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Abstract

We prove that a small-depth Frege refutation of the Tseitin contradic-
tion on the grid requires subexponential size. We conclude that polyno-
mial size Frege refutations of the Tseitin contradiction must use formulas
of almost logarithmic depth.

1 Introduction

This paper is in the setting of propositional proof complexity. We are given a
propositional statement and some reasoning rules. The most basic proof system
is resolution. In this proof system we study clauses, i.e. disjunctions of literals
and have a simple way to derive new clauses from existing clauses. If we derive
the empty clause we have reached a contradiction refuting the original formula.

Resolution has been studied extensively and by now we have a large body
of work understanding the strengths and limitations of resolution. In an early
paper [17], Tseitin defined the set of contradictions based on graphs studied in
this paper and proved that any regular resolution proof of this contradiction
requires exponential size proofs in general. A later result by Haken [7] gave the
first strong lower bound for unrestricted resolution proving that the pigeon-hole
principle (PHP) requires exponential size proofs. As this paper is not about
resolution let us not discuss the many strong results obtained but only mention
the paper of Ben-Sasson and Wigderson [4] as a high point which in particular
established the importance of width when studying resolution proofs.

There are many proof systems which are more powerful than resolution and
in this paper we study the case when each formula appearing in the proof is
restricted to be a Boolean formula of small depth d. Here d = 1 essentially
corresponds to resolution. There are many alternatives for the reasoning rules
and what is said below applies to any constant size set of reasoning rules that
are consistent. The first strong result in this setting was obtained by Ajtai [1]
showing that the PHP cannot be proved in constant depth and polynomial size.

Ajtai did not give an explicit lower bound for the depth of polynomial size
proofs but in a later reformulation by Bellantoni et al. [2], a lower bound of
Ω(log∗ n) was given. This was later strengthened [11, 9] to obtain Ω(log log n)

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 142 (2017)



lower bounds for PHP. Similar bounds were later proved by Urquhart and Fu
[18] and Ben-Sasson [3] for Tseitin contradictions for the complete graph and
for constant-degree expander graphs, respectively.

On the positive side Buss [5] proved that there are polynomial size O(log n)-
depth proofs for the PHP and similar proofs can be constructed by similar
methods for the Tseitin contradiction for any constant-degree graph.

The exponential gap between the depth bounds log log n and log n was re-
cently partly closed by Pitassi et al. [12] obtaining a Ω(

√
log n) lower bound

for Tseitin contradictions on a certain 3-regular expander graph. It is curious
to note the size lower bounds of [12] when considering depth d is exponential
in Ω((log n)2/d2) and thus only weakly superpolynomial. For small values of d,

this bound is weaker than the bounds of the form exp(nc
−d

) obtained in previous
paper but extends the range of d for which the bound is superpolynomial.

In the current work we study the Tseitin contradictions for the 2-dimensional
grid and almost close the gap obtaining size lower bounds exp(Ω(n1/58(d+1))) for
depth d proofs and hence the depth lower bound Ω(log n/log log n) for polyno-
mial size proofs. Our proofs follow the same paradigm as earlier proofs and let
us sketch the underlying mechanisms at a semi high level to put our contribution
in perspective.

When studying circuits of small depth it has turned out to be profitable
to study restrictions that fix most of the input variables to constants. This is
useful as for suitably chosen restrictions it is possible to decrease the depth of
almost all small circuits by one. This was first used to prove lower bounds for
circuit-size [6, 16, 19, 8] and the simplest case is when proving lower bounds for
the size of depth-d circuits computing parity. Let us briefly discuss this case.

In this situation one uses the simplest space of random restrictions usually
denoted by Rp. In such a restriction, each input variable is, independently of all
other variables, kept with probability p and otherwise set to 0 or 1 with equal
probabilities. The key notion for decreasing depth is a switching lemma which
says that if you are given a depth two circuit with bottom fanin t then, if you
at the same time apply a restriction, it can be switched to a depth 2 circuit of
the other type of bottom fanin s, except with probability at most (5pt)s.

Using this switching property for the two layers closest to the input creates
two adjacent layers of gates of the same type which makes it possible to decrease
the depth of the circuit by one. To prove a lower bound for parity one just needs
to make the trivial observation that the resulting circuit must compute the
parity (or the negation) of the remaining variables. Applying d− 1 restrictions
we are able to make the circuit simple enough to be analyzed directly. The
number of remaining variables is about pd−1n and we need a large enough p to
make this this number non-trivial.

To prove lower bounds for the size of proofs for various families of formulas
one needs more subtle restrictions. We are no longer computing a function but
instead given a set of axioms. We want that a restriction reduces the problem
to a smaller problem of the same type. This is more or less equivalent to that
each axiom is either reduced to an axiom of the smaller instance or to something
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that is a tautology. We must, at all cost, make sure that no axiom is made false
as this would imply that the contradiction we are trying to prove cannot be
produced, is available as an axiom. In most cases each axiom is of constant size
and this implies that we cannot use restrictions, such as those of Rp, that treat
the variables independently. Restrictions that give values in a dependent way
cause problems with the proof (or even validity) of the switching lemma. The
key is thus finding a balance between the property of preserving the axioms of
the formula we are studying while still being able to prove a switching lemma
with good parameters.

Note that this is a balance to be kept as when studying k-CNF formulas,
we need to preserve these particular clauses while switching implies that we
can simplify all functions defined by depth-d circuits. This is not, however,
as impossible as it sounds as we are allowed to make most clauses true while
making sure that a small fraction of the clauses remain undetermined. We must,
however, as stated above, avoid making any clause false.

On the high level, the strength of a switching lemma is controlled by the
size of the smaller instance obtained (which corresponds to the parameter p
for independent restrictions) and how the failure probability depends on the
parameters s and t. To fully understand the tradeoffs possible here requires
very detailed understanding of the space of restrictions but let us give some
superficial remarks.

In most situations, the probability of keeping a variable must be lower than
the probability of it taking either the value 0 or 1. When the two values are
balanced this is not a severe problem. For the PHP, however, where a variable
taking the value 1 signifies that a particular pigeon flies to a particular hole
this is a limiting factor. In fact this leads to choices corresponding to p = n−c

for some positive constant c. This implies that the size of the problem goes
from n to n1−c in order to reduce the depth of the formulas in the proof by
one. This can only be repeated O(log log n) times before the problem becomes
trivial. This is a bottleneck in some previous arguments.

The set of formulas introduced by Tseitin on a graph G has variables corre-
sponding to edges and the formula says1 that the edges adjacent to a node sum
to one modulo two. For any odd sized graph this is a contradiction. For as-
signments to variables satisfying these conditions locally, 0 and 1 are symmetric
and hence the problem of biased bits does not exist for the Tseitin formulas.

The switching lemma of [12], however, has failure bounds on the form
(cpt2t)s. The reason for the factor 2t is a bit mysterious and indeed [12] con-
jectures that it is not needed. We note that the paper by Mehta [10] describes
similar situations where the factor is indeed needed.

We are not quite able to get optimal parameters in the current proof but we
do improve the troublesome factor 2t of [12] to tc for a constant c. This implies
that the loss in one application of the switching lemma roughly corresponds to
c applications of the lemma with the optimal parameters and thus we get this

1For readers familiar with this family we are using the case when all charges are one as
opposed to the general case.
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multiplicative factor in front of d. As this is a constant we get asymptotically
sharp bounds for the depth of polynomial size proofs.

A key point in the proof is the choice of the space of restrictions. The high
level picture is not surprising. Given a n × n grid we pick sub-squares of size
T × T (where T is poly-logarithmic when studying polynomial size proofs and
nΩ(1/d) in general) and in each sub-square we pick a node and connect the picked
nodes by paths. For each path P we have a new variable xP , and for each edge
e on P the variable xe is either replaced by xP or its negation x̄P . This is done
in a way that independent of the values of these new variables all constraints,
except at the picked nodes are automatically satisfied while the constraints at
the picked nodes give the constraints of the smaller instance.

In order to be able to prove a switching lemma we have to be slightly careful.
First of all, as we have limited independence it turns out to be easier to use a
labeling argument of Razborov [13] as opposed to a reasoning with conditional
probability of H̊astad [8]. Once we have found some variable that is still alive,
the rather rigid topology of the grid reveals other variables that are likely to be
alive. It is advantageous for the analysis if we can immediately tell which other
variables are also alive, and if these depend on the same remaining variable,
these are essentially for free. The easiest way to achieve this would be that any
edge determines the entire path on which it lies. This is impossible to achieve
in a constant degree graph such as the grid, as edges close to the picked nodes
must lie on many different paths. For the paths that we use this is the only part
of the paths that intersect and this limited ambiguity of which path(s) an edge
might belong to can be handled. An important property is that even though an
edge can lie on many paths, we are able to make sure that all these paths share
an endpoint and this is sufficient for the argument.

The essential new part of the current paper is the choice of restrictions and
the proof of the switching lemma. The way to analyze how restrictions make all
sub-formulas be represented by small-depth decision trees is done as in previous
papers.

An overview of the paper is as follows. We start with some preliminaries
in Section 2 and proceed with some properties of the grid and assignments
that satisfies some parity conditions in Section 3. We define our restrictions in
Section 4. The final, full, restriction is picked by a two-stage process. We first
pick a relatively small but fairly dense set of nodes to be potentially used by
the restriction. The key property here is that they can be picked independently
and we can still be sure that each sub-square has roughly the expected number
of potential surviving nodes. We may then, in the second stage, pick one of the
nodes to be the actual survivor in essentially any way. The first independent
picking of surviving nodes is the main probabilistic event that is analyzed in the
switching lemma.

We proceed to recall the formalism of t-evaluations in Section 6 after having
described some basic properties of consistent decision trees in Section 5. Assum-
ing the switching lemma we are able to complete the proof of our main theorem
also in Section 6 and we end by the proof of the switching lemma in Section 7.
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2 Some preliminaries

We have a graph G which we call “the grid” but to avoid problems at the
perimeter we in fact use the torus. In other words we have nodes indexed by
(i, j), for 0 ≤ i, j ≤ n−1 where n is an odd integer and a node (i, j) is connected
to the four nodes at distance 1, i.e. where one coordinate is identical and the
other moves up or down by 1 modulo n. For each node v we have a charge αv
and for each edge e in the graph we have a variable xe. A Tseitin formula is
given by a set of linear set of equalities modulo 2. In particular for each v we
have ∑

e3v
xe = αv.

The main case we consider, which we call “the Tseitin contradictions” is
when αv = 1 for each v. We do use more general charges in intermediate steps
and hence the following lemma is useful for us.

Lemma 2.1 Consider the Tseitin formulas with charges αv. If
∑
v αv = 0 this

formula is satisfiable and has 2rn solutions where the positive integer rn depends
only on n and not on the value of αv.

Proof: Let us first establish that the system is satisfiable. Take any assignment
to all variables xe and suppose we have at least two nodes v1 and v2 whose
constraints are violated. Take a path connecting v1 and v2 and negate all
variables on this path. This new assignment satisfies the constraints at v1 and
v2 and does not change the validity at any other node, as for other nodes either
zero or two adjacent variables change their values. We can repeat this process
until at most one constraint is violated. Summing all constraints shows that the
number of violated constraints is even and thus in fact all constraints must be
satisfied at the end of this process.

As the number of satisfying assignments to a satisfiable system of linear
equations does not depend on the right hand sides, the other part of the lemma
is immediate.

As a converse to the above lemma, when
∑
v αv = 1 it is easy to see, by sum-

ming all equations, that the system is contradictory. In particular the Tseitin
contradictions with αv = 1 for all v are indeed contradictions for graphs with
an odd number of nodes. We note that each Tseitin formula can be written as
a 4-CNF formula by having 8 clauses of length four for each node.

We are interested in proofs in the form of deriving the constant false from
these axioms. The exact reasoning rules turn out not to be of central importance
but are stated in Section 6. The important properties of these rules are that
they are sound and of constant size.

The sub-formulas that appear in this proof are allowed to contain only ∨-
gates and negations. We simulate ∧ using ∧Fi = ¬ ∨ ¬Fi and we define the
depth of a formula to be the number of alternations of ∨ and ¬.
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3 Properties of assignments on the grid and dy-
namic matchings

We are interested in solutions to subsystems of the Tseitin contradictions. It
follows from Lemma 2.1 that as soon as we drop the constraints at a single node
we have a consistent system and indeed many solutions.

On a set X of nodes we say that a partial assignment is complete if it gives
values to exactly all variable with at least an endpoint in X. The support of a
partial assignment is the set of nodes adjacent to a variable given a value. Note
that the support of a complete assignment on X also includes the neighbors of
X.

We consider partial assignments that give values to few variables and in
particular we are interested in cases where the size of the set X is at most n/2
and hence cannot touch all rows or columns of the grid. Let Xc denote the
complement of X.

In this case, Xc contains a giant component containing almost all nodes of
the grid. This follows as there are at least n/2 complete rows and columns in Xc

and the nodes of these rows and columns are all connected. The other, small,
components of Xc are important to control as an assignment on X might fail
to extend in a consistent way to such a component. To avoid this problem for
a set X we let the closure of X, cl(X) denote all nodes either in X or in small
connected components of Xc. Note that cl(X)c is exactly the giant component
of Xc.

Definition 3.1 An assignment α supported on a set X is locally consistent if
it can be extended to a complete assignment on cl(X) that satisfies all parity
constraints on this set.

We extend this definition to say that two assignments are consistent with
each other if they do not give different values to the same variable and when
you look at the union of the two assignment this gives a locally consistent
assignment. Let us prove a lemma that is fairly obvious but still central for our
argument.

Lemma 3.2 Suppose α is a locally consistent assignment supported on a set of
size at most n/2 and xe a variable not in the support of α. Then there is a
locally consistent assignment α′ that extends α and gives a value to xe.

Proof: Suppose the support of α is X and let X+ be X with the endpoints
of e added. First extend α to be an assignment that satisfies the constraints
on cl(X) and then take any further extension that gives values to all variables
touching cl(X+). Suppose this assignment violates the parity constraint at a
node v. Take a path that starts at v and ends in the giant component of cl(X+)c

and does not pass through any node in cl(X). This is possible as cl(X)c is
connected and the given assignment satisfies all constraints on cl(X) and hence
v ∈ cl(X)c. Negate the variables corresponding to edges on this path. The new
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assignment satisfies the constraint at v, still extends α and does not cause any
new violations on cl(X+). Repeating this procedure for any v ∈ cl(X+) that
has its constraint violated creates a locally consistent assignment that extends
α and gives a value to xe.

A process that is important for us is the following dynamic matching game.
We have two players, one adversarial player that supplies nodes while the other,
matching player PM , is supposed to dynamically create a matching that contains
the nodes given by the adversarial player. As the full grid is of odd size and
hence does not have a perfect matching the adversarial player will eventually
win, but clearly PM can survive for a while and this will be sufficient for us. To
be more precise we have the below lemma.

Lemma 3.3 When the dynamic matching game is played on the n × n grid,
PM can survive for at least n/2 moves.

Proof: PM maintains a matching of part of the grid (containing the supplied
nodes and some extra nodes) and if the supplied node is in the support of this
matching PM gives the already predetermined answer. If this is not the case
then PM needs to extend the matching.

The partial matching matches a set which is a cross-product of a set R of
rows and a set C of columns. We maintain the property that both these sets
are the unions of a number of intervals each of even size. To avoid a degenerate
case we start with R and C both being two adjacent points covering the first
node supplied by the adversary.

Faced with a node (x, y) outside this set, PM , proceeds as follows. If x is not
in R then PM adds x to R and as the matching PM adds pairs (x, c), (x, c′) with
c and c′ adjacent to cover x×C. This is easy as C is a union of intervals of even
size. This process makes R have exactly one interval of odd size. This might
be the singleton x or a longer interval if x was adjacent to an interval already
in R. In either case it is easy to find an x′ to add to R to make this interval
of even size. This might cause two intervals of R to merge but as the union of
two intervals of even size is an interval of even size, this is not a problem. A
matching on x′×C is found and added to complete the process of adding rows.

Turning to columns, if y ∈ C we are done but it this is not the case we can
add two columns in an analogous way. As we add at most two rows and two
columns in each step the described process can go on for at least n/2 steps.

4 Restrictions

The plan is to make a probabilistic assignment to variables of the grid that
reduces the Tseitin contradiction to a smaller contradiction of the same type in
a way that enables us to simplify all formulas appearing in an attempted proof.
As the final product is a rather rigid object we utilize an intermediate partial
restriction that leaves slightly more variables unset but has better independence
properties. We start by defining the full restrictions.
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4.1 Full restrictions

In an n × n grid we make sub-squares of size T × T where T is odd. In each
sub-square we choose2 ∆ =

√
T/2 of the nodes and call them centers. These are

located evenly spaced on the diagonal of the 3T/4 × 3T/4 central sub-square.
This implies that they have separation 3

√
T/2 = 3∆ in both dimension. A

schematic picture of this is given in Figure 1.

T

T

q q q q
q q q q

q q q q
q q q q

q q q q
q q q q

q q q q
q q q q

q q q q

Figure 1: The centers and central areas

The centers in neighboring sub-squares are connected by paths that are edge-
disjoint except close to the endpoints. Let us describe how to connect a given
center to a center in the sub-square on top. As there are T/4 = ∆2 rows between
the two central areas, for each pair of centers (the jth center, cj in the bottom
sub-square and ith center c′i in the top sub-square) we can designate a unique
row, rij in this middle area.

To connect cj to c′i we first go i steps to the left and then straight up to the
designated row rij . This is completed by starting at c′i and then going j steps
to the right and down to the designated row. We finally use the appropriate
segment from the designated row to complete the path (which might be in either
direction). A rough picture of this is given in Figure 2. We index the centers
from 1 to ∆ and hence each path consists of 5 non-empty segments. The first
and last segments are totally within the central area while the middle segment
is totally in the area between the central areas. Segments two and four go from
the central areas to the area in-between.

2For simplicity we assume that some arithmetical expressions that are supposed to be
integers are in fact exact as integers. By a careful choice of parameters this can be achieved
but we leave this detail to the reader.
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Figure 2: A path

Connecting cj to a center c′i in a sub-square to the left is done in an analogous
way. There is a unique column cij reserved for the pair and the path again
consists of five non-empty segments. The first and last segments consist of i
vertical edges up from cj , and j vertical edges down from c′i. We add horizontal
segments connecting to the designated column cij the middle segment is along
this column. We state a formal property of these paths.

Lemma 4.1 The described paths are edge-disjoint except for the at most ∆
edges closest to an endpoint. For each edge e, if there is more than one path
containing e, these paths all have the same endpoint closest to e.

Proof: We start by checking the disjointness property. Let us first consider a
horizontal edge inside the central area. If it is on the same row as a center then
it can only be as the first or last part of a path connecting two centers in two
sub-squares on top of each other. As the length of these segments are at most ∆
and the horizontal separation between centers is 3∆ these segments originating
at different centers do not overlap.

A horizontal edge not on the rows of a center can only appear on the second
and fourth segments of a path connecting two centers which are sideways of
each other. As the length of the first segment of these paths is at most ∆, the
center to which it connects is unique and the vertical distance to the row of this
center uniquely identifies the other endpoint.

The above argument continues to hold for horizontal edges in the area be-
tween two central areas which are sideways of each other. For vertical edges in
the same area each column uniquely identifies the two endpoints by definition.

In the area outside the central area but between two central areas, one of
the top of the other, the situation is symmetric. The case of vertical edges in
the central area is also analogous to the case of horizontal edges.
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Finally in the area outside the central areas and outside the just described
parts, i.e. close to the corners of the T × T squares, there are no paths.

Thus the paths are edge-disjoint except the first and last segments close to
the endpoints.

The edges on the three middle segments on a path determine both endpoints
of the path. Using this would slightly improve some constants but for simplicity
we do not. We let the term closest endpoint of an edge denote the closest
endpoint of its path if it is in the first or last segment. For the other segments
we could chose either endpoint and we can take the literally closest endpoint
breaking ties in an arbitrary way. The key property we need is that the “closest
endpoint” of a path through an edge is uniquely defined by the edge.

We define the direction of a path to be the relative positions of the sub-
squares of its two endpoints. It is true that the paths are undirected but at
times when we consider paths from a fixed center v it is convenient to think of
such paths as starting at v and thus speak of paths going left or right from v
rather than sideways. We note that apart from having the same closest endpoint,
all paths through one fixed edge e have the same direction.

A restriction is defined by first picking one center in each T × T sub-square
and then the paths described above connecting these centers. Note that these
paths are edge-disjoint (and also vertex-disjoint except at the endpoints, but this
is more complicated to see and not important). The picked centers naturally
form a n/T × n/T grid if we interpret the paths between the chosen centers
as edges. We proceed to make the correspondence more complete by assigning
values to variables.

Pick a random solution to the Tseitin formula with charges 0 at the chosen
centers and 1 at other nodes. As the number of chosen centers is odd, by
Lemma 2.1, there are many such solutions. For variables not on the chosen
paths these are the final values while for variables on the chosen paths we call
them suggested values.

For each path P between two chosen centers we have a new variable xP and
for each variable xe on P it is replaced by xP if the suggested value of xe is 0
and otherwise it is replaced by x̄P .

We claim that with these substitutions we have reduced the Tseitin problem
on an n × n grid to the same problem on an n/T × n/T grid. This is true in
the sense that we have an induced grid when we interpret paths as new edges
and we need to see what happens to the axioms.

Given a formula F we can apply a restriction σ to it in the natural way
resulting in a formula denoted by F dσ. Variables given constant values are
replaced by constants while surviving variables are replaced by the appropriate
negation of the corresponding path variable. A restriction has a natural effect
on the Tseitin contradiction as follows.

• The axioms for nodes not on a chosen paths are all reduced to true as all
variables occurring in them are fixed in such a way that the axioms are
true.
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• The axioms for interior nodes of a chosen path are reduced to tautologies
as the axiom is true independent of the value of the involved variable(s)
xP . This is true as flipping a single xP changes the value of two variables
next to any such node.

• The axioms at the chosen centers turn into the axioms of the smaller
instance.

These just defined restrictions are called full restrictions as they completely
reduce a full size problem to a smaller problem. A typical full restriction is
denoted by σ. Note that these full restrictions are really “affine restrictions” in
the vocabulary of [15] as they do not only assign values to variables but also
identify several old variables with the same new variable which might also be
negated. For simplicity, however, we keep the simpler term “restrictions”.

We construct a full restriction by first making a partial restriction and we
turn to defining these next.

4.2 Partial restrictions and pairings

A typical partial restriction is called ρ and as we mostly discuss partial restric-
tions we simply call them “restrictions” while we use the term “full restrictions”
when that is what we have in mind. At the same time as describing partial re-
strictions we give a probability distribution on such restrictions.

Let k be an odd integer of the form Cs(n/T )2 for a constant C to be de-
termined, where s an upper bound on the depth of the decision tree we are
analyzing. The first step of constructing ρ is picking k centers uniformly at
random from the set of all ∆(n/T )2 centers defined in the previous section.
These are the alive centers. In the future we only consider the case when the
number of live centers in each sub-square is between a factor .99 and 1.01 of its
expected value Cs. The probability of this being false is O(n2e−Ω(s)) and this
is simply added to other failure probabilities. We are careful to make sure that
s = ω(log n).

We define charges that are 0 for all live centers and 1 for dead centers. As
the number of live centers is odd we can apply Lemma 2.1 and pick a random
solution with these charges to the Tseitin formula. For edges not on paths
between live centers these are final values while for variables on such paths we
call them preferred values.

The choice of the centers together with the fixed and preferred variables
is denoted by ρ. The choice of ρ is the main probabilistic event. Note that
by Lemma 2.1 the number of possible values for fixed and preferred values is
independent of which centers are alive and even of k as long as it is odd.

A partial restriction ρ is, for the analysis, preferable to a full restriction σ as
it behaves much more independently. A drawback is, however, that as soon as a
live center v is discovered then we have many paths leaving v in ρ and this could
result in a deep decision tree if they all corresponded to live variables. In order
to avoid this we add a second step, a pairing π, turning a partial restriction into
a full restriction.
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Choose one center to survive in each sub-square. These are called the chosen
centers and paths between such centers correspond to the variables that remain
and are called chosen paths. Centers that were alive through the first part of
the process but are not chosen are called non-chosen. The centers killed already
by ρ are simply called dead.

The simplest way to eliminate the non-chosen centers would be if we were
able to pair them up in such a way that the two centers in a pair are in adjacent
sub-squares and hence connected by a path. In such a case we could negate
the preferred values along this path and after this make the preferred values
permanent outside the chosen paths. Note that this makes sure that the parity
condition at these non-chosen centers are now satisfied. For variables on the
chosen paths we turn the preferred values into suggested values completing the
full restriction.

Such a pairing might exist with high probability but, as we do not know
how to prove this fact, we allow a more general way of eliminating non-chosen
centers. We still call this object a pairing as it is not too far from the truth and
gives the right intuition.

Definition 4.2 A pairing π is a graph supported on the non-chosen centers.
Each component of π is either a single edge or a star of size four with one
center and three nodes of degree one. Connected centers are located in adjacent
sub-squares.

Before we study pairings let us establish some notation. As the original grid
is also a graph with edges we from now on use the term “grid-edges” to refer to
edges in the original grid. The chosen centers form a smaller grid and this also
has edges and we call these “new grid-edges”. We only consider paths in the
original grid and we keep the shorter term “path” for these. Thus from now on
an “edge” is a connection between two live centers and corresponds to a path
in the grid-graph. A “new grid-edge” corresponds to a chosen path and is thus
also an edge in the graph of the live centers.

Some edges are conflicting in that we do not allow them to be present in the
graph at the same time. More precisely we allow at most one path in each of
the four directions from a center. As picking a path corresponds to changing
the variables on this path this is the same as saying that the variables can only
change at most once.

Lemma 4.3 If each sub-square has between .99Cs and 1.01Cs non-chosen cen-
ters, a pairing π exists.

Proof: For each pair of neighboring sub-squares we want to determine the
number of edges of π to go between these two sub-squares. Let m be the
smallest integer greater or equal to .26Cs, then the number of edges between
any two neighboring sub-squares will be either m or number or m+ 1. As each
non-chosen center is of odd degree in π the parity of the number of edges leaving
a fixed sub-square is determined and we need to take this into account. We do
this by finding a solution to a solvable Tseitin instance.
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For each pair of neighboring sub-squares introduce a variables ye (these cor-
respond to new grid-edges) and make the constraint that the four such variables
leading into a sub-square sum modulo 2 to the parity of the number of non-
chosen centers in this sub-square. As the total number of non-chosen centers is
even (both k and the number of chosen centers are odd) this is a solvable in-
stance. Take any solution and fix the number of paths between two sub-squares
corresponding to new grid-edge e to be m+ ye.

Consider any sub-square. Suppose that the number of non-chosen centers
in it is a. By the just determined variables we know that we should have
1.04Cs + δ edges leaving the sub-square for the some δ ∈ [0, 7]. This fixes the
number of degree three centers in that sub-square to (1.04Cs + δ − a)/2 and
by the construction of the numbers ye this is an integer and by the assumption
a ∈ [.99Cs, 1.01Cs] it is positive and bounded by .025Cs + 3. Choose this
number of centers to be of degree 3 and connect these to centers in adjacent
sub-squares, making sure to connect each center only once. Once this is done
we can pair up the remaining centers respecting the number of edges between
any two sub-squares.

We could have a probability distribution on π but this does not seem natural
and in fact we work with any π. This choice does not matter greatly and this
can be seen as follows. In the end when analyzing the process of creating a
decision tree we only use a very local piece of π. In particular when looking for
a decision tree of depth s we only analyze what happens to O(s) centers in π.
There are only sO(s) alternatives for these centers and factors of this size change
very little in our argument.

As stated above π makes it possible to turn ρ into σ. Variables not on
live paths take their fixed values. Variables on live paths but not on chosen
paths take their preferred values unless they are on a path chosen by π in which
case these values are negated. On the chosen paths, the preferred values now
becomes suggested and this completes the description of σ.

We use the term “preferred values” as a vast majority of the variables will
eventually be fixed to these values as very few variables appear on the paths
of π. On the other hand “suggested values” are much less certain as the path
variables should be thought of as equally likely to be 0 and 1 and thus these
variables are equally likely to take also the non-suggested value.

As an intermediate between ρ and the full restriction σ we have ρ and some
information in the form of existence or non-existence of edges. We have the
following definition.

Definition 4.4 A piece of information is either in form of an edge (v, w) for
two centers v and w or (v, δ,⊥) where v is a center and δ is a direction (i.e.
“left”, “right” “up” or “down”). The former says that there is an edge from v
to w while the latter says that there is no edge from v in the direction δ.

We note that, as edges are undirected (v, w) and (w, v) denote the same
information. In some situations we are, however, interest in the information
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starting a v in all four directions and then it useful to use the notation with v
in the first component. We use sets of information pieces.

Definition 4.5 An information set, I, is a collection of information pieces. Its
support is the set of centers mentioned in these pieces. An information set is
consistent if it does not have two different pieces of information from the same
center in one fixed direction. Furthermore, if I has information in all four
directions from a center v then it has an odd number of edges touching v.

Note that here, as opposed to the grid, we do not have a problem of small
connected components in the complement of a set of centers. This follows as we
only consider information sets of size O(s) and a center has a potential edge to
all centers in neighboring sub-squares. Jointly with ρ an information set fixes
the values of some more variables as follows.

Definition 4.6 Let ρ be a restriction and I an information set. A variable xe
is considered forced by (ρ, I) iff either its closest endpoint, v, is not live in ρ or
if the information of v in the direction of e is contained in I. It is forced to its
preferred value unless the relevant information piece states that there is an edge
from v in the direction of e that corresponds to a path that passes through e in
which case it takes the opposite value.

There are other situations where the value of a variable might be determined
by ρ and I, such as the lack, or scarcity, of live centers in a sub-square but we
do not allow the algorithm to use this information. We need the notion of a
closed information set.

Definition 4.7 An information set I is closed if it is supported on a set X of
centers such that for any v ∈ X the set I contains the information in all four
directions.

The definition implies that for any v ∈ X, in any direction δ where there is
not an element of X, we have a non-edge (v, δ,⊥). When considered as a graph
such an information set is an odd-degree graph (with degrees one and three) on
the centers of X.

Note that if we have a closed information set I then if we consider all variables
forced by (ρ, I) this can be described by a restriction where the centers in the
support of I are killed. We simply negate the values of any preferred variable
on any path in I and then forget that the centers in the support of I were alive.

Thus, if we let such a closed information set operate on a restriction ρ we
get a restriction with fewer live centers where the number of killed centers is
exactly the number of centers in the support of the corresponding graph.

5 Decision trees

We have decision trees where each internal node is marked with a variable and
the outgoing edges are marked with 0 and 1. The leaves of a decision tree are
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labeled by 0 and 1. We allow decision tree of depth 0 which are constants 0 or
1.

All decision trees considered in this paper have a depth that is smaller than
the dimension of the grid we are currently considering. For each branch in a de-
cision tree there is partial assignment that forces an input to follow this branch.
As the branch is short we call it consistent if the corresponding assignment is
consistent in the sense of Definition 3.1.

We trim decision trees to maintain the property that all branches of a deci-
sion tree are consistent. When a decision tree is created this is not a problem
but trimming takes place when we consider what happens under a partial as-
signment τ or a full restriction σ. In that latter case, the initial decision tree
uses the variables xe while the resulting decision tree uses the new variables xP .
Let us first consider the case of a partial assignment τ .

In each situation when walking down the tree if we encounter a variable such
that one of its values would make the branch, jointly with τ , inconsistent we
simply erase the sub-tree of the inconsistent value and remove the query for
the variable whose value is forced by consistency. That at least one branch is
consistent follows from Lemma 3.2.

When considering an full restriction σ the situation is very similar. Many
variables are fixed and variables alive are identified with the new variables xP .
The first time such a variable xe identified with a particular variable xP is
queried this results in a query (unless it is fixed by consistency) while for later
variables xe′ on the same path P their values are dictated by the found value
for xp and whether xe′ is identified with xP or x̄P which in its turn depends on
the suggested value for xe′ .

A more static way is to consider all branches of T from the root to a leaf
and see which of the corresponding assignments are consistent with σ (or τ).
The consistent branches remain and the not consistent branches are erased. It
is easy to see that the remaining branches (possibly after some contractions)
nicely fit into a decision tree and in fact the decision tree we just defined above
by the dynamic process.

If the depth of a decision tree is greater than the size of the remaining grid
after σ we could be in a situation that no branch of the tree is consistent with
σ. We make sure this does not happen by only considering shallow trees.

We let a 1-tree be a decision tree where all leaves are labeled 1 and define
a 0-tree analogously. Special cases of such trees are trees of depth 0. Next we
turn to a procedure of representing formulas by decision trees of small depth.

6 t-evaluations

We have a supposed proof and we have the set of formulas that appear in
the proof. We also have each sub-formula in each of these formulas and this
gives a set of formulas Γ. We consider t-evaluations ϕ, as defined by [18], that
map formulas to decision trees of depth at most t. Such mappings will not be
total and we are interested in finding t-evaluations defined over as large set of
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formulas as possible. This is made possible by, at the same time as extending
the domain, applying a restriction. Let us define the desired properties required
of t-evaluations.

1. The constant true is represented by a constant 1 and the constant 0 is
represented by a constant 0.

2. If F is an axiom of the Tseitin contradiction then ϕ(F ) is a 1-tree.

3. If ϕ(F ) = T then ϕ(¬F ) is a decision tree with the same topology as T
but where the value at each leaf is negated.

4. Suppose F = ∨Fi. Consider a leaf in ϕ(F ) and the assignment, τ leading
to this leaf. If the leaf is labeled 0 then for each i ϕ(Fi)dτ is a 0-tree and
if the leaf is labeled 1 then for some i, ϕ(Fi)dτ is a 1-tree.

The intuitive role of ϕ(F ) is that it represents the formula F as a function
on all assignments that satisfy3 “the relevant” local Tseitin constraints. As F
might depend on all variables this does not make complete sense, but for F
that depends on few variables this intuitive notion is literally true. For large
formulas the correspondence is not as direct and for F = ∨Fi the representation
might depend on the order of the sub-formulas Fi.

As an example let us explicitly give the representation of an axiom and take
(xe1 ∨ xe2 ∨ xe3 ∨ xe4) where ei are the four grid-edges incident to a center v.
Naturally each variable is represented by a decision tree of depth one. This
clause is represented by a decision tree of depth three with all leaves labeled 1
querying the variables xe1 , xe2 , and xe3 in order. The only leaf that requires
a little bit of thought to see that it is labeled 1 is the node where all three
variables are zero. In this leaf, xe4 is reduced to a decision tree of depth 0 with
label 1 as the only value of xe4 consistent the three 0s is 1.

Note that we cannot represent this formula by a smaller tree as, by rule 4,
for each 1-leaf, we must have an assignment that forces one of the decision trees
for xei to be a 1-tree.

As another example consider the conjunction of all the axioms. As we do
not have any ∧-gates, this is represented as the negation of the disjunction of
the negations of all axioms. As we just saw, each axiom is represented by a
1-tree of depth 3 and hence its negation is a 0-tree of the same depth. Any
disjunction of such trees can be represented by a decision tree of depth zero
where the only leaf has label 0 and hence the representation of the negation of
such a disjunction is a tree of depth 0 with label 1.

Thus we have constant one as a representation for a formula that, when
interpreted in the natural way, evaluates to false on each input. The reason is
that each sub-formula looks true in the local sense and the conjunction of any
number of sub-formulas that look true is considered true.

For a general set of formulas we cannot hope to have a t-evaluation for a
small t and our plan is to proceed as follows for i = 0, 1, 2 . . . d.

3This is achieved since we only consider branches in decision trees which are consistent.
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• We have a t-evaluation for all formulas of Γ that were originally of depth
i.

• Pick a random full restriction σi and extend the t-evaluation to all formulas
of Γdσi

of original depth at most i+ 1.

At the starting point, i = 0, each formula is a literal which is represented
by a natural decision tree of depth 1 and we start by proving that t-evaluations
are compatible with restrictions.

Lemma 6.1 Given a set of formulas Γ′ and a t-evaluation ϕ whose domain
includes Γ′ and let σ be full restriction whose output is a grid of size n. Then,
provided that t < n, ϕ(F )dσ is a t-evaluation whose domain includes Γ′dσ.

Proof: This is an easy consequence of the definitions but let us go over the
various possibilities. Hitting a decision tree with a full restriction can never
increase the depth of the decision tree and hence all representations are decision
trees of depth at most t. Note also that as t < n some branch of the decision
tree is consistent with σ. We need to check the properties of a t-evaluation.

The first and second properties are obvious as a restriction does not change
the fact that something is 1-tree or a 0-tree.

The third property is also rather obvious. The decision trees for F and
¬F are effected the same way and there is nothing that can change that the
corresponding leaves have labels that are the negations of each other.

For the fourth property consider any branch in T that appears in T dσ and
the corresponding assignment τ which, by definition of T dσ, is consistent with
σ. As already τ reduces the Ti in a good way, we need only observe that Tidσdτ
is a non-empty decision tree and hence it is a 1-tree or a 0-tree as desired.

Now we eventually come to the key lemma of the entire argument.

Lemma 6.2 Let s′ be an integer and s = max(s′, t), then there is a constant
A such that the following holds. Suppose there is a t-evaluation that includes
Fi, 1 ≤ i ≤ m in its domain and let F = ∨mi=1Fi. Let σ be a random full re-
striction from the space of restrictions defined in Section 4. Then the probability
that F dσ cannot be represented by a decision tree of depth at most s′ is at most

(As27t∆−1)s
′/108.

We postpone the proof of this lemma to Section 7 and see how to use it. We
apply it with s′ = t = s = 1

2n
1/(58(d+1)) and ∆ = s29 (and hence T = 4s58) and

let us fix these values.
We start with the original Tseitin contradiction on the n × n grid. Let

ni = nT−i. We are going to choose a sequence of full restrictions σi mapping
a grid of size ni to a grid of size ni+1 randomly. Let σ∗i be the composition of
σ0, σ1, . . . σi. As stated above, Γ is the set of sub-formulas that appear in an
alleged proof and we let

Γi = {F dσ∗
i
|F ∈ Γ ∧ depth(F ) ≤ i}.

Let fi be the number of sub-formulas of depth at most i in Γ.
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Lemma 6.3 With probability 1−fi(s/A)−s/108 there is a t-evaluation ϕi whose
domain includes Γi.

Proof: This is essentially collecting the pieces. We prove the lemma by in-
duction over i. For i = 0 we have the t-evaluation that maps each literal to its
natural decision tree of depth 1.

When going from depth i to depth i+1 we need to define ϕi+1 on all formulas
originally of depth at most i+ 1 and consider any such F .

1. For each F of depth i it is, by induction, in the domain of ϕi and we can
appeal to Lemma 6.1.

2. If F is of depth i then ϕi+1(¬F ) is defined from ϕi+1(F ) negating the
labels at the leaves.

3. For F = ∨Fi where each Fi is of depth i we apply Lemma 6.2.

The only place where the extension might fail is under step three but, by
Lemma 6.2, the probability of failure for any individual formula is at most
(s/A)−s/108 and we have at most fi − fi−1 formulas the induction is com-
plete.

As a final piece we establish that all formulas appearing in a short proof
must be represented by 1-trees and as the constant false is represented by a
0-tree we cannot derive the desired contradiction in a short proof. In order to
prove this we must go over the derivation rules of our proof system. The details
are not important and we choose the same rules as [12] and these are as follows.

• (Excluded middle) (p ∨ ¬p)

• (Expansion rule) p→ (p ∨ q)

• (Contraction rule) (p ∨ p)→ p

• (Association rule) p ∨ (q ∨ r)→ (p ∨ q) ∨ r

• (Cut rule) p ∨ q,¬p ∨ r → q ∨ r.

Lemma 6.4 Suppose we have derivation using the above rules and using the
Tseitin conditions in the n × n grid as axioms. Let Γ be the set of formulas
appearing as sub-formulas of any formula in the given derivation and suppose
that we have a t-evaluation whose domain includes Γ where t ≤ n/3. Then each
line in the derivation is mapped to a 1-tree. In particular we do not reach a
contradiction.

Proof: We prove this by induction over the number of lines in the derivation.
We constantly make use of the fact that t ≤ n/3 to conclude that for any decision
tree, T , in the domain of the t-evaluation and any assignment τ to at most 2t
variables we have that T dτ is still a non-empty decision tree. By assumption
each axiom is represented by a 1-tree and we consider the derivation rules.
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Let us first look at excluded middle F = p ∨ ¬p. Take any leaf in ϕ(F ) and
let τ be the assignment leading to this leaf. As p and ¬p are represented by
trees that only differ in that the labels at the leaves are negated they cannot
both be reduced to 0-trees by τ and hence we conclude that the label of the leaf
in ϕ(F ) must be 1.

For the expansion rule let F = p ∨ q. Take any leaf in ϕ(F ) and let τ be
the assignment leading to this leaf. If this leaf has label 0 then, by definition,
ϕ(p)dτ must be a 0-tree but this contradicts that ϕ(p) is a 1-tree.

Now consider the contraction rule and F = p. Take any leaf in ϕ(F ) and let
τ be the assignment leading to this leaf. If this leaf has label 0 then consider
ϕ(p ∨ p)dτ and take any branch τ1 in this tree consistent with τ . As ϕ(p ∨ p) is
a 1-tree this must lead to a label 1 but this contradicts the definitions as both
sub-formulas (p and p) cannot be reduced to 1-trees under τ1 as τ1 is consistent
with τ and ϕ(p)dτ is a 0-tree.

The association rule is more or less obvious as our requirements for t-
evaluation do not really distinguish the two formulas. On the other hand the
two formulas may have different t-evaluations so let us do also this case. We
have F = (p ∨ q) ∨ r and take a supposed leaf with label 0 in ϕ(F ) and let τ
be the assignment leading to this leaf. By definition, ϕ(r)dτ as well ϕ(p ∨ q)dτ
are 0-trees. From the latter statement we conclude that also ϕ(p)dτ and ϕ(q)dτ
are 0-trees. Let us consider ϕ(p ∨ (q ∨ r))dτ . There is some branch τ1 in this
tree that is consistent with τ and this leads to a leaf with a label 1 as this is a
1-tree. One of the three sub-formulas is reduced to a 1-tree at this leaf and we
reach the usual contradiction.

Let us finally look the cut rule. We have F = (q ∨ r) and let us take a
supposed leaf with label 0 in ϕ(F ) and let τ be the assignment leading to this
leaf. We know that ϕ(q)dτ and ϕ(r)dτ are both 0-trees. Consider any branch in
ϕ(p)dτ and let τ1 be the assignment of this branch. Assume this leaf is labeled
0, the other case being similar. Now take any branch in ϕ(p ∨ q)dττ1 . As this
is a 1-tree the label at this branch must be 1. This contradicts that ϕ(p)dτ1 as
well as ϕ(q)dτ are both 0-trees. This concludes the case analysis.

Fixing parameters we get the main theorem of this paper.

Theorem 6.5 Suppose that d ≤ logn
59 log logn , then, for sufficiently large n, any

depth-d Frege refutation of the Tseitin contradiction on the n× n grid requires
size exp(Ω(n1/58(d+1))).

Proof: Suppose we have a refutation of size S and consider the corresponding
set of sub-formulas Γ. Remember that s′ = t = s = 1

2n
1/(58(d+1)) and ∆ = s29.

With the given choice of ∆ we have T ≤ n1/(d+1) and we have a nT−d ≥ T
sized grid remaining after σ∗d. The probability that we fail to have a t-evaluation
that includes all formulas of Γ in its domain after σ∗d is, by Lemma 6.2 bounded
by S(s/A)−s/108. The probability that we at any stage of the process we do
not have between .99Cs and 1.01Cs alive centers in a sub-square is bounded
by n2e−Ω(s). As s = ω(log n), the sum of these two failure probabilities, for
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sufficiently large n, is smaller than 1 there exists a σ∗d which makes all sub-
formulas in the proof have a t-evaluation and such that the final restriction
gives a grid of size at least T . As t = o(T ) we can appeal to Lemma 6.4 and
the proof is complete.

We have an immediate corollary.

Corollary 6.6 Any polynomial size Frege refutation of the Tseitin contradic-
tion requires formulas of depth Ω( logn

log logn ).

Finally we turn to the proof of the switching lemma which is the heart of
the argument.

7 Proof of the switching lemma

Remember that we have F = ∨Fi and we have a t-evaluation ϕ that includes
each Fi in its domain and let Ti = ϕ(Fi). We create an extended canonical
decision tree for F dσ by going over the trees Ti one by one. If there is a branch
in Ti that leads to a leaf with label 1 that is consistent with the information we
have so far we explore the variables of this branch (and some extra variables).
Let us proceed.

It is important that the constructed decision tree does not depend on the
preferred values along the chosen paths but we may, and indeed we will, let it
depend on other parameters and in particular we make use of the knowledge of
the identity of the chosen centers and non-chosen centers.

As we go over the Ti’s we have a set of centers, S, that will be called exposed
centers and an information set I that, jointly with ρ, guides the construction of
the decision tree. Both S and I start out empty.

For non-chosen centers in S, the set I contains the information pieces corre-
sponding to their component in π and if one center in such a connected compo-
nent belongs to S then so does the entire component. For chosen centers in S
we have, in the decision tree, queried all variables xP adjacent to these centers
and this information is present as information pieces in I. The one-answers
are recorded in the form of a path while the zero answers as two non-edges.
A typical set of answers given by the decision tree is denoted by τ . These are
answers in a decision tree querying new variables xP . Note that the value of xP
jointly with ρ determines the value of all xe on the chosen path P .

We go over the decision trees one by one and let us see what happens when
we consider Ti. Take the first (in some fixed order) branch in Ti that leads to
a leaf labeled 1 (if no such branch exists we move to Ti+1). For the variables
appearing on this branch we have unique values required to reach this leaf. We
let a forcing information, J , be an information set that, jointly with I, forces4

all variables on this branch, from now on called “the forceable branch” to take
these unique values. We require the following properties of J .

4Please remember, by Definition 4.6 for a variable to be forced we need to know the relevant
information at its closest endpoint.
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1. If J contains a non-edge from a chosen center it also contains a non-edge
in the “reverse direction”. As an example if it contains a non-edge going
left from a chosen center v then it contains a non-edge going right from
the chosen center in the sub-square to the left of v.

2. Neither I nor J contains a path between a chosen center and a non-chosen
center.

3. The information sets I and J are consistent and disjoint.

Even given these requirements we might have many different J forcing the
same path. Any such forcing information works equally well and any rule for
making this rather arbitrary choice is equally good for us.

At any point when forming the extended canonical decision tree, the in-
formation I comes from information in π and from queries already done in the
decision tree with answers τ . Let us first see that the lack of forcing information
implies that Ti is in fact reduced to a 0-tree.

Lemma 7.1 If there is no forcing information for Ti then Tidστ is a 0-tree.

Proof: Suppose indeed that there is a branch in Ti that leads to a 1-leaf and
is consistent with σ and τ . This implies that we can extend τ to τ1 such that
we reach this leaf. In other words, σ and τ1 jointly determine a value to each
variable on this branch and for any variable xe on this branch, not already fixed
by ρ we have the information of its closest endpoint in its direction either from
π or, if its closest endpoint is chosen, by τ1.

We proceed to construct some forcing information J . Let us consider a
variable xe on the branch. For e whose closest endpoint is not chosen we include
the information from π on this closest endpoint in direction of e. If the closest
endpoint of e is chosen then it may or may not be on the chosen path in its
direction.

If e is on the chosen path then the information τ1 must contain the value of
the corresponding path-variable and we include that information in the form of
an edge or two non-edges in J . If e is not on the chosen path then we choose
some value to the path-variable in its direction from its closest endpoint that is
consistent with τ1 and choices for previous variable set in the current process.
Given the value of this variable we include this in the information set J either
as an edge or two non-edges.

This constructed information set J clearly forces the values of the variables
on the branch to the values needed to follow the branch and we need to check
that it is an allowed information set. The first property is true by construction.

As π only contains paths between two non-chosen centers and τ1 and its
extension only paths between two chosen centers, we cannot have a path between
a chosen and non-chosen center in J and we need to check consistency with I.

On the non-chosen centers, I contains some information from π and as the
information in J on the non-chosen part is also from π this is consistent (clearly
any duplicated information can simply be dropped from J).
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On the chosen centers we know that τ1 is an extension of τ , the information
obtained in the decision tree up to this point. As the information in I on the
chosen centers is exactly given by τ and the information in J which is from τ1
is consistent with τ we conclude that J is consistent with I.

We conclude that the constructed J is an allowable forcing information. This
is a contradiction to the assumption of the lemma and we conclude is that the
assumed 1-branch in Ti does not exist.

Given a forcing information set J we continue the construction of the decision
tree as follows. We expose all centers in the support of J but also some additional
centers as follows.

• For any non-chosen center v in the support of J we expose the centers in
its connected component in π.

• We let the chosen centers in the support of J be the nodes supplied by
the adversary in the matching game described in Section 3 played on the
grid given by the chosen nodes. We apply Lemma 3.3 and expose also the
partners of these nodes in the matching provided by PM .

We note that if the support of the forcing set J is of size r then the number
of exposed centers is at most 4r as we expose at most 3 more centers for any
non-chosen center and at most one extra center for any chosen center.

We now extend the information I by including the connected component
from π of the non-chosen exposed centers. For the chosen centers we query
all variables adjacent to any exposed center. We record one-answers as an
edge in I and zero-answers as two non-edges including the other endpoint of a
potential chosen path, i.e. the chosen center in the adjacent sub-square in the
given direction.

Given this extended I it is possible to tell whether the forceable branch in Ti
is traversed. This follows as for any variable on the branch the closest endpoint
is now exposed and for each exposed center we have information pieces in all
four directions. If this branch is indeed followed, the process is ended as Tidστ
is a 1-tree and the branch of the decision tree can be terminated with label 1.

If the forceable branch is not followed we continue the process by first looking
at Ti under this new extended information I and searching for some new forcing
information of a different 1-branch and then looking at Ti′ for i′ > i.

Finally, if all Ti’s have been processed we terminate the branch in the decision
tree and label the leaf 0. This ends the description of the creation of the extended
canonical decision tree for F dσ. We observe that we have created a decision tree
that is a legitimate choice for ϕ(F ). Indeed, at any leaf labeled 1 we have found
a Ti that is reduced to a 1-tree and if all Ti have been processed then, by
Lemma 7.1, this leaf in the decision tree is correctly labeled 0.

Note that this process depends on ρ and π but not, in a serious way, on the
negations of the preferred values along the paths between the chosen centers. As
we have no paths between chosen and non-chosen centers the only difference is
that variables on chosen paths in one case are forced by the path and in the other

22



case by two non-edges and this does not cause any difference as the supports
are identical. As this is of key importance let us record this as a lemma.

Lemma 7.2 Let σ1 be obtained from ρ1 and π and σ2 from ρ2 and π where ρ1

and ρ2 pick the same set of centers and fixed values. Assume furthermore that
the only difference between ρ1 and ρ2 is that for each chosen path P there is a
bit cP such that for each grid-edge e on P the preferred values of xe differ by cP
in ρ1 and ρ2. Then the only difference between the extended canonical decision
trees of F dσ1 and F dσ2 is the labeling of the internal edges.

In the decision tree, at round j, we query all variables touching the chosen
centers of the set S. We say that the set of answers is closed iff the answer to
a query is one iff it corresponds to an edge in the dynamic matching created
by PM . This slightly overloading the notion “closed” but note that a closed
branch gives rise to a closed information set and hence we feel that using the
term “closed” also in this situation gives the correct intuition. The following
lemma is now an immediate consequence of Lemma 7.2.

Lemma 7.3 If the probability that F dσ needs a decision tree of depth s′ is at
least q, then the probability that the extended canonical decision tree of F dσ
contains a closed branch of length at least s′ is at least 2−s

′
q.

In view of this lemma we complete the proof by analyzing the probability
of such a closed branch. This analysis is done using the labeling technique of
Razborov [14]. In other words we take a ρ that contributes to the above event
and create a ρ∗ which is also a restriction but with fewer live centers. We then
establish that given ρ∗ and some extra information it is possible to reconstruct
ρ. The proof is finished by establishing the fact that there are many fewer ρ∗

than ρ and the extra information can be limited in size.
As the overall structure closely follow the proof of Razborov let recall this

proof as it is helpful for reference. Razborov has a restriction that keeps exactly
k randomly picked variables undetermined and randomly gives values 0 and 1
to the other variables. He creates a canonical decision tree by the process below
where the counter j indicates the stage.

1. Set j = 1

2. Find the first possible 1-branch of a decision tree, Tij that can be traversed
given the random restriction ρ and the values queried in the decision tree
so far. If no such branch exists in any remaining tree answer 0 and halt.

3. Let Sj be the set of undetermined variables on this branch.

4. Let σj be the values of the the variables in Sj that force this 1-branch to
be traversed.

5. Query the variables in Sj in the decision tree. Record the answers as τj .
If τj = σj answer 1 and halt, otherwise set j = j + 1 and goto step 2.
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The restriction ρ∗ is now defined as ρ with the addition that the variables
in Sj are given the values given by σj . A good picture to keep in mind is the
following.
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Figure 3: The long path in the decision tree is given by the τi following the
middle line. In each step there is an assignment σi that leads to a 1-leaf.

It is not difficult to see that ρ∗ makes the input follow the 1-branch in Ti1 .
The reconstruction information tells which variable(s) on this branch belong(s)
to S1 and their values in τ1. It is not difficult to see that this can be done with
(4t)|S1| alternatives. The reason is that once the branch is given the elements
in S1 can be identified by giving their index on the branch.

Given this information the reconstruction algorithm changes that values of
the variables in S1 from σ1 to τ1 creating a restriction ρ∗1. This restriction forces
the 1-branch of Ti2 and thus it is possible to identify S2 and τ2 at a cost (4t)|S2|.
We then change the values on S2 from σ2 to τ2 and continue like this until all
sets Sj have been identified. Finally ρ is defined as the restriction obtained from
ρ∗ by changing all elements of ∪iSi to undetermined.

If the decision tree needs to query s variables then ρ∗ has k− s undermined
variables and the information set used by the reconstruction procedure takes at
most (4t)s different values.

There are at most (
n

k − s

)
2n+s−k
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possible ρ∗ and thus at most

(4t)s
(

n

k − s

)
2n+s−k

different ρ can be reconstructed this way. As there are(
n

k

)
2n−k

possible ρ the probability that ρ gives a branch of length at most s in the
canonical decision tree is at most

(4t)s
(
n
k−s
)
2n+s−k(

n
k

)
2n−k

≈
(

8kt

n

)s
and we are done.

We follow the same recipe and the information set J at stage j plays the role
of σj while discovered information from π and the queries to the decision tree
plays the role of τj . In Razborov’s proof σj and τj are just different assignments
to the same set of variables and thus it is obvious that τj is compatible with σj′

for j 6= j′. This compatibility requires some care in our case. One important
step is also to enlarge the given forcing information J to a closed information
set. This is useful for at least two reasons. A restriction combined with a closed
information set gives values to the same variables as a restriction with fewer live
variables. Also closed information sets supported on disjoint set of variables are
always consistent. The fact that we are analyzing a closed branch makes also
the information set I “almost” closed. The only non-closed part is some non-
edges for some chosen but non-exposed centers but these can be handled. After
this detour let us return to the main argument and thus we have a ρ giving a
closed branch of length at least s′ in the extended canonical decision tree and
and we proceed to construct ρ∗. We later describe the information needed to
invert this mapping.

For technical reason we stop the creation of the extended canonical decision
tree once we have exposed at least s′ centers and we analyze the probability
that we ever reach this point. Suppose this happens after the gth stage, where
g ≤ s′ as we expose at least one center in each stage.

At the end of the process we have a set, Sg, of exposed centers which is of
cardinality at least s′ and at most s′ + 8t, as we at each stage expose at most
8t centers. This follows as J contains at most 2t centers as the length of each
branch in Tij is at most t and we add at most 2 centers for each variable on
the branch. We later expose at most three more centers for each element in the
support of J .

Let us look at the forcing information in stage j and introduce some notation.
The forceable branch appears in Tij and let Jj be the forcing information set.
As we continue processing the same Ti after a stage is completed it might be the
case that Tij = Tij+1

, but then the forceable branches are different. We want to
extend the information set Jj to transform it into a closed set.
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Consider any center v in the support Jj . It has information in some of its
directions coming from I and Jj . If it has information in all four directions
nothing needs to be done. Otherwise, take one direction for which the informa-
tion is not known. If there are more directions in which there is no information,
add a non-edge in any other such direction.

If we already have an odd number of edges next to v we add a non-edge
in the final direction and otherwise we add an edge to a fresh center in the
suitable sub-square. By a fresh center we mean a non-chosen center that is
not an element of Sg and has not been used for an earlier Jj . As we use at
most one fresh center for each element in Sg the number of non-fresh centers
is at most 2|Sg| ≤ 2s′ + 16t. As there are .99Cs non-chosen centers in any
sub-square there is always, provided that C is a large enough constant, a fresh
center to add. Finally we add non-edges from the fresh center in the other three
directions.

When we have processed all centers of Jj we have created a closed graph
which extends the information set Jj and which we denote γj . This follows
as for each even degree center we have added a fresh center that is of degree
one. Below we establish that the γj have disjoint supports, but let us assume
that this is true for the time being. The process is quite similar to the proof of
Razborov for the ordinary switching lemma and a picture of it can be seen in
Figure 4.

As discussed previously, closed graphs can be used to define restrictions with
fewer live centers and we define ρ∗ to be the restriction defined by ρ together
with the graph γ = ∪gj=1γj . This is a standard restriction where all centers in
the support of γ are now dead. We call these the disappearing centers.

For the curious reader let us point out a subtle point. It is true that any
collection of closed information sets with disjoint supports are compatible, but
this is only true as long as we forget what centers are chosen as we could have
the case that the four chosen neighbors of a chosen center all have a non-edge
in its direction. This would not be allowed but once we forget who was chosen
there is no problem.

Before we turn to the reconstruction process let us introduce some notation
for the information sets of the decision tree process. Let us see what happens
at stage j.

On the non-chosen centers there is the information of some connected com-
ponents of π, namely all the exposed centers and let Ij,n denote the union of
these components discovered in stage j. For the chosen centers the information
is obtained by the decision tree. As the decision tree is closed this is given by a
matching on the exposed chosen centers. On top of this we have the information
of non-edges of non-exposed chosen centers in the direction of exposed chosen
centers. Call this information on the chosen centers Ij,c and let Ij be the union
of Ij,n and Ij,c. Note in particular that, as all centers in the support of Jj are
exposed at round j, all centers in the support of Jj are contained in the closed
graph part of Ij . As the only other centers in the support of γj are the unique
centers added as the final step and we conclude, as claimed above, that the
supports of γj for different values of j are disjoint.
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Figure 4: The long path in the decision tree in our proof. The Ij asks for
more information than the 1-forcing information sets Jj and the information
comes from π and the answers in the decision tree. The information sets Jj are
completed to closed information sets γj once the full long path has been found.
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We let I∗j denote ∪j−1
i=1 Ii, the information set gathered during the first j − 1

rounds. It turns out to be convenient to consider ∪gi=jγi, the graphs added after
stage j, and we let γ∗j denote this graph.

The high level plan is now as follows. As γj extends the forcing information
Jj we have that (ρ, I∗j ∪γj) and hence (ρ, I∗j ∪γ∗j ) forces the input to traverse the
jth forceable branch. This branch should enable us to find a good fraction of
the elements of γj , namely the closest endpoints of all variables on this branch.
We then use some external information to find the rest of the elements of γj
(as well as its graph structure). Finally we then use external information to
reconstruct Ij and proceed with stage j + 1.

As I∗1 is the empty set and γ∗1 = γ the starting point of the decision process
is (ρ, γ) which forces exactly the same variables as ρ∗ and thus we know where
to start. Although these two objects force the same variables the information
content is slightly different in that (ρ, γ) contains the information we are trying
to recreate, the identity of the disappeared centers.

We let ρ∗j be the restriction obtained from applying γ∗j to ρ and at stage j
we will be working with (ρ∗j , I

∗
j ) instead of (ρ, I∗j ∪ γ∗j ). Again these two objects

force the same set of variables but have slightly different information contents.
It is important to identify Tij and the forceable branch but unfortunately

it might not be the first 1-branch traversed by (ρ∗j , I
∗
j ). The reason for this

is that we might reach a 1-leaf by a branch using variables that would give
forcing information that is not allowed. For instance when we make sure that
γj is closed we add paths between chosen and non-chosen centers and this is not
allowed as forcing information. A more subtle problem is that of requiring the
other endpoint of non-edges on chosen centers when used as forcing information.
It turns out that it is difficult to make sure that the information at the other
endpoint is consistent with the rest of the information.

Let I∗−j be the information pieces of I∗j with any piece supported on γ∗j
removed and let I−j be Ij with the same type of pieces taken away. The removed
pieces are simple to describe.

Lemma 7.4 An information piece in I∗j that is on a center in the support of γ∗j
is in the form of a non-edge from a chosen center in the direction of an exposed
chosen center.

Proof: The information set I∗j consists of a closed graph jointly with non-edge
information on chosen centers of the type allowed in the lemma. Since any
information set Ji for i ≥ j is disjoint with I∗j no γi with i ≥ j can intersect the
closed graph part of I∗j .

We get a direct consequence of Lemma 7.4.

Lemma 7.5 Any variable forced by (ρ, I∗j ) is forced also by (ρ∗j , I
∗−
j ).

Proof: The removed pieces of I∗j are, by Lemma 7.4, on centers that have
disappeared in ρ∗j and hence any variable forced by such a piece is fixed in ρ∗j .
As the piece of information is a non-edge in both I∗j and γ∗j it is forced to the
same value.
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As stated above we might have some 1-branch before the forceable branch
of stage j. This could, in some vague sense, be good, in that it reveals some
element of γ, but as we cannot count on this happening we need to make sure
that this is not bad. Thus, we have to be careful to make sure that the recon-
struction process is not fooled. Towards this end we introduce the signature of
any disappearing center, v, as follows.

1. The value of j such that v ∈ γj . This has at most s possibilities.

2. The information of whether v is a closest endpoint to any variable on the
forceable branch and in such a case in which direction(s) it has variables
appearing on this branch. This has O(1) possibilities.

On the high level the reconstruction procedure maintains the following in-
formation.

1. A counter j of the current stage to be reconstructed. Initially j = 1.

2. The restriction ρ∗j . Initially ρ∗1 = ρ∗ and we describe below how to update.

3. The information set I∗−j . Initially this is empty and we describe below
how to update.

4. A set E of disappearing centers together with their signatures. Initially
E is empty.

In the reconstruction process we need to find the identity of some centers.
For intuition let us discuss different contexts where this happens and how much
external information is needed. For some disappearing centers we also specify
the signature which amounts to O(s) possibilities for each center. We have the
following cases.

1. A disappearing center that is the closest endpoint of a variables on a
discovered 1-branch. This can be found by giving the distance from the
root on the branch at cost t.

2. A disappearing center that is not the closest endpoint of a variable on
a branch but we know the sub-square where it is located. This can be
specified at cost ∆.

3. A non-disappearing and live center where we know the sub-square. This
can be specified at cost 1.01Cs as these are the number of live centers in
any sub-square.

The two first situations appear when finding centers in γj while the last
situation appears when finding centers in Ij that are not contained in γ∗j . Iden-
tifying a disappearing center has “profit” (as will be seen in the final calculation
of counting the number of ρ∗ compared to the number of ρ) of Ω(∆/s) and thus
there is a huge profit in the first case and the moderate loss in the second. For
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the third case there is no associated profit but on other hand only a moderate
cost. The key for the final analysis is to bound the number of costly step by
a constant times the number of profitable steps of the first kind. Let us now
formally define the reconstruction process.

1. Set j = 1, ρ∗1 = ρ∗ and let I∗−1 be the empty set.

2. Find the next 1-branch traversed by the information (ρ∗j , I
∗−
j ).

3. Locate the closest endpoints of all variables on this branch. If any such
center belongs to E and its signature does not match the current branch,
go to the next 1-branch. By “not matching” we mean that the stage
information is incorrect or that the direction(s) of the edges involved does
not exactly match the signature.

4. Read a bit b to determine if there are more disappearing centers to be
found as the closest endpoint to variables on this branch.

5. If b = 1 read one integer that is at most t to determine a disappearing
center that is the closest endpoint of a variable on this branch. Read its
signature. If this signature agrees with the current branch repeat step 3
and otherwise include it in E and go to the next branch.

6. If b = 0 we have found the forceable branch. We read some external
information to determine γj and I−j (details below). Update ρ∗j to ρ∗j+1

and I∗−j to I∗−j+1, drop any disappearing center of stage j from E, j = j+1
and repeat from 2.

The are a few details and facts about this reconstruction procedure to sort
out. Let us start with establishing that we are indeed correctly identifying the
forceable branch.

Lemma 7.6 If a 1-path is forced by (ρ∗j , I
∗−
j ) and the signatures of all closest

variables on this branch match and it is the first such branch, then this branch
is the jth forceable branch.

Proof: As all variables on the branch are forced we must have the information
of their closest endpoints in the correct direction(s). As none of the variables
have a closest endpoint of a stage later than j the branch is forced by (ρ, I∗−j ∪Jj)
jointly possibly with a non-edge in γj contained in I∗j . This implies that the
forcing information Jj is valid for this branch and being the first such branch it
must be the jth forceable branch.

Let us now see how to reconstruct γj . We have already identified all the
closest endpoints of variables on the forceable branch and we know, by their
signature which directions they need a neighbor. We read the identity of these
centers at a cost5 of at most ∆ for each center. This identifies Jj . To finalize

5It might be the case that some of these centers were found previously and are part of E
or that also the other endpoint is uniquely defined by occurring variable. In either case the
cost, including the signature is O(st) which is bounded by ∆.
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the description of γj we read the identity of the unique fresh centers used to
make γj closed at a cost of ∆ for each such center. Having identified γj we turn
to I−j . We first have a bit for each element in γj to indicate whether it is also
an element of Ij .

First observe that any center in the support of I−j cannot belong to the
support of γj′ for j′ > j and thus any such center is still alive in ρ∗j and thus
can be identified at as cost of at most 1.01Cs provided we know the sub-square
to which it belongs.

First we reconstruct the non-chosen centers. For each non-chosen center in
Jj using O(1) bits we find out the size of the connected component in π and
the directions of each edge. Then we identify the other endpoint of each such
edge at cost 1.01Cs.

For the chosen centers we can again discover the graph part with O(1) bits
per center for structure and an integer of size 1.01Cs for the identity. The non-
edges not supported on γ∗j are also reconstructed at cost 1.01Cs for identity and
O(1) bits per center for direction.

Finally for any center in γj we have 4 bits to describe whether the piece of
information in the form of non-edge in any direction(s) should be added in I∗−j+1.

This terminates the description of the reconstruction and let us sum up the
external information needed. Let aj be the number of disappearing centers that
are discovered through being the closest endpoint of a discovered variable and
are part of the jth forceable branch and let bj the number of additional centers
in γj . Furthermore let cj the number of centers needed to be discovered in I−j
after γj was discovered.

Lemma 7.7 We have bj + cj ≤ 25aj.

The fact that there is some constant such that the above lemma is true is
fairly obvious but as the constant goes into the exponent of the final result we
make a moderate effort to minimize it.

Proof: All centers contributing to bj and cj are discovered while processing the
jth forceable branch. We start with some centers discovered as closest endpoints
and find other centers in γj and Ij . Let us see how many centers that can be
included based on a single starting point v. Let us first assume that the starting
points are at distance at least 7 and begin by looking at the case when v is a
chosen center.

Remember that a discovered v is the closest endpoint of a variable on the
discovered 1-branch. The information set Jj might contain also the other end-
point(s) of paths starting at v. When forming γj we might add additional
centers to make it closed. Finally when construction Ij we expose the part-
ners in the matching provided by PM and then also the neighbor of all chosen
exposed centers. There are a number of cases to consider.

The center v might have up to four neighbors in Jj and let us first assume
that all four are present. As Jj is consistent, v must have an edge to one of
the neighbors but for the other three we might have to add a fresh center as a
neighbor to γj to make it closed.
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In the information set Ij we first expose the partners of v and its neighbors
in Jj in the matching provided by PM . As v needs to be matched to one of it
neighbors6 this is a total of at most 8 centers that can be exposed. The chosen
center neighbors of all these centers are members of Ij .

In total v might hence cause us to identify the 4 chosen centers at distance
one, the 8 chosen centers at distance 2 and 9 chosen centers at distance 3 (we
had at most 3 centers at distance 2 as partners of neighbors and each of these
have 3 neighbors not counted before). We also have the 3 fresh centers that
might be included in γj . This is a total of 24 centers that might be needed to
identify all centers of γj and Ij . Let us turn to the case when v has information
in three directions in Jj .

In this case all the four centers (v and its three neighbors in Jj) might be
of degree 0 and need a fresh neighbor when forming γj . The set of exposed
centers can be the same as in the case of four neighbors of v in Jj . This is true
as v might be matched to the missing neighbor. The rest of the argument is
the same and thus the difference is that we might have added four centers when
forming γj as opposed to three, and thus we end up with the bound of 25 added
centers in this case.

It is not difficult to see that if v has one or two neighbors in Jj then we add
fewer centers. Finally if the starting centers are not well separated then some
centers are counted twice and this compensates for some center that becomes
degree two and needs a fresh center as a neighbor. We omit the details. We
conclude that the estimate holds also in this case. Let us turn to non-chosen
centers.

Such a center can only have neighbors in Jj in three directions. This follows
as for non-edges at non-chosen centers we do not need the information of the
other endpoint of a possible path.

For each of these, the connected component in π might given another three
centers to be identified. Thus in this case a single discovered center can only
give 12 centers total to be identified and thus the bound for the case of chosen
centers gives the bound of the lemma.

Now we are ready to make the final calculation. Letting a =
∑g
j=1 aj and

defining b and c similarly we can add up the extra information as follows.

• The disappearing centers that are discovered as closest endpoints con-
tribute a factor ta.

• The other disappearing centers contribute a factor at most ∆b (or less as
discussed in the footnote).

• The signatures contribute at most (As′)a for a constant A as signatures
are only needed for disappearing centers discovered as closest endpoints.

• The centers discovered to be part of I contribute a factor (1.01Cs)c.

6This need not be to the same neighbor as in Jj , but it is one neighbor.
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• The graph structure of γ and I as well as the information which elements
of γj are included in IJ contributes a factor Ba+b+c, for some constant B.

• The bits b contribute 2s
′+8t+s′ . This follows as we can have at most s′+8t

bits that are 1 (as each time a disappearing variable is discovered) and at
most s′ bits that are 0 (as each time a stage is ended).

Let m = ∆(n/T )2 be the total number of centers. The number of ways to
choose ρ∗ is7 2rn

(
m

k−(b+a)

)
where 2rn is the number of possibilities for the choice

of fixed and preferred variables once the choice of centers is fixed. Similarly the
number of choices for ρ is 2rn

(
m
k

)
. This implies that the probability of having a

described closed branch is bounded by

ta∆bsascAa+b+c2rn
(

m
k−(a+b)

)
2rn
(
m
k

) (1)

for some (modified) absolute constant A. The quotient of the the binomial
coefficients equals

a+b−1∏
i=0

k − i
m+ i− k

≤
(

k

m− k

)a+b

=

(
Cs

∆− Cs

)a+b

≤ ∆−(a+b)sa+bAa+b,

for some (again different) constant A. We conclude that the probability of the
closed branch in the decision tree we are analyzing is at most

∆−as2a+b+ctaAa+b+c, (2)

for again a new constant A. Applying Lemma 7.7 and modifying A we have
that this is bounded by

∆−as27ataAa = (As27t∆−1)a. (3)

Finally as the number of exposed centers is at most a+b+c and as the numbered
of queried variables is at most four times the number of exposed centers we have
a + b + c ≥ s′/4 and hence a ≥ s′/108 and this concludes that analysis of the
probability of a closed branch. Lemma 6.2 now follows from Lemma 7.3 and a
final modification of the constant A.

8 Final words

Our lower bound for the Tseitin on the torus gives lower bounds for any graph
in which we can embed the torus but as far as we know not on other graphs.
In particular it is not clear if the same, or similar, bounds can be obtained for
a random graph. It is true however that the result applies to the grid graph

7We need also sum this number over possible values of a + b but these sequence is expo-
nentially increasing and thus dominated by the twice the maximal term.
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as it is not difficult to see that it is possible to embed the n × n torus in and
(2n + 3) × (2n + 2) grid. The wrap around edges are mapped to paths of full
length running between the vertices of the torus that are mapped in the natural
way to nodes with both coordinates even.

This paper makes proof complexity “catch up” with circuit complexity when
it comes to small-depth circuits containing and-gates and or-gates. We have
other situation when circuit complexity still has the lead. This included small-
depth circuits containing modulo p gates for a prime p and also hierarchy the-
orems proving that depth d circuits are much more powerful than depth d − 1
circuits. Almost needless to say, progress on those problems would be highly
interesting.
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