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Abstract

Distribution testing is an area of property testing that studies algorithms that receive few samples
from a probability distribution D and decide whether D has a certain property or is far (in total variation
distance) from all distributions with that property. Most natural properties of distributions, however,
require a large number of samples to test, which motivates the question of whether there are natural
settings wherein fewer samples suffice.

We initiate a study of proofs of proximity for properties of distributions. In their basic form, these
proof systems consist of a tester (or verifier) that not only has sample access to a distribution but also
explicit access to a proof string that depends arbitrarily on the distribution. We refer to these as NP
distribution testers, or MA distribution testers if the tester is a probabilistic algorithm. We also study IP
distribution testers, a more general notion where the tester interacts with an all-powerful untrusted prover.

We investigate the power and limitations of proofs of proximity for distributions and chart a landscape
that, surprisingly, is significantly different from that of proofs of proximity for functions. Our main results
include showing that MA distribution testers can be quadratically stronger than standard distribution
testers, but no stronger than that; in contrast, IP distribution testers can be exponentially stronger than
standard distribution testers, but when restricted to public coins they can be quadratically stronger at best.
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1 Introduction

Distribution testing, introduced by Goldreich and Ron [GR11] and Batu et al. [BFRSW00], is an area of
property testing [RS96; GGR98] that studies sublinear-time algorithms for approximate decision problems
regarding probability distributions over massive domains. Such algorithms, known as distribution testers, are
given independent samples from an unknown distribution and are required to decide whether the distribution
has a certain property, or is far from having it. More precisely, a distribution tester for a property Π of
distributions over a domain Ω is a probabilistic algorithm that, given a proximity parameter ε > 0, determines
whether a distribution D over Ω has the property Π or is ε-far (typically, in total variation distance) from any
distribution that has Π, by drawing a sublinear number of independent samples from D.

In the last two decades distribution testing has received much attention, not only because it asks funda-
mental questions about distributions but also because it has applications ranging from statistical hypothesis
testing [LR06] and model selection [BA03] to property testing [GR11; CGGKW16] and biology [Zou+16;
RVZ17]. A long line of works, including [BFFKRW01; Pan04; BDKR05; Pan08; RRSS09; Val11; ADJOP11;
BFRV11; LRR13; CDVV14; BV15; DK16; VV17], has investigated many natural properties of distributions,
determining the sample complexity of core problems such as testing uniformity, support size, identity to a
specified distribution, and many more (see recent surveys [Rub12; Can17b] and a forthcoming book [Gol17]).

Whereas testing properties of functions is often possible with few queries (independently of the function’s
domain size), testing properties of distributions typically requires many samples. In particular, the vast
majority of properties of distributions studied in the literature require Ω(

√
n) samples to test, where n is the

domain size. This state of affairs has motivated researchers to study distribution testing using stronger types
of access to the distribution [CRS15; FJOPS15; ACK15; CFGM16], in which the tester can draw samples
conditioned on a subset of the domain, and models in which the tester is granted additional access to the
cumulative distribution function or probability mass function of the distribution [RS09; CR14]. In this work
we take a different approach: we allow the tester to be aided by a prover, but keep the standard sample access
to the distribution (without any conditioning), as we now explain.

A fundamental question that arises in any computational model is to understand the power of a ‘proof’.
Indeed, the famous P 6= NP conjecture, which is concerned with the power of proofs in the setting of
polynomial-time computation, is widely considered as one of the most important open problems in the
theory of computation. Moreover, proof systems are studied in many other settings, such as communication
complexity [BFS86; AW09; Kla11], quantum computation [Wat00; RS04; VW16], data streams [CCMT14;
GR15; CCMTV15], and, most relevant to this work, property testing, as we now recall.

Proofs in the functional (standard) setting of property testing are known as proofs of proximity [EKR04;
BGHSV06]. These are probabilistic proof systems in which the verifier makes a sublinear number of queries
to a statement, and is only required to reject statements that are far from true. In a Merlin–Arthur proof of
proximity (MAP) [GR17b], the verifier receives explicit access to a proof of sublinear length, in addition
to query access to the statement. More generally, in an interactive proof of proximity (IPP) [RVW13], the
verifier interacts with an all-powerful untrusted prover. MAPs and IPPs have been studied in a line of recent
works, including [FGL14; GGR15; KR15; GGK15; FLV15; GG16; RRR16; GR17a; BRV18], and may be
thought of as the MA (i.e., “randomized NP”) and IP analogues of functional property testing, respectively.

In this work, we initiate a study of proof systems for testing properties of distributions, i.e., proofs of
proximity for distribution testing. We define several natural types of proofs, and investigate their power
and limitations. The landscape that we chart turns out to be completely different, both qualitatively and
quantitatively, from that for proofs of proximity for functions. We now discuss our results, first on non-
interactive proofs and then on interactive proofs.
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1.1 Non-interactive proofs of proximity for distribution testing

We study a natural analogue of the notion of NP proofs for testing properties of distributions. Letting ∆(Ωn)
be the set of distributions over a domain Ω, and letting Π ⊆ ∆(Ω) be a property, the tester is given sample
access to a distribution D ∈ ∆(Ω) and explicit access to a proof π and proximity parameter ε. We require
that for every distribution D ∈ Π there exists a proof π such that the tester accepts, and for every distribution
D that is ε-far from Π and every proof the tester rejects, both with high probability (e.g., 2/3).

Following standard conventions, if such a tester is a deterministic algorithm (i.e., is not allowed to toss
coins), then we call it an NP distribution tester, and if it is a probabilistic algorithm, then we call it an MA
distribution tester. As we discuss later, in stark contrast to proofs of proximity for functions, for which
deterministic testers are degenerate [GR15], the power of MA distribution testers and NP distribution testers
is essentially equivalent. Thus we henceforth present our results for MA distribution testers only, and remark
that these results qualitatively translate to NP distribution testers as well.

Analogously to prior work in distribution testing and proximity proofs, we consider two main efficiency
measures for MA distribution testers: (a) sample complexity, which is the number of samples drawn by the
tester from the distribution; (b) proof complexity, which is the length of the honest proof. Both complexity
measures are functions of the domain size and the proximity parameter.

Perhaps the first question that arises in this direction is whether verification can be cheaper than decision.
In other words, are MA distribution testers stronger than standard distribution testers? For functional proofs
of proximity the answer is immediate: every property can be tested with just O(1) queries to the input, when
given a linear-size proof. This proof simply contains a description of the input, in which case the tester can
read the entire proof, decide membership in the property, and query the input at few random locations to
check that it is close to the proof. Linear-size proofs thus trivialize testing properties of functions.

In distribution testing, however, the situation is not as simple. For starters, given a purported description
of D, checking that this description actually matches the input distribution typically requires more than a
constant number of samples. Moreover, the description of a distribution D may be very large (even infinite),
and so the proof cannot simply contain its description. Nonetheless, these difficulties can be dealt with, albeit
at the cost of higher complexity.

To simplify exposition, throughout the introduction we fix a domain Ωn of size n and fix the proximity
parameter ε to a small constant. Our first result shows that proofs of (nearly) linear length allow testing any
property with only O(

√
n) samples; moreover, there are natural properties for which the sample complexity

can be smoothly reduced (down to constant) using increasingly longer proofs.

Theorem 1.1 (informal; see Sections 3.1 and 3.2 for details).

1. For any property Π ⊆ ∆(Ωn), there exists an MA distribution tester with proof complexity O(n log(n))
and sample complexity s = O(maxD∈Π ‖D‖2/3) = O(

√
n). (Here ‖ · ‖2/3 is the `2/3 quasi-norm.)

2. There exists a (natural) property Π ⊆ ∆(Ωn) for which every distribution tester uses Ω̃(n) samples, yet
there is an MA distribution tester for Π with proof complexity O(n log(n)) and sample complexity O(1).
Furthermore, one can trade proof against sample complexity and, e.g., make both complexities Õ(

√
n).

We remark that the second item of Theorem 1.1 is proved with respect to a promise problem.
Theorem 1.1 confirms the intuition that MA distribution testers are stronger than standard distribution

testers. However, while in the settings of proximity proofs for functions it is possible to obtain exponential
savings in query complexity, even using proofs of merely logarithmic length [GR17b], our Theorem 1.1 only
shows MA distribution testers in which the product of the proof and sample complexities is at least as large
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as the sample complexity of standard distribution testers.1 This discussion raises the question of whether
there exist stronger MA distribution testers, or whether non-interactive proofs of proximity for distributions
are indeed more limited than their functional counterparts.

Furthermore, Theorem 1.1 shows that the sample complexity of MA distribution testers for any property
can be reduced to O(

√
n). Yet, for properties that can be tested (without a proof) using O(

√
n) samples, is it

always the case that MA distribution testers can be stronger than standard distribution testers?
To answer the questions above, we study the limitations of non-interactive proofs of proximity for

distributions. Our next result shows that for every property and every MA distribution tester, either its proof
or its sample complexity can at best be quadratically better than the (optimal) sample complexity of a standard
distribution tester. Moreover, there also exists a natural property (the property of being uniformly distributed)
for which MA distribution testers cannot do better than standard distribution testers.

Theorem 1.2 (informal; see Section 3.3 for details). Let sΠ be the optimal sample complexity for testing a
property Π without the aid of any proofs.

• For every Π ⊆ ∆(Ωn) and every MA distribution tester for Π with proof complexity p and sample
complexity s, it holds that p · s = Ω(sΠ).

• Every MA distribution tester for the uniformity property Un has sample complexity Ω(sUn) = Ω(
√
n),

regardless of its proof complexity.

Theorem 1.2 thus shows that the upper bounds in Theorem 1.1 are tight, up to logarithmic factors. (The
first item of Theorem 1.2 shows the tightness of the second item of Theorem 1.1, and the second item of
Theorem 1.2 shows the tightness of the first item of Theorem 1.1 with respect to a particular property.)

On derandomizing MA distribution testers. As mentioned above, the power of deterministic verification
(NP proofs) and randomized verification (MA proofs) is essentially equivalent in the setting of distribution
testing. More accurately, the following theorem shows that MA distribution testers can be derandomized into
NP distribution testers at the price of only a small increase in sample complexity.

Theorem 1.3 (informal; see Section 4 for details). Every MA distribution tester with proof complexity p
and sample complexity s can be emulated by an NP distribution tester with proof complexity p and sample
complexity O

(
s + log(n)

)
.

We remark that a direct proof for the special case of standard testers (without access to a proof) is sketched
in [Gol17, Chapter 11].

1.2 Interactive proofs of proximity for distribution testing

While MA distribution testers are stronger than standard distribution testers, they are limited to multiplicatively
trading off sample complexity for proof complexity. Can one do even better with other types of proof
systems? To study this question, we consider a natural analogue of interactive proofs [GMR89] in the setting
of distribution testing.

An IP distribution tester generalizes the notion of an MA distribution tester by allowing the tester to
interact with an all-powerful untrusted prover who knows everything about the input distribution D. The
prover tries to convince the tester that D has a certain property Π. If D ∈ Π then there exists a prover strategy

1To see this holds with respect to the first item of Theorem 1.1, recall that every property can be tested using O(n) samples (for a
constant value of the proximity parameter).
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that makes the tester accept with high probability; if instead D is far from Π then the tester rejects with high
probability regardless of prover strategy.

Similarly to the non-interactive setting, we seek to minimize the sample complexity, as well as communi-
cation complexity, which is the total number of bits exchanged between the two parties (and generalizes proof
complexity). We also consider the round complexity, which is the number of rounds of interaction, where
each round consists of a message from one party to the other and its reply.

The next theorem shows that it is possible to test properties of distributions much more efficiently by
interacting with a prover than by receiving a non-interactive proof. In fact, even a single round of interaction
suffices to obtain exponential savings in communication and sample complexity compared to the sample
complexity of standard distribution testers (and hence MA distribution testers as well).

Theorem 1.4 (informal, see Section 6.1). There exists a property Π ⊆ ∆(Ωn) such that:

1. there is a 1-round IP distribution tester for Π with communication complexity O(log(n)) and sample
complexity O(1); yet

2. every (standard) distribution tester for Π must use Ω̃(
√
n) samples.

A fundamental distinction between types of interactive proofs is according to how the tester uses its own
randomness. The interaction is public-coin if the tester reveals the outcome of its coins immediately after
tossing them; it is private-coin if the tester can keep such outcomes to itself. Public-coin interactive proofs
are called AM proofs [BM88], and so we call their distribution testing analogues AM distribution testers. We
stress that in these public-coin protocols, the prover does not see the samples drawn by the tester.

Goldwasser and Sipser [GS86] proved that the expressive power of private-coin interactive proofs is
essentially equivalent to that of public-coin interactive proofs, despite the latter being syntactically weaker.
Rothblum, Vadhan, and Wigderson [RVW13] observed that [GS86]’s proof of this statement extends to
the setting of interactive proofs of proximity for functions. The next theorem shows that, unlike in the
aforementioned models, the power of public-coin interaction for testing distributions is rather limited,
regardless of round complexity.

Theorem 1.5 (informal, see Section 6.2). For every property Π ⊆ ∆(Ωn) and r ∈ N (not necessarily a
constant), it holds that every r-round AM distribution tester for Π with communication complexity c and
sample complexity s satisfies c · s = Ω(sΠ). (As before, sΠ denotes the optimal sample complexity for testing
property Π without the aid of any proofs.)

We note that the combination of our Theorems 1.4 and 1.5 yields an exponential separation between the
power of IP distribution testers and AM distribution testers, which stands in stark contrast to the equivalence
of private-coin and public-coin interaction in the functional setting.

While their power is limited when compared to IP distribution testers, AM distribution testers are still
stronger than standard distribution testers, and possibly MA distribution testers as well. In Section 7 we show
an AM distribution tester for a natural property that tightly matches the lower bound in Theorem 1.5, and
also allows for smooth communication versus sample complexity tradeoffs. It is an open problem whether
this upper bound can also be obtained via MA distribution testers, or whether public coin interaction in the
setting of distribution testing is strictly stronger.

1.3 Comparison of functional and distributional proofs of proximity

In this work we consider several fundamental questions about proofs of proximity that were previously
studied for properties of functions. We study these questions for properties of distributions instead.
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One may naively expect that, since we are asking similar questions, we should obtain similar answers.
However our results demonstrate that proofs of proximity for distributions behave dramatically different,
both qualitatively and quantitatively, from proofs of proximity for functions. We summarize these different
“complexity landscapes” in Table 1.

In retrospect these dramatic differences are easily interpreted. First and foremost, even standard (function)
property testing and distribution testing are dissimilar: not only the tested objects are structurally different,
but, just as importantly, the access to these objects is different as well (query access versus sample access).
Moreover, these differences are more pronounced with regard to proofs of proximity because proof techniques
to reason about them are very sensitive to input representation and access type. This is indeed what we find
when inspecting our proof techniques, and the reasons for why our results hold.

Testing Distributions
this work

Testing Functions
[RVW13; GR17b; FGL14; GR17a]

no
n-

in
te

ra
ct

iv
e

pr
oo

fs

Proofs of linear length reduce sample complexity
of any property to O(

√
n)

reduce sample complexity
of any property to O(1)

MA proofs of proximity
vs. standard testers quadratically stronger exponentially stronger

Probabilistic (MA) vs.
deterministic (NP) verification nearly equivalent NP proofs of proximity

are extremely weak

Hardest property for
non-interactive proofs

explicit and natural;
no better than standard testers,

regardless of proof length

non-explicit (random property);
linear length proof is required
to outperform standard testers

in
te

ra
ct

iv
e

pr
oo

fs

Private vs. public
coin protocols exponential separation almost equivalent

AM round hierarchy
coin protocols

AM complexity is quadratically
related to the sample

complexity of standard testers

there is a property for
which the AM complexity is
≈ n1/r for r-round protocols

Table 1: Comparison between proofs of proximity for testing distributions and testing functions.

1.4 Techniques

We establish our results via an eclectic set of technical tools that varies from section to section. These include
extraction and derandomization, reductions from SMP communication complexity, lifting lemmas, granular
approximation, and tolerant testing. To facilitate understanding of the main ideas behind each result, in the
technical sections we precede the formal proof of each result with an intuitive high-level overview.

Below, we provide a taste of our techniques, grouped according to whether they give us upper bounds
(Section 1.4.1), lower bounds (Section 1.4.2), or derandomization (Section 1.4.3).

1.4.1 Upper bounds

We overview the techniques that we use to obtain: a generic upper bound for MA distribution testers (first
item of Theorem 1.1), an improved MA upper bound for a particular property (second item of Theorem 1.1),
and an IP distribution tester that is exponentially more efficient than any MA distribution tester (first item of
Theorem 1.4).
A generic MA upper bound. We sketch a proof of a special case of Theorem 1.1, showing that any property
can be tested via an MA distribution tester that uses O(

√
n/ε2) samples and a proof of linear size. The idea
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is that a linear-size proof π can allegedly consist of a description of the input distribution D ∈ Π. Since the
tester has explicit access to π and our goal is to minimize sample complexity (and not time complexity), the
MA distribution tester can directly check membership of π in the property Π, reducing the problem to testing
that the input distribution D is identical to π, a task that can be performed via O(

√
n/ε2) samples [VV11].

One problem that arises is that, unlike the setting of testing Boolean functions or graphs, in the setting of
distribution testing the size of the description of D may be very large (even infinite). To overcome this, we let
an honest proof consist of a granular approximation D′ of D, where the mass of each element in the support
of D′ is a multiple of m := Θ(1/n); this approximation has at most linear size.

Note, however, that it could be the case that D ∈ Π, whereas its granular approximation D′ is close to
Π but not in Π (similarly, D may by ε-far from Π, whereas may D′ not). Nevertheless, using a tolerant
testing procedure, the tester can ensure that with high probability it would rule regarding D′ just as it would
regarding D, and so the granular approximation suffices to this end.

MA distribution tester with sublinear proofs. To simplify the following presentation, we restrict our
attention to m-granular distributions over the domain [n], for some m = Ω(1/n).

Consider the gap isolated elements problem, which is the problem of deciding whether a distribution D
has a large number of isolated elements, or only a small one, where an element i ∈ [n] is said to be isolated if
D is not supported on its adjacent elements i− 1 and i+ 1.

We sketch an MA distribution tester with proof and sample complexity Õ(
√
n) that accepts distributions

with at least
√
n isolated elements and rejects distributions with at most

√
n/2. (In Theorem 3.8 we show

proof versus sample complexity tradeoffs for a wide range of parameterizations of this problem.)
The proof string simply specifies

√
n allegedly isolated elements of the input distribution D, and the MA

distribution tester draws O(
√
n) samples and accepts if and only if all of the samples are not adjacent to the

elements specified by the prover. Of course, if D indeed has at least
√
n isolated elements, the proof can

specify them, and the MA distribution tester will accept with probability 1.
The key point is that if D has at most

√
n/2 isolated elements, then every purported proof must specify

at least
√
n/2 elements that have an adjacent element on which D is supported on. Denote these supported

adjacent elements by B, and note that every element of B is in fact a local certificate that D is a no-instance;
that is, if the tester draws a single element in B, it can safely reject. By the granularity of D the total mass of
B is Ω(1/

√
n), and so it suffices to draw O(

√
n) samples to hit B with high probability.

IP distribution tester with logarithmic complexity. We sketch an IP distribution tester for the isolated
elements problem that has logarithmic communication complexity and constant sample complexity. (In
Section 6 we also show that any public-coin IP distribution tester, and in particular standard and MA
distribution testers, has exponentially larger complexity.)

Here we use different parameter settings than above, and in fact we shall not need the gap (promise
problem) variant, and simply consider the property

ΠIsolated := {D ∈ ∆([n]) | ∀i ∈ [n] i 6∈ supp(D) or (i+ 1) 6∈ supp(D)} ;

that is, all distributions (not necessarily granular) in which no two consecutive elements are supported.
Consider the following IP distribution tester for this property. The tester draws O(1/ε) samples from

the input distribution D and masks these samples by shifting each sample to its subsequent element with
probability 1/2. The tester then sends the masked samples to the prover and asks the prover to recover the
original samples (prior to the shifts).

The point is that if the supported elements of D are indeed isolated, then the prover can always determine
the original samples (as D cannot be supported on both an element and its shift). On the other hand, if D is
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ε-far from ΠIsolated, then there exist adjacent supported elements whose weight is Ω(ε), an so the prover is
forced to guess which samples were shifted and which not, and will get caught with constant probability.

1.4.2 Lower bounds

Our lower bounds are all based on the following paradigm: we first prove a lower bound on the complexity of
BPP distribution testers, typically via a reduction from SMP communication complexity, and then use “lifting”
lemmas that allow us to transfer this lower bound to MA and AM distribution testers (where recall that by the
latter we refer to public-coin interactive proof systems). We illustrate this methodology by sketching a proof
of lower bounds on the complexity of MA and AM distribution testers for the isolated elements property
ΠIsolated, which consists of all distributions in which no two consecutive elements are supported.

BBP lower bound via reduction from communication complexity. We use the SMP communication
complexity method [BCG17]. Recall that, in a private-coin SMP protocol for a predicate f , the players Alice
and Bob are given strings x, y ∈ {0, 1}k (respectively), and each of the players is allowed to send a message,
which depends on the player’s input and private randomness, to a referee who is then required to decide
whether f(x, y) = 1 by only looking at the players’ messages and flipping coins. It is well-known that for
the equality predicate (f(x, y) = 1↔ x = y), every such protocol must communicate Ω(

√
k) bits [NS96].

Let P contain each third element of the domain, i.e., P := {3j − 1 | j ∈ [(n− 1)/3]}. Our reduction
will map (a) yes-instances of EQk to distributions that are uniform over |P | isolated elements; and (b) no-
instances of EQk to distributions wherein for an ε-fraction of p ∈ P it holds that D(p) = Ω(1/n) and
D(p+ 1) = Ω(1/n), hence D is ε-far from ΠIsolated. Details follow.

Assume there exists a tester for ΠIsolated with sample complexity s. Each of the players encodes its
input string via a balanced asymptotically good code ECC (that is, ECC: {0, 1}k → {0, 1}n with constant
rate and relative distance ε = Ω(1), such that each codeword of ECC contains the same number of 0’s and
1’s). Alice and Bob each draw O(s) samples that are uniformly distributed over P , and shift each sample
according to ECC(x) and ECC(y), respectively. That is, Alice sends to the referee independent samples
uniformly drawn from A :=

{
i+ ECC(x)(i+1)/3 | i ∈ P

}
, and Bob sends samples uniformly drawn from

B :=
{
i+ ECC(y)(i+1)/3 | i ∈ P

}
. Finally, the referee invokes the tester for ΠIsolated with respect to the

distribution 1
2Un(A) + 1

2Un(B), emulating each draw by tossing a random coin and deciding accordingly
whether to use a sample by Alice or Bob.

The point is that if x = y, then ECC(x) = ECC(y), and so both players shift their samples (which are in
P , and so separated by two non-supported elements) in the same way, and so the resulting mixed distribution
is uniform over isolated elements. On the other hand, if x 6= y, then ECC(x) is ε-far from ECC(y), and so
the resulting distribution will have roughly ε · |P | non-isolated elements of weight Ω(1/ |P |) each. Thus, we
have s = Ω̃(

√
k) = Ω̃(

√
n).

Lifting the BPP lower bound to MA and r-round AM distribution testers. We begin with the simpler
task of proving an MA lower bound on ΠIsolated. To lift the BPP lower bound we proved above to MA, we
show that any MA distribution tester T for any property Π (in particular, ΠIsolated) with proof complexity p
and sample complexity s can be emulated by a BPP distribution tester T ′ with sample complexity O(p · s).

The key observation is that the samples that T draws are completely independent of the proof that it
receives. Since we aim to minimize sample complexity (rather than time complexity), we can hope to emulate
all possible proofs, while reusing the samples. However, since there are exponentially many (2p) possible
proofs, we need to amplify the soundness to assure no error occurs with high probability. To this end, at the
cost of increasing the sample complexity to O(p · s), we invoke the tester O(p) times to obtain soundness
error exp(−p), which suffices to take a union bound over invocations of the amplified T with respect to all
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possible proofs.
To lift the BPP lower bound to r-round AM distribution testers, for any (possibly non-constant) r ≥ 1,

we need a significantly more involved argument. Recall that an AM distribution tester works as follows. In
each round, the tester samples fresh randomness ρi and sends it to the prover, which replies with a message
mi that may arbitrarily depend on the input distribution D ∈ ∆(Ωn), proximity parameter ε, and transcript of
the interaction so far. After receiving the last message from the prover, the tester draws samples from D and
decides according to these samples, proximity parameter, and transcript of the entire interaction.

Analogously to the proof of the MA lifting lemma, the high-level idea is that since the samples drawn
from D are independent of the transcript of interaction, a BPP distribution tester can emulate all possible
interactions, while using the same samples for all invocations. However, several difficulties arise when trying
to naively implement the foregoing idea.

First, note that the tester cannot simply emulate the optimal prover, because it is determined by a
distribution from which it only has few samples. Second, we cannot afford to enumerate over all prover
strategies, as there is a doubly exponential number of them (each strategy is a function from the space
of previous transcripts to the next message). Instead, we can only afford enumerating over all possible
transcripts, which are not uniformly generated. Third, as before, since we invoke the tester with respect to
exponentially many transcripts, we need to reduce its soundness error accordingly. Unfortunately, amplifying
the soundness would result in an increase in communication complexity, which we cannot afford. Finally,
even given exponentially small soundness error, whereas for MA it suffices to find a single proof that is
accepted with high probability, here there may exist specific transcripts in which the prover fools the tester
with probability 1 (this is because we consider transcripts, rather than prover strategies).

A key step towards overcoming these difficulties is to rely on a simple yet important observation: each
AM distribution tester induces a family of BPP distribution testers that are determined by the interaction.
That is, since the transcript of the interaction is a random variable that is independent of the samples drawn by
the AM distribution tester, the interaction phase can be viewed as a procedure that defines a BPP distribution
tester that is invoked after this phase. In particular, this allows us to perform soundness amplification solely
on the induced BPP distribution testers.

The procedure above implies that, with high probability over the random messages of the tester, each
of the corresponding induced BPP distribution testers decides correctly, with only an exponentially small
probability of error, without incurring any blowup in communication complexity. (Note, however, that the
total soundness of the AM distribution tester does not necessarily increase significantly.)

Thus, we can invoke all the BPP distribution testers that are induced by all possible transcripts, while
reusing the same samples for all invocations, such that with high probability no error will occur in any of the
relevant invocations. Finally, we show that the the interaction tree induced by these invocations is significantly
different for yes-instance and no-instances, and so the tester can consider it and decide whether there exists a
prover strategy that would have been accepted with high probability by the AM distribution tester.

1.4.3 Derandomization

The key observation behind the derandomization of MA distribution testers (Theorem 1.3) is that while an
NP distribution tester is a deterministic algorithm, it receives random samples from the input distribution D.
Thus we can hope to simulate the coin tosses of the MA distribution tester by deterministically extracting the
necessary randomness from the samples.

To deterministically extract uniform bits from independent samples drawn from a distributionD ∈ ∆([n]),
we arbitrarily group the samples into pairs, discard pairs in which both samples are the same, then write 1
(respectively, 0) for every pair in which the first element is larger (respectively, smaller) than the second.
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Since the samples are independent, the first sample of each pair is equally likely to be larger as it is to be
smaller than the second sample, and so we obtain a uniformly distributed string. This procedure can be
thought of as generalizing the seedless extractor of Von Neumann [Von51].

The foregoing approach raises two concerns: (a) if D has small entropy, each bit we extract will require
many samples (as many pairs would be discarded); and (b) even if D has large entropy, the MA distribution
tester may toss a large number of coins, and so we shall need to draw many samples accordingly.

The first concern can be easily handled by observing that distributions with small entropy can be efficiently
learned, and so we can test them with few samples, even without the aid of a prover. Dealing with the
second concern is significantly more involved, and requires proving a randomness reduction lemma for MA
distribution testers, which shows that it suffices to extract a small number of uniformly random bits, roughly
logarithmic in the domain size.

The proof of the aforementioned randomness reduction lemma follows the randomness reduction approach
of Goldreich and Sheffet [GS10], but our different setting requires several new ideas. In particular, our model
involves testers that access a proof and two sources of randomness and, most significantly, the argument in
[GS10] crucially relies on a bound on the number of inputs that the tester can receive, but no such bound
exists in our setting.

1.5 Organization

The rest of this paper is organized into two main parts. The first part consists of Sections 3 and 4 and studies
non-interactive proofs of proximity. The second part consists of Sections 5 to 7 and studies interactive
proofs of proximity. The sections themselves are self-contained and can be read in essentially any order after
skimming through the preliminaries in Section 2. The key definitions to keep in mind are those of MA/NP
distribution testers at the beginning of Section 3, and those of IP/AM distribution testers in Section 5.
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2 Preliminaries

We cover the notation and basic definitions used in this paper.
Distributions and distances between them. We denote by ∆(Ωn) the set of all probability distributions
over a domain Ωn of size n := |Ωn|. We identify a distribution D ∈ ∆(Ωn) with its probability mass function:
for every α ∈ Ωn, D(α) denotes the probability PrX∼D[X = α]; similarly, for every S ⊆ Ωn, D(S) denotes
the probability PrX∼D[X ∈ S]. For D ∈ ∆(Ωn) and t ∈ N, the product distribution Dt ∈ ∆

(
(Ωn)t

)
is

given by Dt(α1, . . . , αt) :=
∏
i∈[t]D(αi). Given two distributions D,D′ ∈ ∆(Ωn), their `1 distance is the

`1 distance between their probability mass functions, that is ‖D − D′‖1 :=
∑

α∈Ωn
|D(α)−D′(α)|; their

total variation distance is dTV (D,D′) := maxS⊆Ωn(D(S)−D′(S)), and is equivalent, up to a factor 2, to
their `1 distance.
Sample access. An algorithm A has sample access to a distribution D ∈ ∆(Ωn) if A has an oracle
generating independent samples fromD. We denote byAD(x) the output ofA when given input x (explicitly)
and sample access to D. Given two interactive algorithms A and B, we denote by (AD(x), BD(y))(z) the
output of AD(x) when interacting with BD(y) on common input z. Algorithms in this paper are typically
probabilistic and when writing expressions such as “Pr[AD(x) = z]” we mean that the probability is also
taken over the randomness of A and of the samples it obtains from D.
Properties of distributions. A property of distributions over Ωn is a subset Π of ∆(Ωn), to be interpreted
as the set of all distributions in ∆(Ωn) that have the property. Given a property Π ⊆ ∆(Ωn) and a distribution
D ∈ ∆(Ωn), the distance of D to Π is dTV (D,Π) := infD′∈Π dTV (D,D′).
Distribution testing. A distribution tester [BFRSW00] for a property Π is a probabilistic algorithm that,
given sample access to a distribution D and given a proximity parameter ε as input, accepts (outputs 1) if D
has the property Π and rejects (outputs 0), with high probability, if D is ε-far from having it. Throughout this
work, all proximity parameters are real numbers in the range [0, 1].

Definition 2.1. A distribution tester for a property Π ⊆ ∆(Ωn) is a probabilistic algorithm T for which the
following two conditions hold.

1. Completeness: for every distribution D and proximity parameter ε with D ∈ Π,

Pr
[
TD(ε) = 1

]
≥ 2/3 .

2. Soundness: for every distribution D and proximity parameter ε with dTV (D,Π) ≥ ε,

Pr
[
TD(ε) = 0

]
≥ 2/3 .

The sample complexity of T is the (worst case) number of samples it draws from the distribution.

The following fact provides a generic upper bound on the sample complexity required to test any property.

Fact 2.2 (Folklore). Any property Π ∈ ∆(Ωn) has a distribution tester with sample complexity O(n/ε2).

A distribution tester is tolerant if it guarantees not only that distributions having the property are accepted
but also that every distribution that is sufficiently close to having the property is accepted as well. More
accurately, a tolerant distribution tester is a tester that receives two proximity parameters, denoted εyes and
εno, and must accept any D such that dTV (D,Π) ≤ εyes and reject any D such that dTV (D,Π) ≥ εno (both
with probability at least 2/3). We shall focus on non-uniform tolerant distribution testers in which εyes is
hardcoded (as opposed to being given as a parameter). In this case we say that such a distribution tester is
εyes-tolerant and treat εno as the standard proximity parameter.
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Proposition 2.3 ([Can17a]). For every s ≥ 0 and property Π ∈ ∆(Ωn), if Π has a distribution tester with
sample complexity s, then Π also has a Ω(1/s)-tolerant distribution tester with sample complexity O(s).

Proposition 2.3 follows from a more general statement (Proposition 3.4) that we prove in Section 4.1.

Gap problems. A gap (distribution testing) problem is a promise problem in which the tester, given
sample access to a distribution D ∈ ∆(Ωn), must decide whether ξ(D) ≥ a or ξ(D) ≤ b for some function
ξ : ∆(Ωn)→ R. Any gap problem can be formally expressed as a standard distribution testing problem given
a promise on the input. Specifically, one can consider the property {D ∈ ∆(Ωn) | ξ(D) ≥ a} of distributions
guaranteed to be taken from U := {D ∈ ∆(Ωn) | ξ(D) ≥ a or ξ(D) ≤ b}.
Complexity classes for distribution testing. We consider the “distribution testing analogue” of several
complexity classes. Starting with the most basic class, we denote by BPP-D[s] the class of all properties
that have a distribution tester with sample complexity s = s(n, ε). Similarly, we denote by P-D[s] the class
of all properties that have a deterministic distribution tester with sample complexity s = s(n, ε). We shall
introduce other complexity classes in later sections.

Error-correcting codes. A binary code with message length k ∈ N and block length n ∈ N is a function
C : {0, 1}k → {0, 1}n that maps messages to codewords. The rate of C is k/n, and the relative distance of
C, denoted δ, is the minimal relative Hamming distance between any two distinct codewords in C. A code C
is balanced if every codeword in C contains the same number of 0’s and 1’s. The next proposition shows the
existence of balanced binary codes with constant rate and relative distance.

Proposition 2.4 (e.g., [BCG17, Proposition 3.3]). For every δ ∈ (0, 1/3] and k ∈ N there exists n = Θδ(k)
and a balanced code C : {0, 1}k → {0, 1}n with relative distance δ.

Communication complexity. A private-coin simultaneous message passing (SMP) protocol for a boolean
function f : {0, 1}k × {0, 1}k → {0, 1} consists of three computationally unbounded parties: two players
called Alice and Bob, and a Referee. Alice receives an input x ∈ {0, 1}k and Bob an input y ∈ {0, 1}k. Each
of them uses its input and private randomness to simultaneously (and independently) send a message to the
Referee. The Referee must compute f(x, y) with probability at least 2/3, using the received messages and
its private randomness. The communication complexity of an SMP protocol is the total number of bits sent
by Alice and Bob. We use a key result about SMP protocols due to Newman and Szegedy.

Theorem 2.5 ([NS96]). Let EQk : {0, 1}k×{0, 1}k → {0, 1} be the equality boolean function: EQk(x, y) =
1 if and only if x = y. The communication complexity of any private-coin SMP protocol for EQk is Ω(

√
k).

On computational uniformity. For the sake of notation and clarity, throughout this work we define all
algorithms and objects non-uniformly. Namely, we fix the relevant parameter (typically, the domain size
n := |Ωn|), and restrict ourselves to inputs with respect to this fixed size (e.g., distributions over domains of
size n). However, although our results are stated in terms of non-uniform algorithms, they can be extended to
the uniform setting in a straightforward manner.
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3 Testing distributions using non-interactive proofs of proximity

We define non-interactive proofs of proximity for properties of distributions, as well as their corresponding
complexity classes, and provide upper and lower bounds on their complexity. Specifically, we consider the
MA and NP analogues of distribution testing.

Definition 3.1 (MA distribution testers). An MA distribution tester for a property Π ⊆ ∆(Ωn) is a proba-
bilistic algorithm T for which the following two conditions hold.

1. Completeness: for every distribution D and proximity parameter ε with D ∈ Π, there exists a proof
string π ∈ {0, 1}∗ such that

Pr
[
TD(ε, π) = 1

]
≥ 2/3 .

2. Soundness: for every distribution D and proximity parameter ε with dTV (D,Π) ≥ ε, and for every
proof string π ∈ {0, 1}∗,

Pr
[
TD(ε, π) = 0

]
≥ 2/3 .

The sample complexity of T is the (worst case) number of samples it draws from the distribution, and the
proof complexity of T is the (worst case) length of the honest proof.

Definition 3.2 (NP distribution testers). An NP distribution tester is a deterministic MA distribution tester.

We denote by
MA-D

[
proof complexity: p

sample complexity: s

]
and NP-D

[
proof complexity: p

sample complexity: s

]
the classes of all properties that have MA and NP distribution testers (respectively) with proof complexity
p = p(n, ε) and sample complexity s = s(n, ε). The MA (resp., NP) complexity complexity of a MA (resp.,
NP) distribution tester is the sum of its proof and sample complexities, and lower bounds its time complexity.

We later show, in Section 4, that MA distribution testers can be derandomized into NP distribution
testers at the price of only a small increase in sample complexity, thereby showing that the power of these
two is roughly equivalent. (This stands in stark contrast to proofs of proximity for functions, for which
deterministic testers are extremely weak; see, e.g., [GR15].) Therefore, we henceforth present our results for
MA distribution testers, and note that these results qualitatively translate to NP distribution testers too.

We now proceed to present upper and lower bounds on the complexity of MA distribution testers.

Remark 3.3 (on access to the proof). Definition 3.1 and Definition 5.2 consider testers that receive explicit
access to the proof (i.e., must read the proof entirely); they are the natural analogue, in the setting of
distribution setting, of (functional) MA/NP proofs of proximity. One can also consider a modified definition
with testers that have random access to the proof, in analogy to probabilistically checkable proofs of proximity
[DR04; BGHSV06], in which case query complexity becomes a key additional efficiency measure. While we
find this latter notion natural and interesting, we do not study it in this work and leave it to future research.

3.1 Generic upper bound via a long proof

In the setting of functional proofs of proximity, if the tester has access to a proof of linear length, any property
can be trivially tested with sample complexity O(1/ε). Such a strong statement does not hold when testing
distributions: later (in Section 3.3) we show a property for which every MA distribution tester has sample
complexity Ω(

√
n/ε2) regardless of the length of the proof. Nevertheless, the next proposition shows that the

sample complexity of testing any property is bounded by the sample complexity of testing identity to a given
distribution, again provided that the tester has access to a “long” proof.
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Proposition 3.4. For every property Π ⊆ ∆(Ωn),

Π ∈MA-D
[

proof complexity: O(n log(n/ε))
sample complexity: IDε(Π)

]
,

where IDε(Π) := max {IDε(D)}D∈Π and IDε(D) is the sample complexity of testing identity to D with
respect to proximity parameter ε.

The above upper bound is generic: it does not rely on any structure of the property. Later (in Section 3.2),
we show how to leverage the structure of particular properties to obtain much stronger upper bounds.

Before proving Proposition 3.4, we remark that determining the exact value of IDε(D) is still a fun-
damental open problem in distribution testing. Nevertheless, good estimations of this quantity are known.
Informally, IDε(D) is bounded by the square root of the size of the ε-effective support of D, which is the
minimal number of supported elements that constitute a (1− ε)-fraction of the mass of D.2 For example, for
constant ε, the balanced binomial distribution on n elements is ε-effectively supported on O(

√
n) elements

(by a concentration of measure argument), and so IDε(D) = O(n1/4). In general, for any D ∈ ∆(Ωn) it
always holds that IDε(D) = O(

√
n/ε2) [VV17], which yields the following corollary.

Corollary 3.5. For every Π ⊆ ∆(Ωn), it holds that

Π ∈MA-D
[

proof complexity: O(n log(n/ε))
sample complexity: O(

√
n/ε2)

]
.

Proof of Proposition 3.4. To prove that D ∈ Π, the prover will send a description of D, leaving the MA
distribution tester with the task of testing identity to D. However, unlike testing Boolean functions or graphs,
in the setting of distribution testing the size of the description of D may be very large (even infinite). To
overcome this, the prover will in fact send a concise approximate description D′ of D, and the tester will use
a tolerant testing procedure, as it could be the case that D′ 6∈ Π even though D ∈ Π. Details follow.

Inspired by [Gol16], we use the notion of granular approximation. We say that a real function f : Ωn →
[0, 1] is m-granular if for every element α in the domain Ωn there exists an integer cα ∈ {0, 1, . . . ,m} such
that f(α) = cα/m. For every distribution D ∈ ∆(Ωn) and positive integer m there exists an m-granular real
function fD,m : Ωn → [0, 1] such that ‖D − fD,m‖1 ≤ n/m; for example, simply set fD,m(α) = cα/m for
the largest cα ∈ {0, 1, . . . ,m} such that cα/m ≤ D(α). We say that fD,m is an m-granular approximation
of D, and stress that it is not necessarily a distribution, because it could be that

∑
α∈Ωn

fD,m(α) 6= 1.
For every distributionD′ ∈ ∆(Ωn), let TD′ be a tester for identity toD′. Recall that the sample complexity

of TD′ , denoted IDε(D′), is bounded by O(
√
n/ε2). By applying Proposition 2.3, which states that any

O(s)-sample distribution tester (with constant soundness) is Ω(1/s)-tolerant, on TD′ we deduce that TD′ is
(cε2/

√
n)-tolerant for some real constant c > 0.

Consider the MA distribution tester that, given sample access to D ∈ ∆(Ωn) and given a proximity
parameter ε and a proof π ∈ {0, 1}∗ as input, works as follows. Letting m := n3/2

5cε2
, the tester checks that π

represents an m-granular real function f : Ωn → [0, 1]; finds a distribution D′ ∈ ∆(Ωn) that is closest to f in
`1-distance; checks that dTV (D′,Π) ≤ ε/2; and checks that TDD′(ε/3) accepts.

For completeness, let D ∈ Π, and set the proof π to equal its m-granular approximation fD,m. Observe
that dTV (D′,D) ≤ ‖D − fD,m‖1/2 ≤ cε2

10
√
n

(and in particular dTV (D′,Π) < ε/2). Therefore, by the

2More accurately, for every D ∈ ∆(Ωn) we have the following upper bounds: (1) IDε(D) = O(‖D−max−ε/16‖2/3) [VV17], where
‖ · ‖2/3 denotes the `2/3 quasi-norm, and D−max−ε/16 is the distribution obtained by removing the maximal element of D as well as
removing a maximal set of elements of total mass ε/16; and (2) IDε(D) = O(κ−1

D (1− cε)) [BCG17], where c > 0 is a constant,
and κD is the K-functional between `1 and `2 with respect to the distribution D.
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tolerance of TD′ , the MA distribution tester accepts with probability 2/3. Observe that the proof complexity
can be bounded by log(mn) = O(n log(n/ε)).

For soundness, let D ∈ ∆(Ωn) with dTV (D,Π) > ε and let π ∈ {0, 1}∗ be any proof. Assume
that π represents an m-granular real function f : Ωn → [0, 1] (else the tester rejects), and denote by D′ the
distribution closest to it. If dTV (D,D′) ≤ ε/3, then dTV (D′,Π) ≥ 2ε/3, and so the tester rejects. Otherwise,
dTV (D,D′) > ε/3, and so TDD′(ε/3) rejects with probability at least 2/3.

We conclude this subsection by proving the intuition that there is nothing to gain by sending a proof that
is longer than a description of the input distribution.

Observation 3.6. For every p, s ≥ 0, MA-D
[

proof complexity: p
sample complexity: s

]
⊆MA-D

[
proof complexity: log(|Π|)

sample complexity: s

]
.

Proof. Given a property Π ⊆ ∆(Ωn) and a sub-property Π′ ⊆ Π, a (Π′,Π)-partial distribution tester with
proximity parameter ε is a probabilistic algorithm that accepts distributions in the sub-property Π′ and rejects
distributions that are ε-far from the property Π, both with probability at least 2/3. (This definition is the
natural analogue for distribution testing of a definition for functional property testing given in [FGL14].)

Let T be an MA distribution tester for Π with proof complexity p and sample complexity s. Observe
that T induces a cover of Π by sub-properties Π1, . . . ,Π2p ⊆ Π such that the following condition holds: for
every i ∈ [2p] there exists a (Πi,Π)-partial distribution tester Ti with sample complexity s.

Consider the MA distribution tester T ′ that receives the description of a distribution D̃ as proof (pur-
portedly the input distribution D) that works as follows: if D̃ 6∈ Π, reject; otherwise, select a sub-property
Πi that contains D̃ and invoke Ti, accepting if and only if Ti does. The completeness and soundness of T ′

immediately follow from those of Ti. The proof complexity is log(|Π|) since D̃ is purportedly in Π, and the
sample complexity is s because the only samples are those from invoking Ti.

3.2 Stronger upper bounds for specific properties

The previous subsection shows that, for any property Π, the sample complexity of testing proximity of a
distribution D to Π is bounded from above by the sample complexity of testing identity to D. We now show
that there exist some properties Π for which the sample complexity is much less.

Consider the property of support size: given a positive integer k, the property SuppSize≤k consists of
all distributions D ∈ ∆(Ωn) that are supported on at most k elements. Determining the size of the support
of a distribution is a fundamental problem, and indeed several variants of the problem are studied in the
literature (e.g., [BDKR05; RRSS09; Val11]). Most relevant to us, Valiant and Valiant [VV11] showed that
approximating the size of the support ofD within a constant factor requires Ω(n/ log n) samples. In particular,
every tester for SuppSize≤n/2, with respect to proximity parameter ε < 1/3, requires Ω(n/ log n) samples.

Our Proposition 3.4 already implies a tester for support size with sample complexity that is merely
O(
√
n/ε2), provided that the tester also has access to a proof of length O(n log(n/ε)). However, for the case

of support size, we can do even better.

Claim 3.7. SuppSize≤n/2 ∈MA-D
[

proof complexity: O(n log(n))
sample complexity: O(1/ε)

]
.

Proof. Consider the simple MA distribution tester that works as follows: interpret the proof as a set of at
most n/2 elements in the domain Ωn, draw O(1/ε) samples from D, and reject only if any of the drawn
samples does not appear in the set. Completeness follows by considering the proof that contains the elements
on which D is supported; note that there are at most n/2 such elements, and so the proof complexity is
O(n log n). Soundness follows by observing that dTV

(
D,SuppSize≤n/2

)
≥ ε implies that for every subset
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S ⊆ Ωn of cardinality n/2 it holds that D(S) ≤ 1− ε; thus, regardless of which elements the proof specifies,
each sample drawn from D does not appear in the proof with probability at least ε.

Next, we show that for some problems it is possible to trade off proof complexity and sample complexity.
To simplify the presentation of the next result, we restrict our attention to m-granular distributions, for some
m = Ω(1/n), and fix the domain to [n]. Recall that a distribution D ∈ ∆([n]) is m-granular if for every
element i ∈ [n] there exists an integer ci ∈ {0, 1, . . . ,m} such that D(i) = ci/m. We denote the set of all
m-granular distributions over [n] by ∆m([n]) (it is a subset of ∆([n])).

Two elements i, j ∈ [n] are adjacent if |i− j| = 1. We say that an element i ∈ {2, . . . , n− 1} is isolated
in a distribution D ∈ ∆m([n]) if D is not supported on i’s adjacent elements. We denote the set of isolated
elements of a distribution D ∈ ∆m([n]) by

Isolated(D) :=
{
i ∈ {2, . . . , n− 1} | (i−1) 6∈supp(D)

(i+1)6∈supp(D)

}
.

Consider the gap isolated elements problem, which is the problem of deciding whether a distribution
has a large number of isolated elements, or only a small one. More accurately, for every n/2 ≥ a ≥ b ≥ 0
we denote by GISa,b the gap problem in which a tester, given sample access to D ∈ ∆m([n]), must accept if
|Isolated(D)| ≥ a and must reject if |Isolated(D)| ≤ b. We prove that the gap isolated elements problem is
hard for BPP distribution testers, and yet smoothly becomes easier for MA distribution testers via increasingly
large, but still sublinear, proofs.

Theorem 3.8. Let n/10 ≥ a ≥ b ≥ 0.

1. For every β ∈ [0, 1] such that a ≥ nβ and b ≤ nβ/2, it holds that GISa,b ∈MA-D
[

proof complexity: Õ(nβ)

sample complexity: O(n1−β)

]
.

2. Every BPP distribution tester for GISa,b has sample complexity Ω̃(
√
n).

While the upper bounds in Theorem 3.8 depend on the parameterization of the problem, the tradeoff can
hold simultaneously for a single (parameterization of the) problem. For example, consider GIS := GISn/10,0,
which requires Ω̃(

√
n) samples to test without a proof. For it, we can reduce the sample complexity by using

increasing proof complexity: for instance, we can obtain sample complexity O(n0.49) using a proof of length
Õ(n0.51), or sample complexity O(n0.01) using a proof of length Õ(n0.99).

Proof of Item 1 in Theorem 3.8. Suppose that there exists β ∈ [0, 1] such that a ≥ nβ and b ≤ nβ/2. We now
describe an MA distribution tester T for GISa,b. The honest proof specifies nβ isolated elements of the input
distribution D, i.e., an arbitrary subset S ⊆ Isolated(D) of size nβ . Such a proof has length O(nβ · log n).

For a set S ⊆ {2, . . . , n− 1}, we denote the elements of [n] that are adjacent to the elements of S by
Adj(S) = {j ∈ {2, . . . , n− 1} | ∃i ∈ S such that j ∈ {i− 1, i+ 1}}. Given a purported proof S̃, the tester
draws s samples from D (with s to be determined later), then rejects if one of the samples lies in Adj(S̃) and
otherwise accepts.

If |Isolated(D)| ≥ nβ , the prover can specify all the required isolated elements, in which case TD(S)
accepts with probability one, regardless of the number of samples it draws. If instead |Isolated(D)| ≤ nβ/2,
then for every S̃ there exists B ⊆ Adj(S̃) of size at least nβ/2 such that D(i) 6= 0 for every i ∈ B. Recall
that TD(S̃) rejects if it draws any sample in Adj(S̃) (and in particular if it draws a sample from B). By the
Ω(1/n)-granularity of D, it holds that D(B) ≥ 1/n1−β , hence for sufficiently large s = O(nβ) the tester
TD(S̃) rejects with probability at least 2/3.
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Proof of Item 2 in Theorem 3.8. We use the SMP communication complexity method [BCG17]. Let T ′ be
a BPP distribution tester for GISa,b with sample complexity s. Assume without loss of generality that the
soundness error of T ′ is at most 1/6, at the cost of multiplicatively increasing the sample complexity by
a constant factor. We reduce from the EQk problem, for k = Θ(n), in the private-coin SMP model (see
definition in Section 2).

Let ECC: {0, 1}k → {0, 1}(n−1)/3 be a balanced error-correcting code of relative distance 1/3, as given
by Proposition 2.4. Fix the following “pivot” elements P := {3j − 1 | j ∈ [(n− 1)/3]}. Our reduction will
map (a) yes-instances of EQk to distributions wherein each pivot and its subsequent element are supported
(i.e., a distribution that alternates between a pair of supported elements and an unsupported element), and so
no element is isolated ; and (b) no-instances of EQk to distributions wherein for a constant fraction of the
pivots only one element is supported around the pivot, and so Ω(n) elements are isolated.

Given x ∈ {0, 1}k, Alice computes ECC(x) and sends to the Referee 3s independent samples uniformly
chosen from A :=

{
i+ ECC(x)(i+1)/3 | i ∈ P

}
. Similarly, given y ∈ {0, 1}k, Bob computes ECC(y) and

sends the Referee 3s independent samples uniformly chosen from B :=
{
i+ 1− ECC(y)(i+1)/3 | i ∈ P

}
.

Subsequently, the Referee generates a sequence of s independent samples from the mixed distribution
1
2Un(A) + 1

2Un(B), where Un(S) denotes the uniform distribution over S. Each sample is generated as
follows: with probability 1/2, use a fresh sample from Alice’s samples, and with probability 1/2, use a fresh
sample from Bob’s samples. Finally, the Referee then emulates an invocation of the tester T

1
2
Un(A)+ 1

2
Un(B)

on the samples it generated, and rules inversely (i.e., accepts if and only if T rejects). By Markov’s inequality,
the above reduction allows the Referee to generate, with probability at least 1− s

6s ≥
5
6 , at least s independent

samples from the (1/n)-granular distribution 1
2Un(A) + 1

2Un(B).
For completeness, suppose that x = y, and so ECC(x) = ECC(y). It follows that A and B form

a partition of P ∪ (P + 1) (where P + 1 = {i+ 1 | i ∈ P}), and since |A| = |B|, we have that each
element in {2, . . . , n− 1} has at least one adjacent element on which 1

2Un(A) + 1
2Un(B) is supported, and

so
∣∣Isolated(1

2Un(A) + 1
2Un(B))

∣∣ = 0. Therefore, T
1
2
Un(A)+ 1

2
Un(B) rejects with probability at least 5/6, and

in turn the Referee accepts with probability at least (5/6)2 > 2/3.
For soundness, suppose that x 6= y, and so δ

(
ECC(x),ECC(y)

)
≥ 1/3. Observe that for every

j ∈ [(n− 1)/3] such that ECC(x)i 6= ECC(y)i it holds that either (3j − 1) 6∈ A∩B or 3j 6∈ A∩B. Since,
by construction, (3j − 2), (3j + 1) 6∈ A ∩B, it follows that Isolated(1

2Un(A) + 1
2Un(B)) > n/10, and so

T
1
2
Un(A)+ 1

2
Un(B) accepts with probability at least 5/6. Hence, the Referee rejects with probability at least

(5/6)2 > 2/3.
Concluding, we constructed a private-coin SMP protocol for EQk with communication complexity

6s · log n. By Theorem 2.5, the communication complexity of any protocol for EQk is Ω(
√
k), hence plugging

in k = Θ(n) yields the claim.

Theorem 3.8 shows a promise problem for which there exists a multiplicative tradeoff between proof and
sample complexity. While similar tradeoffs naturally occur for problems in several MA proof systems,3 it
appears to be more difficult to obtain them in the setting of distribution testing. In particular, we are not aware
of non-trivial tradeoffs for non-promise problems (that is, where the input distribution is not assumed to have
any particular structure), nor of such in which the proof complexity is smaller than the sample complexity.
Obtaining multiplicative tradeoffs is, however, much easier when interaction is allowed. We discuss this in
detail in Section 5. However, as we will show in Section 7, if we allow private-coin interaction, obtaining
tradeoffs becomes a significantly easier task.

3For example, the disjointness problem in MA communication complexity [AW09], frequency moments in MA/AM streaming
algorithms [CCMT14; GR15], and context-free languages in MA proofs of proximity [GGK15].
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In Section 3.3 we discuss the tightness of the upper bounds given in Claim 3.7 and Theorem 3.8.

3.3 Two lower bounds

We prove two lower bounds for MA distribution testers: (a) a lower bound that shows that, for every property,
its MA complexity can at best be (roughly) quadratically better than its BPP complexity; (b) a lower bound
that shows that, for some property, MA distribution testers can do no better than BPP (i.e., regular) distribution
testers. We now state and prove each of these in turn.

Claim 3.9. For every property Π ⊆ ∆(Ωn) and p, s, s′ ≥ 0,

if Π ∈ BPP-D [s′] and Π ∈MA-D
[

proof complexity: p
sample complexity: s

]
, then p · s = Ω(s′).

Proof. We show a transformation from MA distribution testers to BPP distribution testers. Let T be an MA
distribution tester for Π with proof complexity p and sample complexity s. We construct a BPP distribution
tester TBPP that emulates T with sample complexity O(p · s).

First, we amplify the soundness of T as follows. Consider the MA distribution tester T ′ that runs t
invocations of T on the same proof and rules by majority vote, for t to be determined later. The soundness
error of T ′ is at most exp(−t). The sample complexity is t · s, while the proof complexity is still p.

Next, let TBPP be the BPP distribution tester that works as follows: draw samples q1, . . . , qt·s from the
given distribution D ∈ ∆(Ωn); enumerate all possible proofs π ∈ {0, 1}p and invoke T ′ with respect to each
such proof π, using the same samples q1, . . . , qt·s for all invocations; finally, accept if and only if at least one
of the invocations did.

The completeness of TBPP follows by construction. For soundness, assume dTV (D,Π) > ε, and note
that every π ∈ {0, 1}p is accepted by T ′ with probability at most exp(−t). Hence, choosing a sufficiently
large t = O(p) and using a union bound, TBPP rejects with probability at least 2/3.

We stress that the proof of Claim 3.9 shows that any MA distribution tester with proof complexity p and
sample complexity s can be transformed into a BPP distribution tester with sample complexity O(p · s).

The key feature of MA distribution testers that enables the efficient emulation in the proof of Claim 3.9 is
that the access to the input distribution is independent of the proof, and so the same samples can be re-used
across all possible proofs. In contrast, for functional MA proofs of proximity, efficient emulation is possible
only if the tester queries its input function in a proof-oblivious way (see [GR17b]). In Section 6.2, we use
additional features of the distribution testing framework to strengthen the lower bound of Claim 3.9 to work
for interactive distribution testers.

Claim 3.9 tells us that the upper bound on the MA complexity of SuppSize≤n/2 in Claim 3.7 is tight up to
logarithmic factors. In contrast, Theorem 3.8 leaves a gap for GIS, giving a lower bound with p · s = Ω̃(

√
n)

and an upper bound with p · s = Õ(n). We leave the problem of closing this gap as an open problem.
Next, we show that there exists a property that is maximally hard for MA distribution testers, in the sense

that no MA distribution tester, regardless of its proof complexity, can test this property with fewer samples
than a BPP (i.e., regular) distribution tester. Specifically, consider the problem of testing uniformity, which is
the problem of testing whether a distribution D ∈ ∆(Ωn) is identical to the uniform distribution over Ωn.

Observation 3.10 (MA lower bound for uniformity). Every MA distribution tester for uniformity has sample
complexity Ω(

√
n/ε2), regardless of its proof complexity.
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Proof. Let T be an MA distribution tester for uniformity with proof complexity p and sample complexity s.
Let π be a purported proof string, and recall that, in general, by Definition 3.1 the proof π may be a function
of the input distribution D ∈ ∆(Ωn), which is known to the prover but unknown to the tester.

However, since the uniformity property is a singleton (contains only one distribution), the proof π is
determined by the single distribution in Π, which is known to the tester. Hence, if such proof string exists,
then the T has all the information required to generate it, and so T can be emulated by a BPP distribution
tester without incurring any blowup in sample complexity, regardless of the length of π. Since uniformity
requires Ω(

√
n/ε2) samples to test (by BPP distribution testers) [Pan08], this lower bound also holds for the

MA distribution tester T .

Remark 3.11. The lower bound established in Observation 3.10 only relies on the uniformity property being
a singleton. Indeed, the duality between MA distribution testers and (collections of) partial distribution testers
makes it transparent that all an MA proof can do is “zoom in” on the input, i.e., point the tester to a subset of
the property wherein the input lies.

This suggests a methodology for identifying properties for which verification is no easier than testing.
Namely, for any property Π, if there exists a single instance D∗ ∈ Π for which the task of deciding whether
an unknown distribution is close to D∗ or far from Π requires s samples, then every MA distribution tester
for Π, regardless of the length of its proof, must also use s samples.
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4 A derandomization of MA distribution testers

The following theorem shows that MA distribution testers and NP distribution testers are roughly equivalent
in power, despite the latter being deterministic, and thus syntactically weaker. This situation stands in stark
contrast to the situation for (functional) proofs of proximity; see, e.g., [GR15].

Theorem 4.1. For every p, s ≥ 0,

MA-D
[

proof complexity: p
sample complexity: s

]
⊆ NP-D

[
proof complexity: p

sample complexity: O
(

max
{
s, log(n)+log log(1/ε)

ε

})].
A notable special case is when p = 0, which corresponds to comparing the power of standard distribution

testers and deterministic distribution testers. We remark that a direct proof of this special case is sketched in
[Gol17, Chapter 11].

Corollary 4.2. For every s ≥ 0, BPP-D [s] ⊆ P-D
[
O
(

max
{
s, log(n)+log log(1/ε)

ε

})]
.

The high-level idea behind the theorem is that, while an NP distribution tester is deterministic, it receives
random samples from a distribution, which it can use to extract randomness and thereby simulate an MA
distribution tester. (And if the distribution does not have sufficient entropy, it can be trivially tested.) A
key step for this idea to work is to show that it suffices to extract a small number of uniformly random bits,
roughly logarithmic in the domain size, as captured in the following lemma.

Lemma 4.3 (randomness reduction). For every p, s ≥ 0 and property Π ∈ ∆(Ωn), if Π has an MA
distribution tester with proof complexity p and sample complexity s, then it also has an MA distribution tester
with proof complexity p, sample complexity O(s), and randomness complexity O(log(n) + log log(1/ε)).

The proof of Lemma 4.3 follows the randomness reduction approach of Goldreich and Sheffet [GS10],
but our different setting requires several new ideas. In particular, our model involves testers that access a
proof and two sources of randomness and, most significantly, the argument in [GS10] crucially relies on a
bound on the number of inputs that the tester can receive, but no such bound exists in our setting. We prove
our randomness reduction lemma in Section 4.1, while for now, we provide the proof of the theorem.

Proof of Theorem 4.1. Consider any property Π in MA-D
[

proof complexity: p
sample complexity: s

]
, and let T be an MA dis-

tribution tester for Π with these complexities. Without loss of generality we can assume that T uses only
r = O(log(n) + log log(1/ε)) random bits (via Lemma 4.3) and that the soundness error is 1/10 (via
soundness amplification). In the following, for every α ∈ Ωn, we denote by Cα ∈ ∆(Ωn) the “constant”
distribution that is supported only on the singleton {α}. We construct an NP distribution tester T ′ as follows.

Construction 4.4 (derandomized tester). The NP distribution tester T ′ receives as input a proximity parame-
ter ε and proof string π and has sample access to a distribution D ∈ ∆(Ωn), and works as follows.

1. Draw samples. Draw s′ samples q1, . . . , qs′ ∼ D, for s′ := max {s, `} and ` := 12r/ε.

2. Low-entropy test. If a (1 − ε)-fraction of the samples fall on the same element α ∈ Ωn, then accept if
dTV (Cα,Π) ≤ ε/3 and reject if dTV (Cα,Π) > ε/3. Otherwise, proceed to the next step.

3. Deterministic extraction. Initialize ρ to be the empty string. For every i ∈ [`/2], if q2i−1 < q2i, then
append 0 to ρ; if q2i−1 > q2i, then append 1 to ρ; if q2i−1 = q2i, then do nothing. Reject if |ρ| < r, and
otherwise continue to the next step.
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4. Run the MA distribution tester. Run TD(ε, π) with randomness ρ, answering the i-th oracle call with qi.

The deterministic extraction procedure in Construction 4.4 can be thought of as generalizing a seedless
extractor of Von Neumann [Von51]. We analyze this extractor in the following claim, which states that if D
is far from being concentrated on a single element, then one can efficiently extract random bits from it.

Claim 4.5. If D ∈ ∆(Ωn) is such that dTV (D, Cα) > ε/3 for all α ∈ Ωn and ρ is generated as in Item 3 of
Construction 4.4, then ρ is a uniformly random binary string and Pr[|ρ| ≥ r] = 1− 2−Ω(r).

Proof. Since q1, . . . , q` are independently distributed, Pr[q2i−1 < q2i] = Pr[q2i−1 > q2i] for every i ∈ [`/2].
Hence, each bit appended to ρ is uniformly random, and we are left to lower bound the number of sample
pairs that are not discarded (i.e., such that q2i−1 6= q2i). The hypothesis that dTV (D, Cα) > ε/3 for all
α ∈ Ωn implies that ‖D‖∞ < 1− ε/3. For every i ∈ [`/2], denote by Ei the event that q2i−1 6= q2i. Then

E[|ρ|] = E

 ∑
i∈[`/2]

Ei

 =
∑
i∈[`/2]

Pr[q2i−1 6= q2i] =
`

2

(
1− ‖D‖22

)
≥ `

2
(1− ‖D‖∞) >

`ε

6
,

where the penultimate inequality holds since ‖D‖22 ≤ ‖D‖∞ · ‖D‖1. By the multiplicative Chernoff bound,
|ρ| < `ε/12 with probability at most exp (−`ε/48). The claim follows by recalling that r = `ε/12.

We now argue the properties of the NP distribution tester T ′ from Theorem 4.1.
For completeness, suppose that D ∈ Π. We distinguish between two cases.

• There exists α ∈ Ωn such that dTV (D, Cα) ≤ ε/3. Then D(α) ≥ 1 − ε/3 and dTV (Cα,Π) ≤ ε/3. By
Markov’s inequality, with probability at least 2/3 (over the samples) it holds that a (1− ε)-fraction of the
samples equals α, in which case T ′ accepts (in Item 2).

• For all α ∈ Ωn it holds that dTV (D, Cα) > ε/3. By Claim 4.5, T ′ generates a uniformly random string ρ
(in Item 3), and with probability 1− 2−Ω(r) it holds that |ρ| ≥ r. In this case, T ′ successfully emulates T ,
which will accept with probability 9/10, and so the total acceptance probability is (1−2−Ω(r))·9/10 ≥ 2/3.

For soundness, suppose that dTV (D,Π) > ε. Again we distinguish between two cases.

• There exists α ∈ Ωn such that dTV (D, Cα) ≤ ε/3. Then with probability at least 2/3 it holds that a
(1− ε)-fraction of the samples equals α. By the triangle inequality, dTV (Cα,Π) > 2ε/3, and so T ′ rejects.

• For all α ∈ Ωn it holds that dTV (D, Cα) > ε/3. As before, Claim 4.5 states that with probability 1−2−Ω(r)

the MA distribution tester T ′ successfully emulates T , which rejects with probability 9/10.

4.1 Proof of the randomness reduction lemma

We prove Lemma 4.3 by showing that the randomness complexity of every MA distribution tester can be
made logarithmic in the domain size, at the cost of only a constant blowup in sample complexity.

Below we consider MA distribution testers that work under the promise that their inputs lie in a subset U
of ∆(Ωn). We refer to such a tester as an MA distribution tester for property Π of distributions in U ⊆ ∆(Ωn),
and stress that it is only required to accept distributions in U ∩Π and reject those in U that are far from Π.

We begin with the following proposition, which shows that the randomness complexity of MA distribution
testers can be bounded by the total number of possible distributions that they may test.
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Proposition 4.6. For every p, s ≥ 0 and Π ⊆ U ⊆ ∆(Ωn), if there exists an MA distribution tester for
property Π of distributions in U ⊆ ∆(Ωn) with proof complexity p and sample complexity s, then there
also exists an MA distribution tester for property Π of distributions in U ⊆ ∆(Ωn) with proof complexity p,
sample complexity O(s), and randomness complexity O(log log |U|).

Proof. Let T be an MA distribution tester for property Π of distributions in U ⊆ ∆(Ωn) with proof complexity
p, sample complexity s, and randomness complexity r. Consider an MA distribution tester T ′ for Π that
uniformly samples a string ρ from a multi-set S ⊆ {0, 1}r and emulates T using the randomness ρ; the
randomness complexity of T ′ is log |S|. We show, via the probabilistic method, that there exists a multi-set S
of sizeO(log |U|) for which T ′ errs with probability at most 4/10. The proposition then follows by soundness
error reduction via O(1) repetitions.

Given a proximity parameter ε, let A be a 2p × 2r × ns matrix such that the entry A(ε, π, ρ, ~q) is the
decision bit of the MA distribution tester T , when given the proximity parameter ε, proof π ∈ {0, 1}p,
random string ρ ∈ {0, 1}r, and samples ~q = (q1, . . . , qs) ∈ (Ωn)s. For every D ∈ U and π ∈ {0, 1}p, let
µD,π : {0, 1}r → [0, 1] be the measure given by

µD,π(ρ) :=
∑

~q∈(Ωn)s

A(ε, π, ρ, ~q) · Ds(~q) .

Let S be a multi-set of uniform samples drawn from {0, 1}r, and fix distribution D and proof string π.
By the Chernoff bound,

Pr
S

∣∣∣∣∣∣
∑
ρ∈S

µD,π(ρ)

|S|
− Eρ←S [µD,π(ρ)]

∣∣∣∣∣∣ > 1

100

 < 2−Ω(|S|) .

By the completeness of T , for every distribution D ∈ Π there exists a proof string π ∈ {0, 1}p such that
Eρ[µD,π(ρ)] ≥ 2/3; by the soundness of T , for every distribution D ∈ U such that dTV (D,Π) ≥ ε and for
every proof π ∈ {0, 1}p it holds that Eρ[µD,π(ρ)] ≤ 1/3. Furthermore, by construction, the probability that
T ′ accepts a distribution D ∈ U and proof π ∈ {0, 1}p is

∑
ρ∈S

µD,π(ρ)
|S| .

Thus, by setting |S| := O(log(|U|) + p) and applying the union bound, we obtain that there exists a
multi-set S such that: (i) for every D ∈ Π there exists a proof π ∈ {0, 1}p such that the tester T ′ accepts with
probability at least 2/3− 1/100; (ii) for every D ∈ U such that dTV (D,Π) ≥ ε and every π ∈ {0, 1}p, the
tester T ′ accepts with probability at most 2/3 + 1/100. Hence T ′ is an MA distribution tester for property Π
of distributions in U ⊆ ∆(Ωn).

Finally, Observation 3.6 states that the proof length p of any MA distribution tester can always be
made to satisfy p ≤ log(|Π|) ≤ log(|U|), and so the randomness complexity of T ′, which is log |S|, is
O(log log |U|).

We wish to use Proposition 4.6 to reduce the randomness complexity of an MA distribution tester.
However, the set ∆(Ωn) of all distributions is infinite (in fact, uncountable), and so in this case the bound
given by Proposition 4.6 is trivial. To overcome this, we show that it suffices to consider only MA distribution
testers that are promised to receive inputs from a small (finite) set of distributions.

In the following, the punctured γ-neighborhood of a distribution D ∈ ∆(Ωn) consists of all D′ ∈ ∆(Ωn)
such that D′ 6= D and dTV (D′,D) ≤ γ. The following procedure generates a discrete set of distributions
that, loosely speaking, well approximates the set of all distributions.
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Definition 4.7. Given γ ∈ (0, 1), a γ-sparsification of ∆(Ωn), denoted Sγ(Ωn), is a subset of ∆(Ωn) obtained
via the following procedure. First, let Sγ(Ωn) equal the set ∆(Ωn) of all distributions. Then, arbitrarily
choose two distributions D,D′ in Sγ(Ωn) that are γ-close in `1 distance, and remove from Sγ(Ωn) the
punctured γ-neighborhood of D (which, in particular, contains D′). If no such distributions exist (i.e., all
distributions in Sγ(Ωn) are pairwise γ-far in `1 distance), then stop.

The following claim shows a bound on the cardinality of a γ-sparsification of ∆(Ωn).

Claim 4.8. Given γ ∈ (0, 1) and Sγ(Ωn) as in Definition 4.7, |Sγ(Ωn)| = O(1/γn log(n)).

Proof. By construction, a γ-sparsification Sγ(Ωn) is an error-correcting code with relative distance γ. Hence,
the balls of radius γ/2 around the elements of Sγ(Ωn) are disjoint, and so the cardinality of Sγ(Ωn) is
upper bounded by the minimal number of balls of radius γ/2 required to cover ∆(Ωn). That is, by the
sphere-packing bound,

|Sγ(Ωn)| = O

(
Vol
(
∆(Ωn)

)
Vol
(
Balln(γ/2)

)) = O

 (1/n!)
πn/2

(n/2)! · (γ/2)n

 = O

(
1

γn log(n)

)
.

Above we relied on two facts: (a) the volume of an n-dimensional ball of radius r is Ω(π
n/2rn

(n/2)! ); (b) ∆(Ωn)

is isomorphic to the normal n-dimensional simplex (cf. [BV04]), whose volume is (1/n!).

Remark 4.9. The optimal cover of the probability simplex can be shown to require only O
(
1/γn−1

)
balls

[Rêg]. In our setting, however, the difference in parameters is negligible and so, for simplicity, Claim 4.8
gives parameters that correspond to any greedy cover.

We show that it suffices to consider properties of sparsified distributions (for which we can apply
Proposition 4.6). Specifically, the following proposition shows that every MA distribution tester can be
modified to exhibit a particular form of tolerant testability, which suffices for deriving MA distribution testers
for general distributions from ones for sparsified distributions.

Proposition 4.10. For every p, s ≥ 0 and Π ⊆ U ⊆ ∆(Ωn), if there exists an MA distribution tester T for
property Π of distributions in U ⊆ ∆(Ωn) with proof complexity p, sample complexity s, and randomness
complexity r, then there exists a tolerance parameter τ = Ω(1/s) and an MA distribution tester T̂ for
property Π of distributions in U ⊆ ∆(Ωn) with proof complexity p, sample complexity O(s), and randomness
complexity O(r) that satisfies the following (strengthened) completeness and soundness conditions.

1. Tolerant completeness: for every distribution D and proximity parameter ε with dTV (D,Π) ≤ τ , there
exists a proof string π ∈ {0, 1}∗ such that

Pr
[
T̂D(ε, π) = 1

]
≥ 2/3 .

2. Tolerant soundness: for every distribution D and proximity parameter ε with dTV (D,Πno,ε) ≤ τ , and
for every proof string π ∈ {0, 1}∗,

Pr
[
T̂D(ε, π) = 0

]
≥ 2/3 ,

where Πno,ε = {D ∈ U | dTV (D,Π) > ε}.
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Remark 4.11. Atypically, the tolerance obtained in Proposition 4.10 refers to both yes-instances as well as
no-instances. This is crucial in our setting, since we consider testers that are only guaranteed to correctly
decide inputs from a discrete set U ⊆ ∆(Ωn) of pairwise-far distributions, and we wish to extend these testers
to general distributions by assuring they decide each D ∈ ∆(Ωn) according to its nearest distribution in U ,
and so we need both tolerant completeness and soundness.

It is tempting to achieve the tolerant soundness condition by simply setting the proximity parameter to a
smaller value; however, since we are dealing with completely general properties, even a minor change in the
proximity parameter could incur a significant blowup in the complexity of the problem, and so it is not clear
how to avoid the tolerant soundness condition.

Proof of Proposition 4.10. Fix distributions D,D′ ∈ ∆(Ωn), a proximity paremeter ε, and proof π. On the
one hand, by definition,

dTV

(
TD(ε, π), TD

′
(ε, π)

)
=

∣∣∣∣∣ Pr
X∼TD(ε,π)

[X = 1]− Pr
X∼TD′ (ε,π)

[X = 1]

∣∣∣∣∣
=
∣∣∣Pr[TD(ε, π) = 1]− Pr[TD

′
(ε, π) = 1]

∣∣∣ .
On the other hand, by the data-processing inequality,

dTV

(
TD(ε, π), TD

′
(ε, π)

)
≤ dTV

(
Ds,D′s

)
≤ s · dTV

(
D,D′

)
.

Therefore, we have that∣∣∣Pr[TD(ε, π) = 1]− Pr[TD
′
(ε, π) = 1]

∣∣∣ ≤ s · dTV
(
D,D′

)
. (1)

For tolerant completeness, consider D ∈ ∆(Ωn) such that dTV (D,Π) < 1/200s, and let D′ ∈ Π be
such that dTV (D,D′) < 1/100s. By Eq. (1) and the completeness of T , it holds that D′ is accepted with
probability at least 6/10.

For tolerant soundness, recall that the set of no-instances of T is Πno,ε = {D ∈ U | dTV (D,Π) > ε}, and
consider D ∈ ∆(Ωn) such that dTV (D,Πno,ε) < 1/200s, and let D′ ∈ Πno such that dTV (D,D′) < 1/100s.
By Eq. (1) and the soundness of T , it holds that D′ is rejected with probability at least 6/10.

Therefore T satisfies the tolerant completeness and soundness conditions, albeit with a larger soundness
error. We obtain the desired MA distribution tester T̂ by applying standard soundness amplification, which
preserves the proof complexity, and only increases the sample and randomness complexity by a constant
factor.

In a brief digression, we remark that the form of tolerance obtained in Proposition 4.10 is strictly stronger
than the standard notion of tolerance, which considers only yes-instances. Hence, we immediately obtain the
following corollary.

Corollary 4.12. For every p, s ≥ 0 and property Π ∈ ∆(Ωn) with Π ∈MA-D
[

proof complexity: p
sample complexity: s

]
, there

exists an Ω(1/s)-tolerant MA distribution tester for Π with proof complexity p and sample complexity
O(s). In particular (considering p = 0), any distribution tester for Π with sample complexity s implies an
Ω(1/s)-tolerant distribution tester for Π with sample complexity O(s).

We are now ready to prove the randomness reduction lemma.

25



Proof of Lemma 4.3. Let p, s ≥ 0 and let Π ∈ ∆(Ωn) be a property that has an MA distribution tester T with
proof complexity p and sample complexity s. We show that the randomness complexity of T can be made
O(log(n) + log log(1/ε)) at the cost of only a constant blowup in sample complexity.

The idea is to sparsify the set of inputs that T is required to handle such that we can apply Proposition 4.6
to obtain an MA distribution tester T ′ with reduced randomness complexity. The problem, however, is that
the correctness of T ′ is only guaranteed for distributions in this sparsified set. To regain correctness over
all possible distributions, we apply Proposition 4.10 to obtain an MA distribution tester T ′′ with tolerant
completeness and soundness, and we show this suffices to assert T ′′ decides as the original tester T with high
probability. Details follow. guaranteed

For γ > 0 to be determined later, let U := Sγ(Ωn) be the γ-sparsification of ∆(Ωn) (see Definition 4.7).
Note that T is also an MA distribution tester for property Π of distributions in U ⊆ ∆(Ωn). By invoking
Proposition 4.6, we obtain an MA distribution tester T ′ for property Π of distributions in U ⊆ ∆(Ωn) with
proof complexity p, sample complexity O(s), and randomness complexity O(log log |U|). Then, by invoking
Proposition 4.10 we obtain an MA distribution tester T ′′ for property Π of distributions in U ⊆ ∆(Ωn), with
the same complexity bounds as T ′, that also satisfies the tolerant completeness and soundness conditions
defined in Proposition 4.10 with respect to tolerance parameter τ = Ω(1/s).

By Fact 2.2, we may assume that s = O(n/ε2), and so the tolerance parameter satisfies τ = Ω(ε2/n).
Hence, setting γ := τ/2 implies that T ′′ is in fact an MA distribution tester for Π even when given any
distribution in ∆(Ωn), as we now argue.

• If D ∈ Π (not necessarily in U), then by Definition 4.7 there exists D′ ∈ U such that dTV (D,D′) < τ/2.
Thus, by its τ -tolerant completeness, T ′′ accepts D with probability at least 2/3.

• IfD ∈ ∆(Ωn) satisfies dTV (D,Π) > ε, then by Definition 4.7 there existsD′ ∈ U such that dTV (D,D′) <
τ/2. Thus, by its τ -tolerant completeness, T ′′ rejects D with probability at least 2/3.

Finally, Claim 4.8 states that |U| = O
(
1/γn log(n)

)
, so the randomness complexity of T ′, and thus T ′′, is

O(log(n) + log log(1/ε)), as required.
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5 Testing distributions using interactive proofs of proximity

We define interactive proofs of proximity for properties of distributions, as well as their corresponding
complexity classes, and provide upper and lower bounds on their complexity. Specifically, we consider the IP
and AM analogues of distribution testing.

Definition 5.1 (IP distribution testers). An IP distribution tester for a property Π ⊆ ∆(Ωn) is a probabilistic
algorithm T that interactively exchanges messages with an omniscient prover such that at the end of the
interaction the following two conditions hold.

1. Completeness: for every distribution D and proximity parameter ε with D ∈ Π, there exists a prover
strategy P such that

Pr
[(
TD(ε), P

)
= 1
]
≥ 2/3 .

2. Soundness: for every distribution D and proximity parameter ε with dTV (D,Π) ≥ ε, and for every
prover strategy P̃ ,

Pr
[(
TD(ε), P̃

)
= 0
]
≥ 2/3 .

The sample complexity of T is the (worst case) number of samples it draws from the distribution, the
communication complexity of T is the (worst case) total number of bits exchanged between the parties, and
the round complexity of T is the (worst case) number of rounds of interaction, where each round consists of
a message from one party to the other and its reply.

Definition 5.2 (AM distribution testers). An AM distribution tester is a public-coin IP distribution tester,
that is, one in which every message from the tester to the prover consists of random and independent bits.
(We stress that in these public-coin protocols, the prover does not see the samples drawn by the tester.)

We denote by

IP-D
[

round complexity: r
comm. complexity: c
sample complexity: s

]
and AM-D

[
round complexity: r

comm. complexity: c
sample complexity: s

]
the classes of all properties that have IP and AM distribution testers (respectively) with round complexity
r = r(n, ε), communication complexity c = c(n, ε), and sample complexity s = s(n, ε). The IP (resp., AM)
complexity of a IP (resp., AM) distribution tester is the sum of its communication and sample complexities,
and lower bounds its time complexity.

In Section 6 we will show that IP distribution testers can be exponentially stronger than BPP distribution
testers, and in fact, exponentially stronger than AM distribution testers. Then, in Section 7, we will prove
tight bounds on AM distribution testers, showing that while weaker than their private-coin counterparts, AM
distribution testers can still be quite powerful.
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6 A strong separation between IP and AM distribution testers

Goldwasser and Sipser [GS86] proved that the expressive power of private-coin interactive proofs is essentially
equivalent to that of public-coin interactive proofs, despite the latter being syntactically weaker. Rothblum,
Vadhan, and Wigderson [RVW13] observed that [GS86]’s proof of this statement carries over to the setting
of functional interactive proofs of proximity (IPPs).4 We prove that, in stark contrast to these models, in
distribution testing even one round of private-coin interaction can be exponentially more powerful than
public-coin interaction, regardless of round complexity.

Theorem 6.1. There exists a property Π ⊆ ∆(Ωn) such that:

1. Π ∈ IP-D
[

round complexity: 1
comm. complexity: log(n)/ε
sample complexity: O(1/ε)

]
; yet

2. for every r, c, s ≥ 0 if Π ∈ AM-D
[

round complexity: r
comm. complexity: c
sample complexity: s

]
then c · s = Ω̃(

√
n).

The separation in Theorem 6.1 is essentially optimal in multiple aspects.

• IP and AM are equivalent when only one message is exchanged, so we cannot expect to improve the round
complexity in Item 1 from a full (two-message) round to a half (one-message) round.

• The sample complexity achieved in Item 1 is O(1/ε), which is typically the best that can be expected for
non-degenerate properties.

• The lower bound in Item 2 relies on a general lemma (see Lemma 6.6) showing that any AM distribution
tester (regardless of its round complexity) with communication complexity c and sample complexity s can
be emulated by a BPP distribution tester with sample complexity O(c · s).

We show the separation between IP and AM distribution testing with respect to a natural property, which
can be viewed as a non-promise variant of the gap isolated elements problem (see Section 3.2). The isolated
elements property, denoted ΠIsolated, consists of all distributions in which no two consecutive elements (under
an arbitrary ordering of the domain) are supported. For simplicity, we restrict our attention to distributions
over the domain [n], so that

ΠIsolated := {D ∈ ∆([n]) | ∀i ∈ [n] i 6∈ supp(D) or (i+ 1) 6∈ supp(D)} .

We prove the theorem’s upper bound (Item 1) in Section 6.1 and lower bound (Item 2) in Section 6.2.

6.1 Strong upper bound via private-coin interaction

The next lemma shows that the isolated elements property has a highly efficient IP distribution tester.

Lemma 6.2. There exists a IP distribution tester T for ΠIsolated with communication complexity log(n)/ε
and sample complexity O(1/ε). Also, T has 1-round and 1-sided error (accepts every D ∈ ΠIsolated with
probability 1).

4More accurately, every r-round IPP with communication complexity c ≥ log(n) and query complexity q implies, via [GS86]’s
transformation, a corresponding public-coin (r+ 2)-round IPP with communication complexity Õ(cr) and query complexity Õ(qr).
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Proof. Informally, the IP distribution tester T draws samples from the input distribution D and masks these
samples by randomly shifting them to their adjacent elements. The tester then sends the masked samples to
the prover and asks the prover to recover the original samples (prior to the shifts). The point is that if the
supported elements of D are indeed isolated, then the prover can always determine the original samples;
whereas if many supported elements are adjacent, the prover is forced to guess which samples were shifted
and which not, and will get caught with constant probability. The discussion below formalizes this intuition.

Construction 6.3. The IP distribution tester T receives as input a proximity parameter ε and has sample
access to a distribution D ∈ ∆([n]), then interacts with a prover (omniscient about D) as follows.

1. Tester: draw and perturb samples. Draw s samples q1, . . . , qs ∼ D, for s := O(1/ε); choose random
“shift” bits r ∈ {0, 1}s; and send the perturbed samples S := {qi + ri}i∈[s] to the prover.

2. Honest prover: un-perturb the samples. Initialize S′ to be the empty set; for every q ∈ S, check if D is
supported on q − 1 or q, and add the supported element to S′; send S′ to the tester.

3. Tester: check consistency. Accept if and only if S′ equals the set {q1, . . . , qs}.

The 1-round IP distribution tester T in Construction 6.3 uses s = O(1/ε) samples, and exchanges
s · log(n) bits in each of the two messages. We are left to argue the completeness and soundness of T .

• Completeness. Suppose that D ∈ ΠIsolated, and let q1, . . . , qs be the samples drawn from D by T . Since
D ∈ ΠIsolated, it holds that (qj + 1) 6∈ supp(D) for every j ∈ [s]. Hence, for every q ∈ S there exists a
unique element from {q − 1, q} in supp(D), and so the prover can determine and send the set {q1, . . . , qs},
in which case T accepts.

• Soundness. Suppose that dTV (D,ΠIsolated) > ε. This means that there exists a set B of non-isolated
elements of mass that is proportional to ε; more accurately, there exists B ⊆ [n− 1] such that:

1. for every j ∈ B it holds that D(j) > 0 and D(j + 1) > 0; and
2. for every f : B → {0, 1} and Bf := {j + f(j) | j ∈ B} it holds that D(Bf ) = Ω(ε).

Define A := {aj}j∈[n], where aj denotes the answer of the prover to a (possibly) perturbed sample j.
We can assume without loss of generality that A = Bf for some f : B → {0, 1} (i.e., the prover either
specifies elements from S or S − 1 = {j − 1 | j ∈ S}), as otherwise the tester can immediately reject.
Define C := {j + 1− f(j) | j ∈ B}, and observe that Item 2 implies that D(C) = Ω(ε). Therefore,

Pr
[(
TD(ε), P

)
= 0
]

= Pr
S

[S ∩ C 6= φ] ≥
∑
j∈S

Pr
q∼D

r∈{0,1}

[(q + r) ∈ C] = s · Ω(ε) .

Hence, for sufficiently large s = O(1/ε), the tester T rejects with probability at least 2/3.

6.2 Generic lower bound on public-coin interaction

The next lemma shows the AM distribution testing lower bound (Item 2) of Theorem 6.1, with respect to the
isolated elements property.

Lemma 6.4. For every r ≥ 1, any r-round AM distribution tester for ΠIsolated with communication complexity
c and sample complexity s satisfies c · s = Ω̃(

√
n).
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We prove Lemma 6.4 in two steps. First, in Proposition 6.5 we show a lower bound on the sample
complexity of the isolated elements property by any BPP distribution tester. Second, in Lemma 6.6 we show
that any BPP distribution testing lower bound (for any property) can be “lifted” to AM distribution testing.
Combining these two steps completes the proof.

Proposition 6.5. Any BPP distribution tester for ΠIsolated, with respect to proximity parameter ε ≤ 1/10,
has sample complexity Ω̃(

√
n).

The proof of Proposition 6.5 is by reduction from communication complexity and is similar to the proof
of the lower bound in Theorem 3.8, and so we defer it to Appendix A (and discuss there differences between
the two proofs). Next, we build on Proposition 6.5 to derive a lower bound on AM distribution testers.

A natural approach to derive lower bounds on the complexity of interactive AM proofs of proximity is
to first prove a lower bound for non-interactive proofs of proximity and then iteratively apply the round-
reduction transformation of Babai and Moran [BM88], until all interaction is eliminated; for example, this is
the approach taken in [RVW13; GR17a]. While indeed it is not hard to verify that such an approach extends
to the setting of distribution testing, it can only imply, at best, a lower bound of c · s = Ω((

√
n)1/r) for every

r-round AM distribution tester for ΠIsolated with communication complexity c and sample complexity s.
Instead, we show that a much stronger statement holds in the setting of public-coin proof systems for

distribution testing. Namely, the next lemma, which can be viewed as a strict generalization of Claim 3.9,
shows that in the setting of distribution testing the AM complexity of any property can only be quadratically
smaller than its BPP complexity, regardless of the round complexity. This should be compared to the setting
of functional AM proofs of proximity, where a round-hierarchy theorem in [GR17a] shows a property with
AM complexity Θ(n1/r) for r-round proofs of proximity, where r is a constant.

Lemma 6.6. For every property Π ⊆ ∆(Ωn) and r, c, s, s′ ≥ 0,

if Π ∈ BPP-D [s′] and Π ∈ AM-D
[

round complexity: r
comm. complexity: c
sample complexity: s

]
, then c · s = Ω(s′).

Even though Lemma 6.6 shows that additional rounds of interaction cannot reduce the AM complexity
by much, it is still an open problem whether the foregoing lower bound is tight for all r, or whether there
exists an (albeit weak) round-hierarchy theorem for AM distribution testers.

We prove Lemma 6.6 by showing that any AM distribution tester with communication complexity c and
sample complexity s (regardless of round complexity) can be transformed into a BPP distribution tester with
sample complexity O(c · s).

Proof. Let T be an r-round AM distribution tester for Π with communication complexity c and sample
complexity s. We construct a BPP distribution tester T ′ for Π with sample complexity O(c · s), which
emulates T .

Recall that the interaction between the AM distribution tester and the prover is as follows. In each round
i ∈ [r], the tester samples fresh randomness ρi and sends this randomness to the prover. In return, the prover
replies with a message mi, which may arbitrarily depend on the input distribution D ∈ ∆(Ωn), proximity
parameter ε, and transcript of the interaction so far. After receiving the last message from the prover, the
tester draws samples from D and decides according to these samples, proximity parameter, and transcript of
the entire interaction.5

5Since AM distribution testers are protocols in which the tester’s messages are uniformly random and, in particular, do not depend
on the samples drawn from D, we can assume without loss of generality that the tester only draws samples after the interaction.
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The high-level idea is that since the samples drawn fromD are independent of the AM distribution tester’s
messages ρ1, . . . , ρr as well as from the prover’s messages m1, . . . ,mr, a BPP distribution tester can emulate
all possible interactions, while using the same samples for all invocations.

However, several difficulties arise when trying to naively implement the foregoing idea. For starters, since
we invoke the tester with respect to exponentially many transcripts, we need to reduce its soundness error
accordingly, but we cannot afford the increase in communication complexity incurred by simple repetition.
Moreover, even given sufficiently small soundness error, there may still exist specific transcripts in which
the prover fools the tester with probability 1. (Note that the tester cannot simply emulate the optimal prover,
because it is determined by a distribution from which the tester only has a small number of samples.)

To overcome these issues, we rely on a simple yet important observation: each AM distribution tester
induces a family of BPP distribution testers that are determined by the interaction. That is, since the transcript
of the interaction is a random variable that is independent of the samples drawn by the AM distribution tester,
the interaction phase can be viewed as a procedure that defines a BPP distribution tester that is invoked
after this phase. In particular, this allows us to perform soundness amplification solely on the induced BPP
distribution testers.

The procedure above implies that, with high probability over the random messages of the tester, each
of the corresponding induced BPP distribution testers decides correctly, with only an exponentially small
probability (over the samples) of error, without incurring any blowup in communication complexity.

Thus, we can invoke all the BPP distribution testers that are induced by all (exponentially many) possible
transcripts, while reusing the same samples for all invocations, such that with high probability no error will
occur in any of the invocations. Then, we can consider the interaction tree induced by these invocations and
decide whether there exists a prover strategy that would have been accepted with high probability by the AM
distribution tester.

We now make the foregoing discussion precise. Assume without loss of generality that the soundness
error of the tester T is 1/6, the first message is sent by the tester, the last message is sent by the prover, and
the tester makes its queries after the interaction ended. We use the following notation.

• In every round i ∈ [r], we denote the length of the tester’s message by `i, and the length of the prover’s
message by `′i. Hence

∑r
i=1(`i + `′i) = c.

• The (fresh) random string sent by the AM distribution tester T in round i ∈ [r] is ρi ∈ {0, 1}`i .

• The prover message sent by the AM distribution tester T in round i ∈ [r] is mi ∈ {0, 1}`
′
i .

• For a BPP distribution tester T0 with sample complexity s0, we denote by T0(ε; ~q) the output of T0 given
proximity parameter ε and samples ~q, so that Pr~q∼Ds0 [T0(ε; ~q) = 1] = Pr[TD0 (ε) = 1].

Observe that each AM distribution tester induces a family of BPP distribution testers determined by
the interaction. Namely, we can view each tester randomness (ρ1, . . . , ρr) ∈ {0, 1}`1+...+`r and prover
messages (m1, . . . ,mr) ∈ {0, 1}`

′
1+...+`′r as determining a BPP distribution tester that the AM distribution

tester invokes at the end of the interaction.
Consider the following BPP distribution tester for Π.

Construction 6.7. Let t := O(c). The BPP distribution tester T ′ has sample access to a distribution
D ∈ ∆(Ωn), receives as input a proximity parameter ε, and works as follows.

1. Draw samples. Draw samples q1, . . . , qs′ ∼ D and set ~q := (q1, . . . , qs′), with s′ := t · s.
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2. Enumerate over all induced testers. Enumerate over all BPP distribution testers induced by all prover
messages ~m ∈ {0, 1}`′1+...+`′r and randomness ~ρ ∈ {0, 1}`1+...+`r , and construct the tester T~ρ,~m.

3. Reduce soundness error. For every prover messages ~m and randomness ~ρ, let T ′~ρ,~m be the tester that runs
t invocations of T~ρ,~m and rules according to majority vote.

4. Construct the interaction tree. For all ~m and ~ρ, invoke T ′~ρ,~m with respect to proximity parameter ε and
samples ~q, and denote its output by wr(~ρ, ~m).

Then, for every i ∈ [r − 1], recursively compute wi : {0, 1}`1+...+`i+`
′
1+...+`′i−1 × {0, 1}`′i → [0, 1] such

that

wi(ρ1, . . . , ρi,m1, . . . ,mi−1;mi) := Eρi+1∈{0,1}`i+1

[
max

mi+1∈{0,1}
`′
i+1

wi(ρ1, . . . , ρi, ρi+1,m1, . . . ,mi;mi+1)

]
.

5. Decide. Uniformly choose tester randomness (ρ1, . . . , ρr) ∈ {0, 1}`1+...+`r , and for every i ∈ [r] let
m∗i ∈ {0, 1}`

′
i be the prover message at round i that maximizes the expected probability (over the tester’s

future messages) of the tester accepting with respect to tester messages ρ1, . . . , ρi and the samples ~ρ; that
is,

m∗i := arg max
mi∈{0,1}`

′
i

{wi(ρ1, . . . , ρi,m1, . . . ,mi−1;mi)} .

Accept if and only ∏
i∈[r]

wi(ρ1, . . . , ρi,m
∗
1, . . . ,m

∗
i−1;m∗i ) > 1/2 . (2)

The BPP distribution tester T ′ above uses s′ = t · s = O(c · s) samples. We are left to argue the
completeness and soundness of T ′. Below we use the fact that, by standard soundness-error reduction of the
AM distribution tester T (which has soundness error 1/6), each of the induced BPP distribution testers in
Step 3 succeeds with probability at least 1− 1

6t .

• Completeness. Suppose that D ∈ Π. By the completeness of T , for every i ∈ [r] and random tester
message ρi ∈ {0, 1}`i there exists a prover message mi ∈ {0, 1}`

′
i that in expectation (over the tester’s

future messages and random samples, given an optimal choice of future prover messages) will be accepted
with probability pi such that

∏
i∈[r] pi ≥ 5/6. More accurately, for every i ∈ [r − 1], recursively define

wTi : {0, 1}`1+...+`i+`
′
1+...+`′i−1 × {0, 1}`′i → [0, 1] such that

wTi (ρ1, . . . , ρi,m1, . . . ,mi−1;mi) := Eρi+1∈{0,1}`i+1

[
max

mi+1∈{0,1}
`′
i+1

wTi (ρ1, . . . , ρi, ρi+1,m1, . . . ,mi;mi+1)

]
,

where wTr (ρ1, . . . , ρr,m1, . . . ,mr) := ED
[
T ′Dρ1,...,ρr,m1,...,mr

(ε)
]
. Then, for every i ∈ [r] and random tester

message ρi ∈ {0, 1}`i there exists a prover messagemi ∈ {0, 1}`
′
i and pi := wTi (ρ1, . . . , ρi,m1, . . . ,mi−1;mi)

such that
∏
i∈[r] pi ≥ 5/6. We stress that the difference between wTi and wi (as defined in Step 4) is that

the latter is defined with respect to the particular samples ~q drawn by the tester T ′ in Step 1, whereas the
former is taken with expectation over randomly drawn samples from D.

Moreover, with probability at least 5/6 over the tester’s messages ρ1, . . . , ρr, the (amplified) BPP distri-
bution tester T ′ρ1,...,ρr,m1,...,mr

that is induced by such a transcript (with respect to the m1, . . . ,mr defined
above) accepts with probability at least 1− 1

6t over the samples it draws from D.
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Since there are at most 2`1+···+`r ≤ 2c such transcripts, by a union bound, for sufficiently large t = O(c) it
holds that with probability 5/6, the induced BPP distribution tester did not err on any of these invocations.

In particular, in this case with probability at least 5/6 over the tester’s random messages (ρ1, . . . , ρr), we
have that the prover messages m∗1, . . . ,m

∗
r defined in Step 5 satisfy Eq. (2). Therefore T ′ accepts with

probability at least 5/6 · 5/6 > 2/3.

• Soundness. Suppose that dTV (D,Π) ≥ ε. For every i ∈ [r], tester message ρi ∈ {0, 1}`i , and prover
message mi ∈ {0, 1}`

′
i , let qi be a lower bound on the expected probability (over the tester’s future

messages and random samples) that mi, given an optimal choice of future prover messages at each step
will lead to an induced BPP distribution tester T~ρ,~m that rejects with probability at least 5/6, so that the
amplified T ′~ρ,~m rejects with probability at least 1− 1

6t over the samples drawn from D. Specifically, set
qi := 1− wTi (ρ1, . . . , ρi,m1, . . . ,mi−1;mi), where wTi is defined as above.

By the soundness of T , it holds that
∏
i∈[r] qi ≥ 5/6. Since there are at most 2c transcripts, by a union

bound, for sufficiently large t = O(c) it holds that with probability 5/6 over the samples drawn from D,
all of the foregoing induced BPP distribution testers (which reject with probability at least 1− 1

6t each)
simultaneously reject with respect to the chosen samples ~q.

In particular, in this case with probability at least 5/6 over the tester’s messages (ρ1, . . . , ρr), we have
that the prover messages m∗1, . . . ,m

∗
r , defined in Step 5, must violate Eq. (2). Therefore T ′ rejects with

probability at least 5/6 · 5/6 > 2/3.
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7 Tight bounds for public-coin interaction

In Section 6 we showed that, in distribution testing, general interactive proofs can be exponentially more
powerful than BPP (standard) distribution testers, but public-coin interactive proofs offer quadratic savings at
best. Namely, Lemma 6.6 shows that if testing a property Π requires s′ samples for every BPP distribution
tester, then every AM distribution tester with communication complexity c and sample complexity s satisfies
c · s = Ω(s′), and thus its AM complexity (sum of communication and sample complexities) is Ω(

√
s′).

But is the foregoing lower bound tight? Namely, is there a property for which the AM complexity is
quadratically smaller than the BPP complexity? We answer this question in the affirmative, and with respect
to a natural promise problem that is well-studied in the distribution testing literature.

Theorem 7.1. There exists a property Π ⊆ U , for some U ⊆ ∆(Ωn), for which

1. there exists a 2-round AM distribution tester with AM complexity Õ(
√
n); and

2. for all k ≥ 0, every k-round AM distribution tester for Π must have AM complexity Ω̃(
√
n).

Below we restrict the discussion to m-granular distributions, for some m = Ω(1/n). Recall that the set
of all m-granular distributions over Ωn is denoted by ∆m(Ωn), and thus for every D ∈ ∆(Ωn) and every
i ∈ Ωn there exists an integer ci ∈ {0, 1, . . . ,m} such that D(i) = ci/m.

The gap support problem, denoted GapSuppα,β , considers distributions D in ∆m(Ωn) and requires a
tester to accept if |supp(D)| ≤ αn and reject if |supp(D)| ≥ βn. The GapSuppα,β problem and its closely
related variants are fundamental problems that have been studied extensively; see [BDKR05; RRSS09; Val11]
and references therein.

Valiant and Valiant [VV11] showed that, for all constant 0 ≤ α < β ≤ 1, every BPP distribution tester
for GapSuppα,β must have sample complexity Ω(n/ log n). Thus, by applying Lemma 6.6 to this problem,
we immediately obtain Item 2 of Theorem 7.1 (the lower bound). We are left to prove Item 2 of Theorem 7.1,
and do so by showing an upper bound (up to logarithmic factors) via only 2 rounds of interaction. In fact,
we prove a more general statement: we give an AM distribution tester for the gap support problem with a
multiplicative tradeoff between communication and sample complexity, even when α and β are sub-constant.

Proposition 7.2. For every 0 ≤ α < β ≤ 1 and δ ≤ 1/2,

GapSuppα,β ∈ AM-D

 round complexity: 2

comm. complexity: Õ
(

α
β−α ·n

1−δ
)

sample complexity: O
(

1
β−α ·n

δ
)
 .

Moreover, the above holds with respect to AM distribution testers with one-sided error.

Proposition 7.2 provides a communication-vs-sample complexity tradeoff for AM distribution testers for
GapSuppα,β , which in particular allows for the communication and sample complexity to be quadratically
smaller than the sample complexity of any BPP distribution tester for GapSuppα,β .

As our proof below shows, these tradeoffs are due to a natural divide-and-conquer approach that relies on
back-and-forth interaction. In contrast, for the same problem, we only know of a (non-interactive) MA distribu-
tion tester with linear proof complexity (implied by Claim 3.7), and it remains open whether a communication-
vs-sample complexity tradeoff can be obtained via MA distribution testers for the GapSuppα,β problem.

The discussion above begs the following question: are AM distribution testers indeed stronger than MA
distribution testers? Recall that while the definition of AM distribution testers is syntactically stronger than
that of MA distribution testers, Lemma 6.6 and Claim 3.9 imply that for any problem the AM and MA
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complexities are always within a quadratic factor of the BPP complexity, and so we cannot expect a strong
separation between these models.

Nonetheless, we view Proposition 7.2 as highlighting the GapSuppα,β problem as a potential candidate
for showing a quadratic separation between the power of AM distribution testers and MA distribution testers.

Proof of Proposition 7.2. We use divide and conquer: the problem is broken down into smaller sub-problems,
the tester samples a few sub-problems at random and solves them. The prover and tester agree in advance on
an arbitrary partition of the domain into subsets {Ij}j∈[`]. For a distribution D, the prover first sends to the
tester the alleged size Wj of D’s support on each Ij . This reduces the problem into ` instances of the gap
support problem, parameterized by {Wj}j∈[`], over smaller sub-domains of size n/` each.

The intuition is that if there exist βn elements on which D is supported but the prover only reports αn of
them (recall that α < β), then there must exist a significant number (i.e., (β−α)n) of elements in the support
of D that are not reported by the prover. Hence, the tester only needs to sample a O

(
1/(β − α)

)
-fraction of

these sub-problems to hit a sub-problem containing ≈ (β−α)n
` unspecified elements of the support.

However, the tester cannot choose to sample on the chosen Ij’s, since each sample from D is independent
over the whole domain. Hence, even though solving a smaller sub-problem requires less samples than solving
the original problem (Õ(n/`) samples rather than Õ(n)), hitting a particular Ij may require many samples
(potentially Ω(αn/`)), and so we did not necessarily reduce the sample complexity.

To overcome this, we use the help of the prover to ensure that solving a sub-problem will only require a
small number of samples from the sub-domain. To this end, the tester informs the prover of the sub-problems
it wishes to sample (by sending a uniform random string),6 and the prover responds by specifying the entire
support (purportedly of size αn/`) on the corresponding sub-domain. This reduces the task of testing the
support size on a sub-domain to simply hitting a single element not reported by the prover.

Finally, by the Ω(1/n)-granularity of the distribution, if≈ (β−α)n
` elements of the support are not reported

then the tester only needs to sample Ω
(

`
β−α

)
times to hit one of these elements with high probability.

Turning to the formal part of the proof, we construct tester according to the approach above as follows.

Construction 7.3. Set ` := nδ. The AM distribution tester T has sample access to a distributionD ∈ ∆m(Ωn)
and interacts with a prover (omniscient about D) as follows.

1. Honest prover: reduce problem to smaller sub-problems. Let I1, . . . , I` be an arbitrary predetermined
partition of Ωn into ` subsets of equal length. For every j ∈ [`], send Wj :=

∣∣supp(D)|Ij
∣∣ to the tester.

2. Tester: randomly choose sub-problems. Reject if
∑

j∈[`]Wj > αn. Otherwise, uniformly sample a subset
A ⊆ [`] of cardinality O

(
1/(β − α)

)
and send it to the prover.

3. Honest prover: send a long proof for the selected sub-problems. For every j ∈ A, send Sj := supp(D)|Ij
to the tester.

4. Tester: check consistency. Reject if there exists j ∈ A such that |Sj | 6= Wj . Otherwise, draw s samples
q1, . . . , qs ∼ D, for s := O

(
`/(β − α)

)
, and accept if and only if {q1, . . . , qs} ∩ (∪j∈AIj) ⊆ ∪j∈ASj .

The 2-round AM distribution tester T uses O
(
nδ/(β − α)

)
samples, and receives ` · log(n) bits in the

first message, sends O
(

log(n)/(β − α)
)

bits in the second message, and receives O
(
αn·log(n)
`(β−α)

)
bits in the

6It is tempting to let the tester first draw its samples, then simply choose the Ij’s in which the samples happened to fall in.
However, this would yield a protocol that is not public coin.
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last message. Since ` ≤ n/` ≤ n1−δ, the total communication complexity is dominated by the number of bits
in the last message. We are left to argue the completeness and soundness of T .

• Completeness. Suppose that |supp(D)| ≤ αn. This implies that
∑

j∈[`] |supp(D)|Ij | ≤ αn, so the prover
can specify for each subset the true number of elements on which D is supported, and later reveal the true
support for each subset; doing so makes the tester accept with probability 1.

• Soundness. Suppose that |supp(D)| ≥ βn. The prover first sends {Wj}j∈[`], which is allegedly the size of
the support on the predetermined subsets {Ij}j∈[`]. Assume that

∑
j∈[`]Wj ≤ αn (otherwise the tester

rejects), so there exist at least (β − α)n elements of the support of D that were not reported by the prover,
i.e.,

∑
j∈[`] supp(D)|Ij −Wj ≥ (β − α)n. By an averaging argument,

Pr
j∈[`]

[
supp(D)|Ij −Wj ≥

(β − α) · |Ij |
2

]
≥ β − α

2
. (3)

Next, the tester specifies A, which consists of randomly chosen indices of sub-problems it chose to solve.
For every j ∈ A, denote by E the event that the tester chose at least one subset Ij that contains (β−α)·n

2`
elements in the support of D, which were not specified by the prover. By Eq. (3), for sufficiently large
|A| = O

(
1

β−α

)
, it holds that Pr[E] ≥ 5/6.

Suppose that the event E occurred in the first round, and fix the corresponding j∗ such that Ij∗ contains
(β−α)·n

2` unspecified elements of the support. In the second round the prover then, in particular, specifies
Sj∗ , which allegedly consists of the entire support of D on the subset Ij∗ . Assume that |Sj∗ | = Wj∗

(otherwise the tester rejects), and let B be the set of elements in Ij∗ on which the prover claims that D is
not supported, i.e., B = Ij∗ \ Sj∗ . Since we assumed that the event E occurred, by the Ω(1/n)-granularity
of D, it holds that D(B) = Ω

(
(β − α)/`).

Finally, denote by E′ the event that one of the samples that the tester drew hit B, and observe that for
sufficiently large |A| = O

(
1

β−α

)
and s = O

(
n
` ·

1
β−α

)
, the probability that T rejects is lower bounded

by
Pr[E′] ≥ Pr[E′ ∩ E] = Pr[E′ | E] · Pr[E] ≥ 5/6 · 5/6 > 2/3 .
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A Proof of Proposition 6.5

Recall that the isolated elements property is

ΠIsolated := {D ∈ ∆([n]) | ∀i ∈ [n] i 6∈ supp(D) or (i+ 1) 6∈ supp(D)} .

We prove that any BPP distribution tester for ΠIsolated, with respect to proximity parameter ε ≤ 1/10, has
sample complexity Ω̃(

√
n).

Similarly to the proof of the lower bound in Theorem 3.8, we use the communication complexity method
[BCG17] and reduce from the equality problem in the private-coin SMP model (see definitions in Section 2).
However, the main difference is that:
• in the previous proof we showed that it is hard to distinguish between distributions that are not isolated

even on a single element and distributions that are isolated over a constant fraction of the domain;
• here we show that it is hard to distinguish between distributions that are isolated on the entire domain and

distributions that are not isolated on a constant fraction of the domain.
Note that the difference between these problems is not merely switching between yes and no instances.

Fix ε = 1/10. Let T be a BPP distribution tester for ΠIsolated with sample complexity s, with respect to
proximity parameter ε. Assume without loss of generality that the soundness error of T is at most 1/6, at the
cost of multiplicatively increasing the sample complexity by a constant.

We reduce from the EQk problem, for k = Θ(n), in the private-coin SMP model. Let ECC: {0, 1}k →
{0, 1}(n−1)/3 be a balanced error-correcting code of relative distance 1/3, as given by Proposition 2.4, and
let P := {3j − 1 | j ∈ [(n− 1)/3]}. Our reduction will map (a) yes-instances of EQk to distributions that
are uniform over |P | isolated elements; and (b) no-instances of EQk to distributions wherein for a constant
fraction of p ∈ P it holds that D(p) = Ω(1/n) and D(p+ 1) = Ω(1/n).

Given x ∈ {0, 1}k, Alice computes ECC(x) and sends to the Referee 3s independent samples uniformly
chosen from A :=

{
i+ ECC(x)(i+1)/3 | i ∈ P

}
. Similarly, given y ∈ {0, 1}k, Bob computes ECC(y) and

sends the Referee 3s independent samples uniformly chosen from B :=
{
i+ ECC(y)(i+1)/3 | i ∈ P

}
.

Subsequently, the Referee generates a sequence of s independent samples from the mixed distribution
1
2Un(A) + 1

2Un(B). Each sample is generated as follows: with probability 1/2, use a fresh sample from
Alice’s samples, and with probability 1/2, use a fresh sample from Bob’s samples. Finally, the Referee then
emulates an invocation of the tester T

1
2
Un(A)+ 1

2
Un(B) on the samples it generated, and accepts if and only if

T accepted. By Markov’s inequality, the above reduction allows the Referee to generate, with probability at
least 1− s

6s ≥
5
6 , at least s independent samples from 1

2Un(A) + 1
2Un(B).

For completeness, suppose that x = y, and so ECC(x) = ECC(y). It follows that A and B are
both uniform over P , hence 1

2Un(A) + 1
2Un(B) = Un(P ). Therefore, since the set P contains no two

consecutive elements, T
1
2
Un(A)+ 1

2
Un(B) accepts with probability at least 5/6, and in turn the Referee accepts

with probability at least (5/6)2 > 2/3.
For soundness, suppose that x 6= y, and so δ

(
ECC(x),ECC(y)

)
≥ 1/3. For every j ∈ [(n − 1)/3]

such that ECC(x)i 6= ECC(y)i it holds that one element in {3j − 1, 3j} is contained in A and the other is
contained in B. Hence A ∪B has at least (n− 1)/9 non-intersecting pairs of non-isolated elements. Further-
more, since |A| = |B|, it follows that dTV

(
1
2Un(A) + 1

2Un(B),ΠIsolated

)
> 1/10, and so T

1
2
Un(A)+ 1

2
Un(B)

rejects with probability at least 5/6. Hence, the Referee rejects with probability at least (5/6)2 > 2/3.
Concluding, we constructed a private-coin SMP protocol for EQk with communication complexity

6s · log n. By Theorem 2.5, the communication complexity of any protocol for EQk is Ω(
√
k), hence plugging

in k = Θ(n) yields the desired result.
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[BFRSW00] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. “Testing that
distributions are close”. In: Proceedings of the 41st Annual Symposium on Foundations of Computer
Science. FOCS 2000. 2000, pp. 259–269.

[BFRV11] Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. “Testing monotonicity of
distributions over general partial orders”. In: Proceedings of the 2nd Innovations in Theoretical
Computer Science Conference. ITCS 2011. 2011, pp. 239–252.
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