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Abstract

The complexity class ZPPNP[1] (corresponding to zero-error randomized algorithms with
access to one NP oracle query) is known to have a number of curious properties. We further
explore this class in the settings of time complexity, query complexity, and communication
complexity.

r For starters, we provide a new characterization: ZPPNP[1] equals the restriction of BPPNP[1]

where the algorithm is only allowed to err when it forgoes the opportunity to make an NP
oracle query.

r Using the above characterization, we prove a query-to-communication lifting theorem,
which translates any ZPPNP[1] decision tree lower bound for a function f into a ZPPNP[1]

communication lower bound for a two-party version of f .
r As an application, we use the above lifting theorem to prove that the ZPPNP[1] communi-
cation lower bound technique introduced by Göös, Pitassi, and Watson (ICALP 2016) is
not tight. We also provide a “primal” characterization of this lower bound technique as a
complexity class.

1 Introduction

Query-to-communication lifting is a paradigm for proving lower bounds in communication com-
plexity [KN97, Juk12, RY20] using lower bounds in query complexity (a.k.a. decision tree com-
plexity) [Ver99, BdW02, Juk12]. This technique has yielded a wide array of applications, in-
cluding lower bounds for the Clique vs. Independent Set communication game and the related
Alon–Saks–Seymour conjecture in graph theory [Göö15, BDHT17], separations between communi-
cation complexity and partition number [GPW18a, AKK16, GJPW18, ABB+16, GPW17], lower
bounds for monotone circuits, monotone span programs, and proof complexity [RM99, BEGJ00,
Joh01, GP18, dNV16, RPRC16, PR17, GGKS18, PR18, GKRS19], new and unified proofs of
quantum communication lower bounds [She11] and of separations between randomized and quan-
tum communication complexity [GPW17, AA18, ABK16], lower bounds for LP and SDP relax-
ations of CSPs [CLRS16, LRS15, KMR17], separations between communication complexity classes
[BVd07, Kla11, GLM+16, GPW18b, GKPW19, BCH+17], lower bounds for finding Nash equilibria
[RW16, BR17, GR18], and data structure lower bounds [CKLM18].

The basic format of the technique is a two-step approach in which a relatively simple problem-
specific argument is combined with fairly heavy-duty general-purpose machinery for handling com-
munication protocols. More specifically:
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Figure 1: Classes with a known query-to-communication lifting theorem. C1 → C2 denotes C1 ⊆ C2.

(1) Capture the combinatorial core of the desired communication complexity lower bound by
proving an analogous query complexity lower bound.

(2) Apply a lifting theorem showing that the query complexity of any boolean function f is
essentially the same as the communication complexity of a two-party version of f .

The availability of a lifting theorem greatly eases the burden on the lower bound prover, since query
lower bounds are generally much easier to prove than communication lower bounds.

The lifting theorem is with respect to a particular model of computation: deterministic, random-
ized, nondeterministic, and so on; it is convenient to associate these models with their corresponding
classical time-bounded complexity classes: P, BPP, NP, and so on. This idea has led to an ongoing
project: prove lifting theorems for the query/communication analogues of various classical com-
plexity classes. Figure 1 shows the main classes for which a lifting theorem is known, along with
primary references. Even the less well-known classes sometimes correspond to standard measures
in the query/communication settings; e.g., AWPP corresponds to approximate polynomial degree
in query complexity and to log of approximate rank in communication complexity. Some notable
classes for which a lifting theorem is not known include BQP, UP, and MA. Proving a lifting
theorem for AM would be a breakthrough, as it is notoriously open to prove any strong AM-type
communication lower bound for an explicit function, but is trivial to do so in the query complexity
setting.

Our central contribution is a lifting theorem for the slightly exotic class ZPPNP[1], which cor-
responds to randomized algorithms that can make one call to an NP oracle, output the correct
answer with probability ≥ 3/4, and output ⊥ with the remaining probability. This model is in-
teresting partly because it has so many curious properties, one of which is that it is robust with
respect to the success probability threshold: by [CP08], the success probability can be efficiently
amplified as long as it is > 1/2 (which is nontrivial since the standard method for amplification
would use multiple independent trials, resulting in multiple NP oracle queries). In terms of relations
to other classes, ZPPNP[1] contains BPP [CC06] and is contained in S2P [CC06] and in PostBPP
(a.k.a. BPPpath) [GPW18b]. If we generalized ZPPNP[1] to allow success probability slightly < 1/2,
or to allow two nonadaptive NP oracle calls, either way the class would contain AM ∩ coAM, and
hence proving explicit lower bounds for the communication version would yield breakthrough AM
communication lower bounds; in this sense, ZPPNP[1] is just shy of the communication lower bound
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frontier. ZPPNP[1] also shows up frequently in the literature on the “two queries problem” [Tri10].
Our starting point is to uncover another curious property of ZPPNP[1]: we prove it is equivalent

(in time, query, and communication complexities) to a new model we dub CautiousBPPNP[1], which
corresponds to randomized algorithms that can make one call to an NP oracle, output the correct
answer with probability ≥ 3/4, and are only allowed to err when they choose not to call the NP
oracle. This equivalence plays a crucial role in our proof of the lifting theorem for ZPPNP[1].

Once we have the lifting theorem, the natural application domain is to prove new ZPPNP[1]-type
communication lower bounds. [GPW18b] developed a technique for proving such lower bounds,
and we use our lifting theorem to derive new separations, which imply that the technique from
[GPW18b] is not tight. This is analogous to the main application from [GKPW19], in which a PNP

lifting theorem was used to show that the PNP-type communication lower bound technique from
[IW10, PSS14] is not tight. For context, we note that certain other communication complexity
classes have similar lower bound techniques that are tight; e.g., the discrepancy bound captures
PP communication [Kla07], and the corruption bound captures SBP communication [GW16]. So
for what class is the lower bound technique from [GPW18b] tight, if not ZPPNP[1]? We also answer
this question. The class did not have a standard name, but it turns out to have a reasonably simple
definition.

1.1 Statement of results

We formally define ZPPNP[1] and CautiousBPPNP[1] and their query/communication analogues in
§ 2. For any model C (such as ZPPNP[1] or CautiousBPPNP[1]) we use C for the polynomial time
complexity class, Cdt and Ccc for the polylog query and communication complexity classes, and
Cdt(f) and Ccc(F ) for the corresponding query and communication complexities of a partial function
f : {0, 1}n → {0, 1} and a partial two-party function F : {0, 1}n×{0, 1}n → {0, 1} (we also consider
F ’s where Alice and Bob have unequal but polynomially-related input lengths). We use Θ̃ to hide
polylog(n) factors. We prove the following characterization in § 3.

Theorem 1.

(i) ZPPNP[1] = CautiousBPPNP[1].

(ii) ZPPNP[1]dt(f) = Θ̃(CautiousBPPNP[1]dt(f)) for all f .

(iii) ZPPNP[1]cc(F ) = Θ̃(CautiousBPPNP[1]cc(F )) for all F .

We now prepare to state the lifting theorem. For f : {0, 1}n → {0, 1} (called the outer function)
and g : X × Y → {0, 1} (called the gadget), their composition f ◦ gn : X n × Yn → {0, 1} is the
two-party function where Alice gets x = (x1, . . . , xn) ∈ X n, Bob gets y = (y1, . . . , yn) ∈ Yn, and
the goal is to evaluate (f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)). Note that any deterministic
(P-type) decision tree for f can be turned into a deterministic protocol for f ◦ gn where Alice and
Bob communicate to evaluate g(xi, yi) whenever the decision tree queries the ith input bit of f . A
similar thing can be done in other models besides deterministic. The essence of a lifting theorem
is to go in the other direction: convert a protocol for f ◦ gn into a comparable-cost decision tree
for f . In other words, if g is sufficiently complicated, then it hides the input bits to f so well that
a communication protocol cannot do any better than just running a decision tree for f .

We use the index gadget Indm : [m] × {0, 1}m → {0, 1} mapping (x, y) 7→ yx, where m is a
sufficiently large polynomial in n. This gadget has previously been used for the P, BPP, and
PNP lifting theorems. (In some cases, lifting theorems with simpler gadgets are known—such as
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the “inner product mod 2” gadget on O(log n) bits [GLM+16, WYY17, CKLM19]—but for many
applications the index gadget is fine.)

Theorem 2. Let m = m(n) := nC for a large enough constant C. For every f : {0, 1}n → {0, 1},

(i) ZPPNP[1]cc(f ◦ Indn
m) = Θ̃(ZPPNP[1]dt(f)),

(ii) CautiousBPPNP[1]cc(f ◦ Indn
m) = Θ(CautiousBPPNP[1]dt(f) · log n).

Note that part (i) of Theorem 2 is a corollary of part (ii), since by Theorem 1,

ZPPNP[1]cc(f ◦ Indn
m) = Θ̃(CautiousBPPNP[1]cc(f ◦ Indn

m))

= Θ̃(CautiousBPPNP[1]dt(f)) = Θ̃(ZPPNP[1]dt(f)).

We are not aware of a way to prove part (i) directly, without going through Theorem 1. To prove
part (ii) (in § 4), we combine tools and techniques from the proofs of lifting theorems for BPP
[GPW17], NP [GLM+16, Göö15], and PNP [GKPW19], along with some new technical contributions.

Two of the main results in [GPW18b] are MAcc 6⊆ ZPPNP[1]cc and UScc 6⊆ ZPPNP[1]cc, where
MA and US are the classes associated with “Merlin–Arthur games” and “unique witnesses” respec-
tively (more precise definitions are deferred to § 5). The proofs introduced a certain lower bound
technique—let us use Bcc(F ) for the largest bound attainable for F using this technique, and Bcc

for the class of all F ’s with Bcc(F ) ≤ polylog(n)—and showed that MAcc 6⊆ Bcc, UScc 6⊆ Bcc, and
ZPPNP[1]cc ⊆ Bcc. The definition of Bcc is not important for now, but we provide it in § 6, where
we show that it can be characterized as a more natural complexity class.

Since ZPPNP[1]cc is closed under complement (whereas Bcc is not), we have ZPPNP[1]cc ⊆ Bcc ∩
coBcc. A natural question is whether the latter is actually an equality, i.e., whether the lower bound
technique of [GPW18b] for ZPPNP[1]cc is tight. Since [GPW18b] observed that MAcc,UScc ⊆ coBcc,
we have MAcc ∩ coMAcc, UScc ∩ coUScc ⊆ Bcc ∩ coBcc, and thus the following result (proven in § 5
using Theorem 2) answers this question in the negative (in two different ways).

Theorem 3.

(i) MAcc ∩ coMAcc 6⊆ ZPPNP[1]cc.

(ii) UScc ∩ coUScc 6⊆ ZPPNP[1]cc.

We mention that Theorem 3.(ii) answers an open question from [HR90] by implying that DPcc∩
coDPcc 6⊆ PNP[1]cc (since UScc ⊆ DPcc; see § 6 for the definition of DPcc). The latter separation has
subsequently been generalized by [PSW20]. It was also shown in [PSW20] that DPcc ∩ coDPcc =
PNP[1]cc when the classes are restricted to contain only total functions, and thus Theorem 3.(ii) is
false for total functions. It remains open whether Theorem 3.(i) holds for total functions.

2 Definitions

We set up notation and provide the formal definitions of ZPPNP[1] and CautiousBPPNP[1]. For the
query and communication complexity versions, we follow the convention of using the complexity
class names as complexity measures. That is, Cdt(f) denotes the minimum cost of any correct C-type
decision tree for f , and Cdt also denotes the class of families of partial f ’s with Cdt(f) ≤ polylog(n);
similarly, Ccc(F ) denotes the minimum cost of any correct C-type communication protocol for F ,
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and Ccc also denotes the class of families of partial F ’s with Ccc(F ) ≤ polylog(n) (assuming Alice
and Bob have polynomially-related input lengths).

In the query complexity setting, “query” actually has two meanings for us: a decision tree
makes queries to individual input bits, then it forms an NP-type (DNF) oracle query.

We think of a randomized algorithmM as taking a uniformly random string s ∈ {0, 1}r (for some
number of coins r that depends on the input length); we letMs(x) denoteM running on input x with
outcome s. Similarly, we think of a randomized (in our case, ZPPNP[1]-type or CautiousBPPNP[1]-
type) decision tree T or communication protocol Π as the uniform distribution over a multiset of
corresponding non-randomized Ts’s or Πs’s indexed by s ∈ {0, 1}r ; we denote this as T ∼

{

Ts :
s ∈ {0, 1}r

}

or Π ∼
{

Πs : s ∈ {0, 1}r
}

.
In general, the single NP oracle query could happen in the middle of a computation, but WLOG

we assume it happens at the very end. This is because instead of making the oracle query, an
algorithm can remember the query, proceed with the rest of the computation under both possible
scenarios (the oracle returns 0 or 1), and finally make the query knowing what the output will be
in either scenario—which is captured by a little function we call out.

We use L to denote both a language and its characteristic function.

2.1 ZPP
NP[1]

ZPPNP[1] consists of all languages L for which there is a polynomial-time randomized algorithm M
(taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP such that the following hold.

Syntax: The computation of Ms(x) produces an oracle query q and a function out : {0, 1} →
{0, 1,⊥}; the output is then out(L′(q)).

Correctness: The output is always L(x) or ⊥, and is L(x) with probability ≥ 3/4.

We define a ZPPNP[1]-type decision tree T for f on input x as follows.

Syntax: T ∼
{

Ts : s ∈ {0, 1}r
}

where each Ts makes queries to the bits of x until it reaches
a leaf, which is labeled with a DNF D and a function out : {0, 1} → {0, 1,⊥}; the
output is then out(D(x)).

Correctness: The output is always f(x) or ⊥, and is f(x) with probability ≥ 3/4.

Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at
a leaf.

We define a ZPPNP[1]-type communication protocol Π for F on input (x, y) as follows.

Syntax: Π ∼
{

Πs : s ∈ {0, 1}r
}

where each Πs communicates until it reaches a leaf, which is
labeled with a multiset of rectangles

{

Rw : w ∈ {0, 1}k
}

(for some k) and a function
out : {0, 1} → {0, 1,⊥}; the output is then out applied to the indicator of whether
(x, y) ∈

⋃

w Rw.

Correctness: The output is always F (x, y) or ⊥, and is F (x, y) with probability ≥ 3/4.

Cost: The maximum communication cost of any Πs, plus the maximum k at any leaf.

A priori, the value 3/4 seems arbitrary since it is not clear whether ZPPNP[1] is amenable to
amplification of the success probability (naively doing repeated trials would increase the number
of NP queries). However, [CP08] showed that amplification is actually possible, so we may use
any constant > 1/2 for the success probability in the definition of ZPPNP[1] (while affecting the
measures ZPPNP[1]dt(f) and ZPPNP[1]cc(F ) by only constant factors).
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2.2 CautiousBPP
NP[1]

CautiousBPPNP[1] consists of all languages L for which there is a polynomial-time randomized
algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP such that the
following hold.

Syntax: The computation of Ms(x) either directly outputs a bit (without invoking the oracle)
or produces an oracle query q and a nonconstant function out : {0, 1} → {0, 1}; in the
latter case the output is then out(L′(q)).

Correctness: The output is L(x) with probability ≥ 3/4, and is L(x) for all s such that Ms(x)
makes an oracle query.

We define a CautiousBPPNP[1]-type decision tree T for f on input x as follows.

Syntax: T ∼
{

Ts : s ∈ {0, 1}r
}

where each Ts makes queries to the bits of x until it reaches
a leaf, which is labeled with either an output bit, or a DNF D and a nonconstant
function out : {0, 1} → {0, 1}; in the latter case the output is then out(D(x)).

Correctness: The output is f(x) with probability ≥ 3/4, and is f(x) for all s such that Ts(x) makes
a DNF query.

Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at
a leaf.

We define a CautiousBPPNP[1]-type communication protocol Π for F on input (x, y) as follows.

Syntax: Π ∼
{

Πs : s ∈ {0, 1}r
}

where each Πs communicates until it reaches a leaf, which
is labeled with either an output bit, or a multiset of rectangles

{

Rw : w ∈ {0, 1}k
}

(for some k) and a nonconstant function out : {0, 1} → {0, 1}; in the latter case the
output is then out applied to the indicator of whether (x, y) ∈

⋃

w Rw.

Correctness: The output is F (x, y) with probability ≥ 3/4, and is F (x, y) for all s such that Πs(x, y)
makes a “union of rectangles” query.

Cost: The maximum communication cost of any Πs, plus the maximum k at any leaf.

The success probability of any CautiousBPPNP[1]-type computation can be amplified by taking the
majority vote of multiple independent trials—except if at least one of those trials results in an
NP-type oracle query then (to avoid making multiple oracle queries) we just use the output of
one such trial since we know it will be correct. Thus just like for BPP-type computations, success
probability 1/2 + ε can be amplified to 1− δ with a O( 1

ε2
log 1

δ ) factor overhead in cost.

3 ZPP
NP[1] = CautiousBPP

NP[1]

We now prove Theorem 1, starting with part (i). First assume L ∈ ZPPNP[1], witnessed by a
randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and L′ ∈ NP. To see that
L ∈ CautiousBPPNP[1], consider the following randomized algorithm with oracle access to L′:

1. Sample s ∈ {0, 1}r and run Ms(x) until it produces q and out.
2. If out(0) = out(1) then output this common bit, or an arbitrary bit if out(0) = out(1) = ⊥.
3. Else if one of out(0), out(1) is ⊥ then output whichever is not ⊥.
4. Else invoke the oracle on q and output out(L′(q)).
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Consider any s for which this algorithm outputs the wrong bit: then it did not make an oracle
query (since M never outputs the wrong bit), and Ms(x) would have output ⊥ (because of either
line 2, or line 3 with out(L′(q)) = ⊥ and out(1 − L′(q)) 6= L(x)). Hence this algorithm correctly
solves L, with error probability at most that of M .

For the converse direction, we generalize the argument from [CC06] that BPP ⊆ ZPPNP[1].
Assume L ∈ CautiousBPPNP[1], witnessed by a randomized algorithm M (taking input x and coin
tosses s ∈ {0, 1}r) and L′ ∈ NP. Assume that this has already been amplified so the error probability
is < 1/4r (by the remark at the end of § 2.2). For a fixed input x and b ∈ {0, 1}, let

Sb :=
{

s ∈ {0, 1}r : Ms(x) outputs b without invoking the oracle
}

.

To see that L ∈ ZPPNP[1], consider the following randomized algorithm:

1. Sample s ∈ {0, 1}r and run Ms(x) until it produces either an output b (so s ∈ Sb) or q and
out.

2. If it produced q and out then ask the NP oracle for the value of L′(q) and output out(L′(q)).
3. Else sample independent strings s1, . . . , s4r ∈ {0, 1}r and ask the NP oracle whether

⋃

i(Sb ⊕
si) 6= {0, 1}r (i.e., whether there exists an s′ such that for every i, s′ ⊕ si 6∈ Sb); output ⊥ if
so and b if not.

Note that this algorithm never outputs the wrong bit: if s ∈ Sb for b = 1−L(x), then |Sb| < 2r/4r so
by a union bound,

∣

∣

⋃

i(Sb⊕si)
∣

∣ < 4r·(2r/4r) = 2r and hence the NP oracle returns 1 on line 3 and the
algorithm outputs ⊥. For the success probability, consider two cases. If |S0∪S1| ≤ 2r/4, then line 2
executes (guaranteeing correct output) with probability ≥ 3/4. Otherwise, since |S1−L(x)| < 2r/4r,
we must have |SL(x)| > 2r/4− 2r/4r > 2r/5 (we may assume r is at least a large enough constant),
so by a union bound over all s′ ∈ {0, 1}r , the probability over s1, . . . , s4r that

⋃

i(SL(x)⊕si) 6= {0, 1}r

is < 2r · (4/5)4r ≤ (5/6)r ≤ 1/5. In this latter case, the probability of outputting ⊥ is

P[b = 1−L(x)]+P
[
⋃

i(Sb⊕si) 6= {0, 1}r
∣

∣ b = L(x)
]

·P[b = L(x)] ≤ 1/4r+(1/5) · |SL(x) |/2
r ≤ 1/4.

In both cases the success probability is ≥ 3/4.

Parts (ii) and (iii) are proved in the same way as part (i), but we must carefully analyze the
cost. Let us summarize the differences. For the ZPPNP[1] ⊆ CautiousBPPNP[1] direction, exactly
the same argument works but using Ts or Πs in place of Ms, and making the same DNF query
or “union of rectangles” query rather than the same NP oracle query on line 4. This shows that
CautiousBPPNP[1]dt(f) ≤ ZPPNP[1]dt(f) and CautiousBPPNP[1]cc(F ) ≤ ZPPNP[1]cc(F ).

Now consider the CautiousBPPNP[1] ⊆ ZPPNP[1] direction for parts (ii) and (iii). By standard
sparsification of the randomness [New91], we may assume T or Π uses only O(log n) coin tosses
(while affecting the success probability by only ±o(1)). Then as noted at the end of § 2.2, we
may amplify with O(log log n) repetitions so r becomes O(log n · log log n) and the error probability
becomes ≤ 1/ log2 n < 1/4r. As above, we use Ts or Πs in place of Ms, and make the same DNF
query or “union of rectangles” query rather than the same NP oracle query on line 2. For line
3, we note that the predicate

⋃

i(Sb ⊕ si) 6= {0, 1}r , as a function of the input x or (x, y), can be
computed by nondeterministically guessing s′ and running Ts′⊕si(x) or Πs′⊕si(x, y) for each i ∈ [4r];
this can be expressed as a DNF of width 4r · (cost of amplified T ), or as a union of 2k rectangles
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with k = r+4r · (cost of amplified Π). Thus, the overall cost is O(r · (cost of amplified T or Π)) ≤
O((cost of original T or Π) · log n · log2 log n). This shows that

ZPPNP[1]dt(f) ≤ O
(

CautiousBPPNP[1]dt(f) · log n · log2 log n
)

,

ZPPNP[1]cc(F ) ≤ O
(

CautiousBPPNP[1]cc(F ) · log n · log2 log n
)

.

(A factor of log log n can be shaved off here, by amplifying the original algorithm using a random
walk of length O(log log n) on an expander graph rather than doing the trials fully independently,
so r becomes O(log n+ log log n) = O(log n).) This finishes the proof of Theorem 1.

By the way, the above argument implies that the success probability of ZPPNP[1] can be amplified
from 1/2+1/poly(n) to 1− 1/poly(n) in polynomial time: a ZPPNP[1] algorithm can be converted
to a CautiousBPPNP[1] one with no loss in efficiency or success probability, then the latter can be
amplified as remarked at the end of § 2.2, then this can be converted back to a ZPPNP[1] algorithm
with 1 − 1/poly(n) success probability by tweaking the parameters in the proof of Theorem 1.
[CP08] showed a stronger result—the success probability of ZPPNP[1] can actually be amplified to
1− 1/ exp(n)—but our proof is perhaps simpler.

4 Proof of the Lifting Theorem

We now prove Theorem 2. As noted in § 1.1, we just need to show part (ii). It is straightforward
to see that for all f ,

CautiousBPPNP[1]cc(f ◦ Indn
m) ≤ O(CautiousBPPNP[1]dt(f) · log n)

since we can have the communication protocol run the optimal decision tree for f , communicating
O(log n) bits to evaluate Indm(xi, yi) whenever this bit is queried, and if a width-w DNF oracle
query is formed then we can convert each of its ≤ nw conjunctions into ≤ mw rectangles, resulting
in a “union of rectangles” oracle query that contributes k = O(w log n) to the cost. Thus, the bulk
of the proof is to show that for all f ,

CautiousBPPNP[1]dt(f) ≤ O(CautiousBPPNP[1]cc(f ◦ Indn
m)/ log n). (1)

In § 4.1 we provide relevant technical background from the proofs of earlier lifting theorems (mainly
the one for BPP [GPW17]). Then in § 4.2 we describe how to simulate the communication protocol
with a decision tree, and in § 4.3 we prove a key technical lemma.

4.1 Background

Abbreviate G := Ind
n
m. We consider deterministic communication protocols on G’s input domain

[m]n × ({0, 1}m)n, which we view as partitioned into slices G−1(z) = {(x, y) : G(x, y) = z}, one for
each z ∈ {0, 1}n. We let |Π| denote the worst-case number of bits communicated by a deterministic
protocol Π. We use boldface letters for random variables.

Let H∞(x) := minx log(1/P[x = x]) denote the usual min-entropy of a random variable x.
Supposing x is distributed over a set X, we define the deficiency of x as the nonnegative quantity
D∞(x) := log |X|−H∞(x). A basic property is that if X is a Cartesian product then marginalizing
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x to some coordinates cannot increase the deficiency (as observed in [GPW17]). For a set X we
let X denote a random variable uniformly distributed on X.

The following definition and claim originate in the proof of the lifting theorems for NP, SBP,
and PostBPP [GLM+16, Göö15]. They describe an invariant that Alice maintains throughout the
simulation, and how to restore it (by fixing some coordinates, which will correspond to querying
those input bits of f) when it gets violated. A proof of this specific version of the claim can be
found in [GKPW19].

Definition 1. A random variable x ∈ [m]J (where J ⊆ [n] is some index set) is called δ-dense if
for every nonempty I ⊆ J , the coordinates xI (marginally distributed over [m]I) have min-entropy
rate at least δ, i.e., H∞(xI) ≥ δ · |I| logm.

Claim 1 ([GKPW19]). If A ⊆ [m]J then there exist an I ⊆ J of size |I| ≤ O(D∞(A)/ log n) and
a nonempty A′ ⊆ A such that A′ is fixed on I and 0.9-dense on J r I.

It is simple to check that all 2n slices of G’s input domain have the same size, and that the
uniform distribution over any slice is marginally nearly-uniform (o(1)-close in statistical distance)
on both Alice’s input and Bob’s input. The following lemma from [GPW17] provides a sufficient
condition for similar properties to hold even after we have queried some of the input bits of f .

Definition 2. For a partial assignment ρ ∈ {0, 1, ∗}n, define its free positions as free ρ := ρ−1(∗) ⊆
[n], and its fixed positions as fix ρ := [n]r free ρ. A rectangle X×Y is called ρ-structured if Xfree ρ

is 0.9-dense, Xfix ρ is fixed, and each element of G(X × Y ) ⊆ {0, 1}n is consistent with ρ.

Definition 3. A distribution D1 is said to be ε-pointwise-close to a distribution D2 if for every out-
come, the probability under D1 is within a factor 1±ε of the probability under D2. The distributions
are said to be ε-close if the statistical (total variation) distance is ≤ ε.

Lemma 1 ([GPW17]). Suppose X × Y is ρ-structured and D∞(Y ) ≤ n3. Then:

(i) For any z ∈ {0, 1}n consistent with ρ, the uniform distribution on G−1(z) ∩X × Y (which is
nonempty) has both of its marginal distributions o(1)-close to X and Y , respectively.

(ii) G(X,Y ) is o(1)-pointwise-close to the uniform distribution over the set of all z consistent
with ρ.

Now we come to the main part of the proof of the BPP lifting theorem from [GPW17]. It shows
that, given query access to z, we can approximately sample the transcript that would be generated
by a communication protocol on a random input from z’s slice. In fact, this simulation maintains
some invariants, which we need to expose (in the “furthermore” part of the lemma) for use in the
subsequent “NP oracle query” phase of our simulation.

Definition 4. A deterministic protocol Π is said to be a refinement of a deterministic protocol Π
if they have the same input domain and for every transcript rectangle X × Y of Π, there exists a
transcript rectangle of Π that contains X × Y .

Lemma 2 ([GPW17]). For every deterministic protocol Π on G’s input domain with |Π| ≤
n logm, there exist a refinement Π and a randomized decision tree T of cost O(|Π|/ log n) that
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on input z ∈ {0, 1}n outputs a transcript of Π or ⊥, such that the following two distributions are
o(1)-close:

t := output distribution of T on input z,

t′ := transcript generated by Π when run on a random input (x,y) ∼ G−1(z).

Furthermore, for every (non-⊥) transcript output by T on input z with positive probability, the
associated rectangle X × Y satisfies:

(i) X × Y is ρ-structured, where ρ corresponds to the results of the queries made by T (and is
hence consistent with z),

(ii) D∞(Y ) ≤ n2.5,

(iii) D∞(Xfree ρ) ≤ O(|Π|).

4.2 Simulation

Lemma 3. Let X × Y be a ρ-structured rectangle in G’s input domain such that D∞(Y ) ≤ n2.5.
Suppose

{

Rw ⊆ X × Y : w ∈ {0, 1}k
}

is a collection of rectangles whose union covers exactly
G−1(f−1(1))∩X ×Y . Then f can be computed by a width-O((D∞(Xfree ρ)+k)/ log n) DNF on the
domain of inputs consistent with ρ.

Lemma 3 is our key tool for converting the NPcc oracle query to an NPdt oracle query. The proof,
which we give in § 4.3, combines insights from the lifting theorem proofs for NP [GLM+16, Göö15]
and PNP [GKPW19] with new calculations. For now we use Lemma 3 to argue (1), thus finishing
the proof of Theorem 2.

Let Π ∼
{

Πs : s ∈ {0, 1}r
}

be a CautiousBPPNP[1]-type communication protocol for f ◦G (and

note WLOG the cost is ≤ n logm). Here is a CautiousBPPNP[1]-type decision tree for f on input z:

1. Sample s ∈ {0, 1}r and (eliding the dependence on s) let Π and T be the refinement and
randomized decision tree from Lemma 2 applied to Πs.

2. Sample T ’s coin tosses s′ and run Ts′ on input z until it either outputs ⊥ (in which case we
halt and output an arbitrary bit) or produces a transcript t of Π.

3. Let X×Y be the rectangle associated with t, and let t∗ be the transcript of Πs whose rectangle
contains X × Y .

4. If t∗ outputs a bit, then we halt and output the same bit; otherwise let
{

Rw : w ∈ {0, 1}k
}

and out : {0, 1} → {0, 1} be the rectangles and nonconstant function associated with t∗.

5. Since X × Y satisfies properties (i), (ii), (iii) from Lemma 2, we may apply Lemma 3 to the
collection

{

Rw∩X×Y : w ∈ {0, 1}k
}

(whose union covers exactly G−1(f−1(out(1)))∩X×Y
by the correctness of Π), using f if out(1) = 1 or ¬f if out(1) = 0, to obtain a width-
O((|Πs| + k)/ log n) DNF D that computes f or ¬f (respectively) on all inputs consistent
with ρ.

6. Output out(D(z)).

Since T makes O(|Πs|/ log n) queries and the DNF on line 5 has width O((|Πs| + k)/ log n), the
above decision tree indeed has cost O((cost of Π)/ log n). If it reaches line 5 and makes a DNF
query, then the output is correct since z is consistent with ρ and hence out(D(z)) = f(z). For
the success probability, call t good if the corresponding t∗ either outputs f(z) directly or makes a
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“union of rectangles” query, and note that if the above decision tree generates a good t then the
output is correct (by the previous sentence). Hence, letting t, t′ be the o(1)-close random variables
from Lemma 2 applied to Πs (with (x,y) ∼ G−1(z)), we have

P[output is correct] ≥ Es

[

Ps′ [t is a good transcript]
]

≥ Es

[

Px,y[t
′ is good]− o(1)

]

= Ex,y

[

Ps[t
′ is good]

]

− o(1)

= Ex,y

[

Ps[Πs(x,y) outputs f(z)]
]

− o(1)

≥ Ex,y[3/4] − o(1)

= 3/4− o(1).

We conclude that CautiousBPPNP[1]dt(f) ≤ O(CautiousBPPNP[1]cc(f ◦G)/ log n).1

4.3 Forming a DNF

We now prove Lemma 3. Fix any z ∈ f−1(1) consistent with ρ, and define J := free ρ. We need
to show that there exists a width-O((D∞(XJ ) + k)/ log n) conjunction that accepts z but does
not accept any input in f−1(0) consistent with ρ. The final DNF is then the disjunction of these
conjunctions over all z ∈ f−1(1) consistent with ρ.

For each rectangle Rw = Xw × Y w define the set of weighty rows as

Aw :=
{

x ∈ Xw : |Y w
x | ≥ 2nm−n3}

where Y w
x :=

{

y ∈ Y w : G(x, y) = z
}

.

Claim 2. There exists a w ∈ {0, 1}k such that |Aw| ≥ |X|/2k+1.

Proof. Suppose for contradiction this is not the case. First we show that the weighty rows of all
the rectangles do not cover too much of the slice G−1(z) ∩X × Y : By Lemma 1.(i) we have

∣

∣G−1(z) ∩
(
⋃

w Aw
)

× Y
∣

∣

|G−1(z) ∩X × Y |
≤

|
⋃

w Aw|

|X|
+ o(1) ≤

2k · |X|/2k+1

|X|
+ o(1) < 3/4. (2)

On the other hand, we show that the non-weighty rows also do not cover too much of the slice
(this part does not rely on our contradiction hypothesis): Since the Rw’s cover G−1(z) ∩ X × Y
and since k ≤ n logm WLOG, we have

∣

∣G−1(z) ∩
(

X r
⋃

w Aw
)

× Y
∣

∣ ≤
∣

∣

⋃

w, x 6∈Aw Y w
x

∣

∣ ≤ 2k · |X| · 2nm−n3
≤ |X| · 2nm−n2.9

,

and by Lemma 1.(ii) and D∞(Y ) ≤ n2.5 ≤ n3 we have

|G−1(z) ∩X × Y | ≥ |X| · |Y | · (1− o(1))/2|J | ≥ |X| · 2nm−n2.5
· (1− o(1))/2n ≥ |X| · 2nm−n2.6

,

1Let us summarize the fundamental reason we are unable to make this proof work directly for ZPP
NP[1] (instead

of CautiousBPPNP[1]) without going through Theorem 1. Suppose we reach line 5 with out(1) = ⊥ and out(0) 6= ⊥.
We would like to form a DNF that accepts those z’s consistent with ρ where G−1(z)∩X ×Y is covered by the union
of

{

Rw ∩X × Y : w ∈ {0, 1}k
}

—and then output ⊥ if the DNF accepts and output out(0) if it rejects. The issue is
that there may be some z’s consistent with ρ such that f(z) = out(0) but G−1(z)∩X ×Y is partially covered by the
union—even a fairly small coverage might result in the DNF accepting z. This could cause the overall probability of
outputting ⊥ on z to be much higher in the decision tree than in the communication protocol.
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and thus
∣

∣G−1(z) ∩
(

X r
⋃

w Aw
)

× Y
∣

∣

|G−1(z) ∩X × Y |
≤

|X| · 2nm−n2.9

|X| · 2nm−n2.6 = 2n
2.6−n2.9

< 1/4. (3)

Now (2) and (3) form a contradiction. This proves the claim.

Now fix a w ∈ {0, 1}k such that |Aw| ≥ |X|/2k+1 = m|J |/2D∞(XJ )+k+1 and hence D∞(Aw
J ) ≤

D∞(XJ ) + k + 1. Applying Claim 1 to Aw
J , we can obtain an I ⊆ J of size |I| ≤ O((D∞(XJ) +

k)/ log n) and a nonempty A′ ⊆ Aw such that A′ is fixed on I ∪ fixρ and 0.9-dense on J r I.
Consider the conjunction that accepts iff the I coordinates of the input equal zI ; we now argue
that this conjunction satisfies the desired properties. It certainly has the right width and accepts
z.

Define σ ∈ {0, 1, ∗}n as the partial assignment that extends ρ by fixing the coordinates in I
to zI . As in [GKPW19], pick any x′ ∈ A′ and let B := Y w

x′ . Then A′ × B is σ-structured (note
that for all (x, y) ∈ A′ × B, G(x, y)I = G(x′, y)I = zI since xI = x′I) and D∞(B) ≤ n3, and
thus by Lemma 1.(ii), G(A′,B) is o(1)-pointwise-close to the uniform distribution over all strings
consistent with σ. In particular, for every z′ consistent with σ (i.e., for every z′ consistent with ρ
that is accepted by the conjunction) there exists an (x, y) ∈ A′ × B such that G(x, y) = z′; since
A′ × B ⊆ Rw ⊆ G−1(f−1(1)), this implies that f(z′) = 1. In summary, the conjunction does not
accept any input in f−1(0) consistent with ρ. This finishes the proof of Lemma 3.

5 Applications

We prove Theorem 3 in this section. Since MAcc∩ coMAcc, UScc∩ coUScc ⊆ Bcc∩ coBcc, Theorem 3
cannot be shown using the lower bound technique from [GPW18b], so we instead prove the anal-
ogous separations in query complexity and apply our lifting theorem. We start by defining the
query/communication versions of MA and US.

Merlin–Arthur games (MA) are the model where Merlin nondeterministically sends a message
to Arthur (comprised of Alice and Bob in the communication setting), who is randomized and
decides whether to accept. On a 1-input, there should exist a witness Merlin can send that makes
Arthur accept with probability 1, and on a 0-input, Arthur should reject with probability ≥ 1/2
no matter what Merlin sends. In the query/communication settings, the cost is Merlin’s message
length plus Arthur’s query/communication cost.

The US model is like ordinary nondeterminism, except that an input is accepted iff there is
exactly one witness that leads to acceptance (so, rejection means there are either 0 or ≥ 2 accepted
witnesses). In query complexity, the cost is the maximum width of any of the witness conjunctions.
In communication complexity, the cost is the log of the number of witness rectangles.

5.1 MA ∩ coMA

We now prove Theorem 3.(i). We start with a general technique for proving CautiousBPPNP[1]dt

lower bounds. For a bit b, we say a conjunction is b-monochromatic for a partial function f if it
rejects all (1− b)-inputs.

Lemma 4. Suppose f has no monochromatic conjunction of width < k. Then

CautiousBPPNP[1]dt(f) ≥ min(k,BPPdt(f)).

12



Proof. If f has a CautiousBPPNP[1]-type decision tree of cost < k, then this decision tree must never
make a DNF query (in which case it is just a BPP-type decision tree, showing that BPPdt(f) ≤
CautiousBPPNP[1]dt(f)). To see this, suppose for contradiction some leaf is labeled with a DNF
query D and a function out, and consider the conjunction that accepts the inputs that lead to
that leaf and are accepted by an arbitrarily chosen term of D (which WLOG is consistent with
the partial assignment leading to the leaf). Then this conjunction has width < k and is out(1)-
monochromatic (as any input accepted by it would make the CautiousBPPNP[1]-type decision tree
output out(1) after making a DNF query, for some outcome of the coin tosses, and hence could not
be an out(0)-input).

Let n = 2ℓ2, and define the partial function f : {0, 1}n → {0, 1} that interprets its input as a
pair of ℓ× ℓ boolean matrices (A,B), such that f(A,B) = 1 iff A has an all-1 row and every row of
B is at most half 1’s, and f(A,B) = 0 iff B has an all-1 row and every row of A is at most half 1’s.
Note that f ∈ MAdt∩ coMAdt since an MA-type decision tree can guess a row in A and check that a
random bit from that row is 1, and a coMA-type decision tree can guess a row in B and check that
a random bit from that row is 1. This upper bound lifts to f ◦ Indn

m ∈ MAcc ∩ coMAcc. We now
show that f 6∈ CautiousBPPNP[1]dt which, by Theorems 1 and 2, implies that f ◦ Indn

m 6∈ ZPPNP[1]cc.
This will yield Theorem 3.(i).

By Lemma 4, it suffices to show that

(1) f has no monochromatic conjunction of width ≤ ℓ/2, and

(2) BPPdt(f) ≥ Ω(ℓ).

To see (1), consider any conjunction C of width ≤ ℓ/2: Since it does not touch every row of A,
and it touches at most half the bits in each row of B, we can construct a 1-input accepted by C by
putting all 1’s in an untouched row of A, and filling the rest of the matrix entries with 0’s (except
those whose value is determined by C accepting). Similarly, there must exist a 0-input accepted
by C. Thus C is not monochromatic.

For (2), by the minimax principle it suffices to exhibit an input distribution such that every
cost-o(ℓ) deterministic decision tree succeeds with probability < 3/4 over a random input. We
define the input distribution by filling a uniformly random one of the 2ℓ rows with 1’s, and letting
all other entries of (A,B) be 0’s. If the decision tree accepts after seeing only 0’s, then conditioned
on a random 0-input it continues to accept (and hence err) with probability ≥ 1− o(1) (since the
all-0’s path of the decision tree only touches a o(1) fraction of the rows). Similarly, if it rejects after
seeing only 0’s, then conditioned on a random 1-input it continues to reject (and hence err) with
probability ≥ 1− o(1). In either case, it errs with probability ≥ 1/2 − o(1) over an unconditioned
random input.

5.2 US ∩ coUS

We now prove Theorem 3.(ii). Let weight(·) refer to Hamming weight. For even n, define the
partial function f : {0, 1}n → {0, 1} that interprets its input as (a, b) ∈ {0, 1}n/2 × {0, 1}n/2, such
that f(a, b) = 1 iff weight(a) = 1 and weight(b) ∈ {0, 2}, and f(a, b) = 0 iff weight(b) = 1 and
weight(a) ∈ {0, 2}. Note that f ∈ USdt∩coUSdt since a US-type decision tree can guess the location
of a 1 in a, and a coUS-type decision tree can guess the location of a 1 in b. This upper bound lifts
to f ◦ Indn

m ∈ UScc ∩ coUScc. We now show that f 6∈ CautiousBPPNP[1]dt which, by Theorems 1 and
2, implies that f ◦ Indn

m 6∈ ZPPNP[1]cc. This will yield Theorem 3.(ii).
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Note that Lemma 4 cannot help us here, since this f does have small monochromatic con-
junctions (e.g., a conjunction with two positive literals from a is 0-monochromatic), so we devise
a different technique. In fact, we show something stronger than f 6∈ CautiousBPPNP[1]dt. Define
BPPNP[1] in the natural way (two-sided error, and allowed to err after an NP oracle query is made),
and notice that the class may depend on the exact choice of success probability (since the standard
method of amplification involves multiple independent trials, which would increase the number of

NP oracle queries). Let us use BPP
NP[1]
p to indicate that the success probability must be ≥ p on

each input. As CautiousBPPNP[1] can be efficiently amplified (see the end of § 2.2), the following
lemma implies that f 6∈ CautiousBPPNP[1]dt.

Lemma 5. For every constant ε > 0, BPP
NP[1]dt
3/4+ε (f) ≥ Ω(n).

Proof. It suffices to show that every cost-o(n) PNP[1]-type decision tree succeeds with probability
≤ 3/4 + o(1) over the uniform distribution on valid inputs to f . Let v be the leaf reached after
seeing only 0’s, and say v is labeled with DNF D and function out : {0, 1} → {0, 1}. Assume
out(1) = 1 (the case out(1) = 0 is argued similarly). Consider the joint random variables a, b,a′, b′

where a has a unique 1 in a random position, b is all 0’s, a′ is obtained from a by flipping a
random 0 to 1, and b′ is obtained from b by flipping a random 0 to 1. Note that (a, b) is the input
distribution conditioned on weight(a) = 1 and weight(b) = 0, and (a′, b′) is the input distribution
conditioned on weight(a) = 2 and weight(b) = 1. We have P[(a, b) reaches v] ≥ 1 − o(1) and
thus P[(a, b) reaches v and is accepted] ≥ P[(a, b) is accepted] − o(1). Also, conditioned on any
outcome of (a, b) that reaches v and is accepted, with probability ≥ 1 − o(1) the two flipped
bits are not among those read along the path to v and not among those read by an arbitrarily
chosen term of D that accepts (a, b), in which case (a′, b′) also reaches v and is accepted. Thus,
P
[

(a′, b′) reaches v and is accepted
∣

∣ (a, b) reaches v and is accepted
]

≥ 1−o(1). Combining these,
we get

P[(a′, b′) is accepted] ≥ P
[

(a′, b′) and (a, b) both reach v and are accepted
]

= P
[

(a′, b′) reaches v and is accepted
∣

∣ (a, b) reaches v and is accepted
]

· P[(a, b) reaches v and is accepted]

≥ (1− o(1)) · (P[(a, b) is accepted]− o(1))

= P[(a, b) is accepted]− o(1).

Thus, under the uniform distribution on valid inputs to f ,

P[err] ≥ P
[

err
∣

∣weight(a) = 1 and weight(b) = 0
]

/4 + P
[

err
∣

∣weight(a) = 2 and weight(b) = 1
]

/4

=
(

P[(a, b) is rejected] + P[(a′, b′) is accepted]
)

/4

=
(

1− (P[(a, b) is accepted]− P[(a′, b′) is accepted])
)

/4

≥ (1− o(1))/4.

We can complement Lemma 5 by noting that BPP
NP[1]dt
3/4 (f) ≤ 2: With probability 1/4 each:

r accept iff weight(a) ≤ 1,
r accept iff weight(a) ≥ 1,
r reject iff weight(b) ≤ 1,

14



r reject iff weight(b) ≥ 1.

Hence BPP
NP[1]dt
3/4 6⊆ BPP

NP[1]dt
3/4+ε , which implies that BPP

NP[1]
3/4 6⊆ BPP

NP[1]
3/4+ε in a relativized world.

Thus, unlike ZPPNP[1], BPPNP[1] is not generally amenable to efficient amplification; this phe-
nomenon has subsequently been fully explored in [Wat19].

6 Primal Characterization of the Lower Bound Technique

The following is the lower bound technique introduced in [GPW18b].

Lemma 6 ([GPW18b]). Suppose µ0 is a distribution over F−1(0), µ1 is a distribution over
F−1(1), and C is a constant such that for every rectangle R,

(i) µ1(R) ≤ δ if R is 1-monochromatic (i.e., contains no 0-inputs), and

(ii) µ0(R) ≤ C · µ1(R) + δ.

Then ZPPNP[1]cc(F ) ≥ Ω(log(1/δ)).

By an argument of [Kla03], the exact value of the constant C does not matter (as long as
it is sufficiently large), only affecting the final bound by constant factors. Thus, there exists a
constant C such that Bcc(F ) is defined as the maximum of ⌈log(1/δ)⌉ over all µ0, µ1, δ satisfying
the properties of Lemma 6.

Using only assumption (i) of Lemma 6 would give rise to the so-called 1-monochromatic rect-
angle size bound, which is well-known to be a tight “dual” characterization of NPcc(F ) [KN97,
§ 2.4]. Using only assumption (ii) would give rise to the corruption bound, which is known to
be a tight “dual” characterization of so-called coSBPcc(F ) [GW16]. Since the latter model is less
widely known, we define it here: An SBP algorithm is randomized and must accept 1-inputs with
probability ≥ α, and accept 0-inputs with probability ≤ α/2, for some α > 0 which is an arbitrarily
small function of the input size. In the communication complexity setting, this is equivalent to
having a multiset of 2k rectangles (the cost is k) such that each 1-input (0-input) is contained
in ≥ α (≤ α/2) fraction of them. The query complexity setting is similar but with conjunctions
instead of rectangles (the cost is the maximum width).

Since Bcc is defined as a certain dual combination of NPcc and coSBPcc (requiring the bounds to
hold simultaneously, under the same input distribution), it is natural to wonder whether it is also
a “primal” combination of NPcc and coSBPcc. Specifically, an educated guess is that Bcc functions
are exactly those than can be expressed as an “or” of an NPcc function and a coSBPcc function.
We now confirm this, and then reprove some lemmas from [GPW18b] through the primal lens. We
first set up the relevant notation.

For two partial boolean functions F,H, we let F ∪ H denote the partial function such that
(F ∪H)−1(1) = F−1(1) ∪H−1(1) and (F ∪H)−1(0) = F−1(0) ∩H−1(0), and we let F ∩H denote
the partial function such that (F∩H)−1(1) = F−1(1)∩H−1(1) and (F∩H)−1(0) = F−1(0)∪H−1(0).
Note that F,H,F ∪H,F ∩H may all have different domains. For classes C,D, we let C ∪©D denote
the class of all partial functions of the form F ∪H for some F ∈ C and H ∈ D, and we let C ∩©D
denote the class of all partial functions of the form F ∩H for some F ∈ C and H ∈ D.

The class DP may be defined as NP ∩©coNP, and we may assume WLOG in this definition
that F,H,F ∩ H all have the same domain. The latter assumption cannot always be made for
combinations of other classes. For example, consider NP ∪©coSBP: on each 0-input, there is no NP

15



BPPcoNP

US

DP

MA

SBP

AM

ZPP
NP[1] =

CautiousBPP
NP[1]

BPP
NP[1]
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Figure 2: Classes relevant to our applications. C1 → C2 denotes C1 ⊆ C2.

witness and the coSBP algorithm accepts with probability ≥ α, and on each 1-input, either there
exists an NP witness or the coSBP algorithm accepts with probability ≤ α/2. Note that if there
exists an NP witness then the coSBP algorithm may accept with illegal probability in the range
(α/2, α), in which case the input must not be in the domain of the coSBP partial function. This
shows that the NP partial function and the coSBP partial function might not have the same domain
as each other.

Theorem 4. Bcc = NPcc ∪©coSBPcc and coBcc = coNPcc ∩©SBPcc.

Proof. This is inspired by the argument from [GW16] that coSBPcc captures the corruption bound.
A cost-k (NP ∪©coSBP)-type protocol for F consists of a pair of multisets of rectangles

{

Rw : w ∈
{0, 1}k

}

,
{

Qs : s ∈ {0, 1}k
}

and an α > 0 such that if F (x, y) = 0 then (x, y) 6∈
⋃

w Rw and (x, y)
is in ≥ α fraction of Qs’s, and if F (x, y) = 1 then either (x, y) ∈

⋃

w Rw or (x, y) is in ≤ α/2
fraction of Qs’s. We may assume the latter α/2 is actually α/2c (for any integer c > 0), by using
the multiset of intersections of all c-tuples of Qs’s, at the cost of increasing k by a factor of c (and
raising α to the power c) [GW16].

First we show that Bcc(F ) ≤ O((NPcc ∪©coSBPcc)(F )) for all F . Consider an (NP ∪©coSBP)-type
protocol, and assume the coSBP part has already been amplified to have α/4C instead of α/2; let
k be the new cost, and note that α ≥ 2−k WLOG. Consider any µ0, µ1.

Case (i): µ1

(
⋃

w Rw
)

≥ 2−2k. Then there exists an Rw (which is 1-monochromatic) such that
µ1(R

w) ≥ 2−3k.

Case (ii): µ1

(
⋃

w Rw
)

< 2−2k. Let µ∗
1 denote µ1 conditioned on F−1(1) r

⋃

w Rw. For each
s ∈ {0, 1}k , let qs := µ0(Q

s) and rs := µ∗
1(Q

s). We claim there exists an s such that qs ≥ α/2 and
rs ≤ qs/2C. Suppose for contradiction the claim is false, and let S ⊆ {0, 1}k be such that for all
s ∈ S, qs < α/2, and for all s ∈ S, rs > qs/2C. Then

α/4C ≥ E(x,y)∼µ∗

1
Ps∈{0,1}k [(x, y) ∈ Qs]

= Es∈{0,1}kP(x,y)∼µ∗

1
[(x, y) ∈ Qs]
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= 2−k
∑

s∈{0,1}k rs

≥ 2−k
∑

s∈S rs

≥ 2−k
∑

s∈S qs/2C

= 2−k
(
∑

s∈{0,1}k qs −
∑

s∈S qs
)

/2C

≥
(

Es∈{0,1}kP(x,y)∼µ0
[(x, y) ∈ Qs]− 2−k|S|α/2

)

/2C

≥
(

E(x,y)∼µ0
Ps∈{0,1}k [(x, y) ∈ Qs]− α/2

)

/2C

≥ α/4C.

Furthermore, at least one of the inequalities must be strict, which is a contradiction. Now for a
fixed such s, we have

µ0(Q
s) ≥ µ0(Q

s)/2 + α/4 ≥ C · µ∗
1(Q

s) + α/4 ≥ C ·
(

µ1(Q
s)− µ1

(
⋃

w Rw
))

+ α/4

≥ C · µ1(Q
s)− C · 2−2k + 2−k−2 ≥ C · µ1(Q

s) + 2−3k.

Combining the two cases shows that if µ0, µ1, δ satisfy the properties of Lemma 6, then δ ≥ 2−3k

and hence log(1/δ) ≤ 3k.

Now we show that (NPcc ∪©coSBPcc)(F ) ≤ O(Bcc(F ) + log n) for all F . Consider any δ such
that for all µ0, µ1 there exists a rectangle R such that either

(i) µ1(R) > δ and R is 1-monochromatic, or

(ii) µ0(R) > C · µ1(R) + δ.

Our goal is to show that (NPcc ∪©coSBPcc)(F ) ≤ O(log(1/δ) + log n).
First we record that if (ii) holds above, then there exists a subrectangle R′ ⊆ R such that

µ0(R
′) ≥ δ and µ1(R

′) ≤ δ/4, assuming C ≥ 8: Let R1, R2, . . . be the rows of R sorted in
increasing order of µ1(Ri)/µ0(Ri) and consider the least i such that µ0(R≤i) ≥ δ. If µ0(R≤i) ≤ 2δ
then µ1(R≤i)/µ0(R≤i) ≤ µ1(R)/µ0(R) < 1/C and thus we may take R′ = R≤i since µ1(R≤i) ≤
µ0(R≤i)/8 ≤ δ/4. Otherwise, we have µ0(Ri) > δ and thus we may take R′ = Ri ∩ F−1(0).

Now let R(i) be the set of all 1-monochromatic rectangles, and R(ii) be the set of all other
rectangles. Let M be the matrix with rows indexed by inputs (x, y) in the domain of F and
columns indexed by rectangles R, such that

M(x,y),R :=































δ if F (x, y) = 0 and R ∈ R(i)

1 if F (x, y) = 1 and R ∈ R(i) and (x, y) ∈ R

1 if F (x, y) = 0 and R ∈ R(ii) and (x, y) ∈ R
δ

1−δ/4 if F (x, y) = 1 and R ∈ R(ii) and (x, y) 6∈ R

0 otherwise

.

We claim that for every distribution µ over the domain of F , there exists a rectangle R such that
E[Mµ,R] ≥ δ. For b ∈ {0, 1} let πb := µ(F−1(b)) and µb := (µ |F−1(b)) (or let µb be an arbitrary
distribution over F−1(b) if πb = 0), so µ = π0µ0+π1µ1. Now by the above, there exists a rectangle R
such that either µ1(R) > δ and R ∈ R(i), in which case E[Mµ,R] = π0δ+π1µ1(R) ≥ δ, or µ0(R) ≥ δ

(so R ∈ R(ii)) and µ1(R) ≤ δ/4, in which case E[Mµ,R] = π0µ0(R) + π1(1− µ1(R)) δ
1−δ/4 ≥ δ.
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By the minimax theorem, there exists a distribution ν over rectangles such that for every
(x, y) in F ’s domain, E[M(x,y),ν ] ≥ δ. For b ∈ {(i), (ii)} let πb := ν(Rb) and νb := (ν |Rb), so
ν = π(i)ν(i) + π(ii)ν(ii). Assume for now that π(i), π(ii) are both nonzero; we explain later how to
handle if one of them is zero. Also, let νb(x, y) := PR∼νb [(x, y) ∈ R].

If F (x, y) = 0, we have δ ≤ E[M(x,y),ν ] = π(i)δ + π(ii)ν(ii)(x, y) and thus ν(ii)(x, y) ≥ δ (and
of course, ν(i)(x, y) = 0). If F (x, y) = 1, we have δ ≤ E[M(x,y),ν ] = π(i)ν(i)(x, y) + π(ii)(1 −

ν(ii)(x, y))
δ

1−δ/4 and thus either ν(i)(x, y) ≥ δ or ν(ii)(x, y) ≤ δ/4. For k = O(log(1/δ) + log n), if

we sample rectangles
{

Rw : w ∈ {0, 1}k
}

,
{

Qs : s ∈ {0, 1}k
}

where each Rw ∼ ν(i) independently
and each Qs ∼ ν(ii) independently, then with positive probability we arrive at a pair of multisets
such that if F (x, y) = 0 then (x, y) 6∈

⋃

w Rw and (x, y) is in ≥ 2δ/3 fraction of Qs’s, and if
F (x, y) = 1 then either (x, y) ∈

⋃

w Rw or (x, y) is in ≤ δ/3 fraction of Qs’s. This constitutes an
(NP ∪©coSBP)-type protocol for F , with α := 2δ/3.

If π(ii) = 0 then the above argument yields an NP-type protocol for F (as ν(i)(x, y) is 0 if
F (x, y) = 0, and is ≥ δ if F (x, y) = 1, so we get that

⋃

w Rw covers none of F−1(0) and all of
F−1(1)); in particular, this yields an (NP ∪©coSBP)-type protocol (by having, say, each of the Qs’s
cover all the inputs). Similarly, if π(i) = 0 then the above argument yields a coSBP-type protocol
for F ; the NP part is not needed.

By our characterization, the following inclusions are implicit in [GPW18b]. For completeness,
we now provide “primal” arguments for them. We consider the time complexity versions, but the
same arguments work for query and communication complexities.

Lemma 7. ZPPNP[1] ⊆ NP ∪©coSBP.

Proof. It is slightly more convenient to show CautiousBPPNP[1] ⊆ NP ∪© coSBP, so consider a
CautiousBPPNP[1] algorithm for L, where M uses coin tosses s ∈ {0, 1}r and each NP oracle query
has possible witnesses w ∈ {0, 1}k . Consider an NP-type algorithm N that accepts x iff there exist
s and w such that Ms(x) produces q and out with out(1) = 1 and the NP oracle verifier accepts
(q, w). Note that if L(x) = 0 then N(x) must reject (since Ms cannot err if it makes an oracle
query). Consider a coSBP-type algorithm A that samples uniformly random s, w, and bit b, and
accepts x iff either

r b = 0, w = 0k, and Ms(x) either directly outputs 0 or produces q and out with out(0) = 0, or
r b = 1, Ms(x) produces q and out with out(1) = 0, and the NP oracle verifier accepts (q, w).

If L(x) = 0 then for every s such that Ms(x) outputs 0, A(x) accepts with probability ≥ 2−k/2
(by sampling b = 0 and w = 0k if Ms(x) outputs 0 either directly or after the oracle responds 0,
or by sampling b = 1 and a correct witness w if Ms(x) outputs 0 after the oracle responds 1); thus
overall A(x) accepts with probability ≥ α := 2−k · 3/8. If L(x) = 1 and N(x) rejects, then A(x)
can only accept if b = 0, w = 0k, and Ms(x) directly outputs 0, so A(x) accepts with probability
≤ 2−k/8 ≤ α/2. Thus N and A together show that L ∈ NP ∪©coSBP.

Lemma 8. NP ∪©coSBP ⊆ PostBPP.

Proof. A PostBPP-type algorithm is randomized, produces an output from {0, 1,⊥}, and must be
correct with probability ≥ 3/4 conditioned on not outputting ⊥. [OS18] showed that PostBPP =
PSBP
‖ , and the proof works for partial functions (in which case, if the algorithm makes an oracle
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query outside the SBP function’s domain, the algorithm is required to be correct for both possible

responses from the oracle). We have NP ∪©coSBP ⊆ P
SBP[2]
‖ by using one oracle query to evaluate

the NP function and another to evaluate the complement of the coSBP function, and outputting 1
iff the first query returns 1 or the second query returns 0.

Since ZPPNP[1] and PostBPP are closed under complement, Lemma 7 and Lemma 8 imply that
ZPPNP[1] ⊆ coNP ∩©SBP ⊆ PostBPP, as shown in Figure 2.
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[GPW18b] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of com-
munication complexity classes. Computational Complexity, 27(2):245–304, 2018.
doi:10.1007/s00037-018-0166-6.
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