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Abstract

Let f be a Boolean function on n-bits, and IP the inner-product function
on 2b bits. Let f 〈〉 := f ◦ IPn be the two party function obtained by
composing f with IP. In this work we bound the one-way communication
complexity of f 〈〉 in terms of the non-adaptive query complexity of f , from
below. Similar results are known for general communication protocols
and adaptive decision trees, when the arity of the inner function (inner-
product in our case) is at least logarithmic in n. We prove analogous
results for one-way communication as long as b is a large enough constant.
Let R→cc,ε(·) and D→cc (·) denote the randomized ε-error and deterministic
one-way communication complexity respectively. Let D→dt(·) denote the
deterministic non-adaptive query complexity. Let Hbin(·) denote the binary
entropy function. We prove that

• If f is a total Boolean function and b ≥ 2, then R→cc,ε(f
〈〉) ≥ (1 −

Hbin(ε))n(b− 1).

• If f is a partial Boolean function and b ≥ 4, then D→cc (f 〈〉) = Ω(b ·
D→dt(f)).

1 Introduction

Communication complexity of composed functions has been a topic of active re-
search. In this setting, there is an outer function f on n-bits and an inner function
g : {0, 1}r × {0, 1}s → {0, 1} (also referred to as the gadget). Alice and Bob get
strings x = (x(1), . . . , x(n)) ∈ ({0, 1}r)n , y = (y(1), . . . , y(n)) ∈ ({0, 1}s)n as in-
puts. The task for them is to compute f◦gn(x, y) := f(g(x(1), y(1)), . . . , g(x(n), y(n))).
There is a direct upper bound to the amount of communication required to
accomplish this task in terms of the decision tree complexity of f . If f has
a decision tree which makes d queries, the parties can simulate the decision
tree; each query to f can be implemented by computing the corresponding copy
of g through communication. Thus if g admits a communication protocol of
complexity c, f ◦ gn has a communication protocol of complexity cd.

The above bound holds for both deterministic and randomized versions of
the two models. A natural question is whether the above bound is optimal.
In 2015, Göös Pitassi and Watson settled this question in the affirmative for
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the deterministic case, when g is the index-function with number of index
bits logarithmic in n [GPW15]. They showed this result by using techniques
developed by Raz and McKenzie [RM99]. Their result was later generalized by
Chattopadhyay et al. [CKLM17]. Afterwards in 2017, the same group of authors
[GPW17] as well as Anshu et al. [AGJ+17] settled the randomized case in the
affirmative. In both of these works, the number of inputs to the gadgets are
logarithmic in n. In all the above results, f can be an arbitrary partial Boolean
function.

The above results established that the task of determining the communication
complexity of f ◦ gn is the same as the task of determining the decision tree
complexity of f . In other words, a lower bound in the simpler model of decision
tree is lifted by these theorems to a lower bound in the richer and more powerful
model of communication; this justifies the usage of the term lifting theorem for
referring to these results. Many important functions studied in communication
complexity are indeed composed functions. Notable examples include Disjoint-
ness, gap-Hamming and Equality. Research in lifting theorems contributes in an
important way to acquiring a unified understanding of the power and limitations
of communication protocols for composed functions. Further research showed
lifting theorems for other measures of complexity. Examples include lifting
approximate junta degree to smooth corruption bound [GLM+15], approximate
degree to approximate rank [She11], and conical junta degree to non-negative
rank [KMR17]. When the gadget is the two-bit XOR function, Hatami et al.
[HHL16] lifted a lower bound on the parity decision tree complexity of the outer
function to a lower bound on the deterministic communication complexity of
the composed function, with a polynomial gap.

As mentioned in [GPW17] one limitation of many of the above results is that
the gadget size is logarithmic in the arity of the outer function. This limits their
applicability, as for several important composed functions, including the ones
listed above, the gadget size is constant. In this paper, we make progress in
this front. We prove some of the results mentioned above for the special case of
one-way protocols, with an inner-product gadget whose number of inputs is at
least some large enough constant. Our proofs make use of the simplicity and
structure of one-way communication protocols, and avoid the machinery used in
the earlier lifting theorems for general communication protocols. To the best of
our knowledge our results are new.

Let R→cc,ε(·) and D→cc (·) denote the randomized ε-error and deterministic one-
way communication complexity respectively. Let R→dt,ε(·) and D→dt(·) denote
the randomized ε-error and the deterministic non-adaptive query complexity
respectively. Let f denote the outer function, and f 〈〉 denote the function
f ◦ IPn, where IP stands for the inner product function on 2b bits. Our first
result shows that if f is a total function, the randomized bounded-error one-way
communication complexity of f 〈〉 is Ω(bn) . Let Hbin(·) stand for the binary
entropy function.

Theorem 1. Let f : {0, 1}n → {0, 1} be a total Boolean function that depends
on all its inputs (i.e., it is not a junta on a strict subset of its inputs), and let
ε ∈ (0, 1/2). Then,

R→cc,ε(f
〈〉) ≥ (1−Hbin(ε))n(b− 1).

Coupled with the upper bound R→cc,ε(f
〈〉) ≤ b · R→dt,ε(·), Theorem 1 yields a
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proof of the fact that for a total Boolean function f : {0, 1}n → {0, 1} depending
on all input bits and ε ≤ 1/3, R→dt,ε(f) = Ω(n). However, it can also be verified
directly.

Theorem 1 is proved by bounding the information complexity of any correct
randomized one-way protocol with respect to a suitably chosen distribution on
Alice’s inputs. Our proof relies crucially on the totality of f . In particular, our
proof makes use of the observation that if a total function depends on an input
variable, then there is an input on which the variable is sensitive, i.e., flipping
the variable flips the value of the function. This is not necessarily true for partial
functions; if all the valid inputs of a partial function are far from one another in
Hamming distance, then flipping a single variable at a valid input always leads
to an invalid input.

Note that Theorem 1 is useful only when b > 1. Indeed, the statement is
false for b = 1 when f is the AND function on n bits.

Our second result relates the deterministic one-way communication complexity
of f 〈〉 to the deterministic non-adaptive query complexity of f , where f is an
arbitrary partial Boolean function.

Theorem 2. Let S ⊆ {0, 1}n be arbitrary, and f : S → {0, 1} be a partial
Boolean function. Let b ≥ 4. Then,

D→cc (f 〈〉) = Ω(b · D→dt(f)).

The proof of Theorem 2 is combinatorial. The following claim which follows
directly from the work of Frankl and Tokushige [FT99] is a crucial ingredient in
our proof.

Claim 1 (Theorem 2 in [FT99]). Let q ≥ 8. Let A ⊆ [q]n be such that

∀x(1) = (x
(1)
1 , . . . , x

(1)
n ), x(2) = (x

(2)
1 , . . . , x

(2)
n ) ∈ A, |{i ∈ [n] | x(1)

i = x
(2)
i }| ≥ d.

Then, |A| < qn−
d
2 .

We give the details of the derivation of Claim 1 from the result of Frankl and
Tokushige in Appendix A.

Claim 1 admits simple proofs when q is large compared to n. See [GMWW17]
for a proof when there is a finite field of size q, and q ≥ n. Their proof is based
on polynomials. We give a different proof for all q > ( end )2 in Appendix B1.
However, such statements will only enable us to prove a lifting theorem for a
gadget of size b = Ω(log n). To prove Theorem 2 for constant-sized gadgets we
need to set q to O(1).

Given a protocol Π, our proof extracts a set of variables of cardinality linear
in the complexity of Π, whose values always determine the value of f .

Remark: An analogous lifting theorem for deterministic one-way protocols
for total outer functions follows as a special case of both Theorem 1 and The-
orem 2. However, the statement admits a simple and direct proof based on a
fooling set argument.

2 Preliminaries

Let S ⊆ {0, 1}n be an arbitrary subset of the Boolean hypercube, and let
f : S → {0, 1} be a partial Boolean function. If S = {0, 1}n, f is said to be a

1For every δ > 0, the proof can be extended to work for all q > Ω(n/d)1+δ

3



total Boolean function. For b > 1 and x, y ∈ {0, 1}b define IP(x, y) to be the

inner-product between x and y, which is
∑b
i=1 xiyimod2. For x = (x1, . . . , xn)

and y = (y1, . . . , yn) ∈
(
{0, 1}b

)n
, define f 〈〉(x, y) := f(〈x1, y1〉, . . . , 〈xn, yn〉). If

f is a partial function, so is f 〈〉. [n] denotes the set {1, . . . , n}.

2.1 Query and Communication Complexity

Let U ⊆ {0, 1}n × {0, 1}n. Let F : U → {0, 1} be a partial Boolean function.
Let the inputs to Alice and Bob be x ∈ {0, 1}n and y ∈ {0, 1}n respectively. In
a deterministic one-way communication protocol, Alice sends a message m(x)
to Bob. Then Bob outputs a bit depending on m(x) and y. If Π is a correct
protocol for F , then for every (x, y) ∈ U , the output of Bob equals F (x, y). The
complexity of the protocol is the maximum number of bits a message contains for
any input x to Alice. In a randomized one-way protocol, the parties share some
common random bits R. Alice’s message is a function of x and R. Bob’s output
is a function of m(x), y and R. Π is said to compute F with error ε ∈ (0, 1/2)
if for every (x, y) ∈ U , the probability over R of the event that Bob’s output
equals F (x, y) is at least 1− ε. The complexity of the protocol is the maximum
number of bits contained in Alice’s message for any x and R.

The deterministic (resp. randomized-bounded error) one-way communication
complexity of F , denoted by R→cc,ε(·) (resp. D→cc (·)), is the minimum complexity
of any deterministic (resp. ε-error randomized) one-way communication protocol
for F .

For a partial Boolean function f : S → {0, 1}n, the deterministic non-
adaptive query complexity D→dt(f) is the minimum integer k such that the
following is true: there exist k indices i1, . . . , ik ∈ [n], such that for every
Boolean assignment ai1 , . . . , aik to the input variables xi1 , . . . , xik , f is constant
on S ∩ {x ∈ {0, 1}n | ∀j = 1, . . . , k, xij = aij}. It is easy to see that if f is a
total function that depends on all input variables, then D→dt(f) = n.

The ε-error randomized non-adaptive query complexity R→dt,ε(f) of f is the
minimum integer k such that the following is true: There exists a distribution D
on k-tuples of indices in [n]k and a function h : [n]k × {0, 1}k → {0, 1} such that
for each x in S,
P(i1,...,ik)∼D[h(i1, . . . , ik, xi1 , . . . , xik) = f(x)] ≥ 1− ε. It can be verified that if
f is a total Boolean function depending on all its variables and ε ≤ 1/3, then
R→dt,ε(f) = Ω(n).

2.2 Information Theory

Let X be a random variable supported on a finite set {x1, . . . , xs}. Let E be any
event in the same probability space. Let P[·] denote the probability of any event.
The conditional entropy H(X | E) of X conditioned on E is defined as follows.

Definition 1 (Conditional entropy).

H(X | E) :=

s∑
i=1

P[X = xi | E ] log2

1

P[X = xi | E ]
.

An important special case is when E is the entire sample space. In that case
the above conditional entropy is referred to as the entropy H(X) of X.
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Definition 2 (Entropy).

H(X) :=

s∑
i=1

P[X = xi] log2

1

P[X = xi]
.

Let Y be another random variable in the same probability space as X,
taking values from a finite set {y1, . . . , yt}. Then the conditional entropy of X
conditioned on Y , H(X | Y ), is defined as follows.

Definition 3.

H(X | Y ) =

t∑
i=1

P[Y = yi] ·H(X | Y = yi).

Definition 4 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hbin(p),
is defined to be the Shannon entropy of a random variable taking two distinct
values with probabilities p and 1− p.

Hbin(p) := p log2

1

p
+ (1− p) log

1

1− p
.

Hbin(p) is a concave function of p. When p is a random parameter, Jensen’s
inequality implies that

E[Hbin(p)] ≤ Hbin(E[p]). (1)

The following properties of entropy and conditional entropy will be useful.

Fact 5. (1) Let X be a random variable supported on a finite set A, and
let Y be another random variable in the same probability space. Then
0 ≤ H(X | Y ) ≤ H(X) ≤ log2 |A|.

(2) (Sub-additivity of conditional entropy). Let X1, . . . , Xn be n jointly dis-
tributed random variables in some probability space, and let Y be another
random variable in the same probability space, all taking values in finite
domains. Then,

H(X1, . . . , Xn | Y ) ≤
n∑
i=1

H(Xi | Y ).

(3) Let the random variables X1, . . . , Xn are independent conditioned on each
value of another random variable Y . Then,

H(X1, . . . , Xn | Y ) =

n∑
i=1

H(Xi | Y ).

Definition 6 (Mutual information). Let X, Y and Z be two random variables in
the same probability space, taking values from finite sets. The mutual information
between X and Y conditioned on Z, I(X;Y | Z), is defined as follows.

I(X;Y | Z) := H(X | Z)−H(X | Y,Z).

It can be shown that I(X;Y | Z) is symmetric in X and Y : I(X;Y | Z) =
I(Y ;X | Z) = H(Y | Z)−H(Y | X,Z).
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The following observation follows immediately from Fact 5 (1).

Observation 7. Let X,Y and Z be random variables, and let A be the support
of X. Then I(X;Y | Z) ≤ log2 |A|.

Theorem 8 (Fano’s inequality). Let X and Y be random variables in a prob-
ability space. Let f be a function, and define X̂ := f(Y ). Let P[X̂ 6= X] = ε.
Then,

H[X | Y ] ≤ Hbin(ε) + ε · log2(|X | − 1)

Where X is the support of X. If X is a binary random variable, then H(X |
Y ) ≤ Hbin(ε).

3 Randomized one-way communication for total
outer function

In this section, we prove Theorem 1 (restated below).

Theorem 1. Let f : {0, 1}n → {0, 1} be a total Boolean function that depends
on all its inputs (i.e., it is not a junta on a strict subset of its inputs), and let
ε ∈ (0, 1/2). Then,

R→cc,ε(f
〈〉) ≥ (1−Hbin(ε))n(b− 1).

Proof. Let Π be an optimal randomized one-way protocol for f 〈〉(·, ·) with error
probability at most ε. Thus the cost of Π is cΠ = R→ε (f 〈〉). Π will also denote
the random message sent by Alice. We will denote the public randomness of Π
by R. Let µ stand for the following distribution of Alice’s input x: For each
i ∈ [n] independently, pick x(i) uniformly at random from {1} × {0, 1}b−1.

For i = 1, . . . , n, let x(i) = (x
(i)
1 , . . . , x

(i)
b ). In the next lemma, we show that

when Alice’s input x = (x(1), . . . , x(n)) is sampled from µ, Π contains Ω(1) bits

of information about each bit x
(i)
j of x with j > 1 (recall that for each i, x

(i)
1 is 1

with probability 1).

Lemma 9. Let x be distributed as per µ. Then for each i = 1, . . . , n and
j = 2, . . . , b,

I(Π;x
(i)
j | R) ≥ (1−Hb(ε)).

We first finish the proof assuming Lemma 9. We have that,

R→ε (f 〈〉) = cΠ (By the optimality of Π)

≥ I(x : Π | R) (By Observation 7)

= H(x | R)−H(x | Π,R)

=
∑

i=1,...,n
j=2,...,b

H(x
(i)
j | R)−H(x | Π,R)

(since x
(i)
j ’s are independent conditioned on R (see Fact 5(3)), and x

(i)
1 ’s are 0)

≥
∑

i=1,...,n
j=2,...,b

H(x
(i)
j | R)−

∑
i=1,...,n
j=2,...,b

H(x
(i)
j | Π,R)

(By sub-additivity of entropy (see fact 5(2)) and since H(x
(1)
i ) = 0 for each i)
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=
∑

i=1,...,n
j=2,...,b

I(Π;x
(i)
j | R)

≥ (1−Hb(ε))n(b− 1). (By lemma 9)

We now prove Lemma 9.

Proof of Lemma 9. Fix i ∈ {1, . . . , n}, j ∈ {2, . . . , n}. Recall that f depends
on all its n inputs. Thus there is an assignment to all inputs other than the
i-th input, on which f is sensitive to the i-th input bit. Formally, there exists
z(−i) ∈ {0, 1}[n]\{i} such that f(0, z(−i)) 6= f(1, z(−i)), i.e., f(a, z(−i)) is the
function a or a. Without loss of generality, assume that f(a, z(−i)) = a (the
other case is similar).

We will analyse Π when Bob is given the following input y.

y
(k)
` =


0 (if ` > 1 and k 6= i),

z
(−i)
k (if ` = 1 and k 6= i),

0 (if ` 6= j and k = i),
1 (if ` = j and k = i).

Since Π outputs correctly with probability at least 1− ε on every input to Alice
and Bob, Π outputs correctly with probability at least 1− ε when Alice’s input x
is sampled from µ and Bob’s input y is as described above. However, under this

distribution, f 〈〉(x, y) = f(z(−i), x
(i)
j ) = x

(i)
j . Note that Bob’s output depends

only on Bob’s input, Alice’s message and the randomness R. For a fixing r of R,
let εr be the probability that Π is correct when R = r, x is sampled from µ, and
y is as described above. In that case a fixed function of the message Π equals

f 〈〉(x, y) = x
(i)
j with probability at least 1− εr. Fano’s inequality (Theorem 8)

implies that,

H(x
(i)
j | Π,R = r]) ≤ Hbin(εr).

Taking expectation over r on both sides we have,

H(x
(i)
j | Π,R]) ≤ Er[Hbin(εr)]

≤ Hbin(Er[εr]) (By (1))

≤ Hbin(ε). (Since Er[εr] ≤ ε < 1/2) (2)

The Lemma follows from (2) and the observation that H(x
(i)
j | R) = 1.

4 Deterministic one-way communication for par-
tial outer function

In this section we prove Theorem 2 (restated below).

Theorem 2. Let S ⊆ {0, 1}n be arbitrary, and f : S → {0, 1} be a partial
Boolean function. Let b ≥ 4. Then,

D→cc (f 〈〉) = Ω(b · D→dt(f)).
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We restate Claim 1 here.

Claim 1 (Theorem 2 in [FT99]). Let q ≥ 8. Let A ⊆ [q]n be such that

∀x(1) = (x
(1)
1 , . . . , x

(1)
n ), x(2) = (x

(2)
1 , . . . , x

(2)
n ) ∈ A, |{i ∈ [n] | x(1)

i = x
(2)
i }| ≥ d.

Then, |A| < qn−
d
2 .

We show how to derive Claim 1 from the result of Frankl and Tokushige in
Appendix A. Now we proceed to the proof of Theorem 2.

Proof of Theorem 2. Leq q := 2b−1. Let Π be an optimal one-way deterministic
protocol for f 〈〉 of complexity D→cc (f 〈〉) := c log2 q. Π induces a partition of
{0, 1}nb into at most qc parts; each part corresponds to a distinct message. There
are (2b − 1)n = qn inputs (x1, . . . , xn) to Alice such that for each i, xi 6= 0b. Let
Z be the set of those inputs. Identify Z with [q]n. By the pigeon-hole principle
there exists one part P in the partition induced by Π that contains at least qn−c

strings in Z. Claim 1 (note that the assumption b ≥ 4 implies that q ≥ 8) implies

that there are two strings x1 = (x
(1)
1 , . . . , x

(n)
1 ), x2 = (x

(2)
1 , . . . , x

(n)
2 ) ∈ P ∩ Z

such that |{i ∈ [n]} | x(i)
1 = x

(i)
2 }| < 2c. Let I := {i ∈ [n]} | x(i)

1 = x
(i)
2 }. Let

z = (z(1), . . . , z(n)) denote a generic input to f . We claim that for each Boolean
assignment (a(i))i∈I to the variables in I, f is constant on S∩ {z : ∀i ∈ I, z(i) =
a(i)}. This will prove the theorem, since querying the variables {z(i) | i ∈ I}
determines f ; thus D→dt (f) ≤ |I| < 2c. Towards a contradiction, assume that
there exist z1, z2 ∈ S ∩ {z : ∀i ∈ I, z(i) = a(i)} such that f(z1) 6= f(z2). We will
construct a string y = (y(1), . . . , y(n)) ∈ {0, 1}nb in the following way:

i ∈ I : Choose y(i) such that IP(y(i), x
(i)
1 ) = IP(y(i), x

(i)
2 ) = a(i).

i 6= I : Choose y(i) such that IP(y(i), x
(i)
1 ) = z

(i)
1 and IP(y(i), x

(i)
2 ) = z

(i)
2 .

Note that we can always choose a y as above since for each i ∈ [n], x
(i)
1 , x

(i)
2 6= 0b,

and for each i /∈ I, x
(i)
1 6= x

(i)
2 . By the above construction, f 〈〉(x1, y) = f(z1)

and f 〈〉(x2, y) = f(z2). Since by assumption f(z1) 6= f(z2), we have that
f 〈〉(x1, y) 6= f 〈〉(x2, y). But since Alice sends the same message on inputs x1

and x2, Π produces the same output on (x1, y) and (x2, y). This contradicts the
correctness of Π.

Acknowledgements: I thank Prahladh Harsha and Jaikumar Radhakrish-
nan for pointing out the reference [FT99].

This material is based on research supported by the Singapore National
Research Foundation under NRF RF Award No. NRF-NRFF2013-13.
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A Derivation of Claim 1

Let q be as in the statement of the claim. For x ∈ {0, 1}n and S ⊆ [n], let xS
denote the restriction of x to the indices in S. Let |x| denote the Hamming
weight of x, which is |{i ∈ [n] | xi = 1}|.

For an arbitrary alphabet L, a set H ⊆ Ln is called d-intersecting if for each
x = (xi)i∈[n], x

′ = (x′i)i∈[n] ∈ H, |{i ∈ [n] | xi = x′i}| ≥ d. Let agr(d, q, n) denote
the size of a largest d-intersecting set in [q]n. Frankl and Tokushige determined
agr(d, q, n) in their work.

For an integer r ≤ (n− d)/2, Let Ar be the following d-intersecting family
in {0, 1}n.

Ar := {x ∈ {0, 1}n | |x{1,...,d+2r}| ≥ d+ r}.
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Now consider the following d-intersecting family Br in [q]n: A string x ∈
[q]n belongs to Br iff there exists a string z ∈ Ar such that for each i ∈ [n],
zi = 1⇒ xi = 1. Br is easily seen to be d-intersecting. Hence for each such r,
agr(d, q, n) ≥ |Br|.

Frankl and Tokushige showed that in fact there is a choice of r for which
agr(d, q, n) = |Br|. In other words, there exists a choice of r such that Br is a
largest d-intersecting family in [q]n.

Theorem 10 (Frankl and Tokushige [FT99]). Let q ≥ 3, r = bd−1
q−2c and n ≥

d+ 2r. Then, agr(d, q, n) = |Br|.

Proving Claim 1 now amounts to estimating |Br|. A string in Br can be
generated as follows.

• choose a subset T ∈ [d+ 2r] of size d+ r.

• For each i ∈ T , set xi = 1.

• For each i /∈ T , set xi arbitrarily.

There are
(
d+2r
d+r

)
choices of T . For each choice of T , there are qn−d−r ways of

assigning variables with indices outside T . We thus have,

|Br| ≤
(
d+ 2r

d+ r

)
· qn−d−r

≤
(
e(d+ 2r)

d+ r

)d+r

· qn−d−r

= ed+r ·
(

1 +
r

d+ r

)d+r

· qn−d−r

≤ ed+2r · qn−d−r (Since 1 + z ≤ ez for all real z)

= qn−d(1− 1
loge q )−r(1− 2

loge q ) (3)

By the assumption q ≥ 8, we have that 1− 2
loge q

> 0 and 1− 1
loge q

> 1
2 . Thus

from (3) we have,

|Br| < qn−
d
2 .

B Proof of Claim 1 for q = Ω(nd)2

In this section we give a self-complete and simple proof of the statement of
Claim 1 for the special case of q > (en/d)2 (with a worse constant).

Let X ⊆ [q]n be such that every x, x′ ∈ X agree in at least d locations.
Observe that each pair (x, x′) can be uniquely specified by,

• A set Px,x′ ⊆ [n] of indices of size d such that xi = x′i for each i ∈ Px,x′ .

• A vector a = (ai)i∈Px,x′ ∈ [q]d. a represents xPx,x′ = x′Px,x′ .

• Vectors xPx,x′ and x′
Px,x′

.

Thus the number of pairs (x, x′) is at most the number of such representations,

which is upper bounded by
(
n
d

)
· qd · q2(n−d) ≤ (en/d)d · q2n−d < q2n− d

2 (since

q > ( end )2). Thus |X|2 < q2n− d
2 ⇒ |X| < qn−

d
4 .
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