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Abstract

A hypergraph is k-rainbow colorable if there exists a vertex coloring using k colors such
that each hyperedge has all the k colors. Unlike usual hypergraph coloring, rainbow coloring
becomes harder as the number of colors increases. This work studies the rainbow colorability
of hypergraphs which are guaranteed to be nearly balanced rainbow colorable. Specifically,
we show that for any Q, k ≥ 2 and ` ≤ k/2, given a Qk-uniform hypergraph which admits a
k-rainbow coloring satisfying:

• in each hyperedge e, for some `e ≤ ` all but 2`e colors occur exactly Q times and the rest
(Q± 1) times,

it is NP-hard to compute an independent set of (1− `+1
k +ε)-fraction of vertices, for any constant

ε > 0. In particular, this implies the hardness of even (k/`)-rainbow coloring such hypergraphs.

The result is based on a novel long code PCP test that ensures the strong balancedness prop-
erty desired of the k-rainbow coloring in the completeness case. The soundness analysis relies on
a mixing bound based on uniform reverse hypercontractivity due to Mossel, Oleszkiewicz, and
Sen, which was also used in earlier proofs of the hardness of ω(1)-coloring 2-colorable 4-uniform
hypergraphs due to Saket, and k-rainbow colorable 2k-uniform hypergraphs due to Guruswami
and Lee.

1 Introduction

A hypergraph is a collection of vertices and subsets of the set of vertices called hyperedges. It is
q-uniform if each hyperedge has exactly q vertices, in particular a 2-uniform hypergraph is the
usual graph. An independent set of a hypergraph is a subset of vertices that does not contain all
the vertices of any hyperedge. A fundamental property of a hypergraph is its colorability : it is
said to be k-colorable if the set of vertices can be colored using k colors so that no hyperedge is
monochromatic. These color classes partition the vertices into k disjoint independent sets.

The computational aspects of coloring graphs and hypergraphs have been the focus of a sub-
stantial body of research. In brief, it is known that 3-colorable graphs can efficiently be colored
using nO(1)-colors [24] (see also [38, 6, 7, 23, 19, 1]). Similar nO(1)-approximations are known
for 2-colorable 3-uniform and 4-uniform hypergraphs [11, 25, 31]. From the intractability per-
spective, on graphs the best lower bound only rules out efficiently coloring a 3-colorable graph
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using 4-colors [26, 16]. For hypergraphs much better lower bounds rule out efficiently coloring 2-
colorable 8-uniform hypergraphs using exp((log n)Ω(1)) colors [30, 22, 37] building upon the previous
exp(exp(Ω(

√
log log n)) lower bound [12, 14]. For 2-colorable 4-uniform hypergraphs a correspond-

ing (log n)c lower bound is known [36]. These intractability results proceed by ruling out computing
independent sets of density (i.e., fraction of vertices) α(n) which implies the same for (1/α(n))-
coloring the hypergraph. For 2-colorable 3-uniform hypergraphs however, [13] directly showed the
hardness of coloring using constantly many colors.

Another notion of coloring in hypergraphs is that of rainbow colorability – a hypergraph can be k-
rainbow colored if there exists a coloring of the vertices using k colors ensuring that each hyperedge
contains vertices of all the k colors. Any (k − 1) of the k color classes therefore constitute an
independent set, and thus such hypergraphs have at least one independent set of density (1− 1/k).
Note that unlike usual hypergraph coloring, rainbow coloring becomes more restrictive as the
number of colors increases, and the problem is to determine the largest k for which there exists a
k-rainbow coloring. This has been studied by Bollobás et. al. [8] who gave structural upper and
lower bounds for several classes of hypergraphs. In some scenarios (such as modelling fair resource
allocations) it is desirable that the coloring also be balanced, i.e., the colors should occur roughly
the same number of times in any hyperedge. This is related to minimizing the discrepancy of
hypergraph 2-colorings, for which notable recent works [5, 32] have given constructive algorithms.
Subsequent works have shown tight hardness results for zero discrepancy case in hypergraphs with
unbounded hyperedges [10] and for bounded hypergraphs with nearly zero discrepancy [4].

A perfectly balanced rainbow coloring is one in which every color appears exactly the same
number of times in each hyperedge. Such hypergraphs are easy to efficiently 2-color using semi-
definite programming (see [18]). In particular, a k-uniform k-rainbow colorable hypergraph (a.k.a., a
k-uniform k-partite hypergraph) can efficiently be 2-colored. On the other hand, efficient 2-coloring,
or even finding an independent set of density 1/2 does not seem possible if the guaranteed coloring
deviates from being perfectly balanced. Indeed, Guruswami and Lee [18] proved the hardness of
approximately coloring a class of such hypergraphs. They proved that it is NP-hard to compute
an independent set of density ε in a Qk-uniform hypergraph (Q, k ≥ 2) which is guaranteed to be
k-rainbow colorable such that each color appears at least (Q − 1) times in every hyperedge. This
implies the hardness of coloring such hypergraphs using constantly many colors as well as that of
non-trivially (i.e., using at least 2 colors) rainbow coloring them. The results of [18] do not, however,
say anything about coloring k-rainbow colorable q-uniform hypergraphs for q < 2k. Brakensiek and
Guruswami [9], under a conjectured intractability of a problem called “V Label Cover” that they
formulate, proved hardness of finding an independent set of density ε in a (k+1)-uniform k-rainbow
colorable hypergraph. This generalized the case of 2-colorable 3-uniform hypergraphs for which the
same hardness was shown by Khot and Saket [29] under the d-to-1 Games Conjecture of Khot [28].
Unlike these conjecture based works however, our focus is on unconditional results.

While the structural guarantee considered in [18] captures balanced rainbow colorings, it also
allows those in which a particular color may appear up to (k + Q − 1) times in a hyperedge.
This is quite far off from being balanced in the regime where k is comparable or larger than Q,
for example when Q = 2 which corresponds to the smallest uniformity relative to k for which
the hardness applies. The focus of this work is the case of rainbow colorable hypergraphs with a
stronger balancedness condition on the coloring: in each hyperedge the occurrences of some of the
colors is each off by at most 1 from Q, and the rest of the colors have precisely Q occurrences.
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In our main result we show that it is hard to rainbow color such hypergraphs even with far fewer
colors. Formally we show the following:

Theorem 1.1. For any Q, k ≥ 2, ` ≤ k/2 and an arbitrarily small constant ε > 0, given a
Qk-uniform hypergraph of size n which is guaranteed to be k-rainbow colorable such that:

• in each hyperedge e, for some `e ≤ `, there are `e colors that occur exactly (Q− 1) times, `e
colors that occur exactly (Q+ 1) times and the rest of the colors occur exactly Q times,

it is NP-hard to compute an independent set of density
(

1− (`+1)
k + ε

)
. This implies, in particular,

that it is NP-hard to (k/`)-rainbow color such hypergraphs. Under DTIME(NO(log logN)) reductions
from 3SAT one can choose ε = (log n)−c where c is some positive constant depending on Q, k and
`.

Our result yields (with Q = k = 2 and ` = 1) the result of Saket [36] who showed the
currently best hardness of (log n)c-coloring 2-colorable 4-uniform hypergraphs, improving on the

Ω
(

log logn
log log logn

)
lower bound by Guruswami, H̊astad, and Sudan [15], and Holmerin [21]. For ` = 1

and Q, k ≥ 2, Guruswami and Lee [18] studied this problem and claimed1 a weaker hardness – in
an auxiliary result of their initial work – ruling out independent sets of density (1− 1/k).

1.1 Our Techniques

The hardness reduction presented in this paper follows the template of long code based Probabilis-
tically Checkable Proofs (PCPs) for the Label Cover problem. The long code encodings of the
supposed labels of the Label Cover variables constitute the proof, whose locations are the vertices
of the resulting hypergraph instance. The PCP verifier queries a few locations of the proof in each
of its random tests defining the set of hyperedges. The test accepts if the [k] := {1, . . . , k}-valued
labels at the queried locations describe a rainbow coloring satisfying the desired balancedness cri-
terion.

Let us now illustrate what we consider the novelty of our reduction: the PCP test for proving
Theorem 1.1 with constants Q, k ≥ 2 and 1 ≤ ` ≤ k/2. The test queries k locations from Q long
codes corresponding to Q vertices of the Label Cover instance with constraints projecting on a
common neighbor. Its main building block is a distribution P over

∏Q
j=1([k]d)k which gives the

query locations restricted to the Q pre-images of a label of the common neighbor. To construct P
we define, for 1 ≤ t ≤ k, µt to be the uniform distribution over all (x(1), . . . , x(t)) ∈ ([k]d)t such

that for every i ∈ [d], x
(1)
i , . . . , x

(t)
i are distinct. Figure 1a illustrates a sample from µk.

Corresponding to the jth long code (j ∈ [Q]), let (x1,j , . . . , xk,j) be an i.i.d. sample from µk.
Now, for any choice of labels (having the fixed common projection) given by i1, . . . , iQ ∈ [d],

(x
(1,1)
i1

, . . . , x
(k,1)
i1

, . . . , x
(1,j)
ij

, . . . , x
(k,j)
ij

, . . . , x
(1,Q)
iQ

, . . . , x
(k,Q)
iQ

) ∈ [k]kQ

is perfectly balanced i.e., each color in [k] occurs exactly Q times. For the PCP test to work, it re-
quires some perturbation while ensuring that the resultant coloring above remains nearly balanced.

1However, Guruswami and Lee have since withdrawn this claim (Theorem 1.4 and Appendix D in the ECCC
version [17]) from later versions of their paper [18].

3



2 4 1 5 3

3 1 2 4 5

5 2 4 1 3

1 2 3 4 5

(a) A sample from µk

4 2 1 4 3

3 1 1 2 3

3 5 4 1 5

5 4 5 4 2

(b) A sample from (µ` ⊗ µk−`)

Figure 1: Samples from µk and (µ` ⊗ µk−`). k = 5, ` = 2 and d = 4.

For this purpose, we choose j∗ ∈ [Q] at random and sample (x1,j∗ , . . . , xk,j
∗
) from µ` ⊗ µk−`

(illustrated in Figure 1b). Formally, we define:

P :=
1

Q

Q∑
j∗=1

µk ⊗ · · · ⊗ µk︸ ︷︷ ︸
j∗−1 times

⊗(µ` ⊗ µk−`)⊗
Q−j∗ times︷ ︸︸ ︷

µk ⊗ · · · ⊗ µk

 .
Notice that the marginal of P for any j ∈ [Q] is P := (1− 1/Q)µk + (1/Q)(µ` ⊗ µk−`). As desired,
for any choice of i1, . . . , iQ ∈ [d], for any

∏Q
j=1(x(1,j), . . . , x(k,j)) in the support of P,

(x
(1,1)
i1

, . . . , x
(k,1)
i1

, . . . , x
(1,j)
ij

, . . . , x
(k,j)
ij

, . . . , x
(1,Q)
iQ

, . . . , x
(k,Q)
iQ

)

is nearly balanced: for some `′ ≤ `, `′ of the colors in [k] occur exactly (Q − 1) times, `′ of them
occur exactly (Q+ 1) times, and the rest of the colors exactly Q times.

To extend the test distribution to the pre-images of L labels on smaller side of the Label Cover,
we sample

(x(1,1), . . . , x(k,1), . . . , x(1,j), . . . , x(k,j), . . . , x(1,Q), . . . , x(k,Q)) ∈
Q∏
j=1

([k]Ld)k

by sampling independently for each i ∈ [L], the restriction of the above locations to the coordinates
{d(i− 1) + 1, . . . , di} from P.

Let fj : [k]Ld → {0, 1} denote the restriction to the jth long code of a sufficiently dense inde-
pendent set. Our soundness analysis shows that with significant probability over the choice of the
Q long codes of the PCP test, two of the functions {fj}j∈[Q] are intersecting juntas. Otherwise,
the expectations inside each long code would be uncorrelated yielding a hyperedge inside the sup-
posed independent set. These juntas are then decoded into a good labeling for the Label Cover.
This motivates the first step of the analysis: in a single long code lower bounding the expectation

E
[∏k

s=1 fj(x
(s,j))

]
for some sufficiently heavy fj . We show that when E[fj ] ≥ (1− `+1

k + ε),

E

[
k∏
s=1

fj(x
(s,j))

]
≥ Ω(εc)

for some c > 0 depending on Q, k and `. The proof of this lower bound proceeds by representing the
product inside the expection as A(X)B(Y ) where (X,Y ) = ((x(1,j), . . . , x(`,j)), (x(`+1,j), . . . , x(k,j))).
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It can be seen that X and Y are at most (1 − 1/Q)-correlated2. Further, using the structure of
the PCP test we show that E[A],E[B] ≥ Ω(ε). Using this coupled with a lower bound on the
mixing of Markov chains that was shown by Mossel, Oleszkiewicz, and Sen [34] based on their
generalized reverse hypercontractivity, yields the desired lower bounds. A similar use (for a simpler
PCP test) of this technique was made by Saket [36]. Subsequently Guruswami and Lee [18] used
reverse hypercontractivity to analyze a PCP test which sampled uniformly from ([k]d)k instead of
µ` ⊗ µk−` for the j∗th long code, and used it to show their NP-hardness result for O(1)-coloring
k-rainbow colorable hypergraphs mentioned earlier.

In their work, Guruswami and Lee [18] leveraged a smoothness property (first defined by
Khot [27]) of the Label Cover instance for their analysis which used Gaussian invariance theo-
rems and decoded a labeling using influential coordinates. Unfortunately, achieving smoothness
generates a significant blowup in the size of the Label Cover which renders the reduction somewhat
inefficient. In contrast, our analysis (as also in [36]) is based on standard Fourier analysis and uses
a projection size preservation property of the vanilla Label Cover shown by H̊astad [20]. This limits
the size blowup enabling us to upper bound the “error” ε in the NO case to 1/poly(log n) under
quasi-polynomial time reductions.

2 Preliminaries

Consider for i = 1 to n, the product space (Ω
(1)
i ×Ω

(2)
i , µi) where the marginals of µi are µ

(1)
i , µ

(2)
i .

Let (Ω(s), µ(s)) = (
∏n
i=1 Ω

(s)
i ,⊗ni=1µ

(s)
i ), for s = 1, 2. We say that (X,Y ) ∈ Ω(1) × Ω(2) is ρ-

correlated3 if independently for each i ∈ [n], (Xi, Yi) is sampled from µi with probability ρ, and

from µ
(1)
i ⊗ µ

(2)
i with probability (1− ρ).

The following theorem is a straightforward generalization of the special case of Ω(1) = Ω(2) and
µi = id proved in [34]. The derivation is provided in [18] and we incorporate the explicit parameters
from [34].

Theorem 2.1. In above setup, let A ⊆ Ω(1) and B ⊆ Ω(2) be two sets such that µ(1){A}, µ(2){B} ≥

δ ≥ 0. Let (X,Y ) ∈ (Ω(1) × Ω(2)) be ρ-correlated. Then, Pr [X ∈ A, Y ∈ B] ≥ δ
2−√ρ
1−√ρ .

We shall also use the Efron-Stein decompositions of functions over product spaces (see [33] for
reference).

Proposition 2.2. Let (Ω =
∏n
i=1 Ωi, µ = ⊗ni=1µi) be a product space. Then, any f ∈ L2(Ω, µ) can

be decomposed uniquely as:

f(x) =
∑
S⊆[n]

fS(x),

where fS depends only on the coordinates in S and for S′ 6⊇ S, E [fS |xS′ ] = 0. In particular
{fS}S⊆[n] are orthogonal i.e., E[fSfS′ ] = 0 for S 6= S′.

The starting point of the reduction is the LabelCover problem which is defined as follows.

2 This is analogous to the notion of ρ-correlation used in [34] and was also used in the reverse hypercontractivity
based mixing bounds of [18].

3See footnote 2.
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Definition 2.3. An instance L of LabelCover consists of a bipartite graph GL(U, V,E) along
with label sets [L] and [M ] where M = dL. For each edge e between u ∈ U and v ∈ V , there is a
projection πvu : [M ] 7→ [L], such that |π−1

vu (j)| = d for each j ∈ [L]. A labeling lu ∈ [L] to u and
lv ∈ [M ] to v satisfies the edge if πvu(lv) = lu. The goal is to find a labeling of U and V to satisfy
the maximum number of edges.

The inapproximability of LabelCover stated below follows from the PCP Theorem [3, 2], Raz’s
Parallel Repetition Theorem [35]. We also leverage a structural property proved by H̊astad [20]
showing that for any vertex in V the image of a large subset of its labels remains large under most
of the projections incident on v.

Theorem 2.4. For every positive integer r, there is a deterministic NO(r) time reduction from
a 3SAT instance of size N to an instance L(GL(U, V,E), {πvu}{v,u}∈E , [L], [M ]) of LabelCover
with the following properties:

a. |U |, |V | ≤ NO(r). L,M, d ≤ 23r. G is bi-regular with left and right degrees bounded by 2O(r).

b. There is a universal constant c0 > 0 such that for any v ∈ V and S ⊆ [M ], taking an

expectation over a random neighbor u of v, E
[
|πvu(S)|−1

]
≤ |S|−2c0. This implies that over

the choice of a random neighbor u of v,

Pr [|πvu(S)| < |S|c0 ] ≤ |S|−c0 .

c. There is a universal constant γ0 > 0 such that,

YES Case: If the 3SAT instance is satisfiable then there is a labeling to U and V that satisfies
all edges of L.

NO Case: If the 3SAT instance is unsatisfiable then any labeling to U and V satisfies at most
2−γ0r fraction of the edges.

3 Proof of Theorem 1.1

In this section we prove the following hardness reduction which implies Theorem 1.1.

Theorem 3.1. For any constant integers Q, k ≥ 2 and k/2 ≥ ` ≥ 1, and constant ε > 0, there is
a polynomial time reduction from 3SAT to a Qk-uniform hypergraph G of size n such that:

YES Case. If the 3SAT instance is satisfiable then there is a k-coloring of the vertices of G such
that for in each hyperedge e for some `e ≤ ` there exactly `e colors that appear (Q− 1) times each
and `e colors that appear (Q+ 1) times each, and the other colors appear exactly Q times each. In
particular, the hypergraph is k-rainbow colorable.

NO Case. If the 3SAT instance is not satisfiable then there is no independent set in G of size
1− (`+1)

k + ε fraction of vertices, implying that G is not (k/`)-rainbow colorable.

In the above, ε can be chosen to be (log n)−c for some c depending on Q, k and ` if NO(log logN)-
time reduction from 3SAT is allowed.
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The input is an instance L of LabelCover from Theorem 2.4 consisting of a bipartite graph
GL(U, V,E), label sets [M ] and [L] with M = dL, and projections {πvu : [M ] 7→ [L] | {u, v} ∈
E, u ∈ U, v ∈ V } such that |π−1

vu (j)| = d for any j ∈ [L].

For each vertex v ∈ V , there is a uniformly weighted long code Hv which is a copy of [k]M . The
set of vertices in the output G is

⋃
vHv and the Qk-uniform hyperedges correspond to the PCP

test that is described in the next few paragraphs. The parameters Q, k and ` in Theorem 3.1 are
fixed in the rest of this section.

3.1 Distributions

First we define D(t) for t ≤ k to be the uniform distribution over the set

Γ(t) := {z ∈ [k]t | zi 6= zj , ∀ 1 ≤ i < j ≤ t}. (1)

Given this, let µt be the distribution over ([k]d)t where (x(1), . . . , x(t)) ∈ ([k]d)t is sampled by inde-

pendently for each i ∈ [d] sampling (x
(1)
i , . . . , x

(t)
i ) from D(t). Using this we define the distribution

P over
∏Q
j=1([k]d)k by the following sampling procedure.

1. Choose j∗ ∈ [Q] uniformly at random.

2. For each j ∈ [Q] \ {j∗} sample (x(1,j), . . . , x(k,j)) from µk.

3. For j∗ sample (x(1,j∗), . . . , x(k,j∗)) from (µ` ⊗ µk−`).

4. Ouput (x(1,1), . . . , x(k,1), . . . , x(1,j), . . . , x(k,j), . . . , x(1,Q), . . . , x(k,Q)).

The marginal of P restricted to any j ∈ [Q] is the same distribution P where

P :=

(
1− 1

Q

)
µk +

(
1

Q

)
(µ` ⊗ µk−`). (2)

With the above in place the PCP test of the verifier is given below.

Test of PCP Verifier

The verifier expects a coloring Cv : Hv → [k] for all v ∈ V and executes the following steps.

1. The verifier chooses a random vertex u ∈ U and Q of its neighbors v1, . . . , vQ with projections
πj := πvju and long codes Hj := Hvj . Let the Cj := Cvj be the corresponding colorings.

2. The verifier samples:

(
x(1,1), . . . , x(k,1), . . . , x(1,j), . . . , x(k,j), . . . , x(1,Q), . . . , x(k,Q)

)
∈

Q∏
j=1

([k]Ld)k
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from the distribution Q which is described by sampling independently for each i ∈ [L],(
x(1,1)|π−1

1 (i), . . . , x
(k,1)|π−1

1 (i), . . . , x
(1,Q)|π−1

Q (i), . . . , x
(k,Q)|π−1

Q (i)

)
from the distribution P defined above. Let the marginal of Q restricted to j ∈ [Q] be Qj
noting that Qj is identical to PL up to permutation of coordinates.

3. The verifier accepts if the coloring
(
Cj(x

(s,j))
)
s∈[k],j∈[Q]

has for some `′ ≤ `, `′ colors that

appear exactly (Q− 1) times each, `′ colors that appear exactly (Q+ 1) times each and the
rest of the colors appearing exactly Q times each.

The rest of this section is devoted to proving the YES and NO cases of Theorem 3.1.

3.2 YES Case

In this case there is a labeling lv for v ∈ V such that for any u ∈ U and its neighbors v, w,
πvu(lu) = πwu(lw). Letting Cv(x) = xlv for x ∈ Hv and v ∈ V yields a coloring of G that makes
the verifier accept with probability 1. In particular, this coloring satisfies the YES case of Theorem
3.1.

3.3 NO Case

Suppose that G contains an independent set I of
(

1− (`+1)
k + 4ε

)
fraction of vertices. By standard

averaging and using the bi-regularity of the LabelCover instance L we obtain that for at least ε
fraction of “good” vertices u ∈ U , at least ε fraction of its neighbors are “heavy” vertices v ∈ V
which satisfy,

Ex∈[k]M [fv(x)] ≥
(

1− `+ 1

k
+ ε

)
, (3)

where fv : [k]M → {0, 1} is the indicator of I ∩ Hv.

3.3.1 Lower bound in each Long Code

Fix a choice of a good u and its heavy neighbors v1, . . . , vQ in the verifiers test. For convenience
we let fj := fvj . Fix some j ∈ [Q], and consider the expectation

E(x(1,j),...,x(k,j))←Qj

[
k∏
s=1

fj(x
(s,j))

]
. (4)

By rearranging the coordinates and omitting the subscript j, the above is equivalent to the following
expectation:

E(x(1),...,x(k))←PL

[
k∏
s=1

f(x(s))

]
, (5)
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where

Ex∈([k]d)L'[k]M [f(x)] ≥
(

1− `+ 1

k
+ ε

)
. (6)

Using the definition of Γ(.) in (1) and by abusing notation slightly let

X = (x1, . . . , x`) ∈ (Γ(`))M , and Y = (x`+1, . . . , xk) ∈ (Γ(k − `))M , (7)

and define functions

A(X) :=
∏̀
s=1

f(xs), and B(Y ) :=

k∏
s=`+1

f(xs). (8)

Thus, the expectation in (5) is equivalent to

EX,Y [A(X)B(Y )] , (9)

where (X,Y ) is sampled from P⊗L ' [(1−1/Q)µk + (1/Q)(µ`⊗µk−`)]⊗L. Note that, the marginal
distribution of X is µ⊗L` and that of Y is µ⊗Lk−`. Thus, X and Y are (1− 1/Q)-correlated. Applying
Theorem 2.1 we obtain,

EX,Y [A(X)B(Y )] ≥ (min{E[A(X)],E[B(Y )]})3Q . (10)

The following argument lower bounds the RHS of the above.

Lemma 3.2. For A and B defined as above, E[A], E[B] ≥ δ0 := ε
/(

k
`

)
.

Proof. Consider a k-uniform hypergraph H on vertex set [k]M and hyperedge set {(x1, . . . , xk) |
(x

(1)
i , . . . , x

(k)
i ) ∈ Γ(k), ∀i ∈ [M ]}. Observe that H is a regular hypergraph i.e. each vertex appears

in the same number of hyperedges. Using the bound in (6) along with an averaging, we obtain that
at least ε fraction of the hyperedges (x(1), . . . , x(k)) are “dense” satisfying∣∣∣{s | f(x(s)) = 1}

∣∣∣ ≥ k − `. (11)

Consider a random choice of Y = (x(`+1), . . . , x(k)) sampled from µ⊗Lk−` ' D(k − `)⊗M . This is
equivalent to a u.a.r choice of a hyperedge in H and a u.a.r subset of (k − `) of its vertices. From

(11) we obtain EY [B(Y )] = E(x(`+1),...,x(k))←D(k−`)⊗M
[∏k

s=`+1 f(x(s))
]
≥ δ0. Further, since ` ≤ k/2

it is easy to see that EX [A(X)] ≥ EY [B(Y )].

Using Lemma 3.2 along with (10) we obtain EX,Y [A(X)B(Y )] ≥ δ3Q
0 , which is rewritten as:

E(X(j),Y (j))←Qj

[
Aj(X

(j))Bj(Y
(j))
]
≥ δ1 := δ3Q

0 . (12)
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3.3.2 Analyzing over Q Long Codes

Let us fix a choice of u and Q of its neighbors v1, . . . , vQ. Using the notation introduced in Section
3.3.1: we have functions Aj : Γ(`)M → {0, 1} and Bj : Γ(k − `)M → {0, 1} for j = 1, . . . , Q. From
Proposition 2.2, their Efron-Stein decomposition is given as follows.

Aj =
∑
S⊆[M ]

Aj,S , and Bj =
∑
S⊆[M ]

Bj,S . (13)

Let R be a parameter to be decided later. Define the following subsets of (2[M ])Q:

S0 :=
{

(S1, . . . , SQ) ∈ (2[M ])Q | πj(Sj) ∩ πj′(Sj′) = ∅, 1 ≤ j < j′ ≤ Q
}
, (14)

S1 :=

{
(S1, . . . , SQ) ∈ (2[M ])Q \ S0 | max

j
|Sj | ≤ R

}
, (15)

S2 :=

{
(S1, . . . , SQ) ∈ (2[M ])Q | max

j
|πj(Sj)| > Rc0

}
, (16)

S3 :=
{

(S1, . . . , SQ) ∈ (2[M ])Q | ∃j s.t. |Sj | > R, |πj(Sj)| ≤ Rc0
}
, (17)

where c0 > 0 is the constant from Theorem 2.4. Note that
⋃3
p=0 Sp ⊇ (2[M ])Q. Let us define

δ :=

Q∏
j=1

E(X(j),Y (j))←Qj

[
Aj(X

(j))Bj(Y
(j))
]
. (18)

Since I is an independent set we also have,

E((X(1),Y (1)),...,(X(Q),Y (Q)))←Q

 Q∏
j=1

Aj(X
(j))Bj(Y

(j))

 = 0. (19)

Subtracting (19) from (18), expanding the Efron-Stein decomposition and using standard Fourier
analysis we obtain

∆0 + ∆1 + ∆2 + ∆3 ≥ δ, (20)

where,

∆0 =
∑

(S1,...,SQ)∈S0

 Q∏
j=1

E(X(j),Y (j))←Qj

[
Aj,Sj (X

(j))Bj,Sj (Y
(j))
]

− E((X(1),Y (1)),...,(X(Q),Y (Q)))←Q

 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))

 (21)

and for p = 1, 2, 3,

∆p =
∑

(S1,...,SQ)∈Sp

 Q∏
j=1

∣∣∣E(X(j),Y (j))←Qj

[
Aj,Sj (X

(j))Bj,Sj (Y
(j))
]∣∣∣

+

∣∣∣∣∣∣E((X(1),Y (1)),...,(X(Q),Y (Q)))←Q

 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))

∣∣∣∣∣∣
 . (22)
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The definition of S0 and the properties of Efron-Stein decompositions in Proposition 2.2 imply that
each term of the sum in the RHS of (21) is zero. Thus,

∆0 = 0. (23)

The goal of the rest of the analysis is to show that for an appropriate choice of r in Theorem 2.4
and the parameter R, the expectation over the choice of u and v1, . . . , vQ of each ∆p (p = 1, 2, 3) is
small. Specifically, we shall show that a large E[∆1] would yield a good labeling to L contradicting
its NO case. Further, ∆2 is bounded by the dampening induced by the presence of subsets with
large projections in its sum, and E[∆3] is bounded by property (b) of Theorem 2.4. On the other
hand, E[δ] is significant due to (12) thereby yielding for us a contradiction in (20).

We begin with the following upper bound on ∆1.

Lemma 3.3.

∆1 ≤ 2 ·

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2

.

Proof. Using E[fg] ≤ ‖f‖2‖g‖2 observe that

∆1 ≤
∑

(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

∥∥Bj,Sj∥∥2
+

∑
(S1,...,SQ)∈S1

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

≤

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2
 ∑

(S1,...,SQ)

Q∏
j=1

∥∥Bj,Sj∥∥2

2

 1
2

+

 ∑
(S1,...,SQ)∈S1

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

2


1
2
 ∑

(S1,...,SQ)

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

2


1
2

, (24)

where the last inequality uses the standard Cauchy-Schwartz inequality. Observe that
∥∥∥∏Q

j=1Aj,Sj

∥∥∥2

2
=∏Q

j=1

∥∥Aj,Sj∥∥2

2
since {X(j)}kj=1 are independent. Similarly,

∥∥∥∏Q
j=1Bj,Sj

∥∥∥2

2
=
∏Q
j=1

∥∥Bj,Sj∥∥2

2
. Thus,

(24) boils down to,

∆1 ≤ 2 ·

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2
 ∑

(S1,...,SQ)

Q∏
j=1

∥∥Bj,Sj∥∥2

2

 1
2

≤ 2 ·

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2
 Q∏
j=1

‖Bj‖22

 1
2

≤ 2 ·

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2

. (25)
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For analyzing ∆2 and ∆3, we use the following lemma which is proved in Appendix A.

Lemma 3.4. ∣∣∣∣∣∣E((X(1),Y (1)),...,(X(Q),Y (Q)))←Q

 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

(
1− 1

Q

)maxj |πj(Sj)|
.

Corollary 3.5.∣∣∣E(X(j),Y (j))←Qj

[
Aj,Sj (X

(j))Bj,Sj (Y
(j))
]∣∣∣ ≤ ∥∥Aj,Sj∥∥2

∥∥Bj,Sj∥∥2

(
1− 1

Q

)|πj(Sj)|
.

Proof. Use Lemma 3.4 with Sj′ = ∅ for all j′ 6= j.

Using the above we have the following bounds for the two sums in ∆2.

Claim 3.6. ∑
(S1,...,SQ)∈S2

∣∣∣∣∣∣EQ
 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))

∣∣∣∣∣∣ ≤ Q
(

1− 1

Q

)Rc0
. (26)

Claim 3.7. ∑
(S1,...,SQ)∈S2

Q∏
j=1

∣∣∣EQ [Aj,Sj (X(j))Bj,Sj (Y
(j))
]∣∣∣ ≤ (1− 1

Q

)Rc0
. (27)

Claims 3.6 and 3.7 are proved in Appendix B. Using them along with p = 2 in (22) directly
yields the following lemma upper bounding ∆2.

Lemma 3.8.

∆2 ≤ (Q+ 1)

(
1− 1

Q

)Rc0
.

Similarly, we have the following bounds for the two sums in ∆3.

Claim 3.9.

∑
(S1,...,SQ)∈S3

∣∣∣∣∣∣EQ
 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))

∣∣∣∣∣∣ ≤
Q∑
j=1

 ∑
Sj :|Sj |>R
|πj(Sj)|<Rc0

∥∥Aj,Sj∥∥2

2


1
2

(28)

Claim 3.10.

∑
(S1,...,SQ)∈S3

Q∏
j=1

∣∣∣EQ [Aj,Sj (X(j))Bj,Sj (Y
(j))
]∣∣∣ ≤ Q∑

j=1

 ∑
Sj :|Sj |>R
|πj(Sj)|<Rc0

∥∥Aj,Sj∥∥2

2


1
2

(29)
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Claims 3.9 and 3.10 are proved in Appendix C. Again, with p = 3 in (22) Claims 3.9 and 3.10
directly imply the following lemma.

Lemma 3.11.

∆3 ≤ 2 ·
Q∑
j=1

 ∑
Sj :|Sj |>R
|πj(Sj)|<Rc0

∥∥Aj,Sj∥∥2

2


1
2

.

Plugging in Lemmas 3.3, 3.8 and 3.11 into (20) we obtain that for such a fixed choice of u and
v1, . . . , vQ

(
δ

Q+ 1

)
≤

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2

+

Q∑
j=1

 ∑
Sj :|Sj |>R
|πj(Sj)|<Rc0

∥∥Aj,Sj∥∥2

2


1
2

+

(
1− 1

Q

)Rc0
. (30)

For a good choice of u, and Q of its heavy neighbors v1, . . . , vQ, as defined in (18), δ ≥ δQ1 due to
the lower bound in (12). Taking an expectation of (30) over the verifiers choices and noting that
with probability at least εQ+1 u is good and v1, . . . , vQ are heavy, we obtain,

(
δQ1 ε

Q+1

Q+ 1

)
≤ E

u,{vj}Qj=1


 ∑

(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2

+

Q∑
j=1

 ∑
Sj :|Sj |>R
|πj(Sj)|<Rc0

∥∥Aj,Sj∥∥2

2


1
2


+

(
1− 1

Q

)Rc0

≤

E
u,{vj}Qj=1

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2

+

Q∑
j=1

Evj

 ∑
Sj :|Sj |>R

∥∥Aj,Sj∥∥2

2
Pr
u

[|πj(Sj)| < Rc0 ]

 1
2

+

(
1− 1

Q

)Rc0

≤

E
u,{vj}Qj=1

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2

+
Q

R
c0
2

+

(
1− 1

Q

)Rc0
(31)

where the last inequality uses property (b) of Theorem 2.4. Consider a labeling to the LabelCover
instance L given by assigning each vertex v ∈ V label lv randomly chosen from a subset S ⊆ [M ]
sampled with probability ‖Av,S‖22. A vertex u ∈ U is labeled by uniformly at random choosing
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(Q− 1) of its neighbors v2, . . . , vQ, random subsets Sj with probability ‖Avj ,Sj‖22 independently for

j = 2, . . . , Q, and assigning a random label from
⋃Q
j=2 πj(Sj). From the definition of S1 in (15) the

expected number of edges satisfied by this strategy is at least

1

Q
· 1

R
· 1

RQ
· E

u,{vj}Qj=1

 ∑
(S1,...,SQ)∈S1

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 ,
which by (31) is at least

(
1

RQ

)2
[(

δQ1 ε
Q+1

Q+ 1

)
− Q

R
c0
2

−
(

1− 1

Q

)Rc0]2

.

For any constant ε > 0, choosing the parameter R = poly(1/ε) and r = Θ(log(1/ε)) in Theorem
2.4 yields a contradiction to the NO Case of Theorem 2.4.

Ruling out ε = (log n)−c. Choosing r = (log logN)/4 in Theorem 2.4 we get that the reduction is
of size n = NO(r)223r ≤ NO(log logN). The soundness of L is 2−Ω(log logN) = 2−Ω(log logn). Combining
this with the above analysis in the NO Case, choosing ε = (log n)−c and R = ε−c

′
for some positive

constants c, c′ > 0 (depending on c0, Q, `, k and γ0) we obtain a contradiction to the NO Case of
Theorem 2.4.

4 Conclusion

Our work shows that in Qk-uniform k-rainbow colorable hypergraphs (Q, k ≥ 2) such that in each
hyperedge at most 2` of the colors appear Q ± 1 times and the rest exactly Q times, it is NP-
hard to find independent sets of density > (1 − (` + 1)/k). It is an open (challenging) question
to prove the NP-hardness of finding independent sets of arbitrarily small constant density in such
hypergraphs. The question of computing independent sets of density > 0.5 in perfectly balanced
rainbow colorable hypergraphs is also similarly open.
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A Proof of Lemma 3.4

For r = 1, . . . , L, j∗ = 1, . . . , Q, let us define the operator T
(r)
j∗ on the space of functions g(X(1), . . . , X(Q))

where T
(r)
j∗ g is the expectation of g over the rerandomization of X(j∗)|π−1

j (r) ← µ`. Further, let

T (r)g := Ej∗∈[Q]

[
T

(r)
j∗ g

]
. (32)

Clearly,

T
(r)
j∗

Q∏
j=1

Aj,Sj (X
(j)) =

 Q∏
j∈[Q]\{j∗}

Aj,Sj (X
(j))

T
(r)
j∗ Aj∗,Sj∗ (X

(j∗)). (33)

Moreover, from Proposition 2.2,

T
(r)
j∗ Aj∗,Sj∗ (X

(j∗)) =

{
0 if r ∈ πj∗(Sj∗),
Aj∗,Sj∗ (X

(j∗)) otherwise.
(34)

Given S = (S1, . . . , SQ) and r ∈ [L] let q(S, r) := |{j ∈ [Q] | r ∈ πj(Sj)}|. From (32), (33) and
(34) we obtain that for a fixed (X(1), . . . , X(Q)),

T (r)
Q∏
j=1

Aj,Sj (X
(j)) =

(
1− q(S, r)

Q

) Q∏
j=1

Aj,Sj (X
(j)), (35)

and therefore,

T (1) . . . T (L)
Q∏
j=1

Aj,Sj (X
(j)) =

(
L∏
r=1

(
1− q(S, r)

Q

)) Q∏
j=1

Aj,Sj (X
(j)). (36)

Now,

E((X(1),Y (1)),...,(X(Q),Y (Q)))←Q

 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))


= E{(X(j),Y (j))←µ⊗Lk }

Q
j=1

T (1) . . . T (L)
Q∏
j=1

Aj,Sj (X
(j))

 Q∏
j=1

Bj,Sj (Y
(j))


= E{(X(j),Y (j))←µ⊗Lk }

Q
j=1

 Q∏
j=1

Aj,Sj (X
(j))

 Q∏
j=1

Bj,Sj (Y
(j))

( L∏
r=1

(
1− q(S, r)

Q

))
(using (36))

≤

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

(
L∏
r=1

(
1− q(S, r)

Q

))
(using E[fg] ≤ ‖f‖2‖g‖2)

≤

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

(
1− 1

Q

)maxj |πj(Sj)|
,

which completes the proof.
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B Proofs of Claims 3.6 and 3.7

Proof of Claim 3.6. Consider the term inside the sum on the LHS of (26):∣∣∣∣∣∣E
 Q∏
j=1

Aj,Sj (X
(j))Bj,Sj (Y

(j))

∣∣∣∣∣∣ (37)

Fix S1 is such that |π1(S1)| > Rc0 . The sum over all (S2, . . . , SQ) ∈ (2[M ])(Q−1) of (37) is upper
bounded (using Lemma 3.4) by,

(
1− 1

Q

)Rc0 ∑
(S2,...,SQ)

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

.

Now note that,

∑
(S2,...,SQ)

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

≤

 ∑
(S2,...,SQ)

∥∥∥∥∥∥
Q∏
j=1

Aj,Sj

∥∥∥∥∥∥
2

2


1
2
 ∑

(S2,...,SQ)

∥∥∥∥∥∥
Q∏
j=1

Bj,Sj

∥∥∥∥∥∥
2

2


1
2

(38)

=

 ∑
(S2,...,SQ)

E

∣∣∣∣∣∣
Q∏
j=1

Aj,Sj

∣∣∣∣∣∣
2

1
2
 ∑

(S2,...,SQ)

E

∣∣∣∣∣∣
Q∏
j=1

Bj,Sj

∣∣∣∣∣∣
2

1
2

=

E

 ∑
(S2,...,SQ)

∣∣∣∣∣∣
Q∏
j=1

Aj,Sj

∣∣∣∣∣∣
2

1
2
E

 ∑
(S2,...,SQ)

∣∣∣∣∣∣
Q∏
j=1

Bj,Sj

∣∣∣∣∣∣
2

1
2

(39)

=

E

A1,S1

∑
(S2,...,SQ)

Q∏
j=2

Aj,Sj

2
1
2
E

B1,S1

∑
(S2,...,SQ)

Q∏
j=2

Bj,Sj

2
1
2

(40)

=

E

A1,S1

Q∏
j=2

Aj

2
1
2
E

B1,S1

Q∏
j=2

Bj

2
1
2

(41)

≤
(
E
[
A2

1,S1

]) 1
2
(
E
[
B2

1,S1

]) 1
2 = ‖A1,S1‖2 ‖B1,S1‖2 , (42)

where we applied Cauchy-Schwartz in (38) and used that fact that Aj and Bj are {0, 1} valued
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functions in (42). To see how (39) equals (40) observe that,

E

A1,S1

∑
(S2,...,SQ)

Q∏
j=2

Aj,Sj

2− E

 ∑
(S2,...,SQ)

∣∣∣∣∣∣
Q∏
j=1

Aj,Sj

∣∣∣∣∣∣
2

= E
[
A2

1,S1

] ∑
(S2,...,SQ)
6=(S′2,...,S

′
Q)

Q∏
j=2

E
[
Aj,SjAj,S′j

]
= 0,

using the independence of {X(j)}Qj=1 and the orthogonality of {Aj,S}S⊆[M ] for each j ∈ [Q]. The
same analysis holds for the second product in (39). Thus, the sum of (37) over all (S1, . . . , SQ)
such that |π1(S1)| > Rc0 is at most(

1− 1

Q

)Rc0 ∑
S1:|π1(S1)|>Rc0

‖A1,S1‖2 ‖B1,S1‖2

≤
(

1− 1

Q

)Rc0  ∑
S1:|π1(S1)|>Rc0

‖A1,S1‖
2
2

 1
2
 ∑
S1:|π1(S1)|>Rc0

‖B1,S1‖
2
2

 1
2

(43)

≤
(

1− 1

Q

)Rc0
(44)

Summing the above bound for all j ∈ [Q] for which πj(Sj) > Rc0 yields the claim.

Proof of Claim 3.7. From Corollary 3.5 the LHS of (27) is upper bounded by

∑
(S1,...,SQ)

Q∏
j=1

∥∥Aj,Sj∥∥2

∥∥Bj,Sj∥∥2

(
1− 1

Q

)Rc0

≤

 ∑
(S1,...,SQ)

Q∏
j=1

∥∥Aj,Sj∥∥2

2

 1
2
 ∑

(S1,...,SQ)

Q∏
j=1

∥∥Bj,Sj∥∥2

2

 1
2 (

1− 1

Q

)Rc0

=

 Q∏
j=1

∑
Sj

∥∥Aj,Sj∥∥2

2

 1
2
 Q∏
j=1

∑
Sj

∥∥Bj,Sj∥∥2

2

 1
2 (

1− 1

Q

)Rc0

=

 Q∏
j=1

‖Aj‖22

 1
2
 Q∏
j=1

‖Bj‖22

 1
2 (

1− 1

Q

)Rc0
≤
(

1− 1

Q

)Rc0
. (45)

C Proofs of Claims 3.9 and 3.10

Proof of Claim 3.9. The proof is a slight variation to that of Claim 3.6 in Appendix B and proceeds
in a similar manner till the bound in (43) except we don’t have the (1−1/Q)R

c0 factor outside and
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the inner sum is over S1 s.t. |S1| > R and |π1(S1)| < Rc0 yielding an upper bound of ∑
S1:|S1|>R
|π1(S1)|<Rc0

‖A1,S1‖
2
2


1
2

,

for j = 1. Summing this over all j ∈ [Q] completes the proof of the claim.

Proof of Claim 3.10. The proof is similar to that of Claim 3.7 in Appendix B except that that it
is done separately for each S1 s.t. |S1| > R and |π1(S1)| < Rc0 , and upon summing over all such
S1 this yields an upper bound of

∑
S1:|S1|>R
|π1(S1)|<Rc0

‖A1,S1‖2 ‖B1,S1‖2 ≤

 ∑
S1:|S1|>R
|π1(S1)|<Rc0

‖A1,S1‖
2
2


1
2

,

for j = 1. Again, summing this over all j ∈ [Q] completes the proof of the claim.
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