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Abstract

We relate different approaches for proving the unsatisfiability of a system of real polynomial
equations over Boolean variables. On the one hand, there are the static proof systems Sherali-
Adams and sum-of-squares (a.k.a. Lasserre), which are based on linear and semi-definite
programming relaxations. On the other hand, we consider polynomial calculus, which is a
dynamic algebraic proof system that models Gröbner basis computations.

Our first result is that sum-of-squares simulates polynomial calculus: any polynomial
calculus refutation of degree d can be transformed into a sum-of-squares refutation of degree
2d and only polynomial increase in size. In contrast, our second result shows that this is not
the case for Sherali-Adams: there are systems of polynomial equations that have polynomial
calculus refutations of degree 3 and polynomial size, but require Sherali-Adams refutations of
degree Ω(

√
n/ log n) and exponential size.

1 Introduction

The area of proof complexity was founded in [6] and studies the complexity of proofs for co-NP
complete problems. Traditionally, one considers proof systems for proving the unsatisfiability of
(or refuting) a propositional formula in conjunctive normal form. If one faces a proof system,
there are two important questions to ask:

1. Does the system always produce proofs of polynomial size?

2. How strong is the system compared to other proof systems?

If the answer to the first question is yes, in which case the system is called p-bounded, then
NP = co-NP. Therefore, it is conjectured that no proof system is p-bounded and this has been
proven for a number of weak proof systems. For the second question, one considers the notion of
polynomial simulation: A proof system P polynomial simulates a proof system Q if for every
Q-proof of size S there is a P-proof of size poly(S).

Nowadays, a large part of proof complexity focuses on weak proof systems, for which the
first question has already been answered negatively. One reason for this is that they often
model algorithms for solving hard problems and understanding the complexity of proofs might
shed light on the complexity of algorithmic approaches that implicitly or explicitly search for
proofs in the underlying proof system. The (semi-)algebraic proof systems we consider in this
paper also fall into this category and are used to prove the unsatisfiability of a system F of
real polynomial equations fi = 0 over n Boolean variables xj ∈ {0, 1}.1 On the one hand, we
consider polynomial calculus, which is a dynamic algebraic proof system that allows to derive new

1Note that this subsumes the problem of refuting 3-CNF formulas, because a clause x ∨ y ∨ z can be encoded
as polynomial equation (1− x)y(1− z) = 0.
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polynomial equations that follow from F line-by-line. This proof system was introduced in [5] to
model Gröbner basis computations and proofs of degree d (where the degree of all polynomials
in the derivation is bounded by d) can be found in time nO(d) by a bounded-degree variant of
the Gröbner basis algorithm.

On the other hand, we consider the semi-algebraic proof system Sherali-Adams and the
stronger sum-of-squares proof system. They are based on the linear and semi-definite pro-
gramming hierarchies of Sherali-Adams [19] and Lasserre [13] and can be used to prove the
unsatisfiability of a system of polynomial equations and inequalities. Proofs of degree d can be
found algorithmically by solving a linear program (for Sherali-Adams) or a semi-definite program
(for sum-of-squares) of size nO(d). Contrary to polynomial calculus, both systems are static in
the sense that they provide the whole proof at once.

In order to compare these semi-algebraic proof systems with polynomial calculus, we first
remark that it is known that both systems cannot be simulated by polynomial calculus. A simple
example is the linear equation

∑n
i=1 xi = n+ 1, which has a refutation of linear size and degree

2 in Sherali-Adams and sum-of-squares, but requires polynomial calculus refutations of degree
Ω(n) and size 2Ω(n) [11]. Our first theorem states that sum-of-squares is strictly stronger than
polynomial calculus.

Theorem 1.1. Let F be a system of polynomial equations over the reals. If F has a polynomial
calculus refutation of degree d and size S, then it has a sum-of-squares refutation of degree 2d
and size poly(S).

For the author of this paper, this theorem was highly unexpected. In fact, there has been
some evidence that the converse might be true. First, in the non-Boolean setting there are
systems of equations that are easier to refute for polynomial calculus than for sum-of-squares
[10] (see Section 2.4 for a discussion). Second, even for systems of polynomial equations over
Boolean variables, separations of polynomial calculus from its static version Nullstellensatz were
known [4].

Since sum-of-squares extends Nullstellensatz, it follows that the semi-definite lifts in the sum-
of-squares/Lasserre hierarchy are necessary for “flattening” a dynamic polynomial calculus proof
into a static one, although polynomial calculus is a purely algebraic system without semi-definite
components. Our second theorem concerns the question whether the weaker Sherali-Adams
linear programming hierarchy is already able to simulate polynomial calculus. Here we have a
negative answer (that we would have expected for sum-of-squares as well).

Theorem 1.2. There is a system F of polynomial equations over R[x1, . . . , xn] such that:

1. F has a polynomial calculus refutation of degree 3 and size O(n2).

2. Every Sherali-Adams refutation of F has degree Ω(
√
n/ log n) and size 2Ω(

√
n/ logn).

The lower bound is based on a modified version of the pebbling contradictions. The original
pebbling contradictions have already been used to separate Nullstellensatz degree from polynomial
calculus degree [4], but it turns out that they are easy to refute in Sherali-Adams. To obtain
contradictions that are hard for Sherali-Adams (and still easy for polynomial calculus), we apply
a substitution trick twice: first to show that the resulting contradiction requires high degree in
Sherali-Adams and second to obtain a size lower bound from a degree lower bound. We believe
that both techniques are also helpful for future lower bound arguments for static proof systems.

Acknowledgements Part of this work was done during the Oberwolfach workshop 1733 Proof
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We acknowledge the financial support by the German Research Foundation DFG under grant
SCHW 837/5-1.
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2 Proof Systems

For this section we fix a system of real polynomial equations F = {f1 = 0, . . . , fm = 0} and a
system of polynomial inequalities H = {h1 > 0, . . . , hs > 0} over variables x1, . . . , xn. As it is
common in propositional proof complexity, we focus on the special case of polynomial equations
(and inequalities) over Boolean variables and consider the task of proving that a system of
polynomial equations (and/or inequalities) has no 0/1-solution. To enforce Boolean variables,
the axioms x2

j = xj are always included in the proof systems. In Section 2.4 we briefly discuss
non-Boolean variants.

Algebraic proof systems are used for proving the unsatisfiability of a system of multivariate
polynomial equations over some field F. As we focus on real polynomials we set F = R, unless
mentioned otherwise. Semi-algebraic proof systems are used to prove the unsatisfiability of a
system of polynomial equations and/or polynomial inequalities (in this setting the polynomials
are always real).

2.1 Algebraic Proof Systems: Nullstellensatz and Polynomial Calculus

Nullstellensatz [2] is a static algebraic proof system that is based on Hilbert’s Nullstellensatz. A
Nullstellensatz proof of f = 0 from F is a sequence of polynomials (g1, . . . , gm; q1, . . . , qn) such
that

m∑
i=1

gifi +
n∑
j=1

qj(x
2
j − xj) = f. (1)

Note that the proof is sound in the sense every 0/1-assignment that satisfies F also satisfies f = 0.
The degree of the Nullstellensatz proof is max

(
{deg(gifi) : i ∈ [m]} ∪ {deg(hj) + 2 : j ∈ [n]}

)
.

The size of the derivation is the sum of the sizes of the binary encoding of the polynomials f , gifi,
qj(x

2
j − xj), each represented as a sum of monomials. A Nullstellensatz refutation of F is a proof

of −1 = 0 from F , in which case F is unsatisfiable (i. e., has no 0/1-solution). The Nullstellensatz
system is also complete: If F is an unsatisfiable system of multi-linear polynomials, then it has a
refutation of degree at most n.

Nullstellensatz is a static (or one-shot) proof system, as it provides the whole proof at once.
The dynamic version of Nullstellensatz is polynomial calculus (PC) [5]. It consists of the following
derivation rules for polynomial equations (fi = 0) ∈ F , polynomials f, g, variables xj , and
numbers a, b ∈ R:

fi = 0
,

x2
j − xj = 0

,
f = 0

xjf = 0
,

g = 0 f = 0

ag + bf = 0
. (2)

A polynomial calculus derivation of f = 0 from F is a sequence (r1 = 0, . . . , rL = 0) of
polynomial equations that are iteratively derived using the rules (2) and lead to f = rL = 0. The
degree of a derivation is the maximum degree of the polynomials in the derivation and the size is
the sum of the sizes of the binary encoding of the polynomials in the derivation. A polynomial
calculus refutation is a derivation of −1 = 0. It is straightforward to check that polynomial
calculus simulates Nullstellensatz: If F has a Nullstellensatz refutation of degree d and size N ,
then it has a polynomial calculus refutation of degree d and size polynomial in N .

In both systems proofs of bounded degree d can be found in time nO(d): for Nullstellensatz
the coefficients of the polynomials can be computed by solving a system of linear equations of
size nO(d), and for polynomial calculus this can be done by using a bounded degree variant of
the Gröbner basis algorithm [5].
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2.2 Semi-algebraic proof systems: Sherali-Adams, Sum-of-Squares, Positivstel-
lensatz

Sherali-Adams is a static proof system that models the Sherali-Adams lift-and-project hierarchy
of linear programming relaxations [19]. It can also be viewed as an extension of the Nullstel-
lensatz system. A Sherali-Adams proof of f > 0 from (F ,H) is a sequence of polynomials
(g1, . . . , gm; q1, . . . , qn; p0, . . . , ps) such that

m∑
i=1

gifi +
n∑
j=1

qj(x
2
j − xj) + p0 +

s∑
`=1

p`h` = f, (3)

and where every p` has the form p` =
∑

A,B a
`
A,B

∏
j∈A xj

∏
j∈B(1 − xj) with non-negative

coefficients a`A,B.2 Note that the polynomials p` : Rn → R are positive in [0, 1]n and hence the
proof is sound in the sense every 0/1-assignment that satisfies F and H also satisfies f > 0. The
degree (sometime called rank) of a Sherali-Adams proof is the maximum degree of the polynomials
gifi, qj(x

2
j − xj), p0, p`h` and the size is the sum of the sizes of their encoding. A Sherali-Adams

refutation of (F ,H) is a proof of −1 > 0 from (F ,H). Note that every Nullstellensatz refutation
of F is a Sherali-Adams refutation of (F , ∅) by choosing p0 = 0.

Sum-of-squares (SOS) is a semi-algebraic proof system that extends Nullstellensatz and
Sherali-Adams. It models the Lasserre hierarchy of semi-definite programming relaxations [13],
for which reason it is sometimes called Lasserre, and also builds on Putinar’s Positivstellensatz
[18]. The difference to Sherali-Adams is that the positive polynomials p` are now sums of
squares. Formally, a sum-of-squares proof of f > 0 from (F ,H) is a sequence of polynomials
(g1, . . . , gm; q1, . . . , qn; p0, . . . , ps) such that

m∑
i=1

gifi +

n∑
j=1

qj(x
2
j − xj) + p0 +

s∑
`=1

p`h` = f, (4)

and where every p` has the form p` =
∑t`

c=1(p`,c)
2 (and is encoded as such) for arbitrary

polynomials p`,c (in standard monomial form). Again, the degree of a proof is the maximum
degree of the polynomials gifi, qj(x

2
j − xj), p0, p`h`, the size is the sum of the sizes of their

encoding. A sum-of-squares refutation is a proof of −1 > 0. It is not hard to see that the positive
polynomials p =

∑
A,B aA,B

∏
j∈A xj

∏
j∈B(1 − xj) in the Sherali-Adams proof system have a

sum-of-squares proof (from F = H = ∅) of degree |A|+ |B|+ 1 and size poly(p). It immediately
follows that sum-of-squares simulates Sherali-Adams.

Lemma 2.1. If (F ,H) has a Sherali-Adams refutation of degree d and size N , then it has a
sum-of-squares refutation of degree d+ 1 and size poly(N).

Another semi-algebraic system that is related to sum-of-squares is Positivstellensatz. It
builds on Stengle’s Positivstellensatz (independently proven by Krivine [12] and Stengle [20]),
which has also been used to define a hierarchy of relaxations, see [17]. Our definition of the
Positivstellensatz proof system follows the one introduced in [10], a different way of formalising
Stengle’s Positivstellensatz as a proof system (without focusing on complexity) was presented in
[14]. We remark that Stengle’s Positivstellensatz and the Positivstellensatz proof system as defined
in [10] do not necessarily include the Boolean axioms x2

j − xj and also work for polynomials over
non-Boolean variables. To be precise, we will call the system that is named “Positivstellensatz” in
[10] “non-Boolean Positivstellensatz” in this paper (see Section 2.4). To define the proof system,
we consider for the system of polynomial inequalities H = {h1 > 0, . . . , hs > 0} the system
Ĥ = {

∏
`∈I h` > 0 : I ⊆ [s]}, which extends H by taking products of polynomial inequalities.

2We assume that the p` are explicitely provided in this form, whereas gi and qj are arbitrary polynomials
encoded in the standard way as a sum of monomials.
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Clearly, (F ,H) is satisfiable if and only if (F , Ĥ) is satisfiable. A Positivstellensatz proof of
f > 0 from (F ,H) is a sum-of-squares proof of f > 0 from (F , Ĥ). Note that on systems of
polynomial equations (where H = ∅) sum-of-squares and Positivstellensatz are the same.

One way of combining polynomial calculus with semi-algebraic proof systems is as follows.
Note that a Sherali-Adams, sum-of-squares, or Positivstellensatz proof of f > 0 can be decomposed
to

g + p0 +
∑
`

p`h` = f, (5)

m∑
i=1

gifi +
n∑
j=1

qj(x
2
j − xj) = g, (6)

where (6) is a Nullstellensatz proof of g = 0. By replacing this Nullstellensatz proof of g = 0 with
a polynomial calculus proof of g = 0, we obtain dynamic versions of the static semi-algebraic
proof systems. The dynamic version of Positivstellensatz is called Positivstellensatz calculus and
was also introduced in [10]. However, the proof of Theorem 1.1 (in particular Lemma 3.1) implies
that Positivstellensatz and Positivstellensatz calculus can simulate each other.

Corollary 2.2. If (F ,H) has a Positivstellensatz calculus refutation of degree d and size S, then
it has a Positivstellensatz refutation of degree 2d and size poly(S).

Proof. By definition, a Positivstellensatz calculus refutation of (F ,H) is a polynomial calculus
derivation of −1− p0 −

∑
` p`h` from F , where h` ∈ Ĥ. By Lemma 3.1, there is a degree-2d, size

poly(S) sum-of-squares proof of non-negativity of

−
(
−1− p0 −

∑
` p`h`

)2
= −1− 2p0 − p2

0 − (2 + 2p0)
(∑

` p`h`
)
−
(∑

`

∑
`′ p`p`′h`′h`

)
, (7)

from (F , Ĥ), which in turn is a Positivstellensatz refutation of (F ,H).

For completeness, we mention that there are also dynamic semi-algebraic proof systems
that are based on the Lovász-Schrijver lift-and-project method [15] and where one can infer
polynomial inequalities line-by-line (see [9] for an overview). These systems are, however, much
stronger and somewhat different from the proof systems considered in this paper.

2.3 Twin variables

In all the proof systems mentioned above, it might be useful to introduce twin variables: for
every variable xj one has available the formal variable x¬j that expresses its “negation” 1− xj .
To ensure that they are complementary, the additional polynomial equality xj + x¬j = 1 is always
present in F . Except for Sherali-Adams this does not change the definition of the proof systems,
as it only affects the input encoding. For Sherali-Adams with twin variables, it is additionally
assumed that every p` has now the form p` =

∑
A,B a

`
A,B

∏
j∈A xj

∏
j∈B x

¬
j [7].

Note that inclusion of twin variables does not affect the degree of a refutation, but it might
affect the size, as for example the polynomial

∏
j∈[n](1− xj), which has size 2Θ(n), can be more

succinctly expressed as
∏
j∈[n] x

¬
j , which is of size Θ(n). We are, however, not aware of any

formal separation of (semi-)algebraic proof systems with and without twin variables with respect
to proof size.

Twin variables are particularly useful when encoding CNF formulas into polynomial equations.
It is known that polynomial calculus with twin variables, which is called polynomial calculus
resolution (PCR) [1], can polynomially simulate the resolution calculus [5, 1]. The same is true
for Sherali-Adams [7] and hence sum-of-squares, but not for Nullstellensatz3.

Remark 2.3. Theorem 1.1 and Theorem 1.2 remain true in the presence of twin variables.

3This essentially follows from the degree lower bounds in [4] and Lemma 4.8.
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2.4 The non-Boolean case

It is also conceivable to consider (semi-)algebraic proof systems over non-Boolean variables. In
this case the additional Boolean axioms x2

j − xj = 0 are omitted in the definitions (formally,
we require that qj = 0 in the above definitions). Note that there is no meaningful non-Boolean
variant of the Sherali-Adams proof system, as its correctness (specifically, the non-negativity
of the polynomials p`) crucially depends on the fact that all variables are between 0 and 1.
However, non-Boolean variants of Nullstellensatz, polynomial calculus, sum-of-squares, and
Positivstellensatz are still sound proof systems. It follows from Stengle’s Positivstellensatz [20],
that Positivstellensatz is also refutational complete in this setting. For sum-of-squares this does
only hold if we put additional requirements on F ∪H (being Archimedian [18]). Non-Boolean
Nullstellensatz and polynomial calculus are only complete over algebraically closed fields (such
as the complex numbers).

We remark that in these systems it is no longer the case that every unsatisfiable multi-linear
system of equations over n variables has a refutation of degree n: for example, the so-called
telescopic system F ts

n := {yx1 = 1, x2
1 = x2, x

2
2 = x3, . . . , x

2
n−1 = xn, xn = 0} requires

exponential refutation degree in Nullstellensatz [3] and sum-of-squares [10]. Moreover, the same
example shows that the simulation of polynomial calculus by sum-of-squares (Theorem 1.1) does
not hold in the non-Boolean case:

Theorem 2.4 ([10]). Let F ts
n be the telescopic system as defined above.

1. F ts
n has a non-Boolean Nullstellensatz (hence sum-of-squares) refutation of degree 2O(n).

2. F ts
n has a non-Boolean polynomial calculus refutation of degree O(n).

3. Every non-Boolean sum-of-squares refutation of F ts
n has degree 2Ω(n).

3 Sum-of-Squares Simulates Polynomial Calculus

This section is dedicated to the proof of Theorem 1.1. Let us fix an unsatisfiable system of
polynomial equations F = {f1 = 0, . . . , fm = 0}. Let (r1 = 0, . . . , rL = 0) be a polynomial
calculus derivation of rL = 0 from F of degree d and size S. Let a be the minimal integer such
that every coefficient c in the proof satisfies a−1 6 4c2 6 a. Hence, the largest encoding size of
coefficient is Θ(log a). Theorem 1.1 follows immediately from the following inductive lemma.

Lemma 3.1. There are polynomials q1, . . . , qL and p1, . . . , pL of size at most poly(S) such that

for every L̂ 6 L there are nonnegative coefficients a−L̂ 6 ai, b`, c` 6 aL̂, such that

m∑
i=1

(−aifi)fi +
L̂∑
`=1

b`q`(x
2
j`
− xj`) +

L̂∑
`=1

c`p
2
` = −(r

L̂
)2 (8)

is a sum-of-squares proof of −(r
L̂

)2 > 0 of degree 2d.

Proof. First note that (8) is indeed a sum-of-squares proof of the form (4) since

L̂∑
`=1

b`q`(x
2
j`
− xj`) =

n∑
j=1

( ∑
` : j`=j

b`q`

)
(x2
j − xj) (9)

and c`p
2
` = (

√
c`p`)

2 (as we require c` > 0). Although we shall first provide the polynomials q`
and p`, we just assume that we have already done so and postpone their definition for ease of
exposition. The proof is now by induction on L̂ and we do a case analysis on the four types of
derivation rules (2). First suppose that r

L̂
= fi is an axiom from F . Then we can easily derive
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−(r
L̂

)2 in sum-of-squares by defining p
L̂

= q
L̂

:= 0, setting ai to 1 and all other coefficients to 0.
The case of a Boolean axiom r

L̂
= x2

j − xj is also simple. We define q
L̂

:= −(x2
j − xj) as well as

p
L̂

:= 0, set b
L̂

to 1 and all other coefficients to 0 in order to derive −(r
L̂

)2.
Now suppose that r

L̂
= xj′rL′ is obtained by multiplying a previously derived polynomial rL′

(for some L′ < L) by a variable xj′ . By induction assumption we have a sum-of-squares proof of
−(rL′)2 > 0 of degree 2d:

m∑
i=1

(−aifi)fi +

L′∑
`=1

b`q`(x
2
j`
− xj`) +

L′∑
`=1

c`p
2
` = −(rL′)2. (10)

Now we want to turn this proof into a proof of −(xj′rL′)2 > 0. Of course, we could do this by
just multiplying everything by x2

j′ . However, this would increase the degree of the refutation to
2d+ 2! Instead, we use the sum of squares polynomials in order to simulate the multiplication
rule in polynomial calculus without increasing the degree. We define p

L̂
:= rL′ − xj′rL′ as well as

q
L̂

:= −2(rL′)2 and observe that

(p
L̂

)2 + q
L̂
· (x2

j′ − xj′) = (rL′)2 − 2xj′(rL′)2 + x2
j (rL′)2 − 2x2

j′(rL′)2 + 2xj′(rL′)2 (11)

= (rL′)2 − (xj′rL′)2. (12)

By adding them to (10) we derive −(xj′rL′)2 > 0 without increasing the degree. Formally, we
define j

L̂
:= j′, set b

L̂
= c

L̂
= 1 and obtain

m∑
i=1

(−aifi)fi +

L̂∑
`=1

b`q`(x
2
j`
− xj`) +

L̂∑
`=1

c`p
2
` = −(xj′rL′)2 = −(r

L̂
)2. (13)

The remaining case is derivation of r
L̂

= a · rL′ + b · rL′′ for a, b ∈ R as a linear combination of
two previously derived polynomials rL′ and rL′′ . By induction assumption we have

m∑
i=1

(−a′ifi)fi +
L′∑
`=1

b′`q`(x
2
j`
− xj`) +

L′∑
`=1

c′`p
2
` = −(rL′)2 and (14)

m∑
i=1

(−a′′i fi)fi +
L′′∑
`=1

b′′` q`(x
2
j`
− xj`) +

L′′∑
`=1

c′′`p
2
` = −(rL′′)2. (15)

Our goal is to devise a sum-of-squares proof of −(r
L̂

)2 = −a2(rL′)2 − 2ab · rL′rL′′ − b2(rL′′)2. For
this we define p

L̂
:= a ·rL′− b ·rL′′ and q

L̂
:= 0. To derive −(r

L̂
)2, we multiply the sum-of-squares

proof (14) by 2a2, multiply (15) by 2b2, and then add both proofs together with (p
L̂

)2. More
precisely, we set ai = 2a2a′i + 2b2a′′i for all i ∈ [m]; b` = 2a2b′` + 2b2b′′` , c` = 2a2c′` + 2b2c′′` for all
` 6 max(L′, L′′); c

L̂
= 1 and set the remaining coefficients to 0. Then we obtain

m∑
i=1

(−aifi)fi +

L̂∑
`=1

b`q`(x
2
j`
− xj`) +

L̂∑
`=1

c`p
2
` = −2a2(rL′)2 − 2b2(rL′′)2 + (p

L̂
)2 (16)

= −a2(rL′)2 − b2(rL′′)2 − 2ab · rL′rL′′ (17)

= −(r
L̂

)2 (18)

By the definition of a, the factors 2a2 and 2b2 are bounded by 2a−1 and 1
2a from below and

above. Since by induction assumption we have a−L̂+1 6 a′i, b
′
`, c
′
`, a
′′
i , b
′′
` , c
′′
` 6 aL̂−1, it follows that

a−L̂ 6 ai, b`, c` 6 aL̂. This concludes the proof of Lemma 3.1.

Proof of Theorem 1.1. The theorem follows immediately from Lemma 3.1, since every degree-d
polynomial calculus derivation of −1 = 0 can be transformed into a degree-2d sum-of-squares
proof of non-negativity of −(−1)2 = −1. By the requirements in the Lemma the size of the
sum-of-squares proof is poly(S).
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4 Sherali-Adams does not Simulate Polynomial Calculus

The system of polynomial equations that separates Sherali-Adams from polynomial calculus
(Theorem 1.2) is a variant of the pebbling contradictions, which are unsatisfiable propositional
formulas that are based on the black pebble game. These formulas and their variants have found
several applications in propositional proof complexity. For an in-depth treatment of the history
and some of the applications of pebbling in proof complexity we refer the reader to the survey
[16].

Let us fix some notation. In a directed graph G = (V,E) we let N−(v) = {u : (u, v) ∈ E}
be the set of incoming and N+(v) = {w : (v, w) ∈ E} be the set of outgoing neighbours of a
vertex v ∈ V . The vertex sets S = {v : N−(v) = ∅} and T = {v : N+(v) = ∅} are called the
sources and the sinks of G. A circuit is a directed acyclic graph G with a unique sink t and
where every non-source vertex v ∈ V \ S has two incoming neighbours.

The (black) pebble game is a one-player game played on a circuit G = (V,E). The player has
available a pool of P pebbles and the game proceeds by placing and removing pebbles on the
vertices of G. In each round the player can do one of the following moves:

1. place a pebble on a sink vertex s ∈ S,

2. place a pebble on w ∈ V \ S if there are pebbles on both vertices in N−(w), or

3. remove an arbitrary pebble.

The player wins the game when he places a pebble on the sink node t. It is obvious, that the
player can always win the game with |V | pebbles and the (black) pebbling price Peb(G) 6 |V | is
the minimal number P such that the player wins the black pebble game on G with P pebbles.
For our lower bounds we will consider circuits G with high pebbling price.

Theorem 4.1 ([8]). For every large enough n there is a circuit G with n vertices and Peb(G) =
Ω(n/ log n).

The pebbling contradiction FG for a circuit G = (V,E) is the system of polynomial equations
over Boolean variables {xv : v ∈ V } that contains the following equations:

xs = 1, for all s ∈ S, (19)

xuxv = xuxvxw, for all w ∈ V \ S and N−(w) = {u, v}, and (20)

xt = 0, for the sink t. (21)

It is easy to see that this system is unsatisfiable. Moreover, we remark that FG is the standard
encoding of the CNF pebbling contradiction, which contains clauses xs, xu ∨ xv ∨ xw, and xt. As
this CNF can be easily refuted in resolution using unit propagation, it follows that this system
is easy to refute in any proof system that simulates resolution, such as polynomial calculus,
Sherali-Adams, and sum-of-squares. For later reference, the next lemma formulates this claim
for polynomial calculus.

Lemma 4.2. FG has a polynomial calculus refutation of degree 3 and size O(n) for any n-vertex
circuit G.

Proof. For a vertex v ∈ V let dist(v) be the smallest distance to a source vertex in S. By
induction on dist(v) we derive the equation xv = 1. If dist(v) = 0, then this equation is an
axiom. For the induction step let w be a vertex with incoming neighbours N−(w) = {u, v} and
assume that (a) xu = 1 as well as (b) xv = 1 was already derived. We also have the axiom
(c) xuxv = xuxvxw available. Multiplying (a) with xv gives (d) xuxv = xv and by a linear
combination with (b) we get (e) xuxv = 1. Multiplying (e) with xw results in (f) xuxvxw = xw.
Now we can derive xw = 1 by a linear combination of (c), (e), and (f). The lemma follows since
from xt = 1 and the axiom xt = 0 we can derive −1 = 0.
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In [4] it was shown that every Nullstellensatz refutation of FG requires degree Peb(G) and
hence this system separates Nullstellensatz degree from polynomial calculus degree. However,
it is not hard to construct a Nullstellensatz refutation of FG that has size poly(n). Therefore,
this example does not separate both systems with respect to proof size. Moreover, as mentioned
before, this system is also easy for Sherali-Adams (with respect to size and degree). To prove
our separation theorem between Sherali-Adams and polynomial calculus, we modify the formula
a bit in order to make it hard for Sherali-Adams, while at the same time it remains easy for
polynomial calculus. We do this by substituting for every variable xv the sum of fresh variables
according to the following definition.

Definition 4.3. Let F be a set of polynomial equations over variables x1, . . . , xn and k > 1.
The system F [+k] is obtained from F be replacing every variable xi in every f ∈ F by the sum
xi,1 + · · ·+ xi,k of k new variables and including the additional polynomial equations xi,`xi,`′ = 0
for all i ∈ [n] and 1 6 ` < `′ 6 k.

The following lemma shows that after substitution the system remains easy to refute in
polynomial calculus.

Lemma 4.4. Let F be a set of polynomial equations and suppose there is a polynomial calculus
refutation of F of degree d and size S. Then F [+k] has a polynomial calculus refutation of degree
d and size O(kdS).

Proof. We obtain the new proof by substituting all variables xi by xi,1 + · · ·+xi,k and expand the
polynomials to monomial form (this increases the size by a factor of kd). It remains to check that
the substituted equations form a polynomial calculus refutation of F [+k]. It is clear that a former
derivation of an axiom f ∈ F is now a derivation of an substituted axiom from F [+k]. A derivation
of a Boolean axiom x2

i = xi translates to (
∑

`∈[k] xi,`)
2 =

∑
`∈[k] xi,`, which can be derived using

the Boolean axioms x2
i,` = xi,` and the additional equations xi,`xi,`′ = 0 (see Definition 4.3). The

substituted variant of a linear combination of two previously derived polynomials f , g is just the
linear combination of the substituted versions of f and g. Multiplication by a variable xj to a
polynomial in the original proof translates to multiplying by

∑
`∈[k] xj,`, which can be simulated

by k separate multiplications of xj,1, . . . , xj,k and subsequent addition steps.

To obtain a system of equations that is hard for Sherali-Adams and easy for polynomial
calculus we apply two substitution steps to the formula FG for circuits from Theorem 4.1. First
we prove that every refutation of FG [+n] in Sherali-Adams requires degree d = Peb(G). In the
second step we show that a degree d lower bound for an arbitrary instance F translates to a
2Ω(d) size lower bound for F [+2]. Together we obtain that FG [+n][+2] requires high degree and
size in Sherali-Adams. We will use a common approach for proving lower bounds in static proof
systems and define a solution for the “dual” system.

Definition 4.5. A mapping D : R[x1, . . . , xn]→ R is a d-evaluation if it satisfies the following
conditions.

(D1) D is linear: D(af + bg) = aD(f) + bD(g) for all f, g ∈ R[x1, . . . , xn]

(D2) D is multi-linear: D(
∏
j x

dj
j ) = D(

∏
j xj)

(D3) D(f · fi) = 0 for every axiom fi ∈ F and f ∈ R[x1, . . . , xn] with deg(f) 6 d− deg(fi)

(D4) D
(∏

j∈A xj
∏
j∈B(1− xj)

)
> 0 for all A,B ⊆ [n] with |A ∪B| 6 d.

It is not hard to verify that the existence of a d-evaluation implies that there is no Sherali-
Adams refutation of degree d: suppose for contradiction that there is a Sherali-Adams refutation
of degree d of the form

m∑
i=1

gifi +
n∑
j=1

qj(x
2
j − xj) + p0 = −1, (22)
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with p0 =
∑

A,B a
0
A,B

∏
j∈A xj

∏
j∈B(1 − xj). Now we apply D to both sides of the equation.

From (D3) it follows that D(gifi) = 0, from (D2) we obtain D(qj(x
2
j − xj)) = 0, and from

(D4) it follows that D(p0) > 0. By linearity (D1) the left hand side is evaluated to something
non-negative, whereas on the right-hand side we have D(−1) = −1.

Due to the multi-linearity (D2) the lower bound technique actually proves something stronger.
The ml-degree of a polynomial is the degree of its multi-linearisation, i. e., the maximum number
of distinct variables in a monomial. We immediately get the following lemma.

Lemma 4.6. If a system of multi-linear equations F has a d-evaluation D, then there is no
Sherali-Adams refutation of F that has ml-degree 6 d.

The next lemma is proven by constructing a d-evaluation.

Lemma 4.7. Let G be a circuit with n vertices. Every Sherali-Adams refutation of FG [+k]
requires ml-degree at least min(Peb(G), k/2).

Proof. Let d < min(Peb(G), k/2) and suppose for contradiction that there is a Sherali-Adams
refutation of ml-degree d. By Lemma 4.6 it suffices to define an operator D that satisfies (D1)–
(D4). We start by defining D on multi-linear terms. We call a multi-linear term inconsistent,
if it contains two distinct variables xv,` and xv,`′ for some v ∈ V . If g =

∏
(v,`)∈I xv,` is an

inconsistent term, we define D(g) := 0. Otherwise, g =
∏

(v,`)∈I xv,` =
∏
u∈U xu,`u and the value

of D(g) := D̃(U) will only depend on the set U ⊆ V . To define the mapping D̃ : 2V → R, we say
that U ⊆ V is reachable, if the player has a strategy in the black pebble game with d pebbles to
reach a position where exactly the vertices in U are pebbled. The mapping is now defined as
follows.

D̃(U) :=

{(
1
k

)|U |
, if U is reachable,

0, otherwise.
(23)

We extend the definition of D to all polynomials by (multi-)linearity. Note that this completes the
definition of D and immediately satisfies (D1), (D2), as well as (D3) for the axioms xi,`xi,`′ = 0
introduced by Definition 4.3. To verify (D4), we have to show that D(p) > 0 for every polynomial
p =

∏
(v,`)∈I xv,`

∏
(v,`)∈J(1 − xv,`) of degree at most d. First note that if I ∩ J 6= ∅, then

D(p) = 0 since the mapping D satisfies (D2). Therefore, we may assume that p is multi-
linear when multiplied out to monomial form. If

∏
(v,`)∈I xv,` is either inconsistent or it is

consistent and defines a non-reachable position, then D(p) = 0 and we are done. Otherwise,
D(
∏

(v,`)∈I xv,`) = k−|I| and we get

D(p) =

(
1

k

)|I|
+

∑
∅6=K⊆J

(−1)|K|D

 ∏
(v,`)∈K∪I

xv,`


>

(
1

k

)|I|
−

∑
∅6=K⊆J

(
1

k

)|I|+|K|

=

(
1

k

)|I|1−
|J |∑
z=1

(
|J |
z

)(
1

k

)z .

Because we have have |J | 6 d < k/2 it follows that

|J |∑
z=1

(
|J |
z

)(
1

k

)z
<

|J |∑
z=1

(
k

2

)z (1

k

)z
<
∞∑
z=1

2−z = 1.
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Hence, D(p) > 0 and property (D4) is proven. It remains to verify (D3) for all three types of
substituted axioms. For every multi-linear term g we need to check:

D
(
g ·
(∑k

`=1 xs,`

))
= D(g) , (24)

D
(
g ·
(∑k

`=1 xu,`

)(∑k
`=1 xv,`

))
= D

(
g ·
(∑k

`=1 xu,`

)(∑k
`=1 xv,`

)(∑k
`=1 xw,`

))
, (25)

D
(
g ·
(∑k

`=1 xt,`

))
= 0, (26)

where s ∈ S is a source, w ∈ V \ S with N−(w) = {u, v}, and t is the sink. First suppose that
g is either inconsistent or defines a position U that is not reachable. In both cases everything
above evaluates to 0. Hence, let g =

∏
u∈U xu,`u for a reachable vertex set U . In the case

of (24), we have |U | 6 d − 1. If s ∈ U , then D(xs,`sg) = D(g), since we satisfy (D2). Since
the other summands xs,`g are inconsistent for ` 6= `s, they evaluate to 0 and the equality
(24) holds. Now assume that s /∈ U . We have that U ∪ {s} is reachable as well, since the
player has at least one pebble remaining and can place it on the source s. It follows that

D
(
g ·
(∑k

`=1 xs,`

))
= k · ( 1

k )|U |+1 = ( 1
k )|U | = D(g).

Checking (25) for non-source vertices w with N−(w) = {u, v} is similar. Here we have
|U | 6 d − 3 and by the rules of the game we know that U ∪ {u, v} is reachable if and only
if U ∪ {u, v, w} is reachable. Hence, if U ∪ {u, v} is not reachable, both sides evaluate to 0.
Otherwise, by a case analysis on the shape of U ∩ {u, v, w}, one can easily verify that both sides
evaluate to ( 1

k )|U |.

For the source vertex t, note that since d < Peb(G), no position that contains t is reachable.
Hence, D(gxt,`) = 0 for all ` ∈ [k] and the equality (26) holds. This concludes the proof of the
lemma.

Lemma 4.7 (together with Theorem 4.1 and Lemma 4.2) already provides a separation
between degree in Sherali-Adams and polynomial calculus. To separate the proof size we need
the following lifting lemma.

Lemma 4.8. Let F be a system of multi-linear polynomial equations and let P be one of the
proof systems Nullstellensatz, Sherali-Adams, or sum-of-squares. If every P-refutation of F has
ml-degree at least d, then every P-refutation of F [+2] has ml-degree at least d and size Ω(2d).

Proof. Let F = {f1 = 0, . . . , fm = 0} over variables {x1, . . . , xn} and consider a P-refutation

m∑
i=1

gif
′
i +

n∑
j=1

2∑
`=1

qj,`(x
2
j,` − xj,`) + p0 = −1 (27)

of F [+2] = {f ′1 = 0, . . . , f ′m = 0} ∪ {x1,1x1,2 = 0, . . . , xn,1xn,2 = 0}. Suppose that this refutation
has size 2d−1 and let L 6 2d−1 be the total number of large monomials of ml-degree > d in
the refutation (i. e. in the polynomials gifi, qj(x

2
j − xj), and p0). We consider the set Γ of all

restrictions that set for every j exactly one of the variables xj,1 and xj,2 to 0 and leaves the
other variable unset. It follows that for every γ ∈ Γ the set of equations Fγ that results from
F [+2] by restricting the variables according to γ agrees with F (modulo renaming the variables).
Moreover, by applying the restriction to (27) one obtains a P-refutation of Fγ . It remains to
argue that if L is too small, then choosing a restriction γ ∈ Γ uniformly at random might end
up with a refutation of Fγ of ml-degree < d, contradicting the assumption. This follows by a
simple union bound argument. First note that the probability that a monomial of ml-degree > d
is not set to 0 by a restriction γ is 6 (1

2)d.4 Furthermore, the probability that the restricted

4This claim does only hold for “ml-degree” and not for “degree” and that’s why we consider this notion.
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Nullstellensatz

sum-of-squares

polynomial calculus Sherali-Adams

Figure 1: Relation between the proof systems. An arrow P→ Q indicates that a proof in system
P of degree d and size S can be converted into a proof in system Q of degree O(d) and size
poly(S). Whenever there is no irreflexive arrow, it is known that the simulation does not hold.

refutation has ml-degree < d is bounded by the probability that at least one large monomial
does not vanish. Since we have

Pγ∈Γ[ex. monomial of ml-degree > d that does not vanish] 6 L ·
(

1
2

)d
6 1

2 , (28)

which is bounded away from 1, the lemma follows.

By combining Lemma 4.7 and Lemma 4.8 we can now prove Theorem 1.2.

Proof of Theorem 1.2. Let G be a circuit from Theorem 4.1 on k vertices. By Lemma 4.7 we
obtain that FG [+k] requires Sherali-Adams refutations of ml-degree Ω(k/ log k). By Lemma 4.8
it follows that every Sherali-Adams refutation of FG [+k][+2] requires ml-degree (and hence
degree) Ω(k/ log k) and size 2Ω(k/ log k). On the other hand, Lemma 4.2 combined with Lemma 4.4
shows that FG [+k][+2] has a polynomial calculus refutation of degree 3 and size O(k4). Since
FG [+k][+2] has n = 2k2 variables, the theorem follows.

5 Conclusions

We compared the static semi-algebraic proof systems Sherali-Adams and sum-of-squares with
polynomial calculus, a dynamic algebraic proof system. The main results show that sum-of-
squares simulates polynomial calculus (Theorem 1.1), while Sherali-Adams is not able to do so
(Theorem 1.2). The relations between the proof systems considered in this paper are described
in Figure 1.

One open question concerns the separation between polynomial calculus and Sherali-Adams.
Note that the pebbling contradiction FG that separates polynomial calculus degree from Null-
stellensatz degree is a system of polynomial equations that encodes a CNF formula. This is no
longer the case for the substituted formula FG [+k][+2] that separates polynomial calculus from
Sherali-Adams, and encoding FG [+k][+2] as a CNF blows up its size exponentially. It would
therefore be nice to know whether there is a separating CNF. Note that such a CNF would have
to be hard for resolution as well, which is not the case for the substituted variants of the pebbling
contradictions (that are in conjunctive normal form) considered in the literature (see [16]).
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