
An Improvement of the Algorithm of Hertli

for the Unique 3SAT Problem∗

Tong Qin and Osamu Watanabe
School of Computing, Tokyo Institute of Technology

{qin5, watanabe}@is.titech.ac.jp

Abstract

We propose a simple idea for improving the algorithm of Hertli for the Unique 3SAT problem.
Though the efficiency improvement is extremely small, we hope that this idea would lead to
better improvements.

1 Introduction

We propose a simple idea for improving the algorithm of Hertli [2, 3] for the Unique 3SAT problem.
The 3SAT problem is a problem of deciding whether a given 3CNF formula is satisfiable, where a

3CNF formula is a propositional Boolean formula expressed as a conjunction of 3-clauses consisting
of at most three literals. (A k-clause is a disjunction of k literals, and a literal is either a Boolean
variable or a negated Boolean variable.) The Unique 3SAT problem that we discuss in this note
is a variation of the 3SAT problem where we may assume that a given input formula has at most
one satisfying assignment. The 3SAT problem is one of the typical NP-complete problems, and
in particular, it has been a target of obtaining better exponential-time algorithms. For a given
3CNF formula F over n variables, the straightforward approach for solving the problem is to check
for every possible assignment to n variables whether it satisfies F , i.e., F is evaluated true by
the assignment. This needs Õ(2n)-time1 in the worst case. While it has been believed that no
polynomial-time algorithm exists for the 3SAT problem, we can expect an algorithm that has a
better exponential-time bound. In fact, researchers have proposed various clever algorithms for the
3SAT problem that have better exponential-time bounds.

We review briefly some of important algorithms for the 3SAT problem. Note that such algo-
rithms are usually defined for more general kSAT problems for any k ≥ 3; but here we focus only
on the 3SAT problem. In 1997, Paturi, Pudlák and Zane [5] proposed a randomized algorithm
(which is now called PPZ) that runs in Õ(1.588n)-time. In 1998, Paturi, Pudlák, Saks, and Zane
[4] improved it and obtain a faster algorithm (which is now called PPSZ). They showed that it runs
in Õ(1.364n)-time for the 3SAT problem; though they also showed that it runs in Õ(1.308n)-time
for the Unique 3SAT problem, it was left open to show that this time bound holds for the 3SAT
problem in general. Soon after, Schöning [6] proposed a randomized algorithm of a different type
that runs in Õ(1.334n)-time for the 3SAT problem. Since then several improvements have been

∗This work is supported in part by the ELC project (MEXT KAKENHI Grant No. 24106008).
1Following the standard convention on this topic, we ignore the polynomial factor for discussing the time complexity

of algorithms, and by Õ(T (n)) we denote O(T (n)p(n)) for some polynomial p.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 140 (2017)

reported until Hertli [1] proved that the Õ(1.308n)-time bound of PPSZ indeed holds for the 3SAT
problem in general. More recently, there are some more improvements in relation to the Unique
3SAT problem. Though an improvement is extremely small (an improvement of, say, the 25th
digit of the exponential base 1.308 · · ·), Hertli [2] showed a way to improve the Unique 3SAT prob-
lem, which we refer as Hertli’s algorithm in this note. Furthermore, Hertli [3] (Theorem 6.2) and
Scheder and Steinberger [7] gave general methods to make use of a randomized algorithm for the
Unique 3SAT problem for solving the general 3SAT problem while keeping similar exponential-time
bounds. Thus, based on Hertli’s algorithm, we can show an algorithm for the 3SAT problem that
is better than PPSZ (though the improvement is extremely small).

In this note we give a simple idea for improving Hertli’s algorithm and show that it indeed
gives a better exponential-time bound than Hertli’s algorithm (Theorem 2). Therefore (again the
improvement is extremely small) we can apply the methods of Hertli and Scheder and Steinberger
to derive an algorithm that has a yet better time bound over the currently known algorithms.

The improvement over PPSZ that Hertli’s algorithm achieves is obtained by considering several
cases and by giving a better treatment for each case. One of the key ideas is to use (together with
PPSZ) Wahlström’s algorithm [8] that performs better than PPSZ if a target formula consists of
small number of clauses, which is guaranteed that the degree of the formula is bounded. The degree
(resp., more specifically, degreek) of a variable x of a 3CNF formula F is the number of clauses
(resp., k-clauses) of F containing x or x as a literal. We say (in this note) that a formula is b-degreek
bounded if the largest degreek of its variables is at most b. For any CNF formula F and any set
W of variables of F , let F \W denote a formula obtained by removing all clauses containing some
variable in W . In order to use Wahlström’s algorithm, Hertli introduced the following condition
separating the “dense/sparse” cases determined by a parameter ∆, 0 < ∆ < 1:

A formula F is called ∆-sparse if there exists some set W of at most ∆n variables2 of
F such that F \W is 4-degree3 bounded. Otherwise, F is called ∆-dense.

For the sparse case (that is, the case where we assume that a target formula F is ∆-sparse)
Hertli’s algorithm executes the sparse-case algorithm. This algorithm guesses the above set W
of variables in a straightforward way and then use the combination of PPSZ and Wahlström’s
algorithm on F \W , improving the efficiency of PPSZ. On the other hand, the dense-case algorithm
is executed for the case where we assume that a target formula F is ∆-dense. Starting from F3 := F ,
it first repeats ∆n/2 iterations of collecting a clause that is chosen randomly from clauses of F3

that contain a randomly chosen degree3 ≥ 5 variable (whose existence is guaranteed by the ∆-
denseness), while modifying F3 by removing clauses containing the variables of the selected clause.
Let F2 be the set of obtained ∆n/2 clauses. Then there is a way to assign values to the variables
in F2 that is better than the random guess. By using this way of choosing a partial assignment,
the dense-case algorithm can search a sat. assignment for F more efficiently than PPSZ.

We notice that the above set W of variables can be found when creating F2 in the dense-
case algorithm. That is, while the dense-case algorithm tries to get clauses from F3, if it cannot
find any degree3 ≥ 5 variable in F3, then a set of variables removed from F3 in the dense-case
algorithm is indeed the set W witnessing the ∆-sparseness of F in the above condition. Thus, the
sparse-case algorithm also begin with the iteration of the dense-case algorithm for computing W .
In this way, we can avoid the straightforward guess part of the sparse-case algorithm. In order

2Precisely, ∆n needs to be 2d∆n/2e in order to be consistent with the algorithms in [2].

2

to justify this idea, we introduce a “soft” condition replacing the above “hard” condition for the
∆-sparseness/-denseness.

In this note, we assume that the reader is familiar with [2], and we will skip reviewing several
technical details common with [2].

Preliminaries

We prepare some of the key notions for our discussion. For any k ≥ 2, a kCNF formula is a CNF
formula consisting of k-clauses having exactly k literals. On the other hand, (≤ k)CNF formula
consists of (≤ k)-clauses, clauses having at most k literals. A 1-clause, a clause consisting of one
literal, is often called a unit clause.

Consider any CNF formula F over n Boolean variables. We use vbl(F) to denote the set of
variables of F . We use x to denote a variable of F , and for a variable x, its literal, i.e., x or
its negation x, is denoted by `(x). Throughout this note we use F to denote a current target
CNF formula (usually, a given input to an algorithm that we discuss) and use V and n to denote
respectively vbl(F) and |vbl(F)|, that is, the set of Boolean variables of F and its size. In particular,
we use n as a size parameter for discussing the time complexity/success probability of algorithms.

An assignment is a mapping α from V to {0, 1}. We sometimes consider a partial assignment
whose value is undefined on some variable(s). For any assignment α and any subset U of V , we use
α|U to denote the partial assignment that is the same as α on U and that is undefined on V \ U .
For any (partial) assignment, we use F [α] to denote a formula obtained by assigning a value α(x)
(if it is defined) to each variable x and then simplifying the resulting formula. In general, by, e.g.,
F [x1 ← 0, x2 ← 1] we mean a formula obtained by simplifying F after assigning these values to its
variables x1 and x2.

A satisfying assignment (in short, sat. assignment) of F is an assignment such that F [α] = 1,
i.e., true. We say that α is a unique sat. assignment (of F) if it is a sat. assignment and there is no
other assignment satisfying F . For any d ≥ 1, d-isolated sat. assignment (of F) is a sat. assignment
that has no other sat. assignment within Hamming distance d. For any sat. assignment α (of F),
a clause of F is called critical (for a variable x w.r.t. α) if only `(x) in the clause is evaluated 1
under the assignment α.

The following properties are immediate from the definition.

Fact 1. Consider any formula F and consider any sat. assignment α of F .
(1) For any d ≥ 1, if α is a d-isolated, then every variable of F has at least one critical clause.
(2) For any d ≥ 2, if α is a d-isolated, then it is d′-isolated for any d′ < d.
(3) α is a unique sat. assignment if and only if it is n-isolated.

We say that a partial assignment α (for F) is consistent with another (partial) assignment β
(for F) if for each variable x of F , either α(x) = undefined or α(x) = β(x) holds.

Fact 2. Consider any formula F that has a unique sat. assignment α∗. For any partial assignment
α that is consistent with α∗, the assignment α∗ is also a unique assignment of F [α].

Algorithms we consider in this note are all randomized algorithms unless explicitly stated oth-
erwise. In general, for any algorithm described as a procedure A and any input instance w, by
A(w) we mean the execution of A on the input w, which is sometimes regarded as a random pro-
cess determined by the random choices of A. Throughout the following technical discussion, by a
sat. algorithm we mean a procedure that yields one of the sat. assignments of a given satisfiable

3

formula (or reports “failure” and stops if a sat. assignment is not obtained). For any sat. algorithm
A, its success probability is a function mapping the size parameter n to the smallest probability
that the algorithm yields a sat. assignment for any satisfiable formula (that also satisfies a certain
assumption defined in each context) with n variables. In this note, we propose sat. algorithms with
subexponential-time bounds and have success probabilities better than the one for PPSZ that is
2−S+o(1) where S is a constant 0.386 · · · (see Lemma 2 of the next section). Typically, we con-
sider a procedure X with time complexity bounded above by 2o(n) and success probability (on a
certain subset of satisfiable 3CNF formulas) bounded below by 2−(S−ε+o(1))n for some constant
ε > 0. In this note, we call the amount ε the efficiency improvement of X (on the target instance
set). Clearly, the inverse of the success probability gives an expected number of executions of X
to get a sat. assignment, and we can easily define a bounded error randomized algorithm with an
exponential-time bound corresponding to this expectation for the decision problem.

2 Hertli’s Algorithm

We recall Hertli’s algorithm and some of the facts from [2] necessary for our discussion. We follow
[2] and use the same algorithms and lemmas including the usage of symbols as much as possible
(except for correcting some minor errors and introducing additional notation).

For main sat. algorithms, Hertli’s algorithm uses PPSZ [4] and Wahlström’s algorithm [8]. First
consider PPSZ and discuss two minor changes on PPSZ introduced in [2] for simplifying analysis.
We start with some notions.

Definition 1. For any s, we say that a CNF formula F s-implies a literal ` if there exists a
subformula G ⊆ F with |G| ≤ s such that all satisfying assignment of G set ` to 1.
Remark. Throughout this note, we use s0(n) = log n for s where n is the number of variables of
a target (≤3)CNF formula F . This choice of s is enough to guarantee the performance of PPSZ as
stated in the lemmas below.

Definition 2. For any CNF formula F over n variables and for any of its variable x, we say that
x is forced (during the execution of PPSZ) if F s0(n)-implies its literal `(x). Otherwise, we say
that x is guessed (during the execution of PPSZ).

Definition 3. A random placement π is a mapping from V to [0, 1] such that for each x, π(x) is
chosen independently and uniformly at random from [0, 1]. In general, for any parameter p ∈ [0, 1),
a random (≥ p)-placement π is a mapping from V to [p, 1] defined in the same way.

With these notions, we formally define a procedure PPSZ stated as Algorithm 1. This PPSZ
is different from the original PPSZ in the follwoing two points: (i) the s0-implication is used to
“force” an assignment of a variable instead of applying the s0-bounded resolution; and (ii) a random
placement is used instead of a random permutation. It is shown [2] that the important properties
of the original PPSZ are kept under these modifications. Specifically, we use the following lemmas
from [2]. For any F , any of its assignment α0, and any placement π0, let PPSZ(F |π0, α0) denote
the execution of PPSZ on F by using π0 for its random placement π and α0 for β. Note that PPSZ
is deterministic if we fix π and β in the algorithm.

In the following, as a lower bound of the success probability of a sat. algorithm A, we consider
the probability that A yields some particular target sat. assignment. For simplifying our statement
we use, unless otherwise stated explicitly, F to denote any satisfiable (≤3)CNF-formula over n

4

variables and α∗ to denote any of its sat. assignment α∗ regarded as a target assignment. We may
assume that F also satisfies a certain condition given in each context. Let EA denote the event
that A(F) yields α∗.

Algorithm 1 PPSZ input: a (≤3)CNF formula F

1: V ← vbl(F); n ← |V |
2: Choose β u.a.r. from all assignments on V
3: Choose π u.a.r. as a random placement of V
4: Let α be a partial assignment on V , initially undefined for all x ∈ V ,
5: for x ∈ V , in ascending order of π(x) do
6: if F s0(n)-implies `(x) then set α(x) to satisfy this literal (← x is forced)
7: else α(x) ← β(x) (← x is guessed)
8: F ← F [x→ α(x)]
9: end for

10: return α if α is a sat. assignment (otherwise, report “failure”)

Lemma 1. Consider any satisfiable (≤3)CNF F . For any placement π, define G(π) to denote
the number of guessed variables during the execution PPSZ(F |π, α∗). Then we have Pr[EPPSZ] ≥
Expπ[2

−G(π)] ≥ 2Expπ [−G(π)].

Lemma 2. Define S and Sp by

S =

∫ 1

0

(
1−min

{
1,

r2

(1− r)2

})
dr and Sp =

∫ 1

p

(
1−min

{
1,

r2

(1− r)2

})
dr

Consider any satisfiable (≤3)CNF F that has a log s0(n)-isolated sat. assignment α∗. For any π, let
G(π) be (as the above lemma) the number of guessed variables during the execution PPSZ(F |π, α∗).
Also, for any p ∈ [0, 1/2], let Gp(π) be the number of variables with placement > p that are guessed
during the execution PPSZ(F |π, α∗). Then we have
(1) Expπ[G(π)] = (S + o(1))n,
(2) for any p ∈ [0, 1/2], Expπ[Gp(π)] = (Sp + o(1))n,

(3) S = 2 ln 2− 1 = 0.386 · · · , and Sp = S − p+ I(p), where I(p) :=
∫ p
0

r2

(1−r)2
dr.

From these lemmas, we have the following bounds.

Lemma 3. Let F be any satisfiable (≤3)CNF that has a log s0(n)-isolated sat. assignment α∗.
Then Pr[EPPSZ] is at least 2−(S+o(1))n. Furthermore, suppose that we pick every variable of F
with probability p independently, and let Vp be the resulting set. Let EPPSZ,Vp denote the event
that PPSZ(F [α∗|Vp]) returns α∗|V \Vp

. Then we have ExpVp
[log Pr[EPPSZ,Vp]] ≥ Expπ[−Gp(π)] =

−(Sp + o(1))n.

We consider the above bound 2−(S+o(1))n as a target, and we propose algorithms for certain
types of input formulas with some “efficiency improvements” that is, algorithms that have success
probabilities larger than 2−(S−ε+o(1))n for some ε > 0. The first such example is PPSZ itself. It
is shown [2] that PPSZ performs better if a given formula has many variables with more than one
critical clauses.

5

Lemma 4. Let F be any (≤3)CNF formula that has a log s0(n)-isolated sat. assignment α∗. If
∆n variables of F have more than one critical clause, then Pr[EPPSZ] ≥ 2−(S−0.00145···∆+o(1))n.
Furthermore, if F has more than ∆n variables that have a critical 2-clause, then Pr[EPPSZ] ≥
2−(S−0.0353···∆+o(1))n.

Wahlström [8] proposed a deterministic algorithm for solving the CNF-SAT problem. Here we
denote by WAHLSTROEM the following procedure based on Wahlström’s algorithm3.

Lemma 5. For any CNF formula F with no unit clause that has average degree at most d, 4 <
d ≤ 5, WAHLSTROEM(F) computes one of its sat. assignment in time Õ(20.115707···(d−1)n).

Note that the time complexity of WAHLSTROEM is not 2o(n). Thus, in order to adjust it to the
other sat. algorithms, we consider the following randomized procedure WAHLSTROEM rand: For
a given input CNF formula F over n variables with average degree ≤ d, WAHLSTROEM rand(d, F)
executes the above procedure with probability 2−0.115707(d−1)n, and otherwise it stops the compu-
tation immediately with failure. Clearly, the success probability of WAHLSTROEM rand(F) is
2−0.115707(d−1)n, and its expected running time is 2o(n).

Now we consider Hertil’s algorithm HERTLI stated as Algorithm 2. First we remark on our way
to state algorithms by pseudo codes. In the following algorithms such as Algorithm 2, we consider
several cases on a given formula, and execute a sat. algorithm on the formula or its subformula that
works efficiently for each case. Though it is not stated explicitly, by, e.g., “Execute PPSZ(F ′)” we
mean to (i) execute the procedure PPSZ on F ′, (ii) compute a sat. assignment of the input formula
of the procedure based on the obtained sat. assignment, and then (iii) terminate the computation
by yielding the computed sat. assignment. Clearly, if the execution at the step (i) fails, then the
computation is terminated reporting “failure.” Note also that it may not be easy to determine
which case actually holds for a given formula. Therefore, we consider all the cases in parallel. By
“assume Φ then · · · ” in our algorithm descriptions, we mean to execute the “· · · ” part in parallel
with the other cases assuming that Φ holds.

Subprocedures4 GetInd2Clauses, DensePPSZp, and SparsePPSZ used in HERTLI are stated as
Algorithms 4, 5, and 6.

Based on [2, 3]5 we can show that the following efficiency improvement is possible by HERTLI
on uniquely satisfiable 3CNF formulas.

Theorem 1. Use values given in the “value of [3]” column of Table 1 for the parameters of the
procedure HERTLI and its subprocedures, and also for ε0. For any uniquely satisfiable 3CNF
formula F , let EHERTLI denote the event that HERTLI(F) yields the sat. assignment of F . Then
we have log Pr[EHERTLI] ≥ −(S − ε0 + o(1))n.

3The original algorithm of Wahlström is for the decision problem, but we think that it also finds a sat. assignment
on the course of its computation. Even if not, we can use the one for the decision problem to compute a sat.
assignment by the standard prefix search. Note that the condition of the average degree bound is kept satisfied for
formulas needed to solve during the prefix search.

4In [2], the part of the algorithm HERTLI corresponding to the statements 5 ∼ 16 of Algorithm 2 is stated
as algorithm OneCC (i.e., Algorithm 3 in [2]). On the other hand, we omit specifying it here and state all the
corresponding statements in Algorithm 2. In order to use algorithm numbers consistent with [2], we skip Algorithm 3
in this note and state GetInd2Clauses as Algorithm 4. While DensePPSZp and SparsePPSZ correspond to procedures
Dense (Algorithm 5) and Sparse (Algorithm 6) of [2], we modify their descriptions for the sake of our later explanation.
As a whole, the procedure HERTLI is essentially the same as Hertli’s algorithm stated in [2].

5Due to some minor error in [2], the choice of parameters in [2] is not appropriate, which has been corrected in
[3]. Here we use this corrected version. We changed the name of parameters slightly in this note.

6

Algorithm 2 HERTLI input: a 3CNF formula F , parameter:∆1,∆2, δ3, δ4, p

1: V ← vbl(F); n ← |V |;
2: assume; F has more than ∆1n var.s with more than one critical clause then
3: Execute PPSZ(F)
4: assume otherwise then
5: Choose W1 and α1 u.a.r. from all size ∆1n subsets of V and all assignments on W1;

(assume below that W1 and α1 are correctly chosen)
6: F ′ ← F [α1]; V ′ ← vbl(F ′); n′ ← |V ′|
7: assume F ′ is ∆2-dense then (what follows is the dense-case algorithm)
8: F2 ← GetInd2Clauses(F ′)
9: Execute DensePPSZp(F

′, F2)
10: assume otherwise then (what follows is the sparse-case algorithm)
11: Choose W2 and α2 u.a.r. from all size ∆2n

′ subsets of V ′ and all assignments on W2;
(assume below that W2 and α2 are correctly chosen)

12: F ′′ ← F ′[α2];
13: Execute SparsePPSZ(F ′′)

Algorithm 4 GetInd2Clauses input: a (≤3)CNF formula F ′

1: V ′ ← vbl(F ′); n′ ← |V ′|;
2: F3 ← {C ∈ F : |C| = 3 }; F2 ← ∅; W ′

2 ← ∅;
3: for T2(n) times do (Define T2(n) = d∆2n/2e.)
4: x ← a variable of F3 with deg3(F3, x) ≥ 5 (stop with “failure” if no such variable exists)
5: Choose C u.a.r. from all clauses of F3 with `(x) ∈ C
6: C2 ← C \ {`(x)}
7: F2 ← F2 ∪ {C2}; W ′

2 ← W ′
2 ∪ vbl(C2)

8: F3 ← {C ∈ F3 : vbl(C) ∩ vbl(C2) = ∅ }
9: end for

10: return F2

Algorithm 5 DensePPSZp

input: a (≤3)CNF formula F ′ and a 2CNF formula F2, parameter: p ∈ (0, 1)

1: V ′ ← vbl(F ′); n′ ← |V ′|;
2: V ′

p ← pick each x ∈ V ′ with probability p
3: Let α′

2 be a partial assignment on V ′ initially undefined for all x ∈ V ′

4: for C2 ∈ F2 do
5: if vbl(C2) ⊆ Vp then (let u and v are two literals of C2)

6: (α′
2(u), α

′
2(v)) ←

{
(0, 0) with probability 1/5 (= 3/15), and
(0, 1), (1, 0), or (1, 1) with probability 4/15 for each

7: end for
8: for x ∈ V ′

p do
9: if α′

2(x) is undefined then α′
2(x) ←u.a.r. {0, 1}

10: end for
11: execute PPSZ(F ′[α′

2])

7

Algorithm 6 SparsePPSZ input: a (≤3)CNF formula F ′′

1: Let α′′ be a partial assignment on F ′′ initially undefined for all x ∈ vbl(F ′′)
2: F̃ ← F ′′;
3: if F̃ has a unit clause then Extend α′′ to satisfy all unit clauses of F̃ and simplify F̃

(if an unsat. clause is derived in F̃ during this step, then stop with “failure”)
4: while F̃ has some clause do
5: Ṽ ← vbl(F̃); ñ ← |Ṽ |
6: F2 ← {C ∈ F̃ : |C| = 2 }
7: if |F2| ≤ δ3ñ then
8: Execute WAHLSTROEM rand(2δ3 + 4, F̃)
9: else

10: assume F̃ has δ4ñ critical 2-clauses then Execute PPSZ(F̃)
11: assume otherwise then (that is, more than 1− δ4/δ3 of 2-clauses of F2 are noncritical)
12: Choose C u.a.r. from F2

13: Extend α′′ to satisfy all literals in C (and also all unit clauses if created) and simplify F̃
(if F̃ = 1, then terminate the computation reporting α′′ as a sat. assignment; if an unsat.
clause is derived in F̃ during this step, then terminate the computation with “failure”)

14: end while

We explain the proof of the theorem by showing that each procedure achieves its required task
with desired probability. From now on till the end of this section, we fix F (also V and n) to be
any 3CNF formula with a unique sat. assignment α∗. Thus, by “success probability” we mean the
probability that α∗ is obtained. We assume that variables in the procedures with the same name
are given these values and that parameters used in the procedures are set values given in the “value
in [3]” column of Table 1. Values of this column are also used efficiency improvements ε0, ε1, and
ε2. We also assume that n is quite large so that our choice of parameters would make sense.

First consider the outline of HERTLI. From Algorithm 2 we see that HERTLI uses three sat.
algorithms for the following three cases:
(H1) := [F has more than ∆1n variables with more than one critical clause] ⇒ PPSZ(F).
(H2) := [¬ (H1) ∧ F ′

∗ is ∆2-dense] ⇒ DensePPSZp(F
′
∗, F2,∗).

(H3) := [¬ (H1) ∧ F ′
∗ is ∆2-sparse] ⇒ SparsePPSZ(F ′′

∗).

name ref. name in [2] value in [3] new value

ε0 Thm. 1 ε2 10−25 2.47 · 10−19

ε1 Lem. 7 ε3 10−3 (2.32 · · ·) · 10−3

ε2 Lem. 8 ε1 10−20 (9.23 · · ·) · 10−15

∆1 ∆1 10−22 1.6595 · 10−16

∆2 ∆2 5 · 10−5 3.7736 · 10−3

δ3 − 1/10 0.159227

δ4 − 1/30 0.06572

p p∗ 5 · 10−7 (3.82 · · ·) · 10−5

q − − (105∆2n)
−1

Table 1: Parameters used in Hertli’s algorithm and our improvements

8

Here we consider the situation where the values of the variables W1, α1, W2, and α2 of HERTLI
are guessed “appropriately” and take the following values:

W1,∗ = the set of variables with more than one critical clause,
α1,∗ = α∗|W1,∗

W2,∗ = a set of variables of size ≤ 2T2(n) such that F \W2,∗ is 4-degree3 bounded, and
α2,∗ = α∗|W2,∗

Then the variables F ′, F ′′, F2 are set the following values:

F ′
∗ = F [α1,∗], F ′′

∗ = F ′
∗[α1,∗], and F2,∗ = GetInd2Clauses(F ′

∗),

where the last one is for the case that GetInd2Clauses(F ′
∗) successfully returns a result. We also

use V ′
∗ , n

′
∗, V

′′
∗ , and n′′

∗ for the corresponding values, i.e., vbl(F ′
∗), |vbl(F ′

∗)|, vbl(F ′′
∗), and |vbl(F ′′

∗)|.
The case where (H1) holds is simple; in fact, we have already prepared Lemma 4 for this case,

which gives the following success probability bound.

Lemma 6. Suppose that (H1) holds for F . Then we have log Pr[EPPSZ] ≥ −(S − 0.00145 · · ·∆1 +
o(1))n. That is, the log of the success probability of the line 2 − 3 of HERTLI is at least −(S −
0.00145 · · ·∆1 + o(1))n, which is larger than −(S − ε0 + o(1))n

Thus, for proving the theorem, it suffices to guarantee the efficiency improvement ε0 for the
other cases.

For the case where (H3) holds, the procedure SparsePPSZ is used. Its task is simply to get a
sat. assignment for F ′′

∗ given in this case. For its success probability, we have the following lemma6,
which is proved as Lemma 6 in [2]. (Here we omit the proof.) Below we use H(r) to denote the
binary entropy, and use the well-known bound log

(
n
rn

)
≤ H(r)n that holds for any r ∈ [0, 1] such

that rn is an integer.

Lemma 7. Suppose that (H3) holds for F . Let ESparse denote the event that SparsePPSZ(F ′′
∗)

returns α∗|V ′′
∗ . Then we have log Pr[ESparse] ≥ −(S− ε1+ o(1))n′′

∗. That is, the efficiency improve-
ment of SparsePPSZ on F ′′

∗ is at least ε1. Furthermore, including the probability of guessing W1,∗,
α1,∗, W2,∗, and α2,∗, the log of the success probability of the line 10 − 13 of HERTLI is at least
−(S +∆1 +H(∆1) + ∆2 +H(∆2)− ε1)n, which is larger than −(S − ε0 + o(1))n.

Finally consider the case where (H2) holds. In this case, HERTLI first executes GetInd2Clauses(F ′
∗)

to get a set F2,∗ of T2(n) independent 2-clauses
7, and then executes DensePPSZp(F

′
∗, F2,∗) to get a

sat. assignment for F ′
∗. Since (H2) holds, it is easy to see that the execution GetInd2Clauses(F ′

∗)
always terminates successfully. Then 2-clauses of F2,∗ are obtained from 3-clauses of F ′

∗; further-
more, it follows from (H2) that on average (w.r.t. the randomness of GetInd2Clauses) at least 4/5
2-clauses in F2,∗ are from noncritical 3-clauses of F ′

∗. This is a key to derive the following lower
bound on the success probability of the execution DensePPSZp(F

′
∗, F2,∗). (Since this part is related

to our improvement, we state the outline of the proof.)

6The success probability bound can be improved by analyzing it more carefully using n′′
∗ = (1 − ∆1)(1 − ∆2)n.

Here we follow [2] and omit this consideration in this and the next lemmas; we will discuss such detail alaysis in the
next section.

7Following [2], we use n instead of n′
∗ = |vbl(F ′

∗)| to determine the size T2(n) of F2,∗. To be consistent with this
choice, the ∆1-dense/sparse condition is defined w.r.t. n.

9

Lemma 8. Suppose that (H2) holds for F . Then GetInd2Clauses successfully returns a set of T2(n)
independent 2-clauses. Let EDensep denote the event that DensePPSZp(F

′
∗, F2,∗) returns α∗|V ′

∗ . Then
we have log Pr[EDensep] ≥ −(S + I(p) − a0∆2p

2 + o(1))n′
∗, where a0 = 0.00505 · · · . That is, the

efficiency improvement of DensePPSZp on (F ′
∗, F2,∗) is at least ε2 := maxp(−I(p)+a0∆2p

2). Thus,
including the probability of guessing W1,∗ and α1,∗, the log of the success probability of the line 7−9
of HERTLI is at least −(S +∆1 +H(∆1)− ε2 + o(1))n, which is larger than −(S − ε0 + o(1))n.

Proof Outline. We give an outline of the analysis of Pr[EDensep]. Consider Algorithm 5, i.e., the
procedure DensePPSZ. We borrow the symbols V ′

p and α′
2 there and use them also as random

variables to denote respectively a set selected randomly at the line 2 and an assignment on V ′
p

defined randomly at the line 4− 9. Let Eguess denote the event that α′
2 = α∗|V ′

p
. Note that Eguess

also depends on the execution of GetInd2Clauses(F ′
∗). Then as shown in [2] (i.e., Lemma 5 of [2]),

we have
log Pr[EDensep] ≥ ExpV ′

p

[
log Pr[Eguess|V ′

p] + log Pr[EPPSZ,V ′
p
]
]

= ExpV ′
p

[
log Pr[Eguess|V ′

p]
]
+ ExpV ′

p

[
log Pr[EPPSZ,V ′

p
]
]

Note that Lemma 3 gives a bound for the second term. That is, we have ExpV ′
p

[
log Pr[EPPSZ,V ′

p
]
]

≥ −(Sp + o(1))n = −(S + I(p) − p)n. Hence, what we need is to bound ExpV ′
p

[
log Pr[Eguess|V ′

p]
]
.

That is, our task is to analyze the probability that α′
2 is consistent with α∗ on V ′

p .
We introduce useful notions. Consider any 2-clause C ∈ F2,∗. Recall that it is obtained from

some 3-clause of F ′
∗ by removing a literal `(x) in the execution GetInd2Clauses(F ′

∗). We say that
C is critical clause origin (resp., noncritical clause origin) if C is obtained from a 3-clause that is
critical for the variable x.

Let us first see how to assign variables in V ′
p . The assignment is determined at the line 4 − 9

of DensePPSZp. In particular, for a randomly chosen set V ′
p of variables of F ′

∗, if it has a pair of
literals appearing in some C ∈ F2,∗, then the assignment on these literals is determined as stated
at the line 6. It can be shown that this is an optimal way to obtain an assignment consistent with
α∗ when we know that the probability that C ∈ F2,∗ is critical clause origin is at most 1/5 (hence,
the probability that its two literals are assigned (0, 0) by α∗ is at most 1/5).

We analyze this method and give a lower bound for the probability that α′
2 is consistent with

α∗ on V ′
p . We consider two random variables m0 and m1. Let m0 (resp., m1) denote the num-

ber of 2-clauses C of F2,∗ such that vbl(C) ⊆ V ′
p and it is critical (resp., noncritical) clause

origin. Note that m0 and m1 are random variables depending on both V ′
p and the random-

ness in the execution GetInd2Clauses(F ′
∗). Thus, by, e.g., “Exp[m0]” we mean the expectation

of m0 over the random variable V ′
p and the randomness in GetInd2Clauses(F ′

∗). Note, however,
m0+m1 depends only on V ′

p ; in fact, we have Exp[m0+m1] = p2T2(n), which is independent from
GetInd2Clauses(F ′

∗). On the other hand, we have Exp[m0] ≤ p2(1/5)T2(n) because, on average, at
most 1/5 clauses of F2,∗ are critical clause origin. The probability that α′

2 is consistent with α∗ on

V ′
p is (1/2)|V

′
p |−2(m0+m1)(1/5)m0(4/15)m1 .

Based on this observation, the following bound is shown in [2].

ExpV ′
p

[
log Pr[Eguess|V ′

p]
]

= −Exp[|V ′
p | − 2(m0 +m1)] + Exp[m0] log

(
1

5

)
+ Exp[m1] log

(
4

15

)
= −pn+

(
2 + log

(
4

15

))
Exp[m0 +m1]− Exp[m0] log

(
4

3

)

10

= −pn+ p2T2(n)

(
2 + log

(
4

15

))
− Exp[m0] log

(
4

3

)
(1)

≥ −pn+
p2∆2n

2

(
2 + log

(
4

15

)
− 1

5
log

(
4

3

))
= −(p− a0∆2p

2)n,

where a0 = (2+log(4/15)−(1/5) log(4/3))/2 = 0.00505 · · · . This is sufficient for the desired bound.
tu

3 Our Improvements

As explained in Introduction, the key idea of our main improvement is to use GetInd2Clauses for
obtaining W2 instead of guessing it randomly in the straightforward way, thereby removing the
−H(∆2) term from the efficiency improvement of the sparse case (Lemma 7). In order to give a
condition that this idea works, we introduce a “soft” version of the ∆-sparseness/-denseness.

Algorithm 7 newHERTLI input: a 3CNF formula F , parameter:∆1,∆2, δ3, δ4, p, q

1: V ← vbl(F); n ← |V |;
2: assume; F has more than ∆1n var.s with more than one critical clause then
3: Execute PPSZ(F)
4: assume otherwise then
5: Choose W1 and α1 u.a.r. from all size ∆1n subsets of V and all assignments on W1;

(assume below that W1 and α1 are correctly chosen)
6: F ′ ← F [α1]; V ′ ← vbl(F ′); n′ ← |V ′|
7: assume F ′ is (∆2, q)-dense then
8: F2 ← GetInd2Clauses(F ′)
9: Execute DensePPSZp(F

′, F2)
10: assume otherwise then
11: W2 ← GetInd2Clauses+q (F

′)
12: Choose α2 u.a.r. from all assignments on W2;

(assume below that W2 and α2 are correctly chosen)
13: F ′′ ← F ′[α2];
14: Execute SparsePPSZ(F ′′)

The new algorithm is given as Algorithm 7. It uses a procedure GetInd2Clauses+q for computing
a set W2 corresponding to the one guessed in the original Hertli’s algorithm. This procedure is
obtained by modifying the procedure GetInd2Clauses on two points. For a given formula F ′, instead
of computing a set F2 of independent 2-clauses, GetInd2Clauses+q aims to compute a set W2 such
that F ′ \W2 becomes 4-degree3 bounded. Thus, the line 4 of Algorithm 4 is modified so that if x
cannot be found, then the algorithm stops successfully by reporting W2. On the other hand, the
termination of its main for-loop, i.e., the line 3−9 part of Algorithm 4, is regarded as an undesired
situation. GetInd2Clauses+q tries this part for 1/q times for a given parameter q and stops with
“failure” if a desired W2 is not obtained by all trials.

Our new denseness/sparseness condition is to determine which of GetInd2Clauses and
GetInd2Clauses+q is more likely to succeed. Consider the execution GetInd2Clauses(F ′). We regard

11

it as a random process of collecting an independent 2-clause from F ′ \W2 to F2 while choosing a
variables x with deg3(x) ≥ 5 randomly. For each t ≥ 1, let Nt denote the event that there exists a
degree3 ≥ 5 variable in F3, i.e., F

′ \W2 for the current W2, at beginning of the tth iteration of the
main for-loop and hence the algorithm executes the tth iteration. We define N≤t and qt by

N≤t ⇐⇒
∧

1≤i≤t

Ni, and qt = Pr[¬Nt |N≤t−1].

Definition 4. For any q ∈ [0, 1] and ∆ > 0, a 3CNF formula F is (∆, q)-dense if qt ≤ q for all t,
1 ≤ t ≤ d∆n/2e; otherwise, F is (∆, q)-sparse.

This is the new condition used in Algorithm 7. Although not exactly the same, the (∆, 0)-
dense/sparse condition is practically the same as the ∆-dense/sparse condition w.r.t. the execution
of GetInd2Clauses.

Now our task is to show that the success probability of the new sparse case is in fact improved
and that the success probability of the new dense case is not so affected. Similar to the previous
discussion, we consider the execution of the procedure newHERTLI when some sufficiently large
and uniquely satisfiable 3CNF formula F is given as an input; the symbols such as F ′

∗, etc. are used
in the same way as before while we leave the choice of parameter values for a later discussion. For
a given parameter q, we define (H2)+q and (H3)+q by

(H2)+q := [¬(H1) ∧ F ′
∗ is (∆2, q)-dense]

(H3)+q := [¬(H1) ∧ F ′
∗ is (∆2, q)-sparse]

We first show that the success probability is improved for the (∆2, q)-sparse case. In the
following, let us simply denote T2(n) by T2, and let N be the event

∧
1≤i≤T2

Ni.

Lemma 9. Suppose that (H3)+q holds for F . Then with Ω(1) probability W2 is successfully computed
by GetInd2Clauses+q (F

′
∗). Thus, including the probability of guessing W1,∗, α1,∗, and α2,∗, the log of

the success probability of the line 10−14 of newHERTLI is at least −(S+∆1+H(∆1)+∆2− ε1)n,
where ε1 is a lower bound for the efficiency improvement of SparsePPSZ on F ′′

∗ .
Remark. Though we state a slightly weak bound in the above for comparison, we use the following
more tight bound for the log of the success probability in the analysis of the next subsection: −{∆1+
H(∆1) + ∆2 + (S − ε1)(1−∆1 −∆2)}n.

Proof. Suppose that (H3)+q holds for F . That is, there is some t0 such that qt0 ≥ q. Then we have

Pr[N] = Pr

 ∧
1≤t≤T2

Nt

 =
∏

1≤t≤T2

Pr[Nt |N≤t−1] =
∏

1≤t≤T2

(1− qt) ≤ 1− qt0 < 1− q.

Note that Pr[N] is the probability that W2 is not obtained at one execution of the main for-loop of
GetInd2Clauses+q (F

′
∗). Since GetInd2Clauses+q tries the main for-loop for 1/q times, the probability

that W2 cannot be obtained by all these trials is at most (1 − q)1/q ≤ e−1, proving the first claim
of the lemma.

Let W2,∗ be the set obtained by GetInd2Clauses+q (F
′
∗). Then F ′′

∗ := F \ W2,∗ is 4-degree3
bounded, and for such F ′′

∗ it is easy to see that the efficiency improvement of SparsePPSZ(F ′′
∗)

is the same as the one given before by Lemma 7, which is sufficient for proving the rest of the
lemma.

12

Next we show that DensePPSZ works as well even under the condition (H2)+q .

Lemma 10. Suppose that (H2)+q holds for F . Then with probability at least 1−T2q, F2,∗ is success-
fully computed by GetInd2Clauses(F ′

∗). Recall that EDensep denote the event that DensePPSZp(F
′
∗, F2,∗)

returns α∗|V ′
∗ . We have log Pr[EDensep] ≥ −(S + I(p)− aq∆2p

2 + o(1))n, where

aq =
1

2

(
2 + log

(
4

15

)
− 1

5(1− T2q)
log

(
4

3

))
,

which is quite close to a0 of Lemma 8 if q is sufficiently small, say, q = (105T2)
−1 = (105∆2n)

−1.
Remark. As stated Lemma 8, a lower bound for the efficiency improvement of DensePPSZp(F

′
∗, F2,∗)

is calculated as ε2 := maxp(−I(p)+aq∆2p
2). Then including the probability of guessing W1,∗, α1,∗,

and α2,∗, the log of the success probability of the line 7− 9 of HERTLI is at least −{∆1 +H(∆1) +
(S − ε2)(1−∆1)}n.

Proof. Here again we analyze Pr[N] as the probability that F2,∗ is obtained successfully in the
execution of GetInd2Clauses(F ′

∗).

Pr[N] = 1− Pr

 ∨
1≤t≤T2

¬Nt ∧N≤t−1

 = 1−
∑

1≤t≤T2

Pr[¬Nt ∧N≤t−1]

= 1−
∑

1≤t≤T2

Pr[¬Nt |N≤t−1] · Pr[N≤t−1]

≥ 1−
∑

1≤t≤T2

Pr[¬Nt |N≤t−1] = 1−
∑

1≤t≤T2

qt ≥ 1− T2q.

This proves the first claim of the lemma.
The log of the success probability of DensePPSZp, i.e., log Pr[EDensep] can be analyzed in the

same way as the proof of Lemma 8. In fact, we can start from the equation (1), and for the
analysis, it suffices to estimate Exp[m0]. Recall that the random variable m0 denotes the number
of “critical clause origin” 2-clauses C of F2,∗ such that vbl(C) ⊆ V ′

p . Since variables are chosen
to V ′

p uniformly at random, Exp[m0] is determined by Exp[m′
0|N], where m′

0 is the number of
“critical clause origin” 2-clauses selected for F2,∗ in the execution of GetInd2Clauses(F ′

∗) and the
expectation is over the randomness of the execution of GetInd2Clauses(F ′

∗) (under the condition
that the execution is terminated successfully). For each t, 1 ≤ t ≤ T2, let It denote a random
variable that takes 1 if the 2-clause selected at the t iteration is critical clause origin, and takes 0
otherwise. Let It,1 denote the event that It = 1. Note that Pr[It,1|N≤t−1] ≤ 1/5 since the variable
x selected at the tth iteration appears in at least five 3-clauses and each variable has at most one
critical 3-clause. Then we have

Exp[m′
0 |N] = Exp

 ∑
1≤t≤T0

It

∣∣∣∣∣∣ N
 =

∑
1≤t≤T0

Pr[It,1 |N] =
∑

1≤t≤T0

Pr[It,1 ∧N]

Pr[N]

≤ 1

Pr[N]

∑
1≤t≤T0

Pr[It,1 ∧N≤t−1] =
1

Pr[N]

∑
1≤t≤T0

Pr[It,1 |N≤t−1] · Pr[N≤t−1]

≤ 1

Pr[N]

∑
1≤t≤T0

Pr[It,1 |N≤t−1] ≤
1

Pr[N]

∑
1≤t≤T0

1

5
≤ T2

5Pr[N]
≤ T2

5(1− T2q)
.

13

Hence, we have Exp[m0] ≤ p2T2/(5(1−T2q). By substituting this to (1), we have the bound of the
lemma.

3.1 Detail Efficiency Improvement Analysis and Our Choice of Parameters

By setting the parameters used in the algorithms appropriately, we can show the following efficiency
improvement.

Theorem 2. Use values given in the “new value” column of Table 1 for the parameters of the
procedure HERTLI and its subprocedures, and also for ε0. For any uniquely satisfiable 3CNF
formula, the log of the success probability of newHERTLI is at least −(S − ε0 + o(1))n.

We explain how to set the parameters. We choose the parameter values so that the final
efficiency improvement, i.e., ε0, is optimal up to three significant figures8. Values stated as, e.g.,
(2.32 · · ·) · 10−3, are estimated to enough significant figures, while values stated as, e.g., 1.71527 ·
10−16 are actually used ones after confirming that they are precise enough to guarantee that ε0 is
optimal up to three significant figures.

In order to achieve the optimal efficiency improvement, we need to be a bit more careful than [2,
3]. First consider the procedure SparsePPSZ. See Algorithm 6; we use symbols defined there. In this
procedure, three methods are used to compute a satisfying assignment depending on the condition
of a given formula F ′′. Let γ3 and γ4 denote respectively the proportion of 2-clauses and critical 2-
clauses of F ′′. If γ3 is small enough, Wahlström’s algorithm (more precisely, WAHLSTROEM rand)
works better. If γ3 is large and γ4 is also large, then PPSZ works better. Otherwise, we had
better reduce the current formula by assigning values to two variables to satisfy all two literals
of a randomly chosen clause in F2. Considering the worst case (which is the case where all three
methods are equally good), we compute thresholds for γ3 and γ4 that are used as parameters δ3
and δ4. The efficiency improvement ε1 of this procedure is also estimated from this worst case.
Note that while γ3 is easy to compute, γ4 may not be computable easily. Thus, in the procedure
SparsePPSZ, the procedure WAHLSTROEM rand is simply used when γ3 ≤ δ3; on the other hand,
both PPSZ and the variable number reduction are executed in parallel. Once ε1 is estimated, we
choose ∆2 so that the success probability given in Remark of Lemma 9 is large enough compared
with ε0. (Since ∆1 � ∆2, we may be able to ignore ∆1 for determining ∆2 and check whether
this gives an enough room later after determining ∆1.) The rest of the calculation for parameter
values is almost the same as [2, 3]. We compute the optimal value for p following Lemma 8. As
mentioned in Lemma 10, we use aq with q = (105∆2n)

−1, which gives a success probability bound
ε1 close enough to the one calculated using a0 for obtaining the optimal ε0. From ε1, we determine
∆1 so that the success probability given in Remark of Lemma 10 is large enough compared with
ε0. Finally, we use Lemma 6 to estimate ε0.

References

[1] T. Hertli, 3-SAT faster and simpler.unique-SAT bounds for PPSZ hold in general, in Proc.
of the IEEE the 52nd Annual Symposium on Foundations of Computer Science (FOCS’11),
IEEE Coputer Soc., 277–284, 2011; doi:10.1109/FOCS.2011.22.

8It may not make sense to pursue the optimal value since our efficiency improvement is extremely small.

14

[2] T. Hertli, Breaking the PPSZ barrier for unique 3-SAT, in Proc. of Automata, Languages, and
Programming - 41st International Colloquium (ICALP’14): Part I, Springer, Lecture Notes in
Computer Science 8572, 8–11, 2014; doi:10.1007/978-3-662-43948-7 50.

[3] T. Hertli, Improved Exponential Algorithms for SAT and ClSP, A thesis for Doctor of Sciences
of ETH Zurich, 2015, doi: 10.3929/ethz-a-010512781.

[4] R. Paturi, P. Pudlak, M.E. Saks, and F. Zane, An improved exponential-time algorithm for
k-SAT, J. ACM, 52(3):337–364, 2005; doi:10.1145/1066100.1066101.

[5] R. Paturi, P. Pudlak, and F. Zane, Satisfiability coding lemma, Chicago J. Theoret. Comput.
Sci., 11–19, 1999.

[6] U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, in Proc.
of the 40th Annual Symposium on Foundations of Computer Science, IEEE Computer Society,
410–414, 1999; doi:10.1109/SFFCS.1999.814612.

[7] D. Scheder and J.P. Steinberger, PPSZ for general k-SAT – Making Hertli’s analysis simpler
and 3-SAT faster, in Proc. the 32nd Conference on Computational Complexity (CCC’17), to
appear.

[8] M. Wahlström, An algorithm for the SAT problem for formulae of linear length, in Proc. of
the 13th Annual European Symposium on Algorithms (ESA’05), Lecture Notes in Computer
Science 3669, 107–118, 2005; doi:10.1007/11561071 12.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

