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Abstract

We ask for feasibly constructive proofs of known circuit lower bounds for ex-
plicit functions on bit strings of length n. In 1995 Razborov showed that many
can be proved in Cook’s theory PV1, a bounded arithmetic formalizing polynomial
time reasoning. He formalized circuit lower bound statements for small n of dou-
bly logarithmic order. A more common formalization, considered in Kraj́ıček’s 1995
textbook, assumes n only of logarithmic order. It is open whether PV1 proves known
lower bounds in such succinct formalizations. We give such proofs in Jeřábek’s the-
ory of approximate counting APC1, an extension of PV1 formalizing probabilistic
polynomial time reasoning. Specifically, we prove in APC1 lower bounds for the
parity function and AC0, for the mod q counting function and AC0[p] (for some n of
intermediate order), and for the k-clique function and monotone circuits. We also
formalize Razborov and Rudich’s natural proof barrier. Further, we ask for feasibly
constructible propositional proofs of circuit lower bounds. We discuss two ways to
succinctly express circuit lower bounds by propositional formulas of polynomial size
nO(1) or at least much smaller than size 2O(n) of the common formula based on the
truth table of the function: one via feasible functions witnessing errors of circuits
trying to compute some hard function, and one via the anticheckers of Lipton and
Young 1994 or partial truth tables. Our APC1 formalizations can be applied to
derive a conditional upper bound on succinct propositional formulas obtained by
witnessing extracted from the APC1 proofs. Namely, we show these formulas have
short Extended Frege EF proofs from general circuit lower bounds expressed by the
common “truth-table” formulas. We also show how to construct in quasipolyno-
mial time propositional proofs of quasipolynomial size tautologies expressing AC0[p]
quasipolynomial size lower bounds; these proofs are in Jeřábek’s proof system WF.
The last result is proved by formalizing a variant of Razborov’s and Rudich’s nat-
uralization of Smolensky’s proof for partial functions on the propositional level.
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1 Introduction

It comes as no surprise when a complexity theorist, being concerned with the algorithmic
hardness of computational tasks, starts wondering whether the notorious conjectures in
the field are in some sense ‘hard’ to prove. Can one show first that existing proofs of partial
results are ‘simple’ in some sense and second that such ‘simple’ reasoning is insufficient
to settle the conjecture under consideration?

It is unclear whether there exists a good general notion of simplicity of proofs, already
Hilbert asked for it in his 24th problem [60]. From a complexity theoretic perspective,
however, one would naturally like to grade the complexity of proofs by the computational
complexity of the concepts and constructions appearing in it. This is the viewpoint of
“Bounded Reverse Mathematics” taken in the monograph [21, p.xiv] on proof complexity.
In particular, the bounded arithmetic theory PV1, going back to Cook [18], can be viewed
as being restricted to polynomial time computable concepts and constructions. In Cook’s
own words, “if one believes that all feasibly constructive arguments can be formalized in
PV1, then it is worthwhile seeing which parts of mathematics can be so formalized.” [18,
p.96] As it turns out, a large part of contemporary complexity theory can be carried out
in PV1 or slight extensions of it (see the table in Section 5).

An example of particular interest is the apparently difficult task to prove circuit lower
bounds for explicit functions. We consider three seminal results in the area:

(a) The Switching Lemma and a size lower bound for bounded depth circuits computing
the parity function [1, 23, 25].

(b) Razborov and Smolensky’s method of approximations by low degree polynomials
and a size lower bound for bounded depth circuits containing modulo p counting
gates computing the modulo q counting function [51, 57].

(c) Razborov’s method of approximations and a size lower bound for monotone circuits
deciding the clique problem [50].

We refer to [5] or [3] for surveys. We give proofs of (a)-(c) that are in a certain
sense feasibly constructive. This Introduction gives an informal description of and moti-
vation for our upper bounds and, moreover, aims to compactly survey the area, including
independence and lower bounds.

1.1 Circuit lower bounds in PV1

We continue Razborov’s search for the “right fragment capturing the kind of techniques
existing in Boolean complexity at present” [53, p.344]. He argued “that V1

1 is exactly the
required theory. By this I mean in particular that it proves all lower bounds mentioned
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above and, moreover, these formal proofs are obtained in a very natural and straightfor-
ward way1.” [53, p.376] V1

1 is a second-order variant of PV1.
2 Proofs of (a)-(c) formalize

in V1
1 and partly even below: (a) in a theory corresponding to NC via a now famous new

proof of H̊astad’s Switching Lemma [25], and (c) in a theory corresponding to circuits of
a certain sublinear depth (see [53] for precise statements).

We want to talk about circuit lower bounds for computational problems like the sat-
isfiability problem SAT, and therefore blurr the distinction between an explicit function
Q : {0, 1}∗ → {0, 1} and the computational problem {x | Q(x) = 1}.

It is not straightforward to formalize a size s circuit lower bound

For every circuit C of size s there exists y ∈ {0, 1}n such that C(y) 6= Q(y). (1)

in bounded arithmetic which lacks exponentiation. Razborov treats circuits as sets and in-
puts as numbers. In his words, this captures “the common practice in the area which tends
to treat Boolean inputs and functions separately, as two different kinds of objects”.[53,
p.375] We stick to the first-order setting, and PV1 instead V1

1. There Razborov’s formal-
ization assumes 22n exists which allows to code C by a number even for s exponential
in n. Note that the whole truth table of Q on {0, 1}n is coded by a number. Denote3

this formula by LBtt[Q].
In Kraj́ıček’s words, this formalization “differs from the one usually accepted in

bounded arithmetic [. . . ] in which all combinatorial objects (inputs, circuits,...) are
coded at the same level (by sets in the case of V1

1) while (Boolean) functions are identified
with definable classes”. An according succinct formalization, assumes only that 2n exists.
It allows only to consider polynomial size bounds s 6 nk for some constant k ∈ N. Denote
such a formula by LB[Q]. More precisely, we have a formula LB[C,Q](C, s, n,N) express-
ing a size s lower bounds for circuits C from the class C; it uses an auxiliary variable N
and supposes n = |N |.

The assumption that 2n is the length of some number, intuitively means that the whole
truth-table of Q on {0, 1}n is considered a feasible object. The succinct LB-formalization
assumes only that n is the length of some number. Intuitively, this means that only the
size 6 nk of the circuit is considered feasible. For size bound s = nk, the theory PV1 is
in some sense exponentially stronger w.r.t. LBtt[Q] than it is w.r.t. LB[Q]. We now ask
again for the right fragment to capture circuit lower bounds, this time in the succinct
LB-formalization. This is the topic of the present paper.

1Emphasis added by the authors. Additionally to our (a)-(c), Razborov refers to lower bounds for
monotone formulas.

2More precisely, the RSUV-isomorphism (see e.g. [32, Theorem 5.5.13]) translates V1
1 into S12 which is

Σb
1-conservative over PV1 (see Theorem 2.1).
3All notions and notations are defined later.
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1.2 Succinct circuit lower bounds in APC1

As a candidate we put forward Jeřábek’s theory APC1 of approximate counting [28] which
is a slight extension of PV1 by the (dual or) surjective weak pigeonhole principle for poly-
nomial time functions. While PV1 formalizes polynomial time reasoning, APC1 formalizes
probabilistic polynomial time reasoning. Recalling Razborov’s quote, we aim at formaliza-
tions as close as possible to the original arguments. Some changes are, however, needed.

For (a) we formalize in APC1 an argument close to Furst, Saxe and Sipser’s [23] based
on probabilistic reasoning with random restrictions. Probabilities are estimated using
Jeřábek’s notion of approximate counting, and doing so requires the construction of feasi-
ble surjections witnessing these estimations. That APC1 proves the succinct formalization
of (a) has already been shown by Kraj́ıček [32, Theorem 15.2.3] formalizing Razborov’s
abovementioned alternative proof of H̊astad’s Switching Lemma. His proof is different
and of independent interest.

Letting AC0
d denote the set of circuits of depth 6 d, and PARITY denote the set of

numbers whose binary expansion contains an odd number of ones, the formal statement
reads as follows (see Theorem 3.7):

Theorem 1.1. Let d, k ∈ N. There is n0 ∈ N such that the theory APC1 proves

n0 6 n→ LB[AC0
d,PARITY](C, nk, n,N).

Razborov and Smolensky’s method for (b) typically requires to consider exponentially
large objects such as the ring of n-variate polynomials over some finite field. In order
to simulate the argument in APC1 we compromise slightly on our aspired succinctness
and assume a fixed quasi-polynomial function of n to be a length (formally expressed
by “∈ Log” below). As a consolation prize, this scaled down n allows to formulate and
prove a lower bound for s = nlogn instead just nk. Secondly, polynomials approximating
formulas are not constructed directly but instead we construct succinct descriptions of
them by arithmetical circuits.

Letting AC0
d[p] denote the set of circuits of depth 6 d with MODp-gates, and MODq

denote the set of numbers whose binary expansion contains a number of ones divisible
by q, the formal statement reads as follows (see Corollary 3.13):

Theorem 1.2. Let d ∈ N and p 6= q be primes. There is n0 ∈ N such that the theory
APC1 proves

n0 6 2log9d n ∈ Log → LB[AC0
d[p],MODq](C, n

logn, n,N).

The proof [5] of the monotone circuit lower bound (c) is formalizable in APC1 without
essential change. However, here (and also in the proof of Theorem 1.2), we actually need
to reason not directly in APC1 but in a suitably conservative extensions.

Letting MC denote the set of all monotone circuits, and k-CLIQUE the set of (numbers
coding) graphs with a clique of size k, the formal statement reads as follows:
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Theorem 1.3. Let d, k ∈ N. There is n0 ∈ N and a rational 0 < ε < 1 such that the
theory APC1 proves

n0 6 n→ LB[MC, k-CLIQUE](C, nε
√
k, n,N).

Actually, we prove a more general statement allowing for non-constant k – see Theo-
rem 3.15.

We remark that a proof of LB[C,Q] in APC1 gives a probabilistic polynomial time
algorithm that witnesses errors of small C-circuits trying to decide Q; see Section 3.5.

1.3 Independence and natural proofs

Recall that, informally, PV1 formalizes proofs working with polynomial time computable
concepts and constructions, and the central problem is whether PV1 is able to prove
general circuit lower bounds such as LBtt[SAT] for s = nk.

As what can be seen as a partial negative answer Razborov and Rudich [56] observed
that many lower bound proofs for an explicit function Q (e.g. (a) and (b)) do exhibit a
feasible property of Q restricted to {0, 1}n which is not shared by functions computed by
the circuit class under consideration. Moreover, this property is after all not that special
to Q but true for random functions on {0, 1}n with non-negligible probability. Now, if
strong pseudorandom generators exist, then such “natural proofs” for superpolynomial
lower bounds against general circuits do not exist.

It has been suggested, amongst others by Razborov and Rudich themselves [56, Con-
clusions], that “the natural proof barrier should be regarded a hint, and not a barrier, to
separating complexity classes” [16, p.1587] (see [15, 14] for proposals). In any case, the
notion of naturality as a property of proofs is informal and it is questionable whether it
could imply independence from PV1. What Razborov [54] could show is that it rules out
proofs in S2

2(α), a weak fragment of V1
1 plus the smash function ([52, 33, 7] give alternative

proofs based on propositional feasible interpolation).
We shall formalize the natural proof barrier itself (Theorem 3.26). We work in APC+

1 ,
a variant of APC1 from [12], which allows for a relatively smooth formalization of the
underlying concepts.

The succinct lower bound LB[SAT] for s = nk is shown in [46] to be unprovable in
a theory formalizing NC1 reasoning unless subexponential size formulas can approximate
polynomial size circuits. Relatedly, LB[Q] has been shown to be consistent with PV1 for
Q = SAT in [19] (improving upon [34]) unless the polynomial hierarchy collapses to the
Boolean hierarchy, and recently [38] unconditionally for some Q ∈ P.
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1.4 Succinct tautologies

For every n ∈ N statement LBtt[Q], say for s = nk, translates to propositional formulas

tt[Q, nk] :=
∨
a∈{0,1}n “C(a) 6= Q(a)”, (2)

where “C(a) 6= Q(a)” is a propositional formula with variables for the encoding of the
circuit C and its computation on a. The formula has size 2O(n) and is tautological if and
only if the lower bound is true.

It is well-known [18] that PV1 is simulated by the Extended Frege system EF. In partic-
ular, Razborov’s [53] PV1-proofs of (a)-(c) translate to short EF-proofs of the correspond-
ing tt-tautologies. ‘Short’ means polynomial in the size of the tautology, i.e. 2O(n). Unprov-
ability of LBtt[SAT] for s = nk in PV1 is implied by (and roughly equivalent to) tt[SAT, nk]
not admitting short EF-proofs. Consistency of the succinct formula LB[SAT] with PV1 is
implied by lower bounds for EF with constant advice (see [19, Theorems 6.8, 3.4]).

The tt-formulas are particular so-called τ -formulas suggested as candidate hard tau-
tologies independently by Alekhnovitch et al. [2] and Kraj́ıček [35], and in some sense the
hardest among them (cf. [36]). Not too much is known concerning lower bounds though.
The natural proof barrier rules out short proofs of tt[Q, nω(1)] for sufficiently strong sys-
tems with feasible interpolation (cf. [37, Theorem 29.2.3]). Some unconditional lower
bounds are known for weak systems with suitably written tt[Q, nk]. Improving on earlier

results of Raz [49] for Resolution, Razborov [55] proved a 2t
Ω(1)

lower bound for tt[Q, t]
and n2 6 t 6 2n in an extension of Resolution operating with (ε · log n)-DNFs for small
enough ε > 0. We refer to the Introduction of [55] for a short survey, or to [37, Chapters
27–30] for a more comprehensive one.

We ask whether it is possible to feasibly construct propositional proofs of circuit lower
bounds expressed succinctly. We study two ways to get such succinct formulas of size
nO(1) or at least far smaller than 2O(n).

The first is via the succinct formula LB[Q] and has been discussed in [48]. Its quantifier
complexity is too high to be canonically translated to tautologies, but if the existential
quantifier on y in (1) could be witnessed by a polynomial time or P/poly function w,
then it does translate to a tautology lbw of size nO(1). Such a function produces given a
circuit C an input string y such that C(y) 6= Q(y). Of course, the question whether such
functions exist is of independent complexity theoretic interest. We observe that they do
exist for Q = SAT under plausible hardness assumptions (Proposition 4.8).

Our main result concerning lbw-formulas is a general relative upper bound: we show
that APC1-proofs of succinct lower bounds give lbw-formalizations such that there are short
EF-proofs of lbw assuming that some function is hard for a specific circuit of subexponential
size. We refer to Theorem 4.10 for a precise statement.

The second way is via Lipton and Young’s anticheckers [41] which allow to move to
a size nO(1) subdisjunction of (2) which is still tautological. Intuitively, such a formula
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should be even harder than the tt-formula because it has the same meaning but is ex-
ponentially more succinct. To support the intuition, we observe that hardness of the
lavish tt-formulas for constant depth Frege implies hardness of the succinct tautologies
for unrestricted Frege (Proposition 4.14).

A non-uniform variant of the anti-checked formula has variables for the bits Q(a).
It expresses a circuit lower bound for a partial function given by a partial truth table.
Based on Razborov and Rudich’s naturalization of Smolensky’s proof of (b) we exhibit a
property of such partial truth tables such that the lower bound formulas are tautological
whenever a partial function with this property is substituted. We observe that there are
many such functions and give a quasipolynomial time algorithm producing proofs of these
tautologies in Jeřábek’s proof system WF – it is to APC1 as EF is to PV1 [26]. We refer to
Corollary 4.17 for a precise statement. In other words, we exhibit a succinct version of a
natural property. Notably, this is also motivated by a generic learning task described in
Section 4.5.

2 Preliminaries

2.1 The theory PV1

The first theory formalizing polynomial time reasoning was introduced by Cook [18]. Its
language PV contains < and symbols for all polynomial time functions (over N) introduced
inductively according to Cobham’s characterization [17, p.28]. We blur the distinction
between the symbol and the function, that is, between the symbol and its interpretation
in the standard model with universe N.

Following [40], PV1 is a universal theory in the language PV given by Cobham’s equa-
tions and a scheme equivalent to induction

ϕ(0, x̄) ∧ ∀y(ϕ(y, x̄)→ (y + 1, x̄))→ ϕ(x, x̄)

for ϕ(x, x̄) quantifier-free. We refer to [32, Section 5.3] for a definition. In fact, PV1 proves
induction for formulas in Σb

0 = Πb
0, i.e. PV-formulas with only sharply bounded quantifiers

∃x<|t|, ∀x<|t|, where t is a PV-term without x and |z| denotes (in the standard model)
the length of the binary representation of z. Inductively, Σb

i+1 (resp. Πb
i+1) is the closure

of Πb
i (resp. Σb

i) under positive Boolean combinations, sharply bounded quantification and
∃x<t (resp. ∀x<t).

The theory S1
2 = S1

2(PV) is obtained from PV1 by adding length induction

ϕ(0, x̄) ∧ ∀y(ϕ(y, x̄)→ ϕ(y + 1, x̄))→ ϕ(|x|, x̄)

for ϕ(x, x̄) ∈ Σb
1. It is Σb

1-conservative over PV1 by [6]:

8



Theorem 2.1 (Buss’ Witnessing). If S1
2 proves ∃yϕ(y, x̄) for ϕ(y, x̄) ∈ Σb

1, then PV1

proves ϕ(f(x̄), x̄) for some function symbol f(x̄) in PV.

Let n,m,N be variables. We write n ∈ Log for ∃N n = |N |, and n ∈ LogLog for
∃N n = ||N ||. In a context where n = |N | we write 2n for 1#N . We view numbers
below 2n as n-bit strings. There is eval ∈ PV denoting (in the standard model) the circuit
evaluation function: for a circuit C with n inputs C(x) := eval(C, x) for x < 2n is the
value computed by C on x; if C has m outputs then this value is a number < 2m. The
size of a circuit is the number of inner (non-input) gates. The following is folklore.

Proposition 2.2. For every f ∈ PV there are `, k ∈ N such that the theory PV1 proves
for every n ∈ Log that there exists a size n` circuit C with n inputs and nk outputs such
that f(x) = C(x) for all x < 2n.

Like 2n we use similar suggestive notation for other fast growing functions when applied
to arguments n = |N | in Log . For example, for f ∈ PV we write

∑
i<n f(i) for a PV-

symbol g(N) such that PV1 proves g(2N) = g(2N + 1) = g(N) + f(|N |). Similarly for∏
i<n f(i). For example, PV1 proves N =

∑
i<n bit(i, N) for a suitable bit ∈ PV; we

understand that bit(i, N) = 0 for i > n. Rationals a/b are naturally coded by pairs and
we use them freely in equations and inequalities. E.g. a/b ∈ Log means ∃c a/b 6 c ∈ Log .
This allows to formally use n! and

(
n
i

)
for i 6 n. For example, PV1 proves

∑n
i=0

(
n
i

)
= 2n.

We shall need the following less trivial calculations in PV1.

Proposition 2.3 (Stirling’s bound, Jeřábek [26]). There is a c > 1 such that PV1 proves:

0 < k < n ∈ Log → 1

c

(
n

k

)
<

nn

kk(n− k)n−k
·
(⌊√k(n− k)

n

⌋
+ 1
)−1

< c

(
n

k

)
.

Proposition 2.4. For every rational ε > 0 there is an n0 ∈ N such that PV1 proves:

n0 < n ∈ Log →
bn/2+n1/3c∑

i=0

(
n

i

)
< (1/2 + ε) · 2n.

Proof. Argue in PV1. We have

bn/2c−1∑
i=0

(
n

i

)
=

1

2

( bn/2c−1∑
i=0

(
n

i

)
+

bn/2c−1∑
i=0

(
n

n− i

))
< 2n−1

and by Stirling’s bound, for some constant c > 1,

bn/2+n1/3c∑
i=bn/2c

(
n

i

)
< (n1/3 + 1)

(
n

bn/2c

)
< 2n4c

( n1/3

bn1/2/2c
+

1

bn1/2/2c

)
,

where to verify the last inequality for odd n we also used (1 + a/b) 6 4a/b for a, b ∈ Log,
b > 0 as shown in [26, Stirling’s bound, Claim 1].
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Proposition 2.5. PV1 proves:

n+ 1 < m ∈ Log → (m− n)n 6 mm/2n ∧ (1− n/m) 6 2−n/m.

Proof. Note the second conjunct of the conclusion follows from the first. Proceed as in
the proof of Claim 2 in [26, Stirling’s bound, Claim 1] but instead of Claim 1 use the
inequality mm 6 (m+ 1)m/2.

2.2 Two formalizations of circuit lower bounds

As outlined in the introduction we give two PV-formulas expressing a size s lower bound
for circuits from a class C computing a function f : N → {0, 1} on (numbers smaller
than) 2n which play the role of binary strings of length n.

We assume throughout that the class of circuits C is in polynomial time, and more
precisely, that it is defined (in the standard model) by a Σb

0-formula. In particular,

“C is a C-circuit of size 6 s” (3)

is a Σb
0-formula with free variables C and s.

The two formalizations use a dummy variable N which the formulas suppose to be
either such that 2n = |N | or such that n = |N |. In the intuitive mode of speech from the
introduction, the different scalings used by the two formulas are thus made explicit.

The two formulas can be obtained following two ways of how to make one’s mind about
the “a little bit annoying”[53, p.377] problem of what is meant by an explicit function f .
The first is to assume n ∈ LogLog , so f restricted to (numbers smaller than) 2n is given
by a number whose binary expansion codes its truth table:

LBtt[C](f, C, s, n,N) := ∃y<|N | LB0
tt[C](f, C, s, n,N, y), (4)

LB0
tt[C](f, C, s, n,N, y) :=(

2n = |N | →
(
C is a C-circuit of size 6 s→ C(y) 6= bit(y, f)

))
. (5)

Recall C(y) abbreviates eval(C, y). The antecedens 2n = |N | defines a polynomial
time relation between n and N and can thus be represented by a Σb

0-formula. Thus
LBtt[C](f, C, sn,N) is Σb

0.
Somewhat less explicitly, one views f as the characteristic function of the compu-

tational problem Q := f−1(1) and uses a formula defining Q. We denote this formula
by Q(y). Such a formalization works supposing only n ∈ Log . More precisely, define

LB[C,Q](C, s, n,N) := ∃y<1#N LB0[C,Q](C, s, n,N, y), (6)

LB0[C,Q](C, s, n,N, y) :=(
n = |N | →

(
C is a C-circuit of size 6 s→

(
C(y) = 1⊕ Q(y)

)))
. (7)
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Here, ⊕ denotes exclusive disjunction. Note that the existential quantifier on y is not
sharply bounded anymore. If Q ∈ P or Q ∈ NP, then the formula Q(x) can be chosen Σb

0

or Σb
1 respectively, and then LB[C,Q](C, s, n,N) becomes Σb

1 and Σb
2 respectively.

We do not mention C if it is the class of all circuits, so the resulting formulas are
denoted LBtt, LB

0
tt, LB[Q], LB0[Q].

Remark 2.6. Corresponding to Razborov’s formulas [53] mentioned in the introduction,
a truth table formalization of a circuit lower bound for a fixed problem Q would read

LBtt[C,Q](C, s, n,N) := LB[C,Q](C, s, n, |N |) (8)

in our formalism. We are not going to use these formulas.

Note a circuit of size s is coded by a number of length O(s·|s|), so formally quantifying
over circuits of size 6 s is meaningful only for s ∈ Log . In the LBtt-formula this allows
s 6 2(1−o(1))n while the LB-formula allows only s = nO(1). We repeat the intuition from
the introduction for s 6 nO(1). Choosing the scale of n means choosing the “feasible
object”. In the LBtt-formulas n ∈ LogLog , so the truth-table (and everything polynomial
in it) is feasible. The LB-formalization just assumes that n ∈ Log . This means that only
the objects of polynomial-size in (n or) the size of the circuit are feasible. Likewise, a
theory reasoning about the circuit lower bound becomes less resp. more powerful when
working with LB resp. LBtt.

2.3 The theory APC1

We want to formally talk about the size of bounded definable sets X = {x < a | ϕ(x, x̄)}.
These are not formal objects in our first-order language but a mode of speech: we let
x ∈ X stand for (x < a ∧ ϕ(x, x̄)). We write X ⊆ a instead X ⊆ [0, a). We often write a
instead [0, a); for a rational a, this means [0, bac). With X ⊆ a, Y ⊆ b, also

X ∪̇ Y := X ∪ {y + a | y ∈ Y } ⊆ a+ b,

X × Y := {bx+ y | x ∈ X, y ∈ Y } ⊆ ab,

are definable; we write 〈x, y〉 for bx+ y in such a context.
In PV1 ‘small’ sets can be counted precisely in the sense that every definable X ⊆ n for

n ∈ Log is coded by a number pXq and hence bijective via some coded bijection to a unique
number Card(pXq) which we write as Card(X) (see e.g. [32, Section 5.4]). Obviously, if
sWPHP(PV) fails, then there is no reasonable notion of size for ‘large’ definable sets
X ⊆ 2n, even quantifier free, i.e. circuit definable: X = {x < 2n | C(x) = 1} for a
circuit C with n variables. Complexity theory in models of PV1 where sWPHP(PV1)
fails is studied in [31]. Here, sWPHP(PV) is the surjective weak pigeonhole principle for
PV-functions: the set containing the formula

sWPHP(f) := (x > 0→ ∃v<x(|y|+ 1) ∀u<x|y| f(u, x̄) 6= v). (9)
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for each f(u, x̄) ∈ PV. Equivalently one can take the single formula obtained by replacing
f(u, x̄) with C(u) = eval(C, u) (Proposition 2.2).

Following the notation of [12], we are led to consider

APC1 := PV1 + sWPHP(PV).

In the Introduction we informally referred to APC1 as a “slight” extension of PV1. One
reason is that sWPHP(PV) is provable in T 2

2 [42], so APC1 is quite low in the hierarchy of
bounded arithmetics. But APC1 appears to be considerably weaker than T 2

2 (see [11, 4] for
recent results). In terms of witnessing the step from PV1 to APC1 is that from polynomial
time to probabilistic polynomial time. This is is due to Wilkie and first published in [32,
Theorem 7.3.7]. An alternative proof has been given by Thapen [59, Theorem 4.2], which,
as observed in [26, Corollary 1.15], also yields the first statement in:

Theorem 2.7 (Wilkie’s witnessing). S1
2 + sWPHP(PV) is Σb

1-conservative over APC1. If
one of these theories proves ∃yϕ(y, x̄) for ϕ(y, x̄) ∈ Σb

1, then there exists a probabilistic
polynomial time Turing machine which given a tuple n̄ from N outputs with probability at
least 2/3 some m ∈ N such that ϕ(m, n̄) is true in the standard model.

The probability 2/3 can be boosted and the probabilistic computation is definable
in some suitable sense – see [26]. Formal approximate counting has been developed by
Jeřábek in his PhD Thesis [27] and a sequence of papers [26, 28, 29, 30]. In particular,
[28] showed that APC1 supports a well-behaved notion of approximate size.

Definition 2.8 (in PV1). Let n,m ∈ Log , and X ⊆ 2n and Y ⊆ 2m be definable. For a
circuit C with n variables and m output gates, we write

C : X � Y

for ∀y ∈ Y ∃x ∈ X C(x) = y. For 0 6 ε 6 1 define Y 4ε X if and only if there exist a
circuit C and v 6= 0 such that

C : v × (X ∪̇ ε2n)� v × Y.

We say C witnesses Y 4ε X. Further, X ≈ε Y means (X 4ε Y ∧ Y 4ε X).

One easily checks (in PV1) that X ⊆ Y implies X 40 Y , and that (X 4ε Y ∧Y 4δ Z)
implies X 4ε+δ Z. The main result of [28, Theorem 2.7] implies that in APC1 every
circuit definable set does have an approximate cardinality. Moreover, this is witnessed by
invertible circuits. A circuit C : a→ b is invertible if there is a circuit D such that

∀z<b (D(z) < a ∧ C(D(z)) = z).

Theorem 2.9. The theory APC1 proves that for all n, ε−1 ∈ Log and every circuit defin-
able X ⊆ 2n there exists s 6 2n such that X ≈ε s. Moreover, both X 4ε s and X <ε s
are witnessed by invertible circuits.
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The proof uses the Nisan-Wigderson generator [44] to sample X and thus get an
estimate of its size. It is for this “production of magic surjections” [30, p.842] why the
“extra complication is necessary”[28, p.963] to make v copies in Definition 2.8. This
theorem allows to show [28, Lemma 2.11]:

Proposition 2.10. The theory APC1 proves for all circuit definable X, Y ⊆ 2n and
s, t, u 6 2|a| and ε, δ, θ, γ < 1 with γ−1 ∈ Log:

(i) X 4γ Y or Y 4γ X,

(ii) If s 4ε X 4δ t, then s < t+ (ε+ δ + γ)2n,

(iii) If X 4ε Y , then 2n \ Y 4ε+γ 2n \X,

(iv) If X ≈ε s and Y ≈δ t and X ∩ Y ≈θ u, then X ∪ Y ≈ε+δ+θ+γ s+ t− u.

The definition of 4ε is an unbounded ∃Πb
2-formula so cannot be used freely in bounded

induction. Jeřábek defines a conservative extension HARDA of APC1 that has a function
symbol for approximate cardinality allowed to be used in induction formulas (see [26,
Section 4] and [28, Theorem 2.13]). Having induction allows to prove [28, Proposition 2.15]
and [28, Proposition 2.16] (the version with 4 replacing <):

Proposition 2.11 (Disjoint union). The theory APC1 proves for ε, δ 6 1 and n,m, δ−1 ∈
Log and a sequence of circuits defining a sequence (Xi)i<m of subsets of 2n and a sequence
(si)i<m: if Xi 4ε si for all i < m, then

⋃
i<m(Xi × {i}) 4ε+δ

∑
i<m si.

Proposition 2.12 (Averaging). The theory APC1 proves for ε, δ 6 1 and n,m, γ−1 ∈ Log
and circuit definable Z ⊆ 2n × 2m and Y ⊆ 2m and all a, b the following. If Y <ε b and
{x < 2n | 〈x, y〉 ∈ Z} <δ a for all y ∈ Y , then Z ∩ (2n × Y ) <ε+δ+εδ+γ ab.

3 Succinct circuit lower bounds in APC1

3.1 Approximate probabilistic reasoning

Approximate counting can be formulated as approximate probabilistic reasoning.

Definition 3.1 (in APC1). For circuit definableX ⊆ 2|t| and Z ⊆ 2|t|×2|s| and 0 6 ε, p 6 1
define

Pr
x<t

[x ∈ X] 4ε p ⇐⇒ {x ∈ X | x < t} 4ε pt,

Pr
x<t
y<s

[〈x, y〉 ∈ Z] 4ε p ⇐⇒ {〈x, y〉 ∈ Z | x < t, y < s} 4ε pts

(recall 〈x, y〉 = x2|s| + y). We use similar notation for <ε and ≈ε.
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The following lemma comprises the properties of approximate probabilities we are
going to use.

Lemma 3.2. The theory APC1 proves the following statements for 0 6 ε, δ, γ, p, q 6 1,
m, γ−1 ∈ Log, circuit definable sets X, Y ⊆ 2|t| and Z ⊆ 2|t| × 2|s|, a sequence (Xi)i<m of
subsets of 2|t| given by a sequence of circuits, and a sequence (pi)i<m of rationals.

(i) If Prx<t[x ∈ X] 4ε+δ p, then Prx<t[x ∈ X] 4ε p+ 2δ.

If Prx<t[x ∈ X] 4ε p+ δ, then Prx<t[x ∈ X] 4ε+δ p.

(ii) If Prx<t[x ∈ X] 4ε p and Prx<t[x ∈ Y ] 4δ q, then Prx<t[x ∈ X ∪ Y ] 4ε+δ p+ q.

If Prx<t[x ∈ X] 4ε pi for all i < m, then Prx<t
[
x ∈

⋃
i<mXi

]
4ε+γ

∑
i<m pi.

(iii) If Prx<t[x ∈ X] 4ε p, then Prx<t[x 6∈ X] <ε+γ 1− p.

If Prx<t[x ∈ X] <ε p, then Prx<t[x 6∈ X] 4ε+γ 1− p.

(iv) If Prx<t,y<s[〈x, y〉 ∈ Z] 4ε p, then Prx<t[〈x, y〉 ∈ Z] 4ε p+ 8ε+ γ for some y < s.

If Prx<t,y<s[〈x, y〉 ∈ Z] <ε p, then Prx<t[〈x, y〉 ∈ Z] <ε p− 8ε− γ for some y < s.

Proof. (i): note Prx<t[x ∈ X] 4ε+δ p means there are v > 0 and a circuit computing a
surjection from v× (pt+ (ε+ δ)2|t|) onto v× (X ∩ t). But note the domain is a subset of
v × (pt+ 2δt+ ε2|t|). The second statement is similar.

(ii) the first statement is easy and the second follows from Proposition 2.11.
(iii): we only show the first statement. If Prx<t[x ∈ X] 4ε p, then

(X ∩ t) ∪ [t, 2|t|) 4ε bptc ∪ [t, 2|t|).

Applying Proposition 2.10 (iii) yields

b(1− p)tc 40 [bptc , t) = 2|t| \
(
bptc ∪ [t, 2|t|)

)
4ε+γ 2|t| \

(
(X ∩ t) ∪ [t, 2|t|)

)
= t \X.

(iv): the second statement follows knowing the first and (iii) for all γ−1 ∈ Log . We
prove the first statement only in the interesting case that γ · ts > 1 (otherwise ts ∈ Log).
Assume Prx<t,y<s[〈x, y〉 ∈ Z] 4ε p and note this means

Z̃ := {〈x, y〉 ∈ Z | x < t, y < s} 4ε pts. (10)

Appealing to (i), it suffices to show for arbitrary γ−1 ∈ Log that

{x | 〈x, y〉 ∈ Z̃} = {x | 〈x, y〉 ∈ Z} ∩ t 4ε+γ p̃t

for some y < s, where we abbreviate p̃ := p+(8ε+13γ). But if there is no such y < s, then
{x | 〈x, y〉 ∈ Z̃} <ε+γ p̃t for all y < s by Proposition 2.10 (i). Applying Proposition 2.12
(with Y := [0, s), a := p̃t, ε := 0, δ := ε+ γ, γ := γ) yields

Z̃ = Z̃ ∩ (2|t| × s) <ε+2γ p̃ts. (11)
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Proposition 2.10 (ii) applied to (10) and (11) gives

bp̃tsc < bptsc+ (2ε+ 3γ) · 2|t|+|s|.

But the r.h.s. is 6 bptsc+ (2ε+ 3γ) · 2t · 2s 6 p̃ts− γ · ts, a contradiction if γ · ts > 1.

Remark 3.3. Note that (i) and the first statement of (ii) do not require sWPHP(PV).

3.2 Parity lower bound for AC0 circuits via random restrictions

By an AC0
d-circuit, where d ∈ N, we mean a depth 6 d unbounded fan-in circuit with

gates labeled 0, 1,¬,
∧
,
∨

. The depth is the maximum length (number of edges) of a path
from an input gate to an output gate. By the size of a circuit we mean the number of its
inner gates. We formalize in APC1 a lower bound for such circuits computing the parity
function via a Switching Lemma which we prove by approximate probabilistic reasoning
with random restrictions. Our argument is close to the one presented in [23]. We code
restrictions as follows.

For n ∈ Log and a (formal) rational 0 6 a/b 6 1 we code a restriction of n propo-
sitional variables x1, . . . , xn by the number ρ =

∑n−1
i=0 ri+1(2b)i, ri < 2b, and use the

following suggestive notation that takes a, b understood from context: ρ(xi) = xi means
ri ∈ [0, 2a); ρ(xi) = 1 means ri ∈ [2a, b + a), and ρ(xi) = 0 means ri ∈ [b + a, 2b). If
ρ(xi) = xi we say ρ leaves xi unassigned; note that for a = 1 this means ri < 2.

The notation ρ ∼ Ra/b stands for ρ < (2b)n. It is straightforward to construct, for
1 6 i 6 n, the circuits witnessing

Pr
ρ∼Ra/b

[ρ(xi) = xi] ≈0 a/b,

Pr
ρ∼Ra/b

[ρ(xi) = 1] ≈0
1− a/b

2
≈0 Pr

ρ∼Ra/b
[ρ(xi) = 0].

If C = C(x1, . . . , xn) is a circuit in at most the variables listed, then C�ρ is the circuit
C(ρ(x1), . . . , ρ(xn)) obtained by relabeling input gates as indicated. Given yet another
restriction ρ′ ∈ Ra′/b′ we write C�ρρ′ for (C�ρ)�ρ′.

Definition 3.4. A DNF C depends on > b variables if there does not exist a sequence of b
(not necessarily distinct) variables with the property that every assignment to it either
satisfies (all literals in) some disjunct or falsifies (at least one literals in) each disjunct.
For CNFs this is analogously defined.

Note that for fixed standard b ∈ N the characteristic function of this property is in PV.
This is ensures the existence of circuits defining events involving this property, as required
by approximate counting in APC1.

In the following we understand that irrational terms are rounded down on the inner-
most level unless specified otherwise, e.g. (1/n1/2)c is (1/bn1/2c)c and 2 log n is 2blog nc.
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Lemma 3.5 (Switching Lemma). For every k ∈ N there are b, n0 ∈ N such that APC1

proves: for every n0 < n, ε−1 ∈ Log and DNF Dn(x1, . . . , xn) of size nk:

Pr
ρ1∼R1/n1/2

ρ2∼R1/n1/4

[Dn�ρ1ρ2 depends on > b variables] 4ε 1/n2k.

The same holds for CNFs.

Proof. We prove the lemma for DNFs, the second statement follows from the first. We
follow a familiar proof of the switching lemma estimating the probabilities that formulas
simplify under random restrictions. The probabilities are approximated by 4ε. The extra
work then boils down to the construction of surjections witnessing the inequalities 4ε.
These constructions are postponed to the end of the proof.

Let n be sufficiently large and n, ε−1 ∈ Log. Set d := 3k. Then

Pr
ρ1

[
ρ1 does not falsify all disjuncts in Dn of size > d log n

]
40 n

k ·
(

1− 1− 1/n1/2

2

)d logn

6 nk ·
(

1− 1/4
)d logn

6 1/n3k, (12)

where we understand ρ1 ∼ R1/n1/2 . Set c := 12k + 3d. Then

Pr
ρ1

[
ρ1 leaves > c variables in some size 6 d log n disjunct of Dn unassigned

]
40 n

k ·
( 1

n1/2

)c
· 2d logn 6 1/n3k (13)

where for simplicity we bound bn1/2c by n1/3 when rounding.
Therefore, by the first statement of Lemma 3.2 (ii), the probability that Dn�ρ1 after

a trivial simplification is not a c-DNF is 40 2/n3k. Now it suffices to show:

Claim 3.6. For any c′ 6 c, there are bc′ , nc′ ∈ N such that APC1 proves: for every
nc′ 6 n, ε−1 ∈ Log and c′-DNF D′n(x1, . . . , xn),

Pr
ρ2

[
D′n�ρ2 depends on > bc′ variables

]
4bc′ε bc′/n

3k.

Similarly as above, we understand ρ2 ∼ R1/n1/4 . To prove the claim we proceed by
induction on c′. If c′ = 0, the claim holds trivially. Assume that c′ > 0 and the claim
holds for (c′−1)-DNFs, we want to show that it holds for c′-DNFs. Let S be a sequence of
conjunctions, namely D′n-disjuncts, with disjoint variables which is maximal in the sense
that adding any other disjunct to S would break the disjointness property (we are not
asking for a maximum length such sequence since finding one could be hard for APC1).
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Set d′ := 4c
′
4k. In case S contains > d′ log n conjunctions, then, using Proposition 2.5,

Pr
ρ2

[
ρ2 does not satisfy any conjunction in S

]
4ε
(

1−
(1− 1/n1/4

2

)c′)d′ logn

6 2−d
′ logn/4c

′

6 1/n3k. (14)

where the choice of d′ = 4c
′
4k instead of d′ = 4c

′
3k is again taking care of rounding. In

case S contains < d′ log n conjunctions, then (bounding bn1/4c by n1/5)

Pr
ρ2

[
ρ2 leaves > 15k variables in S unassigned

]
40

( 1

n1/4

)15k+1

·
(
c′d′ log n

15k + 1

)
6

1

n3k
. (15)

As every D′n-disjunct outside S shares a variable with some conjunction in S, by setting all
variables in S we get a (c′−1)-DNF which by the induction hypothesis depends on > bc′−1

variables with probability 4bc′−1ε
bc′−1/n

3k. By 215k applications of the first statement in

Lemma 3.2 (ii), D′n�ρ2 depends on > 15k + 215k · bc′−1 =: bc′ variables with probability

4
215k · bc′−1 · ε 215k · bc

′−1

n3k
+

1

n3k
.

which proves the claim.

It remains to describe circuits witnessing the estimations (12)-(15).

(12) We are asked to map every

z < nk ·
(

1− 1− 1/n1/2

2

)d logn

· (2n1/2)n = nk · (n1/2 + 1)d logn · (2n1/2)n−d logn

to some ρ1 < (2n1/2)n in such a way that every ρ1 which does not falsify all size
> d log n conjunctions in Dn is in the image of the mapping. A given such z
determines a triple (s, p, r) with

s < nk,

p =
∑

i<d logn εi · (n1/2 + 1)i with εi < n1/2 + 1,

r =
∑

i<n−d logn ri · (2n1/2)i with ri < 2n1/2.

Output the restriction ρ1 that assigns the first d log n variables in the s-th disjunct
of Dn according to ε0, . . . , εd logn−1 so that the disjunct is not falsified and the rest
according to r0, . . . , rn−d logn−1.
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(13) A given z < nk−c/22d logn(2n1/2)n determines (s, t, p, r) with s < nk, t < 2c, p < 2d logn

and r < (2n1/2)n−c. Output the restriction ρ1 that assigns, for the maximal c0

possible, the first c0 6 c variables in the s-th disjunct of Dn on the positions
specified by p according to t (these variables are left unassigned by ρ1), and the rest
of variables according to r together with the unused part of t.

(14) Let T be a conjunction of literals in t 6 c′ variables y1, . . . , yt, and let ρ3 ∼ R1/n1/4

be defined for these variables (i.e. ρ3 < (2n1/4)t). The probability that such a ρ3

satisfies T is ≈0

(1−1/n1/4

2

)t
>
(1−1/n1/4

2

)c′
. By Lemma 3.2 (iii),

Pr
ρ3

[
ρ3 does not satisfy T

]
4ε/(d′ logn) 1−

(1− 1/n1/4

2

)c′
.

Let CT be a circuit witnessing this inequality. Note there are only standard finitely
many conjunctions T of the considered type.

To prove (14) we have to map numbers

z <
(

1−
(1− 1/n1/4

2

)c′)d′ logn

· (2n1/4)n

to ρ2 ∼ Rn1/4 such that all restrictions that do not satisfy any conjunction in S are
hit. Assume for notational simplicity that S contains exactly d′ log n conjunctions
and let j range over numbers between 1 and d′ log n. View a given z as a pair of a
sequence (zj)j and r where

zj <
(

1−
(1− 1/n1/4

2

)c′)
· (2n1/4)tj ,

r < (2n1/4)n−
∑
j tj .

Here, tj is the number of variables appearing in the j-th disjunct in S. Output ρ2

which sets the variables not occurring in S according to r; to set a variable occurring
in S, say, the i-th variable in the j-th conjunction of S (hence 1 6 i 6 tj 6 c′), first
choose a conjunction T from the finite list of conjunctions considered above such
that the j-th conjunct is a suitable variable substitution of T ; then assign the given
variable as the restriction CT (zj) assigns its i-th variable.

(15) Given z coding the triple (s, t, r) with s < 215k+1, t <
(
c′d′ logn
15k+1

)
and r < (2n1/4)n−15k−1,

output the restriction ρ2 assigning, for the maximal c0 possible, the first c0 6 15k+1
variables in S specified by the t-th (15k + 1)-size subset of c′d′ log n according to s
(these variables are left unassigned) and the rest according to r together with the
unused part of s.
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Theorem 3.7. For all k, d ∈ N there is n0 ∈ N such that APC1 proves: for all n0 <
n ∈ Log and every AC0

d-circuit Cn of size nk with n variables there is y < 2n such that
Cn(y) 6=

∑n
i=1 bit(i− 1, y) mod 2.

Proof. There is a PV-function transforming any nk-size circuit Cn of depth d into an
equivalent C ′n circuit of size nk + n − 1 6 n2k, depth d and with negations appearing
only at the variables. The equivalence is proven in PV1 for each fixed assignment by
Σb

0-induction on the number of gates in Cn.
By Lemma 3.5 there is a (standard) b ∈ N such that for any DNF or CNF C at

the bottom level of C ′n we have that C�ρ1ρ2 depends on > b variables with probability
4ε 1/n4k; here ε is chosen ‘small enough’ with inverse in Log . By Lemma 3.2 (ii), this
event happens for some bottom level DNF or CNF only with probability 42ε 1/n2k.

We further claim, understanding ρ1 ∼ R1/n1/2 and ρ2 ∼ R1/n1/4 ,

Pr
ρ1,ρ2

[
there are < n1/8 variables left unassigned by both ρ1 and ρ2

]
40 n

n1/8 ·
(

1− 1

n3/4

)n−n1/8

6 nn
1/8 · 2

−(n−n1/8)

n3/4 6 nn
1/8 · 21−n1/4

6 1/n2k.

The first 6 uses Proposition 2.5. To witness 40 we map

z < nn
1/8 ·

(
1− 1

n3/4

)n−n1/8

· (2n1/2)n · (2n1/4)n = nn
1/8 · (4n3/4 − 4)n−n

1/8 · (4n3/4)n
1/8

coding (s, p, r) with s =
∑

i<n1/8 sin
i, si < n, and p < (4n3/4−4)n−n

1/8
and r < (4n3/4)n

1/8

to the following pair 〈ρ1, ρ2〉 of restrictions: the variables xsi+1, i < n1/8, are set according r
(in particular, these variables might be left unassigned by ρ1, ρ2); the number p can be
used to determine the value pair of ρ1 and ρ2 on every other variable such that not both
are ‘unassigned’.

By Lemma 3.2 (ii), (iii), with probability <3ε 1 − 2/n2k we have that ρ1, ρ2 leave
at least n1/8 variables unassigned and simplify all CNFs and DNFs at the bottom: all
these CNFs and DNFs do not depend on > b variables, and thus are (PV1-provably)
equivalent to both CNFs and DNFs of size 6 (b + 1)2b + 1. For ε chosen small enough,
Proposition 2.10 (ii) implies that such restrictions ρ1, ρ2 exist.

In case d = 2 we get a contradiction assuming n is large enough so that n1/8 > b: if C ′n
computed parity, then it depends on all its variables.

In case d > 2, the circuit C ′n�ρ1ρ2 is equivalent to a circuit with > n1/8 variables,
depth d− 1 and size 6 ((b+ 1)2b + 1)n2k. If C ′n computed parity on 2n then from C ′n�ρ1ρ2

we get a circuit Cn′ computing parity or its negation on 2n
′
, n′ :=

⌈
n1/8

⌉
. This circuit has

depth d − 1 and size (n′)k
′

for suitably large k′. Arguing by induction on d > 2, we can
assume to have already refuted the existence of such a circuit.
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Remark 3.8. We point out which steps in the proof presented rely on sWPHP(PV). In the
proof of Lemma 3.5 it is the use of Lemma 3.2 (iii) in the verification of (14). Theorem 3.7
uses the union bound Lemma 3.2 (ii) to bound the probability that all bottom level DNFs
simplify. Note that the frequent uses of the first statement of this lemma do not require
sWPHP(PV). Lemma 3.2 (iii) is used to argue that restrictions are good with probability
<3ε 1−2/n2k, and then Proposition 2.10 (ii) is used to infer that good restrictions actually
exist.

3.3 Razborov and Smolensky’s lower bound for AC0[p] circuits

Let d, p ∈ N, p > 0. An AC0
d[p]-circuit is defined like an AC0

d-circuit but we additionally
allow unbounded fan-in gates labeled MODp; such a gate returns 1 or 0 depending on
whether it receives a number of ones divisible by p or not. Recall that, by the size of a
circuit we mean the number of its inner gates.

In a first step (Theorem 3.9), for prime p, we want to approximate a given AC0
d[p]

circuit by a low degree polynomial over the finite field Fp. Unfortunately, the sequence
of coefficients coding such a polynomial can be infeasible. For this reason, we represent
polynomials by arithmetical Fp-circuits: these have unbounded fan-in multiplication and
addition gates labeled × and + and input gates labeled by variables or constants from
Fp. Instead of the degree of the polynomial computed we use an easily computable upper
bound: the syntactic degree of an arithmetical Fp-circuit (with one output) is the number
it computes (in the obvious sense) when we replace Fp-constants by 0, variables by 1, +
by max, and × by +.

Recall that the sharply bounded collection scheme BB(Πb
1) contains

∀i6|x| ∃y6z ϕ(i, y, x̄)→ ∃w ∀i6|x| ϕ(i, (w)i, x̄)

for all ϕ ∈ Πb
1; here, (w)i is some standard sequence coding (cf. [32, Section 5.4]).

Theorem 3.9 (Low-degree approximation). For all d, p ∈ N with p prime the theory

S1
2 + sWPHP(PV) + BB(Πb

1)

proves: for ` ∈ LogLog and n, s, ε−1 ∈ Log and every AC0
d[p]-circuit C of size 6 s with n

variables, there is an arithmetical Fp-circuit P of syntactic degree 6 ((p− 1)`)d such that

Pr
x<2n

[P (x) 6= C(x)] 40 s/2
` + ε.

Proof. For a gate g of C let Cg be the subcircuit with output gate g. We prove in APC1:
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Claim 3.10. Let g be an inner gate of C and let g1, . . . , gm list the gates wired into g.
Then there exists an arithmetical Fp-circuit Pg with variables X1, . . . , Xm and syntactic
degree 6 (p− 1)` such that

Pr
x<2n

[
x ∈ Error g] 40 1/2` + ε

where Error g :=
{
x < 2n | Pg(Cg1(x), . . . , Cgm(x)) 6= Cg(x)

}
.

(16)

If g is labeled MODp, then set Pg := 1 −
(∑

i<mXi

)p−1
, and, if g is labeled ¬ (and

m = 1), then set Pg := 1 −X1. Note Error g = ∅ in both cases. The
∧

-case being dual,
the case that g is labeled

∨
is the only interesting one.

Observe first that PrS⊆m
[∑

i∈S yi = 0 mod p
]
40 1/2 for every fixed 0 < y < 2m,

where we write yi := bit(i, y). This implies

Pr
x<2n

S0,...,S`−1⊆m

[Cg(x) 6= P~S(Cg1(x), . . . , Cgm(x))] 40 1/2`,

where P~S := 1−
∏

i<`

(
1−

(∑
j∈Si Xj

)p−1)
.

A formally precise notation would replace the index S0, . . . , S`−1 ⊆ m by s < 2m·` and Si,
in the event description, should be a suitable PV-term t(s, i). By Lemma 3.2 (iv) we can
fix S0, . . . , S`−1 ⊆ m such that (16) holds with Pg := P~S.

We intend to define P by replacing every inner gate g of C by Pg. To do so we
need the sequence (Pg)g where g ranges over the inner gates of C. It is not obvious that
this sequence exists because their defining property is the unbounded ∃Π2-formula (16).
Theorem 2.9 allows to bring the quantifier complexity down to Πb

1 as follows.
First choose sg such that sg ≈ε Error g and by Claim 3.10 and Proposition 2.10 (ii)

sg 6 (1/2` + 3ε) · 2n. (17)

Theorem 2.9 additionally gives a number vg and circuits Gg, Hg such that

∀z < vg · (sg + ε · 2n)
(
Gg(z) ∈ vg × Error g

)
∧ ∀z ∈ vg × Error g

(
Hg(z) < vg · (sg + ε · 2n) ∧Gg(Hg(z)) = z

)
.

(18)

Thus, APC1 proves that for every g there exists a (code of a) tuple 〈Pg, sg, vg, Gg, Hg〉 such
that (17) and (18) hold. By Parikh’s theorem [45] (see [9, Theorem 1.2.7.1]) the code of
such a tuple can be bounded by a suitable term t(C). Now, Πb

1-collection gives (a code
of) a sequence (〈Pg, sg, vg, Gg, Hg〉)g such that (17) and (18) and hence also

Pr
x<2n

[x ∈ Error g] 40 1/2` + 4ε.

hold for all g. Given this sequence define P by replacing each inner gate g of C by Pg.
By induction, P has syntactical degree 6 ((p − 1)`)d. Also by induction one sees that if
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P (x) 6= C(x) then there exists g (which is ‘first’ such that the computations differ and
hence) such that x ∈ Error g. Applying Lemma 3.2 (ii) we conclude Prx<2n [P (x) 6= C(x)]
is 4ε s · (1/2` + 4ε), so 40 s · (1/2` + 4ε) + 2ε by Lemma 3.2 (i). As ε was arbitrary with
inverse in Log and s ∈ Log , the theorem follows.

Remark 3.11. The above theorem holds true more generally for p ∈ Log instead only
for standard primes p ∈ N. Jeřábek [27, Section 4.3] formalized basic properties of finite
fields in bounded arithmetic, and shows in particular, that, for p ∈ Log prime, PV1 can
construct Fp and prove ap−1 = 1 for a ∈ Fp \ {0} [27, Lemma 4.3.11].

To derive an AC0[p] lower bound, one usually proceeds further by showing that any
polynomial approximating MODq with probability > 3/4 must have degree Ω(n1/2). The
simplest proof of this compares the number of all functions on n variables to the number of
low-degree polynomials. As this argument is infeasible, we reproduce it on functions with
only logO(1) n arguments. This results in a weaker degree lower bound which, however,
still suffices for an AC0[p] lower bound.

The degree of an arithmetical Fp-circuit is the degree of the polynomial it computes.

Theorem 3.12 (Degree lower bound). For any d ∈ N and primes p 6= q, there is n0 ∈ N
such that APC1 proves: if n0 < 2log3d n, ε−1 ∈ Log, then every arithmetical Fp-circuit P
with n variables such that

Pr
x<2n

[P (x) 6= MODq(x1, . . . , xn)] 4ε 1/(4q)

has degree bigger than logd n; here, xi := bit(i− 1, x) for all 1 6 i 6 n.

Proof. Assume for contradiction that P is an arithmetical Fp-circuit of degree 6 logd n
which differs from MODq with probability 4ε 1/(4q). We consider P as an arithmetical
Fpq−1-circuit. This (constant size) field contains a q-th root of unity ω 6= 1.

Using the substitution y = x−1
ω−1

(which maps ω 7→ 1 and 1 7→ 0) we can construct

arithmetical Fpq−1-circuits Pi(x1, . . . , xn−q), i < q, of degree 6 logd n such that Pi(x) = 1
if
∏n−q

j=1 xj = ωi and Pi(x) = 0 otherwise, for all except 4ε 1/(4q) many x ∈ {ω, 1}n.
More precisely, x ∈ {ω, 1}n should read y < 2n where such y codes the tuple x, and xj
abbreviates a PV-term denoting its j-th component.

The circuit
P ′(x1, . . . , xn−q) :=

∑
i<q Pi · ωi

then has degree 6 logd n and satisfies

Pr
x∈{ω,1}n−q

[
P ′(x) 6=

∏n−q
i=1 xi

]
4qε 1/4,

by (q − 1) applications of the first statement of Lemma 3.2 (ii).
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Let
m := log3d n.

Rewrite the above event as a set of pairs 〈x, a〉 ∈ {ω, 1}m × {ω, 1}n−q−m and apply
Lemma 3.2 (iv) to fix a ∈ {ω, 1}n−q−m such that

Pr
x∈{ω,1}m

[X] 4qε 1/4 + 9qε,

where X :=
{
x ∈ {ω, 1}m | P ′(x, a) 6=

∏m
i=1 xi

∏n−q−m
i=1 ai

}
.

By our assumption that 2m ∈ Log , so the set X can be counted precisely in PV1 (cf. Sec-
tion 2.3). In particular, Card(X) 6 1/3 · 2m if ε is sufficiently small. Define the circuit

P ′′(x) := P ′(x, a) · (
∏n−q−m

i=1 ai)
−1.

Now, consider an arbitrary function f : {ω, 1}m → Fpq−1 . For a, b ∈ {1, ω} observe

2ab− (1 + ω)(a+ b) + 1 + ω2

(1− ω)2
=

{
1 if a = b

0 else.

We can thus express f as

f(x) =
∑

b∈{ω,1}m
f(b) ·

m∏
i=1

2xibi − (1 + ω)(xi + bi) + 1 + ω2

(1− ω)2
=

∑
b∈{ω,1}m

f(b) ·
m∏
i=1

xiti,1 + ti,2
(1− ω)2

where ti,1 := 2bi − (1 + ω) and ti,2 := −(1 + ω)bi + 1 + ω2. For x 6∈ X we know
P ′′(x) =

∏m
i=1 xi, and thus can write

m∏
i=1

(xiti,1 + ti,2) =
∑
T⊆[m]
|T |6m/2

∏
i∈T

xiti,1
∏

i∈[m]\T

ti,2 + P ′′(x) ·
∑
T⊆[m]
|T |>m/2

∏
i∈T

ti,1
∏

i∈[m]\T

ti,2x
q−1
i ,

where we use that xqi = 1. Since

xq−1
i =

∑
z∈{ω,1}

zq−1 2xiz − (1 + ω)(xi + z) + 1 + ω2

(1− ω)2
,

we conclude that f is computed by a polynomial of degree bm
2
c+m1/3 + 1. Note that the

circuit P ′′(x) can be expanded to the sum of 6 2m ∈ Log monomials so the polynomial
representing f can be coded by the sequence of its coefficients. By Proposition 2.4, the
number of such polynomials is

40 (pq−1)
∑bm/2+m1/3c+1
i=0 (mi ) < (pq−1)(5/9)2m

while the number of all functions f : {1, ω}m \ X → Fpq−1 is <0 (pq−1)(2/3)2m . This
contradicts Proposition 2.10 (ii).
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Corollary 3.13. For any d ∈ N and primes p 6= q, there is n0 ∈ N such that APC1 proves:
if n0 < 2log9d n ∈ Log, then for every size 6 nlogn AC0

d[p]-circuit C with n variables there
is x < 2n such that C(x) 6= MODq(x1, . . . , xn); here, xi := bit(i− 1, x) for all 1 6 i 6 n.

Proof. It suffices to give the proof in the theory of Theorem 3.9. Indeed, by [26, Corol-
lary 4.12] this theory is Σb

2-conservative over S1
2 + sWPHP(PV) which in turn is Σb

1-
conservative over APC1 by Theorem 2.7. In particular, we are free to use Theorem 3.9.
We apply this theorem to a given AC0

d[p]-circuit C of size s ∈ Log with ε := 1/(8q) and
` := dlog(8qs)e ∈ LogLog . This yields an arithmetical Fp-circuit P of syntactical degree
6 (dlog(8qs)e (p− 1))d such that

Pr
x<2n

[P (x) 6= C(x)] 40 1/(4q).

If C computes MODq, then (dlog(8qs)e (p − 1))d > log3d n by Theorem 3.12, and hence
s > nlogn as claimed.

Remark 3.14. We point out which steps in the proof presented rely on sWPHP(PV).
The proof of Theorem 3.9 heavily relies on the sWPHP(PV), namely first in the aver-
aging argument Lemma 3.2 (iv) in the proof of Claim 3.10, then in the use of Theo-
rem 2.9 preparing the application of the collection scheme, and then in the final union
bound Lemma 3.2 (ii). In the proof of Theorem 3.12 we have the averaging argument
Lemma 3.2 (iv) in the construction of the polynomial P ′′ approximating the iterated
product. The final contradiction relies on Proposition 2.10 (ii).

3.4 Razborov’s lower bound for monotone circuits

We view numbers G < 2(n2) as graphs on [0, n) in the natural way. By a monotone circuit
we mean a circuit without ¬-gates and all inner gates of fan-in 2. If it has

(
n
2

)
variables

we write them as x{i,j} for i, j < n, i 6= j, indicating presence of an edge between i and j
in an input graph G.

Theorem 3.15. There are ε > 0 and n0 ∈ N such that APC1 proves: for all n > n0 and
2 6 k 6 n1/4 such that nk ∈ Log, no monotone circuit of size nε

√
k with

(
n
2

)
variables

accepts exactly the n-vertex graphs containing a clique of size k.

Proof. We follow the presentation in [5, Section 4.2] (cf. also [3]). Let C be a monotone
circuit with

(
n
2

)
variables and size s and set

` :=
√
k, p := ` · dlog ne , m := (p− 1)` · `!. (19)

Observe that all these numbers are in Log . For m̃ ∈ Log we naturally code length m̃
sequences ~X = 〈X0, . . . , Xm̃−1〉 of size 6 ` subsets Xi ⊆ n by a number < n`·m̃. In the

following we understand that ~X, ~Y , . . . range over such sequences of different lengths.
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We aim to approximate C by an “approximator circuit” C[ ~X] : 2(n2) → 2 where ~X

has length < m: it maps G < 2(n2) to 1 or 0 depending on whether there is i < m such
that G has a clique on Xi. The approximation is measured with respect to “test graphs”:
the “positive” ones are the graphs Pi, for i <

(
n
k

)
, containing a clique on the i-th size k

subset of n and no other edges; the “negative” ones are the graphs Nc, for c < (k − 1)n,
having an edge between j and j′ if and only if cj 6= cj′ where we write c =

∑
i<n ci(k− 1)i

with ci < k − 1.

Claim 3.16 (Sunflower lemma). If ~X, say, of length m̃ contains > m distinct sets, then
it contains a sunflower, i.e. a set F ⊆ m̃ of p pairwise distinct indices such that for some
center X ⊆ n we have Xj 6= Xj ∩Xj′ = X for all j, j′ ∈ F, j 6= j′.

The usual proof (e.g. [5, Lemma 4.1]) formalizes without change in PV1 because all sets
appearing in it have bounds in Log , so PV1 can count them precisely (recall Section 2.3).

There is a function plucking ∈ PV which provably in PV1 maps ~X to itself if it contains
< m many pairwise distinct sets, and otherwise to a sequence

〈〈F 1, ~X1〉, . . . , 〈F u, ~Xu〉〉

for some u > 1 such that we have for all 1 6 i < u:

– ~X i contains at least m pairwise distinct sets,

– F i is a sunflower in ~X i−1 (we understand ~X0 := ~X), say, with center X,

– ~X i is obtained from ~X i−1 by replacing entries X i−1
j with j ∈ F i by X,

– ~Xu contains < m many pairwise distinct sets.

The function plucked takes ~X to ~Z obtained from ~Xu above by deleting repetitions, i.e.
deleting any entry equal to an earlier one.

Given ~X, ~Y of lengths m′,m′′ < m respectively, we define

~X t ~Y := plucked(~Z)

where ~Z is the concatenation of ~X and ~Y , that is, is the length m′ + m′′ sequence with
Zi = Xi for i < m′ and Zi = Yi for m′ 6 i < m′′. Similarly define

~X u ~Y := plucked(~Z)

where ~Z is obtained from ~X × ~Y by deleting all entries of size > ` where “size” is Card
(cf. Section 2.3). The sequence ~X × ~Y is defined such that C[ ~X] ∧ C[~Y ] = C[ ~X × ~Y ],
namely as the length m′ ·m′′ = m′ ×m′′ sequence with 〈i, j〉-th entry Xi ∪ Yj.

The following claim states that t,u approximate ∨,∧ with respect to positive and
negative test graphs. Note that positive test graphs form a probability space in Log , so
events can be counted precisely using Card:
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Claim 3.17. Let ~X, ~Y have lengths m′,m′′ < m respectively and let γ−1 ∈ Log . Then

Card
({
x <

(
n
k

)
| C[ ~X t ~Y ](Px) < (C[ ~X] ∨ C[~Y ])(Px)

})
/
(
n
k

)
= 0 (20)

Card
({
x <

(
n
k

)
| C[ ~X u ~Y ](Px) < (C[ ~X] ∧ C[~Y ])(Px)

})
/
(
n
k

)
6 m2 · (k/n)`+1 (21)

Pr
c<(k−1)n

[
C[ ~X t ~Y ](Nc) > (C[ ~X] ∨ C[~Y ])(Nc)

]
4γ m · 1/2p (22)

Pr
c<(k−1)n

[
C[ ~X u ~Y ](Nc) > (C[ ~X] ∧ C[~Y ])(Nc)

]
4γ m2 · 1/2p (23)

The event in (20) is empty since C[plucked(~Z)](G) > C[~Z](G) for all ~Z and G < 2(n2).
For the same reason, for every x <

(
n
k

)
in the event in (21) there are i < m′, j < m′′ such

that Xi∪Yj has size > ` and is contained in the x-th size k subset of n; for every such i, j
this has probability 6

(
n−`−1
k−`−1

)
/
(
n
k

)
6 (k/n)`+1 and (21) follows from the union bound.

To see (22) let plucking(~Z) = 〈〈F 1, ~Z1〉, . . . , 〈F u, ~Zu〉〉 for ~Z the concatenation of ~X

and ~Y , and note u < m. If c < (k − 1)n is such that C[ ~X t ~Y ](Nc) > (C[ ~X] ∨ C[~Y ])(Nc)

then there is 1 6 i 6 u such that C[~Zi−1](Nc) = 0 and C[~Zi](Nc) = 1 (again ~Z0 := ~Z).
Then c, viewed as a function i 7→ ci from n to k − 1, is injective on the center X of the
sunflower F i but contains a collision on each of the p many petals Xj \X, j ∈ F i. Since
the petals are disjoint such collisions happen with probability 40 (

(
`
2

)
/(k − 1))p < 1/2p.

We leave it to the reader to witness 40 by a circuit: note (k− 1)` ∈ Log , so given a petal
PV1 can list all 6

(
`
2

)
/(k − 1) · (k − 1)` many functions with a collision on it. Now (22)

follows from Lemma 3.2 (ii).

To see (23) let ~X u ~Y = plucked(~Z) for ~Z obtained from ~X × ~Y as described. Observe

C[~Z](G) 6 C[ ~X × ~Y ](G) for all G < 2(n2), so C[plucked(~Z)](Nc) > C[~Z](Nc) is the event
under consideration. Its probability is estimated as above, now with u 6 m2.

Claim 3.18. Let γ−1 ∈ Log . There is a length < m sequence ~X such that

Card
({
x <

(
n
k

)
| C[ ~X](Px) < C(Px)

})
/
(
n
k

)
6 s ·m2 · (k/n)`+1, (24)

Pr
c<(k−1)n

[
C[ ~X](Nc) > C(Nc)

]
4γ s ·m2 · 1/2p. (25)

There is a function in PV that maps every gate g of C to a length < m sequence ~Xg

such that PV1 proves:

– If g is labeled with a variable x{i,j}, then ~Xg is the length 1 sequence 〈{i, j}〉;

– If g is labeled 1 or 0, then ~Xg is 〈∅〉 or the empty sequence respectively;

– If g is labeled ∨ or ∧, then ~Xg is obtained by applying t or u to the sequences
computed for the gates wired into g.
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We verify the claim for ~X := ~Xg for the output gate g of C. To see (24) note for

any x in the event there is a first gate gx of C such that C[ ~Xgx ](Px) = 0 while in C
gate gx computes 1 on Px; here we refer to an enumeration of the gates of C such that any
gate appears before the gates it is wired into. Since C[ ~Xg] agrees with g if g is an input

gate, gx is an inner gate. Thus x is in the event of (20) or (21) with ~X, ~Y denoting the
sequences computed for the gates wired into gx. Hence, (24) follows by a union bound.

For (25) we argue analogously, the final union bound being done by Lemma 3.2 (ii)
causing the error γ for approximate counting. The lemma is applied to the the sequence
(Eg)g of error sets where g runs over the gates of C. More precisely, Eg is the event in

(22) or (23) for ~X, ~Y the sequences computed for the gates wired into g. It is easy to
prove the existence of this sequence by Σb

1 length induction whose use is permitted by
Theorem 2.7.

Now assume C has size s 6 nε·` and accepts all Px and rejects all Nc. Choosing ~X
according to Claim 3.18 we get a contradiction by distinguishing two cases.

First suppose that ~X is the empty sequence, so C[ ~X] is identically 0. Then the event
in (24) is trivial so the l.h.s. equals 1. Recalling (19) and the assumption k 6 n1/4 we
have sm2 < n(ε+2/3)`, so the r.h.s is < n(2/3+ε)`−3`/4 < 1 (assuming ε small enough).

So suppose ~X = 〈X1, . . .〉 is not empty. Then C[ ~X](Nc) = 1 if c does not have a
collision on X1; denote this event by Y . Then

1/2 · (k − 1)n 41/13 Y 41/13 sm
2 · 1/2p · (k − 1)n 6 n(ε+2/3)` · n−` · (k − 1)n,

where the first 41/13 follows from Lemma 3.2 (iii): recall Card(X1) 6 ` and we already

noted that a collision has probability 40

(
`
2

)
/(k − 1) 6 1/2. Proposition 2.10 (ii) gives

1/2 · (k − 1)n < n(ε−1/3)` · (k − 1)n + 3/13 · 2|(k−1)n| 6 (n(ε−1/3)` + 6/13) · (k − 1)n,

and this is wrong if ε is small enough and n is large enough.

Remark 3.19. We point out which steps in the proof presented rely on sWPHP(PV). The
proofs of (22), (23) and (25) use the union bound Lemma 3.2 (ii). The final contradiction
uses Lemma 3.2 (iii) and Proposition 2.10 (ii).

3.5 Probabilistic witnessing

We find it worthwhile to point out explicitly the following complexity theoretic benefit
of succinct circuit lower bound proofs in APC1. It is a direct application of Wilkie’s
Witnessing Theorem 2.7.

Proposition 3.20. Let k, n0 ∈ N. If APC1 proves (n0 6 n→ LB[C,Q](C, nk, n,N)), then
there exists a probabilistic polynomial time Turing machine which given n > n0 in unary
and a circuit C of size 6 nk, outputs with probability at least 2/3 some y < 2n such that C
does not decide Q on y, that is, C(y) = 1, y /∈ Q or C(y) = 0, y ∈ Q.
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For example, we get:

Corollary 3.21. Let k > 2. There exists n0 ∈ N and ε > 0 and a probabilistic polynomial
time Turing machine which given n > n0 in unary and a monotone circuit C of size
6 nε

√
k, outputs with probability at least 2/3 a graph G on n vertices such that C does not

decide k-CLIQUE on G.

In fact, the probabilistic witnessing is definable and provable in PV1 and APC1 in
appropriate senses. We refer the interested reader to [26, Proposition 1.16].

3.6 Razborov and Rudich’s natural proof barrier

The definitions of natural properties and peudorandom generators both require to count
the sizes of certain sets quite precisely, namely up to certain inverse polynomial factors.
Formalizing these concepts in APC1 thus requires careful quantification of the error in
approximate counting. Cleaner definitions of these concepts can be given in the theory
APC+

1 of Buss et al. [12]: relativize APC1 to a new binary function symbol Sz , i.e. take
PV1(Sz ) + sWPHP(PV1(Sz )), and add the axiom

n, ε−1 ∈ Log∧C is a circuit with n variables → {x < 2n | C(x) = 1} ≈ε Sz (C, 2n). (26)

Intuitively, APC+
1 adds to APC1 approximate cardinalities with error smaller than all

inverse polynomial factors simultaneously but does not add any reasoning power. More
precisely, the following is [12, Proposition 13]. Its proof builds on Jeřábek’s theory HARDA

mentioned in Section 2.3.

Let Σb
∞ denote the set of all bounded PV-formulas.

Theorem 3.22. The theory APC+
1 is Σb

∞-conservative over APC1.

For X ⊆ 2n defined by circuit C we write Sz (X) for Sz (C, 2n).

Definition 3.23 (in APC+
1 ). For circuit definable X ⊆ 2|t| set

Pr+
x<t[x ∈ X] := Sz

(
{x ∈ X | x < t}

)
/t.

Of course, approximate probabilities in APC+
1 and APC1 are approximately the same:

Lemma 3.24. The theory APC+
1 proves for all t, circuit definable X ⊆ 2|t| and 0 6

p, ε, γ 6 1 with γ−1 ∈ Log:

(i) if Prx<t[x ∈ X] <ε p, then Pr+
x<t[x ∈ X] > p− (2ε+ γ);

if Prx<t[x ∈ X] 4ε p, then Pr+
x<t[x ∈ X] 6 p+ (2ε+ γ);

(ii) if Pr+
x<t[x ∈ X] > p, then Prx<t[x ∈ X] <γ p;

if Pr+
x<t[x ∈ X] 6 p, then Prx<t[x ∈ X] 4γ p.
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Proof. (i): we only show the first statement. If Prx<t[x ∈ X] <ε p, then by (26)

Pr+
x<t[x ∈ X] · t = Sz ({x ∈ X | x < t}) ≈γ/4 {x ∈ X | x < t} <ε pt.

This implies Pr+
x<t[x ∈ X] > p− (2ε+ γ) via Proposition 2.10 (ii):

pt 6 Pr+
x<t[x ∈ X] · t+ (ε+ γ/4 + γ/4) · 2|t| 6 Pr+

x<t[x ∈ X] · t+ (ε+ γ/2) · 2t.

(ii): again, we only show the first statement. If Pr+
x<t[x ∈ X] > p, then by (26)

{x ∈ X | x < t} ≈γ Sz ({x ∈ X | x < t}) > pt,

so {x ∈ X | x < t} <γ pt, i.e. Prx<t[x ∈ X] <γ p.

Definition 3.25 (in APC+
1 ). Let s ∈ Log . A circuit G with k variables and 2k outputs is

an s-secure pseudorandom generator if for all circuits C with 2k variables and size 6 s:∣∣∣Pr+
y<22k

[
C(y) = 1

]
− Pr+

x<2k

[
C(G(x)) = 1

]∣∣∣ < 1/s.

As Chow [15, Theorem 1] we present Razborov and Rudich’s naturalization barrier
namely as one “to proving superquadratic circuit lower bounds” [15, p.730]. Since approx-
imate counting incurs inverse polynomial errors we use Razborov and Rudich’s largeness
parameter 2−dm instead Chow’s 2−m

d
.

Theorem 3.26 (Natural proof barrier). For all c, d ∈ N and 0 < δ < 1 there is k0 ∈ N
such that APC+

1 proves for all k > k0 with kδ ∈ LogLog and m :=
⌈
kδ/2

⌉
: if

(Constructivity) C is a circuit with 2m variables and size 6 2dm,

(Largeness) Pr+
f<22m [C(f) = 1] > 1/2dm,

(Usefulness) C accepts only functions of circuit complexity > (c+ 4)m(1+2c/δ), i.e.

∀f,D,M
(
C(f) = 1→ LBtt(f,D, (c+ 4)m(1+2c/δ),m,M)

)
then 2k

δ
-secure pseudorandom generators with k variables and size 6 ckc do not exist.

Proof. Argue in APC+
1 . Assume G is a size 6 ckc circuit with k variables and 2k outputs.

Assuming there is C as stated we show G is not 2k
δ
-pseudorandom for large enough k.

Let G′ : 2k×2→ 2k be a size 6 4k+ckc circuit that maps 〈x, 0〉 and 〈x, 1〉 respectively
to the first and the last k bits of G(x). For b < 2 we write Gb(x) := G′(〈x, b〉). For y < 2m

write yi for bit(i, y). Consider a circuit G′′ : 2k × 2m → 2 that maps 〈x, y〉 to

bit(0, Gym−1 ◦ · · · ◦Gy0(x)).

29



Such a circuit is constructed using m copies of G′ so has size 6 (c+4)m(1+2c/δ). Hardwiring
some fixed x < 2k into G′′ computes the function y 7→ G′′(〈x, y〉). Let Gx < 22m be its
truth table, i.e. bit(y,Gx) = G′′(〈x, y〉) for all y < 2m. By (Usefulness) C(Gx) = 0, so

Pr+
f<22m [C(f) = 1]− Pr+

x<2k
[C(Gx) = 1] > 1/2dm. (27)

by (Largeness). Consider now the binary tree T of height m. List its internal nodes
t1, . . . , t2m−1 so that i < j whenever ti is a child of tj. Identify its leaves with [0, 2m). For
i < 2m let Ti be the union of subtrees of T whose nodes are {t1, . . . , ti} along with all the
leaves. For a leaf y < 2m, let ri(y) be the root of the subtree in Ti containing y, and let
h(i, y) denote its height. In particular, r0(y) = y and h(0, y) = 0.

Let a range over [0, 2k2m+1
) and view it as an assignment mapping nodes t of T to

a(t) < 2k. Given such a and i < 2m define for y < 2m

Ga
i (y) := bit(0, Gym−1 ◦ · · · ◦Gym−h(i,y)(a(ri(y))). (28)

We blurr the distinction between the function Ga
i and its truth table, and write

pi := Pr+
a [C(Ga

i ) = 1]

for i < 2m. For r the root of T we have Ga
2m−1(y) = G′′(〈a(r), y〉) for all y < 2m, that

is, Ga
2m−1 = Ga(r). Further, Ga

0(y) = bit(0, a(y)) for all y < 2m. Hence, intuitively, the
probabilities p2m−1 and p0 are those in (27) albeit taken over longer strings a. More
precisely, for any γ−1 ∈ Log Lemma 3.24 (ii) implies Pra[C(Ga

2m−1) = 1] <γ p2m−1 which,
as is easily seen, implies Prx<2k [C(Gx) = 1] <γ p2m−1, and hence Pr+

x<2k
[C(Gx) = 1] >

p2m−1 − 3γ by Lemma 3.24 (i). Similarly, Pr+
f<22m [C(f) = 1] 6 p0 + 3γ, so by (27)

p0 − p2m−1 > 1/2dm − 6γ.

Set γ := 1/(12 ·2dm) and note the l.h.s. is 6
∑

i<2m−1 |pi−pi+1|. Hence there is j < 2m−1

such that |pj − pj+1| > 1/2(d+1)m+1. For simplicity assume pj > pj+1, so

pj − pj+1 > 1/2(d+1)m+1. (29)

By Lemma 3.24 (ii) the event C(Ga
j+1) = 1 has probability 4ε pj+1 for any ε−1 ∈ Log .

Rewrite this event as a set of pairs 〈a0, a1〉 ∈ 2k × 2k(2m+1−1) understanding that a0

determines a(tj+1) and a1 determines the rest of a. Accordingly write G
〈a0,a1〉
j+1 for Ga

j+1.
Clearly, the rewritten event has probability 4ε pj+1. By Lemma 3.2 (iv)

Pra0<2k
[
C(G

〈a0,a1〉
j+1 ) = 1

]
4ε pj+1 + 9ε

for some a1 < 2k(2m+1−1). By Lemma 3.24 (i)

Pr+
a0<2k

[C(G
〈a0,a1〉
j+1 ) = 1] 6 pj+1 + 12ε. (30)
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Similarly, rewrite the event C(Ga
j ) = 1 as a set of pairs 〈b0, b1〉 with b0 < 22k deter-

mining a(t0j+1) and a(t1j+1) for the children t0j+1, t
1
j+1 of tj+1 in T , and b1 < 2k(2m+1−2)

determining the rest of a. Accordingly write G
〈b0,b1〉
j for Ga

j . Arguing analogously,

Pr+
b0<22k [C(G

〈b0,b1〉
j ) = 1] > pj − 12ε, (31)

for some b1 < 2k(2m+1−2). Setting ε := 1/(48 · 2(d+1)m+1) inequalities (29), (30), (31) yield

Pr+
b0<22k [C(G

〈b0,b1〉
j ) = 1]− Pr+

a0<2k
[C(G

〈a0,a1〉
j+1 ) = 1] > 1/2(d+1)m+2. (32)

Observe that G
〈a0,a1〉
j+1 = G

〈G(a0),a′1〉
j where a′1 < 2k(2m+1−2) is the part of a1 minus the

codes of values assigned to t0j+1, t
1
j+1. For large enough standard e > d the functions

b0 7→ G
〈b0,a′1〉
j and b0 7→ G

〈b0,b1〉
j can be computed by circuits of size 6 2em applying (28)

for all leaves y < 2m above t0j+1, t
1
j+1. Thus, the events in (32) are defined by circuits of

size 6 2em+1. Since 2(d+1)m+2, 2em+1 6 2k
δ

for large enough k, (32) means that G is not
2k

δ
-pseudorandom.

4 Propositional proof complexity

4.1 Propositional translation

To fix some notation we briefly recall the propositional simulation of PV1 by EF going
back to Cook [18]. We choose a particular variant of the propositional translation from
the literature and use it to define the propositional tt-formulas (2) from the Introduction.
This is for definiteness. The reader’s favorite versions of the definitions of the translation
and the tt-formulas can be used for the results in Sections 4.3 and 4.4 provided there are
short EF-proofs of equivalence to our versions.

We write propositional formulas in de Morgan language ∧,∨,¬, 0, 1. Fix some stan-
dard propositional proof system given by finitely many (axiom schemes and) inference
rules; we refer to its proofs as Frege proofs. Extended Frege EF additionally allows to ab-
breviate formulas by atoms during the proof. The depth of a Frege proof is the minimal d
such that every formula (viewed as a circuit) appearing in it has depth 6 d. We refer to
[32, Sections 4.4, 4.5] for definitions.

The propositional translation JϕKn̄ is defined for a Σb
0-formula ϕ(x1, . . . , xk) and length

bounds n̄ = (n1, . . . , nk) ∈ Nk associated to its free variables. Its size is polynomial in n̄.
It has ni propositional variables corresponding to xi plus some auxiliary variables. A tuple
(a1, . . . , ak) ∈

∏k
i=1[0, 2ni) satisfies ϕ in the standard model if and only if

JϕKn̄ [a1/x1, . . . , ak/xk]
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is tautological. Here we allow ourselves some convenient but nonstandard notation: by
[a1/x1, . . . , ak/xk] we mean the substitution that for all 1 6 i 6 k substitutes the Boolean
constants bit(0, ai), . . . , bit(ni − 1, ai) for the ni many variables corresponding to xi.

We fix some bounding polynomials pt for terms t(x̄) once and for all: t(x̄) takes values of
length 6 pt(n̄) on arguments of lengths n̄. We assume that variables x have the identity as
bounding polynomial px. The translation is defined by induction on the logical complexity
of ϕ with straightforward inductive clauses. For example,

J∃y<|t(x̄)| ϕ(x̄, y)Kn̄ :=
∨
a<pt(n̄)Jy 6 |t(x̄)| ∧ ϕ(x̄, y)Kn̄,|pt(n̄)| [a/y]. (33)

More precisely, we should write t(x̄′) for the subtuple x̄′ of variables from x̄ that actually
occur in t. We refer to [26, Section 2] for more details.

Theorem 4.1 (Simulation, Cook 1975). If S1
2 proves ϕ(x̄) ∈ Σb

0, then there is a polynomial
time algorithm that, given a tuple n̄ of naturals in unary, computes an EF-proof of Jϕ(x̄)Kn̄.

In [26, Section 2] Jeřábek introduced the propositional proof system WF and showed
it simulates S1

2 + sWPHP(PV):

Theorem 4.2 (Simulation, Jeřábek 2004). If S1
2 + sWPHP(PV) proves ϕ(x̄) ∈ Σb

0, then
there is a polynomial time algorithm that, given a tuple n̄ of naturals in unary, computes
a WF-proof of Jϕ(x̄)Kn̄.

Remark 4.3. We comment on variants of Theorem 4.1 appearing in the literature and
motivate our choice [26]. As for some minor differences, the original source [18] uses
Tseitin’s [62] Extended Resolution and translates only quantifier-free PV-formulas, [32,
Section 9.2] uses the QBF system G1, [7, 10] uses EF but translate only formulas in Buss’
language instead PV. In distinction to [26] the various translations [18, 32, 7, 39] all
use only a single length bound n associated to all variables. Such translations are with
respect to a bounding polynomial that works for all terms appearing in the formula. This
has the unpleasant property that the translation of a formula can vary when considered
a subformula of another. Another unpleasant property is that proofs of analogues of
Theorem 4.1 in [32] and [7] need to choose a bounding polynomial that works for all
formulas in the simulated PV1-proof, so the translation depends on this proof instead
only the formula proved – see the statements of [32, Theorem 9.2.5, Corollaries 9.2.6,
9.2.7]. The statements in [7, Theorem 30] and the underlying lecture notes [10, p.10-6]
should be rephrased accordingly.

4.2 Propositional formalizations of circuit lower bounds

We now consider the translation of LBtt[C], see (4) in Section 2.2. We use variable x
instead n to avoid a double use of this letter, and substitute for the ‘size’ variable s a
PV-term s(N). Thus we consider the formula LBtt[C](f, C, s(N), x,N) with free variables
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f, C, x,N . We omit superscripts in the translations and understand that f, C, x,N, y have
associated length bounds 2n, 2n, |n|, 2n, n respectively.

We define

tt[C, f, s(2n)] :=
q
LBtt[C](f, C, s(N), x,N)

y
[22n − 1/N, n/x]. (34)

Here and below, note this substitutes 2n many Boolean constants 1 for the 2n variables
corresponding to N . Next to some auxiliary variables this formula has 2n many variables
for the bits of f and 2n many variables for the bits of C. It has size 2O(n).

Recalling LB0
tt[C] from (5) in Section 2.2, we see that our formula has the desired

form (2) from the Introduction:

tt[C, f, s(2n)] =
∨
a<2n “C(a)6=f(a)”

with “C(a) 6=f(a)” :=
q
LB0

tt[C](f, C, s(N), x,N, y)
y

[22n − 1/N, n/x, a/y].
(35)

Let 0 < ε < 1 be a rational. It is straightforward to define formulas expressing
that a function given by a truth table is not computed by a specific size 2εx circuit
which is computed by a PV-function. For later use we define these formulas using a copy
f̃ , C̃, x̃, Ñ , ỹ of the variables f, C, x,N, y and substitute a function circ(x̄, f̃ , x̃, Ñ) for C̃:∨

a<2m “circ(x̄, ·)(a)6=f̃(a)” (36)

for m ∈ N. As indicated, this formula will have propositional variables for the bits of f̃
and x̄ plus auxiliary variables. The definition assumes that the length bounds associated
with f̃ , x̃, Ñ , ỹ are 2m, 2m, |m|,m, and those associated with x̄ are given by context:

“circ(x̄, ·)(a)6=f̃(a)” :=
q
LB0

tt(f̃ , circ(x̄, f̃ , x̃, Ñ), x̃, |Ñ |ε, Ñ , ỹ)
y

[22m − 1/Ñ,m/x̃, a/ỹ].

To define formulas expressing lower bounds for certain particular problems Q we sub-
stitute the truth table of Q restricted to y < 2n for the variables corresponding to f in
tt[C, f, s(2n)]. For example, the formula tt[SAT, s(2n)] from the Introduction can be de-
fined as tt[C, f, 2εn] [sat/f ] where C is the class of all circuits and sat < 22n is the number
whose bits give the truth table of SAT restricted to y < 2n. However, in this section we
shall reserve the notation tt[C,Q, nk] for translations coming from the succinct formulas
LB[C,Q] considered below.

Remark 4.4. As mentioned in the Introduction, circuit lower bounds yield candidate
hard tautologies for EF or Frege: for a rational 0 < ε < 1 one asks whether all infinite
subsets of

{
tt[f, 2εn] [h/f ] | h < 22n , n ∈ N

}
are hard for EF or Frege.

Recall LB[C,Q] and LB0[C,Q] from (6) and (7) in Section 2.2. Our translation is not
applicable to LB[C,Q] because its quantifier complexity is too high even if, and this will
be our setting, the defining formula Q(y) of Q is Σb

0 (i.e. Q ∈ P). Then we can translate

33



LB0[C,Q](C, xk, x,N, y) where k ∈ N. We agree that the free variables C, x,N, y have
associated length bounds nk+1, |n|, n, n. Note that a size s > n circuit with n variables is
naturally coded by O(s · |s|) bits, so, if n is large enough, the nk+1 variables corresponding
to C are enough to hold an encoding of a size 6 nk circuit C.

We define

tt[C,Q, nk] :=
∨
a<2n “C(a)6=Q(a)”

with “C(a) 6=Q(a)” :=
q
LB0[C,Q](C, xk, x,N, y)

y
[2n − 1/N, n/x, a/y].

(37)

Note that for every a < 2n the subformula “C(a)6=Q(a)” has size nO(1). We do not
mention C if it is the class of all circuits, thus writing tt[f, s(2n)] and tt[Q, nk].

4.3 Succinct tautologies via witnessing

In case the existential quantifier ∃y<1#N in the formula LB[C,Q] can be witnessed by
a polynomial time algorithm, we get a Σb

0-formula whose propositional translation is a
succinct size nO(1) expression of a circuit lower bound:

Definition 4.5. Let Q ⊆ N be Σb
0-defined. For ternary w ∈ PV define

lbw[C,Q, nk] :=
q
LB0[C,Q](C, xk, x,N,w(C, x,N))

y
[2n − 1/N, n/x]. (38)

We define lbw(·,z̄)[C,Q, n
k] similarly for w(C, x,N, z̄) having additional arguments z̄

which we refer to as parameters of w. The notation is explained only in contexts associat-
ing length bounds to z̄; in particular, when applying a substitution lbw(·,z̄)[C,Q, n

k] [ā/z̄]
for a tuple ā from N, we understand that these length bounds are the lengths of the
numbers in ā. Again, we shall omit C from these notations if it is the set of all circuits.

Remark 4.6. Continuing Remark 4.4 a suggestive notation would be lbkP/poly[C,Q] for the

set of formulas lbw(·,z̄)[C,Q, n
k] [ā/z̄] for all w ∈ PV and all tuples ā from N. The following

definition explains these formulas also for Q = SAT, and the following proposition points
out that likely these formulas are tautological for some w. Intuitively, these formulas are
even harder than tt[SAT, nk], n ∈ N. We shall, however, not need this notation.

Definition 4.5 can be extended to Q ∈ NP as follows. We use standard symbols
(x)0, (x)1 from PV giving the first and second component of the ordered pair coded by x.

Definition 4.7. Let Q ⊆ N be defined by ∃z<t(y) ϕ(z, y) where t(y) is a PV-term and
ϕ(z, y) ∈ Σb

0. For w(C, x,N) ∈ PV define lbw[C,Q, nk] as
r
n = |N | →

(
w1 < 1#N ∧ w0 < t(w1) ∧(

C is a C-circuit of size 6 xk →(
C(w1) = 0 ∧ ϕ(w0, w1)

)
∨
(
C(w1) = 1 ∧ ¬ϕ(z, w1)

)))z
[2n − 1/N, n/x],

(39)
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where, for readability, we abbreviated (w(C, x,N))0, (w(C, x,N))1 by w0, w1. The length
bound associated to z is pt(n), that is, the bounding polynomial pt of t evaluated at the
length bound associated to y.

For Q ∈ P the formula LB[C,Q] for s = nk is Σb
1, so in case PV1 proves it, Theorem 2.1

implies that there exists w ∈ PV such that lbw[C,Q, nk] is tautological. This reasoning does
not apply for Q ∈ NP because then LB[C,Q] ∈ Σb

2. In this case, provability in PV1 implies
by the KPT-theorem [40] that the existential quantifier ∃y is witnessed by a tuple of
polynomial time functions w̄ determining a constant round Student-Teacher computation.
The corresponding translation gives size nO(1) formulas lbw̄ weaker than the formulas lbw
defined above. We omit their definition and discussion here and refer the interested reader
to [48]. Instead, we include a proof that, under some plausible hardness assumptions,
the stronger witnessing with a single w is possible for Q = SAT. This improves [46,
Proposition 4.3] establishing a one round Student-Teacher computation, and, in fact, is a
combination of folklore arguments (e.g. [8, 20] contain similar constructions).

Proposition 4.8. Assume there exists a one-way permutation, that is, a length preserving
bijection f : N→ N such that for all k, ` ∈ N there is n0 ∈ N such that for all n > n0 and
every size 6 nk circuit C with n variables and n outputs we have

Pr
x<2n

[C(f(x)) = x] < 1/n`.

Assume further that there exists h : N → 2 computable in time 2O(n) with hard-
ness 2Ω(n), that is, there is δ > 0 such that for all sufficiently large n and all size 2δn

circuits C with n variables and 1 output we have

Pr
x<2n

[C(x) = h(x)] < 1/2 + 1/2δn.

Then for all k ∈ N there are n0 ∈ N and a polynomial time algorithm which given
n > n0 in unary and a circuit C of size 6 nk computes y < 2n such that C on y does not
decide SAT, i.e. either y ∈ SAT, C(y) = 0 or y /∈ SAT, C(y) = 1.

In other words, there is w(C, x,N) ∈ PV such that lbw[SAT, nk] is tautological for
sufficiently large n.

Proof. Given b ∈ N we can compute in polynomial time a propositional formula αb ex-
pressing “f(x) = b”: its variables include x0, . . . , x|b|−1; it has exactly one satisfying
assignment and this assignment assigns bit(i, f−1(b)) to xi. For ε̄ ∈ {0, 1}6|b| let αb[ε̄] be
the formula obtained from αb by substituting the i-th bit of ε̄ for xi−1.

Let C be a circuit with n variables and size nk. Choose n > m > nΩ(1) such that the
formulas αb[ε̄] for b < 2m have size 6 n and ‘padded versions’ αnb [ε̄] have size exactly n;
these ‘padded versions’ are logically equivalent formulas with the same variables and
computable in time nO(1).
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By the usual self-reducibility argument we find a circuit D which on b < 2m computes
a := f−1(b) if C decides SAT on all formulas αnb [bit(0, a), . . . , bit(i − 1, a), 1], i < m. As
m > nΩ(1), the size of D is 6 m` for some ` ∈ N. Since f is one-way we have, assuming n
and hence m is large enough,

Pr
a<2m

[D(f(a)) = a] < 1/m.

Let D′ be a circuit that given a < 2m checks whether D(f(a)) = a. This circuit can
be chosen of size m`′ for some `′ ∈ N.

There is a constant c ∈ N depending only on `′ such that the Nisan-Wigderson gener-
ator [44] G : 2c logm → 2m satisfies (in fact for all m`′-size circuits)∣∣ Pr

a<2m
[D′(a) = 1]− Pr

s<2c logm
[D′(G(s)) = 1]

∣∣ < 1/m.

It follows that Prs<2c logm [D′(G(s)) = 1] < 1, so there exists s < 2c logm such that
D(f(G(s))) 6= G(s). Hence there exists i < m such that C does not decide SAT on
the size n formula αnf(G(s))[bit(0, G(s)), . . . , bit(i− 1, G(s)), 1].

Note these are 6 mc · m 6 nc+1 many formulas. Our witnessing function w runs C
on all of them and outputs the first where C does not decide SAT. This is easy to detect
because we know which of our formulas are satisfiable: those with bit(i, G(s)) = 1.

4.4 A general upper bound

Given our APC1 proofs of circuit lower bounds LB[C,Q] we would like to conclude that WF
admits short proofs of tautologies lbw[C,Q, nk] for some w. Unfortunately, this does not
follow directly because a priori the APC1-proof yields a witnessing w computable not
in deterministic but probabilistic polynomial time (see Section 3.5). We deal with this
complication by reformulating the simulation in terms of an implication. We observe
that for proving a Σb

1-formula in APC1 the truth table of a single hard function can
replace sWPHP(PV) in such a way that, in particular, APC1-proofs of LB[C,Q] for s = nk

translate to short EF proofs of tautologies stating that a truth-table of a single hard
function implies lbw[C,Q, nk].

For a tuple x̄ = (x0, . . . , xk−1) of variables we write |x̄| for maxi<k |xi|.

Lemma 4.9. Suppose S1
2 + sWPHP(PV) proves ∃yϕ(y, x̄) for ϕ(y, x̄) ∈ Σb

1. For every
rational 0 < ε < 1 there is ` ∈ N and g ∈ PV such that PV1 proves

|N | > |x̄|` ∧ LBtt(f, (g(x̄, f, n,N))0, |N |ε, n,N) → ϕ((g(x̄, f, n,N))1, x̄).

Proof. It suffices to prove this when x̄ is a single variable x. It is well-known (see e.g. [29,
Theorem 3.1 (i)]) that sWPHP(PV) is, over S1

2, equivalent to the more familiar version
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with x pigeons and x2 holes (i.e. replace in (9) the bounds x|y| and x(|y|+ 1) by x and x2

respectively). Now, if S1
2 + sWPHP(PV) proves ∃yϕ(y, x), then, following Thapen’s proof

of [59, Theorem 4.2] (based on [58, Section 2]; cf. also [26, Proposition 1.14]), there are
`0 ∈ N and a unary h ∈ PV such that S1

2 proves

∃yϕ(y, x) ∨ ∀v<28|x|`0∃u<24|x|`0 h(u) = v.

By Buss’ Witnessing Theorem 2.1 it now suffices to show that for every (standard) positive
rational ε < 1 there is ` ∈ N such that S1

2 proves

∀v<28|x|`0∃u<24|x|`0 h(u) = v →
(
|N | > |x|` → ∃C ¬LBtt(f, C, |N |ε, n,N)

)
.

Argue in S1
2 and set m := 4|x|`0 . There is `1 ∈ N such that h on 2m, a surjection

from 2m onto 22m, is computed by a circuit of size m`1 . Following Jeřábek’s S1
2-proof

of [26, Proposition 3.5], this implies that every (number) f viewed as a truth table of
length |f | is computed by a size O(m|m|+m`1 · |d|f |/me|) circuit with ||f || variables. Set
n := ||f || and N := 22n − 1, so that 2n = |N |. The size of this circuit is 6 |f |ε 6 |N |ε if
` ∈ N is sufficiently large and if |N | = 2||f || > |x|` and hence |f | > |x|`/2.

Recall the formulas (36) from Section 4.2. The following is our main result concerning
upper bounds on the lbw-formulas.

Theorem 4.10. Let Q ⊆ N be Σb
0-defined, k, n0 ∈ N and 0 < ε < 1. If APC1 proves

n0 6 x→ LB[C,Q](C, xk, x,N),

then there are ` ∈ N, w(C, x,N, f̃ , x̃, Ñ) ∈ PV, circ(C, x,N, f̃ , x̃, Ñ) ∈ PV and a polyno-
mial time algorithm which given 2m and n in unary such that

n > n0 and m > (k + 1)` log n

computes an EF-proof of∨
a<2m “circ(C, x,N, ·)(a) 6=f̃(a)” [n/x, 2n − 1/N ]

→ lbw(·,f̃ ,x̃,Ñ)[C,Q, n
k] [m/x̃, 22m − 1/Ñ ];

(40)

moreover, PV1 proves that circ(C, x,N, f̃ , x̃, Ñ) is a circuit of size 6 |Ñ |ε.

It follows from earlier conventions that the length bounds associated to f̃ , C̃, x̃, Ñ
are 2m, 2m, |m|, 2m, and those associated to C, x,N are nk+1, |n|, n. Aside some auxiliary
variables, the formula (40) has variables corresponding to C and f̃ , both appearing before
and after →. Observe that (40) has size nO(1) for m := d(k + 1)` log ne.
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Proof. By the lemma there are circ, w ∈ PV and ` ∈ N such that PV1 proves

|Ñ | > |N |(k+1)` > n
(k+1)`
0

∧ LBtt(f̃ , circ(C, x,N, f̃ , x̃, Ñ), |Ñ |ε, x̃, Ñ)

→ LB0[C,Q](C, xk, x,N,w(C, x,N, f̃ , x̃, Ñ)),

(41)

Here, we used max{|C|, |x|, |N |} 6 |N |k+1 if x = |N |; this holds because then |C| is
implicitly bounded in LB0[C,Q] by xk+1. It is easy to ensure that circ satisfies the “more-
over” part of the theorem; if necessary modify the function changing every output which
is not a size 6 |Ñ |ε circuit to some such circuit not computing f̃ .

We apply the translation and a substitution to (41). By Cook’s Simulation Theo-
rem 4.1, there is a polynomial time algorithm computing EF-proofs of the formulas(

J|Ñ | > |N |(k+1)` > n
(k+1)`
0 K (42)

∧ JLBtt(f̃ , circ(C, x,N, f̃ , x̃, Ñ), |Ñ |ε, x̃, Ñ)K

→ JLB0[C,Q](C, xk, x,N,w(C, x,N, f̃ , x̃, Ñ))K
)

[m/x̃, 22m − 1/Ñ, n/x, 2n − 1/N ].

This is (40) if we can eliminate the first conjunct (42). But since m > (k + 1)` log n and
|N | > n0, after the substitution (42) is a tautology whose variables are only the auxiliary
variables used in the definition of the translation. These do not appear elsewhere in
the formula, so substituting them by arbitrary values gives a true propositional formula
without variables which is easy to prove.

4.5 Succinct tautologies via anticheckers

A rather crude way to define succinct formulas expressing circuit lower bounds is to
restrict the disjunction

∨
a<2n in (37) to a small subdisjunction:

Definition 4.11. Let Q ⊆ N be Σb
0-defined. An antichecker is a sequence A = (An)n∈N

of subsets An ⊆ [0, 2n). It is polynomially bounded if |An| 6 nO(1).
Given an antichecker A define

lbA[C,Q, nk] :=
∨
a∈An “C(a)6=Q(a)” (43)

The size of this formula is (|An|+ n)O(1). We do not mention C if it is the class of all
circuits, thus writing lbA[Q, nk].

The following is a classical result from [41]:

Theorem 4.12 (Lipton, Young 1994). Let Q ⊆ N be Σb
0-defined. For all k ∈ N there

exists ` ∈ N such that if tt[Q, n`] is tautological, then lbA[Q, nk] is tautological for some
antichecker A = (An)n∈N with |An| 6 n` for all sufficiently large n ∈ N.
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The lbA-formulas as well as the lbw-formulas could be hard tautologies for EF or Frege,
and the hope is that this might be easier to show than for the tt-formulas. Intuitively,
the lb-formulas are even harder than the tt-formulas because they are, for polynomially
bounded anticheckers, exponentially shorter but have the same meaning. We give some
evidence for this intuition showing that hardness of lbA-formulas for Frege follows from
hardness of tt-formulas for constant depth Frege. Being hard for constant depth Frege
means being hard for depth d Frege for all d ∈ N.

Here we use some common mode of speech: a set Γ of propositional formulas has short
proofs in a given proof system (and it is hard otherwise), if there is a polynomial p such
that every F ∈ Γ has a proof of size p(|F |) in the system (|F | is the length of the binary
string encoding F ).

To feed tt-formulas into constant depth Frege we reformulate them as DNFs:

Lemma 4.13. There is a polynomial time computable function that maps every proposi-
tional formula F to a DNF DNF (F ) such that

(a) F is tautological if and only if so is DNF (F );

(b) the set of formulas of the form (F → DNF (F )) has short Frege proofs.

The proof is standard using extension variables for subformulas of F and goes back to
Tseitin [62, pp.115f]. We leave it to the reader.

Proposition 4.14. Let Q ⊆ N be Σb
0-defined, k ∈ N and I ⊆ N infinite. If the formulas

tt[Q, nk]DNF :=
∨
a<2n DNF (“C(a)6=Q(a)”)

for n ∈ I are hard for constant depth Frege, then for all polynomially bounded anticheckers
A = (An)n∈N the formulas lbA[Q, nk], n ∈ I, are hard for (unbounded depth) Frege.

Proof. Suppose there is a polynomially bounded antichecker A and an infinite I ⊆ N such
that the formulas lbA[Q, nk], n ∈ I, have short Frege proofs. By Lemma 4.13 (b) there are
short Frege proofs of

∨
a∈An DNF (“C(a)6=Q(a)”), n ∈ I. We can assume the conjunctions

and disjunctions are written in a balanced form so that the formula has logical depth
O(log n) (i.e. the formula tree has this depth). Then the main result of Filmus et al. [24,
Theorem 3.1] (see [43] for a model-theoretic proof) applies and implies that for sufficiently
large d ∈ N our formula has depth d Frege proofs of size 2O(n). Weakening gives size 2O(n)

Frege proofs of tt[Q, nk]DNF . Since tt[Q, nk]DNF has size > 2n these proofs are short.

Note that lbA[C,Q, nk] states that the partial truth table {(a,Q(a)) | a ∈ An} cannot
be computed by a size 6 nk circuit in C. We aim to prove a non-uniform version of this
formula where instead of a fixed problem Q we have a partial truth table f as input.
Identify a partial function f on {0, 1}n with its graph

f =
{

(ai, bi) ∈ {0, 1}n × {0, 1} | i < `
}
, (44)
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where ` ∈ N is the size of f . Then formula ptt[C, f, s(n), n, `] has the form∨
i<` “C(ai) 6= bi” (45)

and expresses that there are no size s(n) C-circuits computing f . Before giving the
definition, we informally point out a motivation from learning: given ` data about a
function f as above we wish to predict the value f(a`) on a new input a` ∈ {0, 1}n. For
this to make sense we have to assume that this value is determined by the ` given data,
so f(a`) is computed by any minimal size circuit C computing f on a0, . . . , a`−1. Say, the
minimal circuit C has size s(n). Then the task to predict the bit f(a`) can be formulated
as the task to prove the lower bound (45) for circuits of size s(n) and with extra disjunct
“C(a`) 6= b” for the bit b := 1 − f(a`). It has recently been demonstrated that natural
proofs of circuit lower bounds indeed imply the existence of learning algorithms [13].

To define the formula (45) we give an ad hoc formalization of lower bounds for partial
functions in bounded arithmetic and apply the propositional translation. We remind the
reader that our choice is immaterial to a large extent, namely EF-provable equivalence.

View f as in (44) as a number f < 2`·(n+1) in turn viewed as a binary string consisting
of ` blocks of length n + 1, the i-th one being given by [f ]n,`i < 2n+1 and meant to code

the i-th pair (xi, bi) in (44); formally, xi is
⌊
[f ]n,`i /2

⌋
< 2n and bi is bit(0, [f ]n,`i ) < 2. We

formalize this using for n, ` variables x, z with associated dummy variables N,L. Further,
we use [u]x,zi as a function symbol in PV. Then the following PV1-formula expresses a
size s C-circuit lower bound for the partial truth table u < 2z·(x+1):

LBptt[C](u,C, s, x,N, z, L) :=

∃i < |L|
(
u < L#(2N) ∧ x = |N | ∧ z = |L|

∧ C is a C-circuit of size 6 s→ C(b[u]x,zi /2c) 6= bit(0, [u]x,zi )
)
.

Note this formula holds trivially if u does not code a partial function (i.e. codes pairs
(a, 0) and (a, 1) for some a ∈ {0, 1}n).

Definition 4.15. Let s(x) ∈ PV1 and recall a circuit of size 6 s(n) is coded by a number
of length 6 c · s(n) · log s(n) for a suitable constant c ∈ N. Associate with u,C, x,N, z, L
length bounds ` · (n+ 1), c · s(n) · log s(n), |n|, n, |`|, ` and define

ptt[C, f, s(n), n, `] :=
q
LBptt[C](u,C, s(x), x,N, z, L)

y
[f/u, n/x, 2n − 1/N, `/z, 2` − 1/L].

Observe that the quantifier ∃i < |L| translates to a disjunction
∨
i<`, so ptt[C, f, 2|n|

2
, n, `]

is of the form (45) as desired. Further note that the size of this formula is (s(n) · ` ·n)O(1).
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4.6 Propositional naturalization of Smolensky’s proof

In this section we formalize a variant of Razborov and Rudich’s naturalization of Smolen-
sky’s AC0[p]-lower bound proof, “the most difficult example of naturalization we have
encountered” [56, Section 3.2.1]. This will allow us to construct WF proofs of formulas
ptt[AC0[p], f, n#n, n, `] for all partial functions f satisfying a technically defined property
which is in some sense large, constructive and useful (cf. Theorem 3.26)

To define our succinct natural property we need some notation. Let f = f(x1, . . . , xn)
be a partial Boolean function on n Boolean variables x1, . . . , xn, and let ρ be a restriction
on these variables leaving n′ variables unassigned. Then f�ρ := f(ρ(x1), . . . , ρ(xn)) is a
partial Boolean function on n′ variables with domain ⊆ {0, 1}n′ . By abuse of notation we
shall denote these n′ variables by x1, . . . , xn′ . We shall be interested in partial functions
which have sufficiently large domain in the sense that f�ρ is total for some ρ leaving
polylogarithmically many variables unassigned.

Let p, q ∈ N be distinct primes, ω 6= 1 a q-th root of unity in Fpq−1 , and P ⊆ Fpq−1 [x] a
set of polynomials in the variables x = (x1, . . . , xn′). We define a 2n

′×|P| matrix Mp,q(P)
over Fpq−1 : its rows are indexed by tuples a ∈ {ω, 1}n′ , its columns by P (x) ∈ P , and the
(a, P (x))-th entry is the value P (a) ∈ Fpq−1 . Further, for a polynomial P0(x) we write

Mp,q(P0) := Mp,1(P0 · Ln′ ∪ Ln′)

where Ln′ denotes the low degree monomials (we agree that
∏

i∈∅ xi = 1):

Ln′ :=
{∏

i∈T xi | T ⊆ [n′], |T | 6 n′/2
}
. (46)

For g : {0, 1}n′ → {0, 1} let P [g] ∈ Fpq−1 [x] denote the multilinear polynomial which
is “the same” as g(x) but with 0, 1 replaced by 1, ω; in particular, P [g] maps {ω, 1}n′

into {ω, 1}. The proof of Theorem 3.12 shows how to explicitely write down a multilinear
polynomial p(x) coinciding with the function g′ : {ω, 1}n′ → {0, 1} defined as g under the
inputwise substitution y = x−1

ω−1
; then set

P [g](x) := (ω − 1)p(x) + 1.

In particular, there is a polynomial time algorithm which given the truth table of g
computes P [g] explicitly as a list of coefficients.

Theorem 4.16. Let p, q ∈ N be distinct primes, d ∈ N and 0 < ε < 1 a rational. There
are c, n0 ∈ N and circ(r, u, C, x,N, z, L, f̃ , x̃, Ñ) ∈ PV and a polynomial time algorithm
which given 2k in unary and f, ρ such that for some `, n ∈ N and m :=

⌊
log9d n

⌋
(i) f is a size ` partial Boolean function on n variables and ρ a restriction leaving m+q

variables unassigned,

41



(ii) f�ρ : {0, 1}m+q → {0, 1} is total and Mp,q(P [f�ρ]) has rank at least 3/4 · 2m,

(iii) n > n0 and k > c · log(`n),

computes an EF-proof of∨
a<2k “circ(r, u, C, x,N, z, L, ·)(a) 6=f̃(a)” [ρ/r, f/u, n/x, 2n − 1/N, `/z, 2` − 1/L]

→ ptt
[
AC0

d[p], f, 2
|n|2 , n, `

]
;

(47)

moreover, PV1 proves that circ(r, u, C, x,N, z, L, f̃ , x̃, Ñ) is a circuit of size 6 |Ñ |ε.

Proof. Jeřábek [27, Theorem 4.3.18] showed that there exists a PV-function which PV1-
provably computes from a given matrix M over Fpq−1 a sequence of elementary matrices
bringing M in reduced row echelon form. In particular, there exists a PV-symbol which
PV1-provably computes from M a subset (of indices) of rows which form a basis for the
row space of M . Given f, ρ with (i) and (ii) one can compute in polynomial time (the
list of coefficients of) the multilinear polynomial P [f�ρ] and the matrix Mp,q(P [f�ρ]),
explicitly as a tuple in F2m+q×2m+q

p (note (ii) implies that f has size ` > 2m+q). Hence, (i)
and (ii) are expressible by Σb

0-formulas with variables u, r, x, z for f, ρ, n, `.
We claim that S1

2 + sWPHP(PV) proves the Σb
0-formula

ϕ(r, u, C, x,N, z, L) :=

x > n0 →
(
u, r, x, z satisfy (i) and (ii)→ LBptt[AC

0
d[p]](u,C, x#x, x,N, z, L)

)
.

(48)

We argue in S1
2 that the ¬ϕ contradicts sWPHP(PV). For readability we write again

f, ρ, n, ` instead u, r, x, z. Assume the antecedens of ϕ and that C is a size 6 n#n AC0
d[p]-

circuit computing f�ρ : 2m+q → 2 where m :=
⌊
log9d n

⌋
. Note this implies 2m+q ∈ Log .

Now follow the proof of Theorem 3.9 and construct an arithmetical circuit P by
replacing gates of C by low-degree polynomials: setting the parameters `, ε appropriately,
we get P (x) = (f�ρ)(x) with probability 1 − 1/24+q over x < 2m+q and that P (x) has
syntactic degree O(|n|2d). As 2m+q ∈ Log , all probabilities can be counted precisely and
stated by a Σb

0-formula. To define P (x), thus BB(Σb
0) is sufficient and this scheme is

available in S1
2.

Applying the inputwise substitution y = x−1
ω−1

to P and replacing its output z by
(ω−1)z+1, gives an arithmetical circuit P ′ of the same syntactic degree such that P ′(x) =
P [f, ρ](x) for many x, namely, for all x from some set X ⊆ {ω, 1}m+q of cardinality
Card(X) > (1− 1/24+q) · 2m+q.

As mentioned above, we can compute in PV a subset X ′ ⊆ {ω, 1}m+q of indices of
rows forming a basis of the row space of Mp,q(P [f�ρ]). By (ii), Card(X ′) > 3/4 · 2m, so
X ′′ := X ∩X ′ has cardinality Card(X ′′) > 2/3 · 2m. The rows with index in X ′′ are the
same in the matrices Mp,q(P [f�ρ]) and Mp,q(P

′). The columns of Mp,q(P
′) are indexed by

polynomials of degree b(m+ q)/2c+O(|n|2d) < bm
2
c+m1/3 assuming n0 and hence n,m
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are large enough. Thus, every function h : X ′′ → Fpq−1 can be written as a polynomial of
at most this degree. This contradicts the sWPHP(PV) (see the proof of Theorem 3.12).

We now proceed similarly as in the proof of Theorem 4.10. Abbreviating the variables
r, u, C, x,N, z, L of ϕ by x̄ for readability, Lemma 4.9 gives a constant c′ ∈ N and a
function circ(x̄, f̃ , x̃, Ñ) ∈ PV such that PV1 proves

|Ñ | > |x̄|c′ ∧ LBtt(f̃ , circ(x̄, f̃ , x̃, Ñ), |Ñ |ε, x̃, Ñ) → ϕ(x̄). (49)

As in Theorem 4.10 we find such circ satisfying the “moreover” part of the theorem.
We now describe the polynomial time algorithm. On input (2k, f, ρ) satisfying (i)-(iii)

for certain n, `, it first runs the algorithm from Theorem 4.1 to get an EF-proof of the
translation of (49) for the following association of length bounds to the variables. With
the variables u,C, x,N, z, L associate ` · (n+ 1), 2|n|

3
, |n|, n, |`|, `, and with r some length

bound nO(1) suitable to hold an encoding of the restriction ρ; note length 2|n|
3

is enough
to code a circuit of size 6 n#n. With the variables f̃ , x̃, Ñ associate 2k, |k|, 2k.

The time needed to construct this EF-proof is polynomial in these length bounds, so
polynomial in the length of the input (note |f | > ` > 2log9d n).

Next the algorithm applies the substitution

[k/x̃, 22k − 1/Ñ, ρ/r, f/u, n/x, 2n − 1/N, `/z, 2` − 1/L]

to the proof. If c ∈ N in (iii) is large enough, then J|Ñ | > |x̄|c′K as well as the antecedens
of JϕK become tautologies in auxiliary variables only, so can be eliminated (see the proof
of Theorem 4.10). This yields an EF-proof of the formula

JLBtt(f̃ , circ(x̄, f̃ , x̃, Ñ), |Ñ |ε, x̃, Ñ)K → JLBptt[AC
0
d[p]](u,C, |N |#|N |, x,N, z)K

with the above substitution. This is (47).

As a corollary to the previous proof we get:

Corollary 4.17. Let p, q ∈ N be distinct primes and d ∈ N. There are n0 ∈ N and a
polynomial time algorithm which given f, ρ such that for some `, n ∈ N and m :=

⌊
log9d n

⌋
(i) f is a size ` partial Boolean function on n variables and ρ a restriction leaving m+q

variables unset,

(ii) f�ρ : {0, 1}m+q → {0, 1} is total and M(P [f�ρ]) has rank at least 3/4 · 2m,

(iii) n > n0,

computes a WF-proof of ptt
[
AC0

d[p], f, 2
|n|2 , n, `

]
.
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Proof. As seen in the previous proof S1
2 + sWPHP(PV) proves the Σb

0-formula ϕ. By
Theorem 4.2 we can produce a WF-proof of JϕK with length bounds as in the previous
proof. As there, applying an appropriate substitution allows to eliminate the antecedens,
leaving a proof of ptt[AC0

d[p], f, 2
|n|2 , n, `].

Remark 4.18. The argument ρ to the algorithms in Theorem 4.16 and Corollary 4.17
can be omitted by slightly increasing the running time: given f one can compute in
time nO(m) some ρ such that (i) and (ii) hold, provided there exists one. In particular,
fixing k := dc · log(`n)e in Theorem 4.16, we get quasipolynomial time algorithms with
single input f .

Corollary 4.19. Let p, q ∈ N be distinct primes and d ∈ N. There are n0 ∈ N and a
quasipolynomial time algorithm that given n > n0 in unary computes a WF-proof of

ptt
[
AC0

d[p], f, 2
|n|2 , n, 2m+q

]
,

where f is the MODq function restricted to {0, 1}m+q × {0}n−m−q with m :=
⌊
log9d n

⌋
.

Proof. Let ρ be the restriction on the variables x1, . . . , xn that leaves x1, . . . , xm+q unas-
signed and maps xm+q+1, . . . , xn to 0. Then f = f�ρ equals MODq on {0, 1}m+q.

For i < q let b̄i ∈ {ω, 1}q be a tuple with q − i many ω’s and i many 1’s. Then

∏
i∈[m]

xi =
∑
i<q

ωi · P [f, ρ](x1, . . . , xm, b̄i)− 1

(ω − 1)
. (50)

Observe that Mp,q(P [f, ρ]) and Mp,q(P [f, ρ]−1) have the same rank, and we show the
latter one is large. Then our claim follows from Corollary 4.17.

Consider the columns of Mp,q(P [f, ρ]−1) indexed by (P [f, ρ]−1) ·Q where Q ∈ Lm ⊆
Lm+q (see (46)). By (50), there is a linear combination of rows of Mp,q(P [f, ρ]− 1) such
that every such column is transformed to a column containing (as a subtuple the course of
values of) the function (

∏
i∈[m] xi)·Q. As seen in the proof of Theorem 3.12, every function

h(x1, . . . , xm) from {ω, 1}m to {ω, 1} is a linear combination of (
∏

i∈[m] xi) ·Lm∪Lm. This

means that the image of Mp,q(
∏

i∈[m] xi) contains all these functions. So Mp,q(
∏

i∈[m] xi)

and hence also Mp,q(P [f, ρ]− 1) has rank > 2m.

Recalling the motivation from learning, we finally observe for q = 2 that there are
many partial functions satisfying (ii) in Theorem 4.16.

Proposition 4.20. Let p > 2 be prime and n′ ∈ N. Then the 2n
′ × 2n

′
matrix Mp,2(P [g])

over Fp has rank at least 3/4 · 2n′ for at least half of all functions g : {0, 1}n′ → {0, 1}.
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Proof. Let us call a polynomial over Fp with variables x = (x1, . . . , xn′) representing if
it maps {−1, 1}n′ into {−1, 1}. Obviously, representing polynomials are closed under
multiplication. We claim that for every representing P = P (x) at least one of the matri-
ces Mp,2(P ) or Mp,2(P ·

∏
i∈[n′] xi) has rank > 3/4 · 2n′ .

For a set P of representing polynomials, let V (P) denote the vector space spanned by
the columns of Mp,2(P). Observe that for a representing P (x) ∈ Fp[x] we have

dim
(
V (P)

)
= dim

(
V (P · P)

)
. (51)

Indeed, Mp,2(P · P) is obtained from Mp,2(P) by multiplying every row with a non-zero
scalar, namely P (a) ∈ {−1, 1} for the row with index a ∈ {−1, 1}n′ , and this preserves
the rank.

For the set of monomials Mn′ :=
{∏

i∈T xi | T ⊆ [n′]
}

we have dimV (Mn′) = 2n
′

because every function from {−1, 1}n′ to {−1, 1} is computed by a multilinear representing
polynomial. Further, we have Mn′ = (

∏
i∈[n′] xi) · Ln′ ∪ Ln′ and dimV (Ln′) = 1/2 · 2n′ .

We aim to show that the dimension of V (P · Ln′ ∪Ln′) or V ((P ·
∏

i∈[n′] xi) · Ln′ ∪Ln′)
is > 3/4 · 2n′ . Using (51) and noting P 2 = 1 we get

dimV ((P ·
∏

i∈[n′] xi) · Ln′ ∪ Ln′)− dimV (Ln′)
= dimV ((

∏
i∈[n′] xi) · Ln′ ∪ P · Ln′)− dimV (P · Ln′)

= dim
(
V ((
∏

i∈[n′] xi) · Ln′ ∪ P · Ln′) / V (P · Ln′)
)

> dim
(
V ((
∏

i∈[n′] xi) · Ln′ ∪ P · Ln′ ∪ Ln′) / V (P · Ln′ ∪ Ln′)
)

= dimV (M)− dimV (P · Ln′ ∪ Ln′),

and thus

dimV ((P ·
∏

i∈[n′] xi) · Ln′ ∪ Ln′) + dimV (P · Ln′ ∪ Ln′) > 3/2 · 2n′ .

This implies our claim.

5 Questions

In the Introduction we said that a large part of contemporary complexity theory can be
formalized in PV1 or slight extensions of it. Table 1 lists some such results.

As announced in the Introduction we believe the given proofs of Theorems 1.1, 1.2
and 1.3 show that the sWPHP(PV) allows for a natural formalization of these circuit lower
bounds. Remarks 3.8, 3.14 and 3.19 detail the role of the sWPHP(PV).

It is natural to ask whether the sWPHP can be avoided, that is, whether Theorems 1.1,
1.2 and 1.3 hold for PV1 instead APC1. A positive answer for Theorem 1.2 could be
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Theory Theorem Reference
PV1 Cook-Levin Theorem folklore

PCP Theorem [47]
Hardness amplification [27]

APC1 AC0 lower bounds Section 3.2

AC0[p] lower bounds (with 2logO(1) n ∈ Log) Section 3.3
Monotone circuit lower bounds Section 3.4

HARDA Nisan-Wigderson’s derandomization [26]
Impagliazzo-Wigderson’s derandomization [27]
Goldreich-Levin theorem [22]
Natural proof barrier Section 3.6

APC2 Graph isomorphism in coAM [30]

APC
⊕pP
2 Toda’s theorem [12]

Table 1: A list of formalizations.

interesting as this seems to require some new insights and a new proof. For Theorem 1.3
one might suspect a positive answer with a similar proof, vaguely because the circuits
witnessing the approximate counting are particularly simple and transparent. We have,
however, not been able to give such a proof.

On the other hand, proving independence from PV1 is presumably very difficult. An
already challenging open problem is to show that the theory V0 corresponding to AC0-
reasoning [21] does not prove LB(AC0

d,PARITY) for s = nk, or, more precisely, a suitable
second-order formulation of this formula (see e.g. [46]).

A weaker task than finding PV1-proofs is to derandomize the witnessing functions
derived from particular APC1-proofs of circuit lower bounds. For instance and more pre-
cisely: is there a deterministic polynomial time Turing machine satisfying Corollary 3.21?

Concerning Theorem 1.2 we also leave open the question whether polynomial lower
bounds can be proved assuming only n ∈ Log , that is: does APC1 prove LB[AC0

d[p],MODq]
for s = nk and large enough n ∈ Log?

On the propositional side the obvious question is whether our conditional upper bounds
can be made unconditional. For instance and more precisely: are there short EF-proofs of
lbw[AC0

d,PARITY, n
k] for some w? It would already be interesting to find quasipolynomial

size WF-proofs. An interesting route to achieve this would be to witness LB(AC0
d,PARITY)

for s = nk by a deterministic w ∈ PV provably in APC1. This in turn could be achievable
by derandomizing the Switching Lemma formally in APC1 (cf. [61]). A positive answer
would be interesting not just for the lbw-formulation but any succinct formulation of AC0

d-
lower bounds, for example, the ptt-formulation. Corollary 4.19 achieves WF-proofs of
AC0

d[p] lower bounds for MODq by formalizing the naturalization of this lower bound.
It is possible to approach similarly the naturalization of the AC0 lower bounds based
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on the Switching lemma (see [56, Section 3.1]). Following the proof of Theorem 1.1, one
can show how to generate a set of polynomially many restrictions such that every AC0-
circuit is collapsed by some of them. The set is generated by a probabilistic algorithm or,
alternatively, using a Nisan-Wigderson generator based on a hard function. A candidate
succinct natural property of partial functions f would thus require for f to be non-
constant after any of the generated restrictions. However, it is not clear to us if this
property is large in some sense. Moreover, WF-proofs of ptt[AC0, f, nk, n, `] (say, for f a
partial PARITY) do not seem to follow since the property depends on the hard function
of the Nisan-Wigderson generator.
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