
Quantified Derandomization of Linear Threshold
Circuits

Roei Tell ∗

April 2, 2018

Abstract

One of the prominent current challenges in complexity theory is the attempt to
prove lower bounds for T C0, the class of constant-depth, polynomial-size circuits with
majority gates. Relying on the results of Williams (2013), an appealing approach to
prove such lower bounds is to construct a non-trivial derandomization algorithm for
T C0. In this work we take a first step towards the latter goal, by proving the first
positive results regarding the derandomization of T C0 circuits of depth d > 2.

Our first main result is a quantified derandomization algorithm for T C0 circuits with a
super-linear number of wires. Specifically, we construct an algorithm that gets as input
a T C0 circuit C over n input bits with depth d and n1+exp(−d) wires, runs in almost-
polynomial-time, and distinguishes between the case that C rejects at most 2n1−1/5d

inputs and the case that C accepts at most 2n1−1/5d
inputs. In fact, our algorithm works

even when the circuit C is a linear threshold circuit, rather than just a T C0 circuit (i.e.,
C is a circuit with linear threshold gates, which are stronger than majority gates).

Our second main result is that even a modest improvement of our quantified deran-
domization algorithm would yield a non-trivial algorithm for standard derandomization
of all of T C0, and would consequently imply that NEXP 6⊆ T C0. Specifically, if
there exists a quantified derandomization algorithm that gets as input a T C0 circuit
with depth d and n1+O(1/d) wires (rather than n1+exp(−d) wires), runs in time at most
2nexp(−d)

, and distinguishes between the case that C rejects at most 2n1−1/5d
inputs and the

case that C accepts at most 2n1−1/5d
inputs, then there exists an algorithm with running

time 2n1−Ω(1)
for standard derandomization of T C0.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Email: roei.tell@weizmann.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 145 (2017)

Contents

1 Introduction 1
1.1 Our results . 2
1.2 Organization . 5

2 Background and previous work 5

3 Overviews of the proofs 6
3.1 A quantified derandomization algorithm for linear threshold circuits 6
3.2 Reduction of standard derandomization to quantified derandomization . . . 9

4 Preliminaries 12

5 A quantified derandomization algorithm for linear threshold circuits 16
5.1 Pseudorandom restrictions and a single LTF 17
5.2 Pseudorandom restriction algorithm for a “layer” of LTFs 22
5.3 Pseudorandom restriction algorithm for linear threshold circuits 25

6 Reduction of standard derandomization to quantified derandomization 27
6.1 Weak combinatorial designs for Trevisan’s extractor 27
6.2 An ε-balanced code in sparse T C0 . 29
6.3 An averaging sampler in sparse T C0 . 31
6.4 Proof of Theorem 1.2 . 32

7 Quantified derandomization of depth-2 linear threshold circuits 33

8 Restrictions for sparse T C0 circuits: A potential path towards NEXP 6⊆ T C0 36

Acknowledgements 37

Appendix A Quantified derandomization and lower bounds 43

Appendix B Proof of a technical claim from Section 6 43

Appendix C An alternative proof of Lemma 5.10 44

i

1 Introduction

The classical problem of derandomization of a circuit class C is the following: Given a cir-
cuit C ∈ C, deterministically distinguish between the case that the acceptance proba-
bility of C is at least 2/3 and the case that the acceptance probability of C is at most
1/3. When C = P/poly, this problem can be solved in polynomial time if and only if
promise-BPP = promise-P . However, at the moment we do not know how to solve the
problem in polynomial time even if C is the class of polynomial-sized CNFs.

The derandomization problem for a circuit class C is tightly related to lower bounds
for C. Relying on the classic hardness-randomness paradigm [Yao82, BM84, NW94], suffi-
ciently strong lower bounds for a class C imply the existence of pseudorandom generators
with short seed for C, which allow to derandomize C (see, e.g., [AB09, Chp. 20], [Gol08,
Chp. 8.3]). On the other hand, the existence of a non-trivial derandomization algorithm
for a circuit class C typically implies (weak) lower bounds for C. Specifically, for many
specific classes C (e.g., C = P/poly), the existence of a derandomization algorithm for C
running in time 2n/nω(1) implies that ENP 6⊆ C, and in some cases also that NEXP 6⊆ C
(see [Wil13, SW13, BSV14], which build on [IW98, IKW02]).

Following Williams’ proof that ACC does not contain NEXP [Wil11], one of the promi-
nent current challenges in complexity theory is the attempt to prove similar lower bounds
for the complexity class T C0 (i.e., the class of constant-depth, polynomial-sized circuits
with majority gates, which extends ACC). Even after extensive efforts during the last few
decades (and with renewed vigor recently), the best-known lower bounds for T C0 assert
the existence of functions in P that require T C0 circuits with a slightly super-linear number
of wires, or with a linear number of gates (see Section 2 for further background).

Since derandomization algorithms imply lower bounds in general, an appealing ap-
proach to prove lower bounds for T C0 is to construct derandomization algorithms for this
class. Moreover, a non-trivial derandomization of T C0 would separate T C0 from NEXP
(and not only from ENP ; see [SW13, BSV14]). Accordingly, the problem of either deran-
domizing T C0 or constructing a deterministic algorithm for satisfiability of T C0 (which
would be a stronger result 1) was recently suggested as a central open problem in complex-
ity theory both by Williams [Wil14a, Sec. 4.2] and by Aaronson [Aar17, First open problem
in the Conclusions Section].

An intensive recent effort has been devoted to constructing deterministic algorithms
for satisfiability of T C0. Such algorithms (with non-trivial running time) have been con-
structed for T C0 circuits of depth two, and for certain “structured subclasses” of T C0

(see [IPS13, Wil14b, AS15, SSTT16, Tam16]). However, much less is known about derandom-
ization algorithms for T C0. Following an intensive effort to construct pseudorandom gen-
erators for a single linear threshold function [DGJ+10, RS10, GOWZ10, KRS12, MZ13, Kan11,
Kan14, KM15, GKM15] (i.e., a single “gate”; for background see Sections 2.2 and 4.2), a first
step towards derandomizing T C0 circuits was very recently undertaken by Servedio and
Tan [ST17b], who considered the problem of derandomizing T C0 circuits of depth two. 2

In this work we take a significant additional step towards the derandomization of T C0,
by proving the first positive results regarding the derandomization of T C0 circuits of any
constant depth d ≥ 2. Loosely speaking, we first construct an algorithm for a “relaxed” type
of derandomization problem of sparse T C0 circuits of any constant depth d ≥ 2. As far as

1More accurately, to get lower bounds it suffices to construct algorithms for derandomization with one-sided
error (see, e.g., [Wil13, SW13]), which are weaker than satisfisability algorithms.

2Their manuscript is still unpublished, and so we describe their results in Section 2.2.

1

we are aware of, this is the first deterministic circuit-analysis algorithm for T C0 circuits of
any constant depth that do not admit any special structure (other than being sparse). Then,
we show that even a modest improvement in the parameters of the foregoing algorithm (for
the “relaxed” problem) would yield a non-trivial algorithm for standard derandomization
of all of T C0; indeed, as mentioned above, such a result would imply that NEXP 6⊆ T C0.
We thus suggest this approach (of the “relaxed” derandomization problem) as a potentially
tractable line-of-attack towards proving NEXP 6⊆ T C0 (see Section 1.1.3).

1.1 Our results

Our two main results lie within the framework of quantified derandomization. Quantified
derandomization, which was introduced by Goldreich and Wigderson [GW14], is the re-
laxed derandomization problem of distinguishing between a circuit that accepts 1− o(1) of
its inputs and a circuit that rejects 1− o(1) of its inputs (where the 1− o(1) term replaces
the original 2/3 term in standard derandomization). Specifically, for a parameter B(n) that
quantifies the number of exceptional inputs to the circuit, our goal is to distinguish be-
tween circuits that accept all but B(n) of their inputs and circuits that reject all but B(n) of
their inputs. The standard derandomization problem is obtained by considering the value
B(n) = 2n/3, but we are interested in much smaller values (e.g., B(n) = 2n.99

).
On the one hand, this relaxation potentially allows to construct more efficient deran-

domization algorithms. But on the other hand, the standard derandomization problem
can be reduced to quantified derandomization, by applying strong error-reduction within the
relevant circuit class (such that a circuit with acceptance probability 2/3 is transformed
to a circuit with acceptance probability 1− o(1)). Of course, a main goal underlying this
approach is to reduce standard derandomization to a parameter setting for which we are
able to construct a corresponding algorithm for quantified derandomization.

1.1.1 A quantified derandomization algorithm

Our first result is a quantified derandomization algorithm for T C0 circuits with a slightly super-
linear number of wires. In fact, our algorithm works not only for T C0, but also for the class
of linear threshold circuits: While in T C0 circuits each gate computes the majority function,
in linear threshold circuits each gate computes a linear threshold function (i.e., a function
of the form g(x) = sgn

(
∑i∈[n] wi · xi − θ

)
, for w ∈ Rn and θ ∈ R; see Section 4.2 for

definitions). Towards stating this first result, denote by Cn,d,w the class of linear threshold
circuits over n input bits of depth d and with at most w wires.

Theorem 1.1 (quantified derandomization of linear threshold circuits). There exists a deterministic
algorithm that, when given as input a circuit C ∈ Cn,d,n1+2−10d , runs in time nO(log log(n))2

, and
satisfies the following:

1. If C accepts all but at most B(n) = 2n1−1/5d
of its inputs, then the algorithm accepts C.

2. If C rejects all but at most B(n) = 2n1−1/5d
of its inputs, then the algorithm rejects C.

Observe that as d grows larger, the algorithm in Theorem 1.1 solves a more difficult
derandomization task (since B(n) is larger), but only has to handle circuits with fewer
wires (i.e., n1+exp(−d)). Also note that the algorithm in Theorem 1.1 is “whitebox”: That
is, the algorithm gets as input an explicit description of a specific linear threshold circuit C,

2

and uses this description when estimating the acceptance probability of C. 3 The actual
algorithm that we construct works for a more general parameter regime, which exhibits
a trade-off between the number B(n) = 2n1−δ

of exceptional inputs for C and the number
n1+δ·exp(−d) of wires of C (see Theorem 5.1 for a precise statement).

The limitation on the number of wires of C in Theorem 1.1 (i.e., n1+exp(−d)) essentially
matches the best-known lower bounds for linear threshold circuits, which were proved by Im-
pagliazzo, Paturi, and Saks [IPS97] (see Section 2.1 for details). This is no coincidence:
Our algorithm construction follows a common theme in the design of circuit-analysis al-
gorithms (e.g., derandomization algorithms or algorithms for satisfiability), which is the
conversion of techniques that underlie lower bound proofs into algorithmic techniques.
Specifically, we observe that certain proof techniques for average-case lower bounds for a cir-
cuit class C can be used to obtain algorithmic techniques for quantified derandomization of
C. To construct the algorithm in Theorem 1.1, we leverage the techniques underlying the
recent proof of Chen, Santhanam, and Srinivasan [CSS16] of average-case lower bounds for
linear threshold circuits. A high-level description of our algorithm appears in Section 3.1.

1.1.2 A reduction of standard derandomization to quantified derandomization

Our second result reduces the standard derandomization problem of T C0 to the quantified
derandomization problem of T C0 circuits with a super-linear number of wires. In fact, we
show that even a modest improvement in the parameters of the algorithm from Theorem 1.1
would yield a non-trivial algorithm for standard derandomization of all of T C0.

Theorem 1.2 (a reduction of standard derandomization to quantified derandomization). Assume
that there exists a deterministic algorithm that, when given as input a circuit C ∈ Cn,d,n1+30/d , runs

in time T(n) = 2n1/4d
, and for the parameter B(n) = 2n1−1/5d

satisfies the following: If C accepts all
but at most B(n) of its inputs then the algorithm accepts C, and if C rejects all but at most B(n) of
its inputs then the algorithm rejects C.

Then, there exists an algorithm that for every k ∈ N and d ∈ N, when given as input a circuit
C ∈ Cm,d,mk , runs in time 2m1−Ω(1)

, and satisfies the following: If C accepts at least 2/3 of its inputs
then the algorithm accepts C, and if C rejects at least 2/3 of its inputs then the algorithm rejects C.

The gap between the algorithm constructed in Theorem 1.1 and the algorithm assumed
in the hypothesis of Theorem 1.2 is quantitatively very small: Specifically, the algorithm in
Theorem 1.1 works when the number of wires in the input circuit C is n1+exp(−d), whereas
the algorithm in the hypothesis of Theorem 1.2 is required to work when the number of
wires is n1+O(1/d). Moreover, Theorem 1.2 holds even if this improvement (in the number
of wires) comes at the expense of a longer running time; specifically, the conclusion of
Theorem 1.2 holds even if the algorithm runs in (sufficiently small) sub-exponential time.

As mentioned in the beginning of Section 1, a non-trivial derandomization of T C0

implies lower bounds for this class. Specifically, combining Theorem 1.2 with [SW13, Thm
1.5] (see also [BSV14]), we obtain the following corollary:

Corollary 1.3 (quantified derandomization implies lower bounds for T C0). Assume that there
exists a deterministic algorithm as in the hypothesis of Theorem 1.2. Then, NEXP 6⊆ T C0.

3The algorithm in Theorem 1.1 works in any reasonable model of explicitly representing linear threshold
circuits; see Section 4.2 for a brief discussion.

3

The result that we actually prove is stronger and more general than the one stated in
Theorem 1.2 (see Theorem 6.10). First, the result holds even if we limit ourselves only
to the class T C0, rather than to the class of linear threshold circuits (i.e., if we interpret
the class Cn,d,w as the class of T C0 circuits over n inputs of depth d and with w wires).
And secondly, the hypothesis of the theorem can be modified via a trade-off between the
number of exceptional inputs for the circuit C and the number of wires in C.

The proof of Theorem 1.2 is based on developing a very efficient method for error-
reduction within sparse T C0. Specifically, we construct a seeded extractor such that there
exists a T C0 circuit that gets input x ∈ {0, 1}n and computes the outputs of the extractor
on x and on all seeds using only a super-linear number of wires (i.e., a circuit of depth d
uses n1+O(1/d) wires); as far as we know, this is the first construction of a seeded extractor
that is specific to T C0. The approach of using a seeded extractor that is computable within
the circuit class follows Goldreich and Wigderson [GW14], but in our setting we need
to be much more careful about the exact number of wires that the extractor uses. Our
construction extends the study of randomness extraction in weak computational models,
which has so far focused on AC0, on AC0[⊕], and on streaming algorithms [BYRST02,
Vio05, Hea08, GVW15, CL16]. The construction is described in high-level in Section 3.2,
and a precise statement appears in Proposition 6.9.

1.1.3 Restrictions for sparse T C0 circuits: A potential path towards NEXP 6⊆ T C0

Recall that the best-known lower bounds for T C0 circuits of arbitrary constant depth d
are for circuits with n1+exp(−d) wires. Our results imply that a certain type of analysis of
T C0 circuits with only n1+O(1/d) wires, which is common when proving average-case lower
bounds, might suffice to deduce a lower bound for all of T C0.

Specifically, a common technique to prove average-case lower bounds for a circuit C
is the “restriction method”, which (loosely speaking) consists of proving the existence of
certain subsets of the domain on which C “simplifies” (i.e., C agrees with a simpler function
on the subset). We pose the following open problem: Construct a deterministic algorithm
that gets as input a T C0 circuit C with n1+O(1/d) wires, runs in sufficiently small sub-
exponential time, and finds a subset S of size larger than 2n1−1/5d

such that the acceptance
probability of C�S can be approximated in sufficiently small sub-exponential time (see Open
Problem 1 in Section 8 for a precise statement). In Section 8 we show that a resolution of
the foregoing problem would imply that NEXP 6⊆ T C0; this follows from Theorem 1.2
and from the techniques that underlie the proof of Theorem 1.1.

A similar “threshold phenomenon”, whereby lower bounds for T C0 circuits of depth d
with n1+O(1/d) wires would imply lower bounds for all of T C0, was also shown by Allender
and Koucký [AK10]. Specifically, they proved that if specific problems cannot be solved by
T C0 circuits of depth d with n1+O(1/d) wires (for all d ∈ N), then these problems require
super-polynomial sized T C0 circuits; one such problem is the Boolean Formula Evaluation
problem, which is complete for NC1. 4 Indeed, their hypothesis regards lower bounds for
sparse T C0 circuits against specific problems, whereas our hypothesis regards algorithms
that find restrictions for sparse T C0 circuits; and their conclusion is that these specific prob-
lems cannot be solved in T C0, whereas our conclusion is that NEXP 6⊆ T C0.

4For a definition of this problem see [AK10, Sec. 2.2]. We note that the precise trade-off between depth and
number of wires is not explicitly stated in the main theorems in [AK10], but immediately follows from [AK10,
Prop. 3.9 & Thm. 4.2] and is explained after [AK10, Thm. 4.2].

4

1.1.4 The special case of depth-2 circuits

In addition to our main results, we also construct an alternative quantified derandomiza-
tion algorithm for the special case of linear threshold circuits of depth two. Specifically, we
construct a pseudorandom generator with seed length Õ(log(n)) for the class of depth-2
linear threshold circuits with n3/2−Ω(1) wires that either accept all but B(n) = 2nΩ(1)

of their
inputs or reject all but B(n) of their inputs. This result is not a corollary of Theorem 1.1,
and is incomparable to the pseudorandom generator of Servedio and Tan [ST17b].

The precise result statement and proof appear in Section 7. The generator construction
is obtained by leveraging the techniques of Kane and Williams [KW16] for average-case
lower bounds for linear threshold circuits of depth two.

1.2 Organization

In Section 2 we provide background and discuss some relevant previous works. In Sec-
tion 3 we give high-level overviews of the proofs of Theorems 1.1 and 1.2. After presenting
preliminary formal definitions in Section 4, we prove Theorem 1.1 in Section 5 and Theo-
rem 1.2 in Section 6. In Section 7 we construct the pseudorandom generator mentioned in
Section 1.1.4. Finally, in Section 8 we formally pose the open problem that was mentioned
in Section 1.1.3 and show the consequences of a solution to the problem.

2 Background and previous work

2.1 Lower bounds for linear threshold circuits

The best-known lower bounds for computing explicit functions by linear threshold circuits
of a fixed small depth have been recently proved by Kane and Williams [KW16]. Specifically,
they showed that any depth-two linear threshold circuit computing Andreev’s function
requires Ω̃(n3/2) gates and Ω̃(n5/2) wires. They also showed average-case lower bounds
for such circuits with Andreev’s function. Extending their worst-case lower bounds to
depth three, they proved that any depth-3 circuit with a top majority gate that computes
a specific polynomial-time computable function also requires Ω̃(n3/2) gates and Ω̃(n5/2)
wires (the “hard” function is a modification of Andreev’s function).

For linear threshold circuits of arbitrary constant depth d ≥ 2, the best-known lower
bounds on the number of wires required to compute explicit functions are only slightly
super-linear. Specifically, Impagliazzo, Paturi, and Saks [IPS97] proved that any linear
threshold circuit of depth d requires at least n1+exp(−d) wires to compute the parity func-
tion; Chen, Santhanam, and Srinivasan [CSS16] strengthened this by showing average-case
lower bounds for such circuits with parity (as well as with the generalized Andreev func-
tion). These lower bounds for parity are essentially tight, since Beame, Brisson, and Lad-
ner [BBL92] (and later [PS94]) constructed a linear threshold circuit with n1+exp(−d) wires
that computes parity. We also mention that linear lower bounds on the number of linear
threshold gates required to compute explicit functions (e.g., the inner-product function)
have been proved in several works during the early ‘90s, and these gate lower bounds
apply even for circuits of unrestricted depth (see [Smo90, GT91, ROS94, Nis93]).

5

2.2 Derandomization of LTFs and of functions of LTFs

There has been an intensive effort in the last decade to construct pseudorandom genera-
tors for a single linear threshold function. This problem was first considered by Diakoniko-
las et al. [DGJ+10] (see also [RS10]), and the current state-of-the-art, following [GOWZ10,
Kan11, KRS12, MZ13, Kan14, KM15], is the pseudorandom generator of Gopalan, Kane,
and Meka [GKM15], which ε-fools any LTF with n input bits using a seed of length
Õ(log(n/ε)). Harsha, Klivans, and Meka [HKM12] considered a conjunction of linear
threshold functions, and constructed a pseudorandom generator for a subclass of such
functions (i.e., for a conjunction of regular LTFs; see Section 4.2 for a definition). Gopalan et
al. [GOWZ10] constructed pseudorandom generators for small decision trees in which the
leaves are linear threshold functions.

Very recently, Servedio and Tan [ST17b] considered the problem of derandomizing lin-
ear threshold circuits. For every ε > 0, they constructed a pseudorandom generator that
1/poly(n)-fools any depth-2 linear threshold circuit with at most n2−ε wires, using a seed of
length n1−δ, where δ = δε > 0 is a small constant that depends on ε. This yields a deran-
domization of depth-2 linear threshold circuits with n2−ε wires in time 2n1−Ω(1)

.

2.3 Quantified derandomization

The quantified derandomization problem, which was introduced by Goldreich and Wigder-
son [GW14], is a generalization of the standard derandomization problem. For a circuit
class C and a parameter B = B(n), the (C, B)-derandomization problem is the following:
Given a description of a circuit C ∈ C over n input bits, deterministically distinguish be-
tween the case that C accepts all but B(n) of its inputs and the case that C rejects all but
B(n) of its inputs. Indeed, the standard derandomization problem is represented by the
parameter value B(n) = 1

3 · 2n. Similarly to standard derandomization, a solution for the
quantified derandomization problem of a class C via a “black-box” algorithm (e.g., via a
pseudorandom generator) yields a corresponding lower bound for C (see Appendix A).

Prior to this work, quantified derandomization algorithms have been constructed for
AC0, for subclasses of AC0[⊕], for polynomials over F2 that vanish rarely, and for a sub-
class of MA. On the other hand, reductions of standard derandomization to quantified
derandomization are known for AC0, for AC0[⊕], for polynomials over large finite fields,
and for the class AM (both the algorithms and the reductions appear in [GW14, Tel17]). In
some cases, most notably for AC0, the parameters of the known quantified derandomiza-
tion algorithms are very close to the parameters of quantified derandomization to which
standard derandomization can be reduced (see [Tel17, Thms 1 & 2]).

3 Overviews of the proofs

3.1 A quantified derandomization algorithm for linear threshold circuits

The high-level strategy of the quantified derandomization algorithm follows the strategy
suggested by Goldreich and Wigderson [GW14]. Specifically, given a circuit C : {−1, 1}n →
{−1, 1}, the algorithm deterministically finds a set S ⊆ {−1, 1}n of size |S| � B(n) on
which the circuit C simplifies; that is, C agrees with a function from some “simple” class
of functions on almost all points in S. If C accepts all but B(n) of its inputs, then the
acceptance probability of C�S will be very high, and similarly, if C rejects all but B(n) of

6

its inputs, then the acceptance probability of C�S will be very low. The algorithm then dis-
tinguishes between the two cases, by enumerating the seeds of a pseudorandom generator
for the “simple” class of functions. 5

Our starting point in order to construct a deterministic algorithm that finds a suitable
set S is the recent proof of average-case lower bounds for sparse linear threshold circuits
by Chen, Santhanam, and Srinivasan [CSS16]. Their proof is based on a randomized “white-
box” algorithm that gets as input a linear threshold circuit with depth d and n1+ε wires,
and restricts all but n1−ε·exp(d) of the variables such that the restricted circuit can be approx-
imated by a single linear threshold function. Thus, if we are able to modify their algorithm
to a deterministic one, we will obtain a quantified derandomization algorithm with the
parameters asserted in Theorem 1.1 (i.e., if ε = exp(−d), then B(n) ≈ |S|/10 > 2n1−1/5d

). 6

Converting the randomized restriction algorithm into a deterministic algorithm poses
several challenges, which will be our focus in this overview. Let us first describe the original
algorithm, in high-level. The algorithm iteratively reduces the depth of the circuit. In each
iteration it applies a random restriction that keeps every variable alive with probability
p = n−Ω(1), and otherwise assigns a random value to the variable. The main structural
lemma of [CSS16] asserts that such a random restriction turns any LTF to be very biased
(i.e., exp(−nΩ(1))-close to a constant function), with probability 1− n−Ω(1). Hence, after
applying the restriction, most gates in the bottom layer of the circuit become very biased,
and the fan-in of the rest of the gates in the bottom layer significantly decreases (i.e., we
expect it to reduce by a factor of p = n−Ω(1)). The algorithm replaces the very biased gates
with the corresponding constants, thereby obtaining a circuit that approximates the original
circuit (i.e., the two circuits agree on all but 2−nΩ(1)

of the inputs); and in [CSS16] it is
shown that the algorithm can afterwards fix relatively few variables such that the fan-in of
each gate that did not become very biased decreases to be at most one (such a gate can be
replaced by a variable or a constant). Thus, if the circuit Ci in the beginning of the iteration
was of depth i, we obtain a circuit Ci−1 of depth i− 1 that approximates Ci.

One obvious challenge in converting the randomized restriction algorithm into a de-
terministic algorithm is “derandomizing” the main structural lemma; that is, we need to
construct a pseudorandom distribution of restrictions that turns any LTF to be very bi-
ased, with high probability. This derandomization is detailed in Section 3.1.1. The second
challenge is more subtle, and arises when applying pseudorandom restrictions several
times, sequentially, while replacing biased gates by constants each time; this challenge is
explained in Section 3.1.2.

3.1.1 Derandomizing the main structural lemma of [CSS16].

Let Φ = (w, θ) be an LTF over n input bits, and consider a random restriction ρ that keeps
each variable alive with probability p = n−Ω(1). Peres’ theorem implies that the expected
distance of Φ�ρ from a constant function is approximately

√
p (see, e.g., [O’D14, Sec. 5.5]). 7

5The actual algorithm that we construct finds a collection of sets S such that most sets in the collection are
both large and “simplify” C (i.e., C�S is “simple”); for simplicity, in the overview we ignore this point.

6This approach follows the well-known theme of “leveraging" techniques from lower bound proofs to
algorithmic techniques, and in particular to techniques for constructing circuit-analysis algorithms; see,
e.g., [LMN93, San10, Bra10, IMZ12, ST12, IMP12, BIS12, GMR13, TX13, CKK+15, ST17b, ST17a]. We also men-
tion that in [CSS16, Sec. 5] their randomized restriction algorithm is used to construct a randomized algorithm
for satisfiability of sparse linear threshold circuits.

7Peres’ theorem is usually phrased in terms of the noise sensitivity of Φ, but the latter is proportional to its
expected bias under a random restriction; for further details see [CSS16, Prop. 8].

7

A natural question is whether we can prove a concentration of measure for this distribution.
As an illustrative example, consider the majority function MAJ(x) = sgn(∑i∈[n] xi); for
any t ≥ 1, with probability roughly 1− t · √p it holds that MAJ�ρ is exp(−t2)-close to a
constant function (see Fact 5.3). The main structural lemma in [CSS16] asserts that a similar
statement indeed holds for any LTF Φ; specifically, they showed that with probability at
least 1− pΩ(1) it holds that Φ�ρ is exp(−p−Ω(1))-close to a constant function.

We construct a distribution over restrictions that can be efficiently sampled using
Õ(log(n)) random bits such that for any LTF Φ and any t ≥ p−1/8, with probability at
least 1− Õ(t2) · √p it holds that Φ�ρ is exp(−t2)-close to a constant function. (The actual
statement that we prove is more general; see Proposition 5.8 for precise details.) Indeed,
this is both an “almost-full derandomization” of the lemma of [CSS16] as well as a refine-
ment of the quantitative bound in the lemma.

The original proof of [CSS16] relies on a technical case analysis that is reminiscent of
other proofs that concern LTFs, and is based on the notion of a critical index of a vector
w ∈ Rn (they refer to the ideas underlying such analyses as “the structural theory of linear
threshold functions”; see, e.g., [Ser07, DGJ+10], and Definitions 4.3 and 4.4). In each case,
the main technical tools that are used are concentration and anti-concentration theorems
for random weighted sums (i.e., Hoeffding’s inequality and the Berry-Esséen theorem, re-
spectively), which are used to bound the probability that several specific random weighted
sums that are related to the restricted function Φ�ρ fall in certain intervals.

To derandomize the original proof, an initial useful observation is the following. We
say that a distribution z over {−1, 1}n is ε-pseudorandomly concentrated if for any w ∈ Rn

and any interval J ⊆ R, the probability that 〈w, z〉 falls in J is ε-close to the probability that
〈w, un〉 falls in J (where un is the uniform distribution over {−1, 1}n). In particular, the
Berry-Esséen theorem and Hoeffding’s inequality approximately hold for pseudorandom
sums 〈w, z〉 when z is pseudorandomly concentrated. The observation is that being ε-
pseudorandomly concentrated is essentially equivalent to being ε-pseudorandom for LTFs
(see Claim 4.11). 8 In particular, if a distribution z over {−1, 1}n is chosen using the
pseudorandom generator of Gopalan, Kane, and Meka [GKM15] for LTFs, which has seed
length Õ(log(n/ε)), then z is ε-pseudorandomly concentrated.

The main part in the proof of the derandomized lemma is a (non-trivial) modification
of the original case analysis, in order to obtain an analysis in which all claims hold under
a suitably-chosen pseudorandom distribution of restrictions. Since this part of the proof is
quite technical and low-level, we defer its detailed description to Section 5.1. However, let
us mention that our pseudorandom distribution itself is relatively simple: We first choose
the variables to keep alive such that each variable is kept alive with probability approxi-
mately p = n−Ω(1), and the choices are O(1)-wise independent; and then we independently
choose values for the fixed variables, using the generator of [GKM15] with error parameter
ε = 1/poly(n). We also note that it is suprising that in our setting the case analysis can be
modified in order to obtain an “almost-full derandomization” (i.e., seed length Õ(log(n))),
since previous derandomizations of similar case analyses regarding LTFs for different set-
tings required much larger seed for error ε = n−Ω(1) (see [DGJ+10]).

8This observation was communicated to us by Rocco Servedio, and is attributed to Li-Yang Tan.

8

3.1.2 Preserving the closeness of the circuit to its approximations.

Recall that in order to simplify a linear threshold circuit into a single LTF we will itera-
tively apply the pseudorandom restrictions that were described in the previous section,
in order to reduce the depth of the circuit. Specifically, in each iteration we will replace
the “current” circuit Ci by a circuit Ci−1 that agrees with Ci on almost all inputs in the
subcube of the n living variables (i.e., the circuits disagree on at most 2n−nΩ(1)

inputs). The
main “approximation” step in constructing Ci−1 from Ci is replacing very biased gates by
corresponding constants.

The potential problem that is our current focus arises from the fact that in subsequent
iterations we will fix almost all of these n living variables, such that only n1−Ω(1) variables
will remain alive. Thus, we have no guarantee that Ci and Ci−1 will remain close after
additional restrictions in subsequent iterations; in particular, Ci and Ci−1 might disagree on
all of the inputs in the subcube of living variables in the end of the entire process. Of course,
this is very unlikely to happen when values for fixed variables are chosen uniformly, but we
need to construct a pseudorandom distribution of restrictions such that the approximation
of each Ci by Ci−1 is likely to be maintained throughout the process.

We will in fact choose each restriction ρ such that the following holds: For each gate
Φ that was replaced by a constant σ ∈ {−1, 1}, with probability 1 − 1

poly(n) over choice

of restriction ρ it holds that Φ�ρ is still 1
poly(n) -close to σ (i.e., Prx[Φ�ρ(x) 6= σ] ≤ 1

poly(n)).

Specifically, we prove that if an LTF Φ is, say, n−20-close to a constant σ, and a restriction ρ
is chosen such that the distribution of values for the fixed variables is n−10-pseudorandom for
LTFs, then with probability 1− n−10 it holds that Φ�ρ is n−10-close to σ (see Lemma 5.10). 9

Accordingly, whenever we fix variables in our algorithm, we will choose the values for
the fixed variables according to a distribution that is (1/poly(n))-pseudorandom for LTFs.
By the statement above, after each such fixing, every gate that was close to a constant (and
was replaced, at some point, by that constant) remains close to the corresponding constant
even in the subcube of living variables, with high probability. By union-bounding over all
gates (in all the O(1) circuits obtained in each of the iterations), with high probability the
final circuit is close to the initial circuit in the final subcube of living variables.

In Section 5.2 we include a simple proof of the fact that biased LTFs remain biased
when variables are fixed according to a distribution that is pseudorandom for LTFs. This
simple proof was suggested by an anonymous reviewer, and follows an approach of Ajtai
and Wigderson [AW85]. Our original proof of this fact was more complicated, but uses
techniques that may be of independent interest; we therefore include the original proof in
Appendix C.

3.2 Reduction of standard derandomization to quantified derandomization

Recall that Theorem 1.2 asserts that in order to derandomize all of T C0, it suffices to con-
struct an algorithm for quantified derandomization of sparse T C0 circuits (i.e., T C0 circuits
with a super-linear number of wires). We prove the theorem by showing an efficient re-
duction of the former problem to the latter problem.

Specifically, given a T C0 circuit C of depth d over m input bits, we will efficiently
construct a T C0 circuit C′ of depth d′ > d over n = poly(m) input bits such that if C

9Since each gate is initially exp(−nΩ(1))-close to a constant, we can afford a constant number of losses in
the polynomial power in the “closeness” parameter throughout the execution of the restriction algorithm.

9

accepts (resp., rejects) at least 2/3 of its inputs then C′ accepts (resp., rejects) all but B(n) =
2n0.99

of its inputs. 10 The circuit C′ will use its input in order to sample inputs for C
by a seeded extractor, and then compute the majority of the evaluations of C on these
inputs. Specifically, fixing an extractor E : {0, 1}n × {0, 1}t → {0, 1}m for min-entropy
k = n0.99, 11 the circuit C′ gets input x ∈ {0, 1}n, and outputs the majority of the values
{C(E(x, z)) : z ∈ {0, 1}t}.

In general, using extractors for error-reduction is a well-known and standard approach
(see, e.g., [Gol08, Apdx. D.4.1.3]). However, implementing this approach in our setting
entails a non-standard technical challenge: Specifically, we need to construct an extractor
E such that the mapping of input x ∈ {0, 1}n to the 2t outputs of the extractor on all seeds
(i.e., the mapping x 7→ {E(x, z)}z∈{0,1}t) can be computed by a T C0 circuit with as few
wires as possible. In our construction, the seed length will be t = 1.01 · log(n), and thus the
number of output bits will be 2t ·m ≈ n1.01; we will construct a T C0 circuit that computes
the mapping of x to these n1.01 output bits with only a super-linear number of wires (i.e., the
number of wires is only slightly larger than the number of output bits). Indeed, a crucial
point in our construction is that we will efficiently compute the outputs of the extractor on
all seeds in a “batch”, rather than compute the extractor separately for each seed.

3.2.1 Our starting point: A construction of C′ with n3.01 wires

As our starting point, let us construct a suitable circuit C′ that has n3.01 wires and is based
on Trevisan’s extractor [Tre01]. Given an input x ∈ {0, 1}n and seed z ∈ {0, 1}t, Trevisan’s
extractor first computes an encoding x̄ of x by an (1/m2)-balanced error-correcting code
(i.e., a code in which every non-zero codeword has relative Hamming weight 1/2±m−2). 12

Fixing a suitable combinatorial design of m sets S1, ..., Sm of size |Si| = log(|x̄|) in a universe
of size t, the output of E(x, z) is the m bits of x̄ in the coordinates specified by z�S1

, ..., z�Sm
.

An initial important observation is that the circuit C′ only needs to compute the encod-
ing x̄ of x once, and then each of the 2t copies of C can take its inputs directly from the bits
of x̄ (i.e., each copy of C corresponds to a fixed seed z, and takes its inputs from locations in
x̄ that are determined by z and by the predetermined combinatorial design). This is indeed
a form of “batch computation” of the extractor on all seeds.

Let us see why this construction uses n3.01 wires. To encode x into x̄ we can use known
polynomial-time constructions of suitable linear codes that map n bits to n ·poly(m) < n1.01

bits (e.g., [NN93, ABN+92, TS17]). Since the code is linear in x ∈ {0, 1}n, each bit of
x̄ ∈ {0, 1}n1.01

can be computed by a T C0 circuit with n1.01 wires, and thus the number of
wires that we use to compute x̄ is n2.02. Now, recall that we want the extractor to work
for min-entropy k = n0.99; relying on Trevisan’s proof and on standard constructions of
combinatorial designs, the required seed length is t < 3 · log(n). 13 Therefore, the number
of copies of C in C′ is 2t = n3, and the overall number of wires in C′ is n2.02 + n3 ·m < n3.01.

10Throughout the overview we will be somewhat informal with respect to the precise parameter values, e.g.
we will use the value B(n) = 2n0.99

instead of the more precise B(n) = 2n1−1/5d
.

11The number B(n) of exceptional inputs for C′ is upper-bounded by 2k, and we want to have B(n) = 2n0.99
.

12Trevisan’s extractor only needs a (1/2−O(1/m), poly(m))-list-decodable code, but we will not rely on
this potential relaxation.

13Trevisan’s proof requires a design such that |Si ∩ Sj| ≤ log(k/2m) (see [Tre01, Sec. 3.3]). Relying on
standard constructions of combinatorial designs (see, e.g., [Tre01, Lem. 8]), a suitable design can be constructed

with a universe size of t = eln(m)/ log(2k/m)+1 · log2(|x|)
log(k/2m)

≈ 1.01 · e · log(n) < 3 · log(n).

10

3.2.2 The actual construction of C′ with n1.01 wires

There are two parts in the construction above that led us to use a large number of wires:
First, the seed length of the extractor is t = 3 · log(n), which yields 2t = n3 copies of C; and
secondly, the number of wires required to compute the encoding x̄ of x is super-quadratic,
rather than super-linear. Let us now describe how to handle each of these two problems,
and obtain a construction with only n1.01 wires.

To reduce the seed length t of the extractor, we follow the approach of Raz, Reingold,
and Vadhan [RRV02]. They showed that Trevisan’s extractor works even if we replace
standard combinatorial designs by a more relaxed notion that they called weak designs (see
Definition 6.1). Indeed, weak designs can be constructed with a smaller universe size t,
which yields a smaller seed length for the extractor. Their construction yields t = 2 · log(n),
and we show a modified construction of weak designs that for our setting of parameters
yields t = 1.01 · log(n) (see Lemma 6.2).

The second challenge is to construct an ε-balanced error-correcting code that maps n
bits to n · poly(1/ε) bits, and can be computed by a T C0 circuit of depth d with n1+O(1/d) +
n ·poly(1/ε) wires (this is the code that we will use to compute x̄ from x; see Corollary 6.8).
To describe the code, we describe the encoding process of x ∈ {0, 1}n, which has two steps:
First we encode x by a code with constant rate and constant relative distance, and then
perform a second encoding that amplifies the distance of the code to 1/2− ε.

Computing a code with distance Ω(1). In the first step, we encode x by a linear error-
correcting code that has distance Ω(1), instead of 1/2− ε, and also has rate Ω(1) and can
be computed in T C0 with n1.01 wires. This will be done using tensor codes that are based
on any (arbitrary) initial good linear error-correcting code. The idea of encoding an error-
correcting code by constant-depth circuits in a wire-efficient manner using tensor codes is
known, and was mentioned in [GHK+13, End of Sec. 1].

To see why tensor codes are helpful, assume that n = r2, for some r ∈ N, and fix a
linear code ECC that maps r bits to O(r) bits and has constant relative distance. Thinking of
the input x ∈ {0, 1}n as an r× r matrix, we first encode each row of the matrix x using ECC,
to obtain an r×O(r) matrix x′, and then encode each column of x′ using ECC, to obtain an
O(r)×O(r) matrix x̂. By well-known properties of tensor codes, this yields a linear error-
correcting code with constant rate and constant relative distance. Moreover, computing the
code in T C0 only requires n1.51 wires: This is because the strings that we encode with ECC

(which are the rows of x in the first step and then the columns of x′ in the second step) are
each of length r =

√
n. Thus, each of the O(n) bits in x̂ is a linear function of

√
n bits, and

the latter can be computed by T C0 circuit with n.51 wires.
To obtain a code with n1.01 wires instead of n1.51 wires we can use a tensor code of

higher order. Specifically, assume that n = rd0 , for some large constant d0, and think of x as
a tensor of dimensions [r]d0 . The encoding process will consist of d0 = O(1) iterations, and
in each iteration we encode strings of length r in the tensor by ECC. The final codeword will
be of length (O(r))d0 = O(n), will have constant relative distance, and can be computed by
a T C0 circuit with only O(n) · r1.01 < n1+2/d0 wires. (See Section 6.2 for further details.)

Amplifying the distance from Ω(1) to 1/2− ε. Assume that the previous step mapped
the input x ∈ {0, 1}n to x̂ ∈ {0, 1}n̂, where n̂ = O(n). If x was a non-zero message, then x̂
has relative Hamming weight Ω(1). Our goal now is to increase the Hamming weight of
x̂ to 1/2− ε, using as few wires as possible. To do so we rely on the strategy of Naor and

11

Naor [NN93], which is based on expander random walks. (This strategy was also recently
used by Ta-Shma [TS17] to construct almost-optimal ε-balanced codes.)

Specifically, fix a graph G on n̂ vertices with constant degree and constant spectral gap.
Associate the n̂ vertices of G with the coordinates of x̂, and consider a random walk on G
that starts at a uniformly-chosen vertex and walks ` = O(log(1/ε)) steps. With probability
at least ε, such a walk meets the set of coordinates in which x̂ is non-zero (since this set
has constant density). Thus, if we take such a random walk on the coordinates of x̂, and
output the parity of a random subset of the bits of x̂ that we encountered, with probability
at least 1/2− ε we will output one.

The encoding x̄ of x̂ is thus the following. Every coordinate in x̄ is associated with
a specific walk W of length ` on G and with a subset S ⊆ [`]; thus, x̄ has 2log(n)+O(`) =
n · poly(1/ε) coordinates. The bit of x̄ at a coordinate associated with a walk W and
with a subset S ⊆ [`] is the parity of the S bits of x̂ encountered in the walk W. Thus,
each bit in x̄ is the parity of at most ` = O(log(1/ε)) bits in x̂, so computing x̄ from x̂
only requires n · poly(1/ε) · `1.01 = n · poly(1/ε) wires. Recall that in our setting we need
ε = 1/m2 = n−Ω(1); the number of wires is thus at most n1.01. By the preceding paragraph,
if x̂ has Hamming weight Ω(1) then x̄ has Hamming weight at least 1/2− ε.

4 Preliminaries

Throughout the paper, the letter n will always denote the number of inputs to a function
or a circuit. We denote random variables by boldface letters, and denote by un the uniform
distribution on n bits.

We are interested in Boolean functions, represented as functions f : {−1, 1}n → {−1, 1}.
We say that a function f : {−1, 1}n → {−1, 1} accepts an input x ∈ {−1, 1}n if f (x) = −1.
For two Boolean functions f and g over a domain D, we say that f and g are δ-close if
Prx∈D[f (x) = g(x)] ≥ 1− δ.

For a vector w = (w1, ..., wn) ∈ Rn, we denote by ‖w‖2 the standard `2-norm ‖w‖2 =√
∑i∈[n] w2

i . For h < n, we denote w>h = (wh+1, ..., wn) ∈ Rn−h and w≥h = (wh, ..., wn) ∈
Rn−h+1. For two vectors w, x ∈ Rn, we denote 〈w, x〉 = ∑i∈[n] wi · xi.

4.1 Two probabilistic inequalities

We will rely on two standard facts from probability theory that assert concentration and
anti-concentration bounds for certain distributions. Specifically, we will need a standard
version of Hoeffding’s inequality, and a corollary of the Berry-Esséen theorem:

Theorem 4.1 (Hoeffding’s inequality; for a proof see, e.g., [DP09, Sec. 1.7]). Let w ∈ Rn, and let
z be a uniformly-chosen random vector in {−1, 1}n. Then, for any t > 0 it holds that

Pr [| 〈w, z〉 | ≥ t · ‖w‖2] ≤ exp(−Ω(t2)) .

Theorem 4.2 (a corollary of the Berry-Esséen theorem; see, e.g., [DGJ+10, Thm 2.1, Cor 2.2]).
Let w ∈ Rn and µ > 0 such that for every i ∈ [n] it holds that |wi| ≤ µ · ‖w‖2, and let z be a
uniformly-chosen random vector in {−1, 1}n. Then, for any θ ∈ R and t > 0 it holds that:

Pr [〈w, z〉 ∈ θ ± t · ‖w‖2] ≤ 2 · (t + µ) .

12

4.2 Linear threshold functions and circuits

A linear threshold function (or LTF, in short) Φ : {−1, 1}n → {−1, 1} is a function of the
form Φ(x) = sgn(〈x, w〉 − θ), where w ∈ Rn is a vector of real “weights”, and θ ∈ R

is a real number (the “threshold”), and 〈x, w〉 = ∑i∈[n] xi · wi denotes the standard inner-
product over the reals. 14 Indeed, the majority function is the special case where the weights
are identical (e.g., wi = 1 for all i ∈ [n]) and the threshold is zero (i.e., θ = 0).

We will be interested in linear threshold circuits, which are circuits that consist only of
LTF gates with unbounded fan-in and fan-out. We assume that linear threshold circuits
are layered, in the sense that for each gate Φ, all the gates feeding into Φ have the same
distance from the inputs. For n, d, m ∈ N, let Cn,d,m be the class of linear threshold circuits
over n input bits of depth d ≥ 1 and with at most m wires. For some fixed sizes and
depths, linear threshold circuits are known to be stronger than circuits with majority gates;
however, linear threshold circuits can be simulated by circuits with majority gates with a
polynomial size overhead and with one additional layer (see [GHR92, GK98]). Thus, the
class T C0 as a whole equals the class of linear threshold circuits.

The following are standard definitions (see, e.g., [Ser07, DGJ+10]), which refer to “struc-
tural” properties of LTFS and will be useful for us throughout the paper.

Definition 4.3 (regularity). For ε > 0, we say that a vector w ∈ Rn is ε-regular if for every
i ∈ [n] it holds that |wi| ≤ ε · ‖w‖2. An LTF Φ = (w, θ) is ε-regular if w is ε-regular.

Definition 4.4 (critical index). When w ∈ Rn satisfies |w1| ≥ |w2| ≥ ... ≥ |wn|, the ε-critical
index of w is defined as the smallest h ∈ [n] such that w>h is ε-regular (and h = ∞ if no such
h ∈ [n] exists). The critical index of an LTF Φ = (w, θ) is the critical index of w′, where w′ ∈ Rn is
the vector that is obtained from w by permuting the coordinates in order to have |w′1| ≥ ... ≥ |w′n|.

Definition 4.5 (balanced LTF). For t ∈ R, we say that an LTF Φ = (w, θ) is t-balanced if
|θ| ≤ t · ‖w‖2; otherwise, we say that Φ is t-imbalanced.

Representation of linear threshold circuits The algorithm in Theorem 1.1 gets as input an
explicit representation of a linear threshold circuit C, where the weights and thresholds of
the LTFs in C may be arbitrary real numbers. Throughout the paper we will not be specific
about how exactly C is represented as an input to the algorithm, since the algorithm works
in any reasonable model. In particular, the algorithm only performs addition, subtraction,
and comparison operations on the weights and thresholds of the LTFs in C.

Explicitly suggesting one convenient model, one may assume that the weights and
threshold of each LTF are integers of unbounded magnitude (since the real numbers can
be truncated at some finite precision without changing the function). In this case, the circuit
C has a binary representation, and the required time to perform addition, subtraction, and
comparison on these integers is linear in the representation size. 15

14When dealing with LTFs we can assume, without loss of generality, that 〈w, x〉 6= θ for every x ∈ {−1, 1}n

(because for every Boolean function over {−1, 1}n that is computable by an LTF there exists an LTF that
computes the function such that 〈w, x〉 6= θ for every x ∈ {−1, 1}n).

15It is well-known that every LTF over n input bits has a representation with integer weights of magnitude
2Õ(n) (for proof see, e.g., [Hås94]), and therefore the circuit C actually has a representation of size poly(n).
However, we do not know of a polynomial-time algorithm to find such a representation for a given circuit C.

13

4.3 Pseudorandomness

We need the following two standard definitions of pseudorandom distributions and of
pseudorandom generators (or PRGs, in short).

Definition 4.6 (pseudorandom distribution). For ε > 0 and a domain D, we say that a distribution
z over D is ε-pseudorandom for a class of functions F ⊆ {D→ {−1, 1}} if for every f ∈ F it
holds that Prz∼z [f (z) = −1] ∈ Prz∈D [f (z) = −1]± ε.

Definition 4.7 (pseudorandom generator). Let F =
⋃

n∈N Fn, where for every n ∈ N it holds
that Fn is a set of functions {−1, 1}n → {−1, 1}, and let ε : N → [0, 1] and ` : N → N. An
algorithm G is a pseudorandom generator for F with error parameter ε and seed length ` if for
every n ∈N, when G is given as input 1n and a random seed of length `(n), the output distribution
of G is ε-pseudorandom for Fn.

We will rely on the following recent construction of a pseudorandom generator for
LTFs, by Gopalan, Kane, and Meka [GKM15]:

Theorem 4.8 (a PRG for LTFs; [GKM15, Cor. 1.2]). For every ε > 0, there exists a polynomial-
time pseudorandom generator for the class of LTFs with seed length O

(
log(n/ε) · (log log(n/ε))2).

A distribution z over {−1, 1}n is δ-almost t-wise independent if for every S ⊆ [n] of size
|S| = t it holds that zS is δ-close to the uniform distribution over {−1, 1}t in statistical
distance. We will need the following standard tail bound for such distributions.

Fact 4.9 (tail bound for almost t-wise independent distributions). Let t ≥ 4 be an even number,
and let δ : N→ [0, 1]. Let x1, ..., xn be variables in {0, 1} that are δ(n)-almost t-wise independent,
and denote µ = E

[
1
n ·∑i∈[n] xi

]
. Then, for any ζ > 0 it holds that Pr

[∣∣∣ 1
n ·∑i∈[n] xi − µ

∣∣∣ ≥ ζ
]
<

8 ·
(

t·µ·n+t2

ζ2·n2

)t/2
+ (2 · n)t · δ(n).

In particular, for t = Θ(1) and ζ = µ/2 and δ(n) = 1/p(n), where p(n) is a sufficiently large
polynomial, we have that

Pr

[
1
n
· ∑

i∈[n]
xi ∈ µ± (µ/2)

]
= O

(
(µ · n)−t/2

)
.

We now define the notion of a distribution that is ε-pseudorandomly concentrated, and
show that it is essentially equivalent to the notion of being ε-pseudorandom for LTFs. The
equivalence was communicated to us by Rocco Servedio, and is attributed to Li-Yang Tan.

Definition 4.10 (ε-pseudorandomly concentrated distribution). For n ∈N and ε > 0, we say that
a distribution z over {−1, 1}n is ε-pseudorandomly concentrated if the following holds: For every
w ∈ Rn and every a < b ∈ R it holds that Pr [〈w, z〉 ∈ [a, b]] ∈ Pr [〈w, un〉 ∈ [a, b]]± ε.

Claim 4.11 (being pseudorandomly concentrated is equivalent to being pseudorandom for LTFs).
Let z be a distribution over {−1, 1}n. Then,

1. If z is ε-pseudorandom for LTFs, then z is (2ε)-pseudorandomly concentrated.

2. If z is ε-pseudorandomly concentrated, then z is ε-pseudorandom for LTFs.

14

Proof. Let us first prove Item (1). Fix w ∈ Rn and I = [a, b] ⊆ R. For any fixed z ∈
{−1, 1}n, exactly one of three events happens: Either 〈w, z〉 ∈ I, or 〈w, z〉 < a, or 〈w, z〉 > b.
Since the event 〈w, z〉 < a can be tested by an LTF (i.e., by the LTF Φ(z) = sgn(a −
〈w, z〉)), this event happens with probability Prz∈{−1,1}n [〈w, z〉 < a] ± ε under a choice of
z ∼ z. Similarly, the event 〈w, z〉 > b happens with probability Prz∈{−1,1}n [〈w, z〉 > b]± ε
under a choice of z ∼ z. Thus, the probability under a choice of z ∼ z that 〈w, z〉 ∈ I is
Prz∈{−1,1}n [〈w, z〉 ∈ I]± 2ε.

To see that Item (2) holds, let Φ = (w, θ) be an LTF over n input bits, and let M =
‖w‖1 = ∑i∈[n] |wi|. Then, for every z ∈ {−1, 1}n it holds that Φ(z) = −1 if and only if
z ∈ [−M, θ]. Thus, Pr[Φ(z) = −1] = Pr[z ∈ [−M, θ]] ∈ Pr[un ∈ [−M, θ]]± ε = Pr[Φ(un) =
−1]± ε.

4.4 Restrictions

A restriction for functions {−1, 1}n → {−1, 1} is a subset of {−1, 1}n. We will be interested
in restrictions that are subcubes, and such restrictions can be described by a string ρ ∈
{−1, 1, ?}n in the natural way (i.e., the subcube consists of all strings x ∈ {−1, 1}n such
that for every i such ρi 6= ? it holds that xi = ρi). We will sometimes describe a restriction
by a pair ρ = (I, z), where I = {i ∈ [n] : ρi = ?} is the set of variables that the restriction
keeps alive, and z = (ρi)i∈([n]\I) ∈ {−1, 1}[n]\I is the sequence of values that ρ assigns to
the variables that are fixed.

We identify strings r ∈ {−1, 1}(q+1)·n, where n, q ∈ N, with restrictions ρ = ρr ∈
{−1, 1, ?}n, as follows: Each variable is assigned a block of q + 1 bits in the string; the
variable remains alive if the first q bits in the block are all 1, and otherwise takes the
value of the (q + 1)th bit. When we refer to a “block” in the string that corresponds to a
restriction, we mean a block of q + 1 bits that corresponds to some variable. When we say
that a restriction is chosen from a distribution r over {−1, 1}(q+1)·n, we mean that a string
is chosen according to r, and interpreted as a restriction.

In addition, we will sometimes identify a pair of strings y ∈ {−1, 1}q·n and z ∈ {−1, 1}n

with a restriction ρ = ρy,z. In this case, the restriction ρ = ρy,z is the restriction ρr that is
obtained by combining y and z to a string r in the natural way (i.e., appending a bit from
z to each block of q bits in y). Note that the string y determines which variables ρ keeps
alive, and the string z determinse the values that ρ assigns to the fixed variables.

4.5 Seeded extractors and averaging samplers

We recall the standard definitions of seeded extractors and of averaging samplers, and state
the well-known equivalence between the two. In this context it will be more convenient to
represent Boolean functions as functions {0, 1}n → {0, 1}.

Definition 4.12 (seeded extractors). A function f : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-
extractor if for every distribution x on {0, 1}n such that maxx∈{0,1}n [Pr[x = x]] ≤ 2−k it holds
that the distribution f (x, ut) is ε-close to the uniform distribution on um in statistical distance.

Definition 4.13 (averaging samplers). A function f : {0, 1}n×{0, 1}t → {0, 1}m is an averaging

sampler with accuracy ε > 0 and error δ > 0 if it satisfies the following. For every T ⊆ {0, 1}m, for
all but a δ-fraction of the strings x ∈ {0, 1}n it holds that Prz∈{0,1}t [f (x, z) ∈ T] = |T|/2m ± δ.

Proposition 4.14 (seeded extractors are equivalent to averaging samplers). Let f : {0, 1}n ×
{0, 1}t → {0, 1}m. Then, the following two assertions hold:

15

1. If f is a (k, ε)-extractor, then f is an averaging sampler with accuracy ε and error δ = 2k−n.

2. If f is an averaging sampler with accuracy ε and error δ, then f is an (n− log(ε/δ), 2ε)-
extractor.

For a proof of Proposition 4.14 see, e.g., [Vad12, Cor. 6.24]. In the current paper we will
only use the first item of Proposition 4.14.

5 A quantified derandomization algorithm for linear threshold
circuits

Let us now state a more general version of Theorem 1.1 and prove it.

Theorem 5.1 (Theorem 1.1, restated). Let d ≥ 1, let ε > 0, and let δ = d · 30d−1 · ε. Then, there
exists a deterministic algorithm that for every n ∈ N, when given as input a circuit C ∈ Cn,d,n1+ε ,
runs in time nO(log log(n))2

, and for the parameter B(n) = 1
10 · 2n1−δ

satisfies the following:

1. If C accepts all but at most B(n) of its inputs, then the algorithm accepts C.

2. If C rejects all but at most B(n) of its inputs, then the algorithm rejects C.

To obtain the specific parameters of Theorem 1.1 from Theorem 5.1, for any d ≥ 1
let ε = εd = 2−10d. Then, the algorithm from Theorem 5.1 works when the number of
exceptional inputs of C is at most B(n) = 1

10 · 2n1−δ
> 2n1−1/5d

.
The proof of Theorem 5.1 is based on the existence of the following pseudorandom re-

striction algorithm. We will first prove Theorem 5.1 relying on the existence of the latter
algorithm, and then construct the pseudorandom restriction algorithm itself.

Proposition 5.2 (pseudorandom restriction algorithm). Let d ≥ 1, let ε > 0 be a sufficiently
small constant, and let δ = d · 30d−1 · ε. Then, there exists a polynomial-time algorithm that for
every n ∈ N, when given as input a circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) ·
(log log(n))2), with probability at least 1− n−ε/2 satisfies the following:

1. The algorithm outputs a restriction ρ ∈ {−1, 1, ?}n that keeps at least n1−δ variables alive.

2. The algorithm outputs an LTF Φ : {−1, 1}ρ−1(?) → {−1, 1} such that Φ is 1/10-close to
C�ρ (i.e., Prx∈{−1,1}ρ−1(?) [C(x) = Φ(x)] ≥ 9/10).

Let us now prove the main result (i.e., Theorem 5.1) relying on Proposition 5.2.

Proof of Theorem 5.1. We iterate over all seeds for the algorithm from Proposition 5.2. For
each seed that yields both a restriction ρ that keeps at least n1−δ variables alive and an LTF
Φ over {−1, 1}ρ−1(?), we estimate the acceptance probability of Φ up to an error of 1

5 ; this is
done by iterating over the seeds of the pseudorandom generator from Theorem 4.8 (instan-
tiated with error parameter 1/5). If for most of the seeds, our estimate of the acceptance
probability of Φ is at least 3

5 , then we accept C; and otherwise we reject C. The running
time of the algorithm is 2O(log(n)·(log log(n))2) = nO(log log(n))2

.
Recall that all but O(n−ε) of the seeds yield ρ and Φ such that ρ keep at least n1−δ >

log(10 · B(n)) variables alive and such that Φ is 1/10-close to C�ρ; we call such seeds
good seeds. Now, if C accepts all but at most B(n) inputs, then for every good seed, the

16

acceptance probability of C�ρ is at least 9/10, and thus the acceptance probability of Φ is at
least 4

5 , which implies that our estimate of the latter will be at least 3/5. Thus, the algorithm
will accept C. On the other hand, if C rejects all but at most B(n) inputs, then by a similar
argument for all good seeds it holds that the estimate of the acceptance probability of Φ
will be at most 2/5, and thus the algorithm will reject C.

We now prove Proposition 5.2 in three steps. The first step, in Section 5.1, will be to
prove that a suitably-chosen pseudorandom restriction turns any single LTF to be very
biased, with high probability. The second step, in Section 5.2, will leverage the first step
to an algorithm that gets as input a linear threshold circuit, and applies pseudorandom
restrictions to reduce the depth of the circuit by one layer. And the final step, in Section 5.3,
will be to iterate the construction of the second step in order to prove Proposition 5.2.

5.1 Pseudorandom restrictions and a single LTF

As mentioned in the introduction, an illustrative example for the effects of restrictions on
LTFs is the majority function Φ(x) = sgn(∑i∈[n] xi). For p ∈ (0, 1), denote by Rp the
distribution of restrictions on n variables such that for every i ∈ [n] independently it holds
that the ith variable remains alive with probability p, and is otherwise assigned a uniform
random bit. Then, we have the following:

Fact 5.3 (a random restriction and the majority function). Let Φ(x) = sgn(∑i∈[n] xi), and let
p = n−Ω(1). Then, for every t ≥ 1, with probability at least 1−O(t · √p) over ρ ∼ Rp it holds
that Φ�ρ is t-imbalanced

Proof. Let I ⊆ [n] be the set of variables that ρ keeps alive. With probability 1− exp(−nΩ(1))
it holds that ‖wI‖2 ∈

√
pn±√pn/2. Conditioned on ‖wI‖2 ≤ 2 · √pn, it also holds that∥∥∥w[n]\I

∥∥∥
2
≥
√

n/2, which implies that for every i ∈ ([n] \ I) it holds that |wi| = 1 ≤

(2/
√

n) ·
∥∥∥w[n]\I

∥∥∥
2
. In this case, by the Berry-Esséen theorem (i.e., by Theorem 4.2), for any

t ≥ 1, the probability that
〈

w[n]\I , z[n]\I

〉
falls in the interval ±4t · √p ·

∥∥∥w[n]\I

∥∥∥
2

(which

contains the interval ±t · ‖wI‖2) is at most O(t · √p + 2√
n) = O(t · √p).

Our goal in this section is to prove a statement that is similar to Fact 5.3, but that holds
for an arbitrary LTF Φ, and holds also when the restriction ρ is sampled pseudorandomly,
rather than uniformly. For simplicity, we only state the proposition informally at the mo-
ment (for a formal statement see Proposition 5.8):

Proposition 5.4 (pseudorandom restriction lemma for a single LTF; informal). Let n ∈ N, let
p = n−Ω(1), and let t = p−Ω(1). Let y be a distribution over {−1, 1}log(1/p)·n that is p-
almost O(log(1/p))-wise independent, and let z be a distribution over {−1, 1}n that is pΩ(1)-
pseudorandomly concentrated. Then, for any LTF Φ over n input bits, the probability over choice of
restriction ρ ∼ (y, z) that Φ�ρ is t-balanced is at most pΩ(1).

A high-level description of the proof. Let Φ = (w, θ) be an LTF over n input bits, and
without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Denote by I ⊆ [n] the set
of variables that ρ keeps alive, and by z[n]\I ∈ {−1, 1}[n]\I the values that ρ assigns to the

fixed variables. Then, the restricted function is of the form Φ�ρ =
(

wI , θ −
〈

w[n]\I , z[n]\I

〉)
,

17

and the restricted function is t-balanced if and only if the sum
〈

w[n]\I , z[n]\I

〉
falls in the

interval θ ± 2t · ‖wI‖2. Our goal will be to show that this event is unlikely.
The proof is based on a modification of the case analysis that appears in [CSS16, Lem.

34, Sec. 4.2, Apdx. C.]. Specifically, for the parameter values µ = Ω(1/t) and k = Õ(t2),
we will consider two separate cases.

Case 1: The µ-critical index of Φ is at most k. Let h ≤ k be the µ-critical index of Φ, and denote
T = [n] \ [h]. We first claim that with probability 1− pΩ(1) over choice of y ∼ y it holds that
‖wI‖2 ≤ pΩ(1) · ‖wT‖2. This is the case since with probability at least 1− h · p = 1− pΩ(1),
all the first h variables are fixed by ρ, and since the expected value of ‖wI∩T‖2 is

√
p · ‖wT‖2.

Condition on any fixed choice of y ∼ y such that ‖wI‖2 ≤ pΩ(1) · ‖wT‖2. We will
prove that with probability 1 − pΩ(1) over a uniform choice of z ∈ {−1, 1}n it holds that〈

w[n]\I , z[n]\I

〉
does not fall in the interval θ ± t · pΩ(1) · ‖wT‖2 (which contains the interval

θ ± t · ‖wI‖2, due to our fixed choice of y). Since z is pΩ(1)-pseudorandomly concentrated,
it will follow that this event also holds with probability 1− pΩ(1) under a choice of z ∼ z.

To prove the claim about a uniform choice of z ∈ {−1, 1}n, condition any arbitrary fixed
values z[h] ∈ {−1, 1}h for the first h variables. Then, the probability that

〈
w[n]\I , z[n]\I

〉
falls

in the interval θ± t · pΩ(1) · ‖wT‖2 (which is what we want to bound) equals the probability

that
〈
wT\I , zT\I

〉
2

falls in the interval θ′ ± t · pΩ(1) · ‖wT‖2, where θ′ = θ−
〈

w[h], z[h]
〉

. Since

h is the µ-critical index of w we have that wT is µ-regular; also, since ‖wI‖2 ≤ pΩ(1) · ‖wT‖2
(due to our choice of y), it follows that wT\I is also (2µ)-regular and that ‖wT‖2 ≈

∥∥wT\I
∥∥

2
.

By the Berry-Esséen theorem, the probability that
〈
wT\I , zT\I

〉
falls in an interval of length

t · pΩ(1) ·
∥∥wT\I

∥∥
2

is at most O(t · pΩ(1) + µ) = pΩ(1) (see Lemma 5.5).

Case 2: The µ-critical index of Φ is larger than k. Similarly to the previous case, with prob-
ability at least 1− pΩ(1) it holds that all the first k variables are fixed by ρ. Condition on
any fixed y ∼ y that fixes all the first k variables. What we will show is that with high
probability over z ∼ z, the sum

〈
w[n]\I , z[n]\I

〉
falls outside the interval θ ± (1/4µ) ‖w>k‖2,

which contains the interval θ ± t · ‖wI‖2 (since I ⊆ ([n] \ [k]) and µ = Ω(1/t)).
As before, we first analyze the case in which z is chosen uniformly in {−1, 1}n. To do

so we rely on a lemma of Servedio [Ser07], which asserts that the weights in w decrease
exponentially up to the critical index. Intuitively, since the critical index is large (i.e., more
than k), the exponential decay of the weights implies that ‖w>k‖2 is small. Thus, when

uniformly choosing z ∈ {−1, 1}n, the sum
〈

w[n]\I , z[n]\I

〉
is unlikely to fall in the small

interval θ ± (1/4µ) · ‖w>k‖2; specifically, this happens with probability at most µ = pΩ(1)

(see Claim 5.7.1 for a precise statement).
Since the event

〈
w[n]\I , z[n]\I

〉
∈ θ ± (1/4µ) · ‖w>k‖2 happens with probability pΩ(1)

when z ∈ {−1, 1}n is chosen uniformly, and the distribution z is pΩ(1)-pseudorandomly
concentrated, the event also happens with probability at most pΩ(1) over a choice of z ∼ z.

The full proof. We will first prove an auxiliary lemma, which analyzes the effect of
uniformly-chosen restrictions on regular LTFs (see Lemma 5.5). Then, we will prove a ver-
sion of Proposition 5.4 that only holds for LTFs with bounded critical index (see Lemma 5.6),
and a version of Proposition 5.4 that only holds for LTFs with large critical index (see

18

Lemma 5.7). Finally, we will formally state a more general version of Proposition 5.4
and prove it (see Proposition 5.8).

The following auxiliary lemma considers a regular vector w ∈ Rm, a fixed set of vari-
ables I ⊆ [m] that will be kept alive, and a uniformly-chosen assignment z ∈ {−1, 1}m for
the fixed variables. The lemma will be used in the proof of Lemma 5.6.

Lemma 5.5 (pseudorandom restriction lemma for regular LTFs). Let m ∈ N, let µ ∈ (0, 1), and
let λ ≤ 3/4. Let w′ ∈ Rm be a µ-regular vector, and let I ⊆ [m] such that ‖w′I‖2 < λ · ‖w′‖2.
Then, for any θ′ ∈ R and t > 0, the probability over uniform choice of z ∈ {−1, 1}m that〈

w′[m]\I , z[m]\I

〉
∈ θ′ ± t · λ · ‖w′‖2 is at most O(t · λ + µ).

Proof. Note that
∥∥∥w′[m]\I

∥∥∥2

2
> ‖w′‖2

2 /4; this is the case because ‖w′I‖
2
2 < λ · ‖w′‖2

2 ≤ 3
4 ·

‖w′‖2
2. It follows that w′[m]\I is 2µ-regular, since for every i ∈ [m] we have that

∣∣∣w′i∣∣∣ ≤
µ · ‖w′‖2 ≤ 2µ ·

∥∥∥w′[m]\I

∥∥∥
2
. It also follows that the interval θ ± t · λ · ‖w′‖2 is contained in

the interval θ ± 2t · λ ·
∥∥∥w′[m]\I

∥∥∥
2
. By the Berry-Esséen theorem (i.e., by Theorem 4.2), the

probability over a uniform choice of z ∈ {−1, 1}m that the sum
〈

w[m]\I , z[m]\I

〉
falls in a

fixed interval of length 2t · λ ·
∥∥∥w[m]\I

∥∥∥ is at most O(t · λ + µ).

The following lemma asserts that a suitably-chosen pseudorandom restriction turns
every LTF with bounded critical index to be very biased, with high probability. The specific
parameters that are chosen for the lemma will be useful for us when proving the general
case (i.e., Proposition 5.8, which holds for arbitrary LTFs).

Lemma 5.6 (pseudorandom restriction lemma for LTFs with small critical index). Let n ∈ N, let
p ∈ [0, 1] be a power of two, let c ∈ N be a constant, and let t ≤ p−1/(3c−2) and µ = 1/4tc. Let y
be a distribution over {−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise independent, and let z
be a distribution over {−1, 1}n that is µ-pseudorandomly concentrated. Then, for any LTF Φ over
n input bits with µ-critical index at most k = 103 · µ−2 · log2(1/µ), the probability over choice of
ρ ∼ (y, z) that Φ�ρ is t-balanced is at most Õ(t1+c/2) · √p + O(t−c).

Proof. Let Φ = (w, θ) be an LTF gate over n input bits with critical index h ≤ k, and
without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Let I ⊆ [n] be the random
variable that is the set of live variables under y; then, it holds that:

Claim 5.6.1. With probability at least 1−O(µ + p · k) over y ∼ y it holds that I ⊆ ([n] \ [h])
and that ‖wI‖2 ≤

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
.

Proof. Since y is p-almost O(log(1/p))-wise independent, each variable is kept alive with
probability at most 2p. Thus, the probability over y ∼ y that the first h variables are all

fixed is at least 1− 2p · h. Also, the expected value of
∥∥∥wI∩([n]\[h])

∥∥∥2

2
is at most 2p ·

∥∥∥w[n]\[h]

∥∥∥2

2
,

and hence with probability at least 1− 2µ it holds that
∥∥∥wI∩([n]\[h])

∥∥∥
2
≤
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2
.

By a union-bound, with probability at least 1−O(µ + p · h) > 1−O(µ + p · k) it holds that
I ⊆ ([n] \ [h]) and that ‖wI‖2 =

∥∥∥wI∩([n]\[h])

∥∥∥
2
≤
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2
. �

19

Fix any y ∼ y such that the first h variables are all fixed, and such that ‖wI‖2 ≤√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
. Our goal will be to prove that with high probability over z ∼ z it

holds that
〈

w[n]\I , z[n]\I

〉
/∈ θ± t ·

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
; this suffices to prove the lemma, since

t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥ ≥ t · ‖wI‖2. To do so, we first analyze the setting in which z ∈ {−1, 1}n

is chosen uniformly, rather than from the distribution z:

Claim 5.6.2. The probability over a uniform choice of z ∈ {−1, 1}n that
〈

w[n]\I , z[n]\I

〉
∈ θ ± t ·√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2

is at most O(t ·
√

p/µ + µ).

Proof. The claim is trivial for µ ≤ 2p, so it suffices to prove the claim under the assumption
that µ > 2p. Condition on any arbitrary assignment z[h] ∈ {−1, 1}h for the first h variables,
and note that the vector w>h ∈ {−1, 1}n−h is µ-regular (since h is the µ-critical index of Φ).

Let T = [n] \ [h]. Observe that when conditioning on z[h], the event
〈

w[n]\I , z[n]\I

〉
∈

θ± t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2

happens if and only if the event
〈
wT\I , zT\I

〉
∈ θ′± t ·

√
p/µ · ‖wT‖2

happens, where θ′ = θ −
〈

w[h], z[h]
〉

. Since wT is µ-regular, we can invoke Lemma 5.5 with

w′ = wT and with λ =
√

p/µ ≤ 3/4 (the inequality is since µ > 2p), and deduce the
probability of the event

〈
wT\I , zT\I

〉
∈ θ′ ± t ·

√
p/µ · ‖wT‖2 is at most O(t ·

√
p/µ + µ). �

Since z is µ-pseudorandomly concentrated, it follows from Claim 5.6.2 that the proba-
bility over z ∼ z that

〈
w[n]\I , z[n]\I

〉
∈ θ ± t ·

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2

is at most O(t ·
√

p/µ + µ).

Thus, the probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at most O(t ·
√

p/µ+

µ + p · k) = Õ(t1+c/2) · √p + O(t−c), where the last equality relied on the hypothesis that
t ≤ p−1/(3c−2).

The following lemma is similar to Lemma 5.6, but holds for LTFs with large critical index.

Lemma 5.7 (pseudorandom restriction lemma for LTFs with large critical index). Let n ∈ N, let
p ∈ [0, 1] be a power of two, and let µ > 0. Let y be a distribution over {−1, 1}log(1/p)·n that
is p-almost O(log(1/p))-wise independent, and let z be a distribution over {−1, 1}n that is µ-
pseudorandomly concentrated. Then, for any LTF Φ over n input bits with µ-critical index larger
than k = 103 · µ−2 · log2(1/µ), the probability over choice of ρ ∼ (y, z) that Φ�ρ is (1/4µ)-
balanced is Õ(µ−2) · p + O(µ).

Proof. Let Φ = (w, θ) be an LTF gate over n input bits with µ-critical index larger than k,
and without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Also, let I ⊆ [n] be
the random variable that is the set of live variables under y. Note that the probability over
y ∼ y that I ∩ [k] 6= ∅ is at most 2p · k = Õ(µ−2) · p (since y keeps each variable alive with
probability at most 2p).

Condition on any arbitrary y ∼ y such that [k] ∩ I = ∅. Our goal now is to show
that the probability over z ∼ z that Φ�ρ is (1/4µ)-balanced is O(µ). We will actually
prove a stronger claim: We will show that with probability at least 1−O(µ) it holds that〈

w[n]\I , z[n]\I

〉
/∈ θ ± (1/4µ) · ‖w>k‖2 (this claim is stronger, since I ⊆ ([n] \ [k]), which

implies that ‖w>k‖2 ≥ ‖wI‖2). To prove this assertion we will rely on the following claim,
which is essentially from [CSS16, Prop. 45] and generalizes [DGJ+10, Lem. 5.8]. (Since the
proof is sketched in [CSS16], we include a full proof.)

20

Claim 5.7.1. Let µ > 0, let r ∈ N, and let kr,µ = 4r·ln(3/µ2)
µ2 . Let Φ = (w, θ) be an LTF over

n input bits with µ-critical index larger than kr,µ such that |w1| ≥ ... ≥ |wn|, and let J ⊆ [n]
such that J ⊇ [kr,µ]. Then, the probability under uniform choice of z ∈ {0, 1}n that 〈wJ , zJ〉 ∈
θ ± (1/4µ) ·

∥∥∥w>kr,µ

∥∥∥
2

is at most 2−r.

Proof. Since the critical index of Φ is larger than kr,µ, a lemma of Servedio [Ser07, Lem. 3]
asserts that for any 1 ≤ i < j ≤ kr,µ it holds that

|wj| ≤
∥∥w≥j

∥∥
2 ≤

(
1− µ2)(j−i)/2 · ‖w≥i‖2 ≤

(
1− µ2)(j−i)/2 · |wi|/µ . (5.1)

(For an equivalent statement of the lemma see [DGJ+10, Lem. 5.5].) In particular, fixing
γ = 2 ln(3/µ2)

µ2 , for any i ∈N such that i · γ < kr,µ it holds that |wi·γ| < |w1|/3i.
Let R = 1, γ, ..., r · γ < kr,µ, and consider any arbitrary fixed value of zJ\R. Then,

by a claim of Diakonikolas et al. [DGJ+10, Clm. 5.7], there exists at most a single value
zR ∈ {−1, 1}r such that 〈wR, zR〉 ∈

(
θ −

〈
wJ\R, zJ\R

〉)
± |wr·γ|/4. Thus, the probability

under a uniform choice of z ∈ {0, 1}n that 〈wJ , zJ〉 ∈ θ ± |wr·γ|/4 is at most 2−r.

The claim follows since
∥∥∥w>kr,µ

∥∥∥
2
≤
∥∥∥w≥(r+1)·γ

∥∥∥
2
≤ µ · |wr·γ|, where the first inequality

is since kr,µ > (r + 1) · γ and the second inequality is due to Eq. (5.1). �

We invoke Claim 5.7.1 with the value r = log(1/µ) and with the set J = [n] \ I, while
noting that the critical index of Φ is indeed larger than k ≥ kr,µ. Since the interval θ ±
(1/4µ) · ‖w>k‖2 is contained in the interval θ ± (1/4µ) ·

∥∥∥w>kr,µ

∥∥∥
2

(because k ≥ kr,µ), we

deduce that the event
〈

w[n]\I , z[n]\I

〉
∈ θ ± (1/4µ) · ‖w>k‖2 happens with probability at

most µ under a uniform choice of z ∈ {0, 1}n. Since z is µ-pseudorandomly concentrated,
this event happens with probability at most O(µ) also under a choice of z ∼ z.

Finally, we are ready to state a more general version of Proposition 5.4 and to prove it.
The proof will rely on Lemmas 5.6 and 5.7.

Proposition 5.8 (pseudorandom restriction lemma for an arbitrary LTF). Let n ∈N, let p ∈ [0, 1]
be a power of two, let c ∈ N be a constant, and let t ≤ p−1/(3c−2). Let y be a distribution over
{−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise independent, and let z be a distribution over
{−1, 1}n that is (1/4tc)-pseudorandomly concentrated. Then, for any LTF Φ over n input bits, the
probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at most Õ(t1+c/2) · √p + O(t−c).

To obtain the parameters that were stated in Section 3.1, invoke Proposition 5.8 with
c = 2. (When c = 2, the hypothesis that t ≤ p−1/(3c−2) = p−1/4 is not required, since for
t > p−1/4 the probability bound in the lemma’s statement is trivial.)

Proof of Proposition 5.8. Let Φ = (w, θ) be an LTF gate over n input bits, let µ = 1/4tc,
and let k = 103 · µ−2 · log2(1/µ). If the µ-critical index of Φ is at most k, the asserted
probability bound follows immediately from Lemma 5.6. On the other hand, if the µ-
critical index of Φ is larger than k, we can rely on Lemma 5.7. The lemma asserts that the
probability that Φ�ρ is (1/4µ)-balanced is at most Õ(µ−2) · p + O(µ) < Õ(t1+c/2) · √p +

O(t−c), where the inequality relies on the hypothesis that t ≤ p−1/(3c−2). Since (1/4µ) ≥ t,
whenever Φ�ρ is (1/4µ)-imbalanced it is also t-imbalanced.

21

5.2 Pseudorandom restriction algorithm for a “layer” of LTFs

The next step is to construct a pseudorandom restriction algorithm that transforms a depth-
d linear threshold circuit into a depth-(d− 1) linear threshold circuit. The key part in this
step is an application of Proposition 5.8.

Proposition 5.9 (pseudorandom restriction algorithm for a “layer” of LTFs). For every three con-
stants d ≥ 2 and ε > 0 and c > 0, there exists a polynomial-time algorithm that gets as input a
circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) · (log log(n))2), and with probability
at least 1− n−ε outputs the following:

1. A restriction ρ ∈ {−1, 1, ?}n that keeps at least n′ = Ω(n1−24·ε) variables alive.

2. A circuit C̃ ∈ Cn′,d−1,(n′)1+30ε that agrees with C on at least 1 − n−c of the inputs in the
subcube that corresponds to ρ (i.e., Prx∈{−1,1}|ρ−1(?)| [C�ρ(x) = C̃(x)] > 1− n−c).

High-level overview of the proof. The key step of the algorithm is to apply Proposi-
tion 5.8 with parameters p = n−β and c = 1 and t = p−1/5, where β = O(ε). The
lemma asserts that, in expectation, all but approximately n−β/5 of the gates will become t-
imbalanced (for simplicity, ignore polylogarithmic factors for now). Such imbalanced gates
are extremely close to a constant function, so we can replace the gates by the corresponding
constants and get a circuit that agrees with the original circuit on almost all inputs.

As for the other n−β/5-fraction of the gates, we expect that the number of wires feeding
into them will decrease by a factor of p after the restriction. Specifically, assume that indeed
the fan-in of each gate decreased by a factor of at least p; then, the expected number of
wires feeding into the balanced gates after the restriction is at most

∑
Φ gate

Pr[Φ balanced] · p · (# wires incoming to Φ) ≤ n−β/5 · p · n1+ε . (5.2)

Thus, with probability at least 1− n−β/10, the number of wires feeding into balanced gates
is at most (nε−β/10) · p · n, which is much smaller than the expected number of living
variables (i.e., than p · n) if β > 10ε. When this happens, we can afford to simply fix all the
variables that feed into balanced gates, making those gates constant too.

The argument above relied on the assumption that the fan-in of each gate Φ decreased
by a factor of at least p. We can argue that this indeed holds with high probability for all
gates with fan-in at least nα, where α > β, but we will need to separately handle gates with
fan-in at most nα. This will be done in two steps: The first is an initial preprocessing step
(before applying Proposition 5.8), in which we fix every variable with fan-out more than
2 · nε; since there are at most n1+ε wires, this step fixes at most n/2 variables. Then, after
applying Proposition 5.8 and fixing the variables that feed into balanced gates with fan-in at
least nα, we show that there exists a set I of variables of size approximately n−(α+ε) · (p · n)
such that after fixing all variables outside I, each gate with fan-in at most nα has fan-in at
most one (see Claim 5.10.1). Thus, we can fix the variables outside I, and then replace each
gate with fan-in at most nα with the corresponding variable (or with its negation). At this
point all the gates in the bottom layer have been replaced by constants or by variables.

Proof of Proposition 5.9. Let G = {Φ1, ..., Φr} be the set of gates in the bottom layer of C.
For α = 12ε, let S ⊆ G be the set of gates with fan-in at most nα, and let L = G \ S be the
set of gates with fan-in more than nα.

22

The restriction ρ will be composed of four restrictions ρ1, ..., ρ4. When describing the
construction of each restriction, we will always assume that all previous restrictions were
successful (we will describe exactly what “successful” means for each restriction). Also,
after each restriction, we fix additional variables if necessary, in order to obtain an exact
number of living variables in the end of the step.

Let z be a distribution over {−1, 1}n that is (1/q(n))-pseudorandom for LTFs, where q
is a sufficiently large polynomial. We mention in advance that for each i ∈ [4], the values
for variables that are fixed by ρi will always be decided by sampling from z.

The first restriction ρ1: Reduce the fan-out of input gates. We sample z ∼ z, and fix all
variables with fan-out more than 2 · nε to values according to z. Since the number of wires
between the bottom-layer gates and the input variables is at most n1+ε, and each fixing of
a variable eliminates 2 · nε wires, we will fix no more than n/2 variables in this step. Let
n1 = n/2 be the number of living variables after the first step.

The second restriction ρ2: Applying Proposition 5.8. We use Proposition 5.8 with the val-
ues p = n−β, where β = 11ε, and c = 1, and t = p−1/5. 16 The distributions that we use are
a (1/poly(n))-almost O(log(1/p))-wise independent distribution y over {−1, 1}log(1/p)·n

and the aforementioned distribution z over {−1, 1}n.
Let E be the event in which ρ2 keeps at least (p · n1)/2 variables alive, and for every

gate Φ ∈ L it holds that fan-in(Φ�ρ2
) ≤ 2p · fan-in(Φ). We claim that E happens with

probability at least 1 − 1/poly(n). To see that this is the case, note that the expected
number of living variables is p · n1 = nΩ(1), and that for each gate Φ ∈ G, the expected
fan-in of Φ�ρ2

is nα−β = nΩ(1). Since the choice of variables to keep alive is 1
poly(n) -almost

O(1)-independent, we can use Fact 4.9 to deduce that Pr[E] ≥ 1− 1
poly(n) .

Now, assume without loss of generality that L = {Φ1, ..., Φr′}, for some r′ ≤ r. For any
i ∈ [r′], denote by Bi the event that Φi is t-balanced. Note that when conditioning on E ,
the probability of each Bi is at most Õ(n−β/5). Therefore, conditioned on E , the expected
number of wires feeding into t-balanced gates in L after the restriction is

E

[
∑

i∈[r′]
1Bi · fan-in(Φi�ρ2

)
∣∣∣E] = ∑

i∈[r′]
Pr[Bi|E] ·E[fan-in(Φi�ρ2

)|E ,Bi]

≤ ∑
i∈[r′]

Õ(n−β/5) · (2p · fan-in(Φi))

= Õ(n−β/5) · p · n1+ε .

Hence, conditioned on E , the probability that the number of wires feeding into t-
balanced gates in L after the restriction is more than Õ(n−β/10) · p · n1+ε = Õ(nε−β/10) · n1−β

is at most O(n−β/10). We consider the restriction ρ2 successful if E happens and if the num-
ber of wires between t-balanced gates in L and input gates is at most Õ(nε−β/10) · n1−β. In
this case, the number of currently-living variables is n2 = p · n1/2 = 1

4 · n1−β.
After applying ρ2, we replace any t-imbalanced gate Φi ∈ L with its most probable

value σi ∈ {−1, 1}. Note that by Theorem 4.1, each t-imbalanced gate Φi is (exp(−nΩ(1)))-
close to σi in the subcube that corresponds to the currently-living variables.

16For simplicity, we assume that p = n−11ε is a power of two. Otherwise, we can choose β to be a value very
close to 11ε such that p will be a power of two, with no meaningful change to the rest of the proof (the proof
only relies on the fact that 10ε < β < α).

23

The third restriction ρ3: Eliminate L-gates that remained unbiased. In this step we
sample z ∼ z again, and fix all the variables that feed into t-balanced gates accord-
ing to z. Assuming that ρ2 was successful, the number of such variables is at most
Õ(nε−β/10) · n1−β = o(n2), where we used the fact that β > 10ε. Denote the restriction
applied in this step by ρ3, and note that the number of living variables after applying ρ3 is
n3 = Ω(n2) = Ω(n1−11ε).

Our goal now is to claim that for each gate Φi that was replaced by a constant σ ∈
{−1, 1} prior to applying ρ3, it still holds that Φi is close to σ in the subcube {−1, 1}ρ−1

3 (?).
To do so we will rely on the following lemma:

Lemma 5.10 (bias preservation lemma). Let n ∈ N, let I ⊆ [n], and let δ > 0. Let Φ = (w, θ)
be an LTF over n input bits that is δ-close to a constant function σ ∈ {−1, 1}, and let z be a
distribution over {−1, 1}[n]\I that is δ-pseudorandom for LTFs. Then, with probability at least
1−
√

2δ over choice of z ∼ z it holds that Φ�(I,z) is
√

2δ-close to σ.

Proof. Let k = |I|, and for simplicity of notation assume that I = {1, 2, ..., k} ⊆ [n] and that
σ = 1. By our hypothesis it holds that

Ex∈{0,1}k

[
Pr

z∈{0,1}n−k
[Φ(x ◦ z) = 1]

]
≥ 1− δ .

Now, for every fixed x ∈ {0, 1}k, let Φx : {0, 1}n−k → {0, 1} be defined by Φx(z) =
Φ(x ◦ z) = sgn (〈w>k, z〉 − (θ − 〈x, w≤k〉)), and note that Φx is a linear threshold function
of its input z. Since z is δ-pseudorandom for LTFs, we have that

Ex∈{0,1}k

[
Pr
z∼z

[Φ(x ◦ z) = 1]
]
≥ Ex∈{0,1}k

[
Pr

z∈{0,1}n−k
[Φ(x ◦ z) = 1]− δ

]
,

which implies that

Ez∼z

[
Pr

x∈{0,1}k
[Φ(x ◦ z) = 1]

]
≥ 1− 2δ .

Finally, by Markov’s inequality, the probability over z ∼ z that Prx∈{0,1}k [Φ(x ◦ z) =

1] < 1−
√

2δ is less than
√

2δ. �

We invoke Lemma 5.10 with I being the set of variables that are kept alive by ρ3, and
with δ = 1/poly(n) for a sufficiently large polynomial (recall that each gate Φi that was re-
placed by a constant was in fact exp(−nΩ(1))-close to the constant). After union-bounding
over at most r ≤ n1+ε gates that were replaced by constants, with probability 1− 1/poly(n)
it holds that all these gates are

√
2δ-close to constants in the subcube {−1, 1}ρ−1

3 (?).

The fourth restriction ρ4: Eliminate gates with small fan-in. We will rely on the follow-
ing claim, which is an algorithmic version of [CSS16, Prop. 36]:

Claim 5.10.1. For k′ = 2 · nα+ε, we can deterministically find in poly(n) time a set I of at least
n3/k′ living variables such that when fixing all variables not in I to any arbitrary values, the fan-in
of each gate in S is at most one.

24

Proof. Consider the graph in which the vertices are the input gates x1, ..., xn3 , and two
vertices xi and xj are connected (in the graph) if and only if there exists a gate Φi ∈ S that
is connected (in the circuit) to both xi and xj. Note that this graph has degree at most k′,
since every living variable has fan-out at most 2 · nε, and every gate in S has fan-in at most
nα. Therefore, we can greedily construct an independent set I in the graph of size at least
n3/k′, which is indeed the set of variables that we wanted. �

The algorithm finds a set I using Claim 5.10.1, samples z ∼ z, and fixes all the variables
outside I according to z. This yields a restriction that reduces the fan-in of each gate in S to
one. Thus, each gate Φ ∈ S now simply takes the value of an input gate (or its negation),
which implies that the gates that are connected to Φ (in the layer above it) can be connected
immediately to the corresponding input gate, and we can remove Φ from the circuit. The
number of living variables is n4 = n3/k′ = Ω(n1−24ε).

To conclude, we claim that the gates that were previously replaced by constants are still
close to constants in the new subcube. This is done by invoking Lemma 5.10 with I being
the aforementioned set of size n4, and with the parameter value

√
2δ. After union-bounding

over the gates that were replaced by constants, with probability at least 1−n−2ε it holds that
all these gates are δ′-close to constants in the final subcube, where δ′ = n−(c+1+ε) ≥

√
2
√

2δ.
It follows that the original circuit is δ′′-close to the new circuit in the final subcube, where
δ′′ ≤ δ′ · n1+ε ≤ n−c.

Accounting for the parameters. We obtained a circuit in C̃ ∈ Cn4,d−1,n1+ε . Since n1+ε =

O(n
1+ε

1−24ε

4) < n(1+ε)(1+25ε)
4 ≤ n1+30ε

4 , we have that C̃ ∈ Cn4,d−1,n1+30ε
4

. To sample the restriction
ρ = ρ4 ◦ ... ◦ ρ1, we sampled from the distribution z four times, and from the distribution y
a single time. A sample from y can obtained with seed length O(log(n)), and relying on
Theorem 4.8, each sample from z can be obtained with seed length O(log(n) · (log log(n))2).

Finally, let us account for the error probability. The first step is deterministic and always
succeeds. In the second step, the algorithm is unable to simplify the circuit if the event
E does not happen, or if the number of wires between t-balanced gates in L and input
gates is too large. Denoting the latter event by E ′, the probability of error is at most
Pr[¬E] + Pr[E ′|E] ≤ O(n−β/10). The last type of error to account for is the probability that
C̃ is not n−c-close to C in {−1, 1}ρ−1(?); as detailed above, this happens with probability at
most n−2ε. The overall error is thus O(n−β/10 + n−2ε) < n−ε.

5.3 Pseudorandom restriction algorithm for linear threshold circuits

We are now ready to construct the pseudorandom restriction algorithm that simplifies any
linear threshold circuit to a single LTF gate (i.e., Proposition 5.2). The proof will consist of
d− 1 applications of Proposition 5.9. In each application, we will use Lemma 5.10 to claim
that all the approximations in previous applications of Proposition 5.9 still hold.

Proposition 5.11 (Proposition 5.2, restated). Let d ≥ 1, let ε > 0 be a sufficiently small constant,
and let δ = d · 30d−1 · ε. Then, there exists a polynomial-time algorithm that for every n ∈ N,
when given as input a circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) · (log log(n))2),
with probability at least 1− n−ε/2 satisfies the following:

1. The algorithm outputs a restriction ρ ∈ {−1, 1, ?}n that keeps at least n1−δ variables alive.

25

2. The algorithm outputs an LTF Φ : {−1, 1}ρ−1(?) → {−1, 1} such that Φ is 1/10-close to
C�ρ (i.e., Prx∈{−1,1}ρ−1(?) [C(x) = Φ(x)] ≥ 9/10).

Proof. We repeatedly invoke Proposition 5.9, for d − 1 times. For i ∈ [d − 1], let ρ(i)

be the restriction that is obtained in the ith invocation of Proposition 5.9, and let ρ =
ρ(d−1) ◦ ... ◦ ρ(1) be the final restriction. Let C0 = C, and for i ∈ [d − 1], let Ci be the
circuit that is obtained after the ith invocation of Proposition 5.9. Also let ε0 = ε and
εi = 30 · εi−1 = 30i · ε, and let n0 = n and ni = Ω

(
(ni−1)

1−24εi−1
)
.

We say that an invocation of Proposition 5.9 is successful if the two items in the proposi-
tion’s statement are satisfied (i.e., the algorithm outputs a restriction that keeps sufficiently
many live variables, and a circuit of smaller depth that agrees with the original circuit on
almost all inputs). Assuming all invocations of Proposition 5.9 are successful, for each
i ∈ [d− 1] it holds that Ci ∈ Cni ,d−i,n

1+εi
i

, and in particular Cd−1 is a single LTF Φ. Also, in

this case, the number of living variables after all invocations is

nd−1 = nΠd−2
i=0 (1−24εi) > n1−24·∑d−2

i=0 εi > n1−24·d·εd−2 > n1−δ . (5.3)

The required seed length for the d− 1 invocations of Proposition 5.9 is Õ(log(n)). To
bound the probability of error, for each i ∈ [d − 1], assume that all previous i − 1 invo-
cations were successful, and note that the probability that the ith invocation of Proposi-
tion 5.9 fails is at most n−εi−1

i−1 < (n1−δ)−ε (the inequality is since we assumed that the
previous invocations of Proposition 5.9 were successful, which implies that ni−1 ≥ n1−δ,
by a calculation similar to Eq. (5.3)). Thus, the accumulated probability of error is at most
d · (n1−δ)−ε < n−ε/2, where the inequality relied on the fact that ε is sufficiently small.

Condition on all the d− 1 invocations of Proposition 5.9 being successful. Recall that
in this case, for every i ∈ [d − 1] it holds that Ci is n−c-close to Ci−1�ρ(i) ; we now claim
that, with high probability, this approximation continues to hold even in the subcube that
corresponds to the final restriction ρ.

Claim 5.11.1. For every i ∈ [d − 1], with probability 1− 1/poly(n) it holds that (Ci−1) �ρ is
1/10d-close to (Ci) �ρ.

Proof. For each j ∈ {i, ..., d− 1}, recall that ρ(j) is the composition of four restrictions, de-
noted by ρ

(j)
1 , ..., ρ

(j)
4 . Fix i ∈ [d− 1], condition on any fixed choice for ρ

(i)
1 and ρ

(i)
2 , and let

C′ = (Ci−1)�ρ
(i)
1 ,ρ(i)2

. Recall that immediately after applying ρ
(i)
2 , the algorithm from Proposi-

tion 5.9 replaces a set of m ≤ n1+εd−(i−1) LTF gates, denoted Φ1, ..., Φm, with a corresponding
set of constants σ1, ..., σm ∈ {−1, 1}. Let C̃′ be the circuit that is obtained from C′ by the
aforementioned replacement. Finally, note that for every choice of final restriction ρ it holds
that (Ci−1) �ρ = C′�ρ and (Ci) �ρ = C̃′�ρ.

Our goal now will be to show that for every fixed k ∈ [m], with probability 1 −
1/poly(n) over choice of ρ it holds that (Φk)�ρ is 1/(10dm)-close to σk. This suffices to
conclude the proof, since it follows (by a union-bound over the m gates) that with prob-
ability 1− 1/poly(n), for every k ∈ [m] it holds that (Φk)�ρ is 1/(10dm)-close to σk; and
whenever the latter event happens we have that C′�ρ is 1/(10d)-close to C̃′�ρ.

Towards the aforementioned goal, fix k ∈ [m], and recall that Φk is δ0-close to some con-
stant function σk ∈ {−1, 1}, where δ0 = exp

(
n−Ω(1)

i−1

)
= exp

(
n−Ω(1)

)
, where the inequality

is since ni−1 = nΩ(1) (recall that we conditioned on all invocations of Proposition 5.9 being

26

successful). Observe that the final restriction ρ is composed of t def
== 4 · (d− i− 1) + 2 ad-

ditional restrictions on the domain of Φk: Two additional restrictions ρ
(i)
3 and ρ

(i)
4 in the ith

invocation of Proposition 5.9, and for each j ∈ {i + 1, ..., d− 1}, four restrictions ρ
(j)
1 , ..., ρ

(j)
4

in the jth invocation of Proposition 5.9. Recall that each of the t restrictions is chosen by first
choosing (deterministically or pseudorandomly) a set of variables to keep alive, and then
independently choosing values for the fixed variables. Therefore, we will now repeatedly
use Lemma 5.10, to claim that each restriction preserves the closeness of Φk to σk.

For convenience, rename the t restrictions ρ
(i)
3 , ρ

(i)
4 , ρ

(i+1)
1 , ..., ρ

(i+1)
4 , ..., ρ

(d−1)
1 , ..., ρ

(d−1)
4 ,

and denote them by ρ′(1), ..., ρ′(t). Note that δ0 < 2−t · n−2t·c, and for every r ∈ [t] let
δr = 2(δr−1)

1/2 ≥
√

2δr−1. Repeatedly invoking Lemma 5.10, with probability at least
1−O(

√
δt−1) it holds that (Φk)�ρ′(1)◦...◦ρ′(r) is δr-close to σk. 17 Hence, with probability at

least 1−O(n−c) it holds that (Φk) �ρ is δt-close to σk, where δt = n−c < 1/(10dm). �

Thus, with probability 1 − 1/poly(n), for every i ∈ [d − 1] it holds that (Ci−1)�ρ is
1/10d-close to (Ci)�ρ. Whenever this holds, by a union-bound it follows that C�ρ = (C0)�ρ

is 1/10-close to (Cd−1)�ρ = Cd−1 = Φ.

6 Reduction of standard derandomization to quantified deran-
domization

In this section we prove Theorem 1.2. The core of the proof is the construction of a suitable
averaging sampler (equivalently, seeded extractor) that is computable by a T C0 circuit with
a super-linear number of wires. We therefore start by describing this construction. In the
current section, as in Section 4.5, it will be more convenient to represent Boolean functions
as functions {0, 1}n → {0, 1}, rather than {−1, 1}n → {−1, 1}.

In Section 6.1 we recall the definition of weak combinatorial designs, and construct such
designs that are suitable for our parameter setting. In Section 6.2 we show how to compute
a code with distance 1/2− o(1) by a T C0 circuit with a super-linear number of wires. In
Section 6.3 we combine the two preceding ingredients to construct an averaging sampler
in T C0. Finally, in Section 6.4 we prove Theorem 1.2.

6.1 Weak combinatorial designs for Trevisan’s extractor

Let us recall the notion of weak combinatorial designs, which was introduced by Raz,
Reingold, and Vadhan [RRV02].

Definition 6.1 (weak designs). For positive integers m, `, t ∈ N and an integer ρ > 1, an
(m, `, t, ρ) weak design is a collection of sets S1, ..., Sm ⊆ [t] such that for every i ∈ [m] it holds
that |Si| = ` and ∑j<i 2|Si∩Sj| ≤ (m− 1) · ρ.

Raz, Reingold, and Vadhan [RRV02] showed a construction of weak designs with uni-
verse size t =

⌈
`

ln(ρ)

⌉
· `. In our parameter setting we will have log(ρ) ≈ 0.99 · `, and for

17Formally, we prove by induction on r ∈ [t] that with probability at least 1 − O(n−c) it holds that
(Φk)�ρ′(1)◦...◦ρ′(r) is δr-close to σk. For the base case r = 1 we rely on the hypothesis that Φk is δ0-close to

σk, and use Lemma 5.10 with the parameter value δ = 2−r · n−2r ·c; and for the induction step r > 1, we
condition on (Φk)�ρ′(1)◦...◦ρ′(r−1) being δr−1-close to σk, and use Lemma 5.10 with the parameter value δ = δr−1.

27

such value the construction in [RRV02] yields t = 2 · `. We want to have t ≈ 1.01 · `, and
therefore now show a more refined construction.

Lemma 6.2 (constructing weak designs). There exists an algorithm that gets as input m ∈ N

and ` ∈ N and ρ ∈ N such that log(ρ) = (1− α) · `, where α ∈ (0, 1/4), and satisfies the
following. The algorithm runs in time poly(m, 2`) and outputs an (m, `, t, ρ) weak design, where
t = d(1 + 4α) · `e.

Proof. Let t = d(1 + 4α) · `e. The algorithm constructs the sets S1, ..., Sm ⊆ [t] in iterations.
In each iteration i ∈ [m] the algorithm finds Si such that ∑j<i 2|Si∩Sj| ≤ (i − 1) · ρ. To
do so, the algorithm initially fixes a partition of [t] into ` blocks. The first t − ` blocks,
denoted B1, ..., Bt−`, are each comprised of two elements (i.e., for j ∈ [t − `] it holds that
Bj = {2j − 1, 2j}). The remaining 2` − t blocks, denoted Bt−`+1, ..., B`, each consist of a
single element (i.e., for j ∈ {t− `+ 1, ..., `} it holds that Bj = {t− `+ j}).

For i ∈ [m], let us describe the ith iteration, after S1, ..., Si−1 were already chosen in
previous iterations. Consider a set Si that is chosen by independently choosing one random
element from each of the ` blocks to include in Si. 18 For j ∈ [i − 1] and k ∈ [`], let Yj,k

be the indicator variable of whether the element from the kth block that is included in Sj is
also included in Si (i.e., Yj,k = 1 iff Bk ∩ Sj ∩ Si 6= ∅). Note that for k 6= k′ ∈ [m] it holds
that Yj,k and Yj,k′ are independent. Thus, the expected value of ∑j<i 2|Si∩Sj| is

E

[
∑
j<i

2|Si∩Sj|
]
= ∑

j<i
E
[
2∑k∈[`] Yj,k

]
= ∑

j<i
E

[
∏

k∈[`]
2Yj,k

]
= ∑

j<i
∏

k∈[`]
E
[
2Yj,k

]
= (i− 1) · (3/2)t−` · 22`−t , (6.1)

where the last equality is because for every k ∈ [t − `] it holds that Pr[Yj,k = 1] = 1/2
(since |Bk| = 2), and for every k ∈ {t − ` + 1, ..., `} it holds that Yj,k ≡ 1 (since Bk is a

singleton). Now, plugging-in t = d(1− 4α) · `e and ` = log(ρ)
1−α into Eq. (6.1), we can upper-

bound the expression by (i − 1) · ρ. 19 Hence, the algorithm can find a set Si such that
∑j<i 2|Si∩Sj| ≤ (i− 1) · ρ by trying out all 2t−` < 2` possibilities.

As shown in [RRV02], Trevisan’s proof [Tre01] that the Nisan-Wigderson construc-
tion [NW94] yields an extractor also extends to the setting when the combinatorial design
is a weak design as in Definition 6.1. Specifically:

Theorem 6.3 (extractors from weak designs [RRV02, Prop. 10]). Let m < k < n be three integers,
and let ε > 0. Let ECC : {0, 1}n → {0, 1}n̄ be a code such that in every Hamming ball of radius

18That is, for each k ∈ [`] let Xk be a random element from the block Bk, such that for k 6= k′ ∈ [`] it holds
that Xk and Xk′ are independent. Then, Si = ∪k∈[`]Xk.

19Denoting c = log(e)/2 and t = (1 + 4β) · `, where β ≥ α, we have that 22`−t · (3/2)t−` < 22`−t · e(t−`)/2 =

22`−t+c·(t−`) ≤ 2
1−4(1−c)·β

1−α ·log(ρ) < ρ.

28

1/2− δ in {0, 1}n̄ there exist at most 1/δ2 codewords, where δ = ε/4m. Let S1, ..., Sm ⊆ [t] be an
(m, `, t, ρ) weak design with ` = log(n̄) and ρ = k−3·log(m/ε)−t−3

m .
Then, the function E : {0, 1}n × {0, 1}t → {0, 1}m that is defined by E(x, z) =

(ECC(x)zS1
, ..., ECC(x)zSm

) is a (k, ε)-extractor.

By combining Theorem 6.3 and Proposition 4.14, we obtain the following:

Corollary 6.4 (samplers from weak designs). Let m < k < n be three integers, and let ε > 0. Let
ECC : {0, 1}n → {0, 1}n̄ be a code such that in every Hamming ball of radius 1/2− δ in {0, 1}n̄

there exist at most 1/δ2 codewords, where δ = ε/4m. Let S1, ..., Sm ⊆ [t] be an (m, `, t, ρ) weak
design with ` = log(n̄) and ρ = k−3·log(m/ε)−t−3

m .
Then, the function Samp : {0, 1}n × {0, 1}t → {0, 1}m that is defined by Samp(x, z) =

(ECC(x)zS1
, ..., ECC(x)zSm

) is an averaging sampler with accuracy ε and error 2k−n.

6.2 An ε-balanced code in sparse T C0

Following Corollary 6.4, our goal now is to construct a T C0 circuit with a super-linear
number wires that computes an error-correcting code that is list-decodable up to distance
1/2− δ with list size poly(1/δ) and rate poly(1/δ). We will do this by constructing a code
with distance 1/2− ε, where ε = δ2, and then relying on the Johnson bound. In fact, we
will actually construct an ε-balanced code (i.e., a linear code such that all codewords have
relative Hamming weight 1/2± ε).

As described in the introduction, the construction will consist of two parts. We will
first construct a code with constant relative distance, and then show how to amplify the
distance from Ω(1) to 1/2− ε.

Proposition 6.5 (a code with constant relative distance in sparse T C0). There exists a polynomial-
time algorithm that is given as input 1n and a constant d ∈ N, and outputs a T C0 circuit C that
satisfies the following:

1. The circuit C maps n input bits to n̂ = O(n) input bits.

2. For every x ∈ {0, 1}n such that x 6= 0n, the relative Hamming weight of C(x) is at least 3−d.

3. Each output bit of C is a linear function of the input bits.

4. The circuit C has depth 2d and O
(
n1+2/d) wires.

Proof. Assume that n is of the form rd, for r ∈ N (if necessary, pad the input with zeroes
such that the input length will be a power of 2d). Fix a linear code ECC that maps strings
of length r to strings of length r̄ = O(r) and has relative distance at least 1/3 (e.g., we can
use the ε-balanced codes of [NN93, TS17]).

Let x ∈ {0, 1}n be an input for the circuit C. We think of x as a tensor M(0) of dimensions
[r]d; that is, for every~t ∈ [r]d, the~tth entry of M(0) is denoted by M(0)

~t
∈ {0, 1}. The circuit

C will iterative compute a sequence M(1), ..., M(d) of tensors, and the message x = M(0)

will be mapped to the final codeword x̂ = M(d).
For each i ∈ [d], the tensor M(i) is defined as follows. The dimensions of M(i) are

[r̄]i × [r]d−i. For every pair (~t≤i−1, ~t≥i+1) ∈ [r̄]i−1 × [r]d−i, we denote by M(i−1)
~t≤i−1,?,~t≥i+1

the

r-bit vector M(i−1)
~t≤i−1,?,~t≥i+1

def
== M(i−1)

(~t≤i−1,1,~t≥i+1)
, ..., M(i−1)

(~t≤i−1,m,~t≥i+1)
∈ {0, 1}r. Then, for every ~t ∈

29

[r̄]i × [r]d−i, we think of~t as a triplet~t = (~t≤i−1, u,~t≥i+1) ∈ [r̄]i−1 × [r̄]× [r]d−i, and define
M(i)

~t
=
(
ECC

(
M(i−1)

~x≤i−1,?,~x≥i+1

))
v

(i.e., M(i)
(~t≤i−1,v,~t≥i+1)

is the vth coordinate of the encoding of

M(i−1)
~t≤i−1,?,~t≥i+1

by ECC).

The final codeword x̂ = M(d) is of dimensions [r̄]d, which means that it represents a
string of length n̂ = (O(r))d = O(n). The fact that every non-zero message x ∈ {0, 1}n is
mapped to a codeword x̂ ∈ {0, 1}n̂ with relative Hamming weight at least (1/3)d follows
from the properties of ECC and from well-known properties of tensor codes; for complete-
ness, we include a proof in Appendix B. Also note that each bit of x̂ is indeed a linear
function of x, because ECC is linear (which means that in each iteration i ∈ [d], every bit of
M(i) is a linear function of M(i−1)).

Finally, let us fix i ∈ [d], and describe how to compute M(i) from M(i−1) in depth two
with O(n · r2) wires. Since ECC is linear, for each~t = (~t≤i−1, v,~t≥i+1) ∈ [r̄]i−1 × [r̄]× [r]d−i it
holds that M(i)

~t
= ECC

(
M(i−1)

~t≤i−1,?,~t≥i+1

)
v

is a linear function of the r-bit string M(i−1)
~t1,?,~t2

∈ {0, 1}r.

Thus, each entry of M(i) can be computed from M(i−1) by a depth-2 T C0 circuit with O(r2)
wires (see, e.g., [PS94, Sec. 3]), which means that M(i) can be computed from M(i−1)

by a depth-2 T C0 circuit with O(n · r2) wires. Overall, the final circuit C is of depth 2d
(since it is comprised of d circuits of depth two), and the number of wires in C is at most
O(n · r2) = O

(
n1+2/d).

We now show how to amplify the distance of the code from Proposition 6.5 from Ω(1)
to 1/2− ε.

Proposition 6.6 (amplifying the distance of the code from Proposition 6.5). For some universal
constant c0 > 1, there exists a polynomial-time algorithm that is given as input 1n̂, a constant
ρ > 0, and ε = ε(n̂) > 0, and outputs a T C0 circuit C such that:

1. The circuit C maps n̂ input bits to n̄ = n̂ · (1/ε)c0/ρ output bits.

2. For every x̂ ∈ {0, 1}n̂ with relative Hamming weight at least ρ, the relative Hamming weight
of x̄ = C(x̂) is between 1/2− ε and 1/2.

3. Each output bit of C is a linear function of the input bits.

4. The circuit C has depth two and O
(
n̂ · (1/ε)c0/ρ

)
wires.

Proof. The algorithm first constructs an expander graph G on n̂ vertices; that is, a dG-
regular graph over the vertex-set [n̂] with a constant spectral gap. 20 Consider a random
walk that starts from a uniform i ∈ [n̂] and walks `− 1 steps, where ` = cG

ρ · log(1/ε) and
cG > 1 is a constant that depends only on the spectral gap of G. By the hitting property of
expander random walks (see, e.g., [Gol08, Thm 8.28]), with probability at least 1− ε such
a walk hits i ∈ [n̂] such that xi 6= 0 (this is because the set {i ∈ [n̂] : xi 6= 0} has density
at least ρ). Thus, if we first take such a random walk, and then output a random parity of
the values of x̂ at the coordinates corresponding to the vertices in the walk, the output will
equal one with probability at least 1/2− ε and at most 1/2.

20For a suitable construction see, e.g., [Gol08, Thm E.10]. This specific construction requires n̂ to be a square,
so we might need to pad the input x ∈ {0, 1}n̂ with zeroes such that it will be of length 4k = (2k)2, for k ∈ N.
Since such a padding will not affect the rest of the argument, we ignore this issue.

30

The mapping of x̂ to x̄ = C(x̂) is obtained by considering all the possible outcomes
of the random process above. Specifically, for every random walk W =

(
i(W)
1 , ..., i(W)

`

)
of

length `− 1 on G, and every subset S ⊆ [`], we have a corresponding coordinate (W, S) in
C(x̂). The value of C(x̂) at coordinate (W, S) is the parity of the bits of x̂ in the locations
corresponding to S in walk W; that is, C(x̂)(W,S) = ⊕j∈S x̂

i(W)
j

.

Note that the length of C(x̂) is n̂ · (dG)
`−1 · 2` = n̂ · (1/ε)c′G/ρ, where c′G is a large

constant that only depends on the degree and the spectral gap of the expander G. Also,
the mapping of x̂ to C(x̂) is linear, and moreover every coordinate of C(x̂) is the parity of
` coordinates of x̂. Thus, C(x̂) can be computed by a T C0 circuit of depth two using at
most n̂ · (1/ε)c′G/ρ · `2 = O

(
n̂ · (1/ε)2c′G/ρ

)
wires (therefore c0 = 2c′G/ρ depends only on

the degree and the spectral gap of the expander G).

By combining Propositions 6.5 and 6.6 (with the parameter value ρ = 3−d), we obtain
the following:

Proposition 6.7 (an ε-balanced code in sparse T C0). For some universal constant c0 > 1, there
exists a polynomial-time algorithm that gets inputs 1n and ε = ε(n) and a constant d ∈ N, and
outputs a T C0 circuit such that:

1. The circuit computes a linear code that maps messages of length n to codewords of length
n̄ = O

(
n · (1/ε)c0·3d

)
such that every codeword has relative Hamming weight 1/2± ε.

2. The circuit has depth 2d and O
(

n1+2/d + n · (1/ε)c0·3d
)

wires.

Relying on the Johnson bound, we obtain the list-decodable code that is needed for
Corollary 6.4 as a corollary of Proposition 6.7:

Corollary 6.8 (a list-decodable code in sparse T C0). For some universal constant c1 > 1, there
exists a polynomial-time algorithm that gets inputs 1n and δ = δ(n) and a constant d ∈ N, and
outputs a T C0 circuit such that:

1. The circuit computes a linear code mapping messages of length n to codewords of length
n̄ = O

(
n · (1/δ)c1·3d

)
such that in any Hamming ball of radius 1/2− δ in {0, 1}n̄ there

exist at most O(1/δ2) codewords.

2. The circuit has depth 2d and O
(

n1+2/d + n · (1/δ)c1·3d
)

wires.

Proof. We invoke Proposition 6.7 with ε = δ2. The code that the circuit computes has
distance 1/2− δ2. Relying on the Johnson bound (see, e.g., [AB09, Thm 19.23]), in such a
code every Hamming ball of radius δ contains at most 1/δ2 codewords.

6.3 An averaging sampler in sparse T C0

We now combine Lemma 6.2, Corollary 6.4, and Corollary 6.8, to get an averaging sampler
that can be computed by a T C0 circuit with a super-linear number of wires. The sampler
will get an input of length n, and for two constants 0 < γ� β < 1, the sampler will output
m = nγ bits and will have accuracy 1/m and error 2nβ−n.

31

Proposition 6.9 (an averaging sampler in sparse T C0). For a sufficiently large universal constant
c > 1, there exists a polynomial-time algorithm that gets as input 1n and three constants d ∈ N

and γ ≤ 1
c·d·3d and β ≥ 4/5, and outputs a T C0 circuit C that satisfies the following:

1. The circuit C gets input x ∈ {0, 1}n and outputs 2t < n(1+1/d)·(5−4β) strings of length
m = nγ.

2. The function Samp : {0, 1}n × {0, 1}t → {0, 1}m such that Samp(x, i) = C(x)i (i.e.,
Samp(x, i) ∈ {0, 1}m is the ith output string of C(x)) is an averaging sampler with accuracy
ε = 1/m and error 2nβ−n.

3. The depth of C is 2d + 1 and its number of wires is at most n(1+2/d)·(5−4β).

In particular, if β ≥ 1− 1/5d, then both the number of outputs of C (i.e., 2t) and the number of
wires in C are less than n1+4/d.

Proof. Let c1 > 1 be the universal constant from Corollary 6.8, and let c ≥ c1 be sufficiently
large. We first use Corollary 6.8 with the parameter value δ = ε/4m to construct a circuit C0

of depth 2d that encodes its input x ∈ {0, 1}n to a codeword x̄ of length n̄ = O
(

n1+2·γ·c1·3d
)

.
Then, we use Lemma 6.2 to construct an (m, `, t, ρ) weak design S1, ..., Sm ⊆ [t] with the fol-
lowing parameters: For α = 1− β + (c · 3d+1) · γ < 1/4 (the inequality is since β > 4/5
and γ is sufficiently small), we construct a design with ` = log(n̄) and ρ = 2(1−α)·` and
t = d(1 + 4α) · `e. Now, define a function Samp : {0, 1}n × {0, 1}t → {0, 1}m as in Corol-
lary 6.4; that is, for x ∈ {0, 1}n and z ∈ {0, 1}t, the m-bit string Samp(x, z) is the projection
of x̄ to the coordinates zS1 , ..., zSm . The circuit C outputs the 2t strings corresponding to
{Samp(x, z)}z∈{0,1}t , where each output string is a projections of m bits of x̄.

Let k = nβ. By our choice of α we have that ρ = 2(1−α)·` < k−3·log(m/ε)−t−3
m . 21 Thus,

relying on Corollary 6.4, the function Samp is an averaging sampler with accuracy ε and
error 2k−n. The depth of C is 2d + 1 (since the depth of C0 is 2d, and the 2t outputs
are projections of x̄). Finally, the number of wires in C0 is O

(
n1+2/d + n · (4m2)c1·3d

)
=

O
(
n1+2/d), and the number of wires between x̄ and the outputs is 2t ·m = 2d(1+4α)·log(n̄)e ·

nγ = n(1+3·γ·c1·3d)(1+4α) < n(1+1/d)·(5−4β).

6.4 Proof of Theorem 1.2

Let us now formally state Theorem 1.2 and prove it using the averaging sampler from
Proposition 6.9. Towards stating the theorem, for any n, d, k ∈ N, denote by Cn,d,nk either
the class of linear threshold circuits over n input bits of depth d and with at most nk wires.

Theorem 6.10 (Theorem 1.2, restated). There exists a universal constant c > 1 such that the
following holds. Assume that for every d ∈ N and for some β = βd ≥ 4/5 there exists an
algorithm that gets as input a circuit C′ ∈ Cn,3d+2,n(1+3/d)·(5−4β) , runs in time T(n), and satisfies
the following: If C′ rejects all but at most 2nβ

of its inputs, then the algorithm rejects C′, and if
C′ accepts all but at most 2nβ

of its inputs, then the algorithm accepts C′. Then, there exists an

21To see that this holds, assume that c ≥ c1 is sufficiently large such that n̄ ≤ n · (m/ε)c·3d
. Then, note that

α = 1− β + (c · 3d+1) · γ >
1−β+(2c·3d+1)·γ

1+2c·γ·3d = 1− β−γ
1+2c·γ·3d . It follows that log(ρ) = (1− α) · ` < log(k/2m),

since 1− α <
β−γ−1/ log(n)

1+2c·γ·3d . We can thus deduce that ρ ≤ k/2m <
k−3·log(m/ε)−t−3

m .

32

algorithm that for every k ∈N and d ∈N, when given as input a circuit C ∈ Cm,d,mk , runs in time
T(mc·k·d·3d

), and satisfies the following: If C accepts at least 2/3 of its inputs then the algorithm
accepts C, and if C rejects at least 2/3 of its inputs then the algorithm rejects C.

To obtain the parameters of Theorem 1.2, use the value βd = 1− 1/5d, in which case the
number of wires of C′ is less than n1+5/d < n1+30/d′ , where d′ = 3d + 2 is the depth of C′;
and for every k ∈N, we can assume that d is sufficiently large such that c · k · d · 3d · 4−d < 1,
in which case the running time of the algorithm is at most T(mc·k·d·3d

) = 2m1−Ω(1)
(due to

the hypothesis that T(n) = 2n1/4d
).

Proof of Theorem 6.10. Let c > 1 be the universal constant from Proposition 6.9. Let
C ∈ Cm,d,mk be an input to the algorithm, let γ = 1/c · k · d · 3d, and let β = β3d+2. We
will construct a circuit C′ ∈ Cn,3d+2,n(1+2/d)·(5−4β) , where n = m1/γ, such that the following

holds: If C rejects at least a 2/3 fraction of its inputs, then C′ rejects all but at most 2nβ

inputs; and if C accepts at least a 2/3 fraction of its inputs, then C′ accepts all but 2nβ
of its

inputs. Then, we can use the quantified derandomization algorithm for C′, which runs in
time T(n) = T

(
mc·k·d·3d

)
, to decide whether the acceptance probability of C is at least 2/3

or at most 1/3.
To construct C′, we first use Proposition 6.9 to construct a T C0 circuit Samp : {0, 1}n ×

{0, 1}t → {0, 1}m that is an averaging sampler with the following properties: The input
length is n, the output length is m = nγ, the accuracy is ε = nΩ(1) < 1/100, and the
error is δ = 2nβ−n; the number of wires in Samp is at most n(1+2/d)·(5−4β), and its depth
is 2d + 1. The circuit C′ first computes the sampler Samp, then evalutes C in parallel on
each of the 2t < n(1+2/d)·(5−4β) outputs of the sampler, and finally computes the majority
of the 2t evaluations of C. That is, C′(x) = MAJz∈{0,1}t [C(Samp(x, z))]. The circuit C′ is of
depth (2d + 1) + d + 1 = 3d + 2, and its number of wires is at most n(1+2/d)·(5−4β) + mk <
n(1+3/d)·(5−4β), where we relied on the fact that mk = nγ·k < n.

Note that for any x ∈ {0, 1}n such that Prz∈{0,1}t [C(Samp(x, z)) = 1] ∈ Pr[C(un) =
1]± ε, we have that C′(x) outputs the most frequent value of C. Since the accuracy of the
sampler is 2nβ−n, the number of strings in {0, 1}n such that Prz∈{0,1}t [C(Samp(x, z)) = 1] /∈
Pr[C(un) = 1]± ε is at most 2nβ

. Thus, the number of strings x ∈ {0, 1}n such that C′(x)
does not output the most frequent value of C is at most 2nβ

.

Observe that the circuit C′ that we constructed in the proof of Theorem 6.10 consists of
the sampler from Proposition 6.9, which only uses majority gates; of copies of the initial
circuit C; and of an additional majority gate. Thus, the statement of Theorem 6.10 holds
even if we interpret Cn,d,w as the class of circuits with majority gates (rather than linear
threshold circuits) over n input bits of depth d and with at most w wires.

7 Quantified derandomization of depth-2 linear threshold circuits

In this section we construct a quantified derandomization algorithm for depth-2 linear
threshold circuits with n3/2−Ω(1) wires. In fact, we construct a pseudorandom generator for
the class of depth-2 linear threshold circuits with n3/2−Ω(1) wires that either accept all but
B(n) = 2nΩ(1)

of their inputs or reject all but B(n) of their inputs. That is, we construct an
algorithm G that gets as input a seed s of length Õ(log(n)), and outputs an n-bit string

33

such that for every C ∈ Cn,2,n3/2−Ω(1) the following holds: If C accepts all but B(n) = 2nΩ(1)
of

its inputs, then the probability that C(G(s)) = 1 is very high, and if C rejects all but B(n)
of its inputs, then the probability that C(G(s)) = 0 is very low.

The pseudorandom generator that we construct in this appendix is incomparable to the
pseudorandom generator of Servedio and Tan [ST17b]. On the one hand, their generator
is 1

poly(n) -pseudorandom for every sparse depth-two linear threshold circuit, whereas our
generator only “fools” sparse depth-two circuits with acceptance probability that is either
very high or very low. Moreover, their generator can handle circuits with n2−Ω(1) wires,
whereas our generator can only handle circuits with n3/2−Ω(1) wires. But on the other hand,
their generator requires a seed of length n1−Ω(1), whereas our generator only requires a
seed of length Õ(log(n)).

Recall that our main quantified derandomization algorithm (from Theorem 1.1) lever-
ages the techniques underlying the average-case lower bounds of Chen, Santhanam, and
Srinivasan [CSS16] for depth-d linear threshold circuits. The generator in this section lever-
ages the techniques underlying the average-case lower bounds of Kane and Williams [KW16]
for depth-2 linear threshold circuits.

Specifically, our first step is to prove a derandomized version of the restriction lemma
of Kane and Williams [KW16]. We actually state a slightly generalized version, which is
implicit in the original argument. We say that a distribution y over {0, 1}n is p-bounded in

pairs if for every i 6= j ∈ [n] it holds that Pr[yi = 1] ≤ p and Pr[yi = 1 ∧ yj = 1] ≤ p2.
One example for a distribution that is p-bounded in pairs is the distribution y in which
each coordinate is independently set to 1 with probability p. Another example, which
is used in [KW16], is the following: Consider a equipartition of [n] to p · n disjoint sets
S1, ..., Sp·n; then, sampling y ∼ y is equivalent to uniformly choosing a single coordinate
in each set Si in the partition, fixing y in the chosen coordinates to one, and fixing y in all
other coordinates to zero (so that the Hamming weight of y ∼ y is always p · n).

Proposition 7.1 (derandomized version of [KW16, Lem. 3.1]). Let Φ = (w, θ) be an LTF on m
input bits. For p > 0, let y be a distribution over {0, 1}n that is p-bounded in pairs, and let z be a
distribution over {−1, 1}n that is 1

poly(m)
-pseudorandomly concentrated. Let ρ be the distribution

over restrictions obtained by sampling y ∼ y in order to determine which variables are kept alive
(the ith variable is kept alive if and only if yi = 1), and independently sampling z ∼ z to determine
values for the fixed variables. Then,

Pr
ρ∼ρ

[Φ�ρ depends on more than one input bit] = O(m · p3/2) .

Proof. For every choice of y ∼ y, let I = Iy ⊆ [n] be the set of live variables (i.e., I = {i ∈
[n] : yi = 1}). Then, the probability that Φ�ρ depends on more than one input bit is at most

Pr
ρ∼ρ

[
|I| ≥ 2∧Φ�ρ is not constant

]
= Ey∼y

[
Pr
z∼z

[
|I| ≥ 2∧Φ�ρ is not constant

]]
= Ey∼y

[
1|I|≥2 · Pr

z∼z

[
Φ�ρ is not constant

]]
, (7.1)

where the first equality relied on the fact that y and z are sampled independently, and the
second equality is since the random variable I only depends on y (and not on z).

34

Fix an arbitrary choice of y, and let us upper-bound the probability over z ∼ z that Φ�ρ

is not constant. Note that Φ�ρ is a constant function if and only if∣∣∣θ − 〈w[m]\I , z[m]\I

〉 ∣∣∣ > ‖wI‖1 ⇐⇒
〈

w[m]\I , z[m]\I

〉
6∈ θ ± ‖wI‖1 . (7.2)

For each i ∈ [m], let ki be the index of the ith variable when the variables are sorted
according to the magnitudes |wi| in ascending order (breaking ties arbitrarily). In [KW16,
Proof of Lemma 1.1] it is shown that the probability over a uniform choice of z that Eq. (7.2)
holds is at most ∑i∈I

O(1)√
ki

. Since z is (1/poly(m))-pseudorandomly concentrated, the prob-

ability under z ∼ z that Eq. (7.2) holds is at most ∑i∈I
O(1)√

ki
+ 1

poly(m)
. Therefore, the expres-

sion in Eq. (7.1) is upper-bounded by

Ey∼y

[
1|I|≥2 ·∑

i∈I

O(1)√
ki

]
+

1
poly(m)

= Ey∼y

[
∑

i∈[m]

O(1)√
ki
· 1i∈I∧|I|≥2

]
+

1
poly(m)

= ∑
i∈[m]

O(1)√
ki
· Pr

y∼y
[i ∈ I ∧ |I| ≥ 2] +

1
poly(m)

. (7.3)

For any fixed i ∈ [m], we upper-bound the probability of the event i ∈ I ∧ |I| ≥ 2
in two ways: The first upper-bound is Pr[i ∈ I] ≤ p, and the second upper-bound is
Pr[∃j ∈ [m] \ {i}, j ∈ I ∧ i ∈ I] < m · p2 (since y is p-bounded in pairs). Hence,

Pr
y∼y

[i ∈ I ∧ |I| ≥ 2] ≤ min
{

p, m · p2} ≤ √m · p3 ,

which implies that the expression in Eq. (7.3) is upper-bounded by

√
m · p3 · ∑

i∈[m]

O(1)√
ki

+
1

poly(m)
= O

(
√

m · p3/2 · ∑
i∈[m]

1√
i

)
= O

(
m · p3/2

)
.

Our pseudorandom generator, which is contructed next, is based on an application of
Proposition 7.1 as well as on the pseudorandom generator of Gopalan, Kane, and Meka
(i.e., Theorem 4.8).

Theorem 7.2 (quantified derandomization of depth-2 linear threshold circuits with n3/2−Ω(1) wires).
There exists a polynomial-time algorithm G that is given as input a random seed s of length
Õ(log(n)) and a constant ε > 0, and outputs a string G(s, ε) ∈ {0, 1}n such that for every
C ∈ Cn,2,n3/2−ε the following holds:

1. If C accepts all but at most B(n) = 2nε/2
inputs, then Prs[C(G(s, ε)) = 1] = 1− o(1).

2. If C rejects all but at most B(n) inputs, then Prs[C(G(s, ε)) = 1] = o(1).

Proof. Let δ ∈ (ε/2, 2ε/3) such that p = n−(1−δ) is a power of two. The algorithm first sam-
ples a restriction that meets the requirements of Proposition 7.1, as follows: The distribution
y over {0, 1}n is obtained by sampling a string y′ from a distribution over {0, 1}log(1/p)·n

35

that is 1
poly(n) -almost O(log(n))-wise independent, and setting yi = 1 if and only if the ith

block in y′ is all zeroes; and the distribution z is 1
poly(n) -pseudorandomly concentrated. The

required seed length to sample such a restriction is dominated by the seed length required
to sample z ∼ z, which (using Theorem 4.8) is O(log(n) · (log log(n))2).

We say that a restriction ρ is successful if the circuit C�ρ can be computed by a single
LTF, and if at least 1

2 · (p · n) = 1
2 · nδ variables remain alive under ρ. We first claim that

the probability that ρ is successful is 1 − o(1). According to Fact 4.9, with probability
1− 1/poly(n) at least 1

2 · nδ variables remain alive under ρ. To see that with high probability
C�ρ can be computed by a single LTF, let G be the set of gates in the bottom layer of C.
We say that a gate Φ is non-trivial if Φ depends on more than a single input bit; note that
any trivial gate can be replaced by a constant or by an input bit (or its negation). Then, the
expected number of non-trivial gates in the bottom layer of C�ρ is

Eρ

[
∑

Φ∈G
1Φ�ρ is non-trivial

]
= ∑

Φ∈G
Pr
ρ
[Φ�ρ is non-trivial]

= O

(
∑

Φ∈G
fan-in(Φ) · p3/2

)
= O

(
n3/2−ε · n3δ/2−3/2

)
,

which is o(1), since δ < 2ε/3. Therefore, the probability that there are no non-trivial gates
in the bottom layer of C�ρ is 1− o(1).

After sampling the restriction ρ, the algorithm samples a string x ∈ {0, 1}|ρ−1(?)| using
the pseudorandom generator G′ for LTFs from Theorem 4.8, instantiated with error param-
eter 1/poly(n), and outputs the n-bit string that is obtained by completing x to an n-bit
string according to ρ.

To see that the algorithm is correct, assume that C accepts all but 2nε/2
of its inputs.

Then, for every successful restriction ρ, the acceptance probability of C�ρ is 1− o(1) (since
ρ keeps at least 1

2 · nδ = ω(nε/2) variables alive). Thus,

Pr
s
[C(G(s, ε)) = 0] ≤ Pr

ρ
[ρ not successful] + Pr

s
[C(G(s, ε)) = 0|ρ successful]

≤ o(1) + max
ρ successful

Pr
s′
[C�ρ(G

′(s′)) = 0] ,

which is o(1) since G′ is 1
poly(n) -pseudorandom for LTFs. Similarly, if C rejects all but 2nε/2

of its inputs, then Pr[C(G(s)) = 1] = o(1).

8 Restrictions for sparse T C0 circuits: A potential path towards
NEXP 6⊆ T C0

Recall that the best currently-known lower bounds for T C0 circuits of arbitrary constant
depth d are for circuits with n1+exp(−d) wires. We now present an open problem that
involves restrictions for T C0 circuits with only n1+O(1/d) wires, and show that a resolution
of this open problem would imply that NEXP 6⊆ T C0.

36

Towards presenting the problem, fix some class Csimple of “simple” functions such that
the following holds: There exists a deterministic algorithm that gets as input C′ ∈ Csimple,
runs in sufficiently small sub-exponential time, and distinguishes between the case that the
acceptance probability of C′ is at least 2/3 and the case that the acceptance probability of
C′ is at most 1/3. Then, the problem is the following:

Open Problem 1 (deterministic restriction algorithm for sparse T C0 circuits). Construct a de-
terministic algorithm that gets as input a T C0 circuit C : {−1, 1}n → {−1, 1} of depth d with

n1+O(1/d) wires, runs in time at most 2n1/4d
, and finds a set S ⊆ {−1, 1}n and C′ ∈ Csimple such

that |S| ≥ 10 · 2n1−1/5d
and C�S is (1/10)-close to C′.

A resolution of Open Problem 1 would imply that there exists an algorithm for quan-
tified derandomization of T C0 circuits of depth d with n1+O(1/d) wires and B(n) = 2n1−1/5d

exceptional inputs that runs in sufficiently small sub-exponential time (i.e., in time 2n1/4d
).

This is the case because a quantified derandomization algorithm can act similarly to our
algorithm from the proof of Theorem 1.1, as follows: First find a set S such that |S| ≥
10 · 2n1−1/5d

and C�S is (1/10)-close to some C′ ∈ Csimple; then, note that C�S has either very
high acceptance probability or very low acceptance probability (because C has at most
B(n) ≤ |S|/10 exceptional inputs); and finally, estimate the acceptance probability of C�S
(by estimating the acceptance probability of C′) in order to decide whether C accepts all
but at most B(n) of its inputs or rejects all but at most B(n) of its inputs. Thus, relying on
Corollary 1.3, a resolution of Open Problem 1 would imply that NEXP 6⊆ T C0.

In fact, the requirements in Open Problem 1 can even be further relaxed, relying on
well-known strong forms of the connection between derandomization and lower bounds
(see [Wil13]). In particular, it suffices to construct the algorithm under the hypothesis
that NEXP ⊆ T C0; and the algorithm can use certain forms of non-determinism: For
example, the algorithm may non-deterministically guess C′ and S, as long as it can verify

in time 2n1/4d
that indeed C�S is close to C′ and C′ ∈ Csimple and S is sufficiently large. 22

Acknowledgements

This work was initiated and partially conducted while the author was visiting Rocco Serve-
dio at Columbia, and under Rocco’s guidance. The author is very grateful to Rocco, who
declined co-authorship of the paper, for his guidance, for many useful ideas, and for nu-
merous inspiring conversations.

The author thanks his advisor, Oded Goldreich, for the very useful idea to use tensor
codes in the proof of Theorem 1.2, and for his guidance and support during the research
and writing process. The author also thanks Amnon Ta-Shma for a useful conversation
about constructing extractors in T C0, and Eylon Yogev for helpful comments on a draft of
the paper. The author is grateful to anonymous reviewers who pointed out several related
previous works, and suggested a simple proof of Proposition 5.8.

This research was partially supported by the Minerva Foundation with funds from the
Federal German Ministry for Education and Research. The research was also supported by

22These relaxations of the requirements from the algorithm suffice to deduce that NEXP 6⊆ T C0 because
we are using Williams’ proof strategy [Wil13], in which the algorithm is used to contradict the assumption that
NEXP ⊆ T C0, and in which the algorithm is a procedure in a “co-non-deterministic” algorithm.

37

the Prof. Rahamimoff Travel Grant for Young Scientists of the US-Israel Binational Science
Foundation (BSF). The author is partially supported by Irit Dinur’s ERC-CoG grant 772839.

References

[Aar17] Scott Aaronson. P ?
= NP, 2017. Accessed at http://www.scottaaronson.com/

papers/pnp.pdf, June 20, 2017.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth. Construction of asymp-
totically good low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 38(2):509–516, 1992.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. Journal of the ACM, 57(3):14, 36, 2010.

[AS15] Kazuyuki Amano and Atsushi Saito. A nonuniform circuit class with mul-
tilayer of threshold gates having super quasi polynomial size lower bounds
against NEXP. In Proc. 9th International Conference on Language and Automata
Theory and Applications (LATA), pages 461–472. 2015.

[AW85] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic con-
stant depth circuits. In Proc. 26th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1985.

[BBL92] Paul Beame, Erik Brisson, and Richard Ladner. The complexity of comput-
ing symmetric functions using threshold circuits. Theoretical Computer Science,
100(1):253–265, 1992.

[BIS12] Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating
AC0 by small height decision trees and a deterministic algorithm for #AC0SAT.
In Proc. 27th Annual IEEE Conference on Computational Complexity (CCC), pages
117–125. 2012.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal of Computing, 13(4):850–864,
1984.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of
the ACM, 57(5), 2010.

[BSV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries.
In Proc. 41st International Colloquium on Automata, Languages and Programming
(ICALP), pages 163–173. 2014.

[BYRST02] Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming computation
of combinatorial objects. In Proc. 17th Annual IEEE Conference on Computational
Complexity (CCC), pages 133–142, 2002.

38

http://www.scottaaronson.com/papers/pnp.pdf
http://www.scottaaronson.com/papers/pnp.pdf

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and
David Zuckerman. Mining circuit lower bound proofs for meta-algorithms.
Computational Complexity, 24(2):333–392, 2015.

[CL16] Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality.
Electronic Colloquium on Computational Complexity: ECCC, 23:18, 2016.

[CSS16] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower
bounds and satisfiability algorithms for small threshold circuits. In Proc. 31st
Annual IEEE Conference on Computational Complexity (CCC), pages 1:1–1:35, 2016.

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. Bounded independence fools halfspaces. SIAM Journal of
Computing, 39(8):3441–3462, 2010.

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[GHK+13] Anna Gál, Kristoffer Arnsfelt Hansen, Michal Koucký, Pavel Pudlák, and
Emanuele Viola. Tight bounds on computing error-correcting codes by
bounded-depth circuits with arbitrary gates. IEEE Transactions on Information
Theory, 59(10):6611–6627, 2013.

[GHR92] Mikael Goldmann, Johan Håstad, and Alexander Razborov. Majority gates vs.
general weighted threshold gates. In Proc. 7th Annual Structure in Complexity
Theory Conference, pages 2–13, 1992.

[GK98] Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by ma-
jority circuits. SIAM Journal of Computing, 27(1):230–246, 1998.

[GKM15] Parikshit Gopalan, Daniel Kane, and Raghu Meka. Pseudorandomness via the
discrete Fourier transform. In Proc. 56th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 903–922. 2015.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. Dnf sparsification and
a faster deterministic counting algorithm. Computational Complexity, 22(2):275–
310, 2013.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, New York, NY, USA, 2008.

[GOWZ10] Parikshit Gopalan, Ryan O’Donnell, Yi Wu, and David Zuckerman. Fooling
functions of halfspaces under product distributions. In Proc. 25th Annual IEEE
Conference on Computational Complexity (CCC), pages 223–234. 2010.

[GT91] Hans Dietmar Gröger and György" Turán. On linear decision trees computing
boolean functions. In Proc. 18th International Colloquium on Automata, Languages
and Programming (ICALP), pages 707–718, 1991.

[GVW15] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extrac-
tion in AC0. In Proc. 30th Annual IEEE Conference on Computational Complexity
(CCC), pages 601–668, 2015.

39

[GW14] Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err
extremely rarely. In Proc. 46th Annual ACM Symposium on Theory of Computing
(STOC), pages 109–118. 2014. Full version available online at Electronic Collo-
quium on Computational Complexity: ECCC, 20:152 (Rev. 2), 2013.

[Hås94] Johan Håstad. On the size of weights for threshold gates. SIAM Journal on
Discrete Mathematics, 7(3):484–492, 1994.

[Hea08] Alexander D. Healy. Randomness-efficient sampling within NC1. Computational
Complexity, 17(1):3–37, 2008.

[HKM12] Prahladh Harsha, Adam Klivans, and Raghu Meka. An invariance principle
for polytopes. Journal of the ACM, 59(6):29:1–29:25, 2012.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an
easy witness: exponential time vs. probabilistic polynomial time. Journal of
Computer and System Sciences, 65(4):672–694, 2002.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiabil-
ity algorithm for AC0. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 961–972, 2012.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness
from shrinkage. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 111–119. 2012.

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-depth
tradeoffs for threshold circuits. SIAM Journal of Computing, 26(3):693–707, 1997.

[IPS13] Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability
algorithm for sparse depth two threshold circuits. In Proc. 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 479–488. 2013.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization
under a uniform assumption. In Proc. 39th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 734–, 1998.

[Kan11] Daniel M. Kane. A small PRG for polynomial threshold functions of Gaussians.
In Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 257–266. 2011.

[Kan14] Daniel M. Kane. A pseudorandom generator for polynomial threshold func-
tions of Gaussian with subpolynomial seed length. In Proc. 29th Annual IEEE
Conference on Computational Complexity (CCC), pages 217–228. 2014.

[KM15] Pravesh K. Kothari and Raghu Meka. Almost optimal pseudorandom gen-
erators for spherical caps. In Proc. 47th Annual ACM Symposium on Theory of
Computing (STOC), pages 247–256. 2015.

[KRS12] Zohar S. Karnin, Yuval Rabani, and Amir Shpilka. Explicit dimension reduction
and its applications. SIAM Journal of Computing, 41(1):219–249, 2012.

40

[KW16] Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire
lower bounds for depth-two and depth-three threshold circuits. In Proc. 48th
Annual ACM Symposium on Theory of Computing (STOC), pages 633–643, 2016.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
Fourier transform, and learnability. Journal of the Association for Computing Ma-
chinery, 40(3):607–620, 1993.

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial
threshold functions. SIAM Journal of Computing, 42(3):1275–1301, 2013.

[Nis93] Noam Nisan. The communication complexity of threshold gates. In Combina-
torics, Paul Erdős is eighty, Vol. 1, Bolyai Society Mathematical Studies, pages
301–315. 1993.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient construc-
tions and applications. SIAM Journal of Computing, 22(4):838–856, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

[PS94] Ramamohan Paturi and Michael E. Saks. Approximating threshold circuits by
rational functions. Information and Computation, 112(2):257–272, 1994.

[ROS94] V. P. Roychowdhury, A. Orlitsky, and Kai-Yeung Siu. Lower bounds on thresh-
old and related circuits via communication complexity. IEEE Transactions on
Information Theory, 40(2):467–474, 1994.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness
and reducing the error in Trevisan’s extractors. Journal of Computer and System
Sciences, 65(1):97–128, 2002.

[RS10] Yuval Rabani and Amir Shpilka. Explicit construction of a small epsilon-net for
linear threshold functions. SIAM Journal of Computing, 39(8):3501–3520, 2010.

[San10] Rahul Santhanam. Fighting perebor: new and improved algorithms for formula
and QBF satisfiability. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 183–192. 2010.

[Ser07] Rocco A. Servedio. Every linear threshold function has a low-weight approxi-
mator. Computational Complexity, 16(2):180–209, 2007.

[Smo90] Roman Smolensky. On interpolation by analytic functions with special proper-
ties and some weak lower bounds on the size of circuits with symmetric gates.
In Proc. 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 628–631, 1990.

[SSTT16] Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama.
Bounded depth circuits with weighted symmetric gates: satisfiability, lower
bounds and compression. In Proc. 41st International Symposium on Mathematical
Foundations of Computer Science. 2016.

41

[ST12] K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. In Proc. 27th Annual IEEE Conference on
Computational Complexity (CCC), pages 107–116, 2012.

[ST17a] Rocco Servedio and Li-Yang Tan. Deterministic search for CNF satisfying as-
signments in almost polynomial time. In Proc. 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2017.

[ST17b] Rocco Servedio and Li-Yang Tan. Learning and fooling depth-two threshold
circuits. Unpublished manuscript, 2017.

[SW13] Rahul Santhanam and Ryan Williams. On medium-uniformity and circuit lower
bounds. In Proc. 28th Annual IEEE Conference on Computational Complexity (CCC),
pages 15–23. 2013.

[Tam16] Suguru Tamaki. A satisfiability algorithm for depth two circuits with a sub-
quadratic number of symmetric and threshold gates. Electronic Colloquium on
Computational Complexity: ECCC, 23:100, 2016.

[Tel17] Roei Tell. Improved bounds for quantified derandomization of constant-depth
circuits and polynomials. In Proc. 32nd Annual IEEE Conference on Computational
Complexity (CCC), pages 18:1 – 18:49, 2017.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proc.
49th Annual ACM Symposium on Theory of Computing (STOC), 2017.

[TX13] Luca Trevisan and TongKe Xue. A derandomized switching lemma and an
improved derandomization of AC0. In Proc. 28th Annual IEEE Conference on
Computational Complexity (CCC), pages 242–247. 2013.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. Now Publishers, 2012.

[Vio05] Emanuele Viola. The complexity of constructing pseudorandom generators
from hard functions. Computational Complexity, 13(3-4):147–188, 2005.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proc. 26th Annual
IEEE Conference on Computational Complexity (CCC), pages 115–125. 2011.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. SIAM Journal of Computing, 42(3):1218–1244, 2013.

[Wil14a] Ryan Williams. Algorithms for circuits and circuits for algorithms: Connecting
the tractable and intractable. In Proc. International Congress of Mathematicians
(ICM), pages 659–682, 2014.

[Wil14b] Ryan Williams. New algorithms and lower bounds for circuits with linear
threshold gates. In Proc. 55th Annual ACM Symposium on Theory of Computing
(STOC), pages 194–202, 2014.

42

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Proc. 23rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91,
1982.

Appendix A Quantified derandomization and lower bounds

In this appendix we prove that “black-box” quantified derandomization of a class C yields
lower bounds for C, in the same way that standard derandomization does. For simplicity,
we focus on the case of derandomization with one-sided error. Let us first recall the notion
of a hitting-set generator, which yields a “black-box” quantified derandomization with
one-sided error of a circuit class.

Definition A.1 (hitting-set generator). Let F =
⋃

n∈N Fn, where for every n ∈ N it holds that
Fn is a set of functions {0, 1}n → {0, 1}, and let ` : N → N. An algorithm H is a hitting-set

generator for F with seed length ` if for every n ∈N and every f ∈ Fn there exists s ∈ {0, 1}`(n)
such that f (H(s)) = 1.

In the following proposition, we assume that there exists a hitting-set generator with
non-trivial seed length `(n) < n for circuits with B(n) ≥ 2` exceptional inputs, and show
that this implies lower bounds for the corresponding circuit class.

Proposition A.2 (quantified derandomization implies lower bounds). Let ` : N → N such that
`(n) < n, and let B : N → N such that B(n) ≥ 2`(n). Let C be a circuit class, and let C≤B ⊆ C
be the subclass of circuits that reject at most B(n) of their inputs. Assume that there exists a 2O(`)-
time computable hitting-set generator H with seed length ` for C≤B. Then, there exists a function
in DTIME(2O(`(n))) that cannot be computed by any circuit in C.

Proof. The “hard” function for C, denoted f , is the indicator function of {0, 1}n \ {H(s) :
s ∈ {0, 1}`(n)}; that is, f (x) = 0 if and only if there exists s ∈ {0, 1}`(n) such that x = H(s).
Note that any C ∈ C that computes f rejects at most 2` ≤ B(n) inputs, and thus C ∈ C≤B.
However, this means that H is a hitting-set generator for C, and so there exists s ∈ {0, 1}`(n)
such that C(H(s)) = 1. Since f (H(s)) = 0, we obtain a contradiction to the hypothesis that
C computes f .

Appendix B Proof of a technical claim from Section 6

In the proof of Proposition 6.5, we omitted the proof of the following claim: For every
x ∈ {0, 1}n such that x 6= 0n, the relative Hamming weight x̂ = C(x) is at least (1/3)d. The
proof of this claim, which we now detail, follows from a standard property of tensor codes:
If a code ECC has distance δ > 0, then the tensor code of order d that is based on ECC has
distance δd.

Claim B.1. Let C be the circuit constructed in the proof of Proposition 6.5, and let x ∈ {0, 1}n

such that x 6= 0n. Then, the relative Hamming weight x̂ = C(x) is at least (1/3)d.

Proof. Recall that the code ECC maps any non-zero message of length m to a codeword of

length m̄ with at least r def
== m̄/3 non-zero entries. Our hypothesis is that x = M(0) is not

the all-zero message, and we will now prove that for each i ∈ [d] it holds that M(i) has at
least ri non-zero entries. The proof is by induction, and will rely on a stronger induction

43

hypothesis: We prove that for each i ∈ {0, ..., d} there exists ~x≥i+1 ∈ [m]d−i such that the
number of vectors ~x≤i ∈ [m̄]i for which M(i)

~x≤i ,~x≥i+1
6= 0 is at least ri.

For the base case i = 1, note that by our hypothesis there exists ~x ∈ [m]d such that
M(0)

~x 6= 0. Therefore, the m-bit vector M(0)
?,~x≥2

= M(0)
1,~x2,...,~xd

, ..., M(0)
m,~x2,...,~xd

is non-zero. By the

properties of ECC it holds that ECC
(

M(0)
?,~x≥2

)
has at least r non-zero entries. The bits of

ECC
(

M(0)
?,~x≥2

)
appear in M(i) in locations (1,~x2, ...,~xd), ..., (m̄,~x2, ...,~xd). Therefore, the claim

is proved for i = 1 with the vector ~x≥2 = ~x2, ...,~xd ∈ [m]d−1.
For the induction step, let i ≥ 2. By the induction hypothesis, for some ~x≥i ∈ [m]d−(i−1)

there exist at least ri−1 vectors ~x(1)≤i−1, ...,~x(r
i−1)
≤i−1 ∈ [m̄]i−1 such that M(i−1)

~x(j)
≤i−1,~x≥i

6= 0 for all

j ∈ [ri−1]. Fix j ∈ [ri−1]. Since M(i−1)

~x(j)
≤i−1,~x≥i

6= 0, it follows that the string M(i−1)

~x(j)
≤i−1,?,~x(j)

≥i+1

=

M(i−1)

~x(j)
≤i−1,1,~x(j)

≥i+1

, ..., M(i−1)

~x(j)
≤i−1,m,~x(j)

≥i+1

∈ {0, 1}m is non-zero. Thus, by the properties of ECC, the

string ECC

(
M(i−1)

~x(j)
≤i−1,?,~x(j)

≥i+1

)
contains at least r non-zero entries.

Now, for every j ∈ [ri−1], let ~X(j) def
==

{(
~x(j)
≤i−1, 1,~x(j)

≥i+1

)
, ...,

(
~x(j)
≤i−1, m̄,~x(j)

≥i+1

)}
be the

set of m̄ locations in M(i) in which the string ECC

(
M(i−1)

~x(j)
≤i−1,?,~x(j)

≥i+1

)
appears. Note that for

every j 6= j′ ∈ [ri−1] it holds that all locations in X(j) and X(j′) are distinct; that is, for every
k, k′ ∈ [m̄] it holds that

(
~x(j)
≤i−1, k,~x(j)

≥i+1

)
6=
(
~x(j′)
≤i−1, k′,~x(j)

≥i+1

)
. Since for each j ∈ [ri−1] it

holds that X(j) contains at least r locations in which M(i) is non-zero, we deduce that M(i)

has at least ri non-zero entries.

Appendix C An alternative proof of Lemma 5.10

In this section we provide an alternative proof of Lemma 5.10, which asserts that biased
LTFs remain biased when variables are fixed according to a distribution that is pseudoran-
dom for LTFs. Loosely speaking, the following (alternative) formal statement of the lemma
asserts the following: If an LTF Φi is δ-close to a constant function, then with probability
1− γ over choice of z ∼ z it holds that Φi�ρ is δ′-close to the same constant function, as
long as δ ≤ poly(δ′, γ) and that z is poly(γ)-pseudorandom for LTFs. More specifically:

Lemma C.1 (Lemma 5.10, restated). Let n ∈ N, and let δ, δ′, γ > 0 such that δ ≤ (γ · δ′)10.
Let Φ = (w, θ) be an LTF over n input bits that is δ-close to a constant function σ ∈ {−1, 1}, let
I ⊆ [n], and let z be a distribution over {−1, 1}[n]\I that is (δ′ · γ2)-pseudorandom for LTFs. Then,
with probability 1−O(γ) over choice of z ∼ z it holds that Φ�(I,z) is δ′-close to σ.

A natural approach to prove Lemma C.1 is the following. For any fixed choice of a set
I ⊆ [n] of variables to keep alive, we want to choose the values for the fixed variables from a
distribution that “fools” a test that checks whether or not Φ�ρ is close to σ. That is, consider a test
T : {−1, 1}[n]\I → {−1, 1} that gets as input values z ∈ {−1, 1}[n]\I for the fixed variables
[n] \ I, and decides whether or not Φ remains close to σ in the subcube corresponding
to ρ = ρI,z. When z is chosen uniformly, with high probability Φ�ρ remains close to σ,
and hence the acceptance probability of T is high; thus, any distribution over {−1, 1}[n]\I

44

that is pseudorandom for T also yields, with high probability, values z ∈ {−1, 1}[n]\I

such that Φ�ρI,z
remains close to σ. The problem with this approach is that a test T for such

a task above might be very inefficient, since it needs to evaluate Φ on all points in the
subcube corresponding to ρ = ρI,z; thus, we might not be able to construct a pseudorandom
generator with short seed to “fool” such a “complicated” test.

To solve this problem, we use the following general technique that was introduced in
our previous work [Tel17], which is called randomized tests. Loosely speaking, a lemma
from our previous work implies the following: Assume that there exists a distribution T
over tests {−1, 1}[n]\I → {−1, 1} such that for every fixed input z for which Φ�ρI,z

is n−100-
close to σ it holds that T(z) = −1, with high probability, and for every fixed input z for
which Φ�ρI,z

is not n−10-close to σ it holds that T(z) = 1, with high probability. That is,
the distribution T constitutes a “randomized test” that distinguishes, with high probability,
between “excellent” z’s (such that Φ�ρI,z

is very close to σ) and “bad” z’s (such that Φ�ρI,z

is relatively far from σ). Also assume that almost all tests T : {−1, 1}[n]\I → {−1, 1} in the
support of T are “fooled” by a pseudorandom generator G. Then, with high probability
over choice of seed for the pseudorandom generator G, the generator outputs z such that
Φ�ρI,z

is n−10-close to σ (see Lemma C.2 below for a precise and general statement).
The main point when using the technique above is that the distribution T, which may

have very high entropy, is only part of the analysis; the actual algorithm that generates z is
simply the pseudorandom generator G. The general statement of the lemma is:

Lemma C.2 (randomized tests; see [Tel17, Lem. 15]). Let n ∈ N, and let ε > 0 be an error
parameter.

• Let G ⊆ {−1, 1}n, and let E ⊆ G such that Prz∈{−1,1}n [z ∈ E] ≥ 1− ε.

• Let T be a distribution over functions T : {−1, 1}n → {−1, 1} such that for every z ∈ E
it holds that PrT∼T[T(z) = −1] ≥ 1− ε, and for every z /∈ G it holds that PrT∼T[T(z) =
1] ≥ 1− ε.

• Let z be a distribution that is ε-pseudorandom for all but an ε-fraction of the tests in T; that
is, the probability over T ∼ T that

∣∣∣Pr[T(un) = −1]− Pr[T(z) = −1]
∣∣∣ > ε is at most ε.

Then, the probability that z ∈ G is at least 1− 6ε.

In our specific setting, the distribution T that we will use is equivalent to the following
random process: Given z ∈ {−1, 1}[n]\I , uniformly sample poly(n) points in the subcube
corresponding to ρI,z, and accept z if Φ evaluates to the constant σ on all the sample
points. We show how to construct such a distribution T such that almost all of the residual
deterministic tests T ∈ support(T) are conjunctions of p(n) = poly(n) LTFs, and have
very high acceptance probability (at least 1− 1/poly(p(n))). Thus, any distribution that
is (1/poly(n))-pseudorandom for LTFs is also (1/poly(n))-pseudorandom for almost all
tests in the support of T. Let us now turn to a formal proof of Lemma C.1.

Proof of Lemma C.1. Without loss of generality, assume that Φ is δ-close to the constant
σ = −1. For any Boolean function f over a domain D, let acc(f) = Prx∼D[f (x) = −1].
Also, denote J = [n] \ I and n′ = |J|, and for any z ∈ {0, 1}n′ , denote by ρz the restriction
ρz = (I, z) (i.e., we suppress I in the notation ρz, since I is fixed).

Let G =
{

z ∈ {0, 1}n′ : acc(Φ�ρz
) ≥ 1− δ′

}
. Our goal is to show that Prz∼z[z ∈ G] ≥

1−O(γ). Let E =
{

z ∈ {0, 1}n′ : acc(Φ�ρz
) ≥ 1−

√
δ
}

. Note that when z ∈ {−1, 1}n′ is

45

chosen uniformly it holds that Ez∈{−1,1}n′

[
acc(Φ�ρz

)
]
= Prx∈{−1,1}n [Φ(x) = −1] ≥ 1− δ.

Therefore, Prz∈{−1,1}n′ [z ∈ E] ≥ 1−
√

δ.

We now construct a distribution T over tests {−1, 1}n′ → {−1, 1} that distinguishes,
with high probability, between z ∈ E and z /∈ G. For x ∈ {0, 1}|I|, let Tx be the function
that gets as input z ∈ {0, 1}n′ , and outputs the value Φ(y), where yJ = z and yI = x.
Note that for any fixed z ∈ {−1, 1}n′ , when uniformly choosing x ∈ {−1, 1}|I| it holds that
Pr [Tx(z) = −1] = acc(Φ�ρz

). Also, Tx is an LTF of its input z, because

Tx(z) = sgn (〈y, w〉 − θ) = sgn (〈z, wJ〉 − (θ − 〈x, wI〉)) . (C.1)

For t = O
(

log(1/γ)
δ′

)
and x̄ = (x(1), ..., x(t)) ∈ {0, 1}t·|I|, let Tx̄ : {−1, 1}n′ → {−1, 1} be

the function such that Tx̄(z) = −1 if and only if for every i ∈ [t] it holds that Tx(i)(z) = −1
(i.e., Tx̄ is the conjunction ∧i∈[t]Tx(i)). Our distribution T is the uniform distribution over

the set
{

Tx̄ : x̄ ∈ {0, 1}t·|I|
}

. Observe that:

• For any fixed z ∈ E it holds that PrTx̄∼T [Tx̄(z) = −1] ≥ 1− t ·
√

δ.

• For any fixed z /∈ G it holds that PrTx̄∼T [Tx̄(z) = −1] ≤ γ.

We want to show that almost all of the tests {Tx̄}x̄∈{0,1}t·|I| in the support of T accept
almost all of their inputs. To see that this is the case, observe that

Ex̄ [acc(Tx̄)] = Pr
x̄,z
[Tx̄(z) = −1] ≥ Pr

z
[z ∈ E] ·min

z∈E

{
Pr̄
x
[Tx̄(z) = −1]

}
,

which is lower-bounded by 1− ξ2, where ξ2 = (t + 1) ·
√

δ. Therefore, the fraction of tests
Tx̄ that reject more than ξ of their inputs is at most ξ.

Now, let Tx̄ be a test such that acc(Tx̄) ≥ 1− ξ. Since Tx̄ is a conjunction of Tx(1) , ..., Tx(t) ,
for each i ∈ [t] it holds that acc(Tx(i)) ≥ 1− ξ. Also, for each i ∈ [t] it holds that z is η-
pseudorandom for Tx(i) , where η ≤ (γ2 · δ′), and therefore Prz∼z[Tx(i)(z) = −1] ≥ 1− ξ − η.
It follows that Prz∼z[Tx̄(z) = −1] ≥ 1− t · (ξ + η).

We invoke Lemma C.2 with the parameters ε1 =
√

δ, ε2 = t ·
√

δ, ε3 = γ, ε4 = ξ, and
ε5 = t · (ξ + η), and deduce that

Pr
z∼z

[z /∈ G] ≤ (t + 1) ·
√

δ + γ + 2 ·
√

t + 1 · δ1/4 + t · (
√

t + 1 · δ1/4 + η)

= O
(

γ + t3/2 · δ1/4 + t · η
)

= O
(

γ + (γ · δ′)−3/2 · δ1/4 + η/(γ · δ′)
)

,

which is O(γ) since η ≤ (γ2 · δ′) and by our hypotheses regarding γ, δ, and δ′.

46
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

