Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 151 (2017)

Stabbing Planes

Paul Beame Noah Fleming? Russell Impagliazzo
University of Washington UCSD UCSD
& Memorial University
Antonina Kolokolova! Denis Pankratov* Toniann Pitassi®
Memorial University Concordia University University of Toronto & IAS

& Columbia University

Robert Robere?
McGill University

May 18, 2022

Abstract

We develop a new semi-algebraic proof system called Stabbing Planes which formalizes
modern branch-and-cut algorithms for integer programming and is in the style of DPLL-based
modern SAT solvers. As with DPLL there is only a single rule: the current polytope can be
subdivided by branching on an inequality and its “integer negation.” That is, we can (non-
deterministically choose) a hyperplane ax > b with integer coefficients, which partitions the
polytope into three pieces: the points in the polytope satisfying ax > b, the points satisfying
ax < b, and the middle slab b — 1 < az < b. Since the middle slab contains no integer points
it can be safely discarded, and the algorithm proceeds recursively on the other two branches.
Each path terminates when the current polytope is empty, which is polynomial-time checkable.
Among our results, we show that Stabbing Planes can efficiently simulate the Cutting Planes
proof system, and is equivalent to a tree-like variant of the R(CP) system of Kraji¢ek [54]. As
well, we show that it possesses short proofs of the canonical family of systems of Fa-linear
equations known as the Tseitin formulas. Finally, we prove linear lower bounds on the rank of
Stabbing Planes refutations by adapting lower bounds in communication complexity and use
these bounds in order to show that Stabbing Planes proofs cannot be balanced.

"Research supported by NSF Grants No. CCF-152424 and CCF-2006359.
#Research supported by NSERC.
$Research supported by NSERC, NSF Grant No. CCF-1900460 and the IAS school of mathematics.

ISSN 1433-8092

1 Introduction

Proof complexity provides an effective and principled way to analyze classes of practical algorithms for solving
NP-hard problems. The general idea is to formalize a class of algorithms as a proof system — a set of sound rules
for making logical inferences — by extracting out the types of reasoning used in the algorithms. This allows us to
discard the practical implementation details while still maintaining the techniques that the algorithm can employ.
Thus, by proving lower bounds on the size of proofs in these proof systems, we obtain lower bounds on the runtime
of the associated class of algorithms.

An illustrative example is the DPLL algorithm [29, 30], which forms the basis of modern conflict-driven clause
learning algorithms for solving SAT. For a CNF formula F', the DPLL algorithm is the following recursive search
algorithm for a satisfying assignment: choose a variable x; (non-deterministically, or via some heuristic), and then
recurse on the formulas F' | (x; = 0) and F' | (x; = 1). If at any point a satisfying assignment is found, the algorithm
halts and outputs the assignment. Otherwise, if the current partial assignment falsifies some clause C' of F, the
recursive branch is terminated. If every recursive branch terminated with a falsified clause, then F' is unsatisfiable
and we can take the recursion tree as a proof of this fact; in fact, such a DPLL tree is equivalent to a treelike resolution
refutation of F'.

Beyond DPLL, the approach of using proof complexity for algorithm analysis has been successfully employed
to study many other classes of algorithms. This includes Conflict-driven clause-learning algorithms for SAT [52,61,
72], which can be formalized using resolution proofs [30]; lift-and-project methods for solving integer programming
problems, which are formalized by the Lovdsz-Schrijver [60], Sherali-Adams [71], and Sums-of-Squares proofs
[7,45] proof systems; and the classical cutting planes methor for integer programming [18,41], which is formalized
by Cutting Planes proofs [18,19,23].

In this work, we continue the study of algorithms for solving integer programming problems through the lens
of proof complexity. Many classic NP-optimization problems are naturally phrased using integer programming and,
due to this, algorithms for integer programming have had a profound effect throughout computer science and beyond.
Recall that in an integer programming problem, we are given a polytope P C R" and a vector ¢ € R", and our goal
is to find a point x € P N Z™ maximizing c - x. A classic approach for solving integer programming problems is
to refine the polytope P by introducing Chvatal-Gomory (CG) cutting planes [41]. A CG cutting plane for P is
any inequality ax < |b], where a is an integral vector, b is a rational vector, and every point in P satisfies ax < b.
Observe that a CG cutting plane removes non-integral points from P while preserving integer points. Thus, with
each additional cutting plane, the polytope becomes a better approximation to the integer hull.

Chvatal observed that the cutting planes method can be naturally formalized as a proof system. The Cutting
Planes proof system proves the integer-infeasibility of a polytope P by deducing the empty polytope by a sequence of
CG-cutting planes. This has led to a number of strong lower bounds on the runtime of these algorithms [13,35,48,67],
as well as bounds on related measures such as the Chvatal rank [14, 17,43]. However, while Cutting Planes has
become a highly influential proof system in proof complexity, the original cutting planes algorithms suffer from
numerical instabilities and difficulties choosing good heuristics, and are therefore seldom used on their own in
practice.

Modern algorithms for integer programming combine cutting planes with a branch-and-bound procedure [5,57],
resulting in a class of optimization algorithms known as branch-and-cut algorithms [65]. These algorithms search
for an integer solution to a polytope P by the following two procedures

* Branch. Split P into smaller polytopes P4, . .., Py such that every integer solution to P lies in at least one of
Py, ..., Py
e Cut. Refine P, ..., Py by introducing additional cutting planes.

Finally, the algorithm recurses on each of the resulting polytopes. While this branching rule is extremely general, in
practice branching is typically done by single variables: selecting a variable x; and branching on all possible integer
outcomes P N {x; = t} for each feasible integer value ¢. Other schemes that have been used in practice include
branching on the hamming weight of a subset of variables [34] or branching using basis-reduction techniques [1, 2,

z+y<1 z+y=>2
z+y<1

z—y<0 z—y=>1 | N r—y>1

! ™
: T 7:(1/ <0
1

Figure 1: A partial stabbing planes proof (left) and its result on the unit square (right). The yellow and red areas are
removed from the polytope (green), and we recurse on both sides.

46,51,56,59]"

While these branch-and-cut algorithms are much more efficient in practice than the classical cutting planes
methods they are no longer naturally modelled by Cutting Planes proofs. In this work we introduce’ the Stabbing
Planes (SP) proof system in order to properly model branch-and-cut solvers. Intuitively, Stabbing Planes has the
same branching structure as DPLL, but generalizes branching on single variables to branching on integer linear
inequalities.

We formalize Stabbing Planes in stages as a generalization of DPLL. Recall that in the setting of integer program-
ming we want to prove the integer-infeasibility of a system of integer linear inequalities Ax > b over real-valued
variables. Further, suppose for simplicity of exposition that the system encodes a CNF formula F'. We can rephrase
DPLL geometrically to the setting of integer linear programming. Consider some DPLL refutation of F'. Each time
the DPLL tree branches on the {0, 1}-value of a variable z;, instead branch on whether z; < 0 or x; > 1; because
the encoding Az > b of I includes axioms x; > 0 and x; < 1 this is equivalent. After this replacement, each node v
in the DPLL tree is naturally associated with a polytope P, of points satisfying Az > b and each of the inequalities
labelling the root-to-v path. Since we began with a DPLL refutation, it is clear that for any leaf ¢, the polytope P,
associated with the leaf is empty, as any Z"-valued point would have survived each of the inequalities queried on
some path in the tree and thus would exist in one of the polytopes at the leaves.

The Stabbing Planes system is then the natural generalization of the previous object: at each step in the refutation
an arbitrary integer linear form ax in the input variables is chosen and we recurse assuming that it is at least some
integer b or at most its integer negation b — 1. Observe that because a and b are integral, any z* € Z™ will satisfy at
least one of the inequalities (ax < b— 1, ax > b), and so if the polytope at each leaf (again, obtained by intersecting
the original system with the inequalities on the path to this leaf) is empty then we have certified that the original
system has no integral solutions (cf. Figure 1). The queries in a Stabbing Planes proof correspond to what is known
as branching on general disjunctions or split disjunctions [22] in integer programming, and capture the majority of
branching that is done in practice [20]. One of the major advantages of Stabbing Planes is its simplicity: refutations
are decision trees that query integer linear inequalities.

Recall that branch-and-cut solvers combine Stabbing Planes-style branching with additional cutting planes in
order to refine the search space. We show that a single branching step in a Stabbing Planes proof can actually
simulate adding a CG cut to the polytope, and therefore Stabbing Planes can indeed simulate the execution of a
branch-and-cut solver. A novel corollary is that Stabbing Planes can polynomially-simulate dag-like Cutting Planes

“For an in-depth discussions on branch-and-bound and branch-and-cut we refer the reader to [3, 20, 73].

%Recently (and subsequent to the conference publication of this work [10]), the authors became aware of the invited chapter of Pudlak [68]
for the Logic Colloquium‘97, in which he states that an unpublished work of Chvatal defines the Stabbing Planes system and the simulation
of Cutting Planes. We take this independent discovery as evidence that Stabbing Planes is a highly natural proof system, which deserves
further exploration.

SP = treeR(CP)

AC°-Frege SP* [CP = Facelike SP] [Sum of Squares]

NN S |
treeRes(k)

Figure 2: Known relationships between relevant proof systems. A solid black (red) arrow from proof system P to
P, indicates that P> can polynomially (quasi-polynomially) simulate P;. A black (red) dashed arrow from P; to P
indicates that P, cannot polynomially (quasi-polynomially) simulate P .

despite being a tree-like refutation system. This simulation was extended by [8] to show that Stabbing Planes can
simulate disjunctive cuts which capture the vast majority of cutting planes used in practice, including [lift and project
cuts [6], split cuts [22], Gomory mixed integer cuts [40] and MIR cuts.

Beyond providing a theoretical model for branch and cut algorithms, we believe that the simplicity of Stabbing
Planes proofs, as well as its closeness to DPLL, makes Stabbing Planes a better starting point for the analysis
and development of search algorithms based on integer programming, such as pseudoboolean SAT solvers, than
established proof systems. From the perspective of SAT solving, even though treeRes is equivalent to DPLL, it is
the search point of view of DPLL that has led to major advances in SAT algorithms. A natural hypothesis is that it is
much easier to invent useful heuristics in the language of query-based algorithms, as opposed to algorithms based on
the deductive rules of resolution. Stabbing Planes offers similar benefits with respect to reasoning about inequalities.
Furthermore, Stabbing Planes is a direct generalization of DPLL, and therefore we hope that the fine-tuned heuristics
that have been developed for modern DPLL-based solvers can be lifted to algorithms based on Stabbing Planes.

Stabbing Planes in Proof Complexity

Despite its simplicity, Stabbing Planes proofs are remarkably powerful. As a motivating example, we give simple,
short (quasi-polynomial size) SP proofs of systems of Fy linear equations known as the Tseitin formulas. These
formulas are one of the canonical hard examples for many algebraic and semi-algebraic proof systems, including
Nullstellensatz [44], Polynomial Calculus [15], and Sum-of-Squares [45, 70].

Theorem 1. There are quasipolynomial size Stabbing Planes proofs of any instance of the Tseitin tautologies.

We also explore the relationships between SP and other proof systems. This is summarized in Figure 2. Most
notably, we show that SP is polynomially-equivalent to treeR(CP), the tree-like variant of Kraji¢ek’s R(CP) proof
system [54]. This system can be thought of as a mutual generalization of resolution and Cutting Planes, in which
the lines are disjunctions of integer linear inequalities, and we are allowed to apply Cutting Planes rules on the
inequalities and resolution-style cuts on the disjunctions.

Theorem 2. The proof systems SP and treeR(CP) are polynomially equivalent.

We note that even though SP is equivalent to a system already in the literature, the new perspective provided by
it is indeed enlightening as none of the results in this section were known for treeR(CP) (including the simulation
of CP!).

The remainder of this work tackles the problem of proving superpolynomial lower bounds on the complexity
of SP proofs. Although we are unable to establish size lower bounds, we prove nearly optimal lower bounds on
the depth of SP refutations, as well as explain why several natural approaches for proving size bounds fail. The
depth of an SP proof — the longest root to leaf path — is a natural parameter that captures the parallelizability of
proofs, and is closely related to rank measures of polytopes, which have been heavily studied in integer programming
theory [17].

Theorem 3. There exists a family of unsatisfiable CNF formulas { F,,} for which any SP refutation requires depth
Q(n/log®n)

The proof of this theorem proceeds by showing that shallow SP proofs give rise to short randomized and real
communication protocols for the CNF search problem, and then appealing to known lower bounds for this problem.
In many strong proof systems such as Frege and Extended Frege it is known that depth lower bounds imply size
lower bounds via so-called balancing theorems [55]. However, we can show that SP proofs cannot be balanced.
More precisely, SP proofs of size s do not imply the existence of proofs of size poly(s) and depth polylog(s).

While SP proofs cannot be balanced, the real communication protocols that result from SP proofs preserve
the topology of the SP proof, and therefore size lower bounds on SP would follow by showing instead that the
real communication protocols themselves could be balanced. There is a precedent for this: both deterministic
and randomized communication protocols can be balanced, and lower bounds on treeCP proofs were obtained by
exploiting this fact [49]. However, we can also show that real communication protocols cannot be balanced. Enroute,
we establish the first superlogarithmic lower bound on the real communication complexity of the set disjointness
function, a function which has been central to many of the lower bounds which exploit communication complexity.

1.1 Related and Subsequent Work

Lower Bounds on Variable Branching. Lower bounds for a number of branch-and-cut algorithms using variable-
branching — meaning that they branch on the integer value of single variables, rather than arbitrary inequalities (i.e.,
DPLL which branches on z; € Z) — have previously been established. The first example of this was the lower bound
of Jerslow [50] on the number of queries made by branch-and-bound algorithms with variable branching. Cook and
Hartman proved exponential lower bounds on the number of operations required to solve certain travelling salesman
instances by branch-and-cut algorithms which use variable branching and Chvatal-Gomory cuts [24]. However, their
lower bound is exponential only in the number of variables, and not in the number of inequalities. The first truly
exponential (in the encoding size of the instance) lower bound for branch-and-cut algorithms which use variable
branching was established by Dash [27] by extending the lower bound of Pudlak [67] for Cutting Planes proofs.

Lower Bounds for treeR(CP). Lower bounds on certain restrictions of treeR(CP) were established in earlier
works. Kraji¢ek [54] proved superpolynomial lower bounds on the size of R(CP) proofs when both the width of the
clauses and the magnitude of the coefficients of every line are sufficiently bounded. Concretely, letting w and c be
upper bounds on the width and coefficient size respectively, the lower bound that he obtained was gn) /c? log?n
For treeR(CP), Kojevnikov [53] improved this lower bound to exp(€2(y/n/wlogn)), removing the dependence on
the coefficient size. In Figure 5.1 we prove a size-preserving simulation of SP by treeR(CP) which translates depth
d SP proofs into width d treeR(CP) proofs. Therefore, Kojevnikov’s result implies a superpolynomial lower bound
on the size of SP proofs of depth o(n/logn). In Subsection 6.1 we exhibit a formula for which any SP refutation
requires depth Q(n/ log? n).

Subsequent Work. Following the conference version of this work [10], Dadush and Tiwari [25] showed that the
Stabbing Planes proofs of the Tseitin formulas could be efficiently translated into CP. This refuted a long-standing
conjecture that CP requires exponential size refutations of these formulas [23]. In the same paper, they established
a polynomial equivalence between the number of nodes and the size of SP proofs (i.e., the number of bits needed to
express the proof).

Dadush and Tiwari also considered SP in the context of mixed integer programming (MIP) and proved expo-
nential lower bounds on SP in this setting. In this setting, you are given a polytope P = {(x,y) € R™ x R"2 :
Az + By > b}, and you are searching for an integer solution to the z-variables and a real solution to the y-variables.
In other words, rather than proving that P N Z™ = (), instead you would like to prove that P N Z"* NR"2 = {). In
this case, SP queries involving y-variables are disallowed, as this would not be sound. As shown by Dadush and
Tiwari, this restriction turns out to be enough to obtain quite simple proofs of intractability. First, they prove that
any SP refutation of a certain system of 2" many inequalities (encoding the complete unsatisfiable formula) requires
size 2™ /n. Next, they show that this system of inequalities admits a poly(n)-size MIP extended formulation. As
SP cannot branch on the extension variables, refuting this extended formulation is identical refuting the complete
unsatisfiable formula in SP. Dey, Dubey, and Molinaro [32] extended this technique to prove lower bounds for a
number of MIP instances for packing, set cover, the Travelling Salesman problem, and the cross polytope, even
when Gaussian noise is added to the coefficients. However, this technique crucially relies on the fact that for MIP
problems, SP queries cannot involve the real-variables, and therefore it does not appear to be possible to extend this
technique to prove lower bounds on pure integer programming problems (i.e. those with only integer-variables) such
as standard encodings of CNF formulas.

Fleming et al. [35] showed that any Stabbing Planes proof with quasipolynomially bounded coefficients (SP™)
can be translated into a Cutting Planes proof with at most a quasipolynomial increase in size. This allowed them
to lift the exponential lower bounds on Cutting Planes proofs [36, 39, 48, 67] to SP*, and even to SP proofs with
coefficients of size exp(n’) for some constant § < 1. As well, using this connection, they generalized the result
of Dadush and Tiwari to show that there are quasipolynomial-size Cutting Planes refutations of any unsatisfiable
system of linear equations over the finite field F,, for any prime p. To prove this simulation of SP* by Cutting
Planes, they characterized Cutting Planes as a subsystem of Stabbing Planes, which they called facelike Stabbing
Planes. Briefly, a facelike Stabbing Planes proof restricts Stabbing Planes queries to have one side of the query be a
face of the current polytope. Then, they show that SP proofs can be made facelike with a blowup that is proportional
to the size of the coefficients and the diameter of the polytope.

Basu et al. [8] showed that SP can simulate disjunctive cuts, a result which we cover in more detail in Subsec-
tion 4.3. Furthermore, they give an IP instance can be solved in size O(1) in SP but requires poly(n) deductions
using split cuts. As well, they explore the effect that sparsity —the number of non-zero coordinates in each query —
has on branch-and-cut. Sparse queries can be thought of as an intermediate between full SP branching and variable
branching. They provide an instance where the any branch-and-bound tree must be of exponential size if the sparsity
is o(n).

Recently, Dantchev et al. [26] introduced several novel techniques for proving lower bounds on SP proofs by
exploiting their geometric structure. In particular, they make use of the fact that for a polytope P, every point 2* € P
must be contained within some slab of the SP proof. This allowed them to establish linear lower bounds on the size
of SP proofs of the pigeonhole principle as well as the Tseitin formulas; because SP proofs are binary trees, this
leads to a depth Q2(log n) lower bound for both formulas.

1.2 Organization

We begin by formally defining the Stabbing Planes proof system in Section 2. The Stabbing Planes refutations of the
Tseitin formulas are given in Section 3. Section 4 explores how Stabbing Planes relates to Cutting Planes: we show
that Stabbing Planes can polynomially simulate Cutting Planes, and we explore whether a simulation of Cutting
Planes by Stabbing Planes can preserve other parameters of the proof in Subsection 4.2. We end this section (in
Subsection 4.3) by observing that Stabbing Planes can simulate most other types of cutting planes that are used in
integer programming. In Section 5 we explore how Stabbing Planes compares to other popular proof systems in the
literature, and we prove the equivalence with treeR(CP). In the final section (Section 6) we explore whether we can
prove lower bounds on Stabbing Planes with unbounded coefficients. We prove unrestricted depth lower bounds in
Subsection 6.1 and rule out several natural approaches that utilize communication complexity in Subsection 6.2.

2 Preliminaries

We begin by formally defining the Stabbing Planes proof system. For this, it will convenient to use the following
combination of Farkas’ Lemma with Carathéodory’s Theorem, which we state next.

Farkas’ Lemma. Let A € Q™" and b € Q™. Then exactly one of the following holds:
(i) There exists x € R™ such that Ax < b.

(ii) There exists y € Z™ withy > 0 such that y' A = 0 and y'b < 0. Moreover, y has at most n + 2 non-zero
coordinates.

The “moreover” part in (ii) follows from Carathéodory’s Theorem. Proofs of both Carathéodory’s Theorem and
Farkas’ Lemma can be found in [20].

With this, we are ready to define the Stabbing Planes proof system. The Stabbing Planes proof system is a proof
system for refuting the existence of integer-solutions to systems of linear inequalities; we will call such systems
unsatisfiable.

Stabbing Planes. Let Az > b be an unsatisfiable system of linear inequalities. A Stabbing Planes (SP) refutation
of Ax > b is a directed binary tree, T', where each edge is labelled with a linear integral inequality satisfying the
following consistency conditions:

* Internal Nodes. For any internal node u of T', if the right outgoing edge of w is labelled with cz > d, then the
left outgoing edge is labelled with its integer negation cx < d — 1.

* Leaves. Each leaf node v of T' is labelled with a conic combination of inequalities in F' with inequalities along
the path leading to v that yields 0 > 1 (provided by Farkas’ Lemma).

For an internal node u of T', the pair of inequalities (cx < d — 1, cx > d) is called the query corresponding to the
node. Every node of 7" has a polytope P associated with it, where P is the polytope defined by the intersection of
the inequalities in I’ together with the inequalities labelling the path from the root to this node. We will say that
the polytope P corresponds to this node. That is, if P is the polytope corresponding to a node v which queries
(cx < d—1, cx > d), then the polytopes of the children of v are given by PN {z € R" : cx < d — 1} and
PN {x € R": cx > d}. For readability, we will use the abbreviation P N {cx > d} for PN {x € R" : cx > d}.

The slab corresponding to the query is {z* € R™ | d — 1 < cz* < d}, which is the set of points ruled out by
this query. The width of the slab is the minimum distance between cz < d — 1 and cz > d, which is 1/||c||2. This
gives an intuitive geometric interpretation of SP refutations: at each step we remove a slab from the polytope and
recurse on the resulting polytopes on both sides of the slab. The aim is to recursively cover the polytope with slabs
until every feasible point has been removed. An example of this can be seen in Figure 1, where the yellow and red
areas are the slabs of the two queries.

The size of an SP refutation is the bit-length needed to encode a description of the entire proof tree, which, for
CNF formulas as well as sufficiently bounded systems of inequalities, is polynomially equivalent to the number of
queries in the refutation. In particular, Dadush and Tiwari [25] prove the following.

Proposition 4 (Corollary 1.2 in [25]). Let Az > b be any unsatisfiable system of linear equations whose coefficients
require { bits to express, and let s be the number of nodes in an SP refutation of Ax > b. Then there exists an SP
refutation of size s¢n®.

As well, the depth (or rank) of the refutation is the depth of the binary tree. The depth of refuting an unsatisfiable
system of linear inequalities Az > b, denoted depthgp(Az > b), is the minimum depth of any SP refutation of
Ax > b. Observe that any unsatisfiable system of inequalities Ax > b whose corresponding polytope is contained
within the unit cube [0, 1]™ (this includes the encodings of all CNF formulas) has a trivial size 2" and depth n SP
refutation by branching on (z; < 0, z; > 1) for every i € [n].

We will be particularly interested in Stabbing Planes refutations of unsatisfiable CNF formulas. Given a CNF
formula F' we can translate it into an equisatisfiable system of linear inequalities in the natural way. First, introduce
the inequalities 0 < z; < 1 for every variable x;. Second, for each clause bigvee;crx; V bigveec j—x; introduce

the inequality

Z:c,- + Z(l —xj;) > 1.

iel jeJ
It is easy to see that the this system of inequalities will have no integer solutions if and only if the original formula F’
was unsatisfiable. With this translation we consider Stabbing Planes refutations of CNF formulas F’ to be refutations
of the translation of F' into a system of linear inequalities.

With the previous translation in hand we show that SP is indeed a propositional proof system as defined by Cook

and Reckhow [21].

Proposition 5. Stabbing Planes is sound, complete, and polynomially verifiable.

Proof. Completeness follows immediately from the fact that SP simulates DPLL, which is itself a complete proof
system. Soundness follows because each slab in an SP proof, corresponding to a query (cz < d — 1, cx > d),
removes only non-integral points. Indeed, by the integrality of c and d, any x € Z" satisfies either cx < d — 1 or
cx > d. Finally, to see that SP proofs are polynomially verifiable, observe that we only need to verify that every
query is of the form (cx < d — 1, cx > d) for integral ¢ and d, and that each conic combination labelling the leaves
evaluates to 0 > 1. O

We will also be interested in the Cutting Planes proof system, the first proof system to formalize a class of
integer programming algorithms.

Cutting Planes. A Cutting Planes proof (CP) of an inequality cx > d from a system of integer linear inequalities
Az > bis a sequence of inequalities {c;x > di}ie[s} such that ¢; = ¢, d; = d, and each inequality c;x > d; either
belongs to Az > b or is deduced from earlier inequalities in the sequence by one of the following inference rules

* Linear Combination. From inequalities c;z > d;, cjx > dj, deduce any non-negative linear combination with
integer coefficients.

* Division. From an inequality ¢;x > d;, if t € Z divides all entries in ¢; then deduce (¢;/t)x > [d;/t].

The size of a Cutting Planes derivation is the number of inequalities s, and is known to be equivalent up to a
polynomial blow-up to the complexity of expressing the proof [23]. It is useful to visualize the derivation as a
directed acyclic graph, where the nodes are the inequalities in the derivation, and for each inference, there are arcs
from the at-most-two inequalities from which it was derived. With this in mind, the depth of a Cutting Planes
derivation is the length of the longest root-to-leaf path in the dag. Finally, a Cutting Planes refutation of a system of
integer linear inequalities Axgegb is a derivation of the trivially false inequality —1 > 0.

3 Refutations of the Tseitin Formulas

As a motivating example, we show that Stabbing Planes has quasipolynomial size proofs of the Tseitin formulas,
proving Theorem 1. For any graph G = (V, E) and any labelling ¢ : V' — {0, 1} of the vertices, the Tseitin formula
of (G,) is the following system of Fy-linear equations: for each edge e we introduce a variable ., and for each
vertex v we have an equation

asserting that the sum of edge variables incident to v must agree with its label ¢(v). It is not difficult to see that a
Tseitin formula is unsatisfiable iff) © _, £(v) is odd. If we denote by deg(G') the maximum degree of any vertex in
G then the Tseitin formula of (G, £) can be encoded as a CNF formula with [V - 24°8(5)=1 many clauses. The next
theorem shows that there is a quasi-polynomial size Stabbing Planes refutation of any Tseitin formula.

Figure 3: A single round of the algorithm. Note that k7, = a + band Ky, = a + (Ky — b).

Theorem 6. For any Tseitin instance (G, () there is a Stabbing Planes refutation of size 20 (log? n)+deg(G) gpg depth
deg(G) - log? n.

First we will introduce some notation. For U C V let {(U) = @,epl(v). As well, if U, W C V then let
E[U, W] denote the set of edges with one endpoint in U and the other in W, and let E[U] denote the set of edges
with one endpoint in U.

Proof. The Stabbing Planes proof will implement the following recursive search algorithm for a violated constraint
of the Tseitin instance. In each round we maintain a subset U C V and an integer iy € N representing the total
value of the edges F'[U] leaving U. Over the algorithm, we maintain the invariant that ¢(U) + xy is odd, which
implies that there is a contradiction to the Tseitin instance inside of U.

Initially, set U := V and xy = 0, and note that the invariant holds since ¢(V") is odd by definition. Then perform
the following algorithm (see also Figure 3):

1. Choose a balanced partition U = Uy U U; (so ||U;| — |Uz|| < 1)

2. Query the valueof a = >, z.andb = > Te.
e€[U1,Uz] e€E[UL1\E[U1,U2]

3. The value of the edges leaving U; is k7, := a+b and the value of the edges leaving Us is kg, := a+ (ky —b);
so we recurse on the subset that maintains the invariant.

First we note that exactly one of the two subsets must maintain the invariant. This follows from the next short
calculation:

K(U) + Ry :ﬁ(U1)+€(U2)+/<;U+2a (mod?)
={U1) +a+b)+ (L(U) +a+ (ky — b)) (mod2)
= (U(U1) + k) + (E(U2) + ko) (mod2)

thus, since £(U) + sy is odd, it follows that exactly one of the £(U;) + xy;, or £(Uz) + k7, must also be odd. Second,
we note that the recursion ends when |U| = 1, at which point we obtain an immediate contradiction between x¢; and
the equation corresponding to the single node inside U.

To implement this algorithm in Stabbing Planes, it suffices to show how to perform the queries in step 2, and how
to deduce a contradiction when |U| = 1; we begin with step 2. The first query can be performed by a binary tree with
|E[Uy, Us| < n leaves, one corresponding to each possible query outcome. Internally, the tree queries all possible
integer values for the sum (e.g. (¢ <0, a > 1),(a <1, a > 2),...). The second query can similarly be performed
by a tree with |E[U;]| < n leaves. Since we choose a balanced partition in each step, the recursion terminates in at
most O(log n) rounds — thus, we have a tree with branching factor O(n) and depth O(log n), yielding a size bound

of n@(°e7) Furthermore, each query can be implemented in a tree of depth O(logn), and so the depth of the proof
is O(log? n).
For the leaf-case, when |U| = 1, let u be the unique vertex in U. Stabbing Planes has deduced that

Z Ty = kU 7 L(u) (mod?2).

viuveEE

This is a contradiction to the Tseitin axiom @y pepTuy, = ¢(v). However, the Tseitin formula is presented to
SP as a system of linear inequalities (encoding a CNF formula) which is equivalent to the Tseitin formulas (a
system of Fy linear equations) over integer solutions. Therefore, while there are no integer solutions satisfying
KU = Y puwer Luv = £(u), there could still be non-integer solutions. To handle this, we simply force each of the
deg(@G) variables involved in this constraint to take integer values by sequentially querying the value of each variable
one-by-one. That is, for each {zy, : uv € E} we query (2, < 0, x4, > 1), noting that we have axioms saying
that z, > 0 and x, < 1 for every e € E. This can be done in a binary tree of height deg(G) with at most 24¢8(¢)
leaves, where at each leaf we derive 0 > 1. O

Together with the lower bounds of Buresh-Oppenheim et. al. [14] and Fleming et. al. [35] on the depth of Cutting
Planes and semantic Cutting Planes proofs of the Tseitin formulas, Theorem 1 provides an exponential separation in
terms of depth for these proof systems and Stabbing Planes.

4 The Relationship Between Stabbing Planes and Cutting Planes

It is an interesting question how Stabbing Planes compares to Cutting Planes, the main proof system based on ideas
from integer programming. By contrasting the two systems we see three major differences:

* Top-down vs. Bottom-up. Stabbing Planes is a top-down proof system formed by performing queries on
the polytope and recursing; while Cutting Planes is a bottom-up proof system, formed by deducing new
inequalities from previously deduced ones.

* Polytopes vs. Halfspaces. Individual “lines” in a Stabbing Planes proof are polytopes, while individual “lines”
in a Cutting Planes proof are halfspaces.

* Tree-like vs. dag-like. The graphs underlying Stabbing Planes proofs are trees, while the graphs underlying
Cutting Planes proofs are general dags: intuitively, this means that Cutting Planes proofs can “re-use” their
intermediate steps, while Stabbing Planes proofs cannot.

When taken together, these facts suggest that Stabbing Planes and Cutting Planes could be incomparable in power,
as polytopes are more expressive than halfspaces, while dag-like proofs offer the power of line-reuse. Going against
this intuition, we show next that Stabbing Planes and Cutting Planes are in fact very closely related.

4.1 Stabbing Planes Simulates Cutting Planes

A Cutting Planes proof is of a linear inequality cx > d from polytope P, presented as a list of integer linear
inequalities {a;z > b;}, is a sequence of inequalities {c;z > d; };c|s such that the final inequality is cx > d, and
each ¢;x > d; is either one of the inequalities of P, or is deduced from previously derived inequalities by one of the
following two deduction rules:

* Conic Combination. From inequalities ax > b, cx > d deduce any nonnegative linear combination of these
two inequalities with integer coefficients.

* Division. From an inequality ax > b, if d € Z with d > 0 divides all entries of a then deduce (a/d)x > [b/d].

asx < bs —1 asx > bg

Figure 4. The Stabbing Planes refutation which results from translating a Cutting Planes refutation P =
Py,...,P;=0.

A Cutting Planes refutation is a proof of the trivially false inequality 0 > 1.

Equivalently, we can view a Cutting Planes refutation as a sequence of polytopes P = P4, ..., Ps = () such that
P; is obtained from P;_; by including an inequality which can be deduced from the inequalities of F;_; by one of
the two rules of Cutting Planes. In integer programming, we obtain F; from P;_; by a Chvdtal-Gomory cut.

Theorem 7. Stabbing Planes polynomially simulates Cutting Planes.

Proof. We will say that a polytope P’ can be deduced from P by Stabbing Planes if there is a query (ax < b —
1, ax > b)suchthat PN{z:ax <b—1} =0and PN{z:ax > b} C P'.

Let P be an unsatisfiable polytope and P = Py,...,P; = () be a Cutting Planes refutation. To prove the
theorem, we show that for each i € [s — 1], P41 = P, N {x : ax > b} can be deduced from from P; in Stabbing
Planes by the query (ax < b— 1, ax > b). It remains to show that P, N {z : ax < b— 1} = (). There are two cases,
depending on the rule used to derive ax > b from F;.

e If ax > b was derived by a conic combination of inequalities belonging to P;, then P,N{ax < b—1} = () can
be witnessed by adding the conic combination equalling ax > b together with ax < b — 1 to deduce 0 > 1.

* Otherwise, ax > b is derived by division, i.e., it is (¢/t)z > [c/t] for some integer ¢ > 0. Then [d/t] > d/t
and so 1 > 0 is a conic combination of (¢/t)x < [d/t] — 1 and cx > d, witnessing that P N {z : (¢/t)z <

[d/t] — 1} = 0.
O

To see that Stabbing Planes can simulate Cutting Planes, we view each inequality

4.2 Towards a Topology Preserving Simulation of Cutting Planes

An artifact of both the simulations of CP by variants of SP and of SP* by CP is that they are far from being depth-
preserving; they convert shallow proofs into ones that are extremely deep. In this section, we explore whether this
explosion in depth is inherent to the simulation of CP by SP. While we are unable to conclusively resolve this
question — indeed, at this time the only technique for proving superlogarithmic depth lower bounds on SP works
equally well for CP — we provide a number of depth-preserving simulations of subsystems of CP.

To motivate our results, we will take a detour and discuss the relationship between SP, CP and real communi-
cation protocols. Presently, almost all known lower bounds for CP (including the ones from ??) are obtained by
studying the communication complexity of the CNF search problem (defined in ??). For instance, it is known that:

* A depth d CP refutation yields a d-round real communication protocol for the associated CNF search problem.

10

* A ssize s treeCP refutation yields a real communication protocol O(log s)-round real communication protocol
for the associated CNF search problem.

* A size s and space ¢ CP refutation yields a O(¢log s)-round real communication protocol for the CNF asso-
ciated search problem.

» A size s CP proof yields a dag-like real communication protocol for the associated CNF search problem.

All of these results have been used to derive strong lower bounds on Cutting Planes by proving the corresponding
lower bound against the CNF search problem [12,31,36,48,54,67]. Furthermore, this technique applies even to the
stronger semantic CP system, as all one needs to exploit is that the lines are linear inequalities, rather than expoiting
some weakness of the deduction rules. However, this strength also illustrates a weakness of current techniques, as
once the lines of a proof system become expressive enough, proof techniques which work equally well for semantic
proof systems break down since every tautology has a short semantic proof. Therefore, it is of key importance to
develop techniques which truly exploit the “syntax” of proof systems, and not just the expressive power of the lines.

Hence, it is somewhat remarkable that we are able to show that each of the simulation results above still hold if
we replace real communication protocols with SP refutations, which are syntactic objects. That is, we show

(i) A depth d CP refutation yields a depth 2d SP refutation.
(ii) A size s treeCP refutation yields a size O(s) and depth O(log s) SP refutation.
(iii) A size s and space ¢ CP refutation yields a size O(2%s) and depth O(¢log s) SP refutation.

(iv) A size s CP refutation yields a size O(s) SP refutation

4.2.1 Simulating CP Depth

First, we exhibit a depth-preserving simulation of CP by SP, which establishes (i). Furthermore, if the proof is
tree-like then this simulation simultaneously preserves the size.

Theorem 8. depthcp(F') > 2 - depthgp(F'). Moreover, for any treeCP refutation of depth d and size s there is an
SP refutation of depth 2d and size O(s).

Proof. 1t is sufficient to prove the “moreover” part of the statement, since, by recursive doubling, any CP refutation
can be converted into a treeCP refutation where the depth remains the same.

Fix a treeCP refutation of size s and depth d, and let G be the its underlying tree. We will construct an SP
refutation of the same system of linear inequalities by proceeding from the root of GG to the leaves. In the process,
we will keep track of a subtree 7' of GG, which we have left to simulate, and an associated “current” node v of the
SP refutation that we are constructing. Along the way, the following invariant will be maintained: at every recursive
step (T, v) with T' # G, if the root of T is labelled with the inequality ax > b, then the edge leading to v in the SP
refutation is labelled with az < b — 1.

Initially, 7" = G and the SP refutation contains only a single root node v. Consider a recursive step (7', v). We
break into cases based on which rule was used to derive the root of 7.

* Conic Combination. Suppose that the root of 7" is labelled with an inequality A\(a + ¢)z > A(b + d) which
was derived as a conic combination of ax > b and cx > d. At the current node v in the SP refutation, query
(ax < b—1, ax > b). On the branch labelled with axz > b, query (cz < d — 1, cx > d). This sequence of
queries results in three leaf nodes; see Figure 5. Let the leaf of the branch labelled with ax < b — 1 be #; and
let T be the subtree rooted at the child of the root of 7" labelled with ax > b; recurse on (77, ¢1). Similarly,
for the leaf ¢5 of the branch labelled with cx < d — 1, let T5 be the sub-tree rooted at the child of the root of
T labelled with cz > d, and recurse on (75, {2).

For the final leaf, obtained by traversing the edges labelled with ax > b and cx > d, we can derive 0 > 1.
To see this, first observe that if " = G (i.e. the base case) then the root node of 7 is labelled with 0 > 1 and

11

N 7/ N 7/ A
N R N / Ma+c)z < A(b+d)—1 N
\ 4 \ 4 \\
AY 7/ AY 7/ N
\ 7 \ 7 N
< v < v
ar >b cr>d axngZb

zl

ce <d-—1 cr>d

[Mataz>rc+a] <10) Qs

Figure 5: A treeR(CP) refutation invoking the conic combination rule (left) and the corresponding partial SP refu-
tation (right).

ax > band cx > d are the premises used to derive it by a conic combination. In this case, we can derive
0 > 1 by the same conic combination in SP. Otherwise, by the invariant, the edge leading to v is labelled with
the inequality A(a + ¢)x < A(b + d) — 1. Therefore, a conic combination of this inequality with az > b and
cx > dyields 0 > 1.

* Division. If the root of T is labelled with an inequality ax > [b/J] obtained by division from daz > b, then
query (dax < b—1, dax > b). At the leaf /1 corresponding to the edge dax < b—1, let T be the subtree of T’
rooted at the child of the root of 7" and recurse on (77, ¢1). At the leaf corresponding to the edge dax > b we
derive 0 > 1 by a conic combination with axz < [b/§] — 1, which we have already deduced by the invariant.
To see this, observe that b — §([b/0] — 1) >0

* Axiom. If T is a single node — a leaf of the treeR(CP) refutation labelled with some initial inequality az > b
of the system that it is refuting — then, by the invariant, we have already deduced ax < b — 1 and this can be
added to ax > b to derive 0 > 1.

To see that the SP refutation that we have constructed has depth at most twice that of the treeCP refutation,
observe that conic combinations are the only inference rule of CP for which this construction requires depth 2 to
simulate, while all other rules require depth 1.

To measure the size, note that every CP rule with a single premise is simulated in SP by a single query, where
one of the outgoing edges of that query is immediately labelled with 0 > 1. Each rule with two premises is simulated
by two queries in the SP refutation, where one of the three outgoing edges is labelled with 0 > 1. Therefore, the
size of the SP refutation is O(s). O

4.2.2 Balancing treeCP Proofs into SP

A proof system can be balanced if any proof of size s implies one of simultaneous size poly(s) depth polylog(s).
While it is known that treeCP refutations cannot be balanced, we show next that if we permit the resulting refutation
to be in SP, then we can balance. This establishes (ii).

Theorem 9. Any size s treeCP refutation of an unsatisfiable system of linear inequalities Ax > b implies a size
O(s) and depth O(log s) SP refutation of Az > b.

Proof. Consider a treeCP refutation of Az > b and let T be its corresponding tree. As well, let || denote the
number of nodes in 7. We will construct the SP refutation recursively; at each step we will keep track of a current
node u in the SP proof we are constructing. The base case is when |T'| = O(1), in which case we can use one of the
previous simulation theorems (?? or Theorem 8) to create an SP refutation of Ax > b satisfying these properties,
and append it to wu.

For the recursive step, observe that because the tree has fanin at most 2, there exists a node v in 7' such that the
subtree T, rooted at v satisfies |T'|/3 < |T,| < 2|T'|/3. Let cx > d be the line corresponding to v. At node u in the
SP proof, query (cx < d — 1, cx > d). Let up (resp. ug) be the child of u obtained by following the edge labelled
with cx < d — 1 (resp. cx > d); see Figure 6. We recurse as follows:

12

T\T, cx<d-—1 cx>d
T, \z@u © N
T, T\ T,

Figure 6: A decomposition of treeR(CP) tree T" into T, and T"\ 7T), (left) and the corresponding partial SP refutation
(right).

* At u;; Observe that the sub-proof 7T, is a treeCP derivation of the inequality cx > d. Because we have
deduced cx < d — 1 on the path to u, if we also deduce cx > d then this is sufficient to derive 0 > 1.
Therefore, at u; we recurse on the treeCP derivation 7,.

* Atug: Observe that the sub-proof 7'\ 7T, is a treeCP refutation of Az > b where we have assumed cx > d as an
axiom. Therefore, at u; we recursively construct an SP refutation of the set of inequalities { Az > b, cx > d}
using tree 7'\ T,.

The size of the treeCP refutation is clearly preserved. Observe that the depth of the resulting SP refutation becomes
logarithmic in s, since we are reducing the size of the proof to be simulated by a constant factor on each branch of a
query. O

4.2.3 Balancing Low-Space CP Proofs into SP

Next,we show how to balance CP proofs into SP, provided the space at each step of the proof is bounded.

The space for a proof system models the amount of information that must be remembered at each state in
the nondeterministic Turing machine that underlies a proof system. To capture this, we redefine a Cutting Planes
refutation of a system of linear inequalities Ax > b as a sequence of configurations C1, . . . , Cs where a configuration
C; is a set of integer linear inequalities satisfying the following conditions: (i) C; = @, (ii) Cs contains the inequality
0 > 1, (iii) each configuration C; follows from C;_; by removing any number of inequalities and including an
inequality which was derived from inequalities in C;_; by one of the rules of CP or an initial inequality belonging
to Az > b. The line space of a refutation is max;¢|5 |C;|, the maximum number of inequalities in any configuration.

Theorem 10. For any CP refutation of size s and line space ¢ of a system of linear inequalities Ax > b there is an
SP refutation of depth O({log s) and size O(s - 2°).

This implies that strong depth lower bounds on SP proofs can lead to size-depth tradeoffs for CP.

Proof. Fix a Cutting Planes refutation C1, ..., Cy where |C;| < £ for all ¢ € [s]. The theorem will follow by taking
1 = s in the following claim.

Claim. For any i € [s] there exists an SP tree of depth 2/ log i such that every root-to-leaf path ends in a leaf labelled
with 0 > 1, except for one, along which we have deduced all of the inequalities in C;.

Proof of Claim. It remains to prove the claim. If C; contains only a single inequality a;x > b; and it belongs to
Az > b, then take the tree to be the one corresponding to the SP query (a;x < b; — 1, a;x > b;). Otherwise, the SP
tree begins with a complete binary tree in which every inequality in C|;/) is queried. Exactly one path in this tree
is labelled with the inequalities in C/; /2, and the remaining paths contain the integer negation (i.e., cx < d — 1) of
at least one inequality cz > d in C|;/5). We consider these two cases separately.

In the case that a path contains a negation of a line from C|; /|, we attach to its leaf the SP tree we obtain
recursively by running our construction on C1,...,C|;/2). The leaves of the resulting tree are all labelled with

13

Figure 7: The SP tree corresponding to a configuration C; = {cz > d}.

0 > 1, except for one. By construction, at the leaf not labelled with 0 > 1 we have deduced all inequalities in C'|; 5|
Since we attached this tree to a path along which we had deduced the negation of a line in C|; /5|, we can label this
leaf with a conic combination of these inequalities equalling O > 1. The overall depth in this case is ¢ for the initial
tree and 2¢ log(|i/2]) for the tree obtained recursively. Altogether, /+2¢1log(|i/2]) < £(1+2log(i)—2) < 2¢log .

For the path labelled with the inequalities in C; /2, note that C|; /2|41, - .., C; can viewed as configurations of
a refutation of the original inequalities Az > b together with the inequalities in C/;/5|. At the leaf of this path we
have deduced all inequalities in C|;/5|. Thus, we can apply the recursive construction to C|;/3) 41, - - -, C; to refute
this leaf. The overall depth is £ + 2¢1log([i/2]) < ¢(1 + 2log(i + 2) — 2) < 2/log . O

4.3 Simulating non-CG Cuts

So far, we have focused on the relationship between Stabbing Planes and Chvatal-Gomory cutting planes. In this
section we discuss the relationship between SP and other popular types of cutting planes. First, we cover the result
of Basu et al. [8] which shows that SP can simulate split cuts. Split cuts, which were introduced by Cook et al. [22],
and form one of the most popular classes of cutting planes in practical integer linear programming. Recall that an
inequality axz > b is valid for a polytope P if for every z* € P, az* > b.

Split Cut. A split cut for a polytope P is any integer-linear inequality ax > b for which there exists a witnessing
pair ¢ € Z" and d € Z such that ax > bis valid forboth PN {z € R" : cx < d—1}and PN{z € R" : cx > d}.

Figure 8: A split cut ax > b witnessed by (cx < d — 1, cz > d) on the polytope in green.

Split cuts are known to be equivalent to mixed-integer rounding (MIR) cuts [63] and Gomory mixed integer
cuts [40], and generalize lift-and-project cuts [6]. As well, Dash [28] gave an example on which split cuts are
exponentially separated from Chvatal-Gomory cuts and lift-and-project cuts. Basu et al. [8] showed that split cuts
can be simulated in Stabbing Planes. For completeness, we include a proof of this.

14

Lemma 11 ([8]). Let P be a polytope and let P = P N {ax > b} be obtained by a split cut from P. Then, there is
an SP tree of size O(1) beginning from P such that every leaf is empty, except for one whose corresponding polytope
is P’

Proof. We simulate the deduction of P’ from P in Stabbing Planes as follows:
(i) Query (axz <b—1, ax >b)

(ii) On the branch labelled with ax < b — 1, query (cx < d — 1, cx > b). Observe that because ax > b was
valid for both P N {cx > d} and P N {cx < d — 1}, it follows that both P N {cz > d} N {azx < b — 1} and
Pn{cx>d} n{axr <b— 1} are empty.

Therefore, the only non-empty leaf is the one corresponding to P’. O

Dash [28] studied split cuts as a proof system, and showed that the lower bound of Pudlak [67] could be extended
to prove exponential lower bounds on the length of split cut proofs. A split cut refutation of a system of integer linear
inequalities Az > b (representing a polytope P) is a sequence of inequalities c;z > dy,...,csx > ds = 0 > 1 such
that ¢, > d; is a split cut for the polytope P N {c;x > d;};<;. The following is immediate corollary of Lemma 4.3.

Corollary 12. Stabbing Planes polynomially simulates split cut proofs.

Proof. To simulate any split cut refutation cix > by, ..., csx > bg, we simply simulate each cut inductively using
Lemma 4.3. [

Finally, we note that there exist cutting planes that cannot be efficiently simulated by SP. This is witnessed by
the fact that SP cannot polynomially simulate semantic CP [33]. A concrete example of a type of cutting plane that
SP likely cannot simulate are the matrix cuts of Lovasz and Schrijver [60]. As we describe in Section 5 CP, and
therefore, SP* cannot quasi-polynomially simulate the Lovasz-Schrijver proof system. However, whether this holds
for SP with unbounded coefficients remains an interesting question.

S Relationship Between Stabbing Planes and Other Proof Systems

Having explored in depth the relationship between Cutting Planes and Stabbing Planes, we now describe how Stab-
bing Planes relates to other proof systems. A summary of these relationships can be seen in Figure 2.
Let us first note some of the separations that have already been established.

* Lower bounds for unsatisfiable systems of linear equations over finite fields, which are known for Nullstel-
lensatz [44], the Polynomial Calculus [15], Sum-of-Squares [45,70], ACO-Frege [11,38,47,66], rule out the
possibility of these systems simulating CP.

* GoO0s et al. [42] gave an exponential separation between Nullstellensatz and Cutting Planes by observing that,
for any unsatisfiable system of linear equations F', composing with the m-bit index gadget can only increase
the degree of refuting F' in Nullstellensatz by O(logm). On the other hand, Garg et al. [39] showed that
composing any function which requires resolution refutations of width w when composed with the index
gadget requires Cutting Planes proofs of size n*(*). Thus, any function which requires large resolution width
but small Nullstellensatz degree provides such a separation.

» Semantic CP is not polynomially verifiable, and therefore, assuming P # NP, no propositional proof system
can simulate it. Indeed, Filmus, Hrube§, and Lauria observed that it has O(1) size refutations of unsatisfiable
instances of the NP-complete subset sum problem.

We establish the remaining simulations and separations in Figure 2 next.

15

R(CP)

/

(CP|—————[SP = treeR(CP)

\

Figure 9: Relationships between R(CP), CP, and their tree-like variants. An arrow from proof system P; to P»
indicates that P can polynomially simulate P;.

5.1 Equivalence Between Stabbing Planes and treelike R(CP)

The Resolution over Cutting Planes (R(CP)) proof system was introduced by Kraji¢ek [54] as a mutual generaliza-
tion of both Cutting Planes and resolution — the lines of an R(CP) proof are clauses of integer-linear inequalities,
and in a single step one can take two previously derived disjunctions and either apply a Cutting Planes rule to a
single inequality in the disjunctions, or apply a resolution-style “cut”.

Resolution over Cutting Planes. An R(CP) proof of a disjunction I's from a system of integer-linear inequalities
Az > bis a sequence of disjunctions P = {T';};c|4 such that each I'; is a disjunction which is either an inequality
from Az > b or was derived from earlier disjunctions by one of the following deduction rules:

* Conic Combination. From (ax > b) VI and (cx > d) V I deduce (A(a + ¢)x > A(b+ d)) VT for any
non-negative integer \.

* Division. From (ax > b) V I" and integer ¢ dividing each entry of a, deduce ((a/d)x > [b/d]) VT
* Cut. From (ax > b) VI and (ax < b—1) VI deriveI.

» Weakening. From I" deduce I' V (ax > b)

* Axiom Introduction. Deduce (ax > b) V (axz < b — 1) for any integer-linear inequality az > b.

e Elimination. From (0 > 1) V I" deduce T".

The size of a proof is the number of disjunctions s in the proof and the width of the proof is the maximal number of
inequalities in any disjunction in the proof. An R(CP) refutation of Ax > b is a proof of the empty clause A from
Az > b. The proof system treeR(CP) is the tree-like restriction of R(CP) in which the underlying implication graph
is required to be a tree.

The main result of this sub-section is that SP is polynomially equivalent to treeR(CP).
Theorem 2. The proof systems SP and treeR(CP) are polynomially equivalent.

Even though SP turns out to be equivalent to a system already in the literature, this new perspective has already
shown to be useful: none of aforementioned results were known for treeR(CP).
We will prove Theorem 2 in two parts.

Claim 13. Let Az > b be an unsatisfiable system of m integer-linear inequalities. Any size s and depth d SP
refutation implies a treeR(CP) refutation of size O(s(d? + dm)) and width d + 1.

Proof. Consider an SP refutation of Az > b of size s and depth d. Fix any root-to-leaf path p in the refutation and
let cix > dy,...,cex > d; be the sequence of linear inequalities labelling p. We will first show how to derive the
clause

(cix <dy—1)V...V(gx <d;—1) (1)

16

in treeR(CP). For every i € [t], using axiom introduction, introduce (c;x < d; — 1) V (¢;x > d;) and weaken it to
obtain

(cix >di)V(ciz <dy —1) V...V (qx < dy —1). 2)
As well, weaken each initial inequality a;z > b; in Az > bto
(aix > b)) V(cix <di —1)V...V(ax <dp — 1) 3)

Because p is a root-to-leaf path in the SP proof, it is labelled with a conic combination of Ax > b and ¢;xz > d; for
every i € [t] equalling 0 > 1. By taking this conic combination of the first inequalities of the lines in (2) and (3) we
can deduce

0> V(ar<di—1)V...V(gr <d;—1),

from which we can obtain (1) by elimination.

Repeat this process to deduce (1) for every root-to-leaf path in the SP proof. Applying the cut rule appropriately
to these inequalities yields the empty clause. To see this, let p and p’ be two root-to-leaf paths which differ only on
their leaf nodes. Then, their corresponding inequalities (1) are of the form

(cx >d))V(ciz <dy—1)V...V(ct1z < di—1 — 1)V (qx < dy — 1),
(cx >d))V(cie <dy —1) V...V (12 < di—1 — 1) V (. > dy).

That is, they differ in their final inequality. Applying the cut rule, we can deduce
(Cil' > dl) V (clx <d; — 1) V...V (Ct,11‘ <di_1— 1)

Therefore, by repeating this process we can derive the empty clause.
Each deduction of a clause (1) can be done in size O(t? + tm +t +m) = O(d?> + dm) and has width at most
d + 1. Thus, the size of the proof is at most O(s(d? + dm)). O

We now prove the converse.

Claim 14. Let Az > b be an unsatisfiable system of m integer-linear inequalities. If there is a treeR(CP) proof of
the line (a1z < by — 1) V...V (amx < by, — 1), where a;z > b; is the ith row of Ax > b, of size s and depth d
then there is an SP refutation of Az > b of size O(s) and depth 2d.

Proof. Fix such a treeR(CP) proof of the disjunction. For any clause I' = (cijz > d1) V ... (cmT > dp), wWe will
denote by —I' the set of inequalities {cix < dy — 1,...,cpmz < d,,, — 1}. We will construct the SP refutation by
structural induction, beginning at the leaves of the refutation and proceeding towards the root. At each line I' in the
proof, deduced from children 'y and I'9, we will assume that we have constructed SP refutations —I"y and —I's and
use them to construct an SP refutation of —I".

First, consider a leaf of the proof which, by definition, is an axiom introduction of (cx < d — 1) V (cx > d) for
some arbitrary integer-linear inequality cz > d. We can construct an SP refutation of (cx > d) A (cx < d — 1) by
querying (cx < d — 1, cx > d), and then labelling each leaves with the appropriate conic combination equalling
0>1.

Now, let I' be some line in the proof which was derived from earlier lines {I';}, and suppose that we have
constructed SP refutations of {—I';}. To construct a refutation of —I", we break into cases based on the rule used to
derive I'.

* Conic combination. LetI' :== (A(c1 + c2)z > Ady + d2)) V A, let 'y := (cqz > dy) V A, and let
Iy := (cox > d2) V A. We construct an SP refutation of —I" by first querying (cix < d; — 1, c1x > dy).
On the branch labelled with c;z > d1, apply the SP refutation of —=I";. On the branch labelled with c;z > dy,
query (cox < do — 1, coxr > d2), and use the refutation of —I's to refute the branch labelled with cox > da.
On the remaining branch, where we have deduced cix < d; — 1 and cox < dy — 1, we have that 0 > 1is a

conic combination with A(c1 + c2)z > A(d1 + d2).

17

* Division. LetI" := ((¢/6)x > [d/6]) V Aand letI'; = (dcx > d) V A. Query (dcx < d — 1, dcx > d). On
the branch labelled with cx < d — 1 we can use the refutation of —I';. On the branch labelled with cx > d, it
is enough to observe that the intersection of cx > d and ((¢/d§)x < [d/d] — 1), provided by —T', is empty.

* Cut. Suppose I' := A was derived by cuttingon 'y := (cx > d) VA and 'y := (cx < d — 1) V A. Query
(cx < d—1, cx > d). On the branch labelled with cx < d — 1 apply the refutation of —I';, and on the branch
labelled with cx > d use the refutation of —I's.

» Weakening. If I' := (cx > d) V A) was derived by weakening I'; := A, then query (cx < d — 1, cx > d).
On the branch labelled with cx < d — 1 use the refutation of —I'1, and the branch labelled with cx > d we can
deduce 0 > 1 by adding this inequality to cx < d — 1 with is an inequality of —I'.

Simulating each rule requires at most two queries, of which at most two of the children are not immediately the
empty polytope. Therefore, the size of the resulting tree is at most 2s and the depth is at most 2d. 0

5.2 Stabbing Planes Simulates Tree-like DNF Resolution

Next, we show how to simulate the k-DNF resolution proof systems by variants of Stabbing Planes.

k-DNF Resolution. A Res(k) refutation of a CNF formula F" is a sequence of k-DNF formulas P = {T'; };c|4 such
that I's is the empty clause A, and each I'; is either a clause of F' or was derived from earlier DNFs by one of the
following deduction rules, where a literal ¢; is either x; or —z;:

* Cut. From k-DNFs AV (Ajest;) and BV (Vies—¢) deduce AV B.
» Weakening. From a k-DNF A deduce A V /¢ for any literal /.

* A-Introduction. From {A V ¢;};cs deduce A V (Ajests)-

* A-Elimination. From A V (A;cst;) deduce AV ¢; forany i € S.

A refutation is tree-like if every deduced inequality is used at most once in the refutation (i.e., the underlying
implication graph is a tree). The proof system which produces only treelike Res(k) refutations is denoted treeRes(k).

Theorem 15. For any integer k > 1, any Res(k) refutation of size s implies an R(CP) refutation of size O(ks).
Similarly, any treeRes(k) refutation of size s implies an SP refutation of size O(ks).

The proof will follow by a straightforward application of the following claim.

Claim 16. From any disjunction \/;.g(z; > 1) V Ve (=i > 0), together with inequalities z; > 0 and z; < 1 for
every i € [n], there is a size O(|S| + |T'|) treeR(CP) derivation of 3 ;g i + > ;cp(1 — ;) > 1.

Proof. Forevery v € T'US, derive ZZET\{U} i+ Zjes\{v} (1—x;) > 0 by adding together the inequalities z; > 0
and ; < 1. For v € T'U S add the corresponding inequality to the disjunction in \/;cg(; > 1) V Ve (=25 > 0)
containing the variable v. The result is the disjunction

V(X w+ Y -a)=1),

SUT €S JET

which is the inequality 3, g i + > e (1 — 25) > 1. O
Proof of Theorem 15. We will show that R(CP) can simulate Res(k). That SP simulates treeRes(k) will follow by
observing that the same proof also shows a simulation of treeRes(k) by treeR(CP), and then applying Theorem 2.

Let {I'; };c[s) be a Res(k) refutation of a CNF formula F, and note that the encoding of F' as a system of
inequalities (recalled in Section 2) includes x; > 0 and x; < 1 for every i € [n]. We will encode each disjunction
I':'=A;V...VA;asfollows: each A := (Ajeszi) A (Ajer—x;) is represented by the inequality) . o(z; — 1) +
> jer —%j = 0; observe that both representations are satisfied by the same set of {0, 1}-assignments. Let L be the
encoding of I" obtained by replacing each A; by its encoding as an inequality.

It remains to show that R(CP) can simulate the deduction rules of Res(k).

18

* Cut. Suppose that I := A V B be deduced by cutting on I'; := AV (Ajesz;) A (Ajer—xj) and 'y := BV
(Vies—x;) V (Vjerxj). As well, suppose that we have already deduced the corresponding lines Ly, := L4 V
(Xies(@i— 1)+ > jer —x; > 0)and Ly, := LpV V,cg(—2; > 0) V V,cp(x; > 1). By Claim 16, R(CP)
canreencode Lr, as LV (3_;cg(1—2i)+>_ e x; > 1), which when added to Ly, gives LyVLpV(0 > 1),
which is Lp.

» Weakening. This is already a rule of R(CP).

* A-Introduction. f T :== AV (Niesxi) A (Ajer—z;) was deduced from {A V z;}ics and {A V —z;}jer and
we have already deduced Lr, := L4 V (z; > 1) and Lr,:==LaV (—z; > 0)foralli € Sandj € T. Then
Ly can be deduced by adding together all of the L, and Lr;.

* A-Elimination. If I' = AV z; was deduced from I'y := AV (Ajeszj) A (Aert), then Ly can be deduced
from Lp, := AV (3_,cg(2j — 1) + > _;cr —2¢ > 0) by adding the inequalities z; < 1 forevery j € S\ {i}
and x; > 0 for every ¢t € T'. A similar argument holds if z; is negated.

O]

Atserias, Bonet, and Estaban [4] gave polynomial-size proofs of the clique-coclique formulas, for cliques of
size Q(y/n) and cocliques of size o(log® n). For this range of parameters, quasi-polynomial size lower bounds are
known [67]. This rules out the possibility of a polynomial simulation of R(CP) or treeRes(k) by Cutting Planes.

6 Lower Bounds on Stabbing Planes

Next, we tackle the problem of proving lower bounds on Stabbing Planes proofs. First, we show that near-maximal
depth lower bounds on unrestricted Stabbing Planes proofs can be obtained by a straightforward reduction to com-
munication complexity. Next, while we are unable to prove unrestricted size lower bounds, we explain why current
techniques that would attempt to leverage the depth lower bounds fail. In doing so, we show that real communica-
tion protocols cannot be balanced by establishing the first superlogarithmic lower bound on the real communication
complexity of the set disjointness function.

First, we recall some standard models of communication and previous lower bounds on depth via communication
complexity. In proving lower bounds on proof complexity it has been fruitful to study the following associated search
problem, introduced by Lovész et al. [58].

CNF Search Problem. Let F' = C; A ... A Cy, be a CNF formula and let (X, Y") be any partition of its variables.
The associated CNF search problem Search%X’Y) C {0, 13X % {0, 1} x [m] is defined as (x, y, 1) € Search%X’Y)
if and only if C;(z,y) = 0.

Our depth lower bounds are inspired by the approach of Impgliazzo et al. [49] who observed that small treelike
Cutting Planes proofs implied short protocols in certain models of communication for solving the following CNF
search problem.

Deterministic Communication. A deterministic communication protocol for a search problem S C X x Y x O
consists of two players, Alice and Bob. They receive private inputs z € X and y €) respectively, and their
aim is to agree on some o € O for which (z,y,0) € S. To do so, they are allowed to communicate by sending
messages to each other (in the form of a single bit) according to some predetermined protocol. This can be modelled
combinatorially: every step in the communication protocol is associated with rectangle of inputs X’ x) C X x)
consistent with the communication thus far; X’ models what Bob knows about Alice’s input, and) models what
Alice knows about Bob’s. If Alice communicates a bit, then this partitions X” into X and X} corresponding to
whether the bit Alice sent was 0 or 1. The communication ends when X’ x)’ is monochromatic, meaning that there
is some o € O such that (z,y,0) € S for every (z,y) € X' x Y.

The deterministic communication complexity of computing S is the minimum number of bits communicated, or
rounds of communication, needed to solve S on any input (z,y) € X x).

19

Observe that for z,y € {0, 1}", any integer linear inequality ax + by > d can be evaluated in w = log ||al|; +
log ||b]|1 bits by Alice communicating az to Bob, and Bob responding with by. Therefore, for example, a Cutting
Planes refutation of a CNF formula F' of depth d in which the size of the coefficients are at most 2% implies
a O(dw)-round communication implies a O(dw)-round communication protocol for solving Search%X’Y) for any
partition (X, Y") of the variables. By strengthening the model of communication, we can simulate arbitrary linear
inequalities. Next, we define two models of communication which allow us to do this; the first is the standard model

of randomized communication complexity.

Randomized Communication. A (bounded error) randomized communication protocol solving a search problem
S C X x Y x O is adistribution over deterministic communication protocols such that for every (z, y) € X’ x), with
probability at least 2/3, the protocol outputs o for which (z,y, 0) € S. The randomized communication complexity
of § is the minimum number of rounds of any randomized protocol computing S, where the number of rounds of a
randomized protocol is the maximum number of rounds of any protocol with non-zero support in the distribution.

An alternative model, which more directly simulates arbitrarily linear inequalities, is the real communication
model introduced by Krajicek [54].

Real Communication. In a real communication protocol for a search problem S C X x) x O, the players
Alice and Bob communicate via a “referee”. In each round, Alice and Bob send real numbers r 4, rp to the referee
who responds with a single bit b which is 1 if r4 > rp, and 0 otherwise. The real communication complexity of
computing S is the number minimum number of rounds needed to communication needed to solve S on any input
(z,y) € X x Y.

6.1 Depth Lower Bounds

In this section we prove Theorem 3, which we restate next for convenience.

Theorem 3. There exists a family of unsatisfiable CNF formulas { F,,} for which any SP refutation requires depth
Q(n/log?n)

Note that every unsatisfiable CNF formula has a refutation in depth n by simply querying (x; < 0, x; > 1) for
all i € [n]. Therefore, this lower bound is tight up to a log? n factor.

The proof proceeds by showing that from any shallow SP refutation we can extract a short randomized or real
communication protocol for the associated CNF Search Problem. The lower bound follows by appealing to known
lower bounds on the communication complexity of this problem.

Lemma 17. Let Az > b be an unsatisfiable system of linear equations encoding a CNF formula F and let (X,Y")
be any partition of the variables z. Every depth d SP refutation of Az > b implies a O(dlogn + log? n)-round ran-
domized communication protocol and a O(d+log n)-round real communication protocol for solving Searchx y (F).

Proof. We will first present a general procedure for solving the CNF search problem and then show how to instantiate
it in both models of communication.

Fix an SP refutation of Az > b. Let Alice be given a boolean assignment to X and Bob be given a boolean
assignment to Y. To solve the search problem, they will follow the root-to-leaf path through the refutation, main-
taining the invariant that their joint assignment (X, Y") satisfies all of the inequalities labelling the root to leaf path.
Suppose that they have arrived at a node in the refutation corresponding to a query (cz < d — 1, ¢z > d). Observe
that their joint assignment (X, Y’) to z satisfies exactly one of these two inequalities. They will proceed down the
path corresponding to the satisfied inequality, thus preserving their invariant.

Once they arrive at a leaf, they will use the conic combination of inequalities which evaluates to 0 > 1 that
labels it in order to search for an inequality of Az > b (corresponding to a clause of F') which is falsified by (X, Y).
Indeed, by the invariant, the only inequalities in this conic combination which could be falsified by (X, Y") are those
belonging to Az > b, and a falsified inequality must exist because (X, Y") falsifies 0 > 1. Let the conic combination
be Eie[(] aiciz < Zz‘e[ﬁ] a;d, where «; > 0. By Carathéodory’s Theorem (point (ii) in Farkas’ Lemma), we can

20

assume that £ < n + 2. To find a falsified inequality, we binary search over the conic combination: test whether
fol oiciz < fol a;d; is falsified by (X,Y). If it is, recurse on it; otherwise, recurse on Zf:z 241 QiCiZ <
Zf: ¢/241 @idi. Because £ < n+2, this process terminates in O(log n) rounds having found an inequality belonging
to Az > b which is falsified by (X,Y).

To implement this procedure in communication, it remains to show that linear inequalities can be evaluated
efficiently in each of the models.

* Real communication: this can be done in a single round of communication. if Alice and Bob want to evaluate
c1x + coy > d, then Alice can send d — ¢y« to the referee and Bob can send coy. The referee returns whether
cx > d— coy.

* Randomized communication: this can be done in O(logn) rounds of communication by combining the fol-
lowing two results. The first is the O(logb + log 3) protocol of Nisan [64] for deciding a linear inequality
representable in b bits. The second is a result due to Muroga [62] which states that for any linear inequality
on n variables, there exists a linear inequality whose coefficients are represented in O(n log n) bits and which
has the same output on points in {0, 1}".

O]

To establish Theorem 3, it remains to lower bound the communication complexity of Search(F’). Strong lower
bounds on the randomized communication complexity of the CNF search lower bound were proven by G66s and
Pitassi [43]. In particular, Theorem 8.1 in [43] gives an unsatisfiable CNF formula 7' on poly(n) many clauses
and partition (x,y) of the variables for which the randomized commutation complexity of Search, ,(F') requires
Q(n/logn) rounds. Together with Lemma 17, this establishes Theorem 3.

We remark that the formula provided by Go6s and Pitassi is somewhat artificial. It is obtained by lifting the
Tseitin formulas with a versatile gadget. By Theorem 6 we know that the Tseitin formulas have O(log? n)-depth
SP refutations, and therefore the hardness of these formulas of G66s and Pitassi is derived from the composition
with this gadget. It remains an open problem to obtain strong lower bounds on the depth of SP refutations for more
natural families of formulas. Towards this, Dantchev et al. [26] were able to establish 2(logn) lower bounds on
the depth of SP refutations of the Tseitin formulas and the Pigeonhole principle via new techniques which take into
account the geometric structure of SP proofs.

6.2 Barriers to Size Lower Bounds

Next, we explore whether it is possible to leverage this depth lower bound in order to obtain size bounds. Throughout
this section, we will heavily make use of results of de Rezende, Nordstrom, and Vinyals [31]. They established a
lifting theorem that translates decision tree lower bounds for a function f : {0,1}" — {0, 1} to lower bounds on the
real communication complexity of the composed function foIND}, which we define next. Let IND; : [¢] x {0, 1}} —
{0, 1} be the ¢-bit index function mapping (z, y) to y,. The function f o IND} is obtained by replacing each variable
of f with a copy of IND}" on new variables. For any function f, composing with IND; induces a standard partition,
where Alice is given = € [t]" and Bob is given y € {0, 1}

The decision tree complexity of a function f is closely related to the DPLL complexity of refuting an unsatisfiable
formula. A decision tree is a binary tree in which: (i) every internal node is labelled by a variable x; and has two
outgoing edges labelled with 0 and 1, (ii) the leaves are labelled with either O or 1. A decision tree computes f if for
every x € {0,1}", the leaf obtained by following the root-to-leaf path which agrees with x is labelled with f(z).
The decision tree complexity of f, denoted DT(f), is the minimal depth of any decision tree computing f.

Theorem 18 (de Rezende et al. [31]). The following statements hold:

* For any function f : {0,1}" — {0, 1}, the real communication complexity of f o IND", is at least DT(f).

o There is CNF formula F with poly(n) many clauses which has poly(n) size resolution refutation but for which
any real communication protocol for Search,, , (F) requires Q(/n/*logn) rounds, for some partition of the
variables.

21

6.2.1 SP Proofs Cannot be Balanced

As an immediate corollary of Lemma 17 and Theorem 18, we show that SP proofs cannot be balanced. That is, an
SP refutation of size s does not imply one of size poly(s) and depth poly(log s). Thus, superpolynomial SP size
lower bounds do not immediately follow from depth lower bounds.

Corollary 19. There exists a CNF formula F which has poly(n) size SP refutations but any SP refutation requires
depth Q(n'/8/logn).

Proof. This follows immediately by combining Theorem 18 with Lemma 17 together with the fact that SP can
simulate resolution proofs.]

6.2.2 Real Communication Cannot be Balanced

Unlike the randomized protocols, the real communication protocols that result from Lemma 17 preserve the topology
of the SP proof. That is, the size — the number of nodes in the protocol tree — of the resulting real communication
protocol is equivalent, up to a poly(n) factor, to the size of the SP refutation. Therefore, while SP proofs cannot be
balanced, one might hope that the resulting real communication protocols could be, and thus size lower bounds could
still be obtained from depth bounds. This is not without precedent; both deterministic and randomized communi-
cation complexity can be balanced. Furthermore, although it known that treeCP cannot be balanced, Impagliazzo
et al. [49] show that treeCP refutations of size s can be balanced into O(log s)-round randomized communication
protocols for the CNF search problem.

Surprisingly, we show that real communication protocols cannot be balanced. To do so, we establish the first
lower bound on the real communication of the set disjointness function, perhaps the most well-studied function
in communication complexity, which we define next. Let OR,, : {0,1}" — {0, 1} be the n-bit V-function and
AND; : {0,1}" — {0, 1}. Then the set disjointness function, DISJ,, := OR,, o AND3, is obtained by replacing each
of the n input variables of OR,, by a copy of AND2 on new variables. As before, this function induces a standard
partition where Alice is given one of the two input bits of each ANDs function, and Bob is given the other.

Theorem 20. There is a partition of the variables such that DISJ,, has a real communication protocol of size O(n),
but any real communication protocol requires Q((nlogn)'/®) rounds of communication.

This lower bound was subsequently improved to Q(n/ log? n) by Chattopadhyay, Lovett, and Vinyals [16].

The main technique for obtaining lower bounds on the real communication complexity of a function is by a lifting
theorem, reducing the task of proving lower bounds on certain composed functions to the decision tree complexity
of the un-composed function. Although DISJ,, is a composed function, there is currently no lifting theorem for
composition with the AN Dy function. We circumvent this by exploiting the fact that DISJ,, is complete for the class
NP of functions with polylogarithmic nondeterministic communication protocols.

Nondeterministic Communication Complexity. The nondeterministic communication complexity of a function
f:{0,1}* — {0,1} and a partition (X,Y"), is the length of the shortest string z € {0, 1} that can convince Alice
and Bob to accept an input (z,y) € f~1(1) (without communicating). That is, it is the smallest £ such that for every
(x,y) € f~1(1) there is a string z € {0, 1}* such that both Alice and Bob accept, and for every (x,y) € f~!(0) and
every strong z € {0, 1}, either Alice or Bob rejects.

To prove the lower bound on DISJ,, we find a function in NP to which known lifting theorems for real com-
munication can be applied. Then, we use NP““~completeness to transfer this lower bound to DISJ,,. The function
that we will use is OR,, o IND;. First, we show that this function belongs to NP,

Lemma 21. There is a O(logt + logn) NP protocol computing OR,, o IND} for the standard partition associated
with IND;.

Proof. Fix some input (z,y) € [t]" x {0, 1}" and observe that the ith input bit to OR,, can be computed in log ¢ + 1
rounds of communication by brute-forcing the index gadget: Alice sends ; := x; 1, . .., Z; Jog ¢+ to Bob who can then
compute IND(z;, y;), where y; :== v, 1, ..., ¥i+, and return the answer to Bob in a single bit.

22

-
O = = O O O
OO = O = O

Ix(z) IB(y)

Figure 10: A covering of the communication matrix with monochromatic rectangles (left) and the corresponding
DISJ,, instance (right).

Consider the following protocol NP““ for OR,, o IND}': Alice and Bob are given a log n-bit string encoding the
index i € [n] where IND(z;,y;) = 1; that is, ¢ witnesses that (z, y) is accepting input of OR,, o IND}'; see Figure 10.
Alice and Bob verify that indeed IND;(x;,y;) = 1 by performing the above brute force protocol in log ¢ rounds of
communication. O

Lemma 22. Let m = n*, then any real communication protocol computing OR,, o IND} over the standard partition
requires (n logn) rounds.

Proof. Observe that the decision tree complexity of computing OR,, is n (since the sensitivity of OR,, is n). The
proof follows by combining this with Theorem 18. O

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 20. First, we prove the lower bound. We will reduce OR,, o IND} for t = n* to DISJ,,. By
Lemma 21 there is an cover of the 1-entries of the communication matrix of OR,, o IND}* by at most 2n¢ monochro-
matic rectangles. Enumerating this rectangle covering gives us an instance of set disjointness: on input (x,y) to
OR,, o IND}, Alice and Bob construct indicator vectors I 4(z) and Ip(y) of the rectangles in this rectangle covering
in their respective inputs lie. Then OR,, o IND} = 1iff DISJ(I4(x), Ip(y)) = 1.

This instance of DISJ,, is on ¢n/2 variables, and therefore Lemma 22 implies a lower bound of Q(nlogn).
Letting ¢ = tn be the total number of variables, this is a bound of the form ¢!/% log /.

For the upper bound, we give a real communication protocol for DISJ,, = OR,, o AND% that has O(n) nodes.
Let x, y be the inputs given to Alice and Bob respectively. Sequentially from ¢ = 1, ..., n, they will solve x; A y; by
Alice sending x; to the referee and Bob sending 2 — y;. If they discover that z; A y; = 0 then they halt and output 0,
otherwise they continue.]

7 Conclusion

We end with a several questions left open by this work. First, let us note that several of the questions posed in the
original version of this paper were subsequently resolved by [25] who exhibited an upper bound (Proposition 4) on
the size of the coefficients which occur in Stabbing Planes proofs, and showed that the Tseitin formulas could not
provide an exponential separation between Cutting Planes and Stabbing Planes.

1. In this work we showed that there are quasipolynomail-size Stabbing Planes proofs of the Tseitin formulas.
Can this be improved to polynomial?

2. A recent work [37] exhibited supercritical size/depth tradeoffs for Cutting Planes — exhibiting a formula
for which any small proof must have depth which goes far beyond worst-case. This built upon an earlier

23

supercritical size/width tradeoff for tree-like Resolution by Razborov [9,69]. This is in contrast to sufficiently
expressive proof systems, such as ACY-Frege, which can be balanced. Depth captures the degree to proofs
— and therefore algorithms which they formalize — can be parallelized. Furthermore, the depth in integer-
programming based proof systems such as Stabbing Planes is closely related to rank measures of polytopes,
which are studied in integer programming theory. In this work, we showed that Stabbing Planes cannot be
balanced. We ask whether this can be improved to a supercritical size/depth tradeoff.

. We have shown transformations of Cutting Planes proofs into Stabbing Planes which preserve either the size

or the depth of the original proof. Does there exist a transformation which preserves both parameters simulta-
neously?

. Establish super-polynomial lower bounds on the size of Stabbing Planes proofs. As mentioned in the related

work section, [35] proved superpolynomial lower bounds on SP proofs with coefficients of magnitude bounded
above by 27’ for some constant § > 0 by reducing to Cutting Planes lower bounds, however it is unclear
whether this reduction can be made to work for arbitrarily large coefficients. Dadush and Tiwari [25] exhibited
an upper bound of exp(poly(n)) on the magnitude of the coefficients in any Stabbing Planes proof. Thus, one
potential (although seemingly unlikely) way to resolve this question is to improve their upper bound to on’,
Another approach for obtaining lower bounds on general Stabbing Planes proofs, suggested by Garg et al. [39],
would be to obtain lifting theorem for intersection of triangles trees.

. Fleming et al. [35] showed that any bounded-weight Stabbing Planes (SP*) proof can be quasi-polynomially

translated into Cutting Planes. Can this simulation be improved to handle SP proofs of arbitrarily large
coefficients? Alternatively, can we separate SP from CP?

As mentioned in the introduction, we feel that SP has potential, in combination with state-of-the-art algorithms
for SAT, for improved performance on certain hard instances, or possibly to solve harder problems such as
maxSAT or counting satisfying assignments. The upper bound on the Tseitin example illustrates the kind
of reasoning that SP is capable of: arbitrarily splitting the solution space into sub-problems based on some
measure of progress. This opens up the space of algorithmic ideas for solvers and should allow one to take
fuller advantage of the expressibility of integer linear inequalities. For example, since geometric properties
of the rational hull formed by the set of constraints can be determined efficiently, an SP-based solver could
branch on linear inequalities representing some geometric properties of the rational hull. Therefore, it is an
open problem to realize a SP based solvers or to implement SP-like branching in conjunction with current
solvers.

References

[1]

Karen Aardal, Robert E. Bixby, Cor A. J. Hurkens, Arjen K. Lenstra, and Job W. Smeltink. Market split and
basis reduction: Towards a solution of the cornuéjols-dawande instances. INFORMS J. Comput., 12(3):192—
202, 2000.

Karen Aardal and Arjen K. Lenstra. Hard equality constrained integer knapsacks. Math. Oper. Res., 29(3):724—
738, 2004.

David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling salesman problem: a
computational study. Princeton university press, 2006.

Albert Atserias, Maria Luisa Bonet, and Juan Luis Esteban. Lower bounds for the weak pigeonhole principle
and random formulas beyond resolution. Inf. Comput., 176(2):136-152, 2002.

Egon Balas. An additive algorithm for solving linear programs with zero-one variables. Operations Research,
13(4):517-546, 1965.

24

[6] Egon Balas, Sebastidn Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical programming, 58(1):295-324, 1993.

[7] Boaz Barak, Fernando G. S. L. Branddo, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer, and Yuan
Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 307-326,
2012.

[8] Amitabh Basu, Michele Conforti, Marco Di Summa, and Hongyi Jiang. Complexity of branch-and-bound and
cutting planes in mixed-integer optimization - II. CoRR, abs/2011.05474, 2020.

[9] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-offs in resolution: Superpolynomial
lower bounds for superlinear space. SIAM J. Comput., 45(4):1612—-1645, 2016.

[10] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, Toniann Pitassi, and
Robert Robere. Stabbing planes. In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, pages 10:1-10:20, 2018.

[11] Eli Ben-Sasson. Hard examples for the bounded depth frege proof system. Comput. Complex., 11(3-4):109—
136, 2002.

[12] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative complexity of
resolution refinements and cutting planes proof systems. SIAM J. Comput., 30(5):1462-1484, 2000.

[13] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with small coeffi-
cients. J. Symb. Log., 62(3):708-728, 1997.

[14] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi. Rank bounds
and integrality gaps for cutting planes procedures. Theory of Computing, 2(4):65-90, 2006.

[15] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between degrees for
the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci., 62(2):267-289, 2001.

[16] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-communication
lifting for BPP using inner product. In Christel Baier, loannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 35:1-35:15. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2019.

[17] V. Chvatal, W. Cook, and M. Hartmann. On cutting-plane proofs in combinatorial optimization. Linear Algebra
and its Applications, 114-115:455-499, 1989. Special Issue Dedicated to Alan J. Hoffman.

[18] Vasek Chvétal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics,
4(4):305-337, 1973.

[19] Vasek Chvital. Cutting-plane proofs and the stability number of a graph. Inst. fiir Okonometrie und Operations
Research, Rhein. Friedrich-Wilhelms-Univ., 1984.

[20] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume 271. Springer,
2014.

[21] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J. Symb.
Log., 44(1):36-50, 1979.

[22] William Cook, Ravindran Kannan, and Alexander Schrijver. Chvatal closures for mixed integer programming
problems. Mathematical Programming, 47(1):155-174, 1990.

25

[23] William J. Cook, Collette R. Coullard, and Gyorgy Turdn. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25-38, 1987.

[24] William J. Cook and Mark Hartmann. On the complexity of branch and cut methods for the traveling salesman
problem. In William J. Cook and Paul D. Seymour, editors, Polyhedral Combinatorics, Proceedings of a
DIMACS Workshop, Morristown, New Jersey, USA, June 12-16, 1989, volume 1 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 75-82. DIMACS/AMS, 1990.

[25] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In Shubhangi Saraf, editor,
35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbriicken, Germany (Virtual
Conference), volume 169 of LIPIcs, pages 34:1-34:35. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2020.

[26] Stefan S. Dantchev, Nicola Galesi, Abdul Ghani, and Barnaby Martin. Depth lower bounds in stabbing planes
for combinatorial principles. CoRR, abs/2102.07622, 2021.

[27] Sanjeeb Dash. Exponential lower bounds on the lengths of some classes of branch-and-cut proofs. Math. Oper.
Res., 30(3):678-700, 2005.

[28] Sanjeeb Dash. On the complexity of cutting plane proofs using split cuts. Electron. Colloquium Comput.
Complex., 15(084), 2008.

[29] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394-397, 1962.

[30] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201-215,
1960.

[31] Susanna F. de Rezende, Jakob Nordstrém, and Marc Vinyals. How limited interaction hinders real communi-
cation (and what it means for proof and circuit complexity). Electron. Colloguium Comput. Complex., 28:6,
2021.

[32] Santanu S. Dey, Yatharth Dubey, and Marco Molinaro. Lower bounds on the size of general branch-and-bound
trees. CoRR, abs/2103.09807, 2021.

[33] Yuval Filmus, Pavel Hrube§, and Massimo Lauria. Semantic versus syntactic cutting planes. In Nicolas
Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS
2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 35:1-35:13. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2016.

[34] Matteo Fischetti and Andrea Lodi. Local branching. Math. Program., 98(1-3):23-47, 2003.

[35] Noah Fleming, Mika Go6s, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan, and Avi
Wigderson. On the power and limitations of branch and cut. In Valentine Kabanets, editor, 36th Compu-
tational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 6:1-6:30. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

[36] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random ©(log n)-CNFs are hard for
cutting planes. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 109-120, 2017.

[37] Noah Fleming, Toniann Pitassi, and Robert Robere. Extremely deep proofs. In Mark Braverman, editor, /3th
Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley,
CA, USA, volume 215 of LIPIcs, pages 70:1-70:23. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.

26

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova. Bounded-depth frege complexity
of tseitin formulas for all graphs. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors,
44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-
30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 49:1-49:15. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2019.

Ankit Garg, Mika G60s, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds from resolution.
In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages
902-911. ACM, 2018.

Ralph Gomory. An algorithm for the mixed integer problem. Technical report, RAND CORP SANTA MON-
ICA CA, 1960.

Ralph E Gomory. An algorithm for integer solutions to linear programs. Recent advances in mathematical
programming, 64(260-302):14, 1963.

Mika Go606s, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone complexity and
TENP. In Avrim Blum, editor, /0th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 38:1-38:19. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2019.

Mika G66s and Toniann Pitassi. Communication lower bounds via critical block sensitivity. SIAM J. Comput.,
47(5):1778-1806, 2018.

Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs. In 39th Annual Symposium
on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages
648-652. IEEE Computer Society, 1998.

Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor.
Comput. Sci., 259(1-2):613-622, 2001.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric methods in combinatorial optimization. In William R.
Pulleyblank, editor, Progress in Combinatorial Optimization, pages 167-183. Academic Press, 1984.

Johan Héstad. On small-depth frege proofs for tseitin for grids. Electron. Colloquium Comput. Complex.,
24:142,2017.

Pavel Hrubes$ and Pavel Pudldk. Random formulas, monotone circuits, and interpolation. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
121-131, 2017.

Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for tree-like cutting
planes proofs. In Proceedings of the Ninth Annual Symposium on Logic in Computer Science (LICS *94),
Paris, France, July 4-7, 1994, pages 220-228. IEEE Computer Society, 1994.

Robert G Jeroslow. Trivial integer programs unsolvable by branch-and-bound. Mathematical Programming,
6(1):105-109, 1974.

Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper. Res., 8(4):538-548,
1983.

Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT instances.
In Benjamin Kuipers and Bonnie L. Webber, editors, Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI
97, July 27-31, 1997, Providence, Rhode Island, USA, pages 203-208. AAAI Press / The MIT Press, 1997.

27

[53] Arist Kojevnikov. Improved lower bounds for tree-like resolution over linear inequalities. In Jodo Marques-
Silva and Karem A. Sakallah, editors, Theory and Applications of Satisfiability Testing - SAT 2007, 10th In-
ternational Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501 of Lecture Notes in
Computer Science, pages 70-79. Springer, 2007.

[54] Jan Krajicek. Discretely ordered modules as a first-order extension of the cutting planes proof system. J. Symb.
Log., 63(4):1582-1596, 1998.

[55] Jan Krajicek. Proof complexity. Cambridge University Press, 2019.

[56] Bala Krishnamoorthy and Gabor Pataki. Column basis reduction and decomposable knapsack problems. Dis-
cret. Optim., 6(3):242-270, 2009.

[57] Ailsa H. Land and Alison G. Doig. An automatic method for solving discrete programming problems. In
Michael Jiinger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard
Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-2008 -
From the Early Years to the State-of-the-Art, pages 105-132. Springer, 2010.

[58] Lészl6 Lovdsz, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision tree model.
SIAM J. Discret. Math., 8(1):119-132, 1995.

[59] L&szl6 Lovasz and Herbert E. Scarf. The generalized basis reduction algorithm. Math. Oper. Res., 17(3):751—
764, 1992.

[60] Laszlé Lovasz and Alexander Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM J.
Optim., 1(2):166-190, 1991.

[61] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV,
USA, June 18-22, 2001, pages 530-535. ACM, 2001.

[62] Saburo Muroga. Threshold logic and its applications. Wiley, 1971.

[63] George L Nemhauser and Laurence A Wolsey. A recursive procedure to generate all cuts for 0—1 mixed integer
programs. Mathematical Programming, 46(1):379-390, 1990.

[64] Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdos is Eighty, 1:301—
315, 1993.

[65] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM review, 33(1):60-100, 1991.

[66] Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. Poly-logarithmic Frege depth lower
bounds via an expander switching lemma. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 644-657, 2016.

[67] Pavel Pudldak. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb.
Log., 62(3):981-998, 1997.

[68] Pavel Pudldk. On the complexity of the propositional calculus. Sets and Proofs, 258:197, 1999.

[69] Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. J. ACM, 63(2):16:1-16:14,
2016.

[70] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-CSPs. In 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 593—602.
IEEE Computer Society, 2008.

28

[71] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems. SIAM J. Discret. Math., 3(3):411-430, 1990.

[72] Jodo P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability.
IEEE Trans. Computers, 48(5):506-521, 1999.

[73] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization, volume 55. John Wiley
& Sons, 1999.

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il
29

