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Abstract

Consider a random sequence of n bits that has entropy at least n − k, where k � n. A
commonly used observation is that an average coordinate of this random sequence is close to
being uniformly distributed, that is, the coordinate “looks random”. In this work, we prove a
stronger result that says, roughly, that the average coordinate looks random to an adversary
that is allowed to query ≈ n

k other coordinates of the sequence, even if the adversary is non-
deterministic. This implies corresponding results for decision trees and certificates for Boolean
functions.

As an application of this result, we prove a new result on depth-3 circuits, which recovers
as a direct corollary the known lower bounds for the parity and majority functions, as well as a
lower bound on sensitive functions due to Boppana [Bop97]. An interesting feature of this proof
is that it works in the framework of Karchmer and Wigderson [KW90], and in particular it is
a “top-down” proof [HJP95]. Finally, it yields a new kind of a random restriction lemma for
non-product distributions, which may be of independent interest.

1 Introduction

1.1 Background and main result

Let X ∈ {0, 1}n be a random variable such that H(X) ≥ n − k, where k � n and H(X) is the
Shannon entropy of X. By the sub-additivity of entropy, we know that an average coordinate Xi

of X has entropy close to 1, which means that it is close to being uniformly distributed. Indeed,
the average value of H(Xi) for a uniformly chosen coordinate i ∈ [n]) is at least 1− k/n. Putting
it differently, in terms of prediction, an adversary, who knows the distribution of X as well as the
value of the index i chosen uniformly, has only negligible advantage in guessing the value of Xi.

This simple observation (and its generalization to strings over larger alphabets) turns out to
be extremely useful, and is a crucial ingredient in the proof of many important results such as
the parallel repetition theorem [Raz98], lower bounds on the communication complexity of set-
disjointness [Raz92b, BJKS04], lower bounds on the round complexity of communication pro-
tocols (e.g., [PS84, DGS87, Mcg86, NW93]), composition theorems for communication proto-
cols [EIRS01, DM16], lower bounds on interactive coding and interactive compression (e.g., [KR13,
GKR14]) and the construction of extractors [NZ96].
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In this work, we prove a generalization of this observation. Specifically, we consider the setting
in which the adversary is stronger in the following way: besides knowing the distribution of X and
the randomly chosen index i, the adversary is allowed to query q other coordinates of X before
it tries to guess Xi. Our main result says, roughly, that the adversary cannot guess Xi with
non-negligible advantage even after querying q = O(n/k) coordinates of X. Moreover, this holds
even if the adversary is allowed to choose the queries non-deterministically. We note that while
our adversary model is non-standard, it generalizes the two standard models of decision trees and
certificates (see Section 1.1.1 below).

More specifically, our prediction model is the following. The adversary is given the distribu-
tion X and the random coordinate i, and a parameter ε > 0 (here ε is the bias parameter). The
adversary first makes q non-deterministic queries to other coordinates in the sequence.1 The ad-
versary is successful on coordinate i if some choice of q queries result in answers to the queries
which enable it to guess Xi with advantage ε, namely with success probability at least 1

2 + 1
2 · ε.

We prove that for the average coordinate and for a random sample from the distribution X, the
adversary is successful in having such advantage ε only with very small probability. In particular,
for any fixed ε > 0, this success probability goes to 0 as long as q = o(n/k).

One way to understand the non-determinism of the adversary is by defining, for each coordi-
nate i, a set of “witnesses” for good prediction, each over q coordinates in [n]. Conditioned on the
event that at least one of these witnesses occurs in the given sample of X, the distribution of Xi

has a bias of ε. We proceed to give the formal definition and result.

Definition 1.1. A witness for a coordinate i ∈ [n] is a pair (Q, a) where Q ⊆ [n] − {i} and

a ∈ {0, 1}|Q|. The witness appears in a string x ∈ {0, 1}n if x|Q = a. The length of the witness
is |Q|.

Definition 1.2. A q-family of witnesses F for a coordinate i ∈ [n] is a set of witnesses for i of
length at most q. We say that a string x ∈ {0, 1}n satisfies F if at least one of the witnesses in F
appears in x. For a random string X ∈ {0, 1}n, a bit b ∈ {0, 1} and 0 ≤ ε ≤ 1, we say that F
ε-predicts Xi = b if

Pr [Xi = b|X satisfies F ] ≥ 1

2
+

1

2
· ε.

Using the above definitions, an adversary is simply a pair (F 0, F 1) such that F b is a q-family of
witnesses that ε-predicts Xi = b. Our main theorem says that for the average coordinate i, the
probability that X satisfies either F 0 or F 1 is small.

Theorem 1.3 (Main theorem). Let X be a random variable taking values from {0, 1}n such that
H(X) ≥ n−k, and let q ∈ N, 0 ≤ ε ≤ 1. Suppose for every coordinate i ∈ [n] there is a pair (F 0

i , F
1
i )

such that F bi is a q-family of witnesses for i that ε-predicts Xi = b, and let δi denote the probability
that a string drawn from X satisfies either F 0

i or F 1
i . Then, the average value of δi over i ∈ [n] is

at most 300·k·q
ε3·n .

We note that this result is almost tight, as is demonstrated by the following example. We partition
the string X to k blocks of length n

k . Now, suppose that X is a uniformly distributed string
such that the parity of each block is 0. Then, the adversary can guess every coordinate Xi with
probability 1 by querying n

k − 1 other coordinates: the adversary will simply query all the other
coordinates in the block of Xi, and output their parity. Note that in this example, the adversary
does not need to use non-determinism, and does not even need to be adaptive.

1Being non-deterministic, it does not matter if these queries are adaptive or not.

2



Remark 1.4. We note that a q-family of witnesses F can be viewed alternatively as a DNF formula
of width at most q, where a string x satisfies F if the formula outputs 1 on x. Taking this view,
the adversary defines a pair of DNF formulas (φ0, φ1), and guesses that Xi = b if φb(X) = 1. It is
an interesting open problem to generalize this result to adversaries that use constant-depth circuits
rather than DNFs. Ajtai [Ajt92] proved a result in a similar spirit in the special case where X is
distributed uniformly over all strings of some fixed Hamming weight nΩ(1).

Follow-up work. Very recently, Smal and Talebanfard have managed to improve the bound in
Theorem 1.3 to k·(q+1)

(1−H( 1
2

+ ε
2

))·n .

1.1.1 Applications to decision trees and certificates

While our model of adversary is somewhat non-standard, our main theorem has immediate conse-
quences for two standard models, namely, decision trees and certificates.

We start by discussing the application to decision trees, which correspond to deterministic
adaptive adversaries. Given a random string X and a coordinate i, we say that a decision tree
ε-predicts Xi if the decision tree makes queries to the coordinates in [n] − {i} and outputs the
value of Xi correctly with probability at least 1

2 + 1
2 · ε. We prove the following direct corollary of

Theorem 1.3.

Corollary 1.5. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n − k,
and let q ∈ N, 0 ≤ ε ≤ 1. Then, the number of coordinates i ∈ [n] that are ε-predicted by some
decision tree that makes at most q queries is at most 300·k·q

ε3
.

We turn to discuss certificates, which correspond to a non-deterministic adversary that predicts
coordinates with perfect accuracy (i.e. ε = 1). Given a random string X ∈ {0, 1}n, a coordinate i ∈
[n] and a bit b ∈ {0, 1}, a b-certificate for i is a witness (Q, a) such that

Pr [Xi = b|X|Q = a] = 1.

In the context of certificates, we do not need to discuss families of witnesses, since it easy to see
that the best strategy for the adversary is to take F bi to be the family of all b-certificates for Xi.
We prove the following direct corollary of Theorem 1.3.

Corollary 1.6. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n − k,
and let q ∈ N. For every coordinate i ∈ [n], we denote by δi the probability that any certificate for Xi

of length at most q appears in X. Then, the average value of δi over i ∈ [n] is at most 300·k·q
n .

1.1.2 Observation on random restrictions

In most random restriction arguments (which are most typically apply to their effect on DNF
formulae), a random subset of the coordinates is chosen to be fixed, and then each is fixed inde-
pendently at random. Some generalizations of this were found useful, in which the values to the
fixed variables are not independent, but are still quite structured (see e.g. the primer on random
restrictions [Bea94] and the recent lower bounds [PRST16, COST16] for such examples). Here
we consider a rather general form of a random restriction argument, in which the values to the
coordinates to be fixed are chosen from an arbitrarily correlated random variable X, according to
its marginals. The following result follows from our proof of Theorem 1.3, and may be interesting
in its own right.
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Proposition 1.7. Let φ be a DNF formula over n variables of width at most w, and let X be
a random variable that is distributed arbitrarily in {0, 1}n such that φ(X) = 1 with probability δ.
Let ρ be a random restriction that fixes each variable with probability at least p independently, and
that chooses the values of the fixed variables according to the marginal distribution of X on those
variables. Then, φ|ρ is fixed to 1 with probability at least pw · δ.

See Section 3.3 for the proof of this proposition.

1.2 Application to circuit lower bounds

Proving circuit lower bounds is a central challenge of complexity theory. Unfortunately, proving
even super-linear lower bounds for general circuits seems to be beyond our reach at this stage. In
order to make progress and develop new proof techniques, much of the current research focuses on
proving lower bounds for restricted models of circuits.

One of the simplest restricted models that are not yet fully understood is circuits of constant
depth, and in particular, circuits of depth 3. By a standard counting argument, we know that
there exists a non-explicit function that requires such circuits of size Ω(2n/n). On the other hand,
the strongest lower bound we have for an explicit function [Ajt83, FSS84, H̊as86] says that circuits

of depth d computing the parity of n bits must be of size 2Ω(n1/(d−1)) (and in particular, depth-3
circuits must be of size 2Ω(

√
n)). Hence, while strong lower bounds are known in this model, there

is still a significant gap in our understanding. It is therefore important to develop new techniques
for analyzing such circuits.

An important insight about constant-depth circuits is that such circuits cannot compute sensi-
tive functions. Given a function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n, the sensitivity of f
at x is the number of coordinates i ∈ [n] such that flipping the i-th bit of x changes the value of f .
The average sensitivity of f is the average of the sensitivities of f over all inputs. The following
theorem of Boppana [Bop97], which improves on a result of Linial, Mansour, and Nisan [LMN93],
gives a lower bound on functions in terms of their average sensitivity.

Theorem 1.8 ([Bop97]). There exists a constant γ > 0 such that every function f : {0, 1}n → {0, 1}
with average sensitivity s requires depth-d circuits of size 2γ·s

1/(d−1)
.

This theorem of [Bop97] can be viewed as a powerful generalization of the aforementioned lower
bound on the parity function. In particular, note that it implies that lower bound as a special case,
since it is easy to see that the average sensitivity of the parity function is n. However, there are
some functions whose hardness for constant-depth circuits is not captured by this theorem. For
example, it is known that the majority function requires depth-3 circuits of size 2Ω(

√
n) [H̊as86], but

Theorem 1.8 only gives a lower bound of 2Ω(n1/4) for majority, since its average sensitivity is θ(
√
n).

In this work, we show that Theorem 1.3 can be used rather easily to prove a generalization of
the theorem of [Bop97] for depth 3 that also captures the latter lower bound for majority. This
generalization proves a lower bound on a function based on the condition it has a significant fraction
of sensitive inputs, even if the average input is not very sensitive.

Theorem 1.9. There exists a constant γ > 0 such that the following holds. Let f : {0, 1}n → {0, 1}
be a function has sensitivity at least s on at least α · 2n inputs in f−1(0) for some 0 < α < 1
(respectively, f−1(1)). Then every depth-3 circuit that computes f whose top gate is an AND gate
(respectively, OR gate) must be of size at least α

n · 2
γ·
√
s.

It is easy to see that Theorem 1.9 shows a depth-3 lower bound of 2Ω(
√
n) for majority: for

the majority function, all the inputs whose Hamming weight is about n
2 have sensitivity s = n

2 ,
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and there is about α = 1√
n

fraction of such inputs. Furthermore, it implies Theorem 1.8 for the

special case of depth-3 circuits, under the mild condition that the average sensitivity of f is at
least O(log2 n): To see why, observe that a function f : {0, 1}n → {0, 1} with average sensitivity s
must have sensitivity at least s/2 on at least s

2n fraction of the inputs. Since s
2n >

1
n , we can apply

Theorem 1.9 with sensitivity s/2 and α = 1
n and get a lower bound of 2Ω(

√
s).

We note that Ajtai proved the following similar (but incomparable) result, which works for
every constant depth:

Theorem 1.10 ([Ajt93]). For every natural number d there exists β > 0 such that for every
sufficiently large n ∈ N the following holds. If a function f : {0, 1}n → {0, 1} has sensitivity at

least n1−β on at least 2−n
β · 2n inputs, then f requires depth-d circuits of size at least 2n

β
.

Theorem 1.10 is stronger than our Theorem 1.9 in the sense that it works for every constant
depth, but is weaker in the sense that it works only for a very large sensitivity. It is an interesting
question whether our Theorem 1.9 could be extended to larger depths. This would give a more
refined understanding of the connection between sensitivity and constant-depth lower-bounds.

Remark 1.11. In fact, in order to prove Theorem 1.9 we do not need the full power of Theorem 1.3
— the corollary for certificates (Corollary 1.6) is sufficient.

On Karchmer-Wigderson relations. An interesting feature of our proof of Theorem 1.9 is
that it uses the framework of Karchmer-Wigderson relations. Karchmer and Wigderson [KW90]
observed that that for every function f : {0, 1}n → {0, 1} there is a corresponding communication
problem Rf such that the depth complexity of f is tightly related to the deterministic communi-
cation complexity of Rf . This correspondence allows us to attack questions about circuits using
tools from communication complexity.

While this framework has been very successful in proving lower bounds for monotone cir-
cuits [KPPY84, KW90, GS91, RW92, KRW95], so far had less success in the non-monotone set-
ting. One reason is that in the non–monotone setting it is impossible to prove lower bounds better
than n2 on Rf using techniques that work against randomized protocols [RW89, GMWW14], and
for constant-depth circuits, it is impossible to prove super-polynomial lower bounds using such
techniques [JST11, Mei17]. Indeed, this barrier of was bypassed only recently in the context of
formula lower bounds [DM16]. This work is the first time that the framework of Karchmer and
Wigderson is used to prove lower bounds for constant-depth circuits in the non-monotone setting
(although it is related to the top-down technique for the same purpose described next).

On top-down vs. bottom-up techniques. H̊astad, Jukna, and Pudlak [HJP95] proposed to
distinguish between two types of techniques for proving circuit lower bounds. “Bottom-up tech-
niques” are techniques that start by analyzing the bottom layer of the circuit (the inputs layer) and
then proceed to analyzing higher layers — the canonical example of such techniques is the switching
lemma and the proofs that are based on it [H̊as86]. “Top-down techniques”, on the other hand,
are techniques that start by analyzing the top-layer and then proceed to analyzing lower layers —
two canonical examples of such techniques are the Karchmer-Wigderson framework and techniques
that are based on formal complexity measures [Raz92a] (e.g., the method of Khrapchenko [Khr72]).

[HJP95] observed that all the techniques that were used to prove constant-depth lower-bounds
until that time were bottom-up techniques. They argued that it would be valuable to develop
top-down approaches for constant-depth lower-bounds in order to deepen our understanding and
extend our array of techniques. They then showed how to prove the depth-3 lower bounds of 2Ω(

√
n)
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for parity and majority using such a top-down proof. Their approach bears much similarity to the
approach of Karchmer and Wigderson, but there are some differences.

Our proof of Theorem 1.9 provides a second example for a top-down proof of constant-depth
lower-bounds. One notable difference between our work and [HJP95] is that [HJP95] give two
separate proofs for the lower bounds for parity and majority. While these two proofs share a
common framework, each of them still requires some different non-trivial ideas. Our Theorem 1.9,
on the other hand, is powerful enough to imply both these results as well as Theorem 1.8 of [Bop97].

1.3 Certificates for sets of coordinates

In Section 1.1.1, we discussed an application of our main theorem to certificates, which correspond
to an adversary that predicts a coordinate with perfect accuracy. In this section we discuss an
extension of this result to adversaries that attempt to predict a set of coordinates. In addition to
being interesting in its own right, we believe that this extension might be useful for generalizing
our lower bound for depth-3 circuits to higher depths.

In order to explain this extension, we take a slightly different view of certificates. Recall that
a certificate is a witness (Q, a) such that conditioned on X|Q = a, the value of Xi is known
with certainty. A different way to phrase this definition is to say that conditioned on X|Q = a,
the random variable Xi does not have full support. This leads to the following generalization of
certificates to sets of coordinates.

Definition 1.12. Let X be a random variable taking values from {0, 1}n, let R ⊆ [n] be a set
of coordinates. A certificate for R (with respect to X) is a pair (Q, a) where Q ⊆ [n] − R and

a ∈ {0, 1}|Q|, such that conditioned on X|Q = a, the random variable X|R does not have full
support. The length of the certificate is |Q|, and we say that a string x ∈ {0, 1}n satisfies the
certificate if x|Q = a.

Our corollary for certificates (Corollary 1.6) said that for an average coordinate i ∈ [n], the string
X does not satisfy any certificate for Xi with high probability. Our result for sets of coordinates,
is not as strong: it only says that for an average set of coordinates R ⊆ [n], the string X does
not satisfy any certificate for R with probability that is non-trivial (but is exponentially vanishing
in |R|). Still, this result could be useful in certain applications — for example, our Theorem 1.9
could be proved even using a theorem that suffers from such a limitation. We have the following
result.

Theorem 1.13. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n− k,
let r, q ∈ N, and assume that (q+ r) · (2k+ r+ 1) ≤ 1

4000 ·n. For every set of coordinates R ⊆ [n] of
size r, we denote by pR the probability that a string drawn from X does not satisfy any certificate
for R of length at most q. Then, the average value of pR over R ⊆ [n] is at least 2−r−1.

Observe that the certificates of Definition 1.12 corresponds to a very strong adversary: the
adversary makes at most q queries to the coordinates in [n]−R non-deterministically, and then it
is considered successful even if it only managed to rule out the possibility that X|R = b for a single

string b ∈ {0, 1}|R|. Theorem 1.13 establishes limits even against such powerful adversaries.

Open problems. As mentioned above, it would be interesting to generalize both our main theo-
rem and our Theorem 1.9 to circuits of higher depth. An additional interesting question is whether
the improved bound of [ST17] for our main theorem is tight for every ε > 0.
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Organization of the paper. We cover the required preliminaries in Section 2. We prove our
main result (Theorem 1.3) and its corollaries in Section 3, and present the application to circuit
lower bounds (Theorem 1.9) in Section 4. Finally, we prove the result on certificates for sets of
coordinates in Section 5.

2 Preliminaries

For n ∈ N, we denote [n]
def
= {1, . . . n}. Given a string x ∈ {0, 1}n and a set of coordinates I ⊆ [n],

we denote by x|I the projection of x to the coordinates in I.

2.1 Information theory

We use basic concepts from information theory, see [CT91] for more details.

Definition 2.1 (Entropy). The entropy of a random variable X is

H(X)
def
= Ex←X

[
log

1

Pr [X = x]

]
=
∑
x

Pr [X = x] · log
1

Pr [X = x]
.

Given a random variable Y , the conditional entropy H(X|Y ) is defined to be Ey←Y [H(X|Y = y)].

Fact 2.2. H(X) is lower bounded by 0 and is upper bounded by the logarithm of the size of the
support of X. The lower bound is achieved when X is a fixed value, and the upper bound is achieved
when X is uniformly distributed.

The conditional entropy H(X|Y ) is lower bounded by 0 and is upper bounded by H(X). The
lower bound is achieved when X is a function of Y , and the upper bound is achieved when X is
independent of Y .

The following useful fact is a special case of the data processing inequality. Intuitively, it says
that if X,Y, Z are random variables and Z is a function of Y , then Z cannot give more information
on X than Y .

Fact 2.3. Let X,Y, Z be random variables, such that Z is determined by Y . Then H(X|Y ) ≤
H(X|Z).

Fact 2.4 (The chain rule). Let X,Y be random variables. Then H(X,Y ) = H(X|Y ) +H(Y ).

Facts 2.2 and 2.4 imply that entropy is sub-additive.

Corollary 2.5 (The sub-additivity of entropy). Let X,Y be random variables. Then H(X,Y ) ≤
H(X) +H(Y ).

We also define the binary entropy function, which will be useful in the proof of our main
theorem.

Definition 2.6 (Binary entropy function). The binary entropy function H : [0, 1] → [0, 1] is the
function defined by

H(x) = x · log
1

x
+ (1− x) · log

1

1− x
,

and by H(0) = H(1) = 0. In other words, H(p) is the entropy of a binary random variable that
takes one value with probability p and the other value with probability 1− p.
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The following approximation of the binary entropy function, which follows from its Taylor
expansion, is useful.

Fact 2.7. Let 0 ≤ ε ≤ 1. Then H(1
2 −

1
2 · ε) = H(1

2 + 1
2 · ε) ≥ 1− 1

2 · ε
2.

We also define the notion of “min-entropy”, which will be used in the proof of the result on
certificates for sets of coordinates.

Definition 2.8. The min-entropy of a random variable X is

H∞(X) = min
x

{
log

1

Pr [X = x]

}
.

In other words, H∞(X) is the smallest number h such that Pr [X = x] = 2−h for some x.

One useful feature of min-entropy is that it behaves nicely under conditioning:

Fact 2.9. Let X be a random variable, and let E be an event. Then H∞(X|E) ≥ H∞(X)−log 1
Pr[E] .

Proof. For every value x it holds that

Pr [X = x|E] =
Pr [X = x ∧ E]

Pr [E]
≤ Pr [X = x]

Pr [E]
≤ 2

−H∞(X)+log 1
Pr[E] .

It therefore follows that H∞(X|E) ≥ H∞(X)− log 1
Pr[E] , as required. �

The following fact allows us to transform a random variable that has high entropy into one that
has high min-entropy.

Fact 2.10. Let X be a random variable taking values from a set X such that H(X) ≥ log |X | − k.
Then there is an event E of probability at least 1

2 such that H∞(X|E) ≥ log |X | − 2k − 1.

Proof. Let E be the event that X takes a value x that satisfies Pr [X = x] ≥ 2−(log|X |−2k). We
claim that E has probability at least 1

2 : to see why, observe by Markov’s inequality and the fact
that H(X) ≤ log |X |, it holds with probability at least 1

2 that

log |X | − log
1

Pr [X = x]
≤ 2k

or in other words Pr [X = x] ≤ 2−(log|X |−2k). Next, for every value x in the support of X|E it holds
that

Pr [X = x|E] ≤ Pr [X = x]

Pr [E]
≤ 2−(log|X |−2k−1).

It follows that H∞(X|E) ≥ log |X | − 2k − 1, as required. �

2.2 Karchmer-Wigderson relations

Let f : {0, 1}n → {0, 1} be a non-constant function. The Karchmer-Wigderson relation of f ,
denoted Rf , is the following communication problem: Alice gets a string x ∈ f−1(0), Bob gets
a string y ∈ f−1(1), and they wish to find a coordinate j ∈ [n] such that xj 6= yj . There is a
tight connection between protocols for Rf and formulas that compute f [KW90] (see also [Raz90,
KKN95, GMWW14]).The following proposition is a direct corollary of this connection.
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Proposition 2.11. Let f : {0, 1}n → {0, 1} be a non-constant function. If there is a depth-3 circuit
of size S that computes f whose top gate is an AND gate, then there is a 3-round protocol that
solves Rf of the following form:

• In the first round, Alice sends to Bob a message of at most logS bits.

• In the second round, Bob sends to Alice a message of at most logS bits.

• In the third round, Alice sends to Bob the solution j ∈ [n].

If there is such a circuit whose top gate is an OR gate, then there is such a protocol with the roles
of Alice and Bob being reversed.

Therefore, if we wish to prove lower bounds on depth-3 circuits computing f , it suffices to prove
lower bounds on the communication complexity of protocols of the foregoing form.

3 The Main Theorem and its Corollaries

In this section we prove our main theorem, restated next, and its corollaries regarding decision
trees and certificates.

Definition 1.1 (Witness). A witness for a coordinate i ∈ [n] is a pair (Q, a) where Q ⊆ [n]− {i}
and a ∈ {0, 1}|Q|. The witness appears in a string x ∈ {0, 1}n if x|Q = a. The length of the witness
is |Q|.

Definition 1.2 (Family of witnesses). A q-family of witnesses F for a coordinate i ∈ [n] is a set
of witnesses for i of length at most q. We say that a string x ∈ {0, 1}n satisfies F if at least one of
the witnesses in F appears in x. For a random string X ∈ {0, 1}n, a bit b ∈ {0, 1} and 0 ≤ ε ≤ 1,
we say that F ε-predicts Xi = b if

Pr [Xi = b|X satisfies F ] ≥ 1

2
+

1

2
· ε.

Theorem 1.3 (Main theorem). Let X be a random variable taking values from {0, 1}n such that
H(X) ≥ n−k, and let q ∈ N, 0 ≤ ε ≤ 1. Suppose for every coordinate i ∈ [n] there is a pair (F 0

i , F
1
i )

such that F bi is a q-family of witnesses for i that ε-predicts Xi = b, and let δi denote the probability
that a string drawn from X satisfies either F 0

i or F 1
i . Then, the average value of δi over i ∈ [n] is

at most 300·k·q
ε3·n .

The rest of this section is organized as follows: In Section 3.1 we describe the high-level idea
of the proof of the main theorem. Then, in Section 3.2, we give the full proof of the theorem.
Next, in Section 3.3, we derive our observation on random restrictions (Proposition 1.7). Finally,
in Section 3.4, we derive the applications to decision trees and certificates.

3.1 Proof idea

As a warm-up, let us consider the simpler problem of proving limitations of a deterministic, non-
adaptive adversary. Such an adversary is defined as follows: In order to predict the coordinate Xi,
the adversary chooses a priori a set of queries Qi ⊆ [n] − {i} of size q. The adversary then gets
to see X|Qi , and makes a guess for Xi based on this string. For simplicity, we assume that the
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adversary may not err, that is, if the adversary was told that X|Qi and then guessed that Xi = b,
then it must be the case that

Pr [Xi = b |X|Qi = a ] = 1.

In other words, this means that the coordinate Xi must be a deterministic function of X|Qi . Now,
suppose we wish to prove that if the number of queries q is less than n

k −1, there exists a coordinate
that such an adversary cannot guess using q queries.

Suppose for the sake of contradiction that such an adversary can predict every coordinate i ∈ [n]
of X. We prove that in such case, the entropy H(X) must be smaller than n − k, contradicting
our assumption. To this end, we choose a sequence of sets of coordinates, and use them to upper
bound the entropy of X. Consider the following process: Let i1 be an arbitrary coordinate, and
let Qi1 be the corresponding set that the adversary chooses. Let i2 be an arbitrary coordinate
in [n] − ({i1} ∪Qi1), and let Qi2 be the corresponding set. Let i3 be an arbitrary coordinate in
[n] − ({i1} ∪Qi1 ∪ {i2} ∪Qi2), and let Qi3 be the corresponding set. We continue in this manner
until there are no more coordinates that are left to choose, that is, until {i1} ∪Qi1 ∪ . . . covers all
the coordinates, and let i1, . . . , it the coordinates that were chosen in this process. In each iteration
we removed at most q + 1 coordinates, and therefore the number of iterations is t ≥ n

q+1 . By the
chain rule (Fact 2.4), it holds that

H(X) = H
(
X|Qi1 , X|Qi2 , . . . , X|Qit

)
+H

(
Xi1 , Xi2 , . . . , Xit

∣∣∣X|Qi1 , X|Qi2 , . . . , X|Qit )
Now, by assumption, each coordinate Xij is completely determined by X|Qij , so the second term
is 0. Therefore

H(X) = H
(
X|Qi1 , X|Qi2 , . . . , X|Qit

)
≤ |Qi1 ∪Qi2 ∪ . . . ∪Qit | ≤ n− t

where the first inequality is due to by Fact 2.2, and the second inequality is because the set Qi1 ∪
Qi2 ∪ . . . ∪Qit does not include i1, . . . , it. It follows that

H(X) ≤ n− t ≤ n− n

q + 1
< n− n

(nk − 1) + 1
= n− k,

and this contradicts the assumption that H(X) ≥ n− k.
Now let us consider again the harder case of a non-deterministic adversary. In this setting,

matters are more complicated: the set of queries Qi1that predicts X|i1 is not chosen a priori before
seeing X, but is rather chosen from a family of witnesses Fi1 based on the value of X. Therefore, we
cannot use the foregoing simple process to choose the coordinates i1, . . . it and the sets Qi1 , . . . , Qit .
Instead, we choose the coordinates i1, . . . , it at random. We then show that the entropy

H
(
Xi1 , Xi2 , . . . , Xit

∣∣X|[n]−{i1,...,it}
)

is small. From this point, an analysis along the same lines as above shows that H(X) < n − k,
as required. We note that our actual proof is not a proof by contradiction, but rather uses the
assumption H(X) ≥ n − k to derive a bound on the average probability that a coordinate is
predicted by a certificate.

The reason that the latter entropy is small is that for every coordinate ij , the stringX|[n]−{i1,...,it}
satisfies some family of witnesses for Xij with significant probability, and Xij is biased and has
less than full entropy. Intuitively, the reason for X|[n]−{i1,...,it} satisfies a family of witnesses with
significant probability is the following; Recall that satisfying a family of witnesses can be viewed as
satisfying a small-width DNF formula. Conditioning on a random set of coordinates [n]−{i1, . . . , it}
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is equivalent to subjecting the formula to a random restriction, which causes the formula to be
fixed to 1 with high probability. We note that the latter implication does not follow from the
switching lemma [H̊as86], but from a simpler and more general observation on random restrictions
(see Section 3.3 below).

3.2 The proof

Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n − k, and let q ∈ N,
0 ≤ ε ≤ 1. For every coordinate i ∈ [n], let (F 0

i , F
1
i ) be a pair such that F bi is a q-family of witnesses

for i that ε-predicts Xi = b, and let δi denote the probability that X satisfies either F 0
i or F 1

i .
We wish to prove that the average value of the δi’s is at most 300·k·q

ε3·n . To this end, for b ∈ {0, 1}
let δi,b denote the probability that X satisfies F bi . We prove our claim for the δi,0’s and the δi,1’s

separately: we will prove that the average of the δi,0’s is at most 150·k·q
ε3·n , and the same holds for the

δi,1’s, and the upper bound on the average of the δi’s will follow by the union bound.
Specifically, we prove the upper bound on the average of the δi,1’s, and the upper bound for the

δi,0’s can be proved similarly. Let δ1 denote the average of the δi,1’s. We prove the following result.

Lemma 3.1. Let T ⊆ [n] be a uniformly distributed set of coordinates of size t = ε·n
8·q . Then

ET
[
H
(
X|T

∣∣X|[n]−T
)]
≤ t− ε2

16
· δ1 · t.

Observe that Lemma 3.1 implies the desired upper bound on δ1: to see why, observe that assuming
the latter inequality, it holds by the chain rule (Fact 2.4) that

H(X) = ET [H(X)] = ET
[
H(X|[n]−T ) +H

(
X|T

∣∣X|[n]−T
)]
≤ n− t+ t− ε2

16
· δ1 · t,= n− ε2

16
· δ1 · t

By combining the latter inequality with the assumption that H(X) ≥ n− k we get

n− k ≤ n− ε2

16
· δ1 · t

δ1 ≤
k

ε2

16 · t
.

By substituting t = ε·n
8·q we get

δ1 ≤ 150 · k · q
ε3 · n

,

as required.
In the rest of this section we prove Lemma 3.1. To this end, we will prove an upper bound on the
entropy of a single coordinate in T , and then use the sub-additivity of entropy to prove the upper
bound on the entropy of X|T . The following claim provides an upper bound on the entropy of a
single coordinate.

Claim 3.2. For every i ∈ [n] it holds that

ET
[
H
(
Xi

∣∣X|[n]−T
)
|i ∈ T

]
≤ 1− ε2

16
· δi,1

11



Proof. Let i ∈ [n], let E be the event that X satisfies F 1
i , and let E′ be the event that X|[n]−T

satisfies F 1
i (formally, E′ is the event that there is a witness (Q, a) ∈ F 1

i that appears in X such
that Q ⊆ [n]−T ). The idea of the proof is that the probability of E′ is close to δi,1, and when this
event occurs, the coordinate Xi is biased and therefore its entropy is low.

Observe that for every string x that satisfies F 1
i , the probability that E′ occurs conditioned

on X = x is at least 1 − ε
8 (where the probability is over the choice of T , conditioned on i ∈ T ):

To see it, let (Q, a) be the first witness in F 1
i that appears in x. Then, each coordinate in Q has

probability at most t
n to belong to T , and by the union bound, the probability that any coordinate

in Q belongs to T is at most q · tn = ε
8 . Hence, it follows that Pr [E′|E, i ∈ T ] ≥ 1 − ε

8 . Since the
events E and i ∈ T are independent, it follows that the probability of E′ is

Pr
X,T

[
E′|i ∈ T

]
≥ (1− ε

8
) · Pr

X,T
[E|i ∈ T ] = (1− ε

8
) · Pr

X
[E] ≥ (1− ε

8
) · δi,1.

We now show that if the event E′ occurs, the coordinate Xi is biased. The reason that this holds
is that the coordinate is biased conditioned on the event E, and the event E′ has high probability
conditioned E. Formally, it holds that

Pr
X,T

[
Xi = 0|E′, i ∈ T

]
≤

PrX,T [Xi = 0|E, i ∈ T ]

PrX,T [E′|E, i ∈ T ]

≤
PrX,T [Xi = 0|E, i ∈ T ]

1− ε
8

≤ Pr
X,T

[Xi = 0|E, i ∈ T ] +
ε

4

= Pr
X,T

[Xi = 0|E] +
ε

4

≤ 1

2
− ε

2
+
ε

4

≤ 1

2
− ε

4
,

and therefore PrX,T [Xi = 1|E′, i ∈ T ] ≥ 1
2 + ε

4 . It follows that

ET
[
H(Xi|E′)|E′, i ∈ T

]
= ET

[
H(Pr

X

[
Xi = 1|E′

]
)

∣∣∣∣E′, i ∈ T]
(The binary entropy function is convex) = H

(
ET
[
Pr
X

[
Xi = 1|E′

]
|E′, i ∈ T

])
= H( Pr

X,T

[
Xi = 1|E′, i ∈ T

]
)

≤ H(
1

2
+
ε

4
)

= 1− 1

8
· ε2.

We finally turn to upper bound the expectation ET
[
H
(
Xi

∣∣X|[n]−T
)
|i ∈ T

]
. To this end, we use

the fact that this expectation can be written as the conditional entropy H
(
Xi

∣∣X|[n]−T , T, i ∈ T
)
.

Now, let 1E′ be the indicator random variable of E′. Since the value of 1E′ is determined by the
random variables T and X|[n]−T , it follows from Fact 2.3 that

H
(
Xi

∣∣X|[n]−T , T, i ∈ T
)
≤ H (Xi |1E′ , i ∈ T ) .
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Therefore

H
(
Xi

∣∣X|[n]−T , T, i ∈ T
)
≤ H (Xi |1E′ , T, i ∈ T )

= H(Xi|E′, T, i ∈ T ) · Pr
[
E′|i ∈ T

]
+H(Xi|¬E′, T, i ∈ T ) · Pr

[
¬E′|i ∈ T

]
≤
(

1− 1

8
· ε2

)
· Pr

[
E′|i ∈ T

]
+ 1 ·

(
1− Pr

[
E′|i ∈ T

])
= 1− 1

8
· ε2 · Pr

[
E′|i ∈ T

]
≤ 1− 1

8
· ε2 · (1− 1

8
· ε) · δ1

i

≤ 1− 1

16
· ε2 · δi,1,

as required. �

Finally, we use the sub-additivity of min-entropy to derive an upper bound on ET
[
H
(
X|T

∣∣X|[n]−T
)]

.
To this end, it will be convenient to view T as if it is chosen by choosing a sequence of uniformly
distributed distinct coordinates i1, . . . , it. Then, we can write the latter expectation as

ET
[
H
(
X|T

∣∣X|[n]−T
)]

= Ei1,...,it
[
H
(
Xi1 , . . . , Xit

∣∣X|[n]−{i1,...,it}
)]
,

and therefore it suffices to upper bound the right-hand side. By the sub-additivity of entropy, it
holds that

Ei1,...,it
[
H
(
Xi1 , . . . , Xit

∣∣X|[n]−{i1,...,it}
)]
≤

t∑
j=1

Ei1,...,it
[
H
(
Xij

∣∣X|[n]−{i1,...,it}
)]
. (1)

For each j ∈ [t], it holds that

Ei1,...,it
[
H
(
Xij

∣∣X|[n]−{i1,...,it}
)]

=
1

n

n∑
ij=1

Ei1,...,,ij−1,ij+1,...it

[
H
(
Xij

∣∣X|[n]−{i1,...,it}
)]

=
1

n

n∑
ij=1

ET
[
H(Xij |X[n]−T )|ij ∈ T

]
=

1

n

n∑
ij=1

H(Xij |X[n]−T , T, ij ∈ T )

≤ 1

n

n∑
ij=1

1− ε2

16
· δij ,1

= 1− ε2

16
· δ1.

Together with Inequality 1, the last inequality implies Lemma 3.1. This concludes the proof of
Theorem 1.3.
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3.3 Connection to random restrictions

As discussed above, one way to view the proof of Theorem 1.3 is to view the families (F 0
i , F

1
i )

as DNF formulas, and to view the conditioning on X|[n]−T as applying a random restriction that
simplifies these formulas. In particular, the following simple proposition about random restrictions
is implicit in the proof of Claim 3.2. Since we believe this proposition is interesting in its own right,
we make its proof explicit below.

Proposition 1.7. Let φ be a DNF formula over n variables of width at most w, and let X be
a random variable that is distributed arbitrarily in {0, 1}n such that φ(X) = 1 with probability δ.
Let ρ be a random restriction that fixes each variable with probability at least p independently, and
that chooses the values of the fixed variables according to the marginal distribution of X on those
variables. Then, φ|ρ is fixed to 1 with probability at least pw · δ.
Proof. Let φ,X, ρ be as in the proposition. Observe that we can view ρ as if it is sampled as
follows: first sample a string x from the distribution of X, and then for every i ∈ [n] set ρ(i) = xi
with probability p and set ρ(i) = ? otherwise. Now, conditioned on any specific choice of x such
that φ(x) = 1, the probability that φ|ρ is fixed to 1 is at least pw, since this is a lower bound on
the probability that ρ fixes the variables of the first term that is satisfied by x. By summing over
all the strings x for which φ(x) = 1, we get that the total probability that φ|ρ is fixed to 1 is at
least pw · δ. �

3.4 Applications to decision trees and certificates

We now show how to derive the applications of Theorem 1.3 to decision trees and certificates.

3.4.1 Decision trees

We prove the application of the theorem to decision trees, restated next. Recall that we say that
a decision tree ε-predicts Xi if the decision tree makes queries to the coordinates in [n] − {i} and
outputs the value of Xi correctly with probability at least 1

2 + 1
2 · ε.

Corollary 1.5. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n − k,
and let q ∈ N, 0 ≤ ε ≤ 1. Then, the number of coordinates i ∈ [n] that are ε-predicted by some
decision tree that makes at most q queries is at most 300·k·q

ε3
.

Let X be a random variable as in the corollary. In order to apply the theorem, we define for
each coordinate a pair of families (F 0

i , F
1
i ). For every coordinate i ∈ [n] that is ε-predicted by a

decision tree, and each b ∈ {0, 1}, we construct the family of witnesses F bi that ε-predicts Xi = b by
taking the collection of all the paths in the tree that lead to a leaf that is labeled b. It can be seen
that a string x ∈ {0, 1}n satisfies F bi if and only if the tree outputs b on x. For every coordinate
that is not predicted by a decision tree, we take F 0

i and F 1
i to be empty.

Now, for every i ∈ [n], if the coordinate i is predicted by a decision tree, then the probability
that it satisfies either F 0

i or F 1
i is 1, and otherwise the probability is 0. On the other hand,

Theorem 1.3 tells us that the average of those probabilities is at most 300·k·q
ε3·n . It follows that the

number of coordinates that are predicted by decision trees is at most 300·k·q
ε3

, as required.

3.4.2 Certificates

We prove the application of the theorem to certificates. Recall that a b-certificate for a coordi-
nate i ∈ [n] is a witness (Q, a) such that

Pr [Xi = b|X|Q = a] = 1.
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Then, we have the following result.

Corollary 1.6. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n − k,
and let q ∈ N, 0 ≤ ε ≤ 1. For every coordinate i ∈ [n], we denote by δi the probability that any
certificate for Xi of length at most q appears in X. Then, the average value of δi over i ∈ [n] is at
most 300·k·q

n .

Let X be a random variable as in the corollary. In order to apply the theorem, we define for
each coordinate a pair of families (F 0

i , F
1
i ). For every coordinate i ∈ [n] and each b ∈ {0, 1}, we

define the F bi to be the family of all b-certificates for i of length at most q. It is easy to see that
this family 1-predicts that Xi = b. Moreover, the probability δi that X satisfies F bi is exactly the
probability that any certificate for i of length at most q appears in X. Then, Theorem 1.3 tells us
that the average of those probabilities is at most 300·k·q

n , as required.

4 Depth-3 Lower Bounds

In this section we use Corollary 1.6 to prove our result on depth-3 circuits, restated next. Recall
that this result says that if a function has a noticeable fraction of sensitive inputs then it is hard
for depth-3 circuits, thus extending Boppana’s theorem (Theorem 1.8) for depth-3 circuits.

Theorem 1.9. There exists a constant γ > 0 such that the following holds. Let f : {0, 1}n → {0, 1}
be a function has sensitivity at least s on at least α · 2n inputs in f−1(0) for some 0 < α < 1
(respectively, f−1(1)). Then every depth-3 circuit that computes f whose top gate is an AND gate
(respectively, OR gate) must be of size at least α

n · 2
γ·
√
s.

Let γ > 0 be a sufficiently small constant to be fixed later. Let f : {0, 1}n → {0, 1} be a function
that has sensitivity at least s on at least α ·2n inputs in f−1(0) for some 0 < α < 1. We prove every
depth-3 circuit that computes f whose top gate is an AND gate must be of size at least α

n ·2
γ·
√
s. By

the Karchmer-Wigderson connection (Proposition 2.11), it suffices to prove a lower bound on the
communication complexity of 3-round protocols that solve the Karchmer-Wigderson relation Rf .
Specifically, fix a protocol for Rf that behaves as follows:

• Alice gets a string x ∈ f−1(0) and Bob gets a string y ∈ f−1(1).

• In the first round, Alice sends at most γ ·
√
s− log n

α bits.

• In the second round, Bob sends at most γ ·
√
s− log n

α bits.

• In the third round, Alice sends a coordinate j ∈ [n] that is supposed to satisfy xj 6= yj .

We will prove that the protocol must err on some pair of inputs (x, y).

Proof sketch. We start by making some observations on how any such protocol must behave.
First, observe that when the second round ends, Alice must know a coordinate j ∈ [n] for which xj 6=
yj , since she has to send it in the third round. For a given coordinate j ∈ [n], Alice can be sure that
xj 6= yj only if she knows the value of yj . Hence, the only valuable information that Bob can send
in the second round is the values of bits of y. We can therefore assume without loss of generality
that in the second round, Bob chooses some set of coordinates F ⊆ [n] of size at most γ ·

√
s and

sends to Alice the string y|F . Moreover, since Bob has to be sure that Alice will be able to extract
a correct coordinate j ∈ [n] from y|F , Bob can only choose a set F ⊆ [n] for which he knows for
sure that x|F 6= y|F .

15



Therefore, the proof of the lower bound boils down to showing that after Alice sent her first
message, Bob cannot know that x|F 6= y|F for any set of coordinates F ⊆ [n] of size γ ·

√
s. To

this end, we use Corollary 1.6. Suppose that Alice’s input is a random string which is uniformly
distributed over the set of inputs in f−1(0) with sensitivity s. This random string has entropy at
least n − log 1

α . Then after Alice’s sends her first message, Alice’s input has entropy at least n −
γ ·
√
s conditioned on this message — let us denote this random string by X. By Corollary 1.6

and our choice of parameters, we can show there exists some coordinate i ∈ [n] such that with
constant probability, the coordinate i is sensitive and the string X does not satisfy any certificate
of length γ ·

√
s for Xi — let us denote this event by Ei.

Now, suppose that we sample an input for Bob from the following distribution: We first sample
a random string X ′ from the distribution of X conditioned on Ei (but X ′ is not necessarily equal
to Alice’s input X). Then, we choose the input Y of Bob to be the string obtained by flipping the
i-th coordinate of X ′. Note that Y is indeed an input in f−1(1). We claim that for every F ⊆ [n]
of size at most γ ·

√
s, it holds that X|F = Y |F with non-zero probability.

Let F ⊆ [n] be such a set, and let F ′ = F − {i}. Then, due to the way we sampled Y , the
marginal of Y on [n] − {i} is identical to the marginal of X ′. This implies that with non-zero
probability it holds that X ′|F ′ = Y |F ′ , and the same holds for X|F ′ = Y |F ′ . If F ′ = F , we are
done. Otherwise, we note that because X ′ is conditioned on the event Ei, the string X ′ does not
satisfy any certificate for i, and therefore (F ′, Y |F ′) cannot be a certificate for i (since X ′|F ′ = Y |F ′
with non-zero probability). This implies that that Xi has non-zero probability to be either 0 or 1
conditioned on X|F ′ = Y |F ′ . Hence, it holds that X|F = Y |F with non-zero probability. This
concludes the proof.

Proof of Theorem 1.9 We prove that the protocol errs using an adversary argument. Let A0 ⊆
f−1(0) be the set of inputs in f−1(0) at which f has sensitivity at least s, so |A0| ≥ α · 2n. On each
input in A0, Alice sends some message in the first round. Let πA be the message the corresponds
to the largest number of inputs in A0, and let A1 be the set of those inputs, so

|A1| ≥ 2−(γ·
√
s−log n

α
) · |A0| ≥ n · 2n−γ·

√
s.

Let X be a random variable that is uniformly distributed in A1, so H(X) ≥ n− γ ·
√
s.

For every i ∈ [n], let δi be the probability that any certificate for Xi of length at most 2 · γ ·
√
s

appears in X. We now choose γ to be sufficiently small such that it would follow from Corollary 1.6
that the average value of the δi’s is at most s

2n . Next, observe that the average probability that a
coordinate i ∈ [n] is sensitive (in the sense that flipping Xi would result in a string in f−1(1)) is at
least s

n since X ∈ A0. Therefore, there exists some coordinate i ∈ [n] such that with probability at
least s

2n , the coordinate i is sensitive and no certificate for Xi of length at most 2 · γ ·
√
s appears

in X. Let X ′ be a random variable that is distributed like X conditioned on the latter event, and
let A2 be the support of X ′, so |A2| ≥ s

2n · |A1|.
Let B0 ⊆ f−1(1) be a set obtained from the set A2 by flipping the i-th coordinate of every

string in A2. Since flipping the i-th coordinate is a bijection, it holds that

|B0| = |A2| ≥
s

2n
· n · 2n−γ·

√
s ≥ 2n−γ·

√
s,

where in the last inequality we assumed that s ≥ 2 since otherwise the theorem holds trivially. On
each input in B0, Bob sends some message in the second round (given that Alice sent πA in the
first round). Let πB be the message the corresponds to the largest number of inputs in B0, and let
B1 be the set of those inputs, so |B1| ≥ 2n−2γ·

√
n.
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Now, let F ⊆ [n] be the set of coordinates that are fixed in B1, i.e., it is the set of coordinates j
such that all strings in B1 have the same value at j. It is not hard to see that |F | ≤ 2 · γ ·

√
s. Let

yF ∈ {0, 1}F be the unique string in the projection of B1 to the set F . We show that there exists
a string x ∈ A1 such that x|F = yF . Intuitively, this means that Bob cannot know for sure that
Alice’s input differs from his input on F .

Let F ′ = F − {i}, and let yF ′ be the projection of yF to F ′. Since B1 ⊆ B0, it holds that
yF ′ ∈ B0|F ′ . Furthermore, due to the way we constructed B0, it holds that B0|F ′ = A2|F ′ and
thus yF ′ ∈ A2|F ′ . If F ′ = F (i.e., i /∈ F ), then the fact that yF ′ ∈ A2|F ′ implies that there exists
x ∈ A2 ⊆ A1 such that x|F = yF and we are done. Suppose otherwise, i.e., i ∈ F . Then, the fact
that yF ′ ∈ A2|F ′ ⊆ A1|F ′ implies that

Pr [X|F ′ = yF ′ ] ≥ Pr
[
X ′|F ′ = yF ′

]
> 0.

Moreover, by the definition of X ′, no certificate for the coordinate i of at most length 2γ ·
√
n

appears in the string X ′, and therefore (F ′, yF ′) is not a certificate for i (since (F ′, yF ′) appears
in X ′ with non-zero probability by the last inequality). This implies that

Pr [Xi = (yF )i|X|F ′ = y|F ′ ] > 0.

It follows that

Pr [X|F = yF ] = Pr [Xi = (yF )i|X|F ′ = yF ′ ] · Pr [X|F ′ = yF ′ ] > 0,

and therefore there exists a string x ∈ A1 such that x|F = yF .
Finally, let j be the coordinate that Alice sends in the third round, provided that she gets the

input x and that the messages πA and πB were sent in the first and second rounds respectively. We
consider two cases, based on whether j ∈ F or not, and show that in both cases we can choose an
input y ∈ B1 for Bob such that xj = yj (and hence the protocol errs):

• The case where j ∈ F : In this case, we know that xj = (yF )j . Moreover, by the definition
of yF , every string y ∈ B1 satisfies y|F = yF and hence xj = yj . It follows that we can choose
any string y ∈ B1 to be the input of Bob.

• The case where j /∈ F : Recall that the set F was defined to be the set of coordinates that
are fixed in B1. Therefore, the coordinate j is not fixed in B1, so for any bit b ∈ {0, 1} there
is a string y in B1 such that yj = b. In particular, there is a string y ∈ B1 such that xj = yj ,
and we can choose this string to be the input of Bob.

We showed that in both cases there exist a string y ∈ B1 such that xj = yj . Now, observe that
when Alice and Bob get as inputs the strings x and y, the transcripts of the protocol is indeed
(πA, πB, j). In particular, the protocol errs on those inputs, which is what we wanted to show. �

5 Certificates for Sets of Coordinates

Recall the application of the main theorem to certificates.

Corollary 1.6. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n − k,
and let q ∈ N. For every coordinate i ∈ [n], we denote by δi the probability that any certificate for Xi

of length at most q appears in X. Then, the average value of δi over i ∈ [n] is at most 300·k·q
n .

In this section we extend our result on certificates to certificates for sets of coordinates. Recall
that such certificates are defined as follows.
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Definition 1.12. Let X be a random variable taking values from {0, 1}n, let R ⊆ [n] be a set
of coordinates. A certificate for R (with respect to X) is a pair (Q, a) where Q ⊆ [n] − R and

a ∈ {0, 1}|Q|, such that conditioned on X|Q = a, the random variable X|R does not have full
support. The length of the certificate is |Q|, and we say that a string x ∈ {0, 1}n satisfies the
certificate if x|Q = a.

We prove the following result.

Theorem 1.13. Let X be a random variable taking values from {0, 1}n such that H(X) ≥ n− k,
let r, q ∈ N, and assume that (q+ r) · (2k+ r+ 1) ≤ 1

4000 ·n. For every set of coordinates R ⊆ [n] of
size r, we denote by pR the probability that a string drawn from X does not satisfy any certificate
for R of length at most q. Then, the average value of pR over R ⊆ [n] is at least 2−r−1.

The basic idea of the proof is the following: Let R be a random set of size r. We lower bound
the probability that X satisfies any certificate for R over the choice of both X and R, and this is
equivalent to lower bounding the average value of pR. Suppose that we choose the set R ⊆ [n] by
choosing a sequence of random distinct coordinates i1, . . . , ir We first observe that by our choice
of parameters, with probability at least 1

2 , the coordinate i1 is “good”, in the sense that X does
not satisfy any certificate for i1 of length at most q + r. Moreover, with probability at least 1

2
the coordinate i2 is good even conditioned on i1 being good. Continuing in this manner, we get
that with probability at least 2−r, every coordinate ij is good even conditioned on all the previous
coordinates being good. Finally, we observe that if the latter event occurs, then X does not satisfy
any certificate for R: otherwise, we could have used this certificate and the string that is missing
from the support of X|R to construct a certificate for some coordinate ij . Details follow.

Let X be a random string in {0, 1}n such that H(X) ≥ n− k. Since we are going to analyze X
conditioned on several events, it would be easier to work with min-entropy instead of entropy. By
Fact 2.10, there exists an event E of probability at least 1

2 such that H∞(X|E) ≥ n− 2k − 1. For
ease of notation, let X ′ denote the random variable X conditioned on the event E. In the rest of
this proof we will work with X ′ instead of X.

Let i1, . . . , ir ∈ [n] be uniformly distributed distinct coordinates, and let R = {i1, . . . , ir}. We
prove that the probability, over X ′ and R, that X ′ does not satisfy any certificate for R of length at
most q is at least 2−r. This will imply that the probability X does not satisfy any such certificate
is at least 2−r−1, and the required result will follow.

We define a sequence of events E1, . . . , Er as follows: the event Ej is the event that X ′ does
not satisfy any certificate for ij of length q + r − j with respect to the random variable X ′|Ej−1,
conditioned on Ej−1. It is important to note that we refer to certificates that are with respect
to X ′|Ej−1 rather than X ′, that is, certificates that predict (X ′|Ej−1)|ij from having full support.
We will prove the following two claims, which say that Pr [Er] ≥ 2−r, and that conditioned on Er,
the string X ′ does not satisfy any certificate for R of length at most q. Together, these two claims
imply the required result.

Claim 5.1. For every j ∈ [r] it holds that Pr [Ej ] ≥ 2−j.

Proof. The proof is by induction on j. We prove the induction step, and the proof of the induction
base is similar. Suppose the claim holds for j ∈ [r − 1]. We prove the claim for j+1. By assumption,
it holds that Pr [Ej ] ≥ 2−j . By Fact 2.9, this means that H∞(X ′|Ej) ≥ n− 2k − 1− j. For every
i ∈ [n], let δi denote the probability that X ′|Ej satisfies any certificate for i of length q+ r− (j+ 1)
with respect to X ′|Ej . By Corollary 1.6, the average of the δ′is is at most

300 · (q + r − j − 1) · (2k + j + 1)

n
≤ 300 · (q + r) · (2k + r)

n
≤ 300

4000
=

3

40
.
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Hence, by Markov’s inequality it holds that δij+1 ≤ 1
4 with probability at least 2

3 over the choice
of ij+1. Now, the probability of Ej+1 conditioned on Ej is at least the probability that such ij+1

was chosen (which is at least 2
3), times the probability that X ′|Ej does not satisfy any certificate

for ij+1 over the choice of X ′|Ej (which is at least 3
4). Hence, this probability is at least 1

2 . It
therefore follows that

Pr [Ej+1] = Pr [Ej+1|Ej ] · Pr [Ej ] ≥ 2−(j+1),

as required. �

Claim 5.2. For every j ∈ [r] and any specific choice of i1, . . . , ij the following holds: conditioned
on the event Ej, then the string X ′ does not satisfy any certificate for {i1, . . . , ij} of length at
most q + r − j with respect to X ′.

Proof. We prove the induction step, and the proof of the induction base is similar. Suppose the
claim holds for j ∈ [r − 1]. We prove the claim for j+1. Fix an arbitrary choice of i1, . . . , ij+1, and
denote Rj = {i1, . . . , ij}, Rj+1 = {i1, . . . , ij+1}. For ease of notation, we identify the event Ej+1

with the set of strings x for which the event occurs, and the same for the event Ej (in other words,
we identify Ej+1 and Ej with the supports of X ′|Ej+1 and X ′|Ej). Let x ∈ Ej+1. We prove that
x does not satisfy any certificate for Rj+1 of length at most q+ r− j with respect to X ′. Let (Q, a)
be a witness of length at most q + r − j that appears in x. We prove that the string X ′|Rj+1 has

full support conditioned on X ′|Q = a. To this end, we prove that for every string u ∈ {0, 1}Rj+1 it
holds that

Pr
[
X ′|Rj+1 = u

∣∣X ′|Q = a
]
> 0. (2)

By the assumption that x ∈ Ej+1, it follows that x does not satisfy any certificate for ij+1 of
length at most q + r − j − 1 with respect to X ′|Ej . In particular, this means that

Pr
[
X ′|ij+1 = uij+1

∣∣X ′|Q = a,Ej
]
> 0. (3)

It follows that there exists y ∈ Ej such that y|Q = a and yij+1 = uij+1 . Furthermore, by the
induction assumption, y does not satisfy any certificate for Rj of length at most q + r − j with
respect to X ′. This implies in particular that the witness (Q∪ {ij+1} , a∪ uij+1) is not a certificate
for Rj with respect to X ′, since it appears in y. Hence, the string X ′|Rj conditioned on X ′|Q = a
and X ′ij+1

= uij+1 has full support. It follows that

Pr
[
X ′|Rj = u|Rj

∣∣X ′|Q = a,X ′ij+1
= uij+1

]
> 0.

Combining the last inequality with Inequality 3, we get that

Pr
[
X ′|Rj+1 = u

∣∣X ′|Q = a
]

= Pr
[
X ′|Rj = u|Rj

∣∣X ′|Q = a,X ′ij+1
= uij+1

]
·Pr
[
X ′|ij+1 = uij+1

∣∣X ′|Q = a
]
> 0,

as required. �

On extending our circuit lower bound to higher depths. As mentioned in the introduction,
one motivation for the result proved in this section is that we believe it might be useful for extending
our circuit lower bound (Theorem 1.9) to higher depths. We now explain how such an extension
might be done, although we do not know how to fully realize this idea. Specifically, we explain how
one might use Theorem 1.13 to prove a (sub-optimal) lower bound of 2Ω(n1/4) on depth-4 circuits
computing the parity function on n bits. In order to prove such a lower bound, we need to rule
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out the existence of a 4-round protocol that finds a coordinate j ∈ [n] on which the inputs of the
parties disagree with communication complexity Ω(n1/4).

As in our proof in the depth-3 case, we consider a random variable X that is uniformly dis-
tributed over the inputs of Alice conditioned on her message in the first round. This random
variable has min-entropy at least n − Ω(n1/4), and Theorem 1.13 tells us that there is some set
of coordinates R ⊆ [n] of size ≈

√
n such that X|R does not have certificates of length ≈

√
n

with non-trivial probability. Now, we can make sure that the inputs of the parties have the same
marginals over the coordinates in [n]−R, and therefore they cannot find the desired coordinate j
in [n]−R (just as in the depth-3 case they had the same marginals in [n]−{i} and thus could not
find j there). Hence, they must find the solution j in the set R.

However, the random variable X|R has full support. Therefore, one would expect the task of
finding the desired coordinate j in R to reduce to solving the Karchmer-Wigderson relation of
parity on |R| bits. Since the players have to perform the latter task using only three rounds, one
would expect that they will have to transmit at least Ω(

√
|R|) = Ω(n1/4) bits. Such an argument,

if it could be carried out, would prove the desired lower bound of Ω(n1/4). The main challenge is
that unlike the case of 3-round protocols, we can no longer assume that the only useful information
that Bob can send is the values of coordinates F in his input.
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