One-way Quantum Communication Complexity with Inner Product Gadget

Srijita Kundu

December 12, 2017

Abstract

This note is prepared based on the article titled "One-way Communication and Non-adaptive Decision Tree" (TR17-152) by Swagato Sanyal. We show that the technique developed in the aforementioned paper to lower bound one-way randomized communication complexity can be be extended to prove one-way quantum communication complexity with shared entanglement of any total query function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that depends on all its input bits, composed with the inner product gadget IP_{m} of size $m \geq 2$, is $\Omega(n m)$.

1 Preliminaries

1.1 Communication Complexity

In a one-way quantum communication protocol without entanglement, Alice sends a quantum state to Bob depending on her input x. Bob performs a measurement two-outcome \mathcal{M}_{y} depending on his input y and his output is simply the result of the measurement. More generally, when Alice and Bob have access to a shared entangled state $|\Phi\rangle_{A B}$ (which we can assume to be pure, and of which Alice holds the register A and Bob holds register B), Alice performs a unitary on her part of the entangled state depending on her input and sends her register to Bob, who now performs a joint measurement \mathcal{M}_{y} on both registers A and B to give his output. This is schematically represented in Figure 1.

The one-way communication complexity of the protocol in both cases is the number of qubits Alice communicates to Bob, that is, $\log |A|$. The ε-error one-way quantum communication complexity of a function F, denoted by $Q_{\varepsilon}^{1}(F)$ or $Q_{\varepsilon}^{*, 1}(F)$ respectively, depending on whether Alice and Bob share entanglement, is the minimum number of qubits communicated by Alice in the worst case (over inputs) in a protocol that successfully computes F with probability at least $1-\varepsilon$.

Figure 1: A one-way quantum communication protocol \mathcal{P} between Alice and Bob

1.2 Information Theory

The measure of information content of a quantum state ρ is given by its von Neumann entropy $S(\rho)=-\operatorname{Tr}(\rho \log \rho)$. We shall also use $S(A)=S(\rho)$ to denote the von Neumann entropy of a quantum register A described by state ρ. For states across two (or more) registers, we shall use $S(A B)$ to denote the joint entropy of both registers according to ρ and $S(A), S(B)$ to denote the von Neumann entropies of individual registers due to the marginals of ρ. It is well-known that $S(A)$ takes its minimum value 0 for a pure state and takes maximum value $\log |A|$ for a maximally mixed state.

Fact 1 (Subadditivity of von Neumann entropy). $S(A B) \leq S(A)+S(B)$.
The conditional von Neumann entropy of register A given register B is defined as $S(A \mid B)=$ $S(A B)-S(B)$. Due to subadditivity, this is upper bounded by $S(A)$. However, unlike conditional Shannon entropy, it is well-known that conditional von Neumann entropy can be negative, when ρ is entangled across A and B. We can upper and lower bound the positive and negative values of $S(A \mid B)$ as follows.
Lemma 2. $-\log |A| \leq S(A \mid B) \leq \log |A|$.
Proof. By subadditivity, $S(A \mid B)=S(A B)-S(B) \leq S(A)+S(B)-S(B) \leq \log |A|$. For the lower bound, consider a purification σ of ρ which is in registers A, B, C. Since σ is a pure state, $S(A B C)=0$. Moreover, $S(A B)=S(C)$ and $S(B)=S(A C)$, which can be seen by considering a Schmidt decomposition of σ. Subtracting the second equation from the first we get, $S(A \mid B)=-S(A \mid C)$. Now since we already proved, $S(A \mid C) \leq \log |A|$, we get the required lower bound.

The quantum mutual information between two registers is defined as $I(A: B)=S(A)+$ $S(B)-S(A B)=S(A)-S(A \mid B) . I(A: B)$ takes its minimum value zero for a product state between A and B. Conditional mutual information of A and B conditioned on C is defined with analogously with the corresponding conditional entropies.
Fact 3 (Chain rule of mutual information). $I(A C: B)=I(C: B)+I(A: B \mid C)$.
For classical random variables X, Y we shall also use $I(X, Y)$ for their classical mutual information. Though this is the same as that for quantum mutual information, it will be clear from context which one we mean.

Fact 4 (Holevo's Theorem). For a random variable X with distribution $\operatorname{Pr}[X=x]=p_{x}$ which has a quantum encoding $x \mapsto \sigma^{x}$. Then if, $\sigma=\sum_{x} p_{x} \sigma^{x}$ and Y is the random variable obtained by performing a measurement on the encoding, it holds that

$$
I(X: Y) \leq S(\sigma)-\sum_{x} p_{x} S\left(\sigma^{x}\right)
$$

The following lemma is a simple consequence of Holevo's Theorem, which was proved in [Nay99]. We reproduce the proof here for completeness.
Lemma 5. Let σ^{0} and σ^{1} be two density matrices such that a measurement \mathcal{M} distinguishes between them with probability at least $1-\varepsilon$. Then, $\sigma=\frac{1}{2}\left(\sigma^{0}+\sigma^{1}\right)$ satisfies

$$
S(\sigma) \geq \frac{1}{2}\left(S\left(\sigma^{0}\right)+S\left(\sigma^{1}\right)\right)+(1-h(\varepsilon))
$$

where $h(\cdot)$ is the binary entropy function.
Proof. Let X be the random variable representing x in $x \mapsto \sigma^{x}$, and Y be the random variable representing the outcome. By Fano's inequality, $I(X: Y) \geq 1-h(\varepsilon)$. Now applying Holevo's theorem with $p_{0}=p_{1}=\frac{1}{2}$ gives the required result.

2 Main Result

Theorem 6. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a total Boolean function that depends on all its input bits and let IP_{m} be the $2 m$-bit inner product function. Then for $\varepsilon \in(0,1 / 2)$, the one-way entanglement-assisted quantum communication complexity with ε error is lower bounded as

$$
\mathrm{Q}_{\varepsilon}^{*, 1}\left(f \circ \mathrm{IP}_{m}^{n}\right) \geq \frac{1}{2}(1-h(\varepsilon)) \cdot n(m-1)
$$

where $h(\cdot)$ is the binary entropy.
We note that for such functions f, it is known that the non-adaptive quantum query complexity is known to be $\Theta(n)$ [Mon10]. So this theorem connects the non-adaptive quantum query complexity of f to the one-way communication complexity of $f \circ \mathrm{IP}_{m}^{n}$.

Proof. Consider a uniform distribution over inputs x to Alice where first bit of every m-length block is 1 . The joint state of the registers X, A, B in a protocol \mathcal{P} for $f \circ \mathrm{IP}_{m}^{n}$ before Alice performs the unitary (see Figure 1) is then

$$
\frac{1}{2^{n(m-1)}} \sum_{x \in\{0,1\}^{n(m-1)}}|x\rangle\left\langle\left. x\right|_{X} \otimes \mid \Phi\right\rangle\left\langle\left.\Phi\right|_{A B}\right.
$$

The joint state after the unitary, which we shall call ρ can be expressed as

$$
\rho=\frac{1}{2^{n(m-1)}} \sum_{x \in\{0,1\}^{n(m-1)}}|x\rangle\left\langlex | _ { X } \otimes \left(U_{A}^{x} \otimes \mathbb{1}_{B}|\Phi\rangle\left\langle\left.\Phi\right|_{A B} U_{A}^{x \dagger} \otimes \mathbb{1}_{B}\right) .\right.\right.
$$

Claim 7. $I(A B: X) \geq(1-h(\varepsilon)) \cdot n(m-1)$ under ρ.
We prove the theorem assuming this claim and prove the claim later. By the chain rule,

$$
\begin{equation*}
I(A B: X)=I(B: X)+I(A: X \mid B) \tag{1}
\end{equation*}
$$

We claim that $I(B: X)=0$. To see this, consider a Schmidt decomposition $\sum_{i}\left|i_{A} i_{B}\right\rangle$ of $|\Phi\rangle_{A B}$. The reduced state on registers B, X is given by

$$
\frac{1}{2^{n(m-1)}} \sum_{x \in\{0,1\}^{n(m-1)}}|x\rangle\left\langlex | _ { X } \otimes \operatorname { T r } _ { A } \left(U_{A}^{x} \otimes \mathbb{1}_{B}|\Phi\rangle\left\langle\left.\Phi\right|_{A B} U_{A}^{x \dagger} \otimes \mathbb{1}_{B}\right)\right.\right.
$$

Now suppose U_{A}^{x} takes $|i\rangle_{A}$ to $\left|\psi_{i}^{x}\right\rangle_{A}$. Then,

$$
\operatorname{Tr}_{A}\left(U_{A}^{x} \otimes \mathbb{1}_{B}|\Phi\rangle\left\langle\left.\Phi\right|_{A B} U_{A}^{x \dagger} \otimes \mathbb{1}_{B}\right)=\operatorname{Tr}_{A}\left(\sum_{i, j}\left|\psi_{i}^{x}\right\rangle\left\langle\left.\psi_{j}^{x}\right|_{A} \otimes \mid i\right\rangle\left\langle\left. j\right|_{B}\right)=\sum_{i}|i\rangle\left\langle\left. i\right|_{B}\right.\right.\right.
$$

since $\left|\psi_{i}^{x}\right\rangle_{A}$ and $\left|\psi_{j}^{x}\right\rangle_{A}$ for $i \neq j$ have to be orthogonal by unitarity of U^{x}. This means that the reduced state on B, X is a product state, which makes $I(B: X)=0$.

Now from equation $1, I(A B: X)=I(A: X \mid B)=S(A \mid B)-S(A \mid B X)$. Applying the upper bound and lower bound of Lemma 2 on $S(A \mid B)$ and $S(A \mid B X)$ respectively, we get

$$
2 \log |A| \geq I(A B: X) \geq(1-h(\varepsilon)) \cdot n(m-1)
$$

which proves the theorem.

Proof of Claim 7. Expanding $I(A B: X)=S(A B)+S(X)-S(A B X)$. Since ρ is a classicalquantum state $\frac{1}{2^{n(m-1)}} \sum|x\rangle\left\langle\left. x\right|_{X} \otimes \rho_{A B}^{x}\right.$ where each $\rho_{A B}^{x}$ is pure, $S(A B X)$ is simply equal to $S(X)$. So $I(A B: X)=S(A B)$. Now we lower bound $S(A B)$ which is the von Neumann entropy of the reduced state

$$
\frac{1}{2^{n(m-1)}} \sum_{x \in\{0,1\}^{n(m-1)}} \rho_{A B}^{x}
$$

in a manner similar to [Nay99].
Let us label the bits of x by $k=(i, j) \equiv m i+j$, where $i \in[n]$ and $j \in[m]$. For a substring $s \in\{0,1\}^{k}$ which satisfies the constraint that the first bit of each m-length block is 1 , let us define

$$
\sigma^{s}=\frac{1}{2^{n(m-1)-k}} \sum_{x^{\prime} \in\{0,1\}^{n(m-1)-k}} \rho_{A B}^{s x^{\prime}}
$$

where $s x^{\prime}$ denotes the concatenation of s and x^{\prime} and the summation over x^{\prime} is also over substrings that respect the constraint that the first bit of each block is 1 . We shall prove that for $s \in\{0,1\}^{k}$

$$
S\left(\sigma^{s}\right) \geq \begin{cases}(1-h(\varepsilon)) \cdot(n(m-1)-k-1) & \text { if } k=(i, 0) \\ (1-h(\varepsilon)) \cdot(n(m-1)-k) & \text { otherwise. }\end{cases}
$$

so that taking s to be the empty string proves the main claim.
The proof is by backwards induction on k - it holds for $k=(n, m)$ simply by the positivity of von Neumann entropy. Now, assuming it holds for $k+1$, we show it holds for k. Note that for $s \in\{0,1\}^{k}$,

$$
\sigma^{s}= \begin{cases}\sigma^{s 1} & \text { if } k=(i, 0) \\ \frac{1}{2}\left(\sigma^{s 0}+\sigma^{s 1}\right) & \text { otherwise }\end{cases}
$$

So the lower bound holds for $k=(i, 0)$ trivially from the induction hypothesis. For $k=(i, j)$ for $j>0$, note that $\sigma^{s 0}$ and $\sigma^{s 1}$ are mixtures of states corresponding to inputs that differ in the $(m i+j+1)$-th location. We shall demonstrate that there is a 2 -outcome measurement that distinguishes between $\rho_{A B}^{s 0 x^{\prime}}$ and $\rho_{A B}^{s 1 x^{\prime \prime}}$ for any substrings $x^{\prime}, x^{\prime \prime}$ within our constrained set of substrings. This means that the same measurement distinguishes between convex mixtures of $\rho_{A B}^{s 0 x^{\prime}}$ and $\rho_{A B}^{s 1 x^{\prime \prime}}$, ie, between $\sigma^{s 0}$ and $\sigma^{s 1}$.

Since f is a total function, for every $i \in[n]$, there must exist $z^{(-i)} \in\{0,1\}^{n-1}$ such that $f\left(0 z^{(-i)} \neq f\left(1 z^{(-i)}\right)\right.$, where $b z^{(-i)}$ is the concatenated string with b in the i-th position. We define the following input for Bob such that the value of $f \circ \mathrm{IP}_{m}^{n}$ on $\left(s b x^{\prime}, y\right)$ is equal to b for any x^{\prime}.

$$
y_{\left(i^{\prime}, j^{\prime}\right)}= \begin{cases}1 & \text { if } i^{\prime}=i, j^{\prime}=j+1 \\ 0 & \text { if } i^{\prime}=i, j^{\prime} \neq j+1 \\ \left(z^{(-i)}\right)_{i^{\prime}} & \text { if } i^{\prime} \neq i, j^{\prime}=1 \\ 0 & \text { if } i^{\prime} \neq i, j^{\prime} \neq 1\end{cases}
$$

For \mathcal{P} to be correct with probability $1-\varepsilon$, Bob's measurement \mathcal{M}_{y} must distinguish between $\rho_{A B}^{s 0 x^{\prime}}$ and $\rho_{A B}^{s 1 x^{\prime \prime}}$, and hence $\sigma^{s 0}$ and $\sigma^{s 1}$ with probability at least $1-\varepsilon$. Hence, applying Lemma 5,

$$
S\left(\sigma^{s}\right) \geq \frac{1}{2}\left(S\left(\sigma^{s 0}\right)+S\left(\sigma^{s 1}\right)\right)+(1-h(\varepsilon)) \geq(1-h(\varepsilon)) \cdot(n(m-1)-k)
$$

where the last step follows from the induction hypothesis.

Remark 8. When Alice and Bob do not share entanglement, $|\Phi\rangle_{A B}$ is a product state, which means that $S(A \mid B)=0$ and $I(A B: X) \leq \log |A|$. If we denote by $\mathrm{Q}_{\varepsilon}^{1}(\cdot)$ the one-way quantum communication complexity wtihout entanglement, then for this we get the lower bound

$$
\mathrm{Q}_{\varepsilon}^{1}\left(f \circ \mathrm{IP}_{m}^{n}\right) \geq(1-h(\varepsilon)) \cdot n(m-1)
$$

References

[Mon10] Ashley Montanaro. Nonadaptive quantum query complexity. Inf. Process. Lett., 110(24):1110-1113, November 2010.
[Nay99] Ashwin Nayak. Optimal lower bounds for quantum automata and random access codes. In Proceedings of the 40 th Annual Symposium on Foundations of Computer Science, FOCS '99, pages 369-, Washington, DC, USA, 1999. IEEE Computer Society.

