomly generated QBFs [19,25]. If any clause in the matrix of a QBF contains
only literals on universal variables, then it is easy to see that the QBF is false, and that all
proof systems P+∀red have a constant size refutation using only this clause. Specifying that
all clauses must contain a given number of literals from different sets of variables avoids this
issue by guaranteeing that all clauses contain existential variables. It is natural that we would
also expect clauses in a QBF to contain universal variables.

While the QBFs Q(n,m, c) are randomly generated, they still have a structure which
enables us to better understand them by studying simpler randomly generated QBFs. The
QBFs we look at for this purpose are Ψi := ∃Yi∀Xi ·

∧cn
j=1C

j
i , which are generated using the
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same clauses as the (1,2)-QCNF model (Definition 35), which is a common model of random
QBFs [25].

The equivalence of Q(n,m, c) to
∨n
i=1 Ψi is clear. Moreover, any winning ∀-strategy for

Q(n,m, c) is a winning ∀-strategy for each individual Ψi simultaneously. In order to show
that, for suitable values of m and c, Q(n,m, c) is false and has large cost, we first show that,
with high probability, all the Ψi are false. We then further show that with probability 1−o(1),
a linear number of the Ψi require at least 2 different responses in 〈Xi〉. From this we obtain a
lower bound on cost(Q(n,m, c)).

We first focus on proving that, with suitable values for m and c, Q(n,m, c) is false with
high probability. This is equivalent to showing that, with high probability, each of the Ψi is
false. In each Ψi, any winning assignment for the ∃-player must satisfy an existential literal
in every clause. If not, there would be a winning ∀-strategy constructed by finding a clause
where both existential literals were false, and setting the universal literal in that clause to
false. Determining the truth of Ψi can therefore be reduced to determining the satisfiability
of the 2-SAT problem defined by the existential parts of the clauses Cji . We can then use
the following result on the satisfiability of random 2-SAT formulas, shown independently by
Chvátal and Reed [20], Goerdt [35] and de la Vega [57], to obtain the falsity of the Ψi. We
state it here with a tighter probability lower bound of 1−o(n−1) proved by de la Vega in [58],
which is necessary for our present work.

Theorem 33 (de la Vega [58]). Let Φ be a random 2-SAT formula on n propositional
variables containing cn clauses selected uniformly at random. If c > 1 then Φ is unsatisfiable
with probability 1− o

(
n−1

)
.

The following lemma is equivalent to the statement that, with the same bounds on m
and c, Q(n,m, c) is false with probability 1 − o(1). This is a fairly immediate consequence
of Theorem 33; we need only check that it is sufficiently likely that the existential parts of
the clauses of the Ψi satisfy the conditions of Theorem 33. The possibility of repeating an
existential clause many times with different universal literals makes this non-trivial, but the
proof is relatively straightforward.

Lemma 34. For each 1 ≤ i ≤ n, let ψi be a set of cn clauses picked uniformly at random
from the set of clauses containing 1 literal from Xi = {x1i , . . . , xmi } and 2 literals from Yi =
{y1i , . . . , yni }. If m ≤ log2(n) and c > 1, then with probability 1 − o(1), Ψi := ∃Yi∀Xi · ψi is
false for all 1 ≤ i ≤ n.

Proof. For the QBFs Ψi to be false, it is sufficient for the 2-SAT problem generated by taking
only the existential parts of the clauses to be false, as the universal response need only respond
by falsifying the universal literal on some unsatisfied existential clause. However, it is possible
that clauses in ψi contain the same existential literals and differ only in the universal literal.
In order to use Theorem 33, we need to show that there is some constant k > 1 such that,
for each i ∈ [n], the clauses of ψi contain at least kn distinct pairs of existential literals with
high probability.

For each ψi, there are 4
(
n
2

)
choices for the existential variables of a clause, and 2m ≤

2 log(n) possible universal literals. The total number of possible clauses is therefore at most
4n(n− 1) log(n).

Let k be some constant with 1 < k < c. To determine the probability of ψi containing
at least kn distinct clauses in the existential variables, we consider choosing cn clauses at
random from the 4n(n − 1) log(n) possible clauses. If, on choosing a clause, fewer than kn
distinct existential clauses have been chosen, the probability of a randomly chosen clause
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having existential part distinct from all previously chosen clauses is at least

4n(n− 1) log(n)− 2kn log(n)

4n(n− 1) log(n)
= 1− k

2(n− 1)
.

Define the selection of a clause to be successful if it either selects a clause with existential
part distinct from that of the previous clauses, or if kn distinct existential clauses have already
been selected. The probability of any selection being successful is therefore at least 1− k

2(n−1) .

It is enough to show that if we select cn clauses, with a probability 1 − k
2(n−1) of success for

each selection, then the probability of fewer than kn successes is O(e−n).
The distribution of the random variable Z, the total number of successes, is a sum of cn

Bernoulli random variables with p = 1 − k
2(n−1) . Substituting these values into Hoeffding’s

inequality, we obtain

P (Z ≤ kn) ≤ exp

−2

(
cn− kcn

2(n−1) − kn
)2

cn

 = exp

(
−2(c− k)2

c
n+O(1)

)

and so P (Z > kn) = 1− 1
eΩ(n) = 1− o(n−1).

The probability that a given Ψi is false is at least the probability of it containing at
least kn distinct existential clauses and the first kn distinct such clauses being unsatisfiable.
Given the clauses of ψi were chosen uniformly at random, each set of kn existential clauses is
equally likely to be chosen, so the probability these clauses are unsatisfiable is 1− o

(
n−1

)
, by

Theorem 33. The probability of Ψi being false is therefore at least P (Z > kn) ·
(
1− o

(
n−1

))
=

1− o
(
n−1

)
.

Finally, the selection of clauses for each Ψi is independent of clauses chosen in any other
Ψi, and so the probability of all being false is

(
1− o

(
n−1

))n
= 1− o(1). ut

It remains to show that cost(Q(n,m, c)) is large. Again, we first look at the cost of Ψi,
and observe that, for m ≤ log2(n) and 1 < c < 2, cost(Ψi) ≥ 2 with probability 1 − o(1).
Winning responses for Q(n,m, c) are simultaneous winning responses for each of the Ψi. As
many of the Ψi require multiple distinct responses, it is reasonable to expect that the number
of responses to falsify all of them is large. With a careful choice of the parameters m and c,
we can indeed force Q(n,m, c) to have a large cost with high probability.

To prove cost(Ψi) ≥ 2, it is only necessary to show that cost(Ψi) 6= 1, i.e. that any winning
∀-strategy S : 〈Yi〉 → 〈Xi〉 for Ψi is not constant. If there is a constant winning ∀-strategy, say
S(α) = β for all α ∈ 〈Yi〉, then β also constitutes a winning ∀-strategy for Ψ ′i = ∀Xi∃Yi · ψi.

Definition 35 (Chen and Interian [19]). A (1,2)-QCNF is a QBF of the form ∀X∃Y ·
φ(X,Y ) where X = {x1, . . . , xm}, Y = {y1, . . . , yn} and φ(X,Y ) is a 3-CNF formula in which
each clause contains one universal literal and two existential literals.

If a winning ∀-strategy for Ψ ′i exists, then Ψ ′i is false. However, for c < 2, Ψ ′i is known to
be true with high probability.

Theorem 36 (Creignou et al. [25]). Let Φ be a (1,2)-QCNF in which φ(X,Y ) contains
cn clauses picked uniformly at random from the set of all suitable clauses. If m ≤ log2(n),
and if c < 2, then Φ is true with probability 1− o(1).

We therefore pick the parameter c to lie between the lower bound from Theorem 33 and
the upper bound from Theorem 36. From these results, we see that for 1 < c < 2, ∃Y ∀X.ψ is
false, but ∀X∃Y.ψ is true with high probability. Any constant winning ∀-strategy for ∃Y ∀X.ψ
is also a winning ∀-strategy for ∀X∃Y · ψ, whence the latter is false. This gives us the bound
cost(Ψi) ≥ 2 with high probability.
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Lemma 37. Let ψ be a set of cn clauses picked uniformly at random from the set of clauses
containing 1 literal from the set X = {x1, . . . , xm} and 2 literals from Y = {y1, . . . , yn}. If
1 < c < 2 and m ≤ log2(n), then with high probability Ψ := ∃Y ∀X ·ψ is false, and cost(Ψ) ≥ 2.

Proof. Observe from the proof of Lemma 34 that, as c > 1, Ψ is false with probability 1−o(n−1)
and cost(Ψ) ≥ 1.

Suppose cost(Ψ) = 1, then there is some β ∈ 〈X〉 such that β is a winning response for
any α ∈ 〈Y 〉. That is, for any α ∈ 〈Y 〉, ψ[α][β] = ⊥. We can use β as a winning strategy for
Ψ ′ = ∀X∃Y.ψ, defining S′(∅) = β. Since ψ[β][α] = ⊥ for all α ∈ 〈Y 〉, S′ is a winning ∀-strategy
and so Ψ ′ is false. However since c < 2, Ψ ′ is false with probability o(1) (Theorem 36), and so
such a β ∈ 〈X〉 exists with probability o(1).

The probability that Ψ is false and cost(Ψ) ≥ 2 is therefore 1−o(n−1)−o(1) = 1−o(1). ut

With this, we can show that a linear number of the Ψi require multiple responses with
probability 1− o(1). This will be enough to give a large lower bound on cost(Q(n,m, c)).

Lemma 38. For each 1 ≤ i ≤ n, let ψi be a set of cn clauses picked uniformly at random
from the set of clauses containing 1 literal from the set Xi = {x1i , . . . , xmi } and 2 literals from
Yi = {y1i , . . . , yni }. Further suppose that m ≤ log2(n) and c, l are any constants with 1 < c < 2,
l < 1. With high probability Ψi = ∃Yi∀Xi ·ψi is false for every 1 ≤ i ≤ n and at least ln of the
Ψi have cost(Ψi) ≥ 2.

Proof. By Lemma 37, for each Ψi, the probability that cost(Ψi) ≥ 2 is 1 − o(1). Using the
Hoeffding bound on the sum of independent Bernoulli random variables, the probability that
fewer than ln of the Ψi satisfy cost(Ψi) ≥ 2 is at most

exp
(
−2(1− l − o(1))2n

)
which for sufficiently large n can be upper bounded by

exp
(
−2
(
1− l′

)2
n
)

for some constant l′ < 1. Thus with probability 1 − o(1) at least ln of the Ψi have cost at
least 2. ut

Lemma 38 shows that in the randomly generated QBF Q(n,m, c) ≡
∨
i Ψi, for suitable

values of m and c, the Ψi are all false and with high probability, a linear proportion of them
have cost(Ψi) ≥ 2. With a slightly more careful choice of m, these two properties suffice to show
a cost lower bound for Q(n,m, c). Unfortunately, we cannot obtain cost(Q(n,m, c)) simply
by multiplying cost(Ψi) for each i ∈ [n], as responses on vars∀(Ψi) may now vary depending
on the assignment of variables in some other Ψj . Instead, we use the fact that if cost(Ψi) ≥ 2,
then for any response βi there is some existential assignment for which βi is not a winning
response. Using these, for any response β for Q(n,m, c), we construct a large set of existential
assignments for which β is not a winning response.

Proposition 39. Let 1 < c < 2 be a constant, and let m ≤ (1− ε) log2(n) for some constant
ε > 0. With probability 1− o(1), Q(n,m, c) is false and cost(Q(n,m, c)) = 2Ω(nε).

Proof. For sets Yi = {y1i , . . . , yni }, Xi = {x1i , . . . , xmi }, with m ≤ (1− ε) log2(n),

Q(n,m, c) := ∃Y1 . . . Yn∀X1 . . . Xn∃t1 . . . tn ·
n∧
i=1

cn∧
j=1

(
¬ti ∨ Cji

)
∧

n∨
i=1

ti
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where the clauses Cji are chosen uniformly at random to contain two literals on variables in Yi
and a literal on a variable of Xi. For each 1 ≤ i ≤ n, define Ψi = ∃Yi∀Xi·

∧cn
j=1C

j
i . Let 0 < l < 1

be a constant. By Lemma 38, with probability 1−o(1), all the Ψi are false, and at least ln of the
Ψi have cost(Ψi) ≥ 2. It therefore suffices to show that if all the Ψi are false and cost(Ψi) ≥ 2
holds for at least ln of the Ψi, then Q(n,m, c) is false and cost(Q(n,m, c)) ≥ 2Ω(nε).

If each Ψi is false, there is some winning strategy Si : 〈Yi〉 → 〈Xi〉 for each i ∈ [n].
Define S : 〈Y1, . . . , Yn〉 → 〈X1, . . . , Xn〉 by S(α1, . . . , αn) = (S1(α1), . . . , Sn(αn)). For any
α ∈ 〈Y1, . . . , Yn〉, restricting Q(n,m, c) by α and S(α) gives

Q(n,m, c)[α][S(α)] = ∃t1 . . . tn ·
n∧
i=1

cn∧
j=1

(
¬ti ∨ Cji [α|Yi ][Si(α|Yi)]

)
∧

n∨
i=1

ti

but by definition of the strategies Si, C
j
i [αi][Si(αi)] = ⊥ for some 1 ≤ j ≤ cn, and so

Q(n,m, c)[α][S(α)] = ∃t1 . . . tn ·
n∧
i=1

¬ti ∧
n∨
i=1

ti

which is clearly unsatisfiable. Since S is a winning ∀-strategy for Q(n,m, c), Q(n,m, c) is false
if all the Ψi are false for each i ∈ [n].

It remains to show that cost(Q(n,m, c)) ≥ 2Ω(nε). We may assume that at least ln of the Ψi
do not have constant winning ∀-strategies. Without loss of generality, we further assume that
these are Ψ1, . . . , Ψln, and that all winning ∀-strategies for Q(n,m, c) we consider assign the
variables of Xln+1, . . . , Xn according to some constant winning ∀-strategy for Ψln+1, . . . , Ψn.
We therefore restrict our attention to strategies which are winning ∀-strategies for Ψ1, . . . , Ψln.

Since |Xi| ≤ (1 − ε) log2(n), we can list the possible responses in each 〈Xi〉 as 〈Xi〉 =
{βi1, . . . , βiN}, where N = 2m ≤ n(1−ε).

LetB = rng(S) for some winning ∀-strategy S forQ(n,m, c). To lower bound cost(Q(n,m, c)),
we need to show a lower bound on |B|. Given we assume S is constant on Ψln+1, . . . , Ψn, we can
consider each β ∈ B as an assignment in 〈X1, . . . , Xln〉, i.e. B ⊆ {(βij1 , . . . , β

ln
jln

) : j1, . . . , jln ∈
[N ]}. As B is the image of a winning ∀-strategy, it contains a winning response β for every
assignment α ∈ 〈Y1, . . . , Yln〉. In this case a winning response for α is some β such that Ψi[α][β]
is false for every 1 ≤ i ≤ ln.

For each 1 ≤ i ≤ ln, Ψi does not have a constant winning ∀-strategy. For any βij ∈ 〈Xi〉,
there is some assignment αij ∈ 〈Yi〉 such that βij is not a winning response to αij for Ψi. That

is, for each βij , there is some αij such that Ψi[α
i
j ][β

i
j ] = >, else βij would define a constant

winning ∀-strategy for Ψi and cost(Ψi) = 1. We now use these αij to construct a multiset of
existential assignments for which any response β is only a winning response to a small subset.

Define the multiset A, containing elements of 〈Y1, . . . , Yln〉, as

A =
{

(α1
j1 , . . . , α

ln
jln

) : (j1, . . . , jln) ∈ [N ]ln
}

Note that αij and αij′ need not be distinct for j 6= j′, so defining A to be a multiset ensures

|A| = N ln. Given a response β ∈ B, we bound the size of the multiset

Aβ = {α ∈ A : Ψi[α][β] = ⊥ for all 1 ≤ i ≤ ln}

the set of all assignments in A for which β is a winning response, counted with their multiplicity
in A.

For any assignment β ∈ B, we know β = (β1j1 , . . . , β
ln
jln

) for some j1, . . . , jln ∈ [N ]. If β is

a winning response to α, then Ψi[α|Yi ][β|Xi ] = ⊥ for all 1 ≤ i ≤ ln. Since β|Xi = βiji , by the
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definition of αiji , α|Yi 6= αiji for all 1 ≤ i ≤ ln, as Ψi[α
i
ji

][βiji ] = >. The restriction α|Yi 6= αiji
restricts the set Aβ to

Aβ ⊆
{

(α1
k1 , . . . , α

ln
kln

) : (k1, . . . , kln) ∈ [N ]ln , ji 6= ki for all 1 ≤ i ≤ ln
}

In particular, we see that |Aβ| ≤ (N − 1)ln.

For any α ∈ A, let β = S(α) ∈ B. Since S is a winning ∀-strategy, β is a winning response
to α, or equivalently α ∈ Aβ. By definition, Aβ ⊆ A for each β ∈ B, so it is clear that A =⋃
β∈B Aβ. Comparing the cardinalities of these sets gives N ln ≤

∑
β∈B |Aβ| ≤ |B|(N − 1)ln,

and so |B| ≥
(

N
N−1

)ln
. For N > 1, this is a monotonically decreasing function in N , and

N ≤ n(1−ε), so for sufficiently large n,

|B| ≥
(

N

N − 1

)ln
≥

(
n(1−ε)

n(1−ε) − 1

)ln
=

(
1 +

1

n(1−ε)

)ln
=

((
1 +

1

n(1−ε)

)n(1−ε))lnε
= 2Ω(nε)

since for large n,
(
1 + 1

n

)n ≥ 2. We conclude that |rng(S)| ≥ 2Ω(nε) for any winning ∀-strategy
S. There is only one block of universal variables in Q(n,m, c), and so

cost(Q(n,m, c)) = min{|rng(S)| : S is a winning ∀-strategy for Q(n,m, c)} ≥ 2Ω(nε)

We have shown that if all the Ψi are false, then Q(n,m, c) is false, and further that if
at least ln of the Ψi have no constant winning ∀-strategy, then cost(Q(n,m, c)) ≥ 2Ω(nε).
Lemma 38 states that these conditions hold with probability 1− o(1), and this completes the
proof. ut

Proposition 39 proves that, for the appropriate values of m and c, the QBFs Q(n,m, c)
are false and have large cost with probability 1− o(1). It is then a simple application of Size-
Cost-Capacity and the capacity upper bounds shown in Section 6 to show lower bounds on
Q(n,m, c) with high probability.

Theorem 40. Let 1 < c < 2 be a constant, and let m ≤ (1 − ε) log2(n) for some constant
ε > 0. With high probability, the randomly generated QBF Q(n,m, c) is false, and any QU-Res,
CP+∀red or PCR+∀red refutation of Q(n,m, c) requires size 2Ω(nε).

As previously, the greater capacity of lines in Frege+∀red does allow for short proofs of
Q(n,m, c) whenever it is false. Refuting any individual false Ψi is easy, even for QU-Res.
Applying ∀-reduction to each clause results in an unsatisfiable 2-SAT instance, which has a
linear size resolution refutation. This immediately gives a short Frege+∀red proof for any false
Q(n,m, c), by deriving

∨n
i=1 Ψi, and then refuting each Ψi in turn.

8 Easy lower bounds for the formulas of Kleine Büning et al.

We conclude with a new proof of the lower bounds on the prominent formulas of Kleine Büning
et al. [41] using Size-Cost-Capacity.

Definition 41 (Kleine Büning et al. [41]). The formulas κ(n) are defined to be

κ(n) := ∃y0∃y1∃y′1∀u1 . . . ∃yk∃y′k∀uk . . . ∃yn∃y′n∀un∃t1 . . . tn ·
2n∧
i=1

Ci ∧ C ′i
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where the matrix contains the clauses

C0 = {¬y0} C ′0 = {y0,¬y1,¬y′1}
Ck = {yk,¬uk,¬yk+1¬y′k+1} C ′k = {y′k, uk,¬yk+1,¬y′k+1}

Cn = {yn,¬un,¬yn+1, . . . ,¬yn+n} C ′n = {y′n, un,¬yn+1, . . . , yn+n}
Cn+t = {¬ut, yn+t} C ′n+t = {ut, yn+t}

with 1 ≤ k ≤ n− 1 and 1 ≤ t ≤ n.

We also define the QBF λ(n) constructed by adding the universal variables vk for each
1 ≤ k ≤ n, quantified in the same block as uk. The matrix of λ(n) contains the clauses Di, D

′
i,

where each Di, D
′
i consists of the literals in the corresponding Ci, C

′
i, but for each literal on

some uk, we add the matching literal on vk. This is essentially ‘doubling’ the variables uk with
the matching variables vk. The effect of this is to prevent any resolution steps being possible
on universal variables before the variables can be ∀-reduced.

In [10,41], it was shown that κ(n) requires proofs of size 2n in Q-Res, which is QU-Res in
which universal variables cannot be used as resolution pivots. This lower bound immediately
transfers to the same lower bound for λ(n) in QU-Res [4]. As one of the first QBF lower bounds
to be shown, these formulas have been the subject of much attention in the study of QBF
proof complexity (for examples, see [4, 10,28,44]).

Showing a lower bound for κ(n) in Q-Res is equivalent to showing a lower bound for λ(n)
in QU-Res. It can be assumed in both proof systems that ∀-reductions are performed whenever
possible, and so all clauses in the shortest QU-Res proof either contain matching literals on
uk and vk, or contain no literal on either of them. Any two such clauses cannot be used in a
resolution step on a universal variable uk, as the resulting clause would contain both vk and
¬vk. All clauses derived from this clause will contain vk and ¬vk, until a ∀-reduction reduces
the clause to >. The shortest QU-Res proof of λ(n) therefore contains no resolution steps on
universal pivots, and so the same steps can be used to produce a Q-Res proof of κ(n).

We use Size-Cost-Capacity to prove a QU-Res lower bound for an even weaker QBF than
λ(n), which is obtained by quantifying all the variables vk in the rightmost universal block.
This allows us to give a cost lower bound using this block, which in turn gives the proof size
lower bound.

Proposition 42. The QBF λ′(n) := ∃y0y1y′1∀u1 . . . ∃yny′n∀unv1 . . . vn∃t1 . . . tn ·
∧2n
i=1Di ∧D′i

has cost 2n.

Proof. We consider the response of any winning ∀-strategy to the 2n distinct assignments in
the set A = {α ∈ 〈{y1, y′1, . . . , yn, y′n}〉 : α(yk) 6= α(y′k) for all 1 ≤ k ≤ n}. Any assignment in
A forces a winning ∀-strategy S to respond by setting uk = y′k. If not, then all clauses Ci, C

′
i

for i ≤ k would be satisfied, and the further assignment yj = y′j = 1 for all j > k would satisfy
the matrix.

It remains to show that responding with vk = uk is the only possible response to any
α ∈ A for a winning ∀-strategy. We demonstrate this in the case of the assignment α where
α(yk) = 1, α(y′k) = 0 for all 1 ≤ k ≤ n, but other assignments in A are similar. Restricting by
the assignment α, as well as β, where β(uk) = α(y′k) as shown above, the restricted matrix
contains the clauses

D′n|α,β = {vn,¬yn+1, . . . ,¬yn+n}
D′n+t|α,β = {vt, yn+t} for each 1 ≤ t ≤ n.

If Sn(α) sets any vk = 1, then the matrix is clearly satisfiable by setting yn+k = 0, and
yn+j = 1 for all j 6= k. There is therefore a unique response on the vk for Sn(α), which is
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to set vk = uk = y′k. It is clear that there is a similar unique response for any α ∈ A. We
conclude that |rng(Sn)| = 2n, whence cost(λ′(n)) = 2n. ut

We therefore obtain the following hardness result, which was known for QU-Res [4], but
also lifts to CP+∀red and PCR+∀red.

Corollary 43. Any QU-Res, CP+∀red or PCR+∀red proof of λ(n) requires size 2Ω(n).

Proof. The only difference between λ′(n) and λ(n) is the order in which the variables are
quantified. As the variables vk are quantified further right in λ′(n), any refutation of λ(n)
in any of these proof systems is also a refutation of λ′(n). It is therefore sufficient to show a
lower bound for refutations of λ′(n) in QU-Res, CP+∀red or PCR+∀red, which is an immediate
consequence of Proposition 42 and the results of Section 6. ut

This lower bound for QU-Res also yields the lower bound on Q-Res proofs of κ(n), pre-
viously shown in [10, 41]. As well as providing a relatively simple proof of the hardness of
these formulas, our technique also offers some insight as to why these formulas are hard. As
the strategy for each variable uk is simple to compute in even very restricted models of com-
putation, and the proof size lower bounds do not arise from propositional lower bounds, the
lower bounds on κ(n) and λ(n) seemed to be something of an anomaly among QBF proof
complexity lower bounds [12]. Here we have shown that the lower bound ultimately arises
from the cost of the formulas, although this is slightly obfuscated by some rearrangement of
the quantifier prefix.

9 Conclusions

By formalising the conditions on P in the construction of P+∀red, we have developed a new
technique for proving QBF lower bounds in P+∀red. This technique depends only on the two
natural concepts of the cost of a QBF and the capacity of a proof system. Determining the
capacity of several well-studied proof systems allowed us to present lower bounds in these
proof systems based on cost alone. We have also demonstrated that this technique is not
restricted to a few carefully constructed QBFs, but is in fact applicable to a large class of
randomly generated formulas, providing the first such lower bound for random QBFs.

In strong proof systems such as Frege+∀red, superpolynomial proof size lower bounds can
be completely characterised: they are either a propositional lower bound or a circuit lower
bound [13]. All QBFs we have considered have no underlying propositional hardness, and
winning ∀-strategies can be computed by small circuits, even in very restricted circuit classes.
As such, all these QBFs are easy for Frege+∀red.

However, for weaker proof systems, such as QU-Res and the others we have discussed,
propositional hardness and circuit lower bounds alone are not the complete picture. In par-
ticular, the lower bounds we have shown using Size-Cost-Capacity do not fit into either class.
That this technique relies on capacity upper bounds which do not hold for strong proof sys-
tems leads us to suggest that we have identified a new reason for the hardness of QBFs in those
proof systems where the above dichotomy does not hold. We believe this represents significant
progress towards a similar characterisation of lower bounds for these proof systems.
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