
Local decoding and testing of polynomials over grids

Srikanth Srinivasan∗ Madhu Sudan†

September 17, 2017

Abstract

The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that n-variate polynomials of
total degree at most d over grids, i.e. sets of the form A1×A2× · · · ×An, form error-correcting
codes (of distance at least 2−d provided mini{|Ai|} ≥ 2). In this work we explore their local
decodability and local testability. While these aspects have been studied extensively when
A1 = · · · = An = Fq are the same finite field, the setting when Ai’s are not the full field does
not seem to have been explored before.

In this work we focus on the case Ai = {0, 1} for every i. We show that for every field
(finite or otherwise) there is a test whose query complexity depends only on the degree (and
not on the number of variables). In contrast we show that decodability is possible over fields of
positive characteristic (with query complexity growing with the degree of the polynomial and
the characteristic), but not over the reals, where the query complexity must grow with n. As
a consequence we get a natural example of a code (one with a transitive group of symmetries)
that is locally testable but not locally decodable.

Classical results on local decoding and testing of polynomials have relied on the 2-transitive
symmetries of the space of low-degree polynomials (under affine transformations). Grids do not
possess this symmetry: So we introduce some new techniques to overcome this handicap and in
particular use the hypercontractivity of the (constant weight) noise operator on the Hamming
cube.

∗Department of Mathematics, IIT Bombay. srikanth@math.iitb.ac.in.
†Harvard John A. Paulson School of Engineering and Applied Sciences. madhu@cs.harvard.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 138 (2017)

Contents

1 Introduction 1
1.1 Distance, Local Decoding and Local Testing . 1
1.2 Main Results . 2
1.3 Overview of proofs . 3

2 Preliminaries 6
2.1 Basic notation . 6
2.2 Local Testers and Decoders . 6
2.3 Some basic facts about binomial coefficients . 7
2.4 Hypercontractivity theorem for spherical averages. 7

3 Results 8

4 A local tester for F(n, d) over any field 8
4.1 Proof of Small Distance Lemma (Lemma 4.5) . 11

4.1.1 Proof of Claim 4.10 . 15
4.1.2 Proof of Claim 4.11 . 16

4.2 Proof of Large Distance Lemma (Lemma 4.6) . 17
4.2.1 Proof of Claim 4.12 . 19

5 Impossibility of local decoding when char(F) is large 22
5.1 Local linear spans of balanced vectors . 22
5.2 Proof of Theorem 3.2 . 24

6 Local decoding when char(F) is small 25

2

1 Introduction

Low-degree polynomials have played a central role in computational complexity. (See for instance
[26, 8, 5, 20, 22, 18, 27, 3, 2] for some of the early applications.) One of the key properties
of low-degree n-variate polynomials underlying many of the applications is the “DeMillo-Lipton-
Schwartz-Zippel” distance lemma [10, 25, 28] which upper bounds the number of zeroes that a
non-zero low-degree polynomial may have over “grids”, i.e., over domains of the form A1×· · ·×An.
This turns the space of polynomials into an error-correcting code (first observed by Reed [23] and
Muller [19]) and many applications are built around this class of codes. These applications have
also motivated a rich collection of tools including polynomial time (global) decoding algorithms
for these codes, and “local decoding” [4, 17, 9] and “local testing” [24, 1, 14] procedures for these
codes.

Somewhat strikingly though, many of these tools associated with these codes don’t work (at
least not immediately) for all grid-like domains, but work only for the specific case of the domain
being the vector space Fn where F is the field over which the polynomial is defined and F is finite.
The simplest example of such a gap in knowledge was the case of “global decoding”. Here, given a
function f :

∏n
i=1Ai → F as a truth-table, the goal is to find a nearby polynomial (up to half the

distance of the underlying code) in time polynomial in |
∏
iAi|. When the domain equals Fn then

such algorithms date back to the 1950s. However the case of general Ai remained open till 2016
when Kim and Kopparty [16] finally solved this problem.

In this paper we initiate the study of local decoding and testing algorithms for polynomials
when the domain is not a vector space. For uniformity, we consider the case of polynomials over
hypercubes (i.e., when Ai = {0, 1} ⊆ F for every i). We describe the problems formally next and
then describe our results.

1.1 Distance, Local Decoding and Local Testing

We start with some brief notation. For finite sets A1, . . . , An ⊆ F and functions f, g : A1×· · ·An →
F, let the distance between f and g, denoted δ(f, g) be the quantity Pra[f(a) 6= g(a)] where a is
drawn uniformly from A1 × · · · × An. We say f is δ-close to g if δ(f, g) ≤ δ, and δ-far otherwise.
For a family of functions F ⊆ {h : A1 × · · · ×An → F}, let δ(F) = minf 6=g∈F{δ(f, g)}.

To set the context for some of the results on local decoding and testing, we first recall the
distance property of polynomials. If |Ai| ≥ 2 for every i, the polynomial distance lemma asserts
that the distance between any two distinct degree d polynomials is at least 2−d. Of particular
interest is the fact that for fixed d this distance is bounded away from 0, independent of n or |F| or
the structure of the sets Ai. In turn this behavior effectively has led to “local decoding” and “local
testing” algorithms with complexity depending only on d — we define these notions and elaborate
on this sentence next.

Given a family of functions F from the domain A1 × · · · × An to F, we say F is (δ, q)-locally
decodable if there exists a probabilistic algorithm that, given a ∈ A1 × · · · × An and oracle access
to a function f : A1 × · · · ×An → F that is δ-close to some function p ∈ F , makes at most q oracle
queries to f and outputs p(a) with probability at least 3/4. (The existence of a (δ, q)-local decoder
for F in particular implies that δ(F) ≥ 2δ.) We say that F is (δ, q)-locally testable if there exists
a probabilistic algorithm that makes q queries to an oracle for f : A1 × · · · × An → F and accepts
with probability at least 3/4 if f ∈ F and rejects with probability at least 3/4 if f is δ-far from
every function in F .

1

When A1 = · · · = An = F (and so F is finite) it was shown by Kaufman and Ron [14] (with
similar results in Jutla et al. [13]) that the family of n-variate degree d polynomials over F is (δ, q)-
locally decodable and (δ, q)-locally testable for some δ = exp(−d) and q = exp(d). In particular
both q and 1/δ are bounded for fixed d, independent of n and F. Indeed in both cases δ is lower
bounded by a constant factor of δ(F(n, d)) and q is upper bounded by a polynomial in the inverse
of δ(F(n, d)) where F(n, d) denotes the family of degree d n-variate polynomials over F, seemingly
suggesting that the testability and decodability may be consequences of the distance. If so does
this phenomenon should extend to the case of other sets Ai 6= F - does it? We explore this question
in this paper.

In what follows we say that the family of degree d n-variate polynomials is locally decodable
(resp. testable) if there is bounded q = q(d) and positive δ = δ(d) such that F(n, d) is (δ, q)-locally
decodable (resp. testable) for every n. The specific question we address below is when are the
family of degree d n-variate polynomials locally decodable and testable when the domain is {0, 1}n.
(We stress that the choice of {0, 1}n as domain is partly for simplicity and is equivalent to the
setting of |Ai| = 2 for all i. Working with domains of other (and varying) sizes would lead to
quantitative changes and we do not consider that setting in this paper.)

1.2 Main Results

Our first result (Theorem 3.2) shows that even the space of degree 1 polynomials is not locally
decodable over fields of zero characteristic or over fields of large characteristic. This statement
already stresses the main difference between the vector space setting (domain being Fn) and the
“grid” setting (domain = {0, 1}n). One key reason underlying this difference is that the domain
Fn has a rich group of symmetries that preserve the space of degree d polynomials, where the
space of symmetries is much smaller when the domain is {0, 1}n. Specifically the space of degree
d polynomials over Fn is “affine-invariant” (invariant under all affine maps from Fn to Fn). The
richness of this group of symmetries is well-known to lead to local decoding algorithms (see for
instance [1]) and this explains the local decodability of F(n, d) over the domain Fn. Of course the
absence of this rich group of symmetries does not rule out local decodability — and so some work
has to be done to establish Theorem 3.2. We give an overview of the proof in Section 1.3 and then
give the proof in Section 5.

Our second result (Theorem 3.3) shows, in contrast, that the class of degree d polynomials over
fields of small characteristic are locally decodable. Specifically, we show that there is a q = q(d, p) <
∞ and δ = δ(d, p) > 0 such that F(n, d) over the domain {0, 1}n over a (possibly infinite) field F
of characteristic p is (δ, q)-locally decodable. This is perhaps the first local-decodability result for
polynomials over infinite fields. A key technical ingredient that leads to this result, which may be
of independent interest, is that when n = 2pt (twice a power of the characteristic of F) and g is a
degree d polynomial for d < n/2 then g(0) can be determined from the value of g on the ball on
Hamming weight n/2 (see Lemma 6.1). Again, we give an overview of the proof in Section 1.3 and
then give the actual proof in Section 6.

Our final, and main technical, result (Theorem 3.1) shows somewhat surprisingly that F(n, d) is
always (i.e., over all fields) locally testable. This leads to perhaps the simplest natural example of a
locally testable code that is not locally decodable. We remark there are of course many examples of
such codes (see, for instance, the locally testable codes of Dinur [11]) but these are results of careful
constructions and in particular not very symmetric. On the other hand F(n, d) over {0, 1}n does
possess moderate symmetry and in particular the automorphism group is transitive. We remark

2

that for both our positive results (Theorems 3.3 and 3.1), the algorithms themselves are not obvious
and the analysis leads to further interesting questions. We elaborate on these in the next section.

1.3 Overview of proofs

Impossibility of local decoding over fields of large characteristic. In Section 5 we show
that even the family of affine functions over {0, 1}n is not locally decodable. The main idea behind
this construction and proof is to show that the value of a affine function ` : {0, 1}n → F at 1n can
not be determined from its values on any set S if |S| is small (specifically |S| = o(log n/ log logn))
and S contains only “balanced” elements (i.e., x ∈ S ⇒ |

∑
i xi − (n/2)| = O(

√
n). Since the space

of affine functions from {0, 1}n to F forms a vector space, this in turn translates to showing that
no set of up to |S| balanced vectors contain the vector 1n in their affine span (over F) and we prove
this in Lemma 5.2.

Going from Lemma 5.2 to Theorem 5.3 is relatively standard in the case of finite fields. We show
that if one picks a random linear function and simply erase its values on imbalanced inputs, this
leads to only a small fraction of error, but its value at 1n is not decodable with o(log n/ log log n)
queries. (Indeed many of the ingredients go back to the work of [6], who show that a canonical
non-adaptive algorithm is effectively optimal for linear codes, though their results are stated in
terms of local testing rather than local decoding.) In the case of infinite fields one has to be careful
since one can not simply work with functions that are chosen uniformly at random. Instead we
work with random linear functions with bounded coefficients. The bound on the coefficients leads
to mild complications due to border effects that need care. In Section 5.2 we show how to overcome
these complications using a counting (or encoding) argument.

The technical heart of this part is thus the proof of Lemma 5.2 and we give some idea of
this proof next. Suppose S = {x1, . . . , xt} contained x0 = 1n in its affine span and suppose
|
∑n

j=1 x
i
j − (n/2)| ≤ n/s for all i. Let a1, . . . , at ∈ F be coefficients such that x0 =

∑
i aix

i with∑
i ai = 1. Our proof involves reasoning about the size of the coefficients a1, . . . , at. To get some

intuition why this may help, note that

n

2
=

∣∣∣∣∣∣
n∑
j=1

x0j −
n

2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t∑
i=1

ai ·

 n∑
j=1

xij −
n

2

∣∣∣∣∣∣ ≤
t∑
i=1

|ai| ·

∣∣∣∣∣∣
n∑
j=1

xij −
n

2

∣∣∣∣∣∣ ≤ n

s
·
∑
j

|aj |.

So in particular if the aj ’s are small, specifically if |aj | ≤ 1 then we conclude t = Ω(s). But what
happens if large aj ’s are used? To understand this, we first show that the coefficients need not be
too large (as a function of t) - see Lemma 5.1, and then use this to prove Lemma 5.2. The details
are in Section 5.1.

Local decodability over fields of small characteristic. The classical method to obtain a q-
query local decoder is to find, given a target point x0 ∈ Fn, a distribution on queries x1, . . . , xq ∈ Fn
such that (1) P (x0) is determined by P (x1), . . . , P (xq) for every degree d polynomial P , and (2) the
query xi is independent of x0 (so that an oracle f that usually equals P will satisfy P (xi) = f(xi) for
all i, with probability at least 3/4). Classical reductions used the “2-transitivity” of the underlying
space of automorphisms to guarantee that xi is independent of xj for every pair i 6= j ∈ {0, . . . , q}
— a stronger property than required! Unfortunately, our automorphism space is not “2-transitive”
but it turns out we can still find a distribution that satisfies the minimal needs.

3

Specifically, in our reduction we identify a parameter k = k(p, d) and map each variable x`
to either yj or 1 − yj for some j = j(`) ∈ [k]. This reduces the n-variate decoding task with
oracle access to f(x1, . . . , xk) to a k-variate decoding task with access to the function g(y1, . . . , yk).
Since there are only 2k distinct inputs to g, decoding can solved with at most 2k queries (if it
can be solved at all). The choice of whether x` is mapped to yj or 1 − yj is determined by x0j so

that f(x0) = g(0k). Thus given x0, the only randomness is in the choice of j(`). We choose j(`)
uniformly and independently from [k] for each `. For y ∈ {0, 1}k, xy denote the corresponding
query in {0, 1}n (i.e., g(y) = f(xy)). Given our choices, xy is not independent of x0 for every choice
of y. Indeed if y has Hamming weight 1, then xy is very likely to have Hamming distance ≈ n/k
from x0 which is far from independent. However if y ∈ {0, 1}k is a balanced vector with exactly
k/2 1s (so in particular we will need k to be even), then it turns out xy is indeed independent of
x0. So we query only those xy for which y is balanced. But this leads to a new challenge: can
P (0k) be determined from the values of P (y) for balanced ys? It turns out that for a careful choice
of k (and this is where the small characteristic plays a role) the value of a degree d polynomial at
0 is indeed determined by its values on balanced inputs (see Lemma 6.1) and this turns out to be
sufficient to build a decoding algorithm over fields of small characteristic. Details may be found in
Section 6.

Local testability over all fields. We now turn to the main technical result of the paper,
namely the local testability of polynomials over grids. All previous analyses of local testability of
polynomials with query complexity independent of the number of variables have relied on symmetry
either implicitly or explicitly. (See for example [15] for further elaboration.) Furthermore many
also depend on the local decodability explicitly; and in our setting we seem to have insufficient
symmetry and definitely no local decodability. This forces us to choose the test and analysis quite
carefully.

It turns out that among existing approaches to analyses of local tests, the one due to Bhat-
tacharyya et al [7] (henceforth BKSSZ) seems to make the least use of local decodability and our
hope is to be able to simulate this analysis in our case — but the question remains: “which tester
should we use?”. This is a non-trivial question since the BKSSZ test is a natural one in a set-
ting with sufficient symmetry; but their analysis relies crucially on the ability to view their test
as a sequence of restrictions: Given a function f : Fn → F they produce a sequence of functions
f = fn, fn−1, . . . , fk, where the function fr is an r-variate function obtained by restricting fr+1 to a
codimension one affine subspace. Their test finally checks to see if fk is a degree d polynomial. To
emulate this analysis, we design a somewhat artificial test: We also produce a sequence of functions
fn, fn−1, . . . , fk with fr being an r-variate function. Since we do not have the luxury to restrict to
arbitrary subspaces, we instead derive fr from fr+1(z1, . . . , zr+1) by setting zi = zj or zi = 1−zj for
some random pair i, j (since these are the only simple affine restrictions that preserve the domain).
We stop when the number of variables k is small enough (and hopefully a number depending on d
alone and not on n or F). We then test that the final function has degree d.

The analysis of this test is not straightforward even given previous works, but we are able to
adapt the analyses to our setting. Two new ingredients that appear in our analyses are the hyper-
contractivity of hypercube with the constant weight noise operator (analyzed by Polyanskiy [21])
and the intriguing stochastics of a random set-union problem. We explain our analysis and where
the above appear next.

We start with the part which is more immediate from the BKSSZ analysis. This corresponds

4

to a key step in the BKSSZ analysis where it is shown that if fr+1 is far from degree d polynomials
then, with high probability, so also is fr. This step is argued via contradiction. If fr is close to the
space of degree d polynomials for many restrictions, then from the many polynomials that agree
with fr (for many of the restrictions) one can glue together an r+1-variate polynomial that is close
to fr+1. This step is mostly algebraic and works out in our case also; though the actual algebra is
different and involves more cases. (See Lemma 4.6 and its proof in Section 4.2.)

The new part in our analysis is in the case where fn is moderately close to some low-degree
polynomial P . In this case we would still like to show that the test rejects fn with positive
probability. In both BKSSZ and in our analysis this is shown by showing the the 2k queries into
fn (that given the entire truth table of the function fk) satisfy the property that exactly fn is
not equal to P on exactly one of the queried points. Note that the value of fk(y) is obtained by
querying f at some point, which we denote xy. In the BKSSZ analysis xa and xb are completely
independent given a 6= b ∈ {0, 1}k. (Note that the mapping from y to xy is randomized and depends
on the random choices of the tester.) In our setting the behavior of xa and xb is more complex and
depends on both the set of coordinates j such that where aj 6= bj and on the number of indices
i ∈ [n] such that the variable xi is mapped to variable yj . Our analysis ends up depending on two
new ingredients: (1) The number of variables xi that map to any particular variable yj is Ω(n/k)
with probability at least 2−O(k) (see Corollary 4.9). This part involves the analysis of a random
set-union process elaborated on below. (2) Once the exact number of indices i such that xi maps
to yj is fixed for every j ∈ [k] and none of the sets is too small, the distribution of xa and xb

is sufficiently independent to ensure that the events f(xa) = P (xa) and f(xb) = P (xb) co-occur
with probability much smaller than the individual probabilities of these events. This part uses
the hypercontractivity of the hypercube but under an unusual noise operator corresponding to the
“constant weight operator”, fortunately analyzed by Polyanskiy [21]. Invoking his theorem we are
able to conclude the proof of this section.

We now briefly expand on the “random set-union” process alluded to above. Recall that our
process starts with n variables, and at each stage a pair of remaining variables is identified and
given the same name. (We may ignore the complications due to the complementation of the form
zi = 1− zj for this part.) Equivalently we start with n sets X1, . . . , Xn with Xi = {i} initially. We
then pick two random sets and merge them. We stop when there are k sets left and our goal is to
understand the likelihood that one of the sets turn out to be too tiny. (The expected size of a set
is n/k and too tiny corresponds to being smaller than n/(4k).) It turns out that the distribution
of set sizes produced by this process has a particularly clean description as follows: Randomly
arrange the elements 1 to n on a cycle and consider the partition into k sets generated by the set
of elements that start with a special element and end before the next special element as we go
clockwise around the cycle, where the elements in {1, . . . , k} are the special ones. The sizes of these
partitions are distributed identically to the sizes of the sets Sj ! For example, when k = 2 the two
sets have sizes distributed uniformly from 1 to n − 1. In particular the sets size are not strongly
concentrated around n/k - but nevertheless the probability that no set is tiny is not too small and
this suffices for our analysis.

Details of this analysis may be found in Section 4.

Organization. In Section 2 we start with some preliminaries including the main definitions and
some of the tools we will need later. In Section 3 we give a formal statement of our results. In
Section 4 we present and analyze the local tester over all fields. In Section 5 we show that over

5

fields of large (or zero) characteristic, local decoding is not possible. Finally in Section 6 we give a
local decoder and its analysis over fields of small characteristic.

2 Preliminaries

2.1 Basic notation

Fix a field F and an n ∈ N. We consider functions f : {0, 1}n → F that can be written as multilinear
polynomials of total degree at most d. We denote this space by F(n, d;F). The space of all functions
from {0, 1}n to F will be denoted simply as F(n;F). (We will simplify these to F(n, d) and F(n)
respectively, if the field F is clear from context.)

Given f, g ∈ F(n), we use δ(f, g) to denote the fractional Hamming distance between f and g.
I.e.,

δ(f, g) := Pr
x∈{0,1}n

[f(x) 6= g(x)]

For a family F ′ ⊆ F(n), we use δ(f,F ′) to denote ming∈F ′{δ(f, g)}. Given an f ∈ F(n) and
d ≥ 0, we use δd(f) to denote δ(f,F(n, d)).

2.2 Local Testers and Decoders

Let F be any field. We define the notion of a local tester and local decoder for subspaces of F(n).

Definition 2.1 (Local tester). Fix q ∈ N and δ ∈ (0, 1). Let F ′ be any subspace of F(n).
We say that a randomized algorithm T is a (δ, q)-local tester for F ′ if on an input f ∈ F(n),

the algorithm does the following.

• T makes at most q non-adaptive queries to f and either accepts or rejects.

• (Completeness) If f ∈ F ′, then T accepts with probability at least 3/4.

• (Soundness) If δ(f,F ′) ≥ δ, then T rejects with probability at least 3/4.

We say that a tester is adaptive if the queries it makes to the input f depend on the answers to its
earlier queries. Otherwise, we say that the tester is non-adaptive.

Definition 2.2 (Local decoder). Fix q ∈ N and δ ∈ (0, 1). Let F ′ be any subspace of F(n).
We say that a randomized algorithm T is a (δ, q)-local decoder for F ′ if on an input f ∈ F(n)

and x ∈ {0, 1}n, the algorithm does the following.

• T makes at most q queries to f and outputs b ∈ F.

• If δ(f,F ′) ≤ δ, then the output b = f(x) with probability at least 3/4.

We say that a decoder is adaptive if the queries it makes to the input f depend on the answers to
its earlier queries. Otherwise, we say that the tester is non-adaptive.

6

2.3 Some basic facts about binomial coefficients

Fact 2.3. For integer parameters 0 ≤ b ≤ a, let
(
a
b

)
denote the size of a Hamming ball of radius b

in {0, 1}a; equivalently,
(
a
≤b
)

=
∑

j≤b
(
a
j

)
. Then, we have(
a

≤ b

)
≤ 2aH(b/a)

where H(·) is the binary entropy function.

2.4 Hypercontractivity theorem for spherical averages.

In this section, let R be the underlying field. Let η ∈ (0, 1) be arbitrary. We define a smoothing
operator Tη, which maps F(r) = {f : {0, 1}r → R} to itself. For F ∈ F(r), we define TηF as
follows

TηF (x) = E
J∈([r]ηr)

[F (x⊕ J)]

where x⊕ J is the point y ∈ {0, 1}r obtained by flipping x at exactly the coordinates in J .

Recall that for any F ∈ F(r) and any p ≥ 1, ‖F‖p denotes Ex∈{0,1}r [|F (x)|p]1/p.
We will use the following hypercontractivity theorem of Polanskiy [21].

Theorem 2.4 (Follows from Theorem 1 in [21]). Assume that η ∈ [1/20, 19/20] and η0 = 1/20.
For any F ∈ F(r), we have

‖TηF‖2 ≤ C · ‖F‖p
for p = 1 + (1− 2η0)

2 and C is an absolute constant.

Corollary 2.5. Assume that η0, η are as in the statement of Theorem 2.4 and let δ ∈ (0, 1) be
arbitrary. Say E ⊆ {0, 1}r s.t. |E| ≤ δ · 2r. Assume that (x′, x′′) ∈ {0, 1}r are chosen as follows:
x′ ∈ {0, 1}r and I ′ ∈

(
[r]
ηr

)
are chosen i.u.a.r., and we set x′′ = x′ ⊕ I ′. Then we have

Pr
x′,I′

[
x′ ∈ E ∧ x′′ ∈ E

]
≤ C · δ1+(1/40)

where C is the constant from Theorem 2.4.

Proof. Let F : {0, 1}n → {0, 1} ⊆ R be the indicator function of the set E. Note that we have

Pr
x′,I′

[
x′ ∈ E ∧ x′′ ∈ E

]
= E

x′,I′

[
F (x′)F (x′ ⊕ I ′)

]
= E

x′

[
F (x′)TηF (x′)

]
.

By the Cauchy-Schwarz inequality and Theorem 2.4 we get

E
x′

[
F (x′)TηF (x′)

]
≤ ‖F‖2 · C · ‖F‖p (1)

for p = 1 + (1− 2η0)
2. Note that we have

‖F‖p ≤ δ
1/p = δ

1
1+(1−2η0)

2

= δ
1

2(1−2η0(1−η0)) ≤ (
√
δ)1+min{η0,1−η0} =

√
δ
1+(1/20)

7

where for the last inequality we have used the fact that for η0 ∈ [0, 1] we have

1

1− 2η0(1− η0)
≥ 1 + 2η0(1− η0) ≥ 1 + min{η0, 1− η0}.

Putting the upper bound on ‖F‖p together with the fact that ‖F‖2 ≤
√
δ and (1), we get the

claim.

3 Results

We show upper and lower bounds for testing and decoding polynomial codes over grids. All our
upper bounds hold in the non-adaptive setting, while our lower bounds hold in the stronger adaptive
setting.

Our first result is that for any choice of the field F (possibly even infinite), the space of functions
F(n, d) is locally testable. More precisely, we show the following.

Theorem 3.1 (F(n, d) has a local tester for any field). Let F be any field. Fix a positive integer
d and any n ∈ N. Then the space F(n, d;F) has a non-adaptive (ε, q)-local tester for q = 2O(d) ·
poly(1/ε).

In contrast, we show that the space F(n, d) is not locally decodable over fields of large charac-
teristic, even for d = 1.

Theorem 3.2 (F(n, d) does not have a local decoder for large characteristic). Let n ∈ N be
a growing parameter. Let F be any field such that either char(F) = 0 or char(F) ≥ n2. Then
any adaptive (ε, q)-local decoder for F(n, 1;F) that corrects an ε fraction of errors must satisfy
q = Ωε(log n/ log logn).

Complementing the above result, we can show that if char(F) is a constant, then in fact the
space F(n, d) does have a local decoding procedure.

Theorem 3.3 (F(n, d) has a local decoder for constant characteristic). Let char(F) = p be a
positive constant. Fix any d, n ∈ N. There is a k ≤ pd such that the space F(n, d;F) has a
non-adaptive (1/2O(k), 4k)-local decoder.

4 A local tester for F(n, d) over any field

We now present our local tester and its analysis. The reader may find the overview from Section 1.3
helpful while reading the below.

We start by introducing some notation for this section. Throughout, fix any field F. We consider
functions f : {0, 1}I → F where I is a finite set of positive integers and indexes into the set of
variables {Xi | i ∈ I}. We denote this space as F(I). Similarly, F(I, d) is defined to be the space
of functions of degree at most d over the variables indexed by I.

The following is the test we use to check if a given function f : {0, 1}I → F is close to F(I, d).

Test Tk,I(fI)

8

Notation. Given two variables X and Y and a ∈ {0, 1}, “replacing X by a ⊕ Y ” refers to
substituting X by Y if a = 0 and by 1− Y if a = 1.

• If |I| > k, then

– Choose a random a ∈ {0, 1} and distinct i0, j0 ∈ I at random and replace Xj0 by a⊕Xi0 .
Let f ′I denote the resulting restriction of fI .

– Run Tk,I\{j0}(f
′
I) and output what it outputs.

• If |I| = k then

– Choose a uniformly random bijection σ : I → [k].

– Choose an a ∈ {0, 1}k uniformly at random.

– Replace each Xi (i ∈ I) with Yσ(i) ⊕ ai.
– Check if the restricted function g(Y1, . . . , Yk) ∈ F(k, d) by querying g on all its inputs.

Accept if so and reject otherwise.

Remark 4.1. It is not strictly necessary to choose a random bijection σ in the test Tk,I and a fixed
bijection σ : I → [k] would do just as well. However, the above leads to a cleaner reformulation of
the test in Section 4.1 below.

Observation 4.2. Test Tk,I has query complexity 2k.

Observation 4.3. If fI ∈ F(I, d), then Tk,I accepts with probability 1.

The following theorem is the main result of this section and implies Theorem 3.1 from Section 3.

Theorem 4.4. For each positive integer d, there is a k = O(d) and ε0 = 1/2O(d) such that for any
I of size at least k + 1 and any fI ∈ F(I),

Pr [Test Tk,I rejects fI] ≥
1

2O(d)
·min{δd(fI), ε0}.

Theorem 3.1 immediately follows from Theorem 4.4 since to get an (ε, 2O(d))-tester, we repeat
the test Tk,[n] t = 2O(d) · poly(1/ε) many times and accept if and only if each iteration of the test
accepts. If the input function f ∈ F(n) is of degree at most d, this test accepts with probability
1. Otherwise, this test rejects with probability at least 3/4 for suitably chosen t as above. The
number of queries made by the test is 2k · t = 2O(d) · poly(1/ε).

Parameters. For the rest of this section, we use the following parameters. We choose

k = M · d (2)

for a large absolute constant M ∈ N and set

ε1 =
1

(4C · 2k·H(1/M))40
(3)

9

where C is the absolute constant from Corollary 2.5. The constant M is chosen so that

H(1/M) <
1

20
and k ≥ 100 log

2

ε1
. (4)

Note that the second constraint is satisfied for a large enough absolute constant M since we have

100 log(2/ε1)

k
≤ 40kH(1/M) + 40 logC +O(1)

k
≤ 40H(1/M) +

40 logC +O(1)

M

which can be made arbitrary small for large enough constant M . Further, we set

` = log
2

ε1
and ε0 =

ε1
100`

. (5)

The following are the two main lemmas used to establish Theorem 4.4.

Lemma 4.5 (Small distance lemma). Fix any I such that |I| = r > k + 1 and fI : {0, 1}I → F
such that δd(fI) = δ ≤ ε1.

Pr [Tk,I rejects fI] ≥
δ

2O(k)
.

Lemma 4.6 (Large distance lemma). Fix any I such that |I| = r satisfies r2 > 100`2 and fI :
{0, 1}I → F such that δd(fI) > ε1. Then

Pr
[
δd(f

′
I) < ε0

]
<

100`2

r2
.

With the above lemmas in place, we show how to finish the proof of Theorem 4.4.

Proof of Theorem 4.4. Fix any I and consider the behaviour of the test Tk,I on fI . Assume |I| = n.
A single run of Tk,I produces a sequence of functions fn = fI , fn−1, . . . , fk, where fr is a

function on r variables. Let In = I, In−1, . . . , Ik be the sequence of index sets produced. We have
fr : {0, 1}Ir → F. Note that k ≥ 100` by (4) and (5).

Define the following pairwise disjoint events for each r ∈ {k, . . . , n}.

• Fr is the event that δd(fr) > ε1.

• Cr is the event that δd(fr) < ε0.

• Er is the event that δd(fr) ∈ [ε0, ε1].

For any fI , one of Fr,Cr, or Er occurs with probability 1. If either En or Cn occurs, then by
Lemma 4.5 we are done. Therefore, we assume that Fn holds.

We note that one of the following possibilities must occur: either all the fr satisfy δd(fr) > ε1;
or there is some fr such that δd(fr) ∈ [ε0, ε1]; or finally, there is some fr such that δd(fr+1) > ε1
but δd(fr) < ε0. We handle each of these cases somewhat differently.

Clearly, if Fk holds, then deg(fIk) > d and hence Tk,Ik rejects fIk with probability 1. On the
other hand, by Lemma 4.5, we see that

Pr

[
Tk,I rejects fI |

n−1∨
r=k

Er

]
≥ ε0

2O(k)
.

10

Thus, we have

Pr [Tk,I rejects fI] ≥
ε0

2O(k)
· Pr

[
n−1∨
r=k

Er ∨
n−1∧
r=k

Fr

]
(6)

Let E denote the event ¬(
∨n−1
r=k Er ∨

∧n−1
r=k Fr). Notice that if event E occurs, there must be an

r ≥ k such that Cr occurs but we also have Fr+1 ∧ Fr+2 ∧ · · · ∧ Fn. By Lemma 4.6, the probability
of this is upper bounded by 100`2/r2 for each r ≥ k.

By a conditional probability argument, we see that

Pr [¬E] ≥
∏
r≥k

(
1− 100`2

r2

)
≥ exp

−200`2
∑
r≥k

1

r2

 ≥ exp(−O(`)) =
1

2O(k)

where we have used the fact that k ≥ 100` and for the second inequality we also use (1 − x) ≥
exp(−2x) for x ∈ [0, 1/2]. Plugging the above into (6), we get the theorem.

It remains to prove Lemmas 4.5 and 4.6 which we do in Sections 4.1 and 4.2 respectively.

4.1 Proof of Small Distance Lemma (Lemma 4.5)

We start with a brief overview of the proof of Lemma 4.5. Suppose fI is δ-close to some polynomial
P for some δ ≤ ε1. As mentioned in Section 1.3, our aim is to show that the (random) restriction
g of f obtained above and the corresponding restriction Q of P differ at only one point. Then we
will be done since any two distinct degree-d polynomials on {0, 1}k must differ on at least 2 points
(if k > d) and hence the restricted function g cannot be a degree-d polynomial.

Note that the restriction is effectively given by a ∈ {0, 1}I and φ : I → [k] such that g(y) =
fI(x(y)) where x(y) = (xi(y))i∈I is given by xi(y1, . . . , yk) = yφ(i)⊕ai. (φ is obtained by a sequence
of replacements followed by the bijection σ.) Similarly we define Q(y) = P (x(y)). To analyze the
test, we consider the queries {x(y)}y∈{0,1}k made to the oracle for fI . For every fixed y ∈ {0, 1}k

the randomness (in a and φ) leads to a random query x(y) ∈ {0, 1}I to fI and it is not hard to
show that for each fixed y, x(y) is uniformly distributed over {0, 1}I . Hence, the probability that g
and Q differ at any fixed y ∈ {0, 1}k is exactly δ.

We would now like to say that for distinct y′, y′′ ∈ {0, 1}k, the probability that g and Q differ
at both y′ and y′′ is much smaller than δ. This would be true if, for example, x(y′) and x(y′′) were
independent of each other, but this is unfortunately not the case. For example, consider the case
when no Xi (i ∈ I) is identified with the variable Yk (i.e., for every i ∈ I, φ(i) 6= k).1 In this case,
x(y′) = x(y′′) for every y′ and y′′ that differ only at the kth position. More generally, if the number
of variables that are identified with Yk is very small (much smaller than the expected number r/k)
then x(y′) and x(y′′) would be heavily correlated if y′ and y′′ differed in only the kth coordinate.

So, the first step in our proof is to analyze the above restriction process and show that with rea-
sonable probability, for every Yj there are many variables (close to the expected number) mapped
to it, i.e., |φ−1(j)| is Ω(r/k) for every j ∈ [k]. To get to this analysis we first give an alternate
(non-iterative) description of the test Tk,I and analyze it by exploring the random set-union pro-
cess mentioned in Section 1.3. We note that this process and its analysis may be independently
interesting.

1Strictly speaking this case can not occur due to the way φ is constructed, but it is is useful to think about this
case anyway.

11

Once we have a decent lower bound on minj |φ−1(j)|, we can use the hypercontractivity the-
orem of Polyanskiy (Theorem 2.4) to argue that for any y′ 6= y′′, the inputs x(y′) and x(y′′) are
somewhat negatively correlated (see Corollary 2.5). We note that since the distribution of the pair
(x(y′), x(y′′)) is not the usual noisy hypercube distribution and so the usual hypercontractivity
does not help. But this is where the strength of Polyanskiy’s hypercontractivity comes in handy —
even after we fix the Hamming distance between x(y′) and x(y′′) the symmetry of the space leads
to enough randomness to apply Theorem 2.4. This application already allows us to show a weak
version of Lemma 4.5 and hence a weak version of our final tester.

To prove Lemma 4.5 in full strength as stated, we note that stronger parameters for the lemma
are linked to stronger negative correlation between x(y′) and x(y′′) for various y′ and y′′. It turns
out that this is directly related to the Hamming distance of y′ and y′′: specifically, we would like
their Hamming distance to not be too close to 0 or to k. Hence, we would like to restrict our
attention to a subset T of the query points of {0, 1}k that form such a “code”. At the same time,
however, we need to ensure that, as for {0, 1}k, any two distinct degree-d polynomials cannot differ
at exactly one point in T . We construct such a set T in Claim 4.10, and use it to prove Lemma 4.5.

We now begin the formal proof with an alternate but equivalent (non-recursive) description of
test Tk,I for |I| = r > k.

Test Tk,I (Alternate description)

• Choose a ∈ {0, 1}r uniformly at random.

• Choose a bijection π : [r]→ I uniformly at random.

• Choose p : {k+1, . . . , r} → Z so that each p(i) is uniformly distributed over the set {1, . . . , i−
1} and the p(i)s are mutually independent. (Here p(i) stands for the “parent of i”).

• For i in r, r − 1, . . . , k + 1

– Substitute Xπ(i) by ai ⊕Xπ(p(i)).

• For i ∈ 1, . . . , k

– Replace each Xπ(i) with ai ⊕ Yi for each i ∈ [k].

• Check if the restricted function g(Y1, . . . , Yk) is of degree at most d by querying g on all its
inputs. Accept if so and reject otherwise.

Proposition 4.7. The iterative description above is equivalent to test Tk,I .

We now begin the analysis of the test Tk,I . As stated above, the first step is to understand the
distribution of the number of Xi (i ∈ I) eventually identified with Yj (for various j ∈ [k]). We will
show (Corollary 4.9) that with reasonable probability, each Yj has Ω(r/k) Xis that are identified
with it.

Fix any bijection π : [r] → [r]. For i, j such that i ≥ j and i ∈ {k, . . . , r}, we define Bj,i to be
the index set of those variables that are identified with Xπ(j) (or its complement) in the first r − i
rounds of substitution. Formally,

Bj,i =


{π(j)} if i = r,
Bj,i+1 if i < r and p(i+ 1) 6= j.
Bj,i+1 ∪Bi+1,i+1 if i < r and p(i+ 1) = j.

12

For j ∈ [k], let Bj = Bj,k. This is the set of i such that Xπ(i) is “eventually” identified with Xπ(j)

(or its complement). For i ∈ [r], we define b(i) = j if i ∈ Bj .
To analyze the distribution of the “buckets” B1, . . . , Bk, it will be helpful to look at an equivalent

way of generating this distribution. We do this by sampling the buckets in “reverse”: i.e., we start
with the jth bucket being the singleton set {j} and for each i = k + 1, . . . , r, we add i to the jth
bucket if i falls into the the jth bucket.

Formally, for each j ∈ [k], define the set B′j,i to be Bj ∩ [i]. Note that we have

B′j,i+1 =


{j} if i = k,
B′j,i if i > k and p(i+ 1) 6∈ B′j,i.
B′j,i ∪ {i+ 1} if i > k and p(i+ 1) ∈ B′j,i.

In particular, we see that for any i ≥ k + 1,

Pr
p

[
π(i+ 1) ∈ B′j,i+1 | B′1,i, . . . , B′k,i

]
= Pr

p

[
p(i+ 1) ∈ B′j,i | p(k + 1), . . . , p(i)

]
=
|B′j,i|
i

. (7)

This yields the following equivalent way of sampling sets from the above distribution.

Lemma 4.8. Consider the following sampling algorithm that partitions [r] into k parts. Choose
a random permutation σ of the set {1, . . . , r} as follows. First choose a uniform element i1 ∈
{1, . . . , k}. Now choose a uniformly random permutation σ of [r] such that σ(1) = 1 and assume
that the elements of [k] \ {i1} appear in the order i2, . . . , ik in σ (σ(i2) < · · · < σ(ik)). Define
C1, . . . , Ck as follows:

• C1 = {j > k | σ(j) < σ(i2)} ∪ {1},

• C2 = {j > k | σ(i2) < σ(j) < σ(i3)} ∪ {2},

• . . .

• Ck−1 = {j > k | σ(ik−1) < σ(j) < σ(ik)} ∪ {k − 1},

• Ck = {j > k | σ(ik) < σ(j)} ∪ {k}.

Then the distribution of (C1, . . . , Ck) is identical to the distribution of (B1, . . . , Bk).

Proof. Assume σ is sampled by starting with the element 1 and then inserting the elements i =
2, . . . , r one by one in a random position after 1 (since we are sampling σ such that σ(1) = 1).
Simultaneously, consider the evolution of the jth bucket. Let Cj,i denote the jth bucket after
elements 2, . . . , i have been inserted.

Note that no matter how the first k elements are ordered in σ, the element j ∈ [k] goes to
the jth bucket at the end of the sampling process. Thus, after having inserted 2, . . . , k, we have
Cj,k = {j}.

We now insert (i+ 1) for each i such that k ≤ i < r. The position of i+ 1 is a uniform random
position after the first position. For each i, the probability that i+ 1 ends up in the jth bucket can
be seen to be |Cj,i|/i, exactly as in (7). This shows that (C1, . . . , Ck) has the same distribution as
(B1, . . . , Bk).

Corollary 4.9. With probability at least 1
2O(k) we have |Bj | ≥ r

4k for each j ∈ [k].

13

Proof. We assume that r > 4k since otherwise the statement to be proved is trivial (as each |Bj | ≥ 1
with probability 1.) By Lemma 4.8 it suffices to prove the above statement for the sets (C1, . . . , Ck).

Now, say a permutation σ of [r] fixing 1 is chosen u.a.r. and we set Cj as in Lemma 4.8. We
view the process of sampling σ as happening in two stages: we first choose a random linear ordering
of A = {k + 1, . . . , r}, i.e. a random function σ′ : A → [r − k], and then inserting the elements
2, . . . , k one by one at random locations in this ordering. (The position of the element 1 is of course
determined.)

Condition on any choice of σ′. For j ∈ {2, . . . , k}, let C ′j = {i | (j−1)r/k ≤ σ′(i) ≤ (j−1)r/k+
dr/2ke}. Fix any bijection τ : {2, . . . , k} → {2, . . . , k}.

Consider the probability that on inserting 2, . . . , k into the ordering σ′, each j ∈ {2, . . . , k} is
inserted between two elements of C ′τ(j). Call this event Eτ . Conditioned on this event, it can be

seen that for each j ∈ {2, . . . , k}, the jth bucket Cj has size at least

min{a | a ∈ C ′j} −max{a | a ∈ C ′j−1} ≥
jr

k
− (

(j − 1)r

k
+

r

2k
+ 1) =

r

2k
− 1 ≥ r

4k

where we have defined C ′1 = {0}. Similarly, conditioned on Eτ , we have |C1| ≥ r/k ≥ r/(4k).
Since this holds for each τ and the events Eτ are mutually exclusive, we have

Pr
[
∀j ∈ [k], |Cj | ≥

r

4k

]
≥
∑
τ

Pr [Eτ] .

We now analyze Pr [Eτ] for any fixed τ . Conditioned on the positions of 2, . . . , j − 1, the
probability that σ(j) ∈ C ′τ(j) is at least (r/(2k)) · (1/r) = 1/(2k). Therefore we have

Pr [Eτ] ≥ 1/2k−1kk−1.

Thus, we get

Pr
[
∀j ∈ {2, . . . , k}, |Cj | ≥

r

4k

]
≥
∑
τ

Pr [Eτ] ≥ (k − 1)!

2k−1 · kk−1
≥ 1

2O(k)
,

where we have used the Stirling approximation for the final inequality. This concludes the proof of
the corollary.

Note that the sets Bj are determined by our choice of p. For the rest of the section, we
condition on a choice of p = p0 such that Corollary 4.9 holds. We now show how to finish the proof
of Lemma 4.5.

Fix a polynomial P ∈ F(I, d) such that δ(fI , P) = δd(fI) = δ as in the lemma statement. Let

E ⊆ {0, 1}I be the set of points where f and P differ. We have |E|2r = δ ≤ ε1.
For y′, y′′ ∈ {0, 1}k, we use ∆(y′, y′′) to denote the Hamming distance between them and

∆′(y′, y′′) to denote the quantity min{∆(y′, y′′), k −∆(y′, y′′)}.
We prove the following two claims.

Claim 4.10. There is a non-empty set T ⊆ {0, 1}k such that:

• |T | ≤
(
k
≤d
)

+ 1,

• Given distinct y′, y′′ ∈ T , ∆′(y′, y′′) ≥ k/4,

14

• No pair of polynomials P, P ′ ∈ F(I, d) can differ at exactly one input from T .2

For each input y ∈ {0, 1}k to the restricted polynomial g, let x(y) ∈ {0, 1}I be the corresponding
input to fI . Let S denote the multiset {x(y) | y ∈ T}. This is a subset of the set of inputs on which
fI is queried.

Claim 4.11. Let p = p0 be as chosen above. With probability at least δ · (|T |/2) over the choice of
π and a, we have |S ∩ E| = 1 (i.e. there is a unique y ∈ T such that x(y) ∈ E).

Assuming Claims 4.10 and 4.11, we have proved Lemma 4.5 since with probability at least
1

2O(k) · δ · (|T |/2) (cf. Corollary 4.9 and Claim 4.11), the restricted function g(Y1, . . . , Yk) differs
from the restriction P ′(Y1, . . . , Yk) of P at exactly 1 point in T . However, by our choice of the set
T , any two polynomials from F(k, d) that differ on T must differ on at least two inputs. Hence, g
cannot be a degree d polynomial, and thus the test rejects.

4.1.1 Proof of Claim 4.10

Given functions f, g ∈ F(k), we define their inner product 〈f, g〉 by 〈f, g〉 =
∑

y∈{0,1}k f(y)g(y).

Recall that F(k, d)⊥ is defined to be the set of all f ∈ F(k) such that 〈f, g〉 = 0 for each g ∈ F(k, d).
We will construct T by finding a suitable non-zero f ∈ F(k, d)⊥ and setting T = Supp(f),

where Supp(f) = {y ∈ {0, 1}k | f(y) 6= 0}. Thus, we need f to satisfy the following properties.

1. |Supp(f)| ≤
(
k
≤d
)

+ 1,

2. Given distinct y′, y′′ ∈ Supp(f), ∆′(y′, y′′) ≥ k/4,

3. No pair of polynomials P, P ′ ∈ F(I, d) can differ at exactly one input from Supp(f).

We first observe that Property 3 is easily satisfied. To see this, assume that g1, g2 ∈ F(k, d) differ
at exactly one point, say y′, from Supp(f). Then, since g = g1 − g2 ∈ F(k, d) and f ∈ F(k, d)⊥,
we must have 〈f, g〉 = 0. On the other hand since Supp(g) ∩ Supp(f) = {y′}, we have

〈f, g〉 =
∑

y∈{0,1}k
f(y)g(y) = f(y′)g(y′) 6= 0

which yields a contradiction. Hence, we see that g1 and g2 cannot differ at exactly one point in
Supp(f).

We thus need to choose a non-zero f ∈ F(k, d)⊥ so that Properties 1 and 2 hold. Note that to
ensure that f ∈ F(k, d)⊥, it suffices to ensure that for each A ⊆ [k] of size at most d we have∑

y∈{0,1}k
f(y) ·

∏
i∈A

yi = 0. (8)

The number of such A is N =
(
k
≤d
)
.

To ensure that Properties 1 and 2 hold, it suffices to ensure that Supp(f) ⊆ U where U ⊆ {0, 1}k
is a set of size N + 1 so that any distinct y′, y′′ ∈ U satisfy ∆(y′, y′′) ∈ [k/4, 3k/4]. (Note that this
implies that ∆′(y′, y′′) ≥ k/4.)

2Note that it could be that two distinct polynomials in F(I, d) agree everywhere in T .

15

To see that such a set U exists, consider the following standard greedy procedure for finding
such a set U : starting with an empty set, we repeatedly choose an arbitrary point z to add to U
and then remove all points at Hamming distance at most k/4 and at least 3k/4 from z from future
consideration. Note that this procedure can produce up to 2k/(2

(
k
≤k/4

)
) many points. By Fact 2.3

and our choice of k (see (2) and (4)) we have

2k

2
(

k
≤k/4

) ≥ 2k(1−H(1/4))−1 ≥ 2k/20

N =

(
k

≤ d

)
≤ 2kH(d/k) < 2k/20.

Hence, the above greedy procedure can be used to produce a set U of size N + 1 as required.
Since we assume that Supp(f) ⊆ U , ensuring (8) reduces to ensuring the following for each

A ⊆ [k] of size at most d: ∑
y∈U

f(y) ·
∏
i∈A

yi = 0. (9)

Choosing f(y) (y ∈ U) so that the above holds reduces to solving a system of N homogeneous
linear equations (one for each A) with |U | = N + 1 constraints. By standard linear algebra, this
system has a non-zero solution. This yields a non-zero f ∈ F(k, d)⊥ with the required properties.

4.1.2 Proof of Claim 4.11

Let y′, y′′ be any two distinct points in T . Let ∆ denote ∆(y′, y′′) and ∆′ denote ∆′(y′, y′′). We
show that

Pr
π,a

[
x(y′) ∈ E

]
= δ (10)

Pr
π,a

[
x(y′) ∈ E ∧ x(y′′) ∈ E

]
≤ C · δ1+(1/40). (11)

where C is the absolute constant from the statement of Corollary 2.5.
Given (10) and(11) we are done since we can argue by inclusion exclusion as follows.

Pr
π,a

[|S ∩ E| = 1] ≥
∑
y∈T

Pr [x(y) ∈ E]−
∑

y′ 6=y′′∈T
Pr
[
x(y′) ∈ E ∧ x(y′′) ∈ E

]
≥ δ · |T | − |T |2 · C · δ1+(1/40) (by (10) and (11))

≥ δ · |T |(1− (

(
k

≤ d

)
+ 1) · C · ε1/401) (∵ δ ≤ ε1, |T | ≤

(
k

≤ d

)
+ 1)

Note that by our choice of ε1 (see (3)) and Fact 2.3 we have

ε
1/40
1 ≤ 1

4C2kH(d/k)
≤ 1

2C · (
(
k
≤d
)

+ 1)
,

which along with our previous computation yields

Pr
π,a

[|S ∩ E| = 1] ≥ δ · |T |
2
.

16

This finishes the proof of the Claim using (10) and (11). We now prove (10) and (11).
To prove (10), we consider the distribution of x(y′) for any fixed y′ ∈ {0, 1}k. Condition on any

choice of π. For any i ∈ [r], let Ai = {j |i ∈
⋃
i′ Bj,i′}. Note that π(j) < π(i) for each j ∈ Ai. We

have
x(y′)π(i) = ai ⊕

⊕
j∈Ai

aj ⊕ y′b(i). (12)

which is a uniform random bit even after conditioning on all aj for j < i. In particular, it follows
that for each choice of π, x(y′) is a uniformly random element of {0, 1}I . This immediately implies
(10). Also note that since x(y′) has the same distribution for each choice of π, the random variables
x(y′) and π are independent from each other.

To prove (11), we will use our corollary to Polyanskiy’s Hypercontractivity theorem (Corol-
lary 2.5). Let D ⊆ [k] be the set of coordinates where y′ and y′′ differ. Condition on any choice of
x(y′) ∈ {0, 1}n. By (12), the point x(y′′) satisfies, for each i,

x(y′′)π(i) ⊕ x(y′)π(i) = y′′b(i) ⊕ y
′
b(i).

Or equivalently, for any h ∈ I, we have

x(y′′)h ⊕ x(y′)h = y′′b(π−1(h)) ⊕ y
′
b(π−1(h)) =

{
1 if π−1(h) ∈

⋃
j∈D Bj

0 otherwise.

Now, we may rewrite the condition π−1(h) ∈
⋃
j∈D Bj as h ∈ π(BD) for BD :=

⋃
j∈D Bj . Note

that π(BD) ⊆ I is a uniformly random subset of I of size |BD|.
Hence, we may equivalently sample the pair (x(y′), x(y′′)) as follows: Choose x(y′) ∈ {0, 1}I

uniformly at random, and choose independently a random set I ′ ⊆ I of size |BD| and flip x(y′)
exactly in the coordinates in I ′ to get x(y′′).

Note that |BD| =
∑

j∈D |Bj | ≥ (∆ · r)/4k since |D| = ∆ and |Bj | ≥ r/4k for each j by
Corollary 4.9. At the same time, we also have |[r] \BD| =

∑
j∈[k]\D |Bj | ≥ (k −∆) · r/(4k). Thus,

|BD| = ηr for some η ∈ [∆/(4k), 1− (k −∆)/(4k)] ⊆ [∆′/(4k), 1− (∆′/(4k))].
By Claim 4.10, we know that ∆′(y′, y′′) ≥ k/4 and hence we have η ∈ [1/16, 15/16]. Applying

Corollary 2.5, we see that this implies

Pr
x(y′),I′

[
x(y′) ∈ E ∧ x(y′′) ∈ E

]
≤ C · δ1+(1/40).

This proves (11) and hence finishes the proof of the claim.

4.2 Proof of Large Distance Lemma (Lemma 4.6)

We follow the proof of [7, Lemma 12].
Given a triple (i, j, b) ∈ I2 × {0, 1} with i, j distinct, call (i, j, b) a bad triple if the restricted

function f ′I obtained when the test chooses i0 = i, j0 = j and a = b is ε0-close to F(I \ j, d). To
prove Lemma 4.6, it suffices to show that the number of bad triples is at most 100`2. To do this,
we bound instead the number of bad pairs, which are defined to be pairs (i, j) for which there exists
b ∈ {0, 1} such that (i, j, b) is a bad triple. Note that (i, j) is a bad pair iff (j, i) is. Hence, the set
of bad pairs (i, j) defines an undirected graph Gbad. If there are fewer than 25`2 edges in Gbad,
we are done since this implies that there are at most 50`2 bad pairs and hence at most 100`2 bad
triples. Otherwise, Gbad has more than 25`2 edges and it is easy to see that one of the following
two cases must occur:

17

• Gbad has a matching with at least `+ 1 edges, or

• Gbad has a star with at least `+ 1 edges.

We show that in each case, we can find a polynomial P ∈ F(I, d) is ε1-close to fI , which will
contradict the assumption that δd(fI) > ε1 and hence finish the proof of the lemma.

We first note that in either the matching or the star case, we can replace some variables X with
1⊕X in fI (note that this does not change δd(fI)) to ensure that the bad triples that give rise to
the bad pairs are all of the form (X,X ′, 0): i.e., all the bad triples come from identifying variables
(and not from identifying a variable with the complement of another).

Let t1 = (Xi1 , Xj1 , 0), . . . , t`+1 = (Xi`+1
, Xj`+1

, 0) denote the bad triples obtained above (in
either the matching or the star case). Each triple th defines the subset Rh ⊆ {0, 1}I where the
variables Xih and Xjh take the same values; let R′h denote the complement of Rh. Note that
each |Rh| = 2r−1. Furthermore, it follows from the form of the triples that for each h we have
|S1 ∩ S2 ∩ · · ·Sh| = 2r−h for any choice of S1 ∈ {R1, R

′
1}, . . . , Sh ∈ {Rh, R′h}.

By assumption, for each triple th, there is a polynomial P (h) such that P (h) is ε0-close to f (h),
where the latter function is obtained by identifying the variables Xih and Xjh in fI . We will show
the following claim.

Claim 4.12. There is a P ∈ F(I, d) such that for each h ∈ [`+ 1], P (x) = P (h)(x) for all x ∈ Rh.

Assuming the above claim, we show that the polynomial P above is actually ε1-close to fI ,
which contradicts our assumption about δd(fI).

Consider a uniformly random input x ∈ {0, 1}n. We have

Pr
x

[fI(x) 6= P (x)] ≤
∑̀
h=1

Pr
x

[
fI(x) 6= P (x) | x ∈ Rh \

⋃
h′<h

Rh′

]
· Pr

[
x ∈ Rh \

⋃
h′<h

Rh′

]

+ Pr
x

x 6∈ ⋃
h≤`

Rh

 (13)

For each h, we have

Pr
x

[
x ∈ Rh \

⋃
h′<h

Rh′

]
= Pr

x

[
x ∈ Rh ∩R′1 ∩ · · · ∩R′h−1

]
=

1

2h

Pr
x

[
x ∈ Rh \

⋃
h′<h

Rh′ | x ∈ Rh

]
=

Prx
[
x ∈ Rh ∩R′1 ∩ · · · ∩R′h−1

]
Prx [x ∈ Rh]

=
1

2h−1

Pr
x

x 6∈ ⋃
h≤`

Rh

 = Pr
x

[
x ∈ R′1 ∩ · · · ∩R′`

]
=

1

2`

Since P (x) agrees with P (h)(x) for each x ∈ Rh, we have

Pr
x

[fI(x) 6= P (x) | x ∈ Rh] = Pr
x

[
fI(x) 6= P (h)(x) | x ∈ Rh

]
≤ ε0.

18

Hence, we obtain

Pr
x

[
fI(x) 6= P (x) | x ∈ Rh \

⋃
h′<h

Rh′

]
≤ Prx [fI(x) 6= P (x) | x ∈ Rh]

Prx
[
x ∈ Rh \

⋃
h′<hRh′ | x ∈ Rh

]
= 2h−1 Pr

x
[fI(x) 6= P (x) | x ∈ Rh] ≤ 2h−1ε0.

Plugging the above into (13), we get

Pr
x

[fI(x) 6= P (x)] ≤

(∑̀
h=1

2h−1ε0 ·
1

2h

)
+

1

2`

≤ ε0`

2
+

1

2`
< ε1

where the final inequality follows from our choice of ε0 and ` (see (5)). This is a contradiction to
our assumption on δd(fI), which concludes the proof of Lemma 4.6 assuming Claim 4.12.

4.2.1 Proof of Claim 4.12

We now prove Claim 4.12. The proof is a case analysis based on whether Gbad has a large matching
or a large star. For any h ∈ [`+ 1] and any polynomial Q ∈ F(I, d), we denote Q|h the polynomial
obtained by identifying the variables Xih and Xjh . We want to define a polynomial P such that
for each h ∈ [`+ 1], we have

P |h = P (h). (14)

As in [7], the crucial observation that will help us find a P as above is the following. Fix any
distinct h, h′ and consider P (h)|h′ and P (h′)|h. Note that these polynomials are both naturally
defined on the set of inputs Rh,h′ := Rh ∩ Rh′ . However, since fI is ε1-close to P (h) and P (h′) on
Rh and Rh′ respectively, we see that

Pr
x∈Rh,h′

[
P (h)|h′(x) 6= P (h′)|h(x)

]
= Pr

x∈Rh,h′

[
P (h)(x) 6= P (h′)(x)

]
≤ Pr

x∈Rh,h′

[
P (h)(x) 6= f(x)

]
+ Pr
x∈Rh,h′

[
P (h′)(x) 6= f(x)

]
≤ 2ε0 + 2ε0 ≤ 4ε0 <

1

2d
,

where for the second inequality we have used the fact that

Pr
x∈Rh,h′

[
P (h)(x) 6= f(x)

]
≤

Prx∈Rh
[
P (h)(x) 6= f(x)

]
Prx∈Rh [x ∈ Rh′]

≤ ε0
1/2

= 2ε0.

Since any pair of distinct polynomials of degree d disagree on at least a (1/2d) fraction of inputs
in Rh,h′ , we see that P (h)|h′ = P (h′)|h as polynomials. We record this fact below.

Claim 4.13. For any distinct h, h′ ∈ [`+ 1], P (h)|h′ = P (h′)|h.

19

The Matching case of Claim 4.12. Let (Xi1 , Xj1 , 0), . . . , (Xi`+1
, Yi`+1

, 0) be the set of bad
triples that give rise to the distinct edges of the matching in Gbad. By renaming variables we
assume that I = [r] and the bad triples are all of the form (X1, X2, 0), . . . , (X2`+1, X2`+2, 0).

Assume that for each h ∈ [`+ 1],

P (h)(X) =
∑

S⊆I\{2h}:|S|≤d

α
(h)
S XS

where XS =
∏
i∈S Xi (note that P (h) ∈ F(I \ {2h}, d) and hence does not involve X2h). For any

h, if |S| > d or S 3 2h, we define α
(h)
S = 0.

Note that we have for any distinct i, j ∈ [`+ 1]

P (i)(X)|j =
∑

S∩{2j−1,2j}=∅

α
(i)
S X

S+
∑

S∩{2j−1,2j}=∅

(α
(i)
S∪{2j−1}+α

(i)
S∪{2j}+α

(i)
S∪{2j−1,2j})X

S∪{2j−1}. (15)

In particular, Claim 4.13 implies the following for S ⊆ I such that |S| ≤ d and i, j distinct such
that S ∩ {2i− 1, 2i, 2j − 1, 2j} = ∅,

α
(i)
S = α

(j)
S (16)

α
(i)
S∪{2i−1} = α

(j)
S∪{2i−1} + α

(j)
S∪{2i} + α

(j)
S∪{2i−1,2i} (17)

Let α
(i)
S |j denote the coefficient of XS in P (i)|j .

We define the polynomial

P (X) =
∑

S⊆I:|S|≤d

αSX
S

as follows. For each S ∈
(
I
≤d
)
, set αS = α

(j)
S for any S such that S ∩ {2j − 1, 2j} = ∅: since

|S| ≤ d ≤ `, there is at least one such j ∈ [` + 1]. By (16), we see that any choice of j as above
yields the same coefficient αS .

Note that

P |i =
∑

S∩{2i−1,2i}=∅

αSX
S +

∑
S∩{2i−1,2i}=∅

(αS∪{2i−1} + αS∪{2i} + αS∪{2i−1,2i})X
S∪{2i−1}. (18)

Let αS |j denote the coefficient of XS in P |j .
Now we show that P |i = P (i) for each choice of i ∈ [`+1] by comparing coefficients of monomials

and showing that αS |i = α
(i)
S for each S such that |S| ≤ d. That will conclude the proof of the

matching case of Claim 4.12. Fix any S such that |S| ≤ d. We consider three cases.

• S 3 2i: In this case, αS |i = α
(i)
S = 0 and hence we are done.

• S ∩ {2i− 1, 2i} = ∅: In this case, we have αS |i = α
(i)
S by definition and hence we are done.

20

• S ∩ {2i− 1, 2i} = 2i− 1: In this case, let T = S \ {2i− 1} and fix j ∈ [`+ 1] such that j 6= i
and T ∩ {2j − 1, 2j} = ∅. We see that

αS |i = αT∪{2i−1} + αT∪{2i} + αT∪{2i−1,2i} (by (18))

= α
(j)
T∪{2i−1} + α

(j)
T∪{2i} + α

(j)
T∪{2i−1,2i} (by definition of P)

= α
(i)
T∪{2i−1} (by (17))

= α
(i)
S .

The Star case of Claim 4.12. We proceed as in the matching case, except that the definition
of P will be somewhat more involved. By renaming variables we assume that I = [r] and that the
bad triples are all of the form (X1, Xr, 0), (X2, Xr, 0), . . . , (X`+1, Xr, 0).

Assume that for each h ∈ [`+ 1],

P (h)(X) =
∑

S⊆[r−1]:|S|≤d

α
(h)
S XS

where XS =
∏
i∈S Xi (note that P (h) ∈ F(I \ {r}, d) and hence does not involve Xr). For any h,

if |S| > d or S 3 r, we define α
(h)
S = 0.

For any distinct i, j ∈ [` + 1] with i < j, we assume that P (i)|j and P (j)|i are obtained by
replacing Xj with Xi. We thus have

P (i)(X)|j =
∑

S∩{i,j}=∅

α
(i)
S X

S +
∑

S∩{i,j}=∅

(α
(i)
S∪{i} + α

(i)
S∪{j} + α

(i)
S∪{i,j})X

S∪{i}. (19)

P (j)(X)|i =
∑

S∩{i,j}=∅

α
(j)
S XS +

∑
S∩{i,j}=∅

(α
(j)
S∪{i} + α

(j)
S∪{j} + α

(j)
S∪{i,j})X

S∪{i}. (20)

Using Claim 4.13 and comparing coefficients of P (i)|j and P (j)|i, we get for i 6= j and S such
that S ∩ {i, j} = ∅,

α
(i)
S = α

(j)
S (21)

α
(i)
S∪{i} + α

(i)
S∪{j} + α

(i)
S∪{i,j} = α

(j)
S∪{i} + α

(j)
S∪{j} + α

(j)
S∪{i,j} (22)

We now define the polynomial

P (X) =
∑

S⊆I\{r}:|S|≤d

βSX
S +

∑
S⊆I:S3r,|S|≤d

γSX
S

as follows.

• For S 63 r, we define βS to be α
(i)
S for any i ∈ [` + 1] such that i 6∈ S. Since |S| ≤ d < ` + 1

there is such an i. Note that by (21), the choice of i is immaterial.

• For S 3 r, we let T = S \ {r}. Note that |T | < d. We define γT∪{r} by downward induction
on |T | as follows:

γT∪{r} , α
(i)
T∪{i} − βT∪{i} − γT∪{i,r} for any fixed i ∈ [`+ 1] \ T

where we assume that γT∪{r} = 0 for |T | ≥ d.

21

We will show first by downward induction on |T | that these coefficients are independent of the
choice of i ∈ [`+ 1] \ T . Fix i, j ∈ [`+ 1] \ T . In the base case |T | = d− 1, we have

α
(i)
T∪{i} − βT∪{i} = α

(i)
T∪{i} − α

(j)
T∪{i} (by definition of βT∪{i})

= α
(j)
T∪{j} − α

(i)
T∪{j} (by (21) and αT∪{i,j} = 0)

= α
(j)
T∪{j} − βT∪{j} (by definition of βT∪{j})

When |T | < d− 1, we have

α
(i)
T∪{i} − βT∪{i} − γT∪{i,r}

= α
(i)
T∪{i} − α

(j)
T∪{i} − γT∪{i,r}

= α
(i)
T∪{i} − α

(j)
T∪{i} −

(
α
(j)
T∪{i,j} − βT∪{i,j} − γT∪{i,j,r}

)
(Applying definition of γT∪{i,r} and induction)

= α
(j)
T∪{j} − α

(i)
T∪{j} −

(
α
(i)
T∪{i,j} − βT∪{i,j} − γT∪{i,j,r}

)
(From (22) and rearranging terms.)

= α
(j)
T∪{j} − α

(i)
T∪{j} − γT∪{j,r} (Applying definition of γT∪{j,r} and induction)

= α
(j)
T∪{j} − βT∪{j} − γT∪{j,r}

We now conclude by showing that the restriction of P obtained by replacing Xr by Xi equals
the polynomial P (i). Let P |i denote the restriction of P obtained by replacing Xr by Xi and let
αS |i be its coefficients. Note that

P |i =
∑

S 63i:|S|≤d

βSX
S +

∑
T 63i:|T |<d

(βT∪{i} + γT∪{r} + γT∪{i,r})X
T∪{i}.

=
∑

S 63i:|S|≤d

α
(i)
S X

S +
∑

T 63i:|T |<d

α
(i)
T∪{i}X

T∪{i} (By definition of βS and γT∪{r})

= P (i).

This concludes the proof for the star case.

5 Impossibility of local decoding when char(F) is large

In this section, we prove Theorem 5.3 which is a more detailed version of Theorem 3.2. Again we
remind the reader that an overview may be found in Section 1.3.

Let n be a growing parameter and F a field of characteristic 0 or positive characteristic greater
than n2. For the results in this section, it will be easier to deal with the domain {−1, 1}n rather than
{0, 1}n. Since there a natural invertible linear map that maps {0, 1} to {−1, 1} (i.e. a 7→ 1− 2a),
this change of input space is without loss of generality.

5.1 Local linear spans of balanced vectors

Let u ∈ Fn and U ⊆ Fn. For any integer t ∈ N, we say that u is in the t-span of U if it can be
written as a linear combination of at most t elements of U . For x ∈ {−1, 1}n, we use |x| to denote

22

the sum of the entries of x over Z. In this section, we wish to show that if the vector 1n is in the
t-span of balanced vectors, i.e., vectors x with |x| ≤ n/s then t is must be growing as a function of
s.

As explained earlier we first establish a bound on the size of the solutions of linear equations
in systems over Q with few variables or few constraints. This fact is well-known, but we prove it
here for completeness.

Lemma 5.1. Let r, s ∈ N and let t = min{r, s}. Let Mx = u be a system of linear equations with
M ∈ {−1, 0, 1}r×s and u ∈ {−1, 0, 1}r.
• If F is a field of characteristic and the system has a solution in Fs, then there exist integers
a1, . . . , as, b ∈ Z with |ai|, |b| ≤ t! such that xi = ai/b is a solution to Mx = u. In particular,
there is a solution in Qs.

• If F is a field of characteristic p and if the system has a solution in Fs, then there exist integers
a1, . . . , as, b ∈ Z with |ai|, |b| ≤ t! such that xi = ai/b (mod p) is a solution to Mx = u. In
particular, there is a solution in Fsp.

Proof. Note that we can assume that M has full column rank. This is because Mx = u has
a solution iff M̃x̃ = u has a solution where M̃ is the submatrix of M obtained by a keeping a
maximal set of linearly independent columns of M . When the columns are linearly independent,
we have s is at most r and hence t = min{r, s} = s.

We start with the zero characteristic case. Let M ′ be an invertible s × s submatrix of M
containing the set of s linearly independent rows of M and let u′ ∈ Fs be the vector corresponding
to these rows. Note that the solution x is uniquely determined by M ′x = u′. We now apply
Cramer’s rule to see that the solution is given by

xi =
det(M ′i)

det(M ′)

for i ∈ [s], where M ′i is the s×s matrix obtained by replacing the ith column of M ′ bu u′. Since M ′

and M ′i are matrices with entries in {−1, 0, 1}, we have det(M ′) ∈ Z with | det(M ′)| ≤ s! for each
i ∈ [s] and similarly for det(M ′i). Therefore, we have the claim with ai = det(M ′i) and b = det(M ′).

The characteristic p case is similar with only differnece being the solution now is given by
xi = ai/b (mod p).

We now turn to the main technical lemma of this section showing that 1n is not in linear span
of a small number of nearly balanced elements of {−1, 1}n.

Lemma 5.2. Let n, s = s(n) ∈ N with s(n) ≤ n. Let S = {x ∈ {−1, 1}n | |x| ≤ n/s)}. Then
x0 = 1n is not in the t-span of S unless t ≥ log s/ log log s provided F is field of zero characteristic
or of characteristic p ≥ 2n2.

Proof. We first consider the case when F is of zero characteristic. Note that in this case Q ⊆ F.
Suppose x0 ∈ Span{x1, . . . , xt} with x0 =

∑n
i=1 cix

i. Note that the ci’s are expressible as the
solution to a linear system whose Mz = u where M and u have entries in {−1, 0, 1} and M is a
n× t matrix. By Lemma 5.1 we have that ci ∈ Q with |ci| ≤ t! (more specifically we have ci = ai/b
with |ai| ≤ t! and this implies |ci| ≤ t!). We thus have

n =

∣∣∣∣∣∣
n∑
j=1

x0j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t∑
i=1

ci

n∑
j=1

xij

∣∣∣∣∣∣ ≤
t∑
i=1

|ci| ·

∣∣∣∣∣∣
n∑
j=1

xij

∣∣∣∣∣∣ ≤
t∑
i=1

(t!) · (n/s) ≤ (t+ 1)! · (n/s).

23

We thus conclude that (t+ 1)! ≥ s and thus t ≥ log s/ log log s.
In the case of finite field F, we proceed as above and let x0 =

∑t
i=1 cix

i. By Lemma 5.1 we
have that there are integers ai, b with |ai|, |b| ≤ t! such that ci = ai/b (mod p) is a solution to
x0 =

∑t
i=1 cix

i. Now consider b · n and we get b · n =
∑t

i=1 ai
∑n

j=1 x
i
j (mod p). We now show

that this implies (t + 1)! ≥ min{p/(2n), s} = s (where the equality follows from p ≥ 2n2 and
s ≤ n). Assume (t + 1)! ≤ p/(2n). Then we have n ≤ |b · n| ≤ t! · n < p/2 over the integers,

and
∣∣∣∑t

i=1 ai
∑n

j=1 x
i
j

∣∣∣ ≤ (t + 1)!(n/s) < p/2 also over the integers. We again conclude that

n ≤ (t+ 1)!(n/s) and so (t+ 1)! ≥ s as claimed. The lemma follows.

5.2 Proof of Theorem 3.2

We now state and prove Theorem 5.3 which immediately implies Theorem 3.2.

Theorem 5.3. Let n ∈ N be a growing parameter and ε ∈ (0, 1) such that ε ≥ 2 exp(−n/2s2)
for some s ∈ N with 100 ≤ s ≤

√
n/100. Let F be any field such that either char(F) = 0 or

char(F) ≥ n2. Then any adaptive (ε, q)-local decoder for F(n, 1) that corrects an ε fraction of
errors must satisfy q = Ω(log s/ log log s).

Proof. The proof of the theorem will use the minimax principle. Specifically, we design a “hard”
probability distribution D over functions that are ε-close to F(n, 1) such that any deterministic
decoder that decodes the value of a random function (chosen according to D) at the point 1n while
making very few queries will fail to decode the value with probability at least 1/4.

We start with the case of positive characteristic which is somewhat simpler to describe. Let
char(F) = p > n2. We define the hard distribution D as follows. Let

E = {x ∈ {−1, 1}n | |
∑
i

xi| ≥ 2n/s},

so that, by the Chernoff bound, (see, e.g. [12]) |E| ≤ ε2n. Let S = {−1, 1}n \ E.
We now sample a random function f ∼ D as follows:

• Choose a1, . . . , an ∈ Fp ⊆ F uniformly at random independently. Let `(X1, . . . , Xn) =∑
i aiXi ∈ F(n, 1).

• Let f(x) = 0 if x ∈ E and f(x) = `(x) if x ∈ S.

Since f(x) = `(x) for x 6∈ E, we have δ(f, `) ≤ ε. In particular δ1(f) ≤ ε.
Let A be any deterministic decoding algorithm for decoding f(1n). Assume that the worst case

number of queries t made by A satisfies t < log s/ log log s. W.l.o.g. we assume that A always makes
exactly t queries and also that none of these queries are made to inputs x ∈ E (since at these points
f(x) is known to take the value 0). Additionally, we may assume that these queries correspond
to linearly independent inputs since if a query point x is a linear combination of previous queries,
then `(x) = 〈a, x〉 can be determined from the answers to previous queries.

Let x1, . . . , xt be the (adaptive) queries made byA on the random function f . After these queries
are made, the algorithm has `(xi) = 〈a, xi〉 for each i ∈ [t], where a = (a1, . . . , an). However, by
Lemma 5.2, we know that 1n is not in the t-span of the inputs in S and hence, given the values
`(x1), . . . , `(xt), `(1n) =

∑
i ai is still distributed uniformly over Fp. Hence, the probability that

the algorithm outputs `(1n) correctly is at most 1/p < 3/4.

24

Now consider the case when char(F) = 0. We define our hard distribution D exactly as above ex-
cept that the coefficients a1, . . . , an are chosen i.u.a.r. from {−N, . . . , N} where N = ndlog s/ log log se.

Let A be any deterministic decoding algorithm for decoding f(1n) as above. Again, we assume
that A always makes t ≤ log s/ log log s many queries corresponding to linearly independent inputs,
and also that none of these queries are made to inputs x ∈ E.

Let A ⊆ {−N, . . . , N}n be the set of coefficients of linear polynomials ` such that A is able to
decode `(1n) =

∑
i ai correctly.

To bound the size of |A|, we use an encoding argument. Considre any (a1, . . . , an) ∈ A and
let `(X) =

∑
i aiXi. Let x1, . . . , xt be the queries made on input `. Given 〈a, xi〉 for i ∈ [t], the

algorithm determines
∑

i ai = 〈a, 1n〉. Hence, at this point the algorithm has 〈a, x〉 for x ∈ I ′ =
{x1, . . . , xt, 1n}. Note that I ′ is a set of dimension t+ 1 since by Lemma 5.2, 1n is not in the t-span
of S. We can thus a subset I ′′ = {ei1 , . . . , ein−t−1} of the set of standard basis vectors {e1, . . . , en}
of size n− t− 1 so that I = I ′ ∪ I ′′ is a basis for Fn.

Define an encoding function

E : A→ {−Nn, . . . , Nn}t × {−N, . . . , N}n−t−1

as follows. For each x ∈ A, we choose I as above and set

E(a) = (〈a, x1〉, . . . , 〈a, xt〉, 〈a, e1〉, . . . , 〈a, ein−t−1〉).

Note that each 〈a, xj〉 ∈ {−Nn, . . . , Nn} since a ∈ {−N, . . . , N}n and xj ∈ {−1, 1}n.
We claim that E is 1-1. This is because, on being given E(a) as above, we can determine 〈a, x〉

for each x ∈ I by the following argument: E(a) directly gives us 〈a, x〉 for each x ∈ I \ {1n} and by
construction of x1, . . . , xt, we know that 〈a, x1〉, . . . , 〈a, xt〉 determines the value of 〈a, 1n〉. Thus,
we have 〈a, x〉 for each x ∈ I and as I is a basis for Fn, we can obtain a ∈ Fn as well.

Since E is 1-1, we see that

|A| ≤ (2Nn+ 1)t · (2N + 1)n−t−1 ≤ (2N + 1)n−1 · nt ≤ (2N + 1)n−1 ·N ≤ (2N + 1)n · 3

4
.

which implies that the relative size of A inside {−N, . . . , N}n is at most 3/4. This concludes the
proof.

6 Local decoding when char(F) is small

In this section, we give a local decoder over fields of small characteristic. An overview of this
construction may be found in Section 1.3.

Let p be a prime of constant size and let F be any (possibly infinite) field of characteristic p.
Let d be the degree parameter and k be the smallest power of p that is strictly greater than d. Note
that k ≤ pd. We show that the space F(n, d) has a (1/(4 ·

(
2k
k

)
),
(
2k
k

)
)-local decoder, hence proving

Theorem 3.3.
The main technical tool we use is a suitable linear relation on the space F(2k, d), which we

describe now. We say that a set S ⊆ {0, 1}2k is useful if for every polynomial G ∈ F(2k, d), G(02k)
is determined by the restriction of the function G to the inputs in S. Let B ⊆ {0, 1}2k denote the
set of all balanced inputs (i.e. inputs of Hamming weight exactly k).

Lemma 6.1. Fix d, k as above. Then the set B ⊆ {0, 1}2k of balanced inputs is useful.

25

The proof of the above lemma will use Lucas’ theorem, which we recall below.

Theorem 6.2 (Lucas’ theorem). Let p be any prime and a, b ∈ N. Let a1, . . . , a` ∈ {0, . . . , p− 1}
and b1, . . . , b` ∈ {0, . . . , p−1} be the digits in the p-ary expansion of a and b, i.e., a =

∑
j∈[`] ajp

j−1

and b =
∑

j∈[`] bjp
j−1. Then, we have(

a

b

)
≡
∏
i≤`

(
ai
bi

)
(mod p)

where
(
ai
bi

)
is defined to be 0 if ai < bi.

Corollary 6.3. For i ∈ {0, . . . , d}, we have
(
d+k−i
k−i

)
6≡ 0 (mod p) if and only if i = 0.

Proof. Note that by Lucas’ theorem (Theorem 6.2),
(
a
b

)
≡ 0 (mod p) if and only if there are digits

aj , bj in the p-ary expansions of a and b respectively with aj < bj .
Consider first the case when i = 0. Let a = d+ k and b = k. Let

a =
∑̀
j=1

aj · pj−1 b =
∑̀
j=1

bj · pj−1 (23)

where aj , bj ∈ {0, . . . , p − 1} and k = p`−1. Then, we have bj = 0 for each j < ` and b` = a` = 1.
Hence by Lucas’ theorem, we have

(
a
b

)
6= 0 (mod p).

Now consider the case when i ∈ [d]. Let a = d + k − i and b = k − i. Again write a, b as in
(23) with k = p`−1. In this case, we have a` = 1 but b` = 0, the latter due to the fact that b < k.
Hence if we consider a′ =

∑
j∈[`−1] ajp

j−1 and b′ =
∑

j∈[`−1] bjp
j−1, we get a′ = d− i < b′ = k − i.

Therefore, there must exist j ∈ [`− 1] such that aj < bj . From Lucas’ theorem, it now follows that(
a
b

)
≡ 0 (mod p).

Proof of Lemma 6.1. Fix any G ∈ F(2k, d). Assume that

G(Y1, . . . , Y2k) =
∑

I⊆[2k]:|I|≤d

αIY
I

where Y I denotes
∏
i∈I Yi.

Let B′ denote all those inputs in B where the last k− d bits are set to 0. We will compute the
sum of G on inputs from B′. But let us first consider a monomial Y I and see what its sum over
y ∈ B′ looks like. The monomial evaluates to 1 on y ∈ B′ if yi = 1 for every i ∈ I, and evaluates to
0 otherwise. There are exactly

(d+k−|I|
k−|I|

)
choices of y ∈ B′ that satisfy yi = 1 for every i ∈ I. Thus

summing over y ∈ B′ we get
∑

y∈B′ y
I =

(d+k−|I|
k−|I|

)
. Summing over all monomials we get:∑

y∈B′
G(y) =

∑
I⊆[2k]:|I|≤d

αI ·
∑
y∈B′

Y I

=
∑

I⊆[2k]:|I|≤d

αI ·
(
d+ k − |I|
k − |I|

)
(24)

26

By Corollary 6.3, it follows that for i ∈ {0, . . . , d}, we have(
d+ k − i
k − i

)
6≡ 0 (mod p)

if and only if i = 0 and so
∑

y∈B′ G(y) =
(
d+k
k

)
· α∅. Let c =

(
d+k
k

)
(mod p). We have c ∈ F∗p ⊆ F∗

and in particular c is invertible in F, and
∑

y∈B′ G(y) = c · α∅ = c · G(02k). Hence, we get

G(02k) = c−1 ·
∑

y∈B′ G(y). Therefore, G(02k) is determined by the restriction of G to B′ and hence
also by its restriction to B.

We now show that F(n, d) has a (1/(4 ·
(
2k
k

)
),
(
2k
k

)
)-local decoder.

The decoder. We now give the formal description of the decoder. Let the decoder be given
oracle access to f with the promise that f is 1/(4 ·

(
2k
k

)
)-close to some F ∈ F(n, d). Let the input

to the decoder be x ∈ {0, 1}n. The problem is to find F (x).
We describe the decoder below:

Decoder Df
k (x).

• Partition [n] into 2k parts by choosing a uniformly random map h : [n]→ [2k]. I.e. each h(j)
is chosen i.u.a.r. from [2k].

• For i ∈ [2k] and j ∈ [n] such that h(j) = i, identify Xj with Yi ⊕ xj .

• Let g(Y1, . . . , Y2k) and G(Y1, . . . , Y2k) be the restrictions of f and F respectively. Assuming
g|B = G|B, query g at all inputs in B and decode G(02k) from G|B. Output the value decoded.

The main theorem of this section is the following. Note that this implies Theorem 3.3.

Theorem 6.4. Let F be a field of characteristic p. For integer d ≥ 0, let k be the smallest power
of p greater than d. Then the decoder Dk is a (1/(4 ·

(
2k
k

)
),
(
2k
k

)
)-local decoder for F(n, d;F).

Proof. The bound on the query complexity of the decoder is clear from the description of Dk. So
we only need to argue that the decoder outputs the value of F (x) correctly with probability at
least 3/4.

The crucial observation is that for each fixed y ∈ B, querying g(y) amounts to querying f at
a uniformly random point z ∈ {0, 1}n, where the randomness comes from the choice of h. This is
because for each j ∈ [n], we have

zj = yh(i) ⊕ xj
where h : [n] → [2k] is a uniformly random function. Since y is balanced, each yh(i) is a uniformly
random bit. Hence we see that z ∈ {0, 1}n is distributed uniformly over {0, 1}n.

Thus, if δ(f, F) ≤ 1/(4 ·
(
2k
k

)
), with probability at least 3/4, all the random queries made lie

outside the error set E = {z ∈ {0, 1}n | f(z) 6= F (z)} and in this case, the decoder is able to access
the function G|B at each input y ∈ B. By Lemma 6.1, this allows the decoder to determine G(02k).
Noting that the image of 02k in {0, 1}n is exactly x, we thus see that the decoder outputs F (x)
correctly.

27

References

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing Reed-
Muller codes. IEEE Trans. Information Theory, 51(11):4032–4039, 2005. 1, 2

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998. 1

[3] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. 1

[4] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In C. Choffrut
and T. Lengauer, editors, Proceedings of the 7th Annual Symposium on Theoretical Aspects of
Computer Science, pages 37–48, Rouen, France, 22–24 February 1990. Springer. Lecture Notes
in Computer Science, Volume 415. 1

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4,
1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988. 1

[6] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties are hard
to test. SIAM J. Comput., 35(1):1–21, 2005. 3

[7] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuck-
erman. Optimal testing of Reed-Muller codes. In 51th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
488–497. IEEE Computer Society, 2010. 4, 17, 19

[8] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. Equivalence of free Boolean graphs
can be decided probabilistically in polynomial time. Inf. Process. Lett., 10(2):80–82, 1980. 1

[9] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993. 1

[10] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978. 1

[11] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. 2

[12] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st edition, 2009.
24

[13] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree
polynomials over prime fields. Random Struct. Algorithms, 35(2):163–193, 2009. 2

[14] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. Comput.,
36(3):779–802, 2006. 1, 2

28

[15] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In Cynthia
Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 403–412. ACM, 2008. 4

[16] John Y. Kim and Swastik Kopparty. Decoding Reed-Muller codes over product sets. In
Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June
1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 11:1–11:28. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. 1

[17] Richard Lipton. New directions in testing. In Distributed Computing and Cryptography, vol-
ume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
191–202. AMS, 1991. 1

[18] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992. 1

[19] D. E. Muller. Application of Boolean algebra to switching circuit design and to error detection.
IEEE Transactions on Computers, 3:6–12, 1954. 1

[20] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. 1

[21] Yury Polyanskiy. Hypercontractivity of spherical averages in Hamming space. CoRR,
abs/1309.3014, 2013. 4, 5, 7

[22] Alexander A. Razborov. On the method of approximations. In David S. Johnson, editor,
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA, pages 167–176. ACM, 1989. 1

[23] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IEEE
Transactions on Information Theory, 4:38–49, 1954. 1

[24] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, April 1996. 1

[25] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980. 1

[26] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. 1

[27] Adi Shamir. IP=PSPACE. In 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 11–15. IEEE Computer
Society, 1990. 1

[28] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, editor,
Symbolic and Algebraic Computation, EUROSAM ’79, An International Symposiumon Sym-
bolic and Algebraic Computation, Marseille, France, June 1979, Proceedings, volume 72 of
Lecture Notes in Computer Science, pages 216–226. Springer, 1979. 1

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

