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Abstract

This note is prepared based on the article titled “One-way Communication and Non-adaptive
Decision Tree” (TR17-152) by Swagato Sanyal. We show that the technique developed in the
aforementioned paper to lower bound one-way randomized communication complexity can be
be extended to prove one-way quantum communication complexity with shared entanglement
of any total query function f : {0, 1}n → {0, 1} that depends on all its input bits, composed
with the inner product gadget IPm of size m ≥ 2, is Ω(nm).

1 Preliminaries

1.1 Communication Complexity

In a one-way quantum communication protocol without entanglement, Alice sends a quantum
state to Bob depending on her input x. Bob performs a measurement two-outcomeMy depend-
ing on his input y and his output is simply the result of the measurement. More generally, when
Alice and Bob have access to a shared entangled state |Φ〉AB (which we can assume to be pure,
and of which Alice holds the register A and Bob holds register B), Alice performs a unitary
on her part of the entangled state depending on her input and sends her register to Bob, who
now performs a joint measurement My on both registers A and B to give his output. This is
schematically represented in Figure 1.

The one-way communication complexity of the protocol in both cases is the number of qubits
Alice communicates to Bob, that is, log |A|. The ε-error one-way quantum communication
complexity of a function F , denoted by Q1

ε(F ) or Q∗,1ε (F ) respectively, depending on whether
Alice and Bob share entanglement, is the minimum number of qubits communicated by Alice
in the worst case (over inputs) in a protocol that successfully computes F with probability at
least 1− ε.

|Φ〉

|x〉Alice |x〉
X

A

B

U

My P(x, y) Bob

Figure 1: A one-way quantum communication protocol P between Alice and Bob
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1.2 Information Theory

The measure of information content of a quantum state ρ is given by its von Neumann entropy
S(ρ) = −Tr(ρ log ρ). We shall also use S(A) = S(ρ) to denote the von Neumann entropy of a
quantum register A described by state ρ. For states across two (or more) registers, we shall use
S(AB) to denote the joint entropy of both registers according to ρ and S(A), S(B) to denote
the von Neumann entropies of individual registers due to the marginals of ρ. It is well-known
that S(A) takes its minimum value 0 for a pure state and takes maximum value log |A| for a
maximally mixed state.

Fact 1 (Subadditivity of von Neumann entropy). S(AB) ≤ S(A) + S(B).

The conditional von Neumann entropy of register A given register B is defined as S(A|B) =
S(AB) − S(B). Due to subadditivity, this is upper bounded by S(A). However, unlike condi-
tional Shannon entropy, it is well-known that conditional von Neumann entropy can be negative,
when ρ is entangled across A and B. We can upper and lower bound the positive and negative
values of S(A|B) as follows.

Lemma 2. − log |A| ≤ S(A|B) ≤ log |A|.

Proof. By subadditivity, S(A|B) = S(AB) − S(B) ≤ S(A) + S(B) − S(B) ≤ log |A|. For the
lower bound, consider a purification σ of ρ which is in registers A,B,C. Since σ is a pure
state, S(ABC) = 0. Moreover, S(AB) = S(C) and S(B) = S(AC), which can be seen by
considering a Schmidt decomposition of σ. Subtracting the second equation from the first we
get, S(A|B) = −S(A|C). Now since we already proved, S(A|C) ≤ log |A|, we get the required
lower bound.

The quantum mutual information between two registers is defined as I(A : B) = S(A) +
S(B) − S(AB) = S(A) − S(A|B). I(A : B) takes its minimum value zero for a product state
between A and B. Conditional mutual information of A and B conditioned on C is defined with
analogously with the corresponding conditional entropies.

Fact 3 (Chain rule of mutual information). I(AC : B) = I(C : B) + I(A : B|C).

For classical random variables X,Y we shall also use I(X,Y ) for their classical mutual
information. Though this is the same as that for quantum mutual information, it will be clear
from context which one we mean.

Fact 4 (Holevo’s Theorem). For a random variable X with distribution Pr[X = x] = px which
has a quantum encoding x 7→ σx. Then if, σ =

∑
x pxσ

x and Y is the random variable obtained
by performing a measurement on the encoding, it holds that

I(X : Y ) ≤ S(σ)−
∑
x

pxS(σx).

The following lemma is a simple consequence of Holevo’s Theorem, which was proved in
[Nay99]. We reproduce the proof here for completeness.

Lemma 5. Let σ0 and σ1 be two density matrices such that a measurement M distinguishes
between them with probability at least 1− ε. Then, σ = 1

2 (σ0 + σ1) satisfies

S(σ) ≥ 1

2
(S(σ0) + S(σ1)) + (1− h(ε))

where h(·) is the binary entropy function.

Proof. Let X be the random variable representing x in x 7→ σx, and Y be the random variable
representing the outcome. By Fano’s inequality, I(X : Y ) ≥ 1 − h(ε). Now applying Holevo’s
theorem with p0 = p1 = 1

2 gives the required result.
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2 Main Result

Theorem 6. Let f : {0, 1}n → {0, 1} be a total Boolean function that depends on all its input
bits and let IPm be the 2m-bit inner product function. Then for ε ∈ (0, 1/2), the one-way
entanglement-assisted quantum communication complexity with ε error is lower bounded as

Q∗,1ε (f ◦ IPn
m) ≥ 1

2
(1− h(ε)) · n(m− 1)

where h(·) is the binary entropy.

We note that for such functions f , it is known that the non-adaptive quantum query com-
plexity is known to be Θ(n) [Mon10]. So this theorem connects the non-adaptive quantum query
complexity of f to the one-way communication complexity of f ◦ IPn

m.

Proof. Consider a uniform distribution over inputs x to Alice where first bit of every m-length
block is 1. The joint state of the registers X,A,B in a protocol P for f ◦ IPn

m before Alice
performs the unitary (see Figure 1) is then

1

2n(m−1)

∑
x∈{0,1}n(m−1)

|x〉〈x|X ⊗ |Φ〉〈Φ|AB .

The joint state after the unitary, which we shall call ρ can be expressed as

ρ =
1

2n(m−1)

∑
x∈{0,1}n(m−1)

|x〉〈x|X ⊗ (Ux
A ⊗ 1B |Φ〉〈Φ|ABU

x†
A ⊗ 1B).

Claim 7. I(AB : X) ≥ (1− h(ε)) · n(m− 1) under ρ.

We prove the theorem assuming this claim and prove the claim later. By the chain rule,

I(AB : X) = I(B : X) + I(A : X|B). (1)

We claim that I(B : X) = 0. To see this, consider a Schmidt decomposition
∑

i |iAiB〉 of |Φ〉AB .
The reduced state on registers B,X is given by

1

2n(m−1)

∑
x∈{0,1}n(m−1)

|x〉〈x|X ⊗ TrA(Ux
A ⊗ 1B |Φ〉〈Φ|ABU

x†
A ⊗ 1B).

Now suppose Ux
A takes |i〉A to |ψx

i 〉A. Then,

TrA(Ux
A ⊗ 1B |Φ〉〈Φ|ABU

x†
A ⊗ 1B) = TrA

∑
i,j

|ψx
i 〉〈ψx

j |A ⊗ |i〉〈j|B

 =
∑
i

|i〉〈i|B

since |ψx
i 〉A and |ψx

j 〉A for i 6= j have to be orthogonal by unitarity of Ux. This means that the
reduced state on B,X is a product state, which makes I(B : X) = 0.

Now from equation 1, I(AB : X) = I(A : X|B) = S(A|B)− S(A|BX). Applying the upper
bound and lower bound of Lemma 2 on S(A|B) and S(A|BX) respectively, we get

2 log |A| ≥ I(AB : X) ≥ (1− h(ε)) · n(m− 1)

which proves the theorem.
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Proof of Claim 7. Expanding I(AB : X) = S(AB) + S(X) − S(ABX). Since ρ is a classical-
quantum state 1

2n(m−1)

∑
|x〉〈x|X ⊗ ρxAB where each ρxAB is pure, S(ABX) is simply equal to

S(X). So I(AB : X) = S(AB). Now we lower bound S(AB) which is the von Neumann entropy
of the reduced state

1

2n(m−1)

∑
x∈{0,1}n(m−1)

ρxAB

in a manner similar to [Nay99].
Let us label the bits of x by k = (i, j) ≡ mi+ j, where i ∈ [n] and j ∈ [m]. For a substring

s ∈ {0, 1}k which satisfies the constraint that the first bit of each m-length block is 1, let us
define

σs =
1

2n(m−1)−k

∑
x′∈{0,1}n(m−1)−k

ρsx
′

AB

where sx′ denotes the concatenation of s and x′ and the summation over x′ is also over substrings
that respect the constraint that the first bit of each block is 1. We shall prove that for s ∈ {0, 1}k

S(σs) ≥

{
(1− h(ε)) · (n(m− 1)− k − 1) if k = (i, 0)

(1− h(ε)) · (n(m− 1)− k) otherwise.

so that taking s to be the empty string proves the main claim.
The proof is by backwards induction on k – it holds for k = (n,m) simply by the positivity

of von Neumann entropy. Now, assuming it holds for k + 1, we show it holds for k. Note that
for s ∈ {0, 1}k,

σs =

{
σs1 if k = (i, 0)
1
2 (σs0 + σs1) otherwise.

So the lower bound holds for k = (i, 0) trivially from the induction hypothesis. For k = (i, j)
for j > 0, note that σs0 and σs1 are mixtures of states corresponding to inputs that differ in
the (mi+ j+ 1)-th location. We shall demonstrate that there is a 2-outcome measurement that
distinguishes between ρs0x

′

AB and ρs1x
′′

AB for any substrings x′, x′′ within our constrained set of
substrings. This means that the same measurement distinguishes between convex mixtures of
ρs0x

′

AB and ρs1x
′′

AB , ie, between σs0 and σs1.
Since f is a total function, for every i ∈ [n], there must exist z(−i) ∈ {0, 1}n−1 such that

f(0z(−i) 6= f(1z(−i)), where bz(−i) is the concatenated string with b in the i-th position. We
define the following input for Bob such that the value of f ◦ IPn

m on (sbx′, y) is equal to b for
any x′.

y(i′,j′) =


1 if i′ = i, j′ = j + 1

0 if i′ = i, j′ 6= j + 1

(z(−i))i′ if i′ 6= i, j′ = 1

0 if i′ 6= i, j′ 6= 1.

For P to be correct with probability 1 − ε, Bob’s measurement My must distinguish between

ρs0x
′

AB and ρs1x
′′

AB , and hence σs0 and σs1 with probability at least 1− ε. Hence, applying Lemma
5,

S(σs) ≥ 1

2
(S(σs0) + S(σs1)) + (1− h(ε)) ≥ (1− h(ε)) · (n(m− 1)− k)

where the last step follows from the induction hypothesis.
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Remark 8. When Alice and Bob do not share entanglement, |Φ〉AB is a product state, which
means that S(A|B) = 0 and I(AB : X) ≤ log |A|. If we denote by Q1

ε(·) the one-way quantum
communication complexity wtihout entanglement, then for this we get the lower bound

Q1
ε(f ◦ IPn

m) ≥ (1− h(ε)) · n(m− 1).
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