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Abstract

Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting
codes in which individual bits of the message and codeword, respectively, can be recovered by
querying only few bits from a noisy codeword. These codes have found numerous applications
both in theory and in practice.

A natural relaxation of LDCs, introduced by Ben-Sasson et al. (SICOMP, 2006), allows
the decoder to reject (i.e., refuse to answer) in case it detects that the codeword is corrupt.
They call such a decoder a relaxed decoder and construct a constant-query relaxed LDC
with almost-linear blocklength, which is sub-exponentially better than what is known for
(full-fledged) LDCs in the constant-query regime.

We consider an analogous relaxation for local correction. Thus, a relaxed local corrector
reads only few bits from a (possibly) corrupt codeword and either recovers the desired bit
of the codeword, or rejects in case it detects a corruption.

We give two constructions of relaxed LCCs in two regimes, where the first optimizes the
query complexity and the second optimizes the rate:

1. Constant Query Complexity: A relaxed LCC with polynomial blocklength whose
corrector only reads a constant number of bits of the codeword. This is a sub-
exponential improvement over the best constant query (full-fledged) LCCs that are
known.

2. Constant Rate: A relaxed LCC with constant rate (i.e., linear blocklength) with
quasi-polylogarithmic query complexity (i.e., (logn)O(log logn)). This is a nearly sub-
exponential improvement over the query complexity of a recent (full-fledged) constant-
rate LCC of Kopparty et al. (STOC, 2016).
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1 Introduction

Dating back to the seminal works of Shannon [Sha49] and Hamming [Ham50], error correcting
codes are used to reliably transmit data over noisy channels and store data. Roughly speaking,
error correcting codes are injective functions that take a message and output a codeword, in
which the message is encoded with extra redundancy, with the property that even if some of
the symbols in the codeword are corrupted, the message is still recoverable.

Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error correcting codes
that admit highly efficient procedures for recovering small amounts of data. More specifically,
in an LDC, a single symbol of the message can be recovered by only reading a few bits from
a noisy codeword. An LCC has the same property but with respect to recovering bits of the
codeword itself (rather than the message).

Locally decodable codes and locally correctable codes have had a profound impact various
areas of theoretical computer science including cryptography, PCPs, hardness of approximation,
interactive proofs, private information retrieval, program checking, and databases (see [Yek12]
and the more recent [KS17] for a survey on local decodable and correctable codes). While these
codes have found numerous uses in theory and practice, one significant downside is that current
constructions require adding a large amount of redundancy. Specifically, to decode or correct
with a constant number of queries, the current state of the art LDCs have super polynomial
blocklength [Yek08, Efr12] (by blocklength we refer to the length of the codeword as a function
of the message length) and the current best LCC, which has sub-exponential blocklength.1

Motivated by this, Ben-Sasson et al. [BGH+06] defined a natural relaxation of locally de-
coding, for which they could achieve a dramatically better blocklength. Roughly speaking,
their relaxation allows the decoder to abort in case of failure, while still requiring the decoder
to successfully decode non-corrupted codewords (in particular, this prevents the decoder from
always aborting). Moreover, in the constant query regime, such codes can be transformed to
codes, with similar parameters, that are guaranteed to successfully decode on the majority of
message bits.

Thus, a relaxed local decoder for a code C gets oracle access to a string w that is relatively
close to some codeword c = C(x) and an index i ∈ [|x|]. The decoder should make only few
queries to w and satisfy the following:

1. If the string w = c (i.e., w is an uncorrupted codeword), the relaxed decoder must always
output xi.

2. Otherwise, with high probability, the decoder should either output xi or a special “abort”
symbol ⊥ (indicating the decoder detected an error and is unable to decode).2

The additional freedom introduced by allowing the decoder to abort turns out to be ex-
tremely useful. Using the notion of PCPs of proximity (PCPP), which they also introduce3

and construct, Ben-Sasson et al. obtain relaxed locally decodable codes (RLDCs) with constant
query complexity and almost-linear blocklength.

In this work we extend the relaxation of Ben-Sasson et al. to LCCs and define the analogous
notion of relaxed LCCs as follows: We say that a code C : Σk → Σn is a relaxed LCC with query
complexity q, if there exists a corrector that has oracle access to a string w ∈ Σn, which is close

1These are Reed-Muller codes over a constant-size alphabet and with constant degree (but large dimension).
2The actual definition in [BGH+06] also requires that for a constant fraction of the coordinates, the decoder

decodes correctly (i.e., does not output ⊥) with high probability. However, they later show that this additional
condition follows from Conditions (1) and (2) above. See further discussion in Remark 1.1.

3The equivalent notion of assignment tester was introduced independently by Dinur and Reingold [DR06].
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to some codeword c ∈ C, and also gets as explicit input an index i ∈ [n]. The algorithm makes
at most q queries to the string w, and satisfies the following:

1. If w = c (i.e., w was not corrupted), then the corrector always outputs ci.

2. Otherwise, with high probability, the corrector either outputs ci, or a special “abort”
symbol ⊥.

The remarkable savings achieved by Ben-Sasson et al. begs the question: can relaxed locally
correctable codes achieve similar savings in blocklength over current constructions of locally
correctable codes? We answer this question in the affirmative by constructing relaxed LCCs
with significantly better parameters than that of the state-of-the-art (full-fledged) LCCs.

1.1 Our Results

In this work, we construct relaxed locally correctable codes in two different parameter regimes:
the first, which we view as our main technical contribution, focuses on the constant query
complexity regime, whereas the second, which is easier to prove given previous work, focuses on
constant rate.

Constant Query RLCC. Our first result is a relaxed LCC which requires only O(1) queries
and has a polynomial blocklength.

Theorem 1 (Constant Query Relaxed LCC, Informally Stated). There exists a relaxed LCC
C : {0, 1}k → {0, 1}n with constant relative distance, constant query complexity, and blocklength
n = poly(k). Furthermore, C is a linear code.

Theorem 1 yields a sub-exponential improvement compared to the best known (full-fledged)
LCCs with constant query complexity, which have sub-exponential blocklength. This result
heavily relies on a certain type of PCPs of proximity (PCPPs) that we construct. We elaborate
on our PCPP constructions in Section 1.1.1 below.

We remark that the specific blocklength in Theorem 1 is roughly quartic (i.e., fourth power)
in the message length. Constructing a constant-query RLCC with a shorter blocklength (let
alone an (almost) linear one, as known for relaxed LDCs) is an interesting open problem.

Constant Rate RLCC. Our second main result is a construction of a relaxed LCC with
constant rate4 and almost polylogarithmic query complexity.

Theorem 2 (Constant Rate Relaxed LCC, Informally Stated). There exists a relaxed LCC
C : {0, 1}k → {0, 1}n with constant relative distance, query complexity (log n)O(log logn), and
constant rate (i.e., blocklength n = O(k)). Furthermore, C is a linear code and has distance-
rate tradeoff approaching the Zyablov bound [Zya71].

This is a nearly sub-exponential improvement in query complexity over the best constant
rate (full-fledged) LCCs, due to Kopparty et al. [KMRS16], which requires 2Õ(

√
logn) queries

for correction. As a matter of fact, our construction is essentially identical to one of the
constructions of [KMRS16].5 Our main insight in proving Theorem 2 is that their code allows

4Recall that the rate of a code C : Σk → Σn is defined as k/n. We use the terms “constant rate” and “linear
blocklength” interchangeably.

5Interestingly, our construction is inspired by the [KMRS16] construction of a locally testable code, rather
than their locally correctable code.

2



for relaxed local correction with much better parameters.6 As a secondary contribution, we also
provide a modular presentation for the distance amplification step, which is the main step in
[KMRS16] (and is originally due to Alon, Edmonds and Luby [AEL95]).

Remark 1.1. As mentioned in Footnote 2, the original definition of RLDC [BGH+06] includes
a third condition, which requires that the decoder must successfully decode a constant fraction
of the coordinates. More precisely, for every w ∈ Σn that is close to some codeword c = C(x),
there exists a set Iw ⊆ [k] of size Ω(k) such that for every i ∈ Iw with high probability the
decoder D outputs xi (rather than outputting ⊥).

Ben-Sasson et al. showed that every RLDC with constant query complexity that satisfies the
first two conditions, can be transformed into an RLDC with similar parameters that satisfies the
third condition as well. We remark that this transformation also applies to RLCCs with constant
query complexity. However, for super-constant query complexity (as in Theorem 2) the same
transformation only guarantees successful decoding of a constant fraction of coordinates, if the
codeword is corrupted on a sub-constant fraction of its coordinates (i.e., the fraction roughly
corresponds to the reciprocal of the query complexity).

Remark 1.2. Both our constant-query and constant-rate RLCCs are systematic7. Hence they
are automatically also relaxed locally decodable codes (i.e., RLDCs). In particular, the code from
Theorem 2 is also the first construction of a relaxed locally decodable code in the constant-rate
regime, with query complexity (log n)O(log logn).

1.1.1 PCP Constructions

PCPs of proximity (PCPP), first studied by Ben-Sasson et al. [BGH+06] and by Dinur and
Reingold [DR06] were originally introduced to facilitate PCP composition. Beyond their use-
fulness in PCP constructions, of PCPPs have proved to be extremely useful in coding theory
as well. Indeed, PCPPs lie at the heart of several constructions of LTCs [GS06], relaxed LDCs
[BGH+06, GGK15], universal LTCs [GG16a, GG16b], as well as in our construction of relaxed
LCCs (specifically in Theorem 1).

Loosely speaking, a PCPP is a proof system that allows for probabilistic verification of ap-
proximate decision problems by querying only a small number of locations in both the statement
and the proof. (In contrast, a standard PCP verifier reads the entire statement, and proba-
bilistically verifies an exact decision problem, by querying only a small number of locations in
the proof.) Similarly to the scenario in property testing, the soundness guarantee provided by
PCPPs is that the PCPP verifier is only required to reject statements that are “far” (in Hamming
distance) from being correct.

In this work, we provide new constructions of PCPPs that play a crucial role in our constant-
query relaxed LCC construction. The PCPPs that we construct are for verifying membership in
affine subspaces (rather than general languages in P or NP), since this is all that we need for
our RLCC constructions. More specifically, we shall construct PCPPs that are: linear, robust,
self-correctable, and admit strong canonical soundness. We discuss these properties in more
detail next (see Section 4.2.5 for precise definitions). We remark that our PCPP construction
is inspired by the construction of linear-inner proof-systems (LIPS) by Goldreich and Sudan
[GS06].

6We note that a similar observation about the [KMRS16] code has been made recently and independently by
Hemenway, Ron-Zewi, and Wootters [HRW17].

7Recall that a code is systematic if the first part of every codeword is the original message.
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Linearity. We call a PCPP proof-system linear if it satisfies two conditions. First, the pre-
scribed proof π for any statement x must be a linear function of the statement. Second, to
decide whether to accept, the PCPP verifier only checks that the values that it reads from the
input and PCPP proof lie in an affine subspace. Put differently, the verifier’s decision predicate
is computable by a linear circuit. We remark that in the literature [BHLM09, Mei16], the term
“linear PCPP” sometimes refers only to the latter of the two requirements but here we also
insist that the proof be a linear function of the statement.

We use linearity both to assure that our resulting codes are linear codes, as well as to
facilitate composition with other PCPPs. We note that standard PCPs are typically inherently
non-linear (since they are designed for general languages in P or in NP). However, in our context
we are only trying to verify membership in affine spaces and so it is reasonable to expect to
have linear PCPPs.

Robustness. The notion of robust PCPPs, introduced by Ben Sasson et al. [BGH+06], refers
to PCPP systems whose verifier, roughly speaking, is not only required to reject statements that
are far from valid but also that the local view of the verifier (i.e., the answers to the queries
made by verifier) is far from any local view that would have caused the verifier to accept.
Robustness plays a key role in enabling PCP composition. While this condition holds trivially
for verifiers with constant query complexity, in our construction we will also consider verifiers
with super-constant query complexity, for which achieving robustness is non-trivial.

Self-Correctability. In a self-correctable PCPP system, the proof oracle admits a local cor-
rection procedure that allows for local recovery of individual bits of a moderately corrupted
PCPP proof. The self-correctability of the PCPP oracles allows us to include them as part of
an RLCC’s codeword.

Strong Canonical Soundness. The notion of PCPPs with strong canonical soundness, in-
troduced by Goldreich and Sudan [GS06], requires that correct inputs (i.e., that reside in the
target language) have a canonical proof and the PCPP verifier is required to reject “wrong” (i.e.,
non-canonical) proofs, even for correct statements. In more detail, these PCPPs satisfy two ad-
ditional requirements: (1) canonicity : for every true statement there exists a unique canonical
proof that the verifier is required to always accept, and (2) strong canonical soundness: the ver-
ifier is required to reject any pair (x, π) of statement and proof with probability that is roughly
proportional to its distance from a true statement and its corresponding canonical proof.

We are now ready to state our results on PCPs of proximity with the aforementioned prop-
erties. The first construction has exponential length and constant query complexity, whereas
the second construction, whose proof is significantly more involved, has polynomial length and
poly-logarithmic query complexity.

Our first result is a variant of the Hadamard PCPP, with exponential length but constant
query complexity.

Theorem 3 (Informally stated, see Theorem 4.26). There exists a linear, self-correctable, strong
canonical PCPP for membership in affine subspaces, with query complexity O(1) and exponential
length (in the size of the statement).

Our second result is a variant of the [BFLS91] PCP, which has poly-logarithmic query
complexity and polynomial length.
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Theorem 4 (Informally stated, see Theorem 4.27). There exists a linear, self-correctable,
Ω(1)-robust, strong canonical PCPP for membership in affine subspaces, with query complex-
ity polylog(n) and poly(n) length, for statements of length n.

1.2 Technical Overview

The techniques used for our two constructions are quite different. We first outline the constant-
query result, which is more complex, in Section 1.2.1 and then outline the constant-rate result
in Section 1.2.2.

1.2.1 Constant-Query Relaxed LCC

The starting point for our construction is the [BGH+06] construction of relaxed locally decodable
codes (RLDC), which we review next.8 In their construction, each codeword has two parts:
the first part provides the distance, and the second enables relaxed local decodability. More
specifically, they construct an RLDC C ′ whose codewords consist of the following two equal-
length parts: (1) repetitions of a codeword C(x), where C : {0, 1}k → {0, 1}n is some systematic
code with constant distance and rate, (2) for every message bit in C(x), they add a PCPP, which
is a proof that xi is indeed the ith bit of C(x).9

We remark that the repetitions in the first part of the code are simply meant to ensure
distance (as the PCPP proof strings are not necessarily a code with good distance). To decode,
the relaxed decoder for C ′ invokes the PCPP verifier to check that the i’th bit of the first part is
indeed C(x)i and outputs it, unless the verifier rejects, in which case the relaxed decoder may
return ⊥.

Ben-Sasson et al. show that this code is indeed a relaxed LDC. However, in general, it will
not necessarily be a relaxed LCC. Specifically, it is unclear how to correct bits that are part of
the PCPP proof strings. Simply appending even more PCPPs to deal with the original ones will
not do since we will also need to correct those. Moreover, it is worth pointing out that even if
the PCPP proof strings had some internal self-correction mechanism, this would still not suffice
since each PCPP proof string by itself is very short (as compared to the entire codeword) and
could therefore be entirely corrupted.

Before proceeding to cope with this difficulty, we first suggest a different perspective on the
[BGH+06] construction, which is inspired by the highly influential and useful notion of PCP
composition [AS98]. Specifically, we think of the [BGH+06] construction as a composition of
the code C, which is trivially locally decodable with n queries, with a constant-query PCPP.
This composition yields a relaxed LDC with query complexity O(1), at a moderate increase in
blocklength (which comes from appending all of the PCPP proof strings).

We shall adopt the composition perspective, and use it to construct a relaxed locally cor-
rectable code, by introducing a technique for composing a (possibly relaxed) LCC C with a
special type of PCP of proximity (PCPP). The result of the composition is a relaxed LCC C ′

which basically inherits the query complexity of the PCPP (and with a moderate overhead in
blocklength).

Similarly to the relaxed LDCs of [BGH+06], the codewords of C ′ are constructed by taking
repetitions of a codeword of a (possibly relaxed) robust RLCC C and concatenating it with many
PCPP proof strings. Specifically, for each set of queries that the relaxed local corrector for C

8We describe the simpler variant of the [BGH+06] construction, which achieves nearly quadratic blocklength.
We remark that [BGH+06] also present a more involved construction that achieves nearly linear blocklength.

9Actually, our presentation differs slightly from that of [BGH+06]. Their construction contains an additional
part that consists of repetitions of the original message. However, when using a systematic code C, this addition
is not necessary.
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would like to make, we write down a PCPP proof that this set of queries would be answered
correctly. We shall refer to the first part of C ′, which contains repetitions of C, as the core of
C ′, and refer to the second as the PCPP part.

Observe that the foregoing approach allows us to locally correct bits of the core of C ′. The
relaxed corrector for the composed RLCC takes the queries made by the old corrector as input,
and uses the PCPP verifier to test if the old corrector would have accepted.10 However, we shall
need a more sophisticated machinery to correct the PCPP part of C ′ (indeed this is exactly the
challenge that we faced when trying to follow the [BGH+06] approach). This will be achieved
by ensuring that the PCPPs that we use have strong properties.

In particular, we shall employ the foregoing composition strategy while using the PCPPs of
Section 1.1.1, which admit canonical proofs, strong canonical soundness, and self-correctability.
Recall that a PCPP is said to have strong canonical soundness if every valid input has a canon-
ical proof that it accepts, and any pair of statement and proof are rejected with probability
proportional to their distance from a true statement and its corresponding canonical proof. In
addition, recall that a canonical PCPP is said to be self-correctable if the canonical proof strings
form a locally correctable code (i.e., if it is possible to locally recover individual bits of a noisy
PCPP oracle).

Suppose that we want to correct a bit that lies in the PCPP part of a purported codeword of
C ′. If this bit is in a PCPP oracle that is not too corrupted, we can simply use the PCPP’s self-
corrector to recover the bit. However, as pointed out before, this naive attempt to self-correct
fails when the entire proof string is corrupted. This can easily happen when the proof strings,
each of which refers to a single possible query set of the original corrector, are short relative to
the size of the entire codeword.

Thus, our main challenge is to detect whether the given PCPP proof string was (possibly
entirely) corrupted. We observe that if on the one hand, the PCPP oracle we wish to correct is
heavily corrupted, while on the other hand, the statement to which the PCPP refers (i.e., the
queries that the corrector for C makes) is not heavily corrupted, then the proof is far from the
prescribed canonical proof. The strong canonical soundness guarantees that in such case the
PCPP verifier will detect the corruption and reject. Thus, we are left with the case that both
the PCPP oracle and the statement that it refers to are heavily corrupted.

To detect this deviation, we choose a random point in the foregoing statement and read
it directly. Since that point is in the core of the code, and we have already described the
procedure for correcting in the core, we can also correct this point and compare the corrected
value with the symbol that we read directly. Since we have assumed that the statement was
heavily corrupted, the value that we read directly will likely be different than what the corrector
returns, in which case we can reject.

Equipped with this composition theorem, we can now construct our code. By applying the
composition theorem to the low-degree extension code, of suitable parameters, and the PCPP
given in Theorem 3, we can already construct a constant-query RLCC with quasi-polynomial
blocklength. We note that this is already a significant improvement over the current best (full-
fledged) LCCs. However, to obtain polynomial blocklength, we shall perform two compositions
with different PCPPs (in direct analogy to the first proof of the PCP theorem [ALM+98]).

As in the quasi-polynomial result mentioned above, our starting point is the low-degree ex-
tension code. Under a suitable parameterization, this code is known to be a robust (full-fledged)
LCC with almost linear blocklength and polylogarithmic query complexity. We shall first com-
pose it with the polynomial length, polylogarithmic query, strong canonical, self-correctable and

10Even for this to work, we need to ensure that the original RLCC is robust, in the sense that with high
probability the corrector’s view (i.e., the answers to its queries) are far from answers that would make it output
an incorrect value. Otherwise, we have no guarantee that the PCPP verifier will see the error.
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robust PCPP of Theorem 4. Since the foregoing PCPP is robust, this composition yields a robust
RLCC with polynomial blocklength and slightly sub-logarithmic query complexity. Finally, we
compose yet again with the exponential length, constant query, strong canonical, self-correctable
PCPP from Theorem 3, which yields an RLCC with constant query complexity.

Each of our two composition steps introduces at least a quadratic overhead to the block-
length. This is because our composition of an RLCC with a PCPP appends a PCPP proof-string
for every pair (i, ρ) of coordinate i to be corrected from the base code and random string ρ of
the underlying corrector with respect to the point i.11 Since we apply two such composition
steps, we get a code with roughly n ≈ k4 blocklength.

1.2.2 Constant-Rate RLCC

For the constant rate construction, we build on the recent breakthrough construction of locally
testable12 and correctable codes of Kopparty et al. [KMRS16]. Interestingly, we will actually
focus on the [KMRS16] construction of locally testable codes (rather than correctable ones),
even though our own goal is to construct (relaxed) locally correctable codes.13

Kopparty et al. construct locally testable codes with query complexity (log n)O(log log(n))

by taking an iterative approach, similar to that of Meir [Mei09]. They start off with a code
of dimension poly log(n) (which is trivially locally testable, by reading the entire codeword)
and gradually increase its blocklength, while (almost) preserving the local testability and main-
taining the rate of the code close to 1. This amplification step is achieved by combining two
transformations on codes:

1. Code tensoring : this transformation squares the block-length (which is good since we want
to obtain blocklength n) and rate (which is not too bad since our rate is close to 1). The
main negative affect is that this transformation also squares the distance.

2. Distance amplification: remarkably, this transformation fixed the loss in distance caused
by the tensoring step, without harming the rate or local testability too much.

As noted above, in their work, Kopparty et al. also construct a locally correctable code,

albeit only with query complexity 2Õ(
√

log(n)). The reason why their LCC construction does
not match the parameters of their LTC construction is that the tensoring step, used in their
construction of locally testable codes, is not known to preserve local correctability.14

Our key observation is that tensoring does preserve relaxed local correctability. Recall that
the tensor of a code C : Fk → Fn is the code C2 : Fk2 → Fn2

that consists of all strings c ∈ Fn2
,

viewed as n× n matrices, that consist of rows and columns that are each codewords of c.
Suppose that C is a (relaxed) LCC with query complexity q. We want to show that C2 is

also a (relaxed) LCC with query complexity roughly q. Let w ∈ Fn2
be a (possibly) corrupt

codeword of C2. Thus, w which we also view as an n × n matrix, is close to some codeword

11In contrast, in standard PCP composition, one only appends an inner PCP proof-string for every random
string ρ of the outer PCP. Thus, as long as the randomness complexity of the outer PCP is minimal, it is possible
to achieve close to constant multiplicative overhead when composing.

12Recall that a locally testable code [GS06] is a code for which one can test, using a sub-linear number of
queries, whether a given string is a codeword or far from such.

13This may not be surprising, since the notions of relaxed correctability and testability are closely related. In
particular, as observed in [GG16a], every RLDC (analogously, RLCC) is roughly equivalent to a code C such that
for every coordinate i and value b, the subcode obtained by fixing the i’th bit to b (i.e., {C(x) : C(x)i = b}) is
locally testable.

14It can be shown that tensoring at most squares the query complexity for local correcting. However, the
[KMRS16] iterative approach cannot afford such an overhead in each iteration.
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c ∈ Fn2
. Given an index (i, j) ∈ [n] × [n] to correct, a natural approach is apply the (relaxed)

local corrector of C on the ith row of w, with respect to the index j.
If it were the case that the ith row of w were close to the ith row of c, we would be done.

However, the ith row of w only constitutes a 1/n fraction of w and so it could potentially be
entirely corrupt. Let us assume that it is indeed the case that ith rows of c and w (almost)
entirely disagree.

To detect that this is the case, our corrector chooses at random a few columns J ⊂ [n]. On
the one hand, since the ith rows of w and c disagree almost everywhere, with high probability
for some j′ ∈ J it will be the case that wi,j′ 6= ci,j′ . On the other hand, since j′ is just a random
column, with high probability the j′th columns of w and c are close.

Given this, a natural approach is to have our corrector read the (i, j′)-th entries of w for
every j′ ∈ J , by applying the (relaxed) local corrector of C. In the likely case that it chooses
a j′ such that the j′th column of w and c are close, with high probability the corrector will
either return ci,j′ or ⊥. If our corrector sees ⊥ it can immediately reject (since this would never
happen for an exact codeword). Otherwise, if our corrector sees the value ci,j′ , it can compare
this value with wi,j′ (by explicitly reading the (i, j′)’th entry of w). By the above analysis, these
values will be different (with high probability), in which case our corrector can also reject.

To calculate the overall query complexity of the resulting code, we need to account for the
overhead introduced by both the tensoring and distance amplification steps. Assuming that C
is (relaxed) locally correctable up to distance δR, the tensoring step only increases the query
complexity by O(1/δR). Each distance amplification increases the query complexity by roughly
a polylog(n) factor. Thus, since we need roughly log log(n) iterations to reach blocklength n,
the overall query complexity is (log n)O(log logn).

1.3 Related Works

A similar notion to RLDCs called Locally Decode/Reject Codes (LDRCs) arose in the beautiful
work of Moshkovitz and Raz [MR10] on constructing two-query PCPs with sub-constant error.
These are similar to RLDCs in that they are codes with a decoder that is permitted to reject if it
sees errors. However, it is important to note that the two notions differ in a few significant ways
and are overall incomparable. First, LDRCs decode a k-tuple of coordinates jointly, rather than a
single coordinate. Second, LDRCs have a “list-decoding” guarantee – namely, that the decoding
agrees with one message in a small list of messages – as opposed to RLDCs, which provide unique
decoding (but up to a smaller radius). Finally, LDRCs only need to work with high probability
over the choice of k-tuple, while RLDCs must decode or reject with high probability for every
coordinate. See [MR10, Section 2] for the formal definition of LDRCs and a comparison to
RLDCs.

Another related notion is that of decodable PCPs (dPCP), first introduced by Dinur and
Harsha [DH09] to the end of obtaining a modular and simpler proof of the the [MR10] result.
A dPCP is a PCP oracle, encoding an NP-witness, which allows for list decoding of individual
bits of the NP witness it encodes. Dinur and Harsha provided constructions of such dPCPs as
well as a composition theorem for dPCPs.

Additionally, in a recent work, Goldreich and Gur [GG16a] introduced the notion of uni-
versal locally testable codes (universal-LTC), which can be thought of as generalizing the no-
tion of relaxed LDCs. A universal-LTC C : {0, 1}k → {0, 1}n for a family of functions F ={
fi : {0, 1}k → {0, 1}

}
i∈[M ]

is a code such that for every i ∈ [M ] and b ∈ {0, 1}, membership in

the subcode {C(x) : fi(x) = b} can be locally tested. As was shown in [GG16a], universal-LTCs
with respect to the family of dictators functions (i.e., of the form f(x) = xi) are roughly equiv-
alent to RLDCs. We remark that their formulation can be naturally generalized to also capture
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the notion of RLCC.
Finally, we remark that the relaxed LDCs have been used in the context of interactive proofs

of proximity [GR16] and property testing [CG17].

1.4 Organization

In Section 2 we provide standard definitions and notations. In Section 3 we formally define local
correcting, and the relaxation that we introduce. In Section 4 we give our first construction, an
RLCC with constant query complexity, while in Section 5 we give our second construction, an
RLCC with constant rate.

2 Preliminaries

We denote the relative distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by

∆ (x, y)
def
= |{xi 6=yi : i∈[n]}|

n . If ∆ (x, y) ≤ ε, we say that x is ε-close to y, and otherwise we say
that x is ε-far from y. Similarly, we denote the relative distance of x from a non-empty set

S ⊆ Σn by ∆ (x, S)
def
= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε, we say that x is ε-close to S, and

otherwise we say that x is ε-far from S.

2.1 Error Correcting Codes

Let k < n be positive integers and let Γ,Σ be alphabets. A code C : Γk → Σn is an injective
mapping from messages of length k (over the alphabet Γ) to codewords of length n (over the
alphabet Σ). Typically it will be the case that Γ = Σ, in which case we simply say that the
code is over the alphabet Σ. We denote by n the blocklength of the code (which we think of
as a function of k) and by k/n the rate of the code. The relative distance of the code is the
minimum, over all distinct messages x, y ∈ Γk, of ∆ (C(x), C(y)). We shall sometimes slightly
abuse notation and use C to denote the set of all of its codewords {C(x)}x∈Γk ⊂ Σn.

Let F be a finite field (which we think of as an alphabet). We say that a code C : Fk → Fn
is a linear code if it is a linear map from Fk to Fn. In this case the set of codewords C is a
subspace of Fn.

2.1.1 Code Concatenation

Code concatenation is an operation on codes that is commonly used to reduce alphabet size.
Fix alphabets Σ,Ξ, and Γ. Fix an “outer” code C : Σk → Ξn with distance δC and rate rC , and
an “inner” code D : Ξ → Γr with distance δD and rate rD. The concatenation of C with D is
the code C ′ : Σk → Γr·n such that each x ∈ Σk is first encoded with C, and then each symbol
of the resulting codeword is encoded using the code D. The relative distance of C ′ is δC · δD
and the rate is rC · rD.

Let F and G be finite fields, such that G is an extension field of F. That is, G ∼= Fm for
some m ∈ N. Let C : Fk → Gn and D : G → Fr be error-correcting codes that are F-linear
(where we identify G with Fm). Then the code obtained by concatenating C and D is F-linear.

We will often concatenate our codes with good binary linear codes. That is, binary linear
codes with constant rate and distance.

Lemma 2.1 ([Jus72]). There exist (explicit) binary linear codes with constant rate and distance.
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3 Definitions: Local Correcting and its Relaxations

First, we define the notion of (full-fledged) local correctability for codes.

Definition 3.1 (Locally Correctable Codes (LCCs)). Let C ⊆ Σn be an error correcting code
with relative distance δ. We say that C is locally correctable if there exists a constant δR < δ/2,
which we call the correcting radius, and a polynomial time algorithmM that gets oracle access to
a string w ∈ Σn and explicit input i ∈ [n]. We require that if w is δR-close to some codeword c,
we have that Mw(i) = ci with probability at least 2/3. Furthermore, if w is exactly a codeword,
we require that Mw(i) = ci with probability 1.

The query complexity of M is the maximal number of queries that M makes for any input
i and w.

(Note that the constant 2/3 can be amplified as usual by repeating the process multiple times
and outputting the majority symbol.)

Following Ben-Sasson et al. [BGH+06], in this work we consider a a relaxation of LCCs,
with the aim of constructing more efficient codes that use this relaxation. Loosely speaking,
the relaxation allows the decoder to output a special abort symbol ⊥ which indicates that it is
unsure how to correct.

Definition 3.2 (Relaxed Locally Correctable Codes (RLCCs)). Let C ⊆ Σn be an error cor-
recting code with relative distance δ. We say that C is relaxed locally correctable (RLCC) if there
exists a constant δR ∈ (0, 1], which we call the correcting radius, and a polynomial time algorithm
M, which gets as input oracle access w ∈ Σn and explicit access to an index i ∈ [n], such that
the following two conditions hold.

1. If w ∈ C, then Mw(i) = wi with probability 1.

2. If w is δR close to some codeword c ∈ C, then

Pr
[
Mw(i) ∈ {ci,⊥}

]
≥ 1/2,

where ⊥6∈ Σ is a special abort symbol.

Some remarks about Definition 3.2 are in order. First, we note that every LCC is, in
particular, a relaxed LCC. Second, one might worry that Condition 2, which allows the corrector
to state that it does not know how to decode, could allow the trivial decoder that simply responds
with ⊥ to everything. However, Condition 1 prevents this, by stipulating that the corrector
must always succeed when give a valid codeword.

We conclude this section with two addition remarks.

Remark 3.3 (RLCC Error Reduction). Note that the probability of error in Definition 3.2 can
be reduced by repeating the test t times (with independent coin tosses). If all the tests agree
on a symbol σ 6=⊥ then the amplified corrector outputs σ and otherwise it outputs ⊥. For the
amplified corrector to make a mistake, all t iterations must fail, which happens with probability
2−t.

Remark 3.4 (Success Rate). Lastly, we mention a third condition that appears in the definition
of relaxed local decoders in [BGH+06], which states that there is a constant fraction of coor-
dinates i ∈ [n] for which Pr[M(w, i) = ci] ≥ 2/3 – namely, for which the relaxed local decoder
successfully retrieves the symbol (and does not reject).

In the scenario for which our relaxed local corrector makes a constant number of queries,
this property can be shown to follow directly from the two conditions in Definition 3.2, via a
transformation that is analogous to one in [BGH+06].
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4 Constant-Query RLCC

In this section we construct a relaxed locally correctable code with constant query complexity
and polynomial length.

Theorem 4.1. For every ε > 0, there exists a (linear) relaxed LCC C : {0, 1}k → {0, 1}n with
constant relative distance, constant query complexity and blocklength n = k4+ε.

The key tool in the proof of Theorem 4.1 is a composition technique which shows that by
combining a (relaxed) locally correctable code that is “robust” with a suitable PCP of proximity
(PCPP), one obtains an RLCC with improved query complexity.15 More specifically, we need a
general purpose PCPP that has the following two properties:

1. Canonical Soundness: Each input x ∈ L , where L is the target language, has a
specific “canonical” PCPP proof string. Loosely speaking, the requirement is that even
inputs that are in the language are rejected if the proof that is provided is not the canonical
one. Canonical soundness was first defined by Goldreich and Sudan [GS06].

2. Self Correction: We require that the set of canonical PCPP proof strings forms an error
correcting code (i.e., it has distance), and furthermore, that this code is locally correctable.
In other words, symbols in the PCPP proof string can be reconstructed even if the proof
string is slightly corrupted, using few queries.

Our composition is similar to (and inspired by) composition of PCPs, and especially by the
approach advocated by Ben Sasson et al. [BGH+06] who compose any “robust” PCP with a
PCP of proximity (PCPP).

For a high-level overview of our construction, see Section 1.2.1.

Section Organization. In Section 4.1 we introduce several important definitions that will
be used throughout this section, including the various strong notions of PCPPs that we use.
In Section 4.2 we state and prove our composition theorem. We then proceed to construct
the two PCPPs that we will use. In Section 4.3 we construct a “Hadamard-like” PCPP (which
has exponential-length but constant query complexity) and then in Section 4.4 we construct
a “[BFLS91]-like” PCPP (with polynomial-length and poly-logarithmic query complexity). Fi-
nally, in Section 4.5 we put it all together and prove Theorem 4.1.

4.1 Preliminaries

In this section we provide the required preliminaries for our construction. Specifically, we define
strong canonical PCPs of proximity with self-correctable oracles, and review basic properties of
the low-degree extension code.

4.1.1 Canonical Self-Correctable PCPP

We begin by recalling the definition of PCPs of proximity, which loosely speaking, are PCPs in
which the verifier is only allowed to make a small number of queries to both the statement and
the proof, and soundness only means that, with high probability, the statement is close to a
correct statement.

15Loosely speaking, a PCPP is similar to a PCP except that the verifier has oracle access both to the proof
and to the main input. The soundness requirement is only that the verifier rejects inputs that are far from the
language.
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Definition 4.2 (Probabilistically Checkable Proof of Proximity (PCPP) [BGH+06, DR06]). A
probabilistically checkable proof of proximity (PCPP) for a set S ⊆ {0, 1}n consists of a proba-
bilistic verifier V that gets access to an input oracle x ∈ {0, 1}n and to a proof oracle π. The
verifier is required to satisfy the following properties:

• Completeness: For every x ∈ S, there exists a proof π such that when V is given access
to the input oracle x and proof oracle π it accepts with probability 1.

• Soundness: For every x 6∈ S and every proof string π, when V is given access to the
input oracle x and proof oracle π it rejects with probability at least Ω(∆ (x, S)).

The query complexity q of the PCPP is the maximal number of queries that V makes, to both
the input and proof oracles, on any input x ∈ {0, 1}n and proof π. Similarly, the randomness
complexity r of the PCPP is the maximal number of random bits that V uses given any input
oracle x ∈ {0, 1}n and proof oracle π.

In our constructions it will be important for us to use PCPP that are linear in the following
sense:

Definition 4.3 (Linear PCPP). We say that a PCPP (P,V) is linear if it satisfies the following
two conditions:

1. The mapping P from inputs x to PCPP proof strings is a linear function.

2. The verifier V’s checks amount to checking that the answers lie in some affine subspace.

We shall actually need a stronger notion of PCPPs that have strong soundness with respect
to a canonical proof. Loosely speaking, strong canonical PCPP are PCPPs with two additional
requirements: (1) canonicity : for every true statement there exists a unique proof (called the
canonical proof ) that the verifier is required to accept, and any other proof (even for a correct
statement) must be rejected, and (2) strong soundness: the PCPP verifier is required to be
proximity oblivious, namely, it rejects any pair of statement and proof with probability that is
related to its distance from a true statement and its corresponding canonical proof.

Definition 4.4 (Strong Canonical PCPP [GS06]). A PCPP for a set S, with verifier V, is said
to be strong canonical if there exists a (deterministic) function P : S → {0, 1}∗ that maps each
input x ∈ S to a canonical proof π = P(x) such that:

• Completeness (with respect to P): For every x ∈ S, when V is given access to the
input oracle x and proof oracle π = P(x) it accepts with probability 1.

• Strong Soundness (with respect to canonical proofs): For every x ∈ {0, 1}n and
every proof oracle π, when V is given access to the input oracle x and proof oracle π it
rejects with probability Ω(µ), where:

µ
def
= min

x′∈S

{
max

(
∆
(
x, x′

)
,∆
(
P(x′), π

) )}
. (1)

Before we proceed, we give some intuition about Eq. (1). For simplicity, we will pretend here
that the proof length is the same as the input length (i.e., |P(x)| = n for ever x ∈ S ∩ {0, 1}n).
Recall that in a PCPP, the verifier makes few queries to the proof oracle and to the input
oracle. Unfortunately, this means that our verifier will usually be unable to distinguish x 6∈ S
from some very close x′ ∈ S. On the other hand, if on input x ∈ S, the verifier is presented
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with a purported proof π that is very close to the canonical proof P (x), it cannot be expected
to reject whp. If we think of the input x and proof π as being noisy versions of some “true”
input x′ and canonical proof P (x′), the probability that our PCPP verifier distinguishes (x, π)
from (x′, P (x′)) is

∆
(
x ◦ π, x′ ◦ P (x′)

)
= ∆

(
x, x′

)
+ ∆

(
P(x′), π

)
= O

(
max

(
∆
(
x, x′

)
+ ∆

(
P(x′), π

) ))
. (2)

Minimizing over all x′ ∈ S gives us Eq. (1).16

Finally, we define (strong canonical) PCPP oracles that are self-correctable as follows.

Definition 4.5 (Self Correctable PCPP). A canonical PCPP with prover strategy P and query
complexity q is said to be self correctable if the function P is a locally correctable code with at
most q queries.17

4.1.2 Robustness

Loosely speaking, a PCPP is said to have robust soundness [BGH+06] if instead of just asking
that the PCPP verifier reject false statements (with high probability), we ask that the verifier’s
local view (i.e., the answers to all queries) be “far” from any local view that would have made
it accept. We shall refer to such PCPPs as robust PCPPs.

For the following definition, it would be convenient to think of a PCPP verifier V as a
procedure that chooses a random string ω, and generates: (1) an (ordered) sequence of q
queries Iω = (i1, . . . , iq), and (2) a deciding predicate Dω : {0, 1}q → {0, 1}. Given query access
to input x and PCPP oracle π, the verifier queries (x◦π)|Iω and outputs Dω

(
(x◦π)|I

)
. We write

(I,D)← V to denote the queries and deciding predicate (randomly) generated by V (and note
that these do not depend on the input x nor the proof string π). We also write (Iω, Dω) = V(ω)
to denote the (fixed) query locations and decision predicate that V outputs given the random
string ω. While slightly abusing notation, we also denote by Dω the set of answers α ∈ {0, 1}q
that satisfy Dω.

We say that a PCPP has a linear verifier V if its deciding predicate D can be expressed as
a conjunction of linear function (i.e., a linear system).

Definition 4.6 (Robust Strong Canonical PCPP). For robustness parameter ρ ∈ (0, 1), a PCPP
with canonical proof P and verifier V for a set S has ρ-robust strong soundness s (with respect
to canonical proofs) if the following condition is satisfied:

1. Accepting Views are Far Apart: For every ω, the set Dω of accepting views, is an
error correcting code with distance ρ.

2. Robust Soundness: For every x ∈ {0, 1}n and every proof oracle π, when V is given
access to the input oracle x and proof oracle π it holds that

Pr
(I,D)←V

[
∆
(
(x ◦ π)|I , D

)
> ρ
]
≥ s · µ,

where:

µ
def
= min

x′∈S

{
max

(
∆
(
x, x′

)
,∆
(
P(x′), π

) )}
.

16We use the RHS of Eq. (2) rather than the LHS, since the RHS also handles the case that the length of the
proof string differs from the length of the input.

17One could alternatively introduce an additional parameter that measures the number of queries that the
PCPP’s self corrector does. However, since already have a lot of parameters, we choose to bound the corrector’s
query complexity by the PCPP verifier’s query complexity.
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Intuitively, the strong soundness with respect to canonical proofs assures that the verifier
V will reject statement-proof pairs with probability that is proportional to their distance from
a valid pair (of statement x′ ∈ S and its canonical proof P(x′)), and the robustness assures
that the distance of V’s local view from an accepting one is proportional to the aforementioned
distance between the given statement-proof pair and a valid pair.

Next, we extend the foregoing notion of robustness to the setting of relaxed locally cor-
rectable codes. Note that relaxed LCCs admit correcting procedures rather than testing pro-
cedures, and so it is not immediately clear what soundness means in this context (let alone
robust soundness). However, it is natural to define the robustness condition for RLCC as the
requirement that with high probability the local view of the corrector is far from all local views
that would have caused the (relaxed) corrector to output a wrong value.

We will think of a relaxed corrector as a procedure that, given an index i ∈ [n], randomly
generates an (ordered) sequence of q queries I = (i1, . . . , iq) and a function D : Σq → Σ ∪ {⊥}
(where ⊥ 6∈ Σ is a special abort character) according to which the corrector decides; that is,
the corrector’s output with respect to a given word w ∈ Σn to be corrected is D(w|I). We will
also denote by (Ii,ω, Di,ω) = M(i;ω), the particular query set Ii,ω and decision function Di,ω

generated byM on input i and random string ω. We say that a RLCC has a linear correctorM
if D is a procedure that checks that w|I satisfies a conjunction of linear constraints; if not M
outputs ⊥, and otherwise it outputs the evaluation of a linear function of w|I . We proceed to
define robust RLCC.

Definition 4.7 (Robust RLCC). For robustness parameter ρ ∈ (0, 1) and soundness parameter
s ∈ (0, 1), we say that an error correcting code LCC C ⊆ Σn, with correcting radius δradius ∈
(0, 1), is ρ-robust s-sound RLCC if there exists a correcting procedure M, that on input i ∈ [n]
outputs a sequence of queries I ∈ [n]q and a decision predicate D : Σq → Σ ∪ {⊥} such that the
following conditions are satisfied:

1. Accepting Views are Far Apart: For every i ∈ [n] and ω ∈ R, the set D−1
i,ω(Σ) is an

error correcting code with distance ρ.

2. Robust Soundness: For every i ∈ [n] and w ∈ Σn that is δradius-close to a codeword
c ∈ C, it holds that

Pr
(I,D)←M(i)

[
∆
(
w|I , D−1

(
Σ \ {ci,⊥}

))
> ρ
]
≥ s,

where I ∈ [n]q is a set of query locations, D : Σq → Σ ∪ {⊥} is the decision predicate and
q is the query complexity.

Recall that ⊥6∈ Σ and so the set D−1(Σ\ci) above, refers to all answers that would have led the
decoder to answer incorrectly. Intuitively, similarly to robustness of PCPs, the robust soundness
condition in Definition 4.7 assures that with high probably the corrector will not only avoid
outputting a wrong symbol, but also that its local view will be far from any local view that
leads to outputting a wrong symbol.

We define robust self correctable PCPPs similarly to Definition 4.5 except that we require
that local correction procedure be robust.

4.1.3 Low Degree Polynomials and the Low-Degree Extension Code

Let F be a finite field, H ⊆ F, and m = m(k) ≥ 1 be a parameter, which we call the dimension.
A basic algebraic fact is that for every function f : Hm → F there exists a unique function
f̃ : Fm → F such that f̃ is a polynomial with individual degree |H| − 1 that agrees with f on
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Hm. Moreover, there exists an individual degree |H| − 1 polynomial β : Fm×Fm → F such that
for every function f : Hm → F it holds that

f̃(z) =
∑
x∈Hm

β(x, z) · f(x).

The function f̃ is called the low degree extension of F (with respect to the field F, subset H and
dimension m).

The low degree extension can also be viewed as an error-correcting code in the following
way. Suppose that H and m are such that |H|m = k. Then, we can associate a string x ∈ Fk
with a function x : Hm → F by identifying Hm with [k] in some canonical way.

We define the low degree extension of a string x as LDEF,H,m(x) = x̃. That is, the function
LDEF,H,m is given as input the string x ∈ Fk, views it as a function x : Hm → F and outputs its
low degree extension x̃. The Schwartz-Zippel Lemma (Lemma 4.8) implies that this code has

relative distance 1− m·(|H|−1)
|F| .

Lemma 4.8 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of total
degree d. Then,

Pr
r∈Fm

[
P (r) = 0

]
≤ d

|F|
.

Self Correction of Polynomials. We will use the fact that the low degree polynomials are
locally decodable.

Lemma 4.9 (Self-Correction Procedure (cf. [GS92, Sud95]). Let δ < 1/3 and d,m ∈ N such
that d ≤ |F|/10. There exists an algorithm that, given x ∈ Fm and oracle access to an m-variate
function P : Fm → F that is δ-close to a polynomial P ′ of total degree d, makes O(d) oracle
queries and outputs P ′(x) with probability 2/3. Furthermore, if P has total degree d, then given
x ∈ Fm, the algorithm outputs P (x) with probability 1.

Furthermore, with probability 2/3, the answers that the algorithm receives to its queries are
5δ far from values that would lead it to output any value other than P (x).

The error probability in Lemma 4.9 can be decreased to be an arbitrarily small constant
using standard error reduction (while increasing the number of queries by a constant factor).

Low Degree Tests. The celebrated low degree test is a key operation in most PCP construc-
tions. We will need several variants of this test which are listed below. The most standard one
is the following:

Lemma 4.10 (Total Degree Test (a.k.a. Low Degree Test) (see, e.g., [RS96, FS95]). Let
ε ∈ (0, 1/2) and d,m ∈ N such that d ≤ |F|/2. There exists an algorithm that, given oracle
access to an m-variate function P : Fm → F, makes O(d · poly(1/ε)) queries and:

1. Accepts every function that is a polynomial of total degree d with probability 1; and

2. Rejects functions that are ε-far from every polynomial of total degree d with probability at
least 1/2.

We will also need a more refined version of the test that tests the individual degree of the
polynomial. Such a test is implicit in but for sake of self-containment we provide a full proof
via a reduction to the total degree test.
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Lemma 4.11 (Individual Degree Test (see, e.g., [GR16, Theorem A.8]). Let d,m ∈ N such
that dm < |F|/10 and ε ∈ (0, 1/10). There exists an algorithm that, given oracle access to an
m-variate polynomial P : Fm → F, makes O(dm · poly(1/ε)) queries, and:

1. Accepts every function that is a polynomial of individual degree d with probability 1; and

2. Rejects functions that are ε-far from every polynomial of individual degree d with proba-
bility at least 1/2.

Lastly, we require a robust analog of the low degree test.

Lemma 4.12 (Robust Low Degree Test [FS95]). Let d,m ∈ N such that d ≤ |F|/100. Let
` : F→ Fm be a random line. Then, for any m-variate function P : Fm → F that is δ-far from
having degree d it holds that

E
`

[
∆ (P ◦ `, degree d univariate polynomials)

]
≥ Ω(δ),

where P ◦ ` denotes the univariate polynomial obtained by composing P with `.

4.2 Composition of Relaxed LCC and PCPPs

In this section we prove a composition result for robust RLCC and self-correctable PCPP, which
loosely speaking, yields a robust RLCC with improved query complexity, at a relatively small
increase to the block length.

Theorem 4.13 (Composition of Robust RLCC with (suitable) PCPP). Let F be a finite field,
and let C : Fk → Fn be a linear ρcode-robust relaxed LCC, with respect to soundness scode, with
a linear corrector, relative distance δ, correcting radius δradius < δ/2, randomness complexity
rcode, and query complexity qcode.

Let (P,V) be a linear ρpcp-robust strong canonical PCPP for inputs of length 2qcode, with
respect to soundness spcp, for affine relations, with a linear verifier, randomness complexity
rpcp, query complexity qpcp, self-correction radius δpcp-correction-radius ≥ ρpcp, self-correction ro-
bustness ρself-correct ≥ ρpcp, self-correction soundness sself-correct ≥ spcp, and self-correction query
complexity qself-correct = qpcp.

The composition of the outer code C with the inner PCPP (P,V) yields a linear (ρpcp/5)-
robust relaxed LCC C ′ : Fk → Fn′, with respect to soundness s′ = (spcp · scode · ρcode2)/4, with
a linear verifier, block length n′ = 2n · 2rcode · 2rpcp · qpcp, relative distance δ/2, correcting radius
δradius/4, randomness complexity 2rcode +O

(
rpcp + log(qpcp) + log(qcode)

)
, and query complexity

5qpcp.

In the following subsections we prove Theorem 4.13. Specifically, In Section 4.2.1 we describe
the construction of the composed RLCC, and in Section 4.2.3 we establish its basic properties
(distance, length, linearity, query complexity, and robustness). Then, in Sections 4.2.4 and 4.2.5
we establish the self-correctability of the “code part” and “PCPP” part of the composed code.

4.2.1 The Construction of the Composed Code

Let C : Fk → Fn be the RLCC stated in Theorem 4.13. Let M be the relaxed correcting
procedure associated with C. Let R = {0, 1}rcode , and for every index i ∈ [n] and ω ∈ R, denote
by Ii,ω (resp., Di,ω) the query set (resp., decision predicate), respectively, generated by M on
input the index i and the random string ω. (Recall that this means that given oracle access
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to a purported codeword w, location i ∈ [n], and randomness ω ∈ R, the corrector M outputs
Di,ω(w|Ii,ω)).

For every affine subspace S ⊆ {0, 1}n, let (PS ,VS) be the PCPP from the theorem’s state-
ment. LetMPCP denote the self-correction procedure associated with the PCPP (where we omit
the dependence of the corrector on S from the notation.)

The composed code C ′ : Fk → Fn′ (for a blocklength n′ as in the theorem’s statement) is
constructed as follows. Given an input x ∈ {0, 1}k, it’s encoding C ′(x) consists of two parts:

1. The code’s core: The core part consists of t copies of C(x), where t will be set below
such that the core and the PCPP part have the same length.18

2. The code’s PCPP: The second part of the code will consist of a sequence of PCPP proof
strings. For every i ∈ [n] and every ω ∈ R, let (Ii,ω, Di,ω) =M(i;ω). We define a set Si,ω
as follows:

Si,ω =
{

(z1, z2) ∈ (Fqcode)2 : z1 = σqcode for some σ ∈ F, and Di,ω(z2) = σ
}
.

or in words, the set Si,ω consists of all pairs (z1, z2) ∈ (Fqcode)2 such that: (1) z1 consists of
qcode copies of some element σ ∈ F, and (2) z2 ∈ Fqcode makes M(i;ω) output the symbol
σ given answers z2.

Observe that sinceM is F-linear, the set Si,ω is an affine subspace. Hence, by the theorem’s
hypothesis it has a strong canonical and locally-correctable PCPP (Pi,ω,Vi,ω). We let

πi,ω = Pi,ω
((

(C(x)[i])qcode , C(x)|Ii,ω
))

, for each i ∈ [n] and ω ∈ R.

Putting both parts together, we define C ′ : Fk → Fn′ as follows

C ′(x) =
(

(C(x))t, (πi,ω)i∈[n],ω∈R

)
,

where t is chosen such that |C(x)|t =
∑

i∈[n],ω∈R |πi,ω| (i.e., the core and the PCPP parts have
the same length).

4.2.2 The Relaxed Corrector

Consider a string w ∈ Fn′ (which we think of as a noisy codeword for the correcting procedure).
We view w as a string composed of two parts (analogous to the two parts of the construction
above):

1. (w1, . . . , wt) ∈ (Fn)t : the t alleged repetitions of some codeword in C (i.e., the code’s
core).

2. π̄ = (πi,j)i∈[n],j∈[R] : the alleged canonical PCPP oracles asserting each one of the affine

relations (Ai,j , bi)i∈[n],j∈[R].

We construct a relaxed local corrector M′ that given a location `∗ ∈ [n′] and oracle access
to the purported codeword string w = (c̄, p̄), either corrects at the point `∗ or rejects. (Here and
below, we use the convention that starred indices refer to locations that are non-random, whereas
non-starred indices are random.) Our correctors works differently, depending on whether `∗

belongs to the core or to the PCPP part:

• Correcting in the Core (i.e., `∗ ∈ [n · t]):
18As usual, integrality issues can be resolve via padding.
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1. Let i∗ ∈ [n] be the remainder of dividing `∗ by n plus one (recall that n = |C(x)| is
the original blocklength). In other words, i∗ is the internal index within the (alleged)
codeword of C that `∗ refers to.

2. Select at random j ∈ [t]. Read the value wj [i
∗] qpcp times and check that the value

read is always the same.19

3. Uniformly draw ω ∈ R, corresponding to the randomness of C’s corrector M. Let
Ii∗,ω, and Di∗,ω be the query set and decision predicate, respectively, of M(i∗, ω).

4. Run the PCPP verifier Vi∗,ω that was defined above, with respect to the input oracle
(z1, z2), where z1 = (wj [i

∗])qcode and z2 = wj |Ii∗,ω , and the PCPP oracle πi∗,ω. If the
PCPP verifier rejects then output ⊥.

5. Output wj [i
∗].

• Correcting the PCPP Part (i.e., `∗ ∈ [n · t+ 1, n′]):

1. Let πi∗,ω∗ be the PCPP oracle that `∗ refers to. Let Ii∗,ω∗ and Di∗,ω∗ be the query
set and decision predicate, respectively, of M on index i∗ and random coins ω∗.

2. Invoke the PCPP verifier Vi∗,ω∗ with respect to input oracle (z1, z2), where z1 =
(w1[i∗])qcode and z2 = w1|Ii∗,ω∗ , and the PCPP oracle πi∗,ω∗ , and output ⊥ if it re-

jects.20

3. Choose a random location i′ ∈ Ii∗,ω∗ . Read the value w1[i′] qpcp times and check that
the value read is always the same. Denote this value by η.

4. Invoke the relaxed corrector (recursively) with respect to location i′ (while noting
that this location is in the core, which was handled above), and output ⊥ if it does
not output η.

5. Invoke the PCP’s self-correctorMPCP on the location that corresponds to `∗ in πi∗,ω∗ ,
and output whatever it returns.

4.2.3 Basic Properties of the Composed Code

In this subsection we analyze the basic properties of the composed code C ′ and its corrector,
as defined in Section 4.2.1, and show they satisfy all the conditions of Theorem 4.13, except for
the (robust) soundness of the relaxed corrector with respect to correcting radius δ′radius, which
will be established in the subsequent subsections.

Block Length. The code C ′(x) consists of two parts: (1) the codeword C(x) repeated t times,
and (2) a PCPP for every i ∈ [n] and ω ∈ R, where each PCPP refers to a statement of length
2qcode, and where t is selected such that both parts (1) and (2) are of equal length. Recall that
R = 2rcode and that so, the length of each PCPP oracle with respect to statements of length
2qcode is 2rpcp · qpcp. Hence the block length of C ′ is n′ = 2n · 2rcode(n) · 2rpcp · qpcp.

Randomness Complexity. For correcting in the core, log(t) random bits are used to select

j, where t = n′

2n =
2n·2rcode ·2rpcp ·qpcp

2n = 2rcode · 2rpcp · qpcp. Then, rcode random bits are needed to
uniformly choose ω ∈ R, and rpcp random bits are used by the PCPP verifier. This totals in
2rcode + 2rpcp + log(qpcp) randomness complexity.

19This step, which at first may seem silly, is meant to ensure robust soundness. Indeed, when analyzing
robustness, we must consider an adversary that is allowed to modify answers to certain queries in retrospect.

20The choice of w1 here (rather than any other wj) was arbitrary.
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For correcting the PCPP part, by the above analysis 2rcode + 2rpcp + log(qpcp) random bits
are needed for the recursive invocations of the corrector with respect to the core. In addition, at
most log(qcode) random bits are needed to uniformly choose the location i′ ∈ Ii∗,ω∗ , and rpcp for
the invocation of the PCPP verifier. Lastly the PCPP self-corrector also uses rpcp randomness.

Hence the total randomness complexity is upper bounded by 2rcode + O
(
rpcp + log(qpcp) +

log(qcode)
)
.

Query Complexity. For correcting a point in the core, we perform qpcp repeated queries
to read wj [i

∗]. Then, qpcp queries for invoking the PCPP on a statement of length qcode (the
corrector’s queries).

For correcting a point in the PCPP part of C ′, we (recursively) invoke the corrector with
respect to the core, which, by the above analysis, takes 2qpcp). In addition, we invoke the PCPP
verifier and self correction procedure for a total of 2qpcp additional queries. We also read w1[i′]
qpcp times. Overall, the total query complexity is 5qpcp.

Distance. Half of each codeword of C ′ consists of repetitions of the code C, which has relative
distance δ. Hence, the the relative distance of C ′ is at least δ′ ≥ δ/2.

Linearity. The linearity of the code C ′ is immediate from the construction: The first part
of each codeword of C ′ consists of repetitions of a codeword of C, which is a linear code, and
the second part consists of linear PCPP oracles that refer to the first part (i.e., each PCPP
oracle is a linear encoding of the first part). The linearity of the corrector of C ′ also follows by
construction, since the predicate C ′ checks is the one induced by the invocation of the linear
PCPP verifier MP to verify the linear claims of the linear corrector of C.

4.2.4 Correcting the Code’s Core

In this subsection we analyze the relaxed corrector presented in Section 4.2.2 in the case that
the location `∗ (to be corrected) is in the code’s core (i.e., `∗ ∈ [n · t]).

The first condition of relaxed correctors (successfully correct uncorrupted codewords with
probability 1) follows easily from the construction of the corrector and the completeness of
the underlying PCPP. To elaborate, since the codeword is completely uncorrupted, the string
z2 = wj |Ii∗,ω∗ leads the corrector to output wj [i

∗], due to the completeness of C, the “core”
RLCC. Therefore, the PCPP verifier will always accept in this case and we will always output
wj [i

∗]. We proceed to demonstrate that the correcting procedure M′ additionally satisfies the
properties of a robust RLCC (Definition 4.7). First, we will show that accepting views for M′
are far apart, which will follow from the robustness of the underlying PCPP.

Lemma 4.14 (Accepting Views are Far Apart (in the core part)). For every i ∈ [n · t] and
random string ω′ for M′, the accepting views of M′ have distance ρ/2.

Proof. Fix a random string ω′ forM′ and an accepting view a ∈ F2qpcp . Recall that the view of
M′ (when querying the core) consists of two parts (a1, a2) ∈ F2qpcp . The corrector M′ checks
that a1 = σqpcp . Hence, to change the first part of a1 to some different a′1, one must change all
of it. As for a2, by the fact that the PCPP is robust, one must change at least a ρpcp fraction
of get an accepting a′2.

To complete the proof (of robustness for the core part) we still need to show robust sound-
ness. This is proved in the following lemma.
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Lemma 4.15 (Robust Soundness (in the core part)). Let w′ ∈ Fn′ be (δradius/4)-close to some
codeword c′ ∈ C ′ and let `∗ ∈ [n · t]. Then,

Pr
(I,D)←M′(`∗)

[
∆
(
w′|I , D−1

(
F \ {c′[`∗],⊥}

))
> ρpcp/2

]
≥ scode · spcp · ρcode/2.

Proof. Since c′ ∈ C ′, there exists some x ∈ Fk such that the core of c′ consists of t copies of
C(x).

Recall that we used (w1, . . . , wt) to denote the core of w′. We first argue that with constant
probability (over the choice of j ∈ [t]), it holds that wj is δradius-close to C(x).

Claim 4.16.

Pr
j∈[t]

[∆ (wj , C(x)) ≤ δradius] ≥
1

2
.

Proof. Since the core (w1, . . . , wt) is half of the length of w′, it holds that ∆
(
(w1, . . . , wt), (C(x))t

)
≤

2∆ (w′, c′) ≤ δradius/2. By Markov, this implies that at most half of the indices j ∈ [t] it holds
that ∆ (wj , C(x)) > δradius.

Therefore, throughout the rest of the proof we can fix j such that wj is 4δ′radius-close to C(x)
(and this only costs us at most a constant factor in the success probability of the corrector).
Note that since it has correcting radius δradius, the relaxed local corrector is guaranteed to work
for such wj .

Let i∗ be the internal index associated with `∗; that is, that w′[`∗] refers to the same symbol
as wj [i

∗]. We first consider the case that the location i∗ that we are trying to correct is not
“corrupted” in wj .

Claim 4.17. If wj [i
∗] = C(x)[i∗], then the view of M′ is 1/2-far from any view that would

make it output an incorrect answer (i.e., an answer in F \ {wj [i∗],⊥})..

Proof. First observe that by construction, the corrector M′, always outputs either wj [i
∗] or ⊥.

Since exactly half of M’s queries were to wj [i
∗], all of these queries would need to be modified

to make it answer incorrectly.

Thus, we may assume without loss of generality that wj [i
∗] 6= C(x)[i∗]. In this case, all the

queries to c[i∗] are consistent with making it output an incorrect answer (i.e. not C(x)[i∗]).
Our goal now will be to show that, in this case, the answers to the queries to our robust PCPP
will be far from the set of answers that would make it accept.

We now want to argue that the input on which we run the PCPP is far from an accepting
input.

Claim 4.18. wj |Ii∗,ω is ρcode-far from D−1
i∗,ω

(
F \ {C(x)[i∗],⊥}

)
, with probability at least scode.

Proof. Recall that M is a ρcode-robust relaxed LCC with soundness scode. Thus, by definition
we have that:

Pr
ω∈R

[
∆
(
wj |Ii∗,ω , D

−1
i∗,ω

(
F \ {C(x)[i∗],⊥}

))
> ρcode

]
≥ scode,

where (Ii∗,ω, Di∗,ω) =M(i;ω).

Using the fact that the input to the PCPP is far from accepting (as shown in Claim 4.18)
and that the PCPP has robust soundness, we show that the view of M′ is far from any that
would not make it reject.
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Claim 4.19. With probability spcp · scode · ρcode/2 the view of M′ is ρpcp/2-far from any view
that would not make it reject.

Proof. Recall that we run the PCPP verifier Vi∗,ω with respect to the input oracle (z1, z2), where
z1 = (wj [i

∗])qcode and z2 = wj |Ii∗,ω , and PCPP proof string πi∗,ω.
The robust soundness of our PCP implies that with probability at least spcp · µ, the local

view of the PCPP verifier will be ρpcp-far from any view that would make it accept, where

µ
def
= min

(z′1,z
′
2)∈Si∗,ω

{
max

(
∆
(
(z1, z2), (z′1, z

′
2)
)
,∆
(
P(z′1, z

′
2), πi∗,ω

) )}
.

Let (z′1, z
′
2) ∈ Si∗,ω that minimize µ. Notice that z′1 = σqcode , for some σ ∈ F. If σ 6= wj [i

∗],
then µ ≥ ∆ ((z1, z2), (z′1, z

′
2)) ≥ 1

2 (since the entire first half needs to be changed). Thus, we
may assume that σ = wj [i

∗].
The fact that (z′1, z

′
2) ∈ Si∗,ω means that z′2 ∈ D

−1
i∗,ω(F\{C(x)[i∗],⊥}). Thus, by Claim 4.18,

with probability scode, it holds that wj |Ii∗,ω is ρcode-far from z′2. Assuming that the latter
happens we have that µ ≥ ∆ ((z1, z2), (z′1, z

′
2)) ≥ ρcode/2. We conclude that in any case µ ≥

ρcode/2.
The claim follows by observing that the PCPP queries that M’ makes account for half of

its total queries.

This concludes the proof of Lemma 4.15.

4.2.5 Correcting the PCPP Part

In this subsection we complete the analysis of the relaxed corrector presented in Section 4.2.1,
by analyzing it in the case that the location (to be corrected) is in the code’s PCPP part.

As in the previous case, the first condition of relaxed correctors is immediate from the
construction. Specifically, the fact that C is an RLCC tells us that Di∗,ω∗(z2) = w1[i∗], and so
it follows from the perfect completeness of the PCPP that we will never reject in Step 2. The
completeness of the relaxed corrector for the “core” that was established in the previous section,
which guarantees we will never reject in Step 4. Finally, the PCP’s self-corrector will always
output the correct value on an uncorrupted codeword, so we will not output the wrong thing
in Step 5.

As before, we first show that accepting views are far apart.

Lemma 4.20 (Accepting Views are Far Apart (in the PCPP part)). For every i ∈ [n · t+ 1, n′]
and random string ω′ for M′, the accepting views of M′ have distance ρ.

Proof. Fix a random string ω′ forM′ and an accepting view a ∈ F2qpcp . Recall that the view of
M′ (when querying the core) consists of four parts (a1, a2, a3, a4) ∈ Fqpcp ×Fqpcp ×F2qpcp ×Fqpcp ,
where: (1) a1 to the PCPP answers (wrt the invocation of Vi∗,ω∗), (2) a2 corresponds to reading
w1[i∗] qpcp times (and checking that all queries were the same), (3) a3 corresponds to the answers
for the recursive invocation of the corrector on the core, and (4) a4 corresponds to the answers
for the PCPP self-correction procedure.

We observe that each of these parts is robust by itself, where the first part is ρpcp-robust
since the PCPP is ρpcp-robust, the second part is 1-robust (since you need to change all answers
to ensure consistency), the third part is ρpcp/2-robust by Lemma 4.15 and the forth part is
ρpcp-robust by the robustness of the PCPP self correction.

Overall we get that accepting views are at least (ρpcp/5)-far from each other.

21



In the rest of this subsection we prove the following lemma, which shows that the second
condition (robust soundness) is satisfied.

Lemma 4.21. For every string w′ =
(
(w1, . . . , wt), (πi,ω)i∈[n],ω∈R

)
that is (δradius/4)-close to a

valid codeword c′ ∈ C ′, and index `∗ ∈ [n · t+ 1, . . . , n′], it holds that:

Pr
(I,D)←M′(`∗)

[
∆
(
w|I , D−1(F \ {c′[`∗],⊥})

)
> ρcode/5

]
≥ (scode · spcp · ρcode2)/4.

Proof. Let i∗ ∈ [n] and ω∗ ∈ R be the indices that are associated with `∗ (that is, such that
πi∗,ω∗ is the PCPP oracle in which the index `∗ resides). Let x ∈ Fk such that C ′(x) = c′. Recall
that the core of c′ consists of t copies of C(x).

Let Good denote the event that the view of M′ is (ρpcp/5)-far from any view that would
make it return an incorrect value (i.e., different from C(x)[i∗] or ⊥).

We will show that Pr[Good] ≥ (scode ·spcp ·ρcode2)/4. This is done by a careful (and somewhat
tedious) case analysis.

Claim 4.22. If w1|Ii∗,ω∗ is (ρcode/2)-far from C(x)|Ii∗,ω∗ , then Pr[Good] ≥ (scode ·spcp ·ρcode2)/4.

Proof. If w1|Ii∗,ω∗ is (ρcode/2)-far from C(x)|Ii∗,ω∗ then, with probability ρcode/2 over the choice
of i′ ∈ Ii∗,ω it holds that w1[i′] 6= C(x)[i′]. By Lemma 4.15, with probability at least scode · spcp ·
ρcode/2, the local view of the recursive call to the corrector will be ρpcp/2-far from any view that
would make that corrector return anything but C(x)[i∗] or ⊥. Recall that the correctors reads
the value w1[i′] qpcp times, checks that they are all equal, and denotes it by η. Thus, η = w1[i′]
and moreover, the view of the corrector is ρpcp/5 from any view in which η 6= w1[i′].

Since the corrector compares η with the value given by the recursive invocation, with prob-
ability (ρcode/2) · (scode · spcp · ρcode/2), it’s view is ρpcp/5 far from any view that would make it
output anything but ⊥.

Thus, in the rest of the analysis we may assume that w1|Ii∗,ω∗ is (ρcode/2)-close to C(x)|Ii∗,ω∗ .

Claim 4.23. If w1[i∗] 6= C(x)[i∗], then Pr[Good] ≥ spcp · ρcode/4.

Proof. Consider the input (z1, z2) on which Vi∗,ω∗ is invoked. Recall that z1 = (w1[i∗])qcode and
z2 = w1|Ii∗,ω∗ . By the strong canonical soundness of the PCPP, with probability spcp · µ, the
local view of the PCPP verifier will be ρpcp-far from any view that would make it accept, where:

µ = min
(z′1,z

′
2)∈Si∗,ω∗

{
max

(
∆
(
(z1, z2), (z′1, z

′
2)
)
,∆
(
P(z′1, z

′
2), πi∗,ω∗

) )}
.

We show that µ ≥ ρcode/4. Let (z′1, z
′
2) ∈ Si∗,ω∗ that minimize µ. Then, there exists σ ∈ F

such that z′1 = σqcode and Di∗,ω∗(z
′
2) = σ. If σ 6= w1[i∗], then µ ≥ ∆ ((z1, z2), (z′1, z

′
2)) ≥ 1/2,

since the first part needs to be entirely changed. Thus, we may assume that σ = w1[i∗].
Assume that z′2 is (ρcode/2)-close to w1|Ii∗,ω∗ . Then, by the triangle inequality z′2 is ρcode/2+

ρcode/2 = ρcode close to C(x)|Ii∗,ω∗ . However,

Di∗,ω∗(C(x)|Ii∗,ω∗ ) = C(x)[i∗] 6= w1[i∗] = Di∗,ω∗(z
′
2).

Thus, by the second part of the robust RLCC definition, it must be the case that z′2 is
ρcode-far from C(x)|Ii∗,ω∗ , which is a contradiction. Thus,

µ ≥ ∆
(
z′2, z2

)
/2 = ∆

(
z′2, w1|Ii∗,ω∗

)
/2 ≥ ρcode/4

Thus, in any µ ≥ ρcode/4. Since the queries to the PCP consist of 1/5 of the corrector’s total
queries, the claim follows.
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Thus, in the rest of the analysis we may assume also that w1[i∗] = C(x)[i∗].

Claim 4.24. If πi∗,ω∗ is ρcode-far from Pi∗,ω∗((C(x)[i∗])qcode , C(x)|Ii∗,ω∗ ), then Pr[Good] ≥ spcp ·
ρcode/4.

Proof. Consider yet again the input (z1, z2) on which Vi∗,ω∗ is invoked. Recall that z1 =
(w1[i∗])qcode = (C(x)[i∗])qcode and z2 = w1|Ii∗,ω∗ . By the strong canonical soundness of the
PCPP, with probability spcp · µ, the local view of the PCPP verifier will be ρpcp-far from any
view that would make it accept, where:

µ = min
(z′1,z

′
2)∈Si∗,ω∗

{
max

(
∆
(
(z1, z2), (z′1, z

′
2)
)
,∆
(
P(z′1, z

′
2), πi∗,ω∗

) )}
.

We now show that µ ≥ ρcode/4. Suppose toward a contradiction that µ < ρcode/4. Let
(z′1, z

′
2) ∈ Si∗,ω∗ that minimize µ. That is,

µ = max
(
∆
(
(z1, z2), (z′1, z

′
2)
)
,∆
(
P(z′1, z

′
2), πi∗,ω∗

) )
. (3)

First observe that if z′1 6= (C(x)[i∗])qcode , then µ ≥ ∆ ((z′1, z
′
2), (z1, z2)) ≥ 1/2. Thus, we may

assume that z′1 = (C(x)[i∗])qcode = z1.
Eq. (3) implies that µ ≥ ∆ ((z′1, z

′
2), (z1, z2)) and so, ∆ (z′2, z2) ≤ 2µ < ρcode/2. But, by

our assumption, z2 = w1|Ii∗,ω∗ is ρcode/2-close to C(x)|Ii∗,ω∗ and so, by the triangle inequality,

∆
(
z′2, C(x)|Ii∗,ω∗

)
< ρcode. By the second robustness property of RLCC, this implies that

z′2 = C(x)|Ii∗,ω∗ .
Using Eq. (3) yet again, we have that:

µ ≥ ∆
(
P(z′1, z

′
2), πi∗,ω∗

)
= ∆

(
P((C(x)[i∗])qcode , C(x)|Ii∗,ω∗ ), πi∗,ω∗

)
which, by the claim’s hypothesis is more than ρcode. Thus, in any case µ ≥ ρcode/4.

Thus, with probability spcp ·ρcode/4, the local view of the PCPP verifier will be ρpcp-far from
any view that would make it accept. Since this view accounts for 1/5 of the corrector’s queries,
the claim follows.

Hence, we may assume that πi∗,ω∗ is ρcode-close to Pi∗,ω∗((C(x)[i∗])qcode , C(x)|Ii∗,ω∗ ).

Claim 4.25. Pr[Good] ≥ spcp.

Proof. The self correction procedure of the PCPP is run on the string πi∗,ω, which is ρcode-close
to Pi∗,ω∗((C(x)[i∗])qcode , C(x)|Ii∗,ω∗ ). Since ρcode ≤ δpcp-correction-radius, this means that the string
is within the correcting radius of the PCPP. The claim follows by the robust local correction of
the PCPP, the fact that these queries are a 1/5 fraction of the queries that M′ makes.

This concludes the proof of Lemma 4.21.

4.3 Exponential Length, Constant Query, Strong Canonical and Self-Correctable
PCPP

In this section we construct self-correctable PCPPs for affine subspaces, with exponential length,
constant query complexity, strong soundness with respect to a canonical proof. Our construction
is closely related to the Hadamard-based inner PCPP in [ALM+98].
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Theorem 4.26. Let n ≥ k be integers. Let A ∈ {0, 1}k×n be a matrix and let b ∈ {0, 1}k be a
vector. Then, the set SA,b = {x ∈ {0, 1}n : Ax = b} has a self-correctable strong PCPP with
O(1) queries and O(n) randomness complexity, where the canonical proof string of the PCPP is
a linear function of the input.

Proof. Fix a matrix A ∈ {0, 1}k×n and vector b ∈ {0, 1}k. We construct an (exponential length)
self-correctable, strong canonical PCPP for the set SA,b, where the canonical proof string is a
linear function of the input.

For a given input x ∈ SA,b, the canonical PCPP proof string is the Hadamard encoding of the
string x. Namely, the truth table of the function π : {0, 1}n → {0, 1} defined as π(z) = 〈z, x〉,
for every z ∈ {0, 1}n.

Given access to the input oracle x ∈ {0, 1}n and an (alleged) proof oracle π : {0, 1}n → {0, 1},
the PCPP verifier V chooses at random w, z ∈ {0, 1}n and performs the following tests:

• Linearity Test: check that π(w) +π(z) = π(z+w) (note that the first addition refers to
addition of scalars over {0, 1} whereas the second refers to vector addition over the vector
space {0, 1}n).

• Circuit Test: choose at random v ∈ {0, 1}k and check that π(z) + π(z + vA) = 〈v, b〉.

• Input Proximity Test: choose at random i ∈ [n] and check that π(z) + π(z + ei) = xi,
where ei ∈ {0, 1}n is the unit vector with 1 in its i-th coordinate and 0 everywhere else.

The verifier V accepts if and only if all of the tests above were successful. We proceed to
show that this PCPP satisfies the required conditions.

Linearity: The canonical proof is the Hadamard encoding of the input, which is a linear code.

Self-Correction. Follows immediately from the fact that the Hadamard code is a 2-query
locally correctable code.

Completeness. Let x ∈ SA,b (i.e., Ax = b) and let π be the Hadamard encoding of x. Since
π is a linear function, the linearity test passes with probability 1. For the circuit test observe
that:

π(z) + π(z + vA) = 〈z, x〉+ 〈z + vA, x〉 = 〈vA, x〉 = 〈v,Ax〉 = 〈v, b〉

as desired. For the input proximity test observe that:

π(z) + π(z + ei) = 〈z, x〉+ 〈z + ei, x〉 = 〈ei, x〉 = xi

which completes our analysis.

Strong Canonical Soundness. Let x ∈ {0, 1}n and fix a proof string π̃. We need to show

that V rejects with probability Ω(δ), where δ
def
= minx′∈SA,b

{
max

(
∆ (x, x′) ,∆ (P (x′), π̃)

)}
.

We assume without loss of generality that δ ≤ 1
2 .21

The proof goes as follows. We first use the celebrated linearity test of Blum, Luby and
Rubinfeld [BLR93] (see also [Gol16]) to conclude that π must be very close to the Hadamard
encoding of some string x′. Note that x′ may be either close to (or even equal to) x or far from

21Indeed, for fixed constant values of δ, the requirement that the verifier rejects with probability Ω(δ) is trivial.
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x. Moreover, using the local correctability of the Hadamard code, we can treat π as though it
actually is exactly an Hadamard encoding of x′.

Suppose x′ 6∈ SA,b. Then, due to the distance of the Hadamard code, π is very far from
the Hadamard encoding of any string x∗ ∈ SA,b, so the verifier needs to reject with constant
probability. Ideally, the verifier would like to directly compute Ax′ and compare it to b, but
it only has access to the Hadamard code of x′, not x′ itself (and computing Ax′ would require
many queries). Similarly to the case of the Hadamard PCP, we observe that the requirement
of Ax′ = b is a conjunction of k affine functions on x′. The high level idea is to take a random
linear combination of these functions so that we end up with just a single linear function. More
specifically, the verifier selects a random vector v ∈ {0, 1}k. We observe that if Ax′ = b, then
〈vA, x′〉 = 〈v, b〉, whereas if Ax′ 6= b then, with probability 1/2, it holds that 〈vA, x′〉 6= 〈v, b〉.
Thus, our verifier rejects if 〈vA, x′〉 6= 〈v, b〉 (where we observe that computing the inner product
of x′ with any fixed vector requires just a single query to the Hadamard encoding of x′).

We are left with the case that x′ ∈ SA,b. In this case, we notice that x′ is the minimizing
string for δ and so δ = ∆(x, x′). So the verifier only needs to reject with probability proportional
to ∆(x, x′). To do this, it suffices to pick i ∈ [n] at random, read the ith bit of the input x,
compare it to the ith bit of x′, and reject if they are different. We proceed to the formal proof.

The [BLR93] test shows that if π̃ is δ′-far from every linear function (for all sufficiently small
δ′ > 0), then, with probability Ω(δ′), over the choice of z and w, it holds that π̃(z) + π̃(w) 6=
π̃(z + w). Thus, we may assume without loss of generality that π̃ is δ/4-close to some linear
function π : {0, 1}n → {0, 1} (since otherwise the verifier rejects with probability Ω(δ) when
performing the linearity test). Let x′ ∈ {0, 1}n such that π(z) = 〈z, x′〉, for every z ∈ {0, 1}n.

Consider first the case that x′ 6∈ SA,b (i.e., Ax′ 6= b). In this case the verifier rejects in the
circuit test with probability:

Pr
[
π̃(z) + π̃(z + vA) = 〈v, b〉

]
≥ Pr

[
π(z) + π(z + vA) = 〈v, b〉

]
− 2 · δ/4

≥ Pr
[
〈z, x′〉) + 〈z + vA, x′〉 = 〈v, b〉

]
− δ/2

= Pr
[
〈vA, x′〉 = 〈v, b〉

]
− δ/2

= Pr
[
〈v,Ax′ + b〉 = 0

]
− δ/2

=
1

2
− δ/2

≥ 1

4

where the first inequality is by the fact that z and z + vA are each individually random in
{0, 1}n and our assumption that π̃ is δ/4-close to uniform, and the final equality uses the fact
that Ax′ 6= b.

Now consider the case that x′ ∈ SA,b (i.e., Ax′ = b). Note that by definition of δ, it holds
that δ ≤ max

(
∆ (x, x′) ,∆ (P (x′), π̃)

)
≤ max

(
∆ (x, x′) , δ/4

)
and so ∆ (x, x′) ≥ δ. Thus, the

verifier rejects in the Input Proximity Test rejects with probability at least:

Pr
[
π̃(z) + π̃(z + ei) 6= xi

]
≥ Pr

[
π(z) + π(z + ei) 6= xi

]
− 2 · δ/4

= Pr
[
π(ei) 6= xi

]
− δ/2

= Pr
[
x′i 6= xi

]
− δ/2

= ∆
(
x, x′

)
− δ/2

≥ δ/2,
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4.4 Polynomial Length, Polylog Query, Strong Canonical, Self-Correctable
and Robust PCPP

In Section 4.3 we constructed a self-correctable, strong canonical, robust PCPP with a constant
number of queries and exponential size. That PCPP does not suffice for our end goal of an
RLCC with polynomial blocklength and constant query.22

As described in the introduction, our first composition step will compose the low degree
extension code with a PCPP, which we call the “intermediate” PCPP. Thus, we want to con-
struct a suitable PCPP. In this section we construct the intermediate PCPPs we use in our code
construction. More formally, we prove the following theorem.

Theorem 4.27. Let A ∈ {0, 1}k×n be a matrix and let b ∈ {0, 1}k be a vector. There exist

universals constants c ∈ N and s, ρ ∈ (0, 1) such that for every constant m ≤ log(n)
log log(n) , the

set SA,b = {x ∈ {0, 1}n : Ax = b} has a PCPP (over the binary alphabet) with the following
properties:

• The PCPP is ρ-robust strong soundness s (with respect to canonical proofs).

• The PCPP is ρ-robust self correctable with soundness s.

• The canonical PCPP proof string is a GF(2)-linear function of the input x. The length of
the PCPP proof string is poly(n).

• The predicate that the PCPP verifier computes is also a GF(2) linear function. Both the
verifier and the self correctors have query complexity O(nc/m) and randomness complexity
polylog(n) · n1/m.

Indeed, we will use this theorem where we set m = log(n)
log log(n) , which yields a PCPP with

polylogarithmic query complexity and polynomial length.23

Recall that being strong canonical means that each valid input x has a unique accepting
proof, and the verifier must reject any other proof with probability proportional to how far
away the proof is from the correct one. Additionally, self-correctability refers to the fact that
the canonical proofs form a locally correctable code, while robustness stipulates that the view
of the verifier on any invalid input x must be far from an accepting view. See Section 4.1 for
details.

We note that the proof of Lemma 4.28 is closely related to (and influenced by) the construc-
tion of a linear inner proof system (LIPS) in [GS06, Theorem 5.19]. The following lemma is the
main step in proving Theorem 4.27.

Lemma 4.28. Let A ∈ {0, 1}k×n be a matrix and let b ∈ {0, 1}k be a vector. For every

m ≤ log(n)
log log(n) and for every finite field F of size |F| ≥ Ω(m ·n1/m) which is an extension field of

GF(2), the set SA,b = {x ∈ {0, 1}n : Ax = b} has a strong canonical PCPP over the alphabet
F, and has query complexity O(m2 · n2/m) and randomness complexity O(m2 · n2/m · log(|F|)).

Furthermore, (1) the canonical PCPP proof string is an O(m)-variate total degree O(m·n1/m)
polynomial, (2) the canonical PCPP proof string viewed as a bit string (in the natural way), is a

22By composing that PCPP with a low degree extension code (of suitable parameters), we obtained a relaxed
locally correctable codes with quasi-polynomial blocklength.

23We believe that with more care our approach would yield a PCP with only logarithmic randomness (rather
than poly-logarithmic). However, we do not optimize the randomness complexity since it is not required for our
main results.
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GF(2)-linear function of the input, (3) the PCPP verifier, viewed as a function on bits, computes
a GF(2) affine relation on its view, and (4) the PCPP verifier only makes a single query to the
input.

Indeed, this lemma gives the desired PCPP for Theorem 4.27, modulo the self-correction
and robustness properties.

In Section 4.4.1 we prove Lemma 4.28 and then in Section 4.4.2 we use Lemma 4.28 to prove
Theorem 4.27.

4.4.1 Proof of Lemma 4.28

Fix A ∈ {0, 1}k×n and b ∈ {0, 1}k. We construct a strong self-correctable PCPP for verifying
membership in SA,b. Let C : {0, 1}n → {0, 1}k be a circuit composed only of fan-in 2 parity
gates such that on input x ∈ {0, 1}n it outputs y ∈ {0, 1}k where y is the all zeros string if
and only if x ∈ SA,b.

24 We denote the size (i.e., number of wires) of C by N and note that
N = O(n · k).

Let F be an extension field of GF(2), let H ⊆ F an arbitrary subset such that {0, 1} ⊆ H,
and where |H| = dN1/me and |F| = Ω(|H| ·m). Note that |Hm| ≥ N . We associate the integers
in [N ] with the first N elements in Hm, given in lexicographic order.

For a given input x ∈ {0, 1}n, we extend x to be a string in {0, 1}N be associating the i-th
entry with the value of the i-th wire of C on input x. We list the wires in order of increasing
depth - this puts the input x in the first n positions of the extended string and the ouput C(x)
in the last k positions.

Let ` = 4m + 4. We define a polynomial X : F` → F to be the (unique) individual degree
|H|− 1 polynomial such that for every i ∈ [N ], it holds that X(i) = xi and for every i ∈ H`\[N ]
it holds that X(i) = 0.25

We define a function φA,b : (Hm)3 × ({0, 1})4 → {0, 1} such that for every i1, i2, i3 ∈ Hm

and α1, α2, α3, σ ∈ {0, 1} we define φA,b(i1, i2, i3, α1, α2, α3, σ) = 1 if there is a gate of the form
α1 · xi1 + α2 · xi2 + α3 · xi3 + σ = 0 in the circuit and φA,b(i1, i2, i3, α1, α2, α3, σ) = 0 otherwise.
We first extend φA,b to be a function φA,b : H3m+4 → {0, 1} by defining it to be zero outside of

H3m × {0, 1}4. Let φ̂A,b : F3m+4 → F be the low degree extension of φA,b.
The idea behind the definition of φA,b is that it encodes local constraints, that, put together,

encode the global correctness of a computation performed by the circuit C. Namely, φA,b is
nonzero only at tuples that encode gates present in C, and is zero otherwise. Suppose a prover
gives the verifier a polynomial that the prover claims is 0 at all tuples that encode gates in C.
The verifier can check this claim by multiplying that polynomial with φ̂A,b and checking that
the product is identically 0. This property will be particularly useful if we create a polynomial
that is 0 at all tuples encoding gates in C if and only if the assignment to the wires satisfies
the relations imposed by the gates. In this case, we will be able to check that the assignment
that the prover gives is valid via polynomial identity testing on this product polynomial. This
motivates our definition of the polynomial P0 below.

Recall that ` = 4m + 4. We define a polynomial P0 : F` → F such that for every z ∈ F`,
24For each coordinate i ∈ [k], we can compute

∑
j Aijxj + bi mod 2 with at most n + 1 parity gates with

0/1 weights. It will be convenient to include wires with 0-weights for notation purposes. We can do this for all
coordinates i to get the desired circuit.

25The reader may find it mysterious why X was defined as an ` variate polynomial rather than m-variate (since
we are essentially taking the low degree extension of the computation which is of size N ≤ |H|m. Jumping ahead,
we note that the reason that we do so is to facilitate the “bundling” of this polynomial with other `-variate
polynomials that are defined below.
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where z = (i1, i2, i3, i4, α1, α2, α3, σ) ∈ (Fm)4 × F4, it holds that:

P0(z) =φ̂A,b
(
i1, i2, i3, α1, α2, α3, σ

)
·
(
α1 ·X

(
0`−m, i1

)
+ α2 ·X

(
0`−m, i2

)
+ α3 ·X

(
0`−m, i3

)
+ σ

)
+X

(
0`−m, i4

)
·
(

1−X
(

0`−m, i4

))
.

Notice that P0 is the sum of two terms. The first term is exactly what we described before-
hand: a product of φ̂A,b with a simple polynomial that checks that the assignment to the wires
satisfies each gate of the circuit C. The purpose of the second term is to enforce booleanity in
the input. Namely, X

(
0`−m, i4

)
·
(
1−X

(
0`−m, i4

))
will be nonzero whenever X

(
0`−m, i4

)
is

non-boolean, so this means that P0 is identically 0 on H` only if X encodes a boolean assignment
x such that C(x) = 0. This will be shown formally in Claim 4.31.

Thus, we would like to be able to check that P0 is identically 0 over H`. Doing so is not
immediate since P0 has degree O(m · |H|) and so it does not necessarily have to be identically
0 on all of F` (indeed, typically it will not be). As usual in the PCP and interactive proof
literature, we enforce this condition using the sumcheck approach of Lund et al. [LFKN92].

The key idea is to define additional auxiliary polynomials P1, . . . , P` : F` → F (which are
often called the sumcheck polynomials) and are defined as follows. For every (z1, . . . , z`) ∈ F`:

Pi(z1, . . . , z`) =
∑
h

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`) · zhi , (4)

where by exponentiating in h, we mean that we associate H with the integers {0, . . . , |H|−1} in
some canonical way, and simply exponentiate by the corresponding integer. Notice that Eq. (4)
can be equivalently rewritten as:

Pi(z1, . . . , z`) =
∑

h1,...,hi

P0(h1, . . . , hi, zi+1, . . . , z`) · zh11 · · · · · z
hi
i . (5)

The PCPP Proof String. The PCP proof bundles the polynomials X, P0, . . . , P` in the
following way. Let λ, λ0, . . . , λ` be distinct elements in F. We define a polynomial Q : F`+1 → F
as follows. For every z ∈ F` we define Q(λ, z) = X(z) and for Q(λi, z) = Pi(z), for every
i ∈ {0, . . . , `}. We extend the definition of Q to F`+1 by interpolation (in the first variable).

Observe that Q has degree `+ 1 in its first variable and total degree O(|H| ·m).

The PCPP Verifier. Recall that the PCPP verifier is given access to two oracles, the input
oracle x ∈ {0, 1}n and an alleged proof oracle Q : F`+1 → F. The verifier first runs a total
degree test (see Lemma 4.10) on Q, with respect to degree O(m · |H|). If the test fails the
verifier immediately rejects.

We “un-bundle” the polynomial Q : F`+1 → F as follows. Let X : F` → F and P0, . . . , P`
be defined as X(z) = Q(λ, z) and Pi(z) = Q(λi, z), where λ, λ0, . . . , λ` ∈ F are the fixed field
elements as defined above. In the sequel, whenever we say that the verifier queries one of the
polynomials Q, X, P0, . . . , P`, we actually mean that it reads these values via the self-correction
procedure (see Lemma 4.9) applied to Q (with respect to degree O(m · |H|)).

The verifier runs the following additional tests. If any test fails then the verifier rejects.
Otherwise, it accepts.

1. Individual Degree Test for First Variable of Q: The verifier chooses at random
(z1, z2, . . . , z`+1) ∈ F`+1. It checks that the value Q(z1, . . . , z`+1) is consistent with value
obtained by interpolating from Q(γ, z2, . . . , z`+1) and {Q(γi, z2, . . . , z`+1)}i∈{0,...,`} (where
we recall that all values are read via self correction from Q).
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2. Low Individual Degree |H| − 1 Test for X. The verifier runs the individual degree
|H| − 1 test on X (see Lemma 4.11).

3. Zero Output (and Padding) for X: check that the |H|` − N + k bit suffix of X|H`

is the all zero string. An efficient procedure for doing so is described in, e.g., [RRR16,
Proposition 3.9].

4. Input Proximity Test: choose at random i ∈ [n] and check that X(0`−m, i) = xi (recall
that we use the local correction procedure for this).

5. X vs. P0 Test: choose at random z ∈ F`. Let i1, i2, i3, i4 ∈ Fm and α1, α2, α3, σ ∈ F
such that z = (i1, i2, i3, i4, α1, α2, α3, σ). Check that

P0(z) = φ̂A,b(z) ·
(
α1 ·X(0`−m, i1) + α2 ·X(0`−m, i2) + α3 ·X(0`−m, i3) + σ

)
+X

(
0`−m, i4

)
·
(

1−X
(

0`−m, i4

))
.

6. Sumcheck Test: choose at random (z1, . . . , z`) ∈ F` and check that for every i ∈ [`]:

Pi(z1, . . . , z`) =
∑
hi∈H

Pi−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii ,

where the values {Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)}h∈H are read via the self correction
procedure.

7. P` Zero Test: choose random z ∈ F` and check that P`(z) = 0.

Query Complexity. It can be readily verified that each one of our tests makes at most
O(m · |H|) calls to the self correction procedure. The latter procedure requires O(m|̇H|) queries
and so we obtain query complexity O(m2 · |H|2).

Randomness Complexity. It can also be readily verified that each of our tests by itself
uses O(log(|F|m)) randomness. In addition, for each one of queries we invoke the self correction
procedure which induces uses O(log(|F|m)) randomness. Thus, the total amount of randomness
used is O(m · |H| · log(|F|m)).

Completeness. Suppose that we have an input x ∈ {0, 1}n such that C(x) = 0, and that
we construct the polynomials X, P1, . . . P` from this input and bundle them into Q as specified
above.

Clearly the Zero Suffix test passes, since this is how we constructed the polynomial. The
input proximity test passes because X(0`−m, i) = xi for all i by construction. The X vs. P0

test passes because P0 is constructed correctly from X (and in particular, X is boolean valued
inside H`). The sumcheck test passes because Pi+1 is constructed correctly from Pi.

Only the fact that the Zero Test for P` remains to be analyzed. Since x is a boolean string
such that C(x) = 0, we conclude that P0|H` ≡ 0. Now we establish that Pi|Fi×H`−i ≡ 0 for all
i ∈ [`]. Assume that the claim is true for i − 1. Fix a point ~z = (z1, . . . , z`) ∈ Fi × H`−i. By
definition, we have that

Pi(z1, . . . , z`) =
∑
hi∈H

Pi−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii ,

Applying the inductive hypothesis, we see that, for all hi ∈ H,

Pi−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii |Fi×H`−i ≡ 0

Hence, by induction, we have that P`|F` ≡ 0, and so the Zero Test passes.
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Strong Canonical Soundness. Let x ∈ {0, 1}n and fix a proof string Q̃ : F`+1 → F. We need

to show that V rejects with probability Ω(δ), where δ
def
= minx′∈SA,b

{
max

(
∆ (x, x′) ,∆

(
Q(x′), Q̃

))}
,

where Q(x′) denotes the canonical PCPP proof string for input x′.
We assume without loss of generality that Q̃ is δ-close to a total degree O(|H|·m) polynomial

Q∗, since otherwise the total degree test fails with high probability.

Claim 4.29 (Individual Degree of Q in its First Variable). If Q∗ does not have individual degree

`+ 1 in its first variable, then the verifier rejects with probability 1− O(|H|·`)
|F| .

Proof. Suppose that Q∗ has individual degree t > `+ 1 in its first variable (but not t− 1). We
can write Q∗ as:

Q∗(z1, . . . , z`+1) =
t∑
i=0

zi1 ·Qi(z2, . . . , z`+1)

for some total degree O(|H| ·m) polynomials Q0, . . . , Qt : F` → F. Furthermore, the polynomial
Qt is not identically zero (since otherwise Q∗ would have individual degree t− 1 in z1)). Thus,
with probability 1−O(|H| · `)/|F|, it holds that Qt(z2, . . . , z`+1|) 6= 0. Assuming that the latter

holds, the univariate polynomial T (z1) =
∑t

i=0 z
i
1 ·Qi(z2, . . . , z`+1) has degree t but not degree

t − 1. Therefore with probability 1 − O(`)/|F| the value T (z1) is inconsistent with the value
obtained by interpolating from T (γ) and {T (γi)}i∈{0,...,`}. Therefore, our verifier rejects with
probability 1−O(|H| · `)/|F|.

Hence, we can assume thatQ∗ has individual degree `+1 in its first variable. LetX∗ : F` → F
and P ∗0 , . . . , P

∗
` : F` → F be defined as X∗(z) = Q∗(γ, z) and P ∗i (z) = Q∗(γi, z), for every z ∈ F`

and i ∈ {0, . . . , `+ 1}. Since the verifier accesses Q̃ using the self-correction procedure , we can
assume that the verifier has direct access to the polynomials X∗, P ∗0 , . . . , P

∗
` . This assumption is

without loss of generality, as we can make the error probability of the self-correction procedure
sufficiently low that an error in reading any of the polynomials X∗, P ∗0 , . . . , P

∗
` only occurs with

negligible probability.
We now give some high-level intuition for the proof of strong canonical soundness. We want

to show that at least one of the tests will reject with probability Ω(δ). We will think about this
in the contrapositive: we want to show that, if the test accepts with probability > 1−O(δ), then
the proof strings X∗, P ∗0 , . . . , P

∗
` are very close to the canonical proofs for a bit string x′ ∈ SA,b,

and furthermore that ∆(x, x′) < δ.
We will start by assuming that the “P` Zero Test” accepts with high probability, and use the

acceptance of sumcheck tests to conclude that P ∗0 |H` ≡ 0 (Claim 4.30). This argument is similar
to the proof we gave that the P` Zero Test accepts in the Completeness case. Additionally, the
acceptance of the X vs. P0 Test and the Zero Suffix Test tells us that P ∗0 was appropriately
constructed from X∗. These two facts together let us conclude that the first n elements of X∗

encode a boolean string x′ such that x′ ∈ SA,b, and that X∗ is close to a polynomial X ′ that is
a part of the canonical proof generated with respect to x′ (Claim 4.32). The sumcheck tests let
us extend this observation to show that all the proof polynomials X∗, P ∗0 , . . . , P

∗
` are very close

to the canonical polynomials generated with respect to x′ (Claim 4.34). Finally, we verify that
x′ is close to the input x using the Input Proximity Test (Claim 4.36).

Claim 4.30. If for some i ∈ {0, . . . , `} it holds that P ∗i |Fi×H`−i 6≡ 0, then the verifier rejects

with probability 1− O(|H|·`)
|F| .

Proof. We prove by reverse induction on i. For i = ` the claim follows from the zero test that
the verifier runs on P ∗` , and the Shwartz-Zippel lemma (Lemma 4.8). For the inductive step,
we will rely on the sumcheck test.
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Assume that the claim holds for i ∈ [`]. We show that it holds for i − 1. We may assume
that P ∗i |Fi×H`−i ≡ 0 (since otherwise the claim follows from the inductive hypothesis). Suppose
that P ∗i−1|Fi−1×H`−i+1 6≡ 0. We need to show that the verifier rejects with high probability.

Define Ti(z1, . . . , z`) =
∑

hi∈H P
∗
i−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii . Observe that by our

assumption that P ∗i−1|Fi−1×H`−i+1 6≡ 0 it follows that T |Fi×H`−i 6≡ 0 and in particular it must
be distinct from P ∗i . Since both have total degree O(m · |H|), by the Schwartz-Zippel lemma
(Lemma 4.8), with probability 1−O(m · |H|/|F|) over z1, . . . , z` ∈ F it holds that

P ∗i (z1, . . . , z`) 6= Ti(z1, . . . , z`) =
∑
hi∈H

P ∗i−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii ,

in which case the verifier rejects in the sumcheck test.

In particular, by Claim 4.30 (with i = 0), we may assume that P ∗0 |H` ≡ 0. Let x′ ∈ Fn be
the restriction of X∗ to the first n field elements (recall that these refer to the input bits). Let
Q(x′) = (X ′, P ′0, . . . , P

′
`) be the canonical PCPP proof with respect to the input x′.26

Claim 4.31. If x′ 6∈ {0, 1}n (i.e., x′ is not Boolean valued) then, with probability 1 − O(m ·
|H|/|F|), the verifier rejects.

Proof. Suppose that x′i∗ 6∈ {0, 1} for some i∗ ∈ [n]. In particular this means that x′i∗ ·(1−x′i∗) 6= 0
(since the polynomial λ · (1− λ) has precisely two solutions: 0 and 1).

Define a polynomial T0 : F` → F as T0(i1, i2, i3, i4, α1, α2, α3, σ) = φ̂A,b(i1, i2, i3, α1, α2, α3, σ)·(
α1·X∗(i1)+α2·X∗(i2)+α3·X∗(i3)+σ

)
+X∗(i4)·(1−X∗(i4)). Observe that T0(~0,~0,~0, i∗, 0, 0, 0, 0) =

X∗(i∗) · (1 − X∗(i∗)) 6= 0 whereas P ∗0 (~0,~0,~0, i∗, 0, 0, 0, 0) = 0 (since we have assumed that it
is identically 0 in H`). Thus, by the Schwartz-Zippel lemma (Lemma 4.8), with probability
1 − O(m · |H|/|F|) over the choice of z ∈ F`, it holds that P ∗(z) 6= T (z), in which case the
verifier rejects.

Thus, we may assume that x′ ∈ {0, 1}n.

Claim 4.32. If X∗ 6≡ X ′, then the verifier rejects with probability 1−O(m · |H|/|F|).

Proof. We will first show that if X∗|H` 6≡ X ′|H` then the verifier rejects with high probability.
Suppose that there exists an index i ∈ {N+1, . . . ,H`} such that X∗(i) 6= X ′(i). This means

that X∗ and X ′ differ on the “zero region.” Since X ′ was defined as a canonical polynomial
for input x′, we know that X ′ is 0 on the “zero region” by construction, which means that
X∗(i) 6= 0. In this case, the verifier rejects with probability 1−O(m · |H|/|F|) due to the Zero
Output and Padding Test (see the analysis of this test in [RRR16, Proposition 3.9]).

Now, we can assume that the suffixes match, so if X∗|H` 6≡ X ′H` , they must differ on some
index in [N ]. Let i∗1 ∈ [N ] be the smallest such that X∗(i∗1) 6= X ′(i∗1) (notice that i∗1 > n
since we have defined x′ as the n element prefix of X∗). Since the circuit is deterministic,
the value at each wire is determined by the input x′ to the circuit. By definition, the correct
value of each wire is included in X ′. Since our assumption is that X∗(i∗1) 6= X ′(i∗1), there
exist α∗1, α

∗
2, α
∗
3, σ ∈ {0, 1} and i∗2, i

∗
3 ∈ Hm such that φA,b(i

∗
1, i
∗
2, i
∗
3,~0, α

∗
1, α
∗
2, α
∗
3,~0, σ) = 1 but

α∗1 ·X∗(i∗1) + α∗2 ·X∗(i∗2) + α∗3 ·X∗(i∗3) + σ 6= 0.

26Note that we have not yet established that x′ is Boolean valued (this fact will be established in Claim 4.31),
nor that x ∈ SA,b. Nevertheless, at least syntactically, the construction of the canonical PCPP proof string given
above extends naturally for every input in Fn.
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Define a polynomial T0 : F` → F as follows. For every z ∈ F`, where z = (i1, i2, i3, i4, α1, α2, α3, σ) ∈
(Fm)4 × F4 it holds that

T0(z) =φ̂A,b
(
i1, i2, i3, α1, α2, α3, σ

)
·
(
α1 ·X∗

(
0`−m, i1

)
+ α2 ·X∗

(
0`−m, i2

)
+ α3 ·X∗

(
0`−m, i3

)
+ σ

)
+X∗

(
0`−m, i4

)
·
(

1−X∗
(
0`−m, i4

))
.

Observe that T0(i∗1, i
∗
2, i
∗
3,~0, α

∗
1, α
∗
2, α
∗
3, σ
∗) 6= 0 whereas P ∗0 (i∗1, i

∗
2, i
∗
3,~0, α

∗
1, α
∗
2, α
∗
3, σ
∗) = 0 (since

we have assumed that P ∗0 is identically 0 in H`). Thus, with probability 1−O(m · |H|/|F|) over
the choice of z ∈ F` it holds that P ∗0 (z) 6= T0(z), in which case the verifier rejects on the X vs.
P0 Test.

Hence, we may assume that X ′|H` ≡ X|H` . By construction X ′ has individual degree |H|−1.
If X∗ does not have individual degree |H| − 1, then the individual degree |H| − 1 rejects with
probability 1−O(m · |H|)/|F|. Hence, we may assume that also X∗ has individual degree |H|−1.
Two individual degree |H| − 1 polynomials that agree on H` must agree on F` and so we obtain
that X∗ ≡ X ′.

Thus we may assume that X∗ ≡ X ′. Now we can use the X vs. P0 Test again to argue that
the verifier will reject if P ′0 6≡ P ∗0 .

Claim 4.33. If P ′0 6≡ P ∗0 then the verifier rejects with probability 1−O(|H| ·m/|F|).

Proof. Since we have assumed that X∗ ≡ X ′ (due to Claim 4.32), we know that

P ′0(z) =φ̂A,b(i1, i2, i3, α1, α2, α3, σ) ·
(
α1 ·X∗(0`−m, i1) + α2 ·X∗(0`−m, i2) + α3 ·X∗(0`−m, i3) + σ

)
+X∗(0`−m, i4) · (1−X∗(0`−m, i4))

So we can rephrase the X vs. P0 Test as testing whether P ∗0 is equal to P ′0 at a random point.
Since P ∗0 and P ′0 are both polynomials of degree at most O(m · |H|), we can conclude that, if P ′0
and P ∗0 are not equivalent, the test will reject with probability 1−O(m · |H|/|F|).

Now we can assume that P ′0 ≡ P ∗0 . We will use the Sumcheck Tests to conclude that, if P ′i
and P ∗i are not equivalent for any i ∈ [`], the test will reject with probability 1−O(m · |H|/|F|).

Claim 4.34. For every i ∈ {0, . . . , `}, if P ∗i 6≡ P ′i , then the verifier rejects with probability
1−O(m · |H|/|F|).

Proof. We prove by induction on i. The base case i = 0 follows from Claim 4.33. Assume that
the claim holds for i − 1 and we show that it holds for i. We may assume that P ∗i−1 ≡ P ′i−1

(since otherwise the claim follows from the inductive hypothesis).
Suppose that P ∗i 6≡ P ′i . Thus, by the Schwartz-Zippel lemma (Lemma 4.8) with probability

1−O(m · |H|/|F|) over the choice of z1, . . . , z` ∈ F it holds that:

P ∗i (z1, . . . , z`) 6= P ′i (z1, . . . , z`)

=
∑
hi∈H

P ′i−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii

=
∑
hi∈H

P ∗i−1(z1, . . . , zi−1, hi, zi+1, . . . , z`) · zhii ,

in which case the verifier rejects.
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Thus, we may assume that P ′i ≡ P ∗i for all i ∈ {0, . . . , `}.
This means that we have established that Q∗(γ, ·, . . . , ·) ≡ Q′(γ, ·, . . . , ·) and Q∗(γi, ·, . . . , ·) ≡

Q′(γi, ·, . . . , ·), for all i ∈ [`]. Since Q′ has individual degree ` + 1 by construction and Q∗ by
our assumption, they must agree on F`+1. Thus, Q′ ≡ Q∗.

Claim 4.35. If x′ 6∈ SA,b then the verifier rejects with probability 1− O(m·|H|)
|F| .

Proof. Since x′ 6∈ SA,b, we know that C(x′) 6= 0. This means that there exists an index
N − k ≤ i ≤ N such that X ′(i) 6= 0. Since we have already established that X∗ ≡ X ′, this
means that also X∗(i) 6= 0. Thus, when applying the zero output test to X∗, by the analysis in

[RRR16, Proposition 3.9], the verifier rejects with probability 1− O(m·|H|)
|F| .

Thus, we have established that the proof Q∗ is the canonical proof for an input x′ ∈ SA,b.
We will now show that this input must be close to x.

Claim 4.36. If x′ is δ-far from x, then the verifier rejects with probability Ω(δ).

Proof. If x′ is δ-far from x then with probability δ over the choice of i ∈ [n], it holds that
x′i 6= xi. Accounting for the error in the self correction procedure, we have that the verifier
rejects with probability Ω(δ) in the Input Proximity Test.

Thus, we may assume that x′ is δ-close to x. In particular, using the fact that ∆
(
Q(x′), Q̃

)
<

δ we obtain that: max
(

∆ (x, x′) ,∆
(
Q(x′), Q̃

))
< δ. Since x′ ∈ SA,b we get a contradiction to

the definition of δ (recall that δ = minx′∈SA,b

{
max

(
∆ (x, x′) ,∆

(
P (x′), Q̃

))}
).

This completes the proof of Lemma 4.28.

Linearity. We first establish that the canonical proof string Q is generated as a GF(2)-linear
function of the input x. We will later argue that the verifier can be expressed as a linear-system.

Consider first the polynomial X : F` → F. Each point in [N ] is clearly generated as a GF(2)-
linear combination of the input (since the circuit C has only parity gates). All other points in
H` \ [N ] are identically 0. The rest of X is obtained as the unique low degree extension, which
is an F-linear code. Since F is an extension field of GF(2), then the latter is also a GF(2) linear
transformation.

The polynomial P0 is the most tricky to handle. Indeed, from its definition it is self evident
that it is a quadratic form over the field F (for the second term which handles booleanity).
Nevertheless, we argue that it is a GF(2) linear function of the input x. The reason is that the
mapping λ→ λ2 is a GF(2)-linear transformation.27 The rest of the sumcheck polynomials are
obtained as F-linear combinations of P0, which in particular are GF(2)-linear and so they are a
GF(2)-linear combination of the input x. Lastly, the polynomial Q is obtained by interpolation,
which is a linear operation over F (and therefore also over GF(2)).

As for the verifier’s checks, it is easy to see that all, except the X vs. P0 test, are F-linear
and therefore also GF(2)-linear. The X vs. P0 test involves an F quadratic form of the same
form as that analyzed above, and similarly, it can be shown to be GF(2)-linear.

27To show GF(2) linearity it suffices to show that (λ1 + λ2)2 = λ2
1 + λ2

2, which is true in GF(2) (also notice
that multiplication by a scalar is a trivial operation in GF(2)).
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4.4.2 Proof of Theorem 4.27

Fix A ∈ {0, 1}n×k and b ∈ {0, 1}k. Applying Lemma 4.28 with respect to a finite field of
size |F| = O(m2 · n2c/m), we have that SA,b has a strong canonical PCPP (P,V) with all the
properties listed in the statement of Lemma 4.28. In particular, the proof string for an input
x ∈ {0, 1}n is a total degree d = O(m · nc/m)-polynomial Q : F`′ → F, where `′ = O(m). The
query complexity is also q = O(m · nc/m).

We construct a PCPP proof-system (P′,V ′) by making the following modification to (P,V).
Given oracle access to an (alleged) PCPP proof string Q : F`′ → F, the verifier runs the following
tests:

1. A robust low degree test on Q, with respect to degree d (see Lemma 4.12).

2. In addition, the PCPP verifier generates the PCPP queries s1, . . . , sq ∈ F`′ as in the PCPP
of Lemma 4.28. However, rather than reading these points directly, our verifier chooses an
additional random point s0 and takes a degree q curve through {s0, . . . , sq}. Namely, we
curve P (t) =

∑
i∈{0,...,q} si · ti. The verifier reads all the points on Q the lie on the curve

P . Thus, the verifier obtains the truth table of the (univariate) polynomial Q ◦ P , which
should have degree q · d = O(m2 · n2c/m) ≤ |F|/100. Our verifier first checks that Q ◦ P
is indeed a degree O(m2 · n2c/m) polynomial. It then checks that verifier of Lemma 4.28
accepts when its answer to each query si is Q ◦P (i), for all i ∈ [q]. If all of its checks pass
then the verifier accepts.

In addition, recall that V only reads a single point from the input x. We weigh also this test
(i.e. we query the point multiple time and check that all answers are the same) as well as the
two foregoing tests so that each test consists of one third of the queries.

Remark 4.37. Actually, since we are aiming for a PCPP over the binary alphabet, we further
“concatenate” the PCPP proof-string with a good binary linear error correcting code C. Namely,
each of the F`′ field elements in the proof is encoded using C. The verifier is further modified
so that when it is supposed to read a field element it reads the entire codeword of C, checks
that it is a valid codeword (and otherwise rejects) and decodes to the corresponding symbol of
F. For simplicity, and since it only affects our parameters by a constant factor, we ignore this
concatenation in the analysis below.

Robustness Stong Canonical Soundness. To establish robustness we first need to show
that accepting views of the PCPP verifier V ′ are at least 0.1-far apart. This follows immediately
from the fact that in the two tests that the verifier preforms, it checks that the answers that it
gets are low degree polynomials (of degree d for the low degree test and d · q for the additional
test). Since |F| > 100d · q, these is 0.99 distance between accepting views.

We still need to establish the robust soundness condition. Namely, that for every x ∈ {0, 1}n
and every proof oracle Q, when V is given access to the input oracle x and proof oracle Q it
holds that

Pr
(I,D)←V ′

[
∆
(
(x ◦Q)|I , D

)
> ρ
]
≥ Ω(µ),

where:

µ
def
= min

x′∈S

{
max

(
∆
(
x, x′

)
,∆
(
P′(x′), Q

) )}
.

Fix an input x ∈ {0, 1}n and a proof oracle Q : F`′ → F. Consider first the case that Q
is 0.1-far from having degree d. In such case, by the robustness of the low degree test, with
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probability at least 0.5, the view of the verifier will be at least 0.1-far from accepting. Thus, we
may assume that Q is 0.1-close to some degree d polynomial Q′.

By the strong canonical soundness of (P,V) with probability Ω(µ′), where:

µ′
def
= min

x′∈S

{
max

(
∆
(
x, x′

)
,∆
(
P(x′), π

) )}
.

the queries s1, . . . , sq are such that the values (Q(si))i∈[q], would lead the verifier V to reject.
Assume that this is indeed the case.

On the other hand, since s0 was chosen at random, each point on the curve P , other than
s1, . . . , sq, is individually a random point. Since Q is 0.1-close Q′ (which has degree d), with
probability 1/2, the function Q ◦ P will be 0.2-close to the degree d · q polynomial Q ◦ P ′. To
change the view of the verifier V ′ to an accepting one, an adversary must now change at least
1− d·q

|F| − 0.2 ≥ 0.7 of the answers to the second test.

Lastly, we observe that the test that reads the input bit (required for V) has robustness 1.
Overall we got that with probability Ω(µ), the answers that the verifier V ′ sees are 0.1-far

from any that would make it accept. The theorem follows.

Self Correction. Suppose that the PCPP string is 0.1-close to a degree O(m · nc/m) poly-
nomial. Self correction follows from the fact that low degree polynomials are robust locally
correctable (see the furthermore part of Lemma 4.9).

4.5 Putting it Together

To prove Theorem 4.1, we will use our composition theorem (Theorem 4.13) to perform two
iterative compositions of a robust RLCC with a robust, self-correctable, strong canonical PCPP.
Specifically, we proceed in the following steps.

1. Base Code: Our starting point is the low-degree extension (LDE) code (aka, the Reed-
Muller code), as defined in Section 4.1.3, of roughly logarithmic order. With a suitable
setting of parameters, the LDE is known to be a robust (full-fledged) LCC with almost
linear blocklength and polylogarithmic query complexity.

2. First Composition: We compose this low-degree extension code with the polynomial
length, polylogarithmic query, strong canonical, self-correctable and robust PCPP that was
constructed in Theorem 4.27. This composition yields a robust RLCC with polynomial
blocklength and sub-logarithmic query complexity; we denote the composed code by C ′.

3. Second Composition: Finally, we compose the code C ′ with the exponential length,
constant query, strong canonical, self-correctable PCPP from Theorem 4.26. This yields
our final code: an RLCC with polynomial blocklength and constant query complexity.

In what follows, we provide the full details of the steps of the proof outlined above. Recall
that Theorem 4.13 allows us to compose a robust RLCC with a robust strong canonical PCP
of proximity to obtain a robust RLCC with improved query complexity, with a relatively mild
overhead to the block length.

We proceed to describe our base code, then the first composition (using Theorem 4.13) with
the PCPP in Theorem 4.27, and finally the second composition (also using Theorem 4.13) with
the PCPP in Theorem 4.26.
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Our Base Code. Fix F to be a finite field of characteristic 2 (i.e., an finite extension field

of GF(2)), let H ⊆ F, and let m be a dimension such that |H| = (log(k))c, m = log(k)
c·log log(k)

and |F| = Θ(|H| ·m), where c ≥ 1 is chosen as a large constant. Denote n
def
= |Fm|, and note

that |H|m = k and that n = |F|m = k ·mm ≤ k1+1/c. Consider the low-degree extension code
LDEF,H,m : Fk → Fn as defined in Section 4.1.3.

LDEF,H,m is an F-linear code with relative distance 1− |H|·m|F| ≥ 0.9. The furthermore clause of

Lemma 4.9 implies that it is 0.5-robust relaxed LCC with respect to soundness 2/3, and decoding
radius δradius = 0.1. Furthermore, the corrector is an F-linear function and has randomness
complexity rcode = log(|F|m) = log(n), and query complexity qcode = O(|H| ·m) = polylog(n).

To obtain a binary code, we concatenate LDEF,H,m with a good binary linear code. Since F is
an extension field of GF(2), the resulting code is GF(2)-linear. Furthermore, the resulting code
has constant distance δ > 0 and is an ρcode-robust relaxed LCC, for constant ρcode > 0, with
respect to constant soundness scode > 0, and constant decoding radius δradius > 0. Lastly, the
corrector is a GF(2)-linear function and has randomness complexity rcode = log(|F|m) = log(n),
and query complexity qcode = polylog(n).

The First Composition. Let (P,V) be the PCPP proof-system for affine relations, guar-
anteed by Theorem 4.27, with respect to inputs of length ` = 2qcode = polylog(n) and with
dimension m = log(`)/ log log(`). This PCPP is a self-correctable strong canonical and ρpcp-
robust PCPP (P,V) (over the binary alphabet), where ρpcp = Ω(1), with respect to soundness
spcp = Ω(1), which is a GF(2)-linear PCPP oracle with a GF(2)-linear verifier and self-corrector,
and has query complexity qpcp = polylog(`) = poly(log log(n)) and randomness complexity
rpcp = polylog(`) = poly(log log(n)).

We compose the code from step 1 (i.e., LDEF,H,m concatenated with a good binary linear
error correcting code) with the PCPP (P,V) using Theorem 4.13. This yields a GF(2)-linear
ρ′-robust relaxed LCC C ′ : {0, 1}k → {0, 1}n′ , with respect to soundness s′ = (spcp · scode ·
ρcode

2)/4 = Ω(1) and where ρ′ = ρpcp/2 = Ω(1), with a GF(2)-linear verifier, block length

n′ = 2n · 2rcode · 2rpcp · qpcp = Õ(n2) = ˜O(k2+2/c), relative distance δ′ ≥ δ/2, decoding radius
δ′radius = δradius/4, randomness complexity

r′ = 2rcode +O
(
rpcp + log(qpcp) + log(qcode)

)
= 2 log(n) + poly(log log(n)),

and query complexity q′ = O
(
qpcp

)
= O(log log(n)).

The Second Composition. Let (P′,V ′) be the PCPP proof-system guaranteed by Theo-
rem 4.26 with respect to an input of length O(log log(n)). This PCPP is self-correctable, ρpcp

′-
robust, strong canonical PCPP, with respect to soundness spcp

′ = Ω(1), with qpcp
′ = O(1)

queries, soundness ρpcp
′ = Ω(1), and randomness complexity rpcp

′ = O(log log(n)). (We remark
that the PCPP of Theorem 4.26 trivially has constant robustness since the verifier only uses a
constant number of queries.) The PCPP proof string is a GF(2)-linear function of the input and
the verifier and self-correctors are GF(2)-linear functions of their answers.

We compose the code C ′ with the PCPP (P,′ V ′) using Theorem 4.13. This yields a GF(2)-
linear ρ′′-robust relaxed LCC C ′′ : {0, 1}k → {0, 1}n′′ , with respect to soundness s′′ = Ω(spcp

′ ·s′ ·
ρcode

′2) = Ω(1) and where ρ′′ = ρpcp
′/2 = Ω(1), ρ′′ = Ω(1). The composed code C ′′ has a GF(2)-

linear corrector, block length n′′ = 2n′ ·2rcode′ ·2rpcp′ ·qpcp′) = Õ(k2+2/c)·Õ(n2)·no(1) = k4+4/c+o(1),
relative distance δ′′ ≥ δ′/2 = Ω(1), decoding radius δ′′radius = δ′radius/4 = Ω(1), and query
complexity q′′ = O

(
qpcp

′) = O(1).

Theorem 4.1 follows by setting c� 4/ε so that k4+4/c+o(1) = k4+ε, for the desired parameter
ε from the theorem statement.
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5 Constant Rate RLCC

In this section, we construct a relaxed locally correctable code (RLCC) with quasi-polylogarithmic
query complexity (specifically, (log n)O(log logn)) and constant rate (which approaches 1). Our
construction is based on the recent breakthrough result of Kopparty et al. [KMRS16], who give
constructions of constant rate locally testable codes (LTC) with quasi-polylogarithmic query
complexity and constant rate full-fledged (i.e., non-relaxed) locally correctable codes with

2O(
√

log(n)·log log(n)) query complexity.
We show that the [KMRS16] LTC is simultaneously relaxed locally correctable with quasi-

polylogarithmic query complexity.

Theorem 5.1 (Constant Rate Binary RLCC with Quasipolylogarithmic Query Complexity).
For every constant r ∈ (0, 1), there exist constants ε > 0 and δ > 0 and an (explicit) infinite
family of binary, linear codes {Cn}n such that:

• Cn has blocklength n, rate r, and relative distance δ.

• Cn is relaxed locally correctable with query complexity (log n)O(log logn).

and δ furthermore satisfies that

δ = max
r<R<1

{
(1−R− ε) ·H−1

(
1− r

R

)}
where H is the binary entropy function, and H−1 is its inverse with range (0, 1/2).

The rate-distance tradeoff for the codes in Theorem 5.1 approaches the Zyablov bound [Zya71],
similar to the codes in [KMRS16].

On the way to proving Theorem 5.1, we will construct relaxed locally correctable codes
with a larger alphabet that approach the Singleton Bound, again analogous to a result of
Kopparty et al..

Theorem 5.2 (Constant Rate RLCC with Quasipolylogarithmic Query Complexity Approach-
ing Singleton Bound). For every constant r ∈ (0, 1) and constant γ > 0, there exists an infinite
family of codes {Cn}n over an alphabet {Σn}n such that:

• Cn has blocklength n, rate r, and relative distance at least 1− r − γ.

• Cn is relaxed locally correctable with query complexity (log n)O(log logn).

• The alphabet Σn of Cn has size at most |Σn| ≤ exp(poly(1/γ))).

• Viewed as a function over bits, Cn is GF(2)-linear.

In the construction, following [KMRS16], we start off with a high-rate code C of only
polylogarithmic block-length and relative distance δ = 1/polylog(n). The code C is trivially
locally correctable with a polylogarithmic number of queries: given a string w and coordinate
i, read all of w, decode to the nearest codeword c and output ci.

Our goal is now to extend the blocklength of C with only a mild overhead to the query
complexity. We do so gradually, by iteratively applying two transformations. The first trans-
formation is code tensoring, which squares the block length (as well as the distance and the
rate). We note that tensoring does not seem to preserve local correctability (nor decodability).28

Nevertheless, our main observation is that tensoring does preserve relaxed local correctability.

28Even assuming that the base corrector makes “smooth” queries, the natural local corrector for a tensor code
squares the query complexity, which we cannot afford.
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Thus, one could try to simply take the code C and tensor it with itself roughly log log(n)
times to obtain a code with block length n. The problem with this approach, however, is that
tensoring also squares the distance, which would mean that the resulting code would have very
poor distance. To rectify this, [KMRS16] uses an additional transformation that amplifies the
distance without raising the query complexity of the LTC too much.

Specifically, Kopparty et al. use the Alon-Edmonds-Luby (AEL) [AEL95] transform after
each tensoring step to amplify the distance without hurting the rate too much. Furthermore,
they show that the Alon-Edmonds-Luby transform preserves local testability (and correctabil-
ity). In Section 5.2, we show that the Alon-Edmonds-Luby transform additionally preserves
relaxed local correctability. Thus, similarly to [KMRS16], by repeated applications of tensoring
and distance amplification we obtain our desired RLCC.

Remark 5.3. The iterative approach in the [KMRS16] construction (and therefore also in ours)
resembles the “zig-zag approach” that has been used in the literature for a variety of purposes,
including the construction of expander graphs [RVW00], PCPs [Din07], locally testable codes
[Mei09] and doubly efficient interactive proofs [RRR16]. See also Goldreich’s survey [Gol11a].

Section Organization. In Section 5.1, we formally define the operation of tensoring on codes
and show that tensoring preserves relaxed local correctability without increasing the query
complexity too much. In Section 5.2, we give the AEL distance amplification lemma and prove
that the AEL transform preserves relaxed local correctability. In Section 5.3, we provide the
binary codes with small blocklength that we will use for the final constructions. In Section 5.4,
we use the tools and codes from the previous sections to construct the codes of Theorem 5.2
and Theorem 5.1.

5.1 Analysis of Tensoring

Following [KMRS16], the basic operation used to increase the blocklength of a code in our
construction is tensoring.

Definition 5.4 (Tensor Code). Given a field F and an F-linear code C : Fk → Fn, define the
tensor of C with itself, C2 : Fk2 → Fn2

, to be the code such that messages m ∈ Fk2 are encoded
as follows. View m as a k×k matrix over F and encode each of its rows using C. Then, encode
each of the columns (including those generated in the first step) also using C.

It is a well-known fact that the rows and columns of each codeword c′ ∈ C2 are themselves
codewords of C.

Now we are ready to state our main lemma of this section: that tensoring preserves relaxed
locally correctability.

Lemma 5.5 (Tensoring Preserves Relaxed Local Correctability). Let F be a field, and let C ∈ Fn
be a linear, relaxed locally correctable code with query complexity q, rate r, relative distance δ,
and decoding radius δR. Then C2 ∈ Fn2

is a linear, relaxed locally correctable code with query
complexity O(q/δR), rate r2, relative distance δ2, and decoding radius δ2

R/2.

Proof. Let w in Fn2
(which we view as an n × n matrix) be a (possibly) corrupt codeword,

with at most δ2
r/2 fraction of corruptions, and let (i, j) ∈ [n] be an index to correct. Consider

the ith row of w. Intuitively, if the fraction of corruptions on this row is small (i.e., less than
δR) than we could simply run the base corrector on this row. However, the total number of
corruptions can be as large as (δ2

R/2) ·n2, which can be larger than n, and so it may be the case
that the entire ith row is corrupt. Our plan is to detect this by choosing many coordinates of
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this row at random and checking whether they are corrupt by invoking the base corrector on
the corresponding columns.

We proceed to the actual proof. For a matrix w ∈ Fn×n, and indices i, j ∈ [n], we denote
the ith row of w by rowi(w) ∈ Fn and the jth column of w by colj(w) ∈ Fn. We denote the
(i, j)th entry of w by wi,j .

Description of M′. We now describe the action thatM′, the relaxed local corrector for C2,
takes when given a string w ∈ Fn×n and a coordinate pair (i, j) ∈ [n] × [n]. Recall that we
use the notation Mw′(i) to denote the result of running relaxed local corrector M to correct
coordinate i with oracle access to a corrupted codeword w′ ∈ Fn.

1. Repeat O(1/δR) times:

(a) Select at random j′ ∈ [n].

(b) Run Mcolj′ (w)(i), with error bound 0.1 (see Remark 3.3). If the result is not equal
to wi,j′ (and in particular if it is ⊥), then output ⊥ and abort.

2. Output Mrowi(w)(j).

Correctness of M′. Fix w ∈ Fn and i, j ∈ [n]. We first consider the case that w ∈ C2,
in which case the corrector should correctly output wi,j . Since each row and column of w is
a codeword of C (see Definition 5.4), and M is a relaxed local corrector for C, we know that
Mcolj′ (w)(i) = wi,j′ , for every choice of j′ ∈ [n]. Therefore, M′ will never reject in Step 1b.
Rather, it will reach Step 2 and output the correct value wi,j . Hence, the completeness condition
is satisfied.

It remains to show Condition 2, which says that if w is (δ2
R/2)-close to a codeword c ∈ C2,

then, with probability at least 1/2, it holds that M′ either decodes the correct symbol ci,j or
outputs ⊥.

We consider the following cases:

• If ∆ (rowi(w), rowi(c)) < δR, then by the relaxed correcting property, Mrowi(w)(j) will
output either the correct value ci,j or ⊥ with probability at least 1/2.

• Thus, we may assume that ∆ (rowi(w), rowi(c)) < δR. That is, at least δR fraction of
the coordinates in rowi(w) are corrupt. We will consider the set of coordinates j′ ∈ [n]
such that wi,j′ is corrupted (i.e., wi,j′ 6= ci,j′) and colj′(w) has less than δR fraction of
corruptions. The main observations are (1) this set is large (since the overall number of
corruptions is small) and (2) if our choice of j′ falls in this set (which will happen with
constant probability), then the relaxed local correction guarantees that when we run M
on this column, we will detect a problem in this column with high probability. Namely,
M will either output ⊥ or the value ci,j′ 6= wi,j′ in which case we reject. Details follows.

Define the sets Jerr and Jobv as follows:

Jerr = {j′ ∈ [n] : wi,j′ 6= ci,j′}

is the set of coordinates j′ ∈ [n] where wi,j′ is corrupt and

Jobv =
{
j′ ∈ Jerr and ∆

(
colj′(w), colj′(c)

)
< δR

}
is the subset of coordinates j′ of Jerr where the error is obvious to the corrector: since
the column indexed by j′ is not too corrupted, we can correct the error in wi,j′ by running
M on the column indexed by j′.
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We know that |Jerr| ≥ δR · n, by assumption. Furthermore, we argue that at most half of
the columns associated with these coordinates can have more than δR fraction of errors.
Since we assumed that dist(w, c) < δ2

R/2, there can be at most (δR/2) · n columns with
more than δR ·n errors. Because there are at least δR ·n columns in Jerr, we conclude that
|Jobv| ≥ δR · n − (δR/2) · n = (δR/2) · n. Finally, since we sampled O(1/δR) coordinates
j′ uniformly at random, by setting the constant in the big-O notation suitably, with
probability at least 0.99, in one of the iterations we sampled a coordinate j′ ∈ Jobv.
Assuming that this is the case, we know that ∆

(
colj′(w), colj′(c)

)
< δR, by the relaxed

local correction property with probability at least 0.9, M will output either ci,j′ or ⊥. In
both of these cases M′ will output ⊥ (since wi,j′ 6= ci,j′). Therefore, M′ will output ⊥
with probability at least 0.99 · 0.9 > 1/2.

Parameters of Tensor Code. Let δ, r, δR, and q denote the distance, rate, decoding radius,
and query complexity of C. It is a well-known fact that the rate and distance of C2 are r2 and
δ2 respectively, and furthermore that C2 is linear. As analyzed above, the decoding radius δ′R of
C2 is at least δ2

R/2. Finally, our correctorM′ makes at most O (1/δR) calls to the corrector for
C and reads an additional O (1/δR) points by itself. Since the underlying corrector M makes
at most q queries in each call, we get that M′ makes at most O (q/δR) queries in total.

5.2 Analysis of Distance Amplification

We now analyze the Alon-Edmonds-Luby (AEL) distance amplification method [AEL95], and
show that it preserves relaxed local correctability. This analysis is similar to the analysis given
in [KMRS16], which shows that AEL distance amplification preserves the stronger property of
local correctability (although it does not directly follow since we are starting off with the weaker
hypothesis of relaxed correctability).

Lemma 5.6 (Alon-Edmonds-Luby distance-amplification (see [KMRS16, Lemma 6]). Suppose
that C is a a binary linear code with relative distance δ and rate r that is relaxed locally
correctable with q queries and decoding radius δradius. Then, for every 0 < δ′radius <

1
2 and

0 < ε < 1, there exists a code CAEL that is relaxed locally correctable with query complexity
q · poly (1/(ε · δ′radius)) with decoding radius δ′radius such that:

• CAEL has relative distance at least 2 · δ′radius, and rate at least r · (1− 2 · δ′radius − ε).

• The alphabet of CAEL is {0, 1}p for some p = poly(1/(ε · δradius)).

• CAEL is GF(2)-linear.

The proof of Lemma 5.6 uses “graph samplers” which are defined next. For a graph G =
(V,E), a vertex v ∈ V and a subset of vertices S ⊆ V , we denote the set of edges from v to
the S as E(v, S). Similarly, given two subsets of vertices S, T ⊆ V , we denote the set of edges
between the sets S and T by E(S, T ).

Definition 5.7 (Sampler Graphs (c.f. [Gol11b])). Let G = (R,L,E) be a bipartite d-regular
graph with |R| = |L|. We say that G is an (ε, δ)-sampler if for every subset S ⊆ R, for at least
1− δ fraction of vertices v ∈ L it holds that

−ε ≤ |E(v, S)|
d

− |S|
|R|
≤ ε
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Lemma 5.8 (Explicit Samplers (see, e.g., [Gol11b, Lemma 5.3] or [KMRS16, Lemma 1])).
For every ε, δ > 0 and every sufficiently large n ∈ N there exists a bipartite d-regular graph
Gn,ε,δ = (R,L,E) with |R| = |L| = n and d = poly

(
1
ε·δ
)

such that Gn,ε,δ is an (ε, δ)-sampler.
Furthermore, there exists an algorithm that takes in n, ε, δ, and a vertex v of Gn,ε,δ, and com-

putes the list of neighbors of v in Gn,ε,δ in time poly
(

logn
ε·δ

)
.

Equipped with Lemma 5.8 we are now ready to describe AEL distance amplification and prove
Lemma 5.6.

5.2.1 Overview of Construction

We start by giving an overview of the steps. The subsequent subsections will go into details
on proving each step. Recall that our goal is to construct an RLCC that corrects from a δ′radius
fraction of errors.

At a high level, we will create CAEL from C by going through the following three steps:

1. Transform C into a code Cspread that is relaxed locally correctable from δ′radius fraction of
errors that are well-spread throughout different “blocks” of the codeword (the concept of
blocks in a codeword will be defined below).

2. Transform Cspread into a code Cconcentrated that is relaxed locally correctable from δ′radius
fraction of errors that are concentrated in certain blocks of the codeword.

3. Transform Cconcentrated into the final code CAEL that is relaxed locally correctable from
δ′radius fraction of adversarial errors.

We start by defining blockwise error patterns, which allow us to formalize what we mean
by “well-spread” and “concentrated” errors above. This definition is implicit in the proof of
distance amplification in [KMRS16].

Fix n and b to be integers such that b divides n. Suppose we have a code C with alphabet Σ
and blocklength n. We partition the indices {1, . . . , n} into n

b contiguous blocks of size b each,
which we denote s1, . . . , sn/b.

Given a block sj and a binary string e ∈ {0, 1}n (which we think of as a noise pattern), we
call sj an ε-heavy block under e if the set of indices i such that ei = 1 and i ∈ sj has size strictly
greater than ε · b. So, for example, the string 0n would not be 0-heavy for any block, and the
string (1, 0, 0, . . . , 0) would be 0-heavy for the block s1.

We say that e ∈ {0, 1}n is a (δ, ε, b)-blockwise error pattern if e is ε-heavy for at most δ
fraction of the blocks s1, . . . , sn/b. In other words, when there are at most δ · nb choices of j such
that the block sj is ε-heavy under e. When b is clear from the context we sometimes omit it
from the notation and simply say that e a (δ, ε)-blockwise error pattern.

Note that a string e that is a (δ, ε, b)-blockwise error pattern is permitted to have any number
of blocks with ≤ ε fraction of ones, but can only have at most δ fraction of blocks with more
than ε fraction of ones. The δ fraction of blocks that exceed the ε fraction are not restricted in
any way; they could potentially be all ones.

Given a string w ∈ Σn and a codeword c ∈ C, we say that w is (δ, ε, b)-blockwise close to c
if there exists a codeword c ∈ C such that the string e ∈ {0, 1}n defined as

ei =

{
1 if wi 6= ci

0 o/w

is a (δ, ε, b)-blockwise error pattern. In other words, if w is a corrupted codeword, this says that
the positions in which w is corrupted comprise the nonzero coordinates of a (δ, ε, b)-blockwise
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error pattern. We furthermore say that w is (δ, ε, b)-blockwise close to C if there is some codeword
c ∈ C such that w is (δ, ε, b)-blockwise close to c. Just like before, when b is understood from
context, we may equivalently say that w is (δ, ε)-blockwise close to c (resp. C).

Finally, we say that C is relaxed locally correctable from (δ, ε, b)-blockwise errors if there exists
a relaxed local correctorM such thatM works correctly on strings w that are (δ, ε, b)-blockwise
close to C. We now formally define relaxed local correctability with respect to blockwise errors.

Definition 5.9 (Relaxed Local Correctability from Blockwise Errors). Fix integers n, b > 0
such that b divides n. Let s1, . . . , sn/b be contiguous blocks of indices of length b as described
above. Let C ⊆ Σn be an error correcting code. Let δ, ε be in [0, 1].

We say that C is relaxed locally correctable from (δ, ε, b)-blockwise errors if there exists a
polynomial time algorithm M, with oracle access to a string w ∈ Σn and explicit access to an
index ∈ [n], such that the following two conditions hold.

1. If w ∈ C, then Mw(i) = wi with probability 1.

2. Otherwise, for all strings w ∈ Σn such that w is (δ, ε, b)-blockwise close to some codeword
c ∈ C,

Pr
[
Mw(i) ∈ {ci,⊥}

]
≥ 1/2,

where ⊥6∈ Σ is a special abort symbol.

Like before, when the parameter b is understood from context, we may equivalently say that
C is relaxed locally correctable from (δ, ε)-blockwise errors.

Now we give a brief proof sketch of each of the three major steps of the proof:

1. In the first step, we partition each codeword c ∈ C into blocks, then encode each block
with a Reed-Solomon code with blocklength d and distance 2 · δ′radius. We will show that
this gives us a new code Cspread that is relaxed locally correctable from (δradius, δ

′
radius + ε

2)-
blockwise errors. This is because these kinds of blockwise errors have the errors well-
spread : specifically, almost all the blocks have few errors.

2. In the second step, we will use the sampler graphs of Lemma 5.8 to apply a “pseudo-
random” permutation29 π to the indices of codewords of Cspread to transform Cspread into
a new code Cconcentrated that is resilient to errors that are concentrated in δ′ fraction of
blocks. We choose the permutation σ that we apply such that the inverse permutation
σ−1 scrambles these concentrated error patterns and makes them look “well-spread” (in
exactly the same way as described above). This will ensure that Cconcentrated is relaxed
locally correctable from (δ′radius, 0)-blockwise errors.

3. Finally, we will increase the alphabet size by collapsing blocks together into characters
over a larger alphabet. This limits the error patterns that the adversary can impose on
the code Cconcentrated to (δ′radius, 0)-blockwise error patterns, thus creating a code CAEL that
is relaxed locally correctable with decoding radius δ′radius.

For a diagram depicting these steps, we refer the reader to Fig. 1.

29That is, a specific deterministic permutation that satisfies some random-like properties (which will be specified
below). In particular, we emphasize that we do not refer to the cryptographic primitive of the same name.
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Figure 1: A high-level overview of the Alon-Edmonds-Luby transform. In the first step, a
codeword is partitioned into equal-sized blocks, depicted here as length 2. Then, each block is
encoded with a Reed-Solomon code. The encoded blocks are associated with vertices on one side
of a bipartite graph with good sampling properties, and the permutation is applied according to
the edges of the graph. The sampler is chosen such that the “concentrated” (δ′radius, 0)-blockwise
errors in the resulting code are sufficiently scrambled after applying the inverse permutation.
Finally, the alphabet is enlarged to restrict the adversary to (δ′radius, 0)-blockwise errors.
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Remark 5.10 (Comparison to Proof of [KMRS16]). As previously stated, our proof that AEL
distance amplification preserves relaxed local correctability is very similar to the proof that it
preserves local correctability from [KMRS16]. We address the reasons for this similarity at a
high level before proceeding with the proof.

Kopparty et al. show that AEL distance amplification constructs a bijection between the
base code C and the final code CAEL such that the local corrector MAEL for CAEL calls the local
corrector M for C many times as a subroutine, with the property that if all the calls to M
were successful in correction, then MAEL will correct successfully. By sufficiently amplifying
the success probability of M each time it is invoked, they conclude that MAEL succeeds with
probability at least 2/3.

We now observe that a similar story can be told for relaxed correctors. We suppose that the
code C has a relaxed local corrector M, and we provide a relaxed local corrector MAEL for CAEL

that invokes M. Just like before, whenever all the invocations to M correct successfully, the
relaxed corrector MAEL corrects successfully. Furthermore, whenever a single invocation to M
returns ⊥, the corrector MAEL can deduce that there is some error in the purported codeword
and can safely return ⊥. By reducing the error probability of M sufficiently (see Remark 3.3),
we can conclude that the probability that MAEL makes an error is less than 1/3.

5.2.2 Setting Parameters for the Construction

Let C, r, δradius, δ
′
radius, and ε be as in Lemma 5.6. Let n be the blocklength of C. Let {Gn}n

denote an explicit, infinite family of (δradius, ε/2)-sampler graphs as given by Lemma 5.8, and
let d be their degree. Define b to be (1− 2δ′radius − ε) · d.

5.2.3 Encoding for Well Spread Errors

We start by describing the first transformation from the code C to the code Cspread. Consider
a codeword c ∈ C. Recall that C is a binary code, so c is a string in {0, 1}n. Let t = dlog de.

1. Let F2t be a finite field of size 2t (note that in particular F2t is an extension field of GF(2)).

Let B : Fb2t → Fd2t be the Reed-Solomon code over F with blocklength d, message length
b, distance 2δ′radius + ε, and rate 1 − (2δ′radius + ε). Note that B basically has our target
decoding radius, but with small blocklength. The rest of this first transformation will use
B to modify C and endow it with some of B’s error correcting properties.

2. Partition the codeword c into n
b·t blocks of length b · t. If b · t does not divide the length of

w, simply pad w with 0’s so that it does. This adds at most b · t to the blocklength, which
is negligible if the blocklength is at least b·t

ε . If it is less than b·t
ε , then a Reed-Solomon

code with blocklength n ≤ b·t
ε suffices, since the blocklength is so small that we can afford

to read the whole thing to correct. We will interpret each block as a string of length b
over the alphabet {0, 1}t.

3. Encode each block using the code B. Each encoded block has length d (with alphabet
F2t), so the total length of all the encoded blocks is n

b·t · d.

Note that (δradius, δ
′
radius+ ε

2)-blockwise error patterns only have δradius fraction of blocks that
have more than δ′radius + ε

2 fraction of ones (which indicate errors). Any block that gets at most
δ′radius + ε

2 fraction of errors can be corrected by using the Reed-Solomon corrector. The δradius
fraction of blocks that are so corrupted that the Reed-Solomon corrector will err are few enough
that they can be handled by the local corrector for C. We now proceed with a formal proof.
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Lemma 5.11 (Cspread Relaxed Locally Correctable From “Well-Spread” Errors). Let C, δ,
δradius, δ

′
radius, d, q, and ε be as defined as in Section 5.2.2. Let B be the Reed-Solomon Code

with distance 2δ′radius + ε described in the construction of Cspread above.

The code Cspread : {0, 1}k → Fd·n/(b·t)2t (over the alphabet F2t) is F2-linear and relaxed locally
correctable from (δradius, δ

′
radius + ε

2)-blockwise errors. Furthermore, any two distinct codewords

c
(1)
spread, c

(2)
spread in Cspread, there exists a set of blocks of measure at least δ such that c

(1)
spread and

c
(2)
spread differ in at least (2δ′radius + ε)-fraction of coordinates in each of these blocks.

Finally, the corrector Mspread for Cspread makes at most q · poly(d) queries.

Proof. Note that Cspread is clearly GF(2)-linear, since C was binary and linear, and using the
fact that F2t is an extension field of GF(2), the transformation from C to Cspread preserves
GF(2)-linearity.

The property that any two distinct codewords in Cspread differ in at least δ fraction of blocks
on at least (2δ′radius + ε) fraction of coordinates per block follows from the distance of the code
C in the Reed-Solomon code B. Since any two codewords in C differ in at least δ fraction of
coordinates, even after we partition these codewords into blocks of size b over the alphabet Ft2
in Step 2 of the process above, we retain the property that any two codewords transformed by
this process differ in at least δ fraction of the blocks. Then, each of these blocks is treated as an
input to the Reed-Solomon code B, which has distance 2δ′radius + ε, which gives us the desired
claim.

Now we move on to analyzing relaxed local correctability. Suppose that our correctorMspread

is given oracle access to a string w′ ∈ Fd·n/(b·t)2t that is (δradius, δ
′
radius + ε

2)-blockwise close to a
codeword cspread ∈ Cspread, and an index i ∈ [d · n/(b · t)] to correct. Let c denote the codeword
in C that was transformed into cspread.

Let us pretend thatMspread has oracle access to c. Fix j ∈ [ nb·t ] such that the index i belongs
to the jth block. Then Mspread can query all the bits of c that lie in this block (specifically,
c(j−1)·d+1, . . . cj·d), encode these bits using B, and read off cspread[i] correctly from the resulting
string.

Now we would like to simulate oracle access to c. Instead, we do the next best thing: we
show how Mspread can simulate M, the relaxed local corrector of C, on a string w that is
δradius-close to c and has the property that w = c ⇐⇒ w′ = cspread.

To see why this is sufficient, consider replacing every query to ck with a call to M with
string w and index k. Note that, since M has perfect completeness, it is clear that we get
perfect completeness for Mspread.

Now we analyze the soundness. We note that we can amplify the success probability of M
(Remark 3.3) whenever we call it so that the probability of error in the soundness case is at
most 1

3b·t . This costs us a multiplicative factor of O(log(b · t)) = poly(d) in the query complexity
of Mspread. In return, we get that the probability that Mspread sees a response from M that is
incorrect (i.e. not ⊥ or consistent with c) in this whole process is at most 1/3.

IfMspread ever seesM output ⊥,Mspread immediately aborts and outputs ⊥, which is valid
since the transformation from C to Cspread guarantees that w 6= c⇒ w′ 6= cspread. Hence,Mspread

will either output cspread[i] or ⊥ with probability at least 2/3.
Now we describe howMspread simulatesM on w. WheneverM wishes to query a coordinate,

Mspread reads the entire block of w′ that corresponds to the encoding of the block in which this
coordinate lies. If this block is not a valid codeword of B, Mspread rejects and outputs ⊥.
Otherwise, it decodes this block of w′, and answers the query accordingly. This process of
answering a single query made byM costs d queries. We call the implicit string from whichM
receives responses to its queries w. Note that w = c ⇐⇒ w′ = cspread.
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Note that, since the distance of B was 2δ′radius + ε ≥ 2(δ′radius + ε
2), Mspread will decode any

block that has at most δ + ε
2 fraction of errors correctly.

By the assumption that w is (δradius, δ
′
radius+ ε

2)-blockwise close to Cspread, at least (1−δradius)
fraction of the blocks of w′ have at most δ′radius+ε/2 fraction of errors, we know that the implicit
string w, from whichMspread provides answers to the queries ofM, is δradius-close to C. Hence,
by assumption, Mspread can simulate the relaxed local corrector M correctly.

5.2.4 From “Well-Spread” to “Concentrated” Errors

In this step we start with the code Cspread that is relaxed locally correctable from (δradius, δ
′
radius+

ε
2)-blockwise errors with query complexity q · poly(d) (see Lemma 5.11), and describe how to
transform it into a code Cconcentrated that is relaxed local correctable from (δ′radius, 0)-blockwise
errors. Recall by the definition of blockwise error patterns that this is equivalent to being
resilient against adversaries who can choose a δ′radius fraction of blocks to fully corrupt, but
cannot corrupt any other coordinates.

At first glance, it might look like (δ′radius, 0)-blockwise errors are strictly easier to correct
than (δradius, δ

′
radius + ε

2)-blockwise errors. However, this is not the case; note that our relaxed
local corrector for Cspread does not work against (δ′radius, 0)-blockwise error patterns when δ <
δ′radius, since we could just fully corrupt δ′radius fraction of blocks (in which case we have no
guarantee). The high level idea to cope with this is to apply a “pseudorandom” permutation to
the coordinates of Cspread to get a code Cconcentrated. As a warmup, we will outline the argument
for a random permutation σ : [ nb·t · d]→ [ nb·t · d]. Let

σ(Cspread) =
{
cσ−1(1) ◦ . . . ◦ cσ−1( n

b·t ·d)
: c ∈ Cspread

}
be the set of strings that results from applying σ to the coordinates of each codeword cspread ∈
Cspread. Just like for strings in Cspread, we will view strings c ∈ σ(Cspread) as a sequence of n

b·t
blocks of length d.

We argue informally that σ(Cspread) is a code that is relaxed locally correctable from (δ′radius, 0)-
blockwise error patterns. Consider a string w such that w is (δ′radius, 0)-blockwise close to
σ(Cspread). Let c be a codeword of σ(Cspread) that is (δ′radius, 0)-blockwise close30 to w, and
let c′ be the codeword of Cspread that corresponds to c under the permutation σ, i.e. c′ =
cσ(1) ◦ . . . ◦ cσ( n

b·t ·). Since σ was a random permutation, we can apply a Chernoff bound31 to

conclude that cσ(1) ◦ . . . ◦ cσ( n
b·t ·d) differs from w on less than δ′radius + ε

2 fraction of coordinates
on all but δradius fraction of blocks.

While the fact that a random permutation works is nice, in order to make our code Cconcentrated

explicit we need to use an explicit permutation. Now we observe that we do not actually need
σ to be a truly random permutation – a cleverly selected “pseudorandom” permutation will
suffice. The property of σ used was that it mixes up coordinates well enough that, if we start
with a (δ′radius, 0)-blockwise error pattern e, the permuted string eσ(1) ◦ . . . ◦ eσ( n

b·t ·d)
has at most

δradius fraction of blocks that have more than a δ′radius + ε
2 fraction of ones – that is, it is a

(δradius, δ
′
radius + ε

2)-blockwise error pattern.

Lemma 5.12 (Explicit Permutations That Sufficiently Mix). Fix n, b, d, t, δradius, ε, and δ′radius
to be as in Section 5.2.2. There exists an (explicit) permutation σ : [ nb·t · d]→ [ nb·t · d] such that,

for every (δ′radius, 0, d)-blockwise error pattern e ∈ F
n
b·t ·d
2t , the permuted string eσ(1) ◦ . . . ◦ eσ( n

b·t ·d)

is a (δradius, δ
′
radius + ε

2 , d)-blockwise error pattern.
30In fact, c is unique when σ is sufficiently pseudorandom; this will be clear after we discuss the “pseudorandom”

qualities we want.
31As this is a thought experiment, we will not go through the details of the Chernoff bound.
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Proof. Towards the goal of constructing σ, we will describe a correspondence between permu-
tations π on [n·db·t ] with d-regular, simple, bipartite graphs G(π) = (U, V,E(π)). For all choices
of π, we will set |U | = |V | = n

b·t . Each of the n
b·t blocks of d indices will be associated with one

vertex in U and one vertex in V . Each of the d incident edges to a vertex will correspond to
one of the indices in the block that this vertex represents. The exact correspondence between
indices and edges, along with the exact edge structure of the graph G(π), will be tailored to the
permutation π, as we will now describe.

Fix arbitrary indices k, ` ∈ [ nb·t · d] such that σ(k) = `. Furthermore, let u ∈ {0, . . . , nb·t}
and i ∈ {1, . . . , d} be such that k = u · d+ i, where u indicates the block in which k lies and i
indicates the position within that block. Similarly, let v ∈ n

b·t and j ∈ {1, . . . , d} be such that
` = v · d+ j. Then G(σ) will contain an edge e = (u, v) where e will be the ith incident edge to
the vertex u and the jth incident edge to the vertex v.

Note that, although we chose to describe this transformation as starting from a permutation
π and building a graph G(π), we can also construct permutations π from d-regular simple,
bipartite graphs by following this transformation in reverse (with some sort of canonical ordering
on the edges coming out of each vertex). In this sense, modulo the canonical ordering of edges,
this transformation is a bijection between permutations on [ nb·t ·d] and d-regular, simple, bipartite
graphs with n

b·t vertices on each side. The goal now is to identify what properties of graphs
correspond to our desired property in permutations.

Recall the property we are looking for in the permutation σ - we want that, for all (δ′radius, 0)-
blockwise error patterns e, the permuted string eσ(1) ◦ . . . ◦ eσ( n

b·t ·d) has at most δradius fraction

of blocks that have more than δ′radius + ε
2 fraction of ones. By replacing blocks with vertices and

identifying the δ′radius fraction of corrupted blocks of e with the vertex set S in the definition of
sampler graphs (Definition 5.7), we can see that this property exactly corresponds to G(π) being
a (δradius, ε/2)-sampler. Furthermore, recall that we can construct explicit bipartite, biregular
sampler graphs by Lemma 5.8.

Finally, we are ready to describe how to construct σ. Let G∗ = (U, V,E∗) be a d-regular
(δradius, ε/2)-sampler guaranteed by Lemma 5.8 with n

b·t vertices on each side. For each vertex
in G∗, fix an arbitrary labelling to its incident edges, and consider the corresponding permuta-
tion σ∗. This permutation satisfies the mixing property we want, and is constructible in time

poly
(

log(n)
δradius·ε

)
= poly(log(n) · d).

Now that we have explicit permutations that satisfy the mixing property we want, we can
proceed to define Cconcentrated by describing the transformation from Cspread to Cconcentrated. Let
σ be the explicit permutation given by Lemma 5.12.

We define
Cconcentrated =

{
cσ−1(1) ◦ . . . ◦ cσ−1( n

b·t ·d)
: c ∈ Cspread

}
Lemma 5.13. Let δ′radius, q, and d be defined as in Section 5.2.2. The code Cconcentrated is

F2-linear. Furthermore, every pair of distinct codewords c
(1)
concentrated, c

(2)
concentrated in Cconcentrated

differ in at least 2δ′radius fraction of blocks.
Finally, Cconcentrated is relaxed locally correctable from (δ′radius, 0)-blockwise errors, where the

relaxed local corrector makes at most q · poly(d) queries.

Proof. Let σ be the permutation used in the definition of Cconcentrated (i.e., the same permutation
as in Lemma 5.12). Let ε and δradius be as defined in Section 5.2.2. Note that applying a
permutation preserves GF(2)-linearity, so Cconcentrated is GF(2)-linear.

The property that every pair of distinct codewords in Cconcentrated differ in at least 2δ′radius
fraction of blocks follows from the fact that σ maps (δ′radius, 0)-blockwise error patterns to
(δradius, δ

′
radius + ε

2)-error patterns. Therefore, σ must map (2δ′radius, 0)-blockwise error patterns
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to (δradius, 2δ
′
radius + ε)-blockwise error patterns, which follows from splitting the (2δ′radius, 0)-

blockwise error pattern into two (δ′radius, 0)-blockwise error patterns and taking a union bound.
Now, consider fixing any codeword cconcentrated ∈ Cconcentrated. We argue that any string w

that is (2δ′radius, 0)-blockwise close to cconcentrated cannot be a codeword of Cconcentrated. Suppose
for contradiction that w was a codeword of Cconcentrated, and let cspread be the codeword of Cspread

that corresponds to cconcentrated. By applying the permutation σ−1 on the coordinates of w, we
get some codeword wspread ∈ Cspread by the definition of Cconcentrated. However, due to the mixing
property of σ described above, we must have that wspread is (δradius, 2δ

′
radius + ε)-blockwise close

to cspread, giving us a contradiction.
We now describe the relaxed local corrector. Effectively, all this corrector will do is apply

the permutation σ to the coordinates of purported codewords of Cconcentrated and run the relaxed
local corrector of Cspread on the resulting string. Due to the mixing property of the permutation
σ−1, this will suffice to correct appropriately.

Fix a string z′ that is (δ′radius, 0)-blockwise close to a codeword c′ ∈ Cconcentrated and a
coordinate i ∈ [ nb·t · d] to correct.

Run the relaxed local corrector for Cspread with input string z′′ = z′σ(1) ◦ . . . ◦ z
′
σ( n

b·t ·d) and

coordinate σ−1(i). Whenever the corrector queries a position j, provide it with z′′j . Return
whatever the relaxed local corrector for Cspread returns.

Due to the properties of σ given by Lemma 5.12, the string z′′ will have at most δradius
fraction of blocks with more than δ′radius + ε

2 fraction of errors. Since we have a relaxed local
corrector for Cspread, we will recover z′′(σ∗)−1(i) = z′i or ⊥ with high probability due to the

soundness property of the relaxed local corrector for Cspread (see Lemma 5.11). This establishes
the soundness property for our relaxed local corrector.

Furthermore, when z′ = c′, we will always return c′i. This is because the string z′′ :=
c′σ(1) ◦ . . . ◦ c

′
σ( n

b·t ·d) is a valid codeword of Cspread, and so the corrector for Cspread will always

correctly return z′′σ−1(i) by the completeness property of relaxed local correction.
The number of queries made by this corrector for Cconcentrated is exactly the same as the

number of queries used by the corrector for Cspread.

Finally, we describe how to transform Cconcentrated into a code that is resilient to adversarial
errors.

5.2.5 From Blockwise to Adversarial Errors

We start from a code Cconcentrated that is relaxed locally correctable for (δ′radius, 0)-blockwise
error patterns as described above, and construct a code CAEL that is relaxed locally correctable
for adversarial errors.

We form CAEL from Cconcentrated by taking each codeword in Cconcentrated and rewriting each
block of symbols (c1, . . . , cd) ∈ Fd2t into a single character in F2t·d in the natural way (i.e., by
viewing d-dimensional vectors over F2t as an element of the field F2t·d)

The idea is that, now, adversarial errors for CAEL correspond to blockwise errors in the code
Cconcentrated, which we can correct with the relaxed local corrector for Cconcentrated.

We now prove Lemma 5.6.

Proof of Lemma 5.6. The corrector for CAEL, when asked to correct a coordinate i, will simply
use the corrector for Cconcentrated to correct each of the coordinates (i− 1) · d+ 1, . . . , i · d. Since
the corrector for Cconcentrated has query complexity q · poly(d), we conclude that CAEL also has
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query complexity q · poly(d) = q · poly
(

logn
ε·δradius

)
. Furthermore, since Cconcentrated was locally

correctable from (δ′radius, 0)-blockwise errors, we see that CAEL has decoding radius δ′radius.
We begin by proving the rate and distance of the overall AEL transform we have described.
The rate of CAEL can be written as

rAEL =
log |C|

(n/(b · t)) · (d · t)

Noting that the rate of C is r = log |C|
n and simplifying, we get that

rAEL ≥ r ·
b

d

Plugging in that b = d(1− 2δ′radius − ε), we get that

rAEL ≥ (1− 2δ′radius − ε) · r)

as desired.
Now we prove that the distance of the code CAEL is at least 2δ′radius. Note that, while the

proof of distance was trivial in [KMRS16], the proof of distance does not seem to follow trivially
from the fact that CAEL is relaxed locally decodable with decoding radius δ′radius. However, it
does follow immediately from the fact that any two distinct codewords of Cconcentrated differ in
at least 2δ′radius fraction of blocks, which we established in Lemma 5.13.

A relaxed local corrector for CAEL works as follows. Given a string a ∈ Fn/(b·t)
2t·d

that is δ′radius-
close to CAEL and desired coordinate i ∈ [n/(b · t)] for correction, expand the alphabet of a in

the natural way to get a string a′ ∈ Fd·n/(b·t)2t that is (δ′radius, 0, d)-blockwise close to Cconcentrated.
Run the relaxed local corrector for Cconcentrated on a′ for each of the coordinates in the ith block.

Note that we can amplify each of these results so that the relaxed corrector for Cconcentrated

works correctly on each coordinate with probability 1− 1
3d at a O(log d) cost in query complexity,

and so we will get the whole block correct with probability at least 2/3 by a union bound.
Note that this operation of collapsing blocks trivially preserves GF(2)-linearity, so C is

GF(2)-linear.

5.3 Concatenation

Recall that our goal is to start with a code with constant blocklength and repeatedly tensor and
apply the Alon-Edmonds-Luby transform to increase the blocklength, while preserving relaxed
local correctability and distance. However, for the tensor of a code C to be well-defined, we need
C to be a linear code, while the AEL transform (Lemma 5.6) only outputs a GF(2)-linear code.
Fortunately, we can transform a GF(2)-linear code C into a binary linear code by concatenating
C with a binary code. See Section 2.1.1 for the definition of code concatenation.

We will concatenate the code that is output by the AEL Transform (Lemma 5.6) with a good
binary code, so that we do not undo the distance amplification achieved by the AEL Transform
and simultaneously do not lose too much in the rate. Fortunately, sufficiently good binary codes
do exist.

For most applications of concatenation in this construction we will be dealing with codes that
extremely small distance. For sufficiently small δ, we can use codes that satisfy the following
rate distance trade-off.
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Fact 5.14 (Zyablov Bound for Small Distance (Fact 2.4 from [KMRS16])). For every sufficiently
small δ > 0, there exists an explicit, infinite family {Zn}n of binary linear codes with relative
distance δ and rate r at least

r ≥ 1− 3
√
δ

For our final concatenation, we will use binary codes with the best possible rate-distance
tradeoff we know of: codes that meet the Gilbert-Varshamov bound [Gil52, Var57]. We now
state a fact about the existence of linear codes of constant blocklength matching the Gilbert-
Varshamov bound.

Fact 5.15 (Codes Achieving Gilbert Varshamov Bound [Gil52, Var57]). There exist (trivially
explicit) binary linear codes with constant blocklength that achieve the Gilbert-Varshamov bound:
namely, for any constant δ > 0, there exists a binary linear code with constant blocklength,
distance δ > 0 and rate 1−H(δ), where H(p) = −p · log(p)− (1− p) · log(1− p) is the binary
entropy function.

Now we are ready to describe the overall construction of our RLCCs.

5.4 Putting it all Together: Final Construction and Parameters

As alluded to earlier, the high-level description of this construction is that we start with a
linear code with poly log n blocklength and high rate, then tensor it with itself, apply the Alon-
Edmonds-Luby transform, concatenate with a sufficiently good binary code, and repeat. We
now give the exact construction and its analysis. Let δ := 1

(logn)36
. We first construct an

intermediate RLCC with subconstant distance by iterating the AEL transform, concatenation,
and tensoring.

Lemma 5.16 (RLCC with Sub-constant Distance (Analogous to Lemma 5.2 in [KMRS16])).
There exists an explicit infinite family of binary linear codes {Wn}n satisfying:

1. Wn has blocklength at least n, rate at least 1−O(1/ log(n)), and relative distance at least
1/polylog(n).

2. Wn is relaxed locally correctable with query complexity (log n)log log(n).

Proof. We give an algorithm to construct Wn that takes as input a desired number n.

1. Let D0 be a code with blocklength polylog(n) given by Fact 5.14 with blocklength
polylog(n), rate 1− 3

√
δ, and relative distance δ.

2. For i = 0, . . . , log log(n)− 1:

(a) Let D̃i be the result of applying Lemma 5.6 with input code Di and target distance
4
√
δ. Let Γ denote the output alphabet of D̃i.

(b) Let Z be an explicit binary code with distance 4
√
δ and rate at least 1 − 12

√
δ as

guaranteed by Fact 5.14 where Z has sufficiently large blocklength to be concatenated
with D̃i. Let D′i denote the concatenation of D̃i with Z.

(c) Set Di+1 = (D′)2.

3. Return Dlog log(n).

Now we prove that the code Dlog log(n) has the required properties.
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Correcting Radius. We begin by observing that the correcting radius of Di is at least δ/32
for each i. Clearly this holds for i = 0, as our corrector for D0 just reads the entire codeword,
so the correcting radius is δ/2. Assume this is true for i − 1, and we will show that it is true
for i.

In the first step, we apply AEL distance amplification to get the distance to 4
√
δ. We note

that this results from setting δ′radius to
4√
δ

2 in Lemma 5.6, and hence the correcting radius of this

code is
4√
δ

2 . Then, we concatenate with the code Z, which has distance 4
√
δ. Our corrector for

the concatenated code D′i will use the corrector for D̃i and answer queries made by the corrector

for D̃i by reading the entire codeword of Z used to encode symbols of Γ. This means that our

corrector for D′i will have correcting radius
4√
δ

2 ·
4√
δ

2 =
√
δ

4 . Finally, Lemma 5.5 gives us that the

correcting radius of Di will be δ
32 .

Distance. We will prove by induction that the distance of Di is δ for all i. Assume this is
true for Di, and now we want to prove that it is true for Di+1. Note that, from Section 2.1.1,
we know that the distance of D′, the concatenated code, is equal to the distance of D̃ multiplied
by the distance of Z. Therefore, we have that D′ has distance

√
δ. Since Di+1 = (D′)2, and

tensoring squares the distance, the claim follows.

Rate. Let us analyze how the rate of Di+1 differs from the rate of Di. Denote the rate of Di

as ri. First, we apply Lemma 5.6 with target distance 4
√
δ and a parameter ε, which we will fix

later. This gives us rate ri · (1 − 4
√
δ − ε). Then, we concatenate with the code Z, which has

rate at least 1− 12
√
δ, which gives us

ri+1 ≥ ri · (1−
4
√
δ − ε)(1− 12

√
δ)

≥ ri · (1− 3
12
√
δ)

Finally, we tensor the code. Since tensoring squares the rate, this gives us that

ri+1 ≥ r2
i · (1− 3

12
√
δ)2 ≥ r2

i (1− 6
12
√
δ)

Note that we start with D0 which has rate 1 − 3
√
δ > 1 − 6 12

√
δ. We furthermore prove by

induction that the rate of Di is at least

ri ≥ (1− 6
12
√
δ)3i

Indeed, assume the fact is true for i− 1. Then we have that

ri ≥ r2
i−1 · (1− 6

12
√
δ)

≥ (1− 6
12
√
δ)3i−1·2 · (1− 6

12
√
δ)

≥ (1− 6
12
√
δ)3i

Applying the fact that δ := 1
(logn)36

we can find the final rate:

rloglog(n) ≥
(

1− 6

log3 n

)3loglog(n)

≥
(

1− 6

log3 n

)log2 n

≥ 1− 6

log3 n
· log2 n

≥ 1− 6

log n
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Queries. Our goal for this section will be to prove that each iteration of the loop con-
tributes a multiplicative factor of polylog(n) queries, hence our overall number of queries is
(log n)O(loglog(n)). Note that D0 is relaxed locally correctable with polylog(n) queries and fur-
thermore that D0 has correcting radius δ (since its relaxed local corrector just reads everything).
We will prove by induction that, for every i from 0 to loglog(n), the number of queries needed
to relaxed locally correct Di is at most (log n)k(i+1), for some constant k that we will define
later. We have already established that this holds for i = 0. Assume below that this holds for
i− 1, and we want to prove it for i.

First, we amplify the distance of our code to 4
√
δ using AEL distance amplification. We

maintain the invariant that the distance of our code at the beginning of each loop is δ and the
correcting radius is at least δ/4, Lemma 5.6 tells us have that the query complexity of this new
code is (log n)k(i) ·(log n)O(1). Then, we concatenate the code with the code Z. Since we can take
Z to have blocklength (log(n))O(1), we can simulate the old corrector by reading entire codewords
whenever the old corrector queried a symbol while incurring at most a polylogarithmic factor
in query complexity. Finally, we tensor the code, which costs us an O(1

δ ) = (log(n))O(1) factor
by Lemma 5.5. So overall, we get that the query complexity of the relaxed local corrector for
Di is at most

(log n)k(i) · (log(n))O(1) · (log(n))O(1) · (log(n))O(1) = (log n)k·i+O(1)

Defining k to be the O(1) additive term in the exponent gives us the desired result.

Now we will use the intermediate RLCCs from Lemma 5.16 in order to construct RLCCs with
constant rate, constant distance, and quasipolylogarithmic query complexity.

Proof of Theorem 5.2. To construct these codes, we will apply the AEL Transform to the codes
ofLemma 5.16 to amplify the distance to a constant. However, doing so entirely at once will
cause our alphabet to become superconstant, as we started with subconstant distance (see
Lemma 5.6 for details). We will insert a step of concatenation to rectify this issue.

1. Start with a code D of blocklength at least n from Lemma 5.16. Apply AEL distance
amplification (Lemma 5.6) to D with target distance δ

C̃
:= γ/10, where γ is from the

statement of Theorem 5.2, and the parameter ε in Lemma 5.6 set to γ/10. Call the
resulting code C̃.

2. Let Z ′ be an explicit binary code satisfying the conditions in Fact 5.14 with distance
(γ)3/1000, rate 1− γ

10 , and some polylogarithmic blocklength appropriate for concatenation

with C̃. Let C ′ be the code that results from concatenating C̃ with Z ′.

3. Apply AEL distance amplification (Lemma 5.6) to C ′ with target distance 1− r − γ and
ε in Lemma 5.6 set to γ/10. Call the resulting code C.

4. Return C.

Distance. This follows from the fact that we used distance amplification in the final step.

Rate. Recall that Lemma 5.16 gave us codes with rate 1 − O
(

1
logn

)
. After applying AEL,

we will get rate at least
(

1−O
(

1
logn

))
· (1− γ/5) > 1− 2γ

5 . After concatenation, Subsection

2.1.1 tells us that we will get rate at most
(

1− 2γ
5

)
·
(
1− γ

10

)
> 1− 3γ

5 . After the final distance

amplification, we will get rate at least
(

1− 3γ
5

)
· (r + γ − γ/10) ≥ r.
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Queries. Recall that Lemma 5.16 gave us codes with query complexity at most q = (log n)O(log logn)

that is relaxed locally correctable from 1
poly logn fraction of queries. After applying the first AEL

transform with target distance γ/10, the resulting code will be an RLCC with q · poly log(n)
queries by Lemma 5.6. Concatenating with the code Z ′ will increase our queries by another
multiplicative poly log n factor, and then our final AEL transform will increase our queries by a
multiplicative constant. Overall, we retain query complexity (log n)O(log logn) in our final code.

Alphabet. The output alphabet of the final step is {0, 1}p, where p = poly(1/γ) by Lemma 5.6.

Finally, we can prove Theorem 5.1 by starting with the codes from Theorem 5.2, and con-
catenating them with binary codes given to us by Fact 5.14.

Proof of Theorem 5.1. Start with codes from Theorem 5.2 that have rate R and distance at
least 1 − R − γ, for a small constant γ > 0. Then, simply concatenate them with binary
codes of appropriate constant blocklength from Fact 5.15 that have distance δ′radius and rate
1−H(δ′radius). The linearity of these codes follows from the fact that the codes in Theorem 5.2
are GF(2)-linear, and we are concatenating with a linear binary code. The query complexity is
easily seen to remain quasi-polylogarithmic.

We now calculate the rate and distance of the resulting codes. The rate of these concatenated
codes is r = R · (1−H(δ′radius)). Rewriting the equation to isolate δ′radius, we get

δ′radius = 1− r

R

The distance of the resulting code is δ = (1− r − γ) · δ′radius. Plugging in for δ2, we get

δ = (1− r − γ) ·
(

1− r

R

)
where r is the rate of our desired code and R is the rate of the code from Theorem 5.2.

Noting that Theorem 5.2 allowed us to construct codes for any constant r ∈ (0, 1), we can
maximize the above expression over R to achieve

δ′radius = max
r<R<1

{
(1− r − γ) ·

(
1− r

R

)}

Remark 5.17. We used the presentation of first applying Alon-Edmonds-Luby then tensoring at
each iteration in order to construct the same code that is constructed in Kopparty et al. [KMRS16].
Readers who are already familiar with this construction may recognize that our analysis of re-
laxed local correctability for the code with subconstant distance (Lemma 5.16) is simpler than
the analysis of the analogous theorem for local testability in Kopparty et al.. This is because
our proof that tensoring preserves relaxed local correctability does not require any additional
assumptions on the base code.

In contrast, it is not necessarily true that the tensor of a locally testable code is locally
testable [Val05]. However, it is true if the base code C is square of some code D [Vid15].
Therefore, Kopparty et al. prove a distance amplification lemma that takes in a code C = D2

and outputs a code C′ = (D′)2, by applying the AEL Transform on the base code. Furthermore,
they need to prove that this modified distance amplification method still preserves local testability.

Since we do not need to use this syntactically modified distance amplification method to
prove relaxed local correctability, we use the vanilla AEL Transform to construct the same code
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that they construct in [KMRS16]. Since the construction is exactly the same as the one in
[KMRS16], it follows that the LTCs constructed in [KMRS16] are simultaneously locally testable
and relaxed locally correctable (proved here), both with quasi-polylogarithmic query complexity.
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