
Small-depth Multilinear Formula Lower Bounds for Iterated

Matrix Multiplication, with Applications

Suryajith Chillara
Department of CSE, IIT Bombay.

suryajith@cse.iitb.ac.in

Nutan Limaye
Department of CSE, IIT Bombay.

nutan@cse.iitb.ac.in

Srikanth Srinivasan
Department of Mathematics, IIT Bombay.

srikanth@math.iitb.ac.in

October 15, 2017

Abstract

The complexity of Iterated Matrix Multiplication is a central theme in Computational
Complexity theory, as the problem is closely related to the problem of separating various
complexity classes within P. In this paper, we study the algebraic formula complexity of
multiplying d many 2× 2 matrices, denoted IMMd, and show that the well-known divide-and-
conquer algorithm cannot be significantly improved at any depth, as long as the formulas
are multilinear.

Formally, for each depth ∆ ≤ log d, we show that any product-depth ∆ multilinear formula
for IMMd must have size exp(Ω(∆d1/∆)). It also follows from this that any multilinear
circuit of product-depth ∆ for the same polynomial of the above form must have a size
of exp(Ω(d1/∆)). In particular, any polynomial-sized multilinear formula for IMMd must
have depth Ω(log d), and any polynomial-sized multilinear circuit for IMMd must have depth
Ω(log d/ log log d). Both these bounds are tight up to constant factors.

Our lower bound has the following consequences for multilinear formula complexity.

1. Depth-reduction: A well-known result of Brent (JACM 1974) implies that any
formula of size s can be converted to one of size sO(1) and depth O(log s); further, this
reduction continues to hold for multilinear formulas. On the other hand, our lower
bound implies that any depth-reduction in the multilinear setting cannot reduce the
depth to o(log s) without a superpolynomial blow-up in size.

2. Separations from general formulas: Shpilka and Yehudayoff (FnTTCS 2010) asked
whether general formulas can be more efficient than multilinear formulas for computing
multilinear polynomials. Our result, along with a non-trivial upper bound for IMMd

implied by a result of Gupta, Kamath, Kayal and Saptharishi (SICOMP 2016), shows
that for any size s and product-depth ∆ = o(log s), general formulas of size s and
product-depth ∆ cannot be converted to multilinear formulas of size sω(1) and product-
depth ∆, when the underlying field has characteristic zero.

1 Introduction

Algebraic Complexity theory is the study of the complexity of those computational problems
that can be phrased as computing a multivariate polynomial f(x1, . . . , xN) ∈ F[x1, . . . , xN]
over elements x1, . . . , xN ∈ F. Many central algorithmic problems such as the Determinant,
Permanent, Matrix product etc. can be cast in this framework. The natural computational

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 156 (2017)

models that we consider in this setting are models such as Algebraic circuits, Algebraic Branching
Programs (ABPs), and Algebraic formulas (or just formulas), all of which use the natural algebraic
operations of F[x1, . . . , xN] to compute the polynomial f . These models have by now been the
subject of a large body of work with many interesting upper bounds (i.e. circuit constructions)
as well as lower bounds (i.e. impossibility results). (See, e.g. the surveys [SY10, Sap15] for an
overview of many of these results.)

Despite this, many fundamental questions remain unresolved. An important example of
such a question is that of proving lower bounds on the size of formulas for the Iterated Matrix
Multiplication problem, which is defined as follows. Given d n× n matrices M1, . . . ,Md, we are
required to compute (an entry of) the product M1 · · ·Md; we refer to this problem as IMMn,d.
Proving superpolynomial lower bounds on the size of formulas for this problem is equivalent to
separating the power of polynomial-sized ABPs from polynomial-sized formulas, which is the
algebraic analogue of separating the Boolean complexity classes NL and NC1.

A standard divide-and-conquer algorithm yields the best-known formulas for IMMn,d. More
precisely, for any ∆ ≤ log d, this approach yields a formula of product-depth1 ∆ and size
nO(∆d1/∆) for IMMn,d and choosing ∆ = log d yields the current best formula upper bound of
nO(log d), which has not been improved in quite some time. On the other hand, separating the
power of ABPs and formulas is equivalent to showing that IMMn,d does not have formulas of
size poly(nd).

The Iterated Matrix Multiplication problem has many nice features that render its complexity
an interesting object to study. For one, it is the algebraic analogue of the Boolean reachability
problem, and thus any improved formula upper bounds for IMMn,d could lead to improved
Boolean circuit upper bounds for the reachability problem, which would resolve a long-standing
open problem in that area. For another, this problem has strong self-reducibility properties,
which imply that improving on the simple divide-and-conquer approach to obtain formulas of
size no(log d) for any d would lead to improved upper bounds for all D > d; this implies that the
lower-degree variant is no easier than the higher-degree version of the problem, which can be very
useful (e.g. for homogenization [Raz13]). Finally, the connection to the Reachability problem
imbues IMMn,d with a rich combinatorial structure via its graph theoretic interpretation, which
has been used extensively in lower bounds for depth-4 arithmetic circuits [FLMS14, KLSS14,
KS14, KNS16, KST16].

We study the formula complexity of this problem in the multilinear setting, which restricts
the underlying formulas to only compute multilinear polynomials at intermediate stages of
computation. Starting with the breakthrough work of Raz [Raz06], many lower bounds have
been proved for multilinear models of computation [RY08, RY09, RSY08, DMPY12]. Further,
it is known by a result of Dvir, Malod, Perifel and Yehudayoff [DMPY12] that multilinear ABPs
are in fact superpolynomially more powerful than multilinear formulas. Unfortunately, however,
this does not imply any non-trivial lower bound for Iterated Matrix Multiplication (see the
Related Work section below), and as far as we know, it could well be the case that there are
multilinear formulas that beat the divide-and-conquer approach in computing this polynomial.

Here, we are able to show that this is not the case for the problem of multiplying 2 × 2
matrices (and by extension c× c matrices for any constant c) at any product-depth. Our main
theorem is the following.

Theorem 1. For ∆ ≤ log d, any product-depth ∆ multilinear formula that computes IMM2,d

must have size 2Ω(∆d1/∆).

1The product-depth of an arithmetic circuit or formula is the maximum number of product gates on a path
from output to input. If the product-depth of a circuit or formula is ∆, then its depth can be assumed to be at
least 2∆− 1 and at most 2∆ + 1.

2

This lower bound strengthens a result of Nisan and Wigderson [NW97] who prove a similar
lower bound in the more restricted set-multilinear setting.

Our result is also qualitatively different from the previous lower bounds for multilinear
formulas since IMM2,d does in fact have polynomial-sized formulas of product-depth O(log d)
(via the divide-and-conquer approach), whereas we show a superpolynomial lower bound for
product-depth o(log d). This observation leads to interesting consequences for multilinear formula
complexity in general, which we now describe.

Depth Reduction. An important theme in Circuit complexity is the interplay between
the size of a formula or circuit and its depth [Bre74, Spi73, VSBR83, AV08, Tav15]. In the
context of algebraic formulas, a result of Brent [Bre74] says that any formula of size s can be
converted into another of size sO(1) and depth O(log s). Further, the proof of this result also
yields the same statement for multilinear formulas.

Can the result of Brent be improved? Theorem 1 implies that the answer is no in the
multilinear setting. More precisely, since the IMM2,d polynomial (over O(d) variables) has
formulas of size poly(d) and depth O(log d) but no formulas of size dO(1) and depth o(log d) (by
Theorem 1), we see that any multilinear depth-reduction procedure that reduces the depth of
a size-s formula to o(log s) must incur a superpolynomial blow-up in size. This strengthens a
result of Raz and Yehudayoff [RY09], whose results imply that any depth-reduction of multilinear
formulas to depth o(

√
log s/ log log s) should incur a superpolynomial blow-up in size. It is also an

analogue in the algebraic setting of some recent results proved for Boolean circuits [Ros15, RS17].

Multilinear vs. general formulas. Shpilka and Yehudayoff [SY10] ask the question
of whether general formulas can be more efficient at computing multilinear polynomials than
multilinear formulas. This is an important question, since we have techniques for proving lower
bounds for multilinear formulas, whereas the same question for general formulas (or even depth-3
formulas over large fields) remains wide open.

We are able to make progress towards this question here by showing a separation between
the two models for small depths when the underlying field has characteristic zero. We do this
by using Theorem 1 in conjunction with a (non-multilinear) formula upper bound for IMM2,d

over fields of characteristic zero due to Gupta et al. [GKKS16]. In particular, the result of
Gupta et al. [GKKS16] implies that for any depth ∆, the polynomial IMM2,d has formulas

of product depth ∆ and size 2O(∆d1/2∆), which is considerably smaller than our lower bound
in the multilinear case for small ∆. From this, it follows that for any size parameter s and
product-depth ∆ = o(log s), general formulas of size s and product-depth ∆ cannot be converted
to multilinear formulas of size sω(1) and product-depth ∆. Improving our result to allow for
∆ = O(log s) would resolve the question entirely.

Related Work. The multilinear formula model has been the focus of a large body of work
on Algebraic circuit lower bounds. Nisan and Wigderson [NW97] proved some of the early results
in this model by showing size lower bounds for small-depth set-multilinear2 circuits computing
IMM2,d. They showed that any product-depth ∆ circuit for IMM2,d must have a size of 2Ω(d1/∆)

matching the upper bound from the divide-and-conquer algorithm for ∆ = o(log d/ log log d).
Our lower bounds for multilinear formulas imply similar lower bounds for multilinear circuits of
product-depth ∆.

2Set-multilinear circuits are further restrictions of multilinear circuits. A set-multilinear circuit for IMMn,d is
defined by the property that each intermediate polynomial computed must be a linear combination of monomials
that contain exactly one variable from each matrix Mi (i ∈ S), for some choice of S ⊆ [d].

3

Raz [Raz06] proved the first superpolynomial lower bound for multilinear formulas by showing
an nΩ(logn) lower bound for the n × n Determinant and Permanent polynomials. This was
further strengthened by the results of Raz [Raz04] and Raz and Yehudayoff [RY08] to a similar
lower bound for an explicit polynomial family that has polynomial-sized multilinear circuits.
In particular, these results show the tightness of the depth-reduction procedure for algebraic
circuits in the multilinear setting [VSBR83, RY08].

Similar polynomial families were also used in the work of Raz and Yehudayoff [RY09] to
prove exponential lower bounds for multilinear constant-depth circuits. By proving a tight
lower bound for depth-∆ circuits computing an explicit polynomial (similar to the construction
of Raz [Raz04]), Raz and Yehudayoff [RY09] showed superpolynomial separations between
multilinear circuits of different depths.

In particular, the result of Raz and Yehudayoff [RY09] implies that the polynomial families
of [Raz04, RY08], which have formulas of size nO(logn), cannot be computed by formulas of
size less than some s(n) = nω(logn) if the product-depth ∆ = o(log n/ log logn). This yields the
superpolynomial separation between formulas of size s and depth o(

√
log s/ log log s) alluded

to above. Unfortunately, these polynomials also have nearly optimal formulas of depth just
O(log n) = O(

√
log s), so they cannot be used to obtain the optimal size s vs depth o(log s)

separation we obtain here.
Dvir et al. [DMPY12] showed that there is an explicit polynomial on n variables that has

multilinear ABPs of size poly(n) but no multilinear formulas of size less than nΩ(logn). One
might hope that this yields a superpolynomial lower bound for multilinear formulas computing
IMMN,d for some N, d but this unfortunately does not seem to be the case. The reason for this
is that while any polynomial f on n variables that has an ABP of size poly(n) can be reduced
via variable substitutions to IMMN,d for N, d = nO(1), this reduction might substitute different
variables in the IMMN,d polynomial by the same variable x of f and in the process destroy
multilinearity.

Gupta et al. [GKKS16] showed the surprising result that general (i.e. non-multilinear)
formulas of depth-3 can beat the divide-and-conquer approach for computing IMMn,d, when the
underlying field has characteristic zero. Their result implies that, in this setting, IMMn,d has

product-depth 1 formulas of size nO(
√
d), as opposed to the nO(d)-sized formula that is obtained

from the traditional divide-and-conquer approach. Using the self-reduction properties of IMMn,d,

this can be easily seen to imply the existence of nO(∆d1/2∆)-sized formulas of product-depth ∆.
This construction uses the fact that the formulas are allowed to be non-multilinear. Our result
shows that this cannot be avoided.

Proof Overview. The proof follows a two-step process as in [SY10, DMPY12].
The first step is a “product lemma” where we show that any multilinear polynomial f on n

variables that has a small multilinear formula can also be computed as a sum of a small number of
polynomials each of which is a product of many polynomials on disjoint sets of variables; if such
a term is the product of t polynomials, we call it a t-product polynomial.3 It is known [SY10,
Lemma 3.5] that if f has a formula of size s, then we can ensure a decomposition into a sum of
at most s many Ω(log n)-product polynomials. We show that if the formula further is known to
have depth ∆ then the number of factors can be increased to Ω(∆n1/∆). In particular, note that
this is ω(log n) as long as ∆ = o(log n): this allows us to obtain superpolynomial lower bounds
for up to this range of parameters.

Similar lemmas were already known in the small-depth setting [RY09], but they do not
achieve the parameters of our lemma here. However, the lemma of [RY09] satisfies the additional

3The polynomials in our decomposition can also have a different form which we choose to ignore for now.

4

condition that every factor of each t-product polynomial in the decomposition depends on a
“large” number of variables. Here, we only get that each factor depends on a non-zero number of
variables, but this is sufficient to prove the lower bound we want.

The second step is to use this decomposition to prove a lower bound. Specifically, we would
like to say that the polynomial IMM2,d has no small decomposition into terms of the above form.
This is via a rank argument as in Raz [Raz06]. Specifically, we partition the variables X in our
polynomial into two sets Y and Z and consider any polynomial f(X) as a polynomial in the
variables in Y with coefficients from F[Z]. The dimension of the space of coefficients (as vectors
over the base field F) is considered a measure of the complexity of f .

It is easy to come up with a partition of the underlying variable set X into Y,Z so that the
complexity of IMM2,d is as large as possible. Unfortunately, we also have simple multilinear
formulas that have maximum dimension w.r.t. this partition. Hence, this notion of complexity
is not by itself sufficient to prove a lower bound. At this point, we follow an idea of Raz [Raz06]
and show something stronger for IMM2,d: we show that its complexity is quite robust in the
sense that it is full rank w.r.t. many different partitions.

More precisely, we carefully design a large space of restrictions ρ : X → Y ∪ Z ∪ F such that
for any restriction ρ, the resulting substitution of IMM2,d continues to have high complexity w.r.t.
the measure defined above. These restrictions are motivated by the combinatorial structure of
the underlying polynomial, specifically the connection to Graph Reachability.

The last step is to show that, for any t-product polynomial f , a random restriction from
the above space of restrictions transforms it with high probability into a polynomial whose
measure is small. Once we have this result, it follows that given a small multilinear formula,
there is a restriction that transforms each term in its decomposition (obtained from the product
lemma) into a small complexity polynomial. The subadditivity of rank then shows that the
entire formula now has small complexity, and hence it cannot be computing IMM2,d which by
the choice of our restriction has high complexity.

2 Preliminaries

2.1 Basic setup

Unless otherwise stated, let F be an arbitrary field. Let d ∈ N a growing integer parameter. We

define X(1), . . . , X(d) to be disjoint sets of variables where each X(i) = {x(i)
j,k | j, k ∈ [2]} is a set

of four variables that we think of forming a 2× 2 matrix. Let X =
⋃
i∈[d]X

(i).
A polynomial P ∈ F[X] is called multilinear if the degree of P in each variable x ∈ X is at

most 1. We define the multilinear polynomial IMMd ∈ F[X] as follows. Consider the matrices
M (1), . . . ,M (d) where the entries of M (i) are the variables of X(i) arranged in the obvious way.
Define the matrix M = M (1) · · ·M (d); the entries of M are multilinear polynomials over the
variables in X. We define

IMMd = M(1, 1) +M(1, 2),

i.e. the sum of the (1, 1)th and (1, 2)th entries of M . Note, in particular, that the polynomial

IMMd does not depend on the variables x
(1)
2,1 and x

(1)
2,2.

This is a slight variant of the Iterated Matrix Multiplication polynomial seen in the literature,
as it is usually defined to be either the matrix entry M(1, 1) or the trace M(1, 1) +M(2, 2). Our
results can easily be seen to hold for these variants, but we deal with the definition above for
some technical simplicity.

Another standard way of defining the polynomial IMMd is via graphs. Define the edge-
labelled directed acyclic graph Gd = (V,E, λ) as follows: the vertex set V is defined to be the

5

. . .

. . .

. . .

x
(1)
1,1

x
(1)
1,2

x
(2)
1,2

x
(2)
1,1

x
(2)
2,2

x
(2)
2,1

x
(3)
1,1

x
(3)
1,2x

(3)
2,1

x
(2)
2,2

x
(d−1)
1,1

x
(d−1)
1,2

x
(d−1)
2,1

x
(d−1)
2,2

x
(d)
1,1

x
(d)
1,2

x
(d)
2,1

x
(d)
2,2

X1 X2 X3 Xd−1 Xd

Figure 1: The directed acyclic graph Gd that defines the polynomial IMMd with its labeling.

disjoint union of vertex sets V (0), . . . , V (d) where V (i) = {v(i)
1 , v

(i)
2 }. The edge set E is the set of

all possible edges from some set V (i) to V (i+1) (for i < d). The labelling function λ : E → X is

defined by λ((v
(i)
j , v

(i+1)
k)) = x

(i+1)
j,k . See Figure 1 for a depiction of this graph.

Given a path π in the graph Gd, λ(π) is defined to be the product of all labels of edges in π.
In this notation, IMMd can be seen to be the following.

IMMd =
∑

paths π from v
(0)
1

to v
(d)
1 or v

(d)
2

λ(π) =
∑

π1,...,πd∈{1,2}

x
(1)
1,π1

x(2)
π1,π2

· · ·x(d)
πd−1,πd

(1)

2.2 Multilinear formulas and circuits

We refer the reader to the standard resources (e.g. [SY10, Sap15]) for basic definitions related
to algebraic circuits and formulas. Having said that, we do make a few remarks.

• All the gates in our formulas and circuits will be allowed to have unbounded fan-in.

• The size of a formula or circuit will refer to the number of gates (including input gates) in
it, and depth of the formula or circuit will refer to the maximum number of product gates
on a path from the input gate to output gate.

• Further, the product-depth of the formula or circuit (as in [RY08]) will refer to the maximum
number of product gates on a path from the input gate to output gate. Note that the
product depth of a formula or circuit can be assumed to be within a factor of two of the
overall depth (by collapsing sum gates if necessary).

Multilinear circuits and formulas. An algebraic formula F (resp. circuit C) computing
a polynomial from F[X] is said to be multilinear if each gate in the formula (resp. circuit)
computes a multilinear polynomial. Moreover, a formula F is said to be syntactic multilinear if
for each multiplication gate Φ of F with children Ψ1, . . . ,Ψt, we have Supp(Ψi) ∩ Supp(Ψj) =
∅ for each i 6= j, where Supp(Φ) denotes the set of variables that appear in the subformula
rooted at Φ. Finally, for ∆ ≥ 1, we say that a multilinear formula (resp. circuit) is a (ΣΠ)∆Σ
formula (resp. circuit) if the output gate is a sum gate and along any path, the sum and product
gates alternate, with each product gate appearing exactly ∆ times and the bottom gate being a
sum gate. We can define (ΣΠ)∆,ΣΠΣ,ΣΠΣΠ formulas and circuits similarly.

For a gate Φ in a syntactically multilinear formula, we define a set of variables Vars(Φ) in a
top-down fashion as follows.

6

Definition 2. Let C be a syntactically multilinear formula computing a polynomial on the
variable set X. For the output gate Φ, which is a sum gate, we define Vars(Φ) = X. If Φ is a
sum gate with children Ψ1, . . . ,Ψk and Vars(Φ) = S ⊆ X, then for each 1 ≤ i ≤ k, Vars(Ψi) = S.
If Φ is a product gate with children Ψ1, . . .Ψk and Vars(Φ) = S ⊆ X, then Vars(Ψi) = Supp(Ψi)

for 1 ≤ i ≤ k − 1 and Vars(Ψk) = S \
(
∪k−1
i=1 Vars(Ψi)

)
.

It is easy to see that Vars(·) satisfies the properties listed in the following proposition.

Proposition 3. For each gate Φ in a syntactically multilinear formula C, let Vars(Φ) be defined
as in Definition 2 above.

1. For any gate Φ in C, Supp(Φ) ⊆ Vars(Φ).

2. If Φ is an sum gate, with children Ψ1,Ψ2, . . . ,Ψk, then ∀i ∈ [k], Vars(Ψi) = Vars(Φ).

3. If Φ is a product gate, with children Ψ1,Ψ2, . . . ,Ψk, then Vars(Φ) = ∪ki=1Vars(Ψi) and the
sets Vars(Ψi) (i ∈ [k]) are pairwise disjoint.

We will use the following structural results that convert general multilinear circuits (resp.
formulas) to (ΣΠ)∆Σ circuits (resp. formulas).

Lemma 4 (Raz and Yehudayoff [RY09], Claims 2.3 and 2.4). For any multilinear formula F of
product depth at most ∆ and size at most s, there is a syntactic multilinear (ΣΠ)∆Σ formula F ′

of size at most (∆ + 1)2 · s computing the same polynomial as F .

Lemma 5 (Raz and Yehudayoff [RY09], Lemma 2.1). For any multilinear circuit C of product
depth at most ∆ and size at most s, there is a syntactic multilinear (ΣΠ)∆Σ formula F of size
at most (∆ + 1)2 · s2∆+1 computing the same polynomial as C.

We will also need the following structural result.

Lemma 6 (Raz, Shpilka and Yehudayoff [RSY08], Claim 5.6). Let F be a syntactic multilinear
formula computing a polynomial f and let Φ be any gate in F computing a polynomial g. Then
f can be written as f = Ag + B, where A ∈ F[X \ Vars(Φ)], B ∈ F[X] and B is computed by
replacing Φ with a 0 in F .

A standard divide-and-conquer approach yields the best-known multilinear formulas and
circuits for IMMd for all depths.

Lemma 7. For each ∆ ≤ log d,4 IMMd is computed by a syntactic multilinear (ΣΠ)∆ circuit

C∆ of size at most dO(1) · 2O(d1/∆) and a syntactic multilinear (ΣΠ)∆ formula F∆ of size at most

2O(∆d1/∆).

Proof sketch. We will first recursively construct C∆. Let us recall that the IMMd polynomial
is defined over the matrices M (1),M (2), . . . ,M (d). Let us divide these matrices into t = d1/∆

contiguous blocks of size d/t each, say B1, B2, . . . , Bt. The polynomial IMMd can now be
expressed in terms of those blocks of matrices as follows.

IMMd =
∑

(u1,u2,...,ut)∈{1,2}t
P

(1)
1,u1

P (2)
u1,u2

. . . P (t)
ut−1,ut , (2)

where P
(i)
ui−1,ui is the (ui−1, ui)-th entry of the product of the matrices in the i-th block. (In the

special case i = 1, take u0 = 1.) It is important to note that each of the polynomials P
(i+1)
ui,ui+1 ,

4All our logarithms will be to base 2.

7

defined over the block Bi+1, for all i ∈ [t−1], is (almost) an instance of IMMd/t over the suitable
set of variables. This enables us to recurse for ∆ steps while obtaining a ΣΠ layer at each step.
Thus, we get the following recursive formula for the size of the (ΣΠ)∆ circuit computing IMMd.

s(d,∆) ≤ tO(1) · (s(d/t,∆− 1)) + 2O(t).

Upon unfurling, this recursion gives us the needed bound of dO(1) · 2O(d1/∆).
Let us now construct a multilinear formula for this polynomial5. Consider the polynomial

expression in Equation 2. If each of the polynomials P
(k)
ui,ui+1 is replaced by a variable, say

y
(k)
ui,ui+1 , the computation is of an instance of IMMt over the variables {y(k)

ui,ui+1}. Then there is
a ΣΠ formula F1 (say) that computes IMMt of size ct (for some constant c) whose leaves are
labelled by the variables of the form yui,ui+1 . Since each of these leaves is an instance of IMMd/t

(over a suitable set of variables) themselves, this can further be partitioned into t contiguous
chunks of d/t2 many matrices each. This when expressed as a ΣΠ formula (by introducing new
variables) is of size ct. By substituting the formulas obtained now for each of the polynomials

P
(k)
ui,ui+1 into F1 suitably to obtain a formula F2 (say), of size ct · ct = c2t. This is a ΣΠΣΠ

formula whose leaves are variables corresponding to the instances of IMMd/t2 . Continuing this

process for ∆ steps gives us a (ΣΠ)∆ formula F∆ with 2O(∆t) = 2O(∆d1/∆) many leaves.

We will show that the above bounds are nearly tight in the multilinear setting. If we remove
the multilinear restriction on (ΣΠ)∆Σ formulas computing IMMd, we can get better upper
bounds, as long as the underlying field has characteristic zero.

Lemma 8 (follows from [GKKS16]). Let F be a field of characteristic zero. For each ∆ ≤ log d,

IMMd has a (ΣΠ)∆Σ formula F∆ of size at most 2O(∆d1/(2∆)).

Proof sketch of Lemma 8. As in the proof of Lemma 7, we crucially use the self-reducibility of
IMMd. We need the following claim (implicit in Gupta et al. [GKKS16]) to prove this lemma.

Claim 9. For t > 1, IMMt has a depth three non-multilinear formula of size at most 2O(
√
t)

over any field of characteristic 0.

Proof of Claim 9. Applying Lemma 7 with ∆ = 2 yields a ΣΠΣΠ formula F for IMMd of size

2O(
√
d). It can be checked from the proof of Lemma 7 that this formula satisfies the additional

property that all the product gates in the formula have fan-in O(
√
t).

Over any field F of characteristic zero6, Gupta et al. [GKKS16] showed that any ΣΠΣΠ
formula of size s where all product gates have fan-in at most k can be converted into a ΣΠΣ
formula of size poly(s) · 2O(k). Applying this result to the formula F obtained above, we get

that IMMt can indeed be computed by a ΣΠΣ formula of size at at most 2O(
√
t), over any field

F of characteristic zero.

Consider the self reduction of the IMMd polynomial as follows. Split the d matrices being
multiplied in IMMd into t = d1/∆ blocks with d/t many matrices each. Let the variables

Y = {y(k)
u,v | k ∈ [t], u, v ∈ {1, 2}} correspond to the polynomials P = {P (k)

u,v | k ∈ [t], u, v ∈ {1, 2}}
as defined in Lemma 7.

Let IMMt(Y) be the polynomial that is obtained by replacing all the polynomials P ki,j above
with the corresponding variables. From Claim 9, we know that IMMt(Y) has a ΣΠΣ formula

F1 of size at most c
√
t for some constant c. It is easy to see that IMMd can now be obtained

5It is important to note that simple replication of nodes in C∆ would prove to be wasteful.
6It also works if the characteristic field F is positive but suitably large.

8

by substituting for each of the variables in Y (which appear at the leaves of F1) with the
corresponding polynomial in P. Using the above mentioned self-reducibility property, we shall
self-reduce IMMd/t again and obtain an instance of IMMt over suitable set of new variables.

This too has a ΣΠΣ formula of size c
√
t. The total number of leaves of the new (ΣΠΣ)(ΣΠΣ)

formula F2 (say) is c
√
t · c
√
t = c2

√
t. Continuing this process for ∆ steps yields us a (ΣΠΣ)∆

formula of size 2O(∆
√
t) = 2O(∆d1/(2∆)). We can merge two consecutive layers of Σ gates into one

layer of Σ gates and thus obtain a (ΣΠ)∆Σ formula F∆ of size 2O(∆d1/(2∆)) .

3 Lower bounds for multilinear formulas and circuits computing
IMMd

The main theorem of this section is the following lower bound.

Theorem 10. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d. Any syntactic multilinear
(ΣΠ)∆Σ formula for IMMd must have a size of 2Ω(∆d1/∆).

Putting together Theorem 10 with Lemmas 4 and 5, we have the following (immediate)
corollaries.

Corollary 11. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d/ log log d. Any multilinear

circuit of product-depth ∆ for IMMd must have a size of 2Ω(d1/∆). In particular, any polynomial-
sized multilinear circuit for IMMd must have product-depth Ω(log d/ log log d).

Corollary 12. Let d ≥ 1 be a growing parameter and fix any ∆ ≤ log d. Any multilinear (ΣΠ)∆Σ

formula for IMMd must have size 2Ω(∆d1/∆). In particular, any polynomial-sized multilinear
formula for IMMd must have product-depth Ω(log d).

Since the product-depth of a formula is at most its depth, Lemma 7 and Corollary 12 further
imply the following.

Corollary 13 (Tightness of Brent’s depth-reduction for multilinear formulas). For each d ≥ 1,
there is an explicit polynomial Fd defined on O(d) variables such that Fd has a multilinear
formula of size dO(1), but any formula of depth o(log d) for Fd must have a size of dω(1).

Choosing parameters carefully, we also obtain the following.

Corollary 14 (Separation of multilinear formulas and general formulas over zero characteristic).
Let F be a field of characteristic zero. Let s ∈ N be any growing parameter and ∆ ∈ N be such
that ∆ ≤ o(log s). There is an explicit multilinear polynomial Fs,∆ such that Fs,∆ has a (ΣΠ)∆Σ
formula of size s, but any (ΣΠ)∆Σ multilinear formula for Fs,∆ must have a size of sω(1).

Proof. We choose the polynomial Fs,∆ to be IMMd for suitable d and then simply apply
Theorem 10 and Lemma 8 to obtain the result. Details follow.

Say ∆ = log s/f(s) for some f(s) = ω(1). By Lemma 8, for any d, IMMd has a product-depth

∆ formula of size s(d,∆) = 2O(∆d1/2∆); we choose d so that s(d,∆) = s. It can be checked that
for d = Θ(f(s))2∆, this is indeed the case.

Having chosen d as above, we define Fs,∆ = IMMd. Clearly, Fs,∆ has a (non-multilinear)
formula of product-depth ∆ and size at most s. On the other hand, by Theorem 10, any
multilinear product-depth ∆ formula for IMMd must have size at least

2Ω(∆d1/∆) = sΩ(d1/2∆) = sΩ(f(s)) = sω(1),

which proves the claim.
It can also be proved similarly that for d as chosen above, IMMd in fact has no multilinear

formulas of size sO(1) and product-depth up to (2− ε)∆ for any absolute constant ε.

9

4 Proof of Theorem 10

Our proof follows a two-step argument as in [Raz06, RY09] (see the exposition in [SY10, Section
3.6]).

Step1 – The product lemma

The first step is a “product-lemma” for multilinear formulas.
Formally, define a polynomial f ∈ F[X] to be a t-product polynomial if we can write f as

f1 · · · ft , where we can find a partition of X into non-empty sets Xf
1 , . . . , X

f
t such that fi is a

multilinear polynomial from F[Xf
i].7 We say that Xf

i is the set ascribed to fi in the t-product

polynomial f . We use Vars(fi) (with a slight abuse of notation)8 to denote Xf
i . We drop f from

the superscript if f is clear from the context.
We define f ∈ F[X] to be r-simple if f = L1 · · ·Lr′ ·G, where r′ ≤ r, is an (r′ + 1)-product

polynomial where L1, . . . , Lr′ are polynomials of degree at most 1, the sets Xf
1 , . . . , X

f
r′ ascribed

to these linear polynomials satisfy
∣∣∣⋃i≤r′ X

f
i

∣∣∣ ≥ 400r. We prove the following.

Lemma 15. Let ∆ ≤ log d. Assume that f ∈ F[X] can be computed by a syntactic multilinear
(ΣΠ)∆Σ formula F of size at most s. Then, f is the sum of at most s many t-product polynomials
and at most s many t-simple polynomials for t = Ω(∆d1/∆).

While our proof of the product lemma is motivated by earlier work [SY10, HY11, RY09], we
give slightly better parameters, which turns out to be crucial for proving tight lower bounds for
formulas. In particular, [RY09, Claim 5.5] yields the above with t = Ω(d1/∆).

Proof of Lemma 15. Let F be the (ΣΠ)∆Σ syntactic multilinear formula of size at most s
computing f . We use layer i to denote the layer at distance i from the leaves. So in our formula,
layer 1 is a sum layer, layer 2 is a product layer and so on. Let r = ∆d1/∆/400.

We will prove by induction on the size s of the formula F that f is the sum of at most
s polynomials, each of which is either a t-product polynomial or a t-simple polynomial for
t = ∆d1/∆/1000.

The base case of the induction, corresponding to s = 0, is trivial.

Case 1: Suppose there exists a gate Φ in layer 2 such that Φ computes a polynomial g and
has fan-in at least t. Then we use Lemma 6 and decompose f as Ag+B. Here Ag is a t-product
polynomial. Since B is computed by a formula of size at most s− 1, we are done by induction.

Case 2: Suppose the above case does not hold, i.e. all the gates at layer 2 have a fan-in of at
most t. Now, if there exists a gate Φ in layer 2 such that |Vars(Φ)| ≥ 400r then we will decompose
F using Lemma 6 and obtain f = Ag +H, where Ag is t-simple since |Vars(Φ)| ≥ 400r ≥ 400t.
Again, since H has a formula of size at most s− 1, and we are done by induction.

Case 3: Now assume that neither of the above cases is applicable. Since neither Case 1
nor Case 2 above is applicable to F , each gate Φ in layer 2 satisfies |Vars(Φ)| < p := 400r. This
immediately implies that ∆ ≥ 2, since in the case of a ΣΠΣ formula, we have |Vars(Φ)| = n by
Proposition 3 item 2 but p = 400r ≤ d < n.

If ∆ ≥ 2, we use the following lemma.

7Note that we do not need fi to depend non-trivially on all (or any) of the variables in Xf
i .

8Vars(·) is used to describe variables ascribed to gates in a circuit as well as to denote variables ascribed to
polynomials.

10

Lemma 16. Let n, p ∈ N. Assume 2 ≤ ∆ ≤ 2 log(n/p). Let f be computed by a syntactically
multilinear (ΣΠ)∆ Σ formula F of size at most s over a set of n variables. Let Φ1,Φ2, . . . ,Φs′,
where s′ ≤ s, be the product gates at layer 2 such that for all i, |Vars(Φi)| ≤ p, then f is the

sum of at most s many T -product polynomials where T = (∆ (n/p)1/(∆−1))/100.

The above lemma is applicable in our situation since we have ∆ ≤ log d, n ≥ 2d, and hence
(n/p) = (n/400r) = n/(∆d1/∆) ≥ n/(2

√
d) ≥

√
d. Lemma 16 now yields a decomposition of f

as a sum of at most s many T -product polynomials where

T = ∆ · (n/400r)
1

(∆−1)

100
≥ ∆

100
·
(

d

∆d1/∆

) 1
(∆−1)

=
∆d1/∆

100∆1/∆−1
≥ ∆d1/∆

200
.

Since T ≥ t, these T -product polynomials are also t-product polynomials. This finishes the proof
of the claim modulo the proof of Lemma 16, which we present below.

Proof of Lemma 16. We shall prove by induction on the depth ∆ that we can take T = t(n,∆) =

(∆− 1)
(

(n/p)1/(∆−1) − 1
)

. Since ∆ ≤ 2 log(n/p), this implies that T ≥ ∆(n/p)1/(∆−1)/100.

Let X denote the set of all n underlying variables.
The base case is when ∆ = 2. Here, we have a ΣΠΣΠΣ formula such that for all Φ at layer

2, |Vars(Φ)| ≤ p. Let Ψ be the output (sum) gate of the formula and Ψ1, . . . ,Ψr be the product
gates feeding into it; further let fi be the polynomial computed by Ψi. We claim that each fi
is an (n/p)-product polynomial. If this is true, we are done since f = f1 + · · ·+ fr and r is at
most s.

To show that fi is an (n/p)-product polynomial, it suffices to show that each Ψi has fan-in at
least (n/p). This follows since each Φ at layer 2 satisfies |Vars(Φ)| ≤ p and for each sum gate Φ′

at layer 3, we have Vars(Φ′) = Vars(Φ) for any gate Φ at layer 2 feeding into Φ′ (Proposition 3
item 2). By Proposition 3 item 3, the fan-in of each Ψi at layer 4 must thus be at least (n/p).
This concludes the base case.

Now consider ∆ ≥ 3. Say we have a polynomial f that is computed by a (ΣΠ)∆Σ formula
F of size at most s and top fan-in (say) r. Let Ψ be the output gate of F and Ψ1, . . . ,Ψr the
product gates feeding into it; let fi be the polynomial computed by Ψi. It suffices to show that
each fi is the sum of at most si many t(n,∆)-product polynomials, where si is the size of the
subformula rooted at Ψi. We show this now.

Fix any i ∈ [r]. Let the children of Ψi be Ψi,1, . . . ,Ψi,k. Since X = Vars(Ψ) =
⋃k
j=1 Vars(Ψi,j)

(Proposition 3 item 3), there must be some gate Ψi,j feeding into Ψi such that |Vars(Ψi,j)| ≥ n/k;
w.l.o.g., assume that j = 1. Applying the induction hypothesis for depth ∆− 1 formulas to the
polynomial fi,1 ∈ F[Vars(Ψi,1)] computed by the subformula rooted at Ψi,1, we obtain

fi,1 =

si∑
`=1

hi,1,`

where each hi,1,` is a t(n/k,∆− 1)-product polynomial. Hence, we see that

fi = fi,1 · · · fi,k =

si∑
`=1

hi,1,`fi,2 · · · fi,k.

Each term in the above decomposition of fi is a t′-product polynomial for t′ = t(n/k,∆−1)+(k−1)
where k is the fan-in of fi. Some calculus shows that the expression t(n/k,∆− 1) + (k − 1) is
minimized when k = (n/p)1/∆−1. Plugging this into the expression gives t′ ≥ t(n,∆).

We have thus shown that no matter what k is, t′ ≥ t(n,∆), from which the induction step
follows.

11

Step 2 – Rank measure and the hard polynomial

The second step is to show that any such decomposition for IMMd must have many terms. Our
proof of this step is inspired by the proof of the multilinear formula lower bound of Raz [Raz06]
for the determinant and also the slightly weaker lower bound of Nisan and Wigderson [NW97] for
IMMd in the set-multilinear case. Following [Raz06], we define a suitable random restriction of
the IMMd polynomial by assigning variables from the underlying variable set X to Y ∪Z ∪{0, 1},
where Y and Z are disjoint sets of new variables of equal size. The restriction sets distinct
variables in X to distinct variables in Y ∪ Z or constants, and hence preserves multilinearity.

Having performed the restriction, we consider the partial derivative matrix of the restricted
polynomial, which is defined as follows. Let g ∈ F[Y ∪ Z] be a multilinear polynomial. Define
the 2|Y | × 2|Z| matrix M(Y,Z)(g) such that rows and columns are labelled by distinct multilinear
monomials in Y and Z respectively and the (m1,m2)th entry of M(Y,Z)(g) is the coefficient of
the monomial m1 ·m2 in g.

Our restriction is defined to have the following two properties.

1. The rank of M(Y,Z)(g) is equal to its maximum possible value (i.e. min{2|Y |, 2|Z|}) with
probability 1 where g is the restricted version of IMMd.

2. On the other hand, let f be either a t-product polynomial or a t-simple polynomial, and
let f ′ denote its restriction under ρ. Then, the rank of M(Y,Z)(f

′) is small with high
probability.

Now, if IMMd has a (ΣΠ)∆Σ formula F of small size, then it is a sum of a small number of
t-product and t-simple polynomials by Lemma 15 and hence by a union bound, we will be able
to find a restriction under which the partial derivative matrices of each of the these polynomials
has small rank. By the subadditivity of rank, this will imply that M(Y,Z)(g) will itself have low
rank, contradicting the first property of our restriction.

To make the above precise, we first define our restrictions. Let Ỹ = {y1, . . . , yd} and
Z̃ = {z1, . . . , zd} be two disjoint sets of variables. A restriction ρ is a function mapping variables
X to elements of Ỹ ∪ Z̃ ∪ {0, 1}. We consider the following process for sampling a random
restriction.

Notation. Recall that M (i) is the 2 × 2 matrix whose (u, v)th entry is x
(i)
u,v. Let I and E

denote the standard 2× 2 identity matrix and the 2× 2 flip permutation matrix respectively.
For a ∈ {1, 2}, we use a to denote the other element of the set.

We give a procedure S for sampling a random restriction ρ : X → Ỹ ∪Z̃∪{0, 1} in Algorithm 1.
Based on the output ρ of S, we define the (random) sets Y = Ỹ ∩ Img(ρ) and Z = Z̃ ∩ Img(ρ).
Let m = m(ρ) = min{|Y |, |Z|}.

We observe the following simple properties of ρ.

Observation 17. The restriction ρ satisfies the following.

1. |Y | = d|A|/2e and |Z| = b|A|/2c. Hence, |Z| ≤ |Y | ≤ |Z|+ 1 and m = |Z|.

2. Distinct variables in X cannot be mapped to the same variable in Y ∪ Z.

3. Only the variables of the form x
(i)
π(i−1),π(i) can be set to variables in Y ∪ Z by ρ. The rest

are set to constants.

Note that b is distributed uniformly over {0, 1}d. Given a polynomial f ∈ F[X], the restriction
ρ yields a natural polynomial f |ρ ∈ F[Y ∪ Z] by substitution. Note, moreover, that if f is
multilinear then so is f |ρ since distinct variables in X cannot be mapped to the same variable in
Y ∪ Z (Observation 17).

12

Algorithm 1 Sampling algorithm S
1: Choose π uniformly at random from {1, 2}d. Define π(0) = 1.
2: Choose a uniformly at random from {0, 1}d. Let A = {i | ai = 1}.
3: for i ∈ [d] do
4: Let bi = 0 if π(i− 1) = π(i) and 1 if π(i− 1) 6= π(i).
5: end for
6: for i = 1 to d do
7: if i 6∈ A then
8: Choose ρ|X(i) such that M (i) is I if bi = 0 and E if bi = 1. (In particular, all variables

are set to constants from {0, 1}.)
9: else if i ∈ A and i is the jth smallest element of A for odd j then

10: Fix

ρ(x(i)
u,v) =

ydj/2e if u = π(i− 1) and v = π(i),

1 if u = π(i− 1) and v = π(i),
0 otherwise.

11: else
12: Now, i ∈ A and i is the jth smallest element of A for even j. We fix

ρ(x(i)
u,v) =

zj/2 if u = π(i− 1) and v = π(i),

1 if u = π(i− 1) and v = π(i),
0 otherwise.

13: end if
14: end for

Lemma 18. Let us assume that ρ is sampled as above. Then we have the following:

1. rank(M(Y,Z)(IMMd|ρ)) = 2m with probability 1.

2. If f ∈ F[X] is any t-product polynomial, then for some absolute constant ε > 0,

Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−εt] ≤ 1

2Ω(t)
.

3. If f ∈ F[X] is any r-simple polynomial, then for some absolute constant δ > 0,

Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−δr] ≤ 1

2Ω(r)
.

Given Lemmas 15 and 18, we can finish the proof of Theorem 10 as follows.

Proof of Theorem 10 assuming Lemma 18. Assume that IMMd is computed by a syntactic mulit-
linear (ΣΠ)∆Σ formula F of size at most s. By Lemma 15, we get that f can be expressed as a
sum of at most 2s many summands, say f1, f2, . . . , fs and g1, g2, . . . , gs, where each summand fi
is a t-product polynomial and each summand gj is a t-simple polynomial for t = Ω(∆d1/∆).

For each i ∈ [s], Lemma 18 implies that

Pr[rank
(
M(Y,Z)(fi|ρ)

)
≥ 2m−εt] ≤ 1

2Ω(t)
and Pr[rank

(
M(Y,Z)(gi|ρ)

)
≥ 2m−δt] ≤ 1

2Ω(t)
,

where ε and δ are absolute constants.

13

X1 X2 X3 X4 X5 X6 X7 X8 X9

1 1 1

y1

1

z1

1 y2

1

z2

1

y3

1

1

1

1
1

1

Figure 2: Effect of ρ on IMM9 when the sampling algortithm S yields π = (2, 2, 1, 1, 1, 2, 2, 1, 1)
and a = (1, 0, 1, 0, 1, 0, 1, 0, 1). Thus, IMM9|ρ in this case yields us (1 + y1z1)(1 + y2z2)(1 + y3).

Thus, unless s ≥ 2Ω(t), we see by a union bound that there exists a ρ such that for each
i ∈ [s], rank

(
M(Y,Z)(fi|ρ)

)
≤ 2m−εt and rank

(
M(Y,Z)(gi|ρ)

)
≤ 2m−δt. For such a ρ, we have

rank(M(Y,Z)(F |ρ)) ≤ 2m ·
(s

2εt
+

s

2δt

)
< 2m

unless s ≥ 2Ω(t).
From Lemma 18, we also know that for any choice of ρ in the sampling algorithm S,

we have rank(M(Y,Z)(IMMd|ρ)) ≥ 2m. In particular, since F computes IMMd, we must have

s ≥ 2Ω(t) = 2Ω(∆d1/∆).

4.1 Proof of Lemma 18

Part 1: IMMd has high rank

Let π ∈ {1, 2}d and a ∈ {0, 1}d be arbitrary. Note that in our sampling algorithm, ρ,A, b are
completely determined given π and a.

Let us now examine the effect of ρ on IMMd. We take the graph theoretic view of the
polynomial IMMd as given in Section 2.1.

Figure 2 illustrates how this restriction affects the variables labelling the edges of the graph
Gd defined in Section 2.1. By substituting according to ρ in (1), we get that

IMMd(X)|ρ =

∏m
i=1 (1 + yizi) if |A| = 2m∏m
i=1 (1 + yizi) · (1 + ym+1) if |A| = 2m+ 1 ,

where m = |Z|. For any S ⊆ [m], let ZS (resp., YS) denote the monomial
∏
i∈S zi (resp.,

∏
i∈S yi).

Now consider the matrix M(Y,Z)(IMMd|ρ) . We will simply use M to denote this matrix. For
the sake of simplicity let us assume that |A| = 2m. (The case when |A| = 2m+ 1 is similar.) Let
the rows and columns of M be labelled by the subsets of [m] and let M(S, T) be the coefficient
of YS · ZT in IMMd|ρ. It is easy to see that M(S, T) = 0 if S 6= T and 1 otherwise. That is, M
is the Identity matrix of size 2m × 2m and hence it has full rank.9 .

Part 2: t-product polynomials have low rank

We now prove that for a t-product polynomial f , rank(M(Y,Z)(f |ρ)) is small with high probability.
Let f be a t-product polynomial, i.e. f = f1f2 . . . ft. Let χ : X → [t] be a coloring function,

which assigns colors to all the variables in X, so that χ−1(i) = Xf
i , where Xf

i is the variable

9If |A| = 2m + 1 then M has a 2m × 2m sized Identity matrix as a submatrix.

14

set ascribed to fi. That is, all the variables ascribed to fi are assigned color i under the
coloring function. To prove the lemma, we will first show that, with high probability (over the
choice of π), a constant fraction of the t colors appear along the path defined by π, i.e. along
(π(0), π(1)), (π(1), π(2)), . . . , (π(d− 1), π(d)). Given such a multi-colored path, we will then show
that with a high probability, over the choice of a, many of the colors have an imbalance. A color
is said to have an imbalance under ρ if more variables from X of that color are mapped to the Y
variables than the Z variables or vice versa. We will then appeal to arguments that are similar
to those in [Raz06, RY09, DMPY12] to conclude that the imbalance results in a low rank.

Variable coloring, t-product polynomials and imbalance. We start with some notation.
Given a string π ∈ {1, 2}d, let the path defined by π be the following sequence of pairs (π(0), π(1)),
(π(1), π(2)), . . . , (π(d− 1), π(d)) (we call it a path since these pairs correspond naturally to the
edges of a path in the graph Gd defined in Section 2.1). We say that a color γ ∈ [t] appears in

layer ` ∈ [d] if there exists u, v ∈ {1, 2} such that γ = χ(x
(`)
u,v).

Let C0 = ∅ and let Ci = Ci−1 ∪ {χ(x
(i)
u,v) | u, v ∈ {1, 2}} for i ∈ [d], i.e., Ci contains all the

distinct colors appearing in layers {1, 2 . . . , i}. Therefore, |Cd| = t. We will also define O2i+1 to

be all the colors appearing in odd numbered layers up to 2i+1, i.e. O2i+1 = O2i−1∪{χ(x
(2i+1)
u,v) |

u, v ∈ {1, 2}}. Similarly, we define E2i = E2i−2 ∪ {χ(x
(2i)
u,v) | u, v ∈ {1, 2}}.

Let C0
π = ∅ and Ciπ = Ci−1

π ∪ {χ(x
(i)
(π(i−1),π(i)))}, i.e. Ciπ contains all the distinct colors

appearing along the path defined by π up to layer i. We first observe a property of Cdπ stated in
the claim below.

Claim 19. If |Cd| = t, then Prπ[|Cdπ| ≤ t/100] ≤ 1/2Ω(t) .

We will assume the claim and finish the proof of Part 2 of Lemma 18. We will then prove
the claim. The above claim shows that a lot of colors appear on the uniformly random path π
with high probability. Using this, we will now show that a constant fraction of these colors also
exhibit an imbalance with a high probability. Using the multiplicativity of the rank, we will
then show that the imbalance for a large number of factors results in the low rank of the matrix
MY,Z(f |ρ).

We will say that π is good if |Cdπ| > t/100. Let L = t/100. The above claim shows that a
random π is good with high probability. In what follows, we condition on picking a good π. Let
a ∈ {0, 1}d be chosen uniformly at random as in the sampling algorithm. Let ρ be defined as in
the sampling algorithm for π, a.

Let γ ∈ Cdπ be a color that appears along π. Let πγ be the elements along the path

defined by π with color γ, i.e. πγ = {(π(i − 1), π(i)) | χ(x
(i)
(π(i−1),π(i))) = γ}. Let ρ(πγ) =

{ρ(x
(i)
(π(i−1),π(i))) | (π(i− 1), π(i)) ∈ πγ} ∩ (Y ∪ Z) . A color γ ∈ [t] is said to have an imbalance

w.r.t. ρ if ||ρ(πγ) ∩ Y | − |ρ(πγ) ∩ Z|| ≥ 1.
It is easy to see that if |ρ(πγ)| is odd, then γ must have an imbalance w.r.t. ρ. Note that the

former event is equivalent to the event that
⊕

i∈Pγ ai equals 1 where Pγ = {i | (π(i− 1), π(i)) ∈
πγ}. Hence for any γ ∈ Cdπ, Pr[γ has an imbalance with respect to ρ along π] = 1/2. Further,
since |Cdπ| ≥ L and the events corresponding to distinct γ ∈ Cdπ are mutually independent, the
Chernoff bound implies Pr[at most L/4 colors have an imbalance with respect to ρ along π] ≤
1/2Ω(L). .

Assuming Claim 19 we are now done. We now present the proof of Claim 19.

Proof of Claim 19. We define O2i+1
π to be all the colors appearing in odd numbered layers

along π up to the layer 2i + 1, i.e. O2i+1
π = O2i−1

π ∪ {χ(x
(2i+1)
(π(2i),π(2i+1)))}. Similarly, we define

E2i
π = E2i−2

π ∪ {χ(x
(2i)
(π(2i−1),π(2i)))}.

15

We know that |Cd| = t. Therefore, either |Od| ≥ t/2 or |Ed| ≥ t/2. Let us assume without
loss of generality that |Od| ≥ t/2. For this part of the proof, for the sake of simplicity, we will
assume that d is odd. The assumption can be easily removed by losing at most constant factors
in the bound.

Let j1, j2, . . . , jτ be odd indices such that for each 1 ≤ i ≤ τ − 1 , |Oji | < |Oji+1 | , i.e. each
Oji has at least one new color. Let γ1, γ2, . . . , γτ be colors which appear new in these sets. (If
multiple new colors appear in a set then choose any one.)

Let Wi be the indicator random variable, which takes value 1 if |Ojiπ | < |Oji+1
π | and 0

otherwise, where 1 ≤ i ≤ τ − 1. Then E[Wi] = 1/4 as the probability of the color γi appearing
in Ojiπ is equal to 1/4. Note that the Wis are independently distributed since they depend on
distinct co-ordinates of π. Now E[

∑
iWi] ≥ t/8, as |Od| ≥ t/2. Now we get,

Prπ[|Cdπ| ≤ t/100] ≤ Prπ[|Odπ| ≤ t/100]
≤ Prπ[

∑
iWi ≤ t/100]

≤ 1/2Ω(t) .

As |Odπ| ≤ |Cdπ|, the first inequality follows. If the number of times a new color appears along π
within the odd layers is at most t/100, then

∑
iWi is also at most t/100, therefore we get the

second inequality. Finally the last inequality follows by the Chernoff bound.

Imbalance implies low rank. Let us recall that f = f1f2 . . . ft is a t-product polynomial that
is defined over the disjoint variable partition X = X1 ∪X2 ∪ · · · ∪Xt such that |Xi| ≥ 1 for all
i ∈ [t]. The following lemma (see, e.g., [RY09]) will be useful in bounding rank(M(Y,Z)(f |ρ)).

Lemma 20 ([RY09], Proposition 2.5). Let g = g1g2 · · · gt be a t-product polynomial over the set
of variables Y ∪ Z where Vars(gi) = Yi ∪ Zi. Then rank(M(Y,Z)(g)) =

∏
i∈[t] rank(M(Yi,Zi)(gi)).

From Lemma 20, we get that rank(M(Y,Z)(f |ρ)) =
∏t
i=1 rank(M(Yi,Zi)(fi|ρ)) where Yi =

Y ∩ {ρ(x)|x ∈ Xi} and Zi = Z ∩ {ρ(x)|x ∈ Xi} . For all i ∈ [t], from the definition
it is clear that the rank of the matrix M(Yi,Zi)(fi|ρ) is upper bounded by 2min{|Yi|,|Zi|} ≤
2(|Yi|+|Zi|)/2. Let us note that these disjoint partitions in the t-product polynomial corre-
spond to the colors in the coloring χ with all variables in Xi colored i. Hence if color
i has imbalance w.r.t. ρ, then rank(M(Yi,Zi)(fi|ρ)) ≤ 2min{|Yi|,|Zi|} ≤ 2(|Yi|+|Zi|−1)/2. Thus,

rank(M(Y,Z)(f |ρ)) ≤
∏t
i=1 2(|Yi|+|Zi|−1)/2 = 2((|Y |+|Z|)/2)−(`/2) ≤ 2m−(`−1)/2 where ` is the num-

ber of colors that have imbalance w.r.t. ρ. From the above discussion, we can infer that
Prπ[rank (MY,Z(f |ρ)) ≥ 2m−t/1000] ≤ Prπ[` ≤ t/400] ≤ 1

2Ω(t) .

Part 3: r-simple polynomials have low rank.

Here we prove that if f ∈ F[X] is any r-simple polynomial, then for some absolute constant
δ > 0, Pr[rank(M(Y,Z)(f |ρ)) ≥ 2m−δr] ≤ 1

2Ω(r) .

As f is an r-simple polynomial we know that f =
(∏r′

i=1 Li

)
·G, where r′ ≤ r, Lis are linear

polynomials, ∀i ∈ [r′] Xi is the set of variables ascribed to Li and Xr′+1 is the set of variables
ascribed to G. Moreover, | ∪r′i=1 Xi| ≥ 400r.

To prove the above statement we set up some notation. Let f |ρ =
(∏r′

i=1 Li|ρ
)
·G|ρ . Let

Yi = {ρ(x) | x ∈ Xi} ∩ Y and Zi = {ρ(x) | x ∈ Xi} ∩ Z for each i ∈ [r′]. Let Y ′ = ∪r′i=1Yi
and Z ′ = ∪r′i=1Zi. Also, let Y ′′ = Y \ Y ′ and Z ′′ = Z \ Z ′. Let U denote ∪r′i=1Xi and let
U |ρ = ∪r′i=1Yi ∪ ∪r

′
i=1Zi.

16

In the following claim we show that if U is a large set to begin with then with high probability
(over the restriction ρ defined by the sampling algorithm), U |ρ is also large.

Claim 21. If |U | ≥ 400r, then Pr[|U |ρ| ≤ 4r] ≤ 1
2Ω(r) .

We first finish the proof of Part 3 of Lemma 18 assuming this claim.
We say that a restriction ρ is good if we get |U |ρ| ≥ 4r. In what follows we will condition on

the event that we have a good ρ.
For a restriction ρ, for each i ∈ [r′], we can write Li|ρ(Yi, Zi) as L′i|ρ(Yi)+ L′′i |ρ(Zi) as

Lis are linear polynomials. Therefore we get
∏r′

i=1 Li|ρ(Y ′, Z ′) =
∑

S⊆[r′]

∏
i∈S L

′
i|ρ(Yi) ·∏

j∈[r′]\S L
′′
j |ρ(Zj).

Let LS denote the polynomial
∏
i∈S L

′
i|ρ(Yi) ·

∏
j∈[r′]\S L

′′
j |ρ(Zj). Note that for all S ⊆ [r′],

rank
(
M(Y ′,Z′)(LS)

)
is at most 1. Therefore, by the subadditivity of matrix rank, we get that

rank
(
M(Y ′,Z′)

(∏r′

i=1 Li|ρ(Y ′, Z ′)
))
≤ 2r

′ ≤ 2r . We can now bound rank
(
M(Y,Z) (f |ρ)

)
.

rank
(
M(Y,Z) (f |ρ)

)
2(|Y |+|Z|)/2 =

rank
(
M(Y,Z)

(∏r′

i=1 Li|ρ ·G|ρ
))

2(|Y |+|Z|)/2

=
rank

(
M(Y ′,Z′)

(∏r′

i=1 Li|ρ
))

2(|Y ′|+|Z′|)/2 ·
rank

(
M(Y ′′,Z′′) (G|ρ)

)
2(|Y ′′|+|Z′′|)/2

≤ 2r

2|U |ρ|/2
· 1 ≤ 2r

22r
=

1

2r
.

where the second equality follows from Lemma 20. Therefore, we have rank
(
M(Y,Z) (f |ρ)

)
≤

2(|Y |+|Z|)/2/2r ≤ 2m+(1/2)−r for any good ρ. As Claim 21 tells us that ρ is good with probability
1− 1/2Ω(r), we are done. .

Assuming Claim 21 we are done with the proof of Part 3 of Lemma 18. Given below is the
proof of Claim 21.

Proof of Claim 21. We say that a layer i ∈ [d] is touched by U if there is a variable x
(i)
u,v ∈ U .

We call such an x
(i)
u,v a contact edge. Any layer touched by U has at most 4 contact edges. As

|U | ≥ 400r, U touches at least 100r layers. At least half of the layers will be odd numbered
or at least half of them will be even numbered. Let us assume without loss of generality that
at least half of them are odd numbered. Let these be `1, `2, . . . , `R, where R ≥ 50r. Let us

fix a contact edge (ui, vi) per `i for each i ∈ [R]. Let us denote that these edges by x
(`i)
(ui,vi)

for

i ∈ [R]. Let us use an indicator random variable Wi which is set to 1 if ρ(x
(`i)
(ui,vi)

) ∈ U |ρ and

to 0 otherwise. Note that Pra,π[Wi = 1] = 1/8, where a, π are as in the sampling algorithm.
This is because, for odd layers, probability that a fixed edge (among 4 possible contact edges)
is picked by π is exactly 1/4 and for a odd layer ` the probability that a` = 1 is exactly 1/2.
Moreover, both these events are independent. Therefore E[

∑R
i=1Wi] = R/8 ≥ 5r. Hence we

get, Pr[|U |ρ| ≤ 4r] ≤ Pr[
∑R

i=1Wi ≤ 4r] ≤ 1
2Ω(r) , where the last inequality is by the Chernoff

bound.

Acknowledgement. We thank the organizers of the NMI Workshop on Arithmetic Complexity
2016 where this collaboration began. Part of this work was done while SC was affiliated to
Chennai Mathematical Institute as a graduate student and SC thanks TCS PhD fellowship.

17

References

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In
proceedings of Foundations of Computer Science (FOCS), pages 67–75, 2008.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, 21(2):201–206, April 1974.

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating
multilinear branching programs and formulas. In proceedings of Symposium on
Theory of Computing (STOC), pages 615–624, 2012.

[FLMS14] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
bounds for depth 4 formulas computing iterated matrix multiplication. In proceedings
of Symposium on Theory of Computing (STOC), pages 128–135, 2014.

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth 3. SIAM Journal of Computing, 45(3):1064–1079, 2016.

[HY11] Pavel Hrubeš and Amir Yehudayoff. Homogeneous formulas and symmetric polyno-
mials. Computational Complexity, 20(3):559–578, 2011.

[KLSS14] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponen-
tial Lower Bound for Homogeneous Depth Four Arithmetic Circuits. In proceedings
of Foundations of Computer Science (FOCS), 2014.

[KNS16] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once
oblivious algebraic branching programs (ROABPs) and multilinear depth three
circuits. In proceedings of Symposium on Theoretical Aspects of Computer Science
(STACS), pages 46:1–46:15, 2016.

[KS14] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic
circuits. In proceedings of Foundations of Computer Science (FOCS), 2014.

[KST16] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous
and of depth four formulas with low individual degree. In proceedings of Symposium
on Theory of Computing, STOC, pages 626–632, 2016.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1997.

[Raz04] Ran Raz. Multilinear-NC2 6= multilinear-NC1. In proceedings of Foundations of
Computer Science (FOCS), pages 344–351, 2004.

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing,
2(1):121–135, 2006.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Journal of the
ACM, 60(6):40:1–40:15, 2013.

[Ros15] Benjamin Rossman. The average sensitivity of bounded-depth formulas. In proceed-
ings of Foundations of Computer Science (FOCS), pages 424–430, 2015.

[RS17] Benjamin Rossman and Srikanth Srinivasan. Separation of AC0[⊕] formulas and
circuits. In proceedings of International Colloquium on Automata, Languages, and
Programming, (ICALP), pages 50:1–50:13, 2017.

18

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of
syntactically multilinear arithmetic circuits. SIAM Journal of Computing, 38(4):1624–
1647, 2008.

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic
circuits. Computational Complexity, 17(4):515–535, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth
multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015.

[Spi73] Philip M Spira. Computation times of arithmetic and boolean functions in (d, r)
circuits. IEEE Transactions on Computers, 100(6):552–555, 1973.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science,
5:207–388, March 2010.

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Infor-
mation and Computation, 240:2–11, 2015.

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff. Fast
Parallel Computation of Polynomials Using Few Processors. SIAM Journal of
Computing, 12(4):641–644, 1983.

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

