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Abstract

Chvatal-Gomory (CG) cuts and the Bienstock-Zuckerberg hierarchy capture useful
linear programs that the standard bounded degree Lasserre/Sum-of-Squares (SOS)
hierarchy fails to capture.

In this paper we present a novel polynomial time sos hierarchy for 0/1 prob-
lems with a custom subspace of high degree polynomials (not the standard sub-
space of low-degree polynomials). We show that the new sos hierarchy recovers the
Bienstock-Zuckerberg hierarchy. Our result implies a linear program that reproduces
the Bienstock-Zuckerberg hierarchy as a polynomial sized, efficiently constructible
extended formulation that satisfies all constant pitch inequalities. The construction
is also very simple, and it is fully defined by giving the supporting polynomials (one
paragraph). Moreover, for a class of polytopes (e.g. set covering and packing prob-
lems) it optimizes, up to an arbitrarily small error, over the polytope resulting from
any constant rounds of CG cuts.

Arguably, this is the first example where different basis functions can be useful in
asymmetric situations to obtain a hierarchy of relaxations.

1 Introduction

The Lasserre/Sum-of-Squares (S0S) hierarchy [18, 22, 23, 28] is a systematic procedure for
constructing a sequence of increasingly tight semidefinite relaxations. The SOS hierarchy
is parameterized by its level d, such that the formulation gets tighter as d increases, and a
solution of accuracy € > 0 can be found in time (mnlog(1/¢))°@ where n is the number
of variables and m the number of constraints in the original problem. It is known that the
hierarchy converges to the 0/1 polytope in n levels and captures the convex relaxations
used in the best available approximation algorithms for a wide variety of optimization
problems (see e.g. [3, 6, 19] and the references therein).

In a recent paper Kurpisz, Leppdnen and the author [16] characterize the set of 0/1
integer linear problems that still have an (arbitrarily large) integrality gap at level n — 1.
These problems are the “hardest” for the SOS hierarchy in this sense. In another paper, the
same authors [17] consider a problem that is solvable in O(n logn) time and prove that the
integrality gap of the sOs hierarchy is unbounded at level Q(1/n) even after incorporating
the objective function as a constraint (a classical trick that sometimes helps to improve
the quality of the relaxation). All these “sos-hard” instances have a “covering nature”.
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Chvéatal-Gomory (CG) rounding is a popular cut generating procedure that is often
used in practice (see e.g. [7] and Appendix 7 for a short introduction). There are sev-
eral prominent examples of CG-cuts in polyhedral combinatorics, including the odd-cycle
inequalities of the stable set polytope, the blossom inequalities of the matching poly-
tope, the simple Md&bius ladder inequalities of the acyclic subdigraph polytope and the
simple comb inequalities of the symmetric traveling salesman polytope, to name a few.
Chvatal-Gomory cuts captures useful and efficient linear programs that the bounded de-
gree SOS hierarchy fails to capture. Indeed, the “sos-hard” instances studied in [16] are
the “easiest” for CG cuts, in the sense that they are captured within the first CG clo-
sure. It is worth noting that it is NP-hard [20] to optimize a linear function over the first
CG closure, an interesting contrast to lift-and-project hierarchies (like Sherali-Adams,
Lovasz-Schrijver, and sOS) where one can optimize in polynomial time for any constant
number of levels.

Interestingly, Bienstock and Zuckerberg [5] prove that, in the case of set covering, one
can separate over all CG-cuts to an arbitrary fixed precision in polynomial time. The
result in [5] is based on another result [4] by the same authors, namely on a (positive
semidefinite) lift-and-project operator (which we denote (BZ) herein) that is quite dif-
ferent from the previously proposed operators. This lift-and-project operator generates
different variables for different relaxations. They showed that this flexibility can be very
useful in attacking relaxations of some set covering problems.

These three methods, (sos, CG, BZ), are to some extent incomparable, roughly mean-
ing that there are instances where one succeeds while the other fails (see [2] for a com-
parison between sos and BZ, the already cited [16] for “easy” cases for CG cuts that are
“hard” for sos, and finally note that clique constraints are “easy” for sos but “hard” for
CG cuts [25], to name a few). In Section 4 we show another simple and basic Chvatal-
Gomory cut that is “very hard” for sos.

One can think of the standard Lasserre/sos hierarchy at level O(d) as optimizing an
objective function over linear functionals that sends n-variate polynomials of degree at
most d (over R) to real numbers. The restriction to polynomials of degree d is the standard
way (as suggested in [18, 23] and used in most of the applications) to bound the complexity,
O However, this is not strictly necessary for
getting a polynomial time algorithm and it can be easily extended by considering more
general subspaces having a “small” (i.e. polynomially bounded) set of basis functions (see
e.g. Chapter 3 in [6] and [9, 11]). This is a less explored direction and it will play a key
role in this paper. Indeed, the more general view of the SOs approach has been used so
far to exploit very symmetric situations (see e.g. [9, 11, 26]). For symmetric cases the
use of a different basis functions has been proved to be very useful.

To the best of author knowledge, in this paper we give the first example where different
basis functions can be useful in asymmetric situations to obtain a hierarchy of relaxations.
More precisely, we show how to reframe the Bienstock-Zuckerberg hierarchy [4] as an
augmented version of the sOs hierarchy that uses high degree polynomials (in Section 5
we consider the set cover problem, that is the main known application of the BZ approach,
and in Section 6 we sketch the general framework that is based on the set cover case).
The resulting high degree SOS approach retains in one single unifying sos framework the
best from the standard bounded degree SOs hierarchy, incorporates the BZ approach and
allows to get arbitrary good approximate fixed rank CG cuts for both, set covering and
packing problems, in polynomial time (BZ guarantees this only for set covering problems).
Moreover, the proposed framework is very simple and, assuming a basic knowledge in SOS
machinery (see Section 2), it is fully defined by giving the supporting polynomials (see

implying a semidefinite program of size n



Definition 5.1). This is in contrast to the Bienstock-Zuckerberg’s hierarchy that requires
an elaborate description [4, 29]. Finally, as observed in [1] (see Propositions 25 and 26 in
[1]), the performances of the Bienstock-Zuckerberg’s hierarchy depend on the presence of
redundant constraints.! The proposed approach removes these unwanted features.

We emphasize that one can also modify the Sherali-Adam’s hierarchy /proof system
in the same manner to obtain the covering results, but we decided to take the SDP
framework for generality. So the formulation that we are going to describe for the set
cover problem is actually an explicit linear program (see Section 5.3) that reproduces the
Bienstock-Zuckerberg hierarchy as a polynomial sized, efficiently constructible extended
formulation that satisfies all constant pitch inequalities. More details on the Bienstock-
Zuckerberg hierarchy are given in Section 6.

In Section 7, we observe that for both, set covering and packing problems, the frame-
work used in this paper allows to optimize, up to an arbitrarily small error, over the
polytope resulting from any constant rounds of CG cuts.

We have tried to make this article as self-contained as possible and accessible to non-
expert readers, providing an introduction to the basic necessary tools and results (see
Section 2) and some simple introductory examples. Our main applications are given in
Sections 5 and 7. Additional background material, terminology and results can be found
in appendix.

Recent developments. Very recently Fiorini et al. [10] claim a new approach to
reproduce the Bienstock-Zuckerberg hierarchy. We remark that their framework is weaker
than the one presented in this paper, meaning that does not generalize to packing problems
(see Section 7). Moreover, their proof is essentially based on similar arguments as used
in this paper (formerly appeared in [21]). We give more details in the appendix.

2 so0s-Proofs over the boolean hypercube

Certifying that a polynomial f(x) is non-negative over a semialgebraic set F is an impor-
tant problem in optimization, as certificates of non-negativity can often be leveraged into
optimization algorithms. For example if f(z) = f'(z) — A and we can certify that f(x) is
non-negative over F then the minimum of f’(z) is not smaller than A. In this paper we
are interested in the case F is the set of feasible solutions of a 0/1 integer linear program:

Fi={oxeR":a} —2,=0 Vkec[n], gi(x) >0 Vic[m]} (1)

where 27 — zx = 0 encodes z, € {0,1} and each constraint g;(z) > 0 is linear. It is
known that the nonnegativity of a polynomial over F defined in (1) can be certified by
showing that f(x) belongs to the cone generated by the nonnegative constraints (i.e.
cone(qgi,...,gm) see Appendix A) in the quotient ring R[x|/I(Z%), where I(Z%) denotes
the vanishing ideal over the boolean hypercube (see Appendix A). We review this deriva-
tion from a slightly different perspective by highlighting several aspects that will play a
role in all the derivations that we will use. We start with some preliminaries.
Kronecker delta. For any set Z C [n] and given I C Z define the Kronecker delta

function 6% (z) by:
67 (@) =]z [ 1 —=y) (2)
i€l jez\I

'T thank Levent Tuncel for pointing me his work [1].



Note that >, 07 (z) = 1, (6% (x))? = 6Z(z) (mod I(Z%)) and 67 (x)6%(z) =0 (mod I(Z}))
for any I # J with I,J C Z. Therefore, it follows that (3 ;6% (x))? = > ;6% (x)
(mod I(Z3)). Finally observe that for any linear function g(x) = >, g gi%; — go with
$ C [n] we have 87 (2)(Xses 962 — 90) = 07 (2)(Xsesns 9 — o+ Xy i) (mod 1(Z3)).
These basic facts will be used several times, in particular over the boolean hypercube we
can restrict with no loss to polynomials from R[x]|/I(Z}), i.e. n-degree multilinear polyno-
mials (we use R[x] to denote the polynomial ring over the reals in n variables Rz, ..., ;]
and R[x]4 to denote the subspace of R[x] of polynomials of degree at most d < n). So
6Z(x) is the multilinear representation of (67 (x))? over the boolean hypercube and we
will use them both interchangeably.

Nonnegativity certificate. Given a polynomial f(z) € R[x] that is nonnegative over
F, we are interested in certifying this property. We will assume that f(z) is multilinear
(for the applications of this paper the reader can assume that f(z) is a linear function).
Let zr € {0,1}" be the 0/1 solution with z; = 1 Vi € I, and z; = 0 Vj € [n] \ I for
any I C [n]. Partition the boolean hypercube into two sets N* = {I C [n] : f(z;) > 0}
and N~ = {I C [n]: f(x;) < 0}. If f(x) is nonnegative over F then for every I € N~
there exists a violated constraint on zy, i.e. there is a mapping h : 20"} — [m] such that
gnry(xr) < 0 for every I C [n] with f(z;) < 0. In the remainder, whenever we use “="
assume that the equivalence is modulo the vanishing ideal (mod I(Z%)) (unless differently
defined). Then:

=1

A
o S () 1o OPRAC7)) -
o= | 2ot | 1= 30 s+ 30 o))
B (3)
2 2
_ [, - [l flan) x
=| X v | + 3 (51 (@ ghmm)) @)
so(z) Sh(I)(x)

It follows that any nonnegative polynomial over F can be represented as a polynomial
from cone(gi,...,gm) in the quotient ring R[x|/I(Z%). This provides a certificate of its
nonnegativity (in the form as described in (4) below). Note that in the above derivation (3)
the expression denoted by A is equal to the multilinear representation of B and the
highest degree of A is n. Moreover, A is equal to f(z) (recall that f(z) is assumed to be
multilinear). In the following we will implicitly use the multilinear representation of the
right-hand-side of (4) in the sos derivations that we will compute, namely we will assume
that the elements from cone(gi, ..., gm) are in the quotient ring R[x]/I(Z%) and given in
the multilinear form.

Proposition 2.1. Any multilinear polynomial f € R[X] that is non-negative over the
semialgebraic set (1) has a degree-n SOS representation as:

f@)=so(@)+ Y si(@)gi(z) (mod L(Z5)) (4)
1€[m]
where s; € X = {s € R[x] : s = >_I_, qi(x)?, for some qi,...,q € R[x],}.

These representations can be seen as specific instances of Positivstellensatz, a general
technique to characterize polynomials that are positive on a semialgebraic set. Comput-
ing degree-n SOS representation can be automatized by solving a semidefinite program



(SDP) which is an optimization problem over positive semidefinite (PSD) matrices (see
Appendix B.1 for details). However this may take in general exponential time. The
“standard” (namely the “most used”) way to bound the complexity is to consider the
polynomials ¢; € R, [x]| used in (4) in the standard monomial basis and to restrict their
degree to a constant d < n. If one restricts the degrees of the polynomials in the certifi-
cate to be at most some integer d, it turns out that the positivity certificate is given by
a semidefinite program of size n@(@. Clearly this restriction imposes severe restrictions
on the kind of proofs that can be obtained. This type of algorithm was proposed first by
Shor [28] and the idea was taken further by Parrilo [23, 24] and Lasserre [18]. However,
this fact can be easily extended to other subspaces than the standard monomial basis of
bounded degree, by considering subspaces having a “small”, i.e. polynomially bounded
set of basis functions (see e.g. [6, 9]). This is a less explored direction and it will play a
key role in this paper. The following introduces this point.

Definition 2.1. For any fized subspace Q C R[x]|/I(ZY), we say that a polynomial f €
R[x] that is non-negative over the semialgebraic set (1) admits a Q-SOS representation
(or it is Q-s0s derivable and write F ¢ f(z) > 0) if

f(x) = so(@) + D si(@)gi(x) (mod L(Z3)) (5)
i€[m]
where s; € {s € R[x] : s = >_I_, qi(x)?, for some qi,...,q- € Q}. For a set S C R,[x]
let (S) = span(S) denote the vector space spanned by S. If (S) = Q then S is called the
Q-sOs spanning set.

The existence of a (S)-s0s representation can be decided by solving a semidefinite
programming feasibility problem whose matrix dimension is bounded by O(|S|). We refer
to [6, 9] and Appendix B.1 for details and an example.

2.1 The dual point of view

Consider the minimization of a given polynomial p(x) over the semialgebraic set (1). Let
G = {gi(z),i € [m]}. For any S C R,[x], a relaxation is given by the following conic
program:

max{7y : p — v € cone s (G)} (6)

where cone s (G) = {f(z) : f(z) = so(z) +deg sq(x)g(x) where s¢(z) =3, q ( )2,q; €
(S)} is the cone of nonnegative polynomials generated by (S) (for (S) = R,[x] then
(6) is exact by Proposition 2.1). By definition, the dual of cone s (g) are the linear
functionals? coned“al( G)={l:(l,h) > 0,Vh € cones(G)} that take nonnegative values

on it, namely let L[h] (I, h):
Llg*(x)] >
L{¢*(z)gi(z)] >

where ¢*(z) in (7) and ¢*(x)g;(z) in (8) are given in the multilinear form (so every
occurrence of x? is replaced by z; for all j € [n]). The dual program of (6) is then given
by the following that we call SOS g (F)-relazation:

0, Vqe(S) (7)
0, Vqe(S),i=[m] (8)

min{(l,p): [y = 1,1 € cone‘zgfl(g)} 9)

2Sometimes called pseudo-ezpectation.



The program (9) is actually a semidefinite program whose matrix dimension is bounded
by n?USD (see [6] and Appendix B.2).

When (S) = R[x]4/I(Z%), namely S is the standard monomial basis of degree < d,
then (9) is the (standard) Lasserre/sos-hierarchy parameterized by the degree d. Note
that in order to constraint the dimension of the matrix inequalities to be bounded by
nP@ we can restrict to a different subspace, namely a different basis than the standard
basis for polynomials of degree at most d. This is the point of view that is taken in this
paper.

In the remainder, we consider some relaxations (9) as given by fixing the spanning
polynomials S (and the set G of constraints). In proving the properties of (9) we will use
the following fact that follows from the definition above.

Proposition 2.2. Suppose F t~(s) f(z) > 0 then L[f(x)] > 0.

In particular note that if f(z) = >, a;x; —ag > 0 is a linear inequality that is (S) -sos
derivable then any solution of (9) satisfies the linear inequality >, a;L{z;] — ag > 0. It
follows that in order to show that any (projected) solution {L[z;] : i € [n]} of (9) belongs
to the polytope Ax > b it is sufficient to show that the linear constraints Ax > b are
(S) -sos derivable. We emphasize that we will use this approach in the remainder of the

paper.

3 A family of spanning polynomials

Consider any group G that is acting on monomials in R[x] via gz; = x4, for all g € G
and ¢ € [n]. Let f € R[n| be a real-valued G-invariant polynomial that is nonnegative over

the boolean hypercube. From (3) we have f(z) = (3_;cn+ 65"} (x)\/f(zr))?, and therefore
f(z) is congruent (mod I(Z%)) to the square of a G-invariant polynomial.

Lemma 3.1. Consider any group G that is acting on monomials in R[x| via gz; = z4(;
for each g € G and i € [n]. Any real-valued G-invariant polynomial f € R[n] that is
nonnegative over the boolean hypercube has a degree-n square representation f(zx) = h(x)?
(mod I(Z%)), for some G-invariant polynomial h € R[z].

Let X be a nonempty set. A permutation o of X is a bijection o : X — X. The set of
all permutations of X is called the symmetric group of X and it is denoted by Sx. In the
following for any F' C X we will consider the stabilizer of F' in Sx, namely stabg, (F) is
the subgroup of Sy whose elements are permutations of set X that fix the elements from
F. Note that stabs, (F') is the symmetric subgroup Sx\r acting on X and leaving the
points in F' fixed. The set F' is the Sx\r group’s set of fized points when acting on X.

For the main application of this paper (Section 5) the spanning set is given by products
of Sx\p-invariant polynomials (see Definition 5.1). Note that when F' = () an Sx\p-
invariant polynomial is standardly called a symmetric polynomial. Generalizing the latter
terminology, we will also use (X \ F')-symmetric polynomial to denote a S x\F-invariant
polynomial. Observe that any polynomial is (X \ F')-symmetric for some F C X.

From Lemma 3.1 any non-negative (X \ F')-symmetric polynomial is congruent (mod I(Z%))
to the square of one (X' \ F')-symmetric polynomial. This simple fact will play a central role
in our derivations. In particular the following will be used several times in the following.

Corollary 3.2. Consider any finite set of polynomials S C R[x|/I(ZY) and let Q =
span(S). For any F C X C [n], if the ring (R[x]/L(Z5))X\F of all (X \ F)-symmetric
polynomials is a subspace of Q then any nonnegative (X \ F)-symmetric polynomial has
a ()-SOs representation.



A simple counting argument shows the following rough bound on the size of the
spanning set of (X \ F')-symmetric polynomials.

Lemma 3.3. For any X C [n], let Qx+ denote the subspace of all (X \ F')-symmetric
polynomials for all F C X,|F| < t. There is a spanning set Sx; such that Qx; C
span(Sx ) and |Sx | = no®

Proof. For F C X C [n], in any multilinear (X \ F)-symmetric polynomial g(z) =
> ICn) grz’ (where z! = [Lic; i) the coefficients of monomials z! and z”/ are the same
as soon as |[I| = |J| and INF = JNF. It follows that we can easily define a basis for
(R[x]/I(Z5))5*\F of size at most > ., Zﬁg{s’t} (!) < n2!. We can choose F in (|\)F(\‘)
ways, therefore the dimension of the vector space spanned by all the basis .of boolean
(X \ F)-symmetric polynomials for all |F| <t is at most 7 = ¢(}) >0, ZEB{SJ} () <
tn2! (%) = nf®. O

Example 3.1. For any F C X C [n] the Kronecker delta 6% (z) (see (2)) is (X \ F)-
symmetric and (X \(X\F))-symmetric. The following two polynomials, 3 pc x| p|>k 5% ()
and ZFQX’W:,C 6% (x), are X-symmetric, for any k < |X|. Moreover note that the
squares of these polynomials are the polynomials themselves on the boolean hypercube.
This is the argument that underpins the proof of Corollary 3.2. Actually we can (and
we will) restrict ourselves to only those (X \ F)-symmetric polynomials that come from
conical combinations of Kronecker delta functions, since these form a basis.

4 A simple Chvatal-Gomory cut that is hard for SOS

In this section we provide an introductory educational example where the standard SOS
fails and how it can be easily fixed by using high degree polynomials.

The example is motivated by the following situation. Consider the rational polyhedra
P={z€R": Az > b} with A € Z™ " and b € Z™. Inequalities of the form (A" A)z >
[ATh], with A € R™, ATA € Z", and A"b ¢ Z are commonly referred to Chvatal-Gomory
cuts (CG-cuts for short) (see Section 7). It is a natural question to study how many
levels (or degree d) of the standard Sum-of-Squares hierarchy SOSp,x)(F) are necessary
to strengthening (AT A)z > ATb to get (AT A)z > [AT0].

With this aim, consider the following semialgebraic set:

f:{a:E]R”:x%—xk:OVk:G[n],inZb} (10)
i=1

where b € Q1 is intended to be a positive fractional number. Obviously, any feasible
integral solution satisfies > ; x; > [b] and this is promptly captured by the the first CG
closure. In the following (Theorem 4.1) we show that regardless whether b is “small” (i.e.
0O(1)), or “large” (i.e. ©(n)), the necessary number of levels (or degree) for the standard
Sum-of-Squares hierarchy is of linear order Q(n).

We remark that Grigoriev, Hirsch, and Pasechnik give in [12] a very interesting and
influential result that is related to our Theorem 4.1 below, but significatively different in
terms of both, lower bounds and techniques. We defer the interested reader to Section 4.1
for a discussion on this point and for a more precise meaning of “significatively different”.

In the remainder, we restrict to the cases where the following holds.

n

1 .
b:=L+ 2 for L € {0, 1,..., {51 — 1} and sufficiently large P € N (11)

7



Theorem 4.1 below (proof in Section C.2) shows that the SOSp, ) (F)-relaxation re-
quires d > n — L for satisfying Y " | z; > [L + %L for any L € {O, 1,..., [%W — 1} and
sufficiently large P € N (that depends on

Theorem 4.1. If F g, (35, xi — [b] > 0) thend > n — L.

The result in Theorem 4.1 is disappointing for at least two reasons: the CG-cut looks
pathetically trivial and the proof that SOS,x(F) fails for small d is relatively complicate
(see Section C.2). Clearly it would be sufficient to have in the “bag” @ the symmetric
polynomials (so in S there is the set of the n 4 1 elementary symmetric polynomials) to
promptly capture this constraint within Q-sos in polynomial time. Indeed consider the
following equivalences:

Zmi—(bh(}jxi—m) S =1 Ya-ny Y 6
=1 i=1

1=0 IC[n]:|I|=1 1=0 IC[n):|I|=t
— N—
symmetric symmetric
n LR 0 >
— ' [n] - [n] ,
S\ Vel 2 ot ey (VS 2 (le‘b>
i=[b] ICn]:|I|=t 1=0 IC[n]:|I|=t =1
SO(I) 51(1) gl(m)

Note that it has exactly the form in (5), where each s;(z) is the sum of squares of
symmetric polynomials. Therefore Y ;" | x;—[b] is Q-SOs derivable (see also Example B.1).
We refer to [9, 11, 26] for other more interesting symmetric situations.

We emphasize that in this paper we show how to handle asymmetric situations by
exploiting the problem structure, which is our main result.

4.1 On a related result by Grigoriev, Hirsch, and Pasechnik

Grigoriev, Hirsch, and Pasechnik (see Theorem 8.1 in [12]) give a result related to Theo-
rem 4.1 but significatively different as explained in the remainder of this section. In [12],
the symmetric knapsack is defined as follows:

f’z{xER”:x%fzk:()Vk:G[n],Zmi:b} (12)
i=1

Note that F’ (see (12)) is a more constrained version of set F (see (10)). The Positivstel-
lensatz Calculus [12] is a proof system for languages consisting of unsolvable systems
of polynomial equations (like (12) when b is a non-integral value). A proof in this sys-
tem consists of polynomials hj ...,k and a derivation of 1 4 > j h? = 0 from F’ using
polynomial calculus rules.

Let 0 denote the step function which equals 2 outside the interval (0,7n) and 2k + 4
on the intervals (k,k + 1) and (n — k — 1,n — k) for all integers 0 = k < n/2. In [12] the
following result is proved.

Theorem 4.2. [12] Any Positivstellensatz calculus refutation of the symmetric knapsack
problem F' (see (12)) has degree min{d(b), [(n —1)/2] + 1}.



It is easy to observe that any Positivstellensatz Calculus lower bound for the more
constrained set F' (see (12)) gives a SOS lower bound for the set F (see (10)). However,
for b < n/2, the bounds given by Theorem 4.2 [12] when applied to set F are weaker (and
also considerably weaker) than the ones provided by Theorem 4.1. For example, for any
constant k and b € (k,k + 1) the degree lower bound in Theorem 4.2 is 2k + 4 = O(1),
whereas by Theorem 4.1 the degree lower bound is n — k.

Regarding the technique, Theorem 4.1 is proved by building on a result given in [14].
The latter has been shown very powerful in several other situations (see [14, 15] for more
examples).

Finally, we remark that studying the number of levels necessary for strengthening
inequalities (as in Theorem 4.1) is useful for studying the SOS power to strengthening
convex combinations of valid covering inequalities, as explained at the beginning of Sec-
tion 4. Analyzing equalities like in (12) is less appropriate in these situations.

5 Set covering

Consider any m x n 0-1 matrix A, and let F4 be the feasible region for the 0-1 set covering
problem defined by A:

Fa={x€{0,1}": Ax > e} (13)

where e is the vector of 1s. We denote by A; C {1,...,n} the set of indices of nonzeros in
the i-th row of A (namely the support of the i-th constraint). By overloading notation,
we also use A; to denote the corresponding set of variables {z; : j € A;}. We will assume
that A is minimal, i.e. there is no i # j such that A; C A;.

We will also use the following notation. For any T, F' C [n] with TNF =0, let Fa ;.
denote the subregion of F4 where z; = 1, for i € T', and z; = 0, for j € F. Let A p)
be the matrix that is obtained from A by removing all the rows where x; appears for
i € T (these constraints are satisfied when x; = 1 for ¢ € T') and setting to zero the j-th
column for j € F. We will assume that A p) is minimal by removing the dominated
rows. Therefore, Fu 5.,y = {z € {0,1}" : A pyz > e,z; =1Vi € T,z; =0 Vj € F} and
F Ay © Fa.

5.1 The spanning polynomials for the set covering problem

In this section we define the spanning polynomials for the set covering problem. For the
sake of simplicity, we will assume that the collection of valid inequalities, i.e. {g;(x) >
0,7 € [{]}, that are defined in the semialgebraic set (1) is given by Az > e and the
nonnegative constraints x > 0. The latter is not strictly necessary, since z; = xf and
therefore x; > 0, but this will simplify the exposition. We start with a simple structural
observation regarding the set covering problem (see e.g. [29] for a proof).

Proposition 5.1. Consider a set covering problem defined by any m x n 0-1 matriz B
such that no two constraints overlap in any of the variables, namely for any i,j € [m]
with i # j we have B; N\ Bj = (. When this holds then the linear constraints are convex
hull defining: conv(Fp) = {z € [0,1]" : Bx > e}.

Remark 5.1. From Proposition 5.1 it follows that any valid inequality 'z > aqg for
Fp is valid also for the feasible region of the linear relaxation {x € [0,1]" : Bx > e},
i.e. a'x > ag can be derived as a nonnegative linear combination and right-hand-side
weakening from {x > 0,Bx > e}: a=A"B4+~"1 and ag < A'e, for some X,y > 0 and
where I denotes the n X n identity matriz.



By the previous observation the “interesting” variables are those that appear in more
than one constraint. This gives the intuition why the @ 4(t)-s0s polynomials that we are
going to define are polynomials in these variables.

Definition 5.1. For any t € [n] and C(t) = {C : C C Im] A|C| < t}, let Vo =
Uz‘,jeC,z‘;éj A; N Aj be the set of variables occurring in more than one row with index
from C € C(t). The subspace of polynomials Q(t) is (inductively) defined as the set of
all polynomials p(x) € R[x| for which there exists a C' € C(t) and I C C with |I| < ¢
such that p(z) can be written as p(x) = q(z)r(x), where q(x) is (Vo \ I)-symmetric and,
depending on |I|, r(x) is either 1 (if |I| € {0,1}) or r(z) € Qa .\, (t — |1]) (else).

By Lemma B.1 (in appendix) and Lemma 3.3 a (QA(t)-SOS representation can be
decided by solving a semidefinite programming feasibility problem of size nO).

For any given inequality a'z — ap > 0 with indices ordered so that 0 < a; < as <
-+ < ap and aj = 0 for j > h, its pitch is the minimum integer m = 7(a, agp) such that
Yo, a; —ag > 0. The definition of pitch was introduced in [4, 29]. The main result of

this section is the following.

Theorem 5.2. Suppose a'x — ag > 0 is a valid inequality for Fa of pitch © = m(a,ap)

with a > 0. Then o'z — ay admits a Q A(7)-SOS representation.

Corollary 5.3. For any k > 1, any valid solution of the SOSq , ) relazation (9) satisfies
all the valid inequalities for Fa of pitch < k.

Remark 5.2. Note that for the set-covering problem with a full-circulant constraint ma-
triz (namely Z#i xj > 1 for each i =1,...,n) the pitch 2 valid inequality Z;LZI T > 2
has rank at least n — 3 for a lifting operator stronger than the Sherali-Adams [4] and
requires at least Q(log* ¢ n) levels [14] for the standard SOS hierarchy (conjectured to be
n/4 in [4]). Viceversa, the augmented S0Sq , ) relazation (9) returns a solution that
satisfies all the pitch 2 valid inequalities in polynomial time (Q4(2), see Definition 5.1, is
sufficient for this purpose).

5.2 Proof of Theorem 5.2

The proof will be by induction on the pitch value. Consider any m x n 0-1 matrix
A’, and let F4 be the feasible region for the 0-1 set covering problem defined by A’:
Far = {x € {0,1}" : A’z > e}. Assume that o'’z — a)) > 0 with a’ > 0 is a valid
inequality for Fa: of pitch 7/. If 7/ = 0 we must have af, < 0, so since a’ > 0, @’z — aj,
has a trivial Q4/(7')-SOs representation as conical combination of x;, for ¢ € [n]. By
induction hypothesis, from now on we will assume that for any m x n 0-1 matrix A’ the
claim holds for any constraint o'’z — ap > 0 of pitch p, with 0 < p <7 — 1, that is valid
for Fy.

We start describing a key structural property of valid inequalities for set covering that
was proved in [4, 29]. We introduce the main property with a simple example.

Example 5.1. Consider the set cover instance from the full-circulant constraint matriz
(namely Zj# 2j—12>0 foreachi=1,...,n) and the pitch 2 valid inequality Z?Zl Tj—
2 > 0. Then we can find two constraints, for example Z#i xj—12>0 forie {1,2}, such
that, let V.= {3,...,n} be the variables in both constraints, then (3_7_; xj —2)@p,v) = 0
s obtained by summing the two constraints after setting to zero the shared variables in

Viie (3% —Dev) =0 plus Q.07 —1)@v) = 0.
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We observe that the statement of Lemma 5.4 below is slightly different from Propo-
sition 4.22 in [29] (or Theorem 6.3 in [4]). The difference is given by Property (17) (see
Lemma 5.4). This property is not explicitly given in [4, 29], but it can be derived by their
construction as explained in the proof of Lemma 5.4 (see Appendix C.1).

Lemma 5.4. [/, 29] Suppose a'xz —ag >0 is a valid inequality for Fa with a > 0. Let
supp(a) denote the support of a. Then there is a subset C' = C(a,ag) of the rows of A
with |C| < w(a,ap), such that

A; C supp(a) VieC (14)
Bi=Ai— |J A#0 viecC (15)
reC—{i}
(a'x— ao)(p,v) = 0 is valid for Fp = {x € {0,1}" : Z xj>1,9e€C} (16)
JEB;
Fapv) 7 0 (17)

where V' := J; jec Ai N Aj is the set of variables occurring in more than one row from C.
i#]

Consider any valid inequality a'x — ag > 0 for F4 of pitch 7 = 7(a, ag) with a > 0.
We show that a'z — ag admits a Q(7)-SOS representation. By Lemma 5.4 there is a
subset C' = C(a, ap) of the rows of A that satisfies (14)-(17) where V' denotes the set of
variables occurring in more than one row of C' and |C| < 7. The following polynomials
(see (2) and Example 3.1) have a Q 4()-SOS representation: 6%, for J C V with |J| < T,
and cgﬂ = ICvJ|en Y (it is zero if |V| < 7). Note that 2o JICVJ|<n 6V + 5¥7r =1. It
follows that

a'z—ag= Z s+ 6¥,r (a'z — ag)
JCV,|J|<m
=1
=5 (a"z—ag)o+| D Y@ z—a)uw |+ 0@ z—ap) (18)
first JEV.0<|J|<m third
second

Therefore, showing that a'z — ag is Q4 (m)-s0s derivable boils down to prove that each
of the summands in (18) is Q4 (7)-SOS derivable.

Sketch of the Proof: The first summands can be written as conical combination of
valid inequalities (by Lemma 5.4); The second summand is a sum of valid smaller pitch
inequalities (and therefore by induction can be written as @ Ao (p)-SOS representation);
the last term is always nonnegative because we are considering pitch 7, so the value of
the inequality is always nonnegative by setting to one at least 7 variables. In case needed,
full details are given below.

5.2.1 More details of the proof

Let’s start considering the first summand in (18), namely &; (a'x — ag). By Lemma 5.4,
first note that (a'z — ag),) > 0 is valid for Fp (see (16)). Moreover, no two con-
straints in Fp overlap in any of the variables and therefore, by Proposition 5.1, the linear
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relaxation is convex hull defining: conv(Fp) = {z € [0,1]" : > ,cp z; > 1,0 € C}.

This means (see Remark 5.1) that (a'z — ag)g,) can be implied by a conical com-
bination of the linear constraints in conv(Fp) = {z € [0,1]" : > ,cpz; > 1,0 €
C'}. Note that these linear constraints are just a subset of the linear constraints from
{z € [0,1]" : Az > e} after setting to zero all the variables from V. It follows that
(az — ao)(o,vy = ()\T(Aa: —e)+x +”)(®,V) for some \,v,u > 0. For any z; € V

7))

we have 50‘)/ x; = 0 (recall that whenever we use we assume that the equivalence is

(mod I(Z%))) and

o (a'x —ap) = 5y (AT(AQ; —e)+y x+ u) =0y ()\T(Ax —e)+y z+ ,u>

@,v)
=@V DY a1+ Y 0 v w6 Vi)
i€c JEA; jesuppla) Yo o T~
si(x) —_— s5(x) g5 (z) s0(x)
gi(x)

Note that the latter has exactly the form in (5), where ;' € Qa(w), and therefore it
shows that the first summand 50‘)/ (a'x — ag) is Q(m)-S0S derivable.

Consider a generic second type summand from (18), i.e. 6% (a2 —ag) with J C V,0 <
|J| < m. Note that a'x — ag > 0 is by assumption a valid inequality for any feasible
integral solution. By Property (17) we know that by setting to zero all the variables from
V' we obtain a non-empty subset of feasible integral solutions. It follows that by setting
xzj =1, for j € J, and zj, = 0, for h € V '\ J, we obtain a non-empty subset of feasible
integral solutions, i.e. Fa ., # 0 and (a'x — ao)(sv\s) = 0 is a valid inequality for

the solutions in Fy, ., (since a’

x — ag > 0 is by assumption a valid inequality for any
feasible integral solution). Moreover the pitch p of (a 'z — ao)(s,v\J) = 0 is strictly smaller
than 7, 0 < p < 7 — |J|. It follows, by induction hypothesis that (a2 — ao)(s,v\J) has a
QAU,V\J) (p)-S0S representation, namely (a'x — ao)(Jyv\J) = sy(z) + >, sg(m)gi(afj)uvw)
where s, € {s' € R[x] : s' =Y, qi(x)%, ¢ € QA ;15 (p)-80s} and each g;(x)(jy\7) = 0 is
a valid linear constraint for Fy, . , , where g;(x) v\ ) is either (3 c 4, 2j—1) (g7 = 0
or (x5)(v\g) = 0 for some h € [m],j € [n]. Then

8y (a"x — ag) = 8y (a" & — ag) g1y =0y ( )+ Z JV\J))

=5 5J+Z 2)6Y gi(x

Recall that 0 < p < 7 — |J| and si(z) = >, qj(z)? for ¢; € QA sy s (P)-80s therefore
6V qj(x)? = (6Y qj(z))? and §Y ¢;(x) € Qa(m)-s0s (by Definition 5.1). It follows that the
second summand is Q 4(7)-S0s derivable.

Finally, consider the third summand from (18), i.e. 0¥ (a'z — ap). Recall that we
are assuming that 0 < a1 < az < --- < ap and a; = 0 for j > h for some h € [n],
so the supp(a) = {1,...,h}. Moreover the pitch 7 < h is the minimum such that
ST a; —ap > 0. Note that V C supp(a) and therefore if §¥_ is a non-null polynomial
then |V| > 7 (we assume this in the following otherwise we are done for this case). Let

/

a,:=a;fori=1,...,m a,:=ar fori=m+1,...,hand a} := 0 for i € supp(a)\V. Note
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that for any I C [r] and Ji, Jo C V' \ 7] with |Ji| = |J2| > 7 — |I| we have for £ = 1,2

>0
o (St on) =k | 3 ) =t (St b )
icV 1€IUJ, icl
Note that for any k = 7 —|I|,..., |V the polynomial > jcy\ [ §Y,; is (V'\ [7])-symmetric
T|=k

(see Example 3.1) and therefore it belongs to Q4 (7). It follows that

h
5;71. (Z a;Tr; — a0> = 5¥7T (Z a;T; — CL()) + 5¥7T Z a;T;
i=1

eV i€supp(a)\V

= gﬂ (Z abx; — a()) + 5¥,r Z (a; — a})z;

i€supp(a)

V|
Y Y Y (z) S (- )Ly

ICVN[n] k=r—|I] JCV\[n] eV i€supp(a)
|J|=k
>0
vi PN
= Z Z Z 6Y g (Z a; + ka, — ao) + Z ((a; — a}) 6‘_>/7T):ni
ICVN[x] k=n—|I| JCV\[n] el t€supp(a)
|J|=k
(V\[])-symmetric 2 V-symm. 2
V] ~~
= Z Z Z 6}/UJ \/Z a, + kaxr —ag | + Z a; — al 6¥7r T;
ICVN[r] k=m—|I| JCV\[~] i€l i€supp(a) gi(z)
|J|=k _
Ve si(z)

so(x)

The latter has exactly the form in (5), and each polynomial under the square is from
Qa(m), and therefore the third summand 5¥7r(aTx —ap) is Qa(m)-s0s derivable and the
claim follows.

5.3 An explicit compact LP formulation for the BZ hierarchy

As shown in Section 2.1, it turns out that sOSsy-relaxations are obtained by requiring
that the linear functionals of summands of (S)-SOS proofs are nonnegative (see (7) and
(8)).

By definition of Qa(t), recall that ¢(z)? = q(z) (mod I(Z3)) for any q¢ € Q4(t). By
applying the general arguments given in Section 2.1, note that any summand that appear
in the Q 4(t)-s0s proof of any bounded pitch ¢ inequality (as explicitly given in Section 5.2)
is equal to g;(x)q(x) or equal to ¢q(x), for some q(z) € Q A(t) and g;(x) > 0 being any set
cover constraint from Az > e. It follows that any solution of the following linear program
satisfies all the pitch ¢ inequalities.

Lig(x)] =0, Vg€ Qalt) (19)
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Lg(x)gi(xz)] > 0, Vg€ Qa(t) and g;(z) > 0 is any constraint from Az > e (20)

As described in Section 2.1 in a more general setting, the above LP has polynomial size
for any fixed pitch.

We remark that a more “explicit” and simplified formulation can be derived, but we
decided to leave it as it is to emphasize the use of the high degree polynomials in the sos
framework.

6 The Bienstock-Zuckerberg hierarchy

The Bienstock-Zuckerberg hierarchy (BZ) [4, 29] generalizes the approach for set cover.
The full description requires several layers of details and here we sketch only the main
points. We refer to the original manuscripts for a more precise and comprehensive de-
scription.

Any non-trivial constraint can be rewritten in the set-cover form: 3,y a;wi+) ¢ y a;(1—
xj) > b, with all the coefficients a,b nonnegative. Then the BZ hierarchy uses the stan-
dard concept of minimal covers? (see e.g. [7]): a minimal cover is an inclusion-minimal
set C' C supp(a) such that > ..~ a; < b and therefore ;- > 1 is a valid inequality
(where :L‘; =z;ifjelor m; = 1—x; else). In general, the number of minimal covers can
be exponential so the idea in BZ is to generate only the “k-small” ones, which are added
to the original relaxation. Here with ”k-small” we mean all the valid minimal covers
with all the variables from I (or J) but at most k, or at most k from I (or J). These
minimal covers can be enumerated in polynomial time for any fixed k. Then the set cover
approach is applied to the set cover problem given by the k-small minimal covers. If the
minimal covers are polynomially bounded this allows to generate the pitch bounded valid
inequalities as for set cover (see the application below). Roughly speaking, the “power”
of the BZ approach is given by the presence of the k-small minimal covers, if this set is
empty then the hierarchy is not stronger than a variant of the Sherali-Adams hierarchy
(see [2]).

The BZ approach can be reframed into the sos framework by choosing the appropriate
spanning polynomials. We omit the complete mapping because this would require the full
description of BZ that is quite lengthy. Moreover the currently known most important
application of BZ is given by the set cover problem, which has been fully explained in
previous sections. By way of example, we show in Section 6.1 that we do not need to
explicitly add the k-small minimal covers since they can implied by adding the “right”
polynomials. By using the explained ideas, it should be easy to fulfill the missing details.

6.1 k-Small minimal covers

Consider a generic inequality of any given integer problem as written in the covering form,
i.e. inequality g(z) = a'z — ag > 0 with a > 0 (here, abusing notation, every variable
is either the original one or its negation 1 —z;). For each such constraint let V, = supp(a)
be the set of variables in this constraint. Add to the Q4(k)-SOS polynomials the set of
all (C)-symmetric polynomials with C' C V,, and |C| < k. Consider any valid k-small
minimal cover of type ) ..~ x; > 1, with |C| < k (the other cases are similar). We sketch

3More precisely, in [4, 29] a closely related concept that is called obstruction is used.
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that it is @ 4(k)-sos derivable:

;:ci1:<;xil> g: Yo of | = lf:z1 > of

i=0 ICC:|I|=i i=0 ICC:|I|=i
—_———
symmetric symmetric
>0 <0
) €]
_ (Z LA D OITES ST B by TN Sl
i€Va\C T T 0 iEVa\C ieC i=1 1CCi|I|=i
symmetric
>0
» €]
E(z al_@)dg Zaixi—ao—l— Z ai(l—z;) | + Zz—l Z 51
ieVo\C %1 T 20 i€V, i€V, \C i=1 ICC:|I|=i
—_———
symmetric
2 2
= a;x; —ag | + 50 (1 - -’Ez) +
(\/ZZEV \C Qi — ) <Z§1 ) ie%c (\/ZZEV \C a; — ap ) V( :
gilT
s(z) 9(z) z(x
€] ?
(v s
ICC:|I|=i
so(x)

6.1.1 An application.

As in [4, 29], Theorem 5.2 can be generalized to handle 0/1 integer problems with non-
negative constraints having pitch bounded by a constant p. More precisely, consider the
feasible region for the 0-1 problem defined by A:

Fa={x€{0,1}": Ax > b} (21)

where b € R and each constraint in Az > b has pitch at most p. (For example any
inequality o'z — ap > 0 with nonnegative integral coefficients a; € {0,1,...,p} has pitch
at most p.) In this case the number of minimal covers is polynomially bounded. Since
the integral polytope defined by using the minimal covers and the integrality constraints
coincides with (21) (see e.g. [7]), then we can extend Theorem 5.2 to this more general
case.

7 Chvatal-Gomory Cuts

Consider the rational polyhedra P = {z € R™ : Az > b} with A € Z™*" and b € Z™.
Inequalities of the form (AT A)x > [ATb], with A € R™, \TA € Z", and A\b ¢ Z are
commonly referred to Chvatal-Gomory cuts (CG-cuts for short), see e.g. [7]. CG-cuts are
valid for the integer hull, P; = conv{z € {0,1}" : Az > b}, of P.
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It is well-known that it is sufficient to consider A-vectors with small entries:
PW = {(ATA)z > [ATb], A €[0,1]™ \TA e 2"} (22)

where PU) is commonly referred to as the first Chvdtal-Gomory (CG) closure. In par-
ticular P is a stronger relaxation of Pr than P, i.e. P; C P C P. We can iterate
the closure process to obtain the CG closure of P(). We denote by P this second
CG closure. Iteratively, we define the ¢-th CG closure P®) of P to be the CG closure of
PO for ¢ > 2 integer. An inequality that is valid for P®) but not P*~ is said to have
CG-rank t.

Eisenbrand and Schulz [8] prove that for any polytope P contained in the unit cube
[0,1], one can choose t = O(n?logn) and obtain the integer hull P®*) = P;. Rothvoss
and Sanité [27] prove that there is a polytope contained in the unit cube whose CG-rank
has order n?, thus showing that the above bound is tight, up to a logarithmic factor.

The CG-cuts that are valid for P(") and that can be derived by using coefficients in X of
value 0 or 1/2 only are called {0,1/2}-cuts. In [20] it is shown that the separation problem
for {0,1/2}-cuts remains strongly NP-hard even when all integer variables are binary and
P ={zr eR} : Az <1} with A € {0,1}"*" and 1 denote the all-one vector with m
entries. As pointed out in [20], the latter hardness proof can easily be adapted to set
partitioning and set covering problems. This result implies that it is NP-hard to optimize
a linear function over the first closure P(!). This provides an interesting contrast to lift-
and-project hierarchies (like Sherali-Adams, Lovasz-Schrijver, and s0S/Lasserre) where
one can optimize in polynomial time for any constant number of levels.

For an arbitrary fixed precision € > 0 and fixed positive integer ¢, choose m such that
(”TH)(] < 1+e¢. Bienstock and Zuckerberg (see Lemma 2.1 in [5]) prove that any solution
that satisfies the set of valid inequalities of pitch 7 can be rounded to approximate all the
CG-cuts constraint of rank ¢ to precision € > 0. It follows that the sos approach with high
degree polynomials described in this paper computes fixed rank CG (1 + ¢)-approximate
solutions for any fixed € > 0 in polynomial time as well (PTAS).

In the next section we present a somehow stronger result for packing problems, mean-
ing that the coefficients of the nonnegative matrix A are not restricted to be 0/1 (or
bounded, see Section 6.1) as for the set cover case. It remains an interesting open ques-
tion to extend the result for set cover to general covering problems, namely for general
nonnegative matrix A.

7.1 Approximate fixed-rank CG closure for packing problems

In the following we observe that for the packing problem the standard sos hierarchy with
bounded degree polynomials is sufficient to obtain fixed rank CG (1 — ¢)-approximate
solutions. It follows that the SOS approach can be used for approximating CG cuts of any
fixed rank and to any arbitrary precision for both, packing and set covering problems (BZ
guarantees this only for set covering problems).

Consider any m X n nonnegative matrix A, and let P be the feasible region for the
0-1 set packing problem defined by A: P = {x € {0,1}" : Az < b} where b € RY". For an
integer t > 0, denote by P® the t-th CG closure and let cg®(c) := max{c'z : x € P®}.
Without loss of generality, we will assume that ¢ € R’} (otherwise it is always optimal to
set x; = 0 whenever ¢; < 0).

We can extend the definition of pitch also for packing inequalities as follows. For
any given packing inequality ag — a'z > 0 with ag,a > 0 and indices ordered so that
0<ai <ay <---<apanda; =0forj > h,its pitch is the mazimum integer 7 = 7(a, ag)
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such that ag — >, a; > 0. For example, classical clique inequality z; < 1 have
pitch equal to one.

The following result for packing problems can be seen as the dual of Theorem 5.2 for
set cover. It can be easily obtained by using the so called “Decomposition Theorem” due
to Karlin, Mathieu, and Nguyen [13]. For completeness, here we sketch a direct simple

proof that follows the approach used throughout this paper.

i€clique

Lemma 7.1. Suppose ag —a'x > 0 is a valid inequality for P of pitch © = n(a, ag) with
ag,a > 0. Then ag — a' = admits a R,1[x]-S0S representation.*

Proof. Let S = supp(a) and 2’ = [],.; z;. Note that for any I C S we have 2/ (ag—a'z) =
zl(ag — > ey @i — > igr iwi) (mod I(Z3)). Let F:={I C S : (ap— 3 ;c;a;) < 0} and
T:={JCS:J¢&F} (and therefore if we set to one all the variables x; with ¢ € I for
any I € F then the assumed valid inequality ap — a'x > 0 is violated). Let V := {x €
R": 2! =0VI € F, 22 — 2, = 0 Vk € [n]} and note that any feasible integral solution
belongs to V. Any &5 is actually equivalent (mod I(V')) to a polynomial 6" of degree at
most 7 (obtained from 6§ by zeroing all the monomials ! with I € F and therefore at
least all the monomials of degree larger than 7). Note that >, 67 = YT 67 =1,

(5}9)2 = 5}9 (mod I(V)) and 5}9(@0 —a'z) = SIS(ao — > ier @) (mod I(V)). Then

=1 >0
ag—a'x = (ao - aT:E) Z o7 | = Z (ao - Z ai) (67)*  (mod I(V)) (23)
ICT I€T iel
so(x)

From the above equivalence we see that ag — a'x can be written (mod I(V)) as a

conical combination of squares of polynomials of degree at most .

By definition of the equivalences (mod I(V)) and (mod I(Z%)), we can now easily
transform the equivalence (mod I(V')) into the equivalence (mod I(Z%)) as given by (5)
by adding some polynomials from I(V)\I(Z%). It is easy to argue that these polynomials
have degree O(m). (More details will appear in the longer version of this paper.) O

Let Pr(d) denote the set of feasible solutions for Ry 1[x]-S0s projected to the original
variables. The following simple result shows that fixed rank CG closures of packing
problems can be approximated to any arbitrarily precision in polynomial time by using
the sos hierarchy.

Theorem 7.2. For each integer t > 0 and € > 0 there are integers d = d(t,e) such that
max{c'z:x € Pr(d)} < (1+¢)cg®, for any c € R

Proof. For any fixed ¢ > 0 and integer ¢ > 0 choose d > 0 integral large enough that
((d+1)/d)t < 14e&. Consider the solution z() obtained by multiplying any given solution
x € Pr(d) by a factor equal to (ﬁ‘ll)g. It follows that max{c'z : x € Pr(d)} is not larger
than a factor of (d%;l)g of the value of z(¥). Now the claim follows by showing that 2(*) is
feasible for the rank-t CG closure.

The proof is by induction on ¢. As a base of induction note that when ¢ = 0 then clearly
2 satisfies all the original constraints. Assume now, by induction hypothesis, that the

claim is true for any rank equal to (¢ — 1) with ¢ > 1 and we need to show that it is valid

4This is the standard bounded degree S0S proof system.
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also for rank-t. If the pitch of a generic rank-¢ valid inequality for P® is at most d then
by Lemma 7.1 it follows that any feasible solution = € Pr(d) (and therefore z(9)) satisfies
this inequality. Otherwise, consider a generic rank-t valid inequality |ag| — a2 > 0 of
pitch larger than d, where ag — a2z > 0 is any valid inequality from the closure P¢—1).
By induction hypothesis note that ag—a ' (=1 > 0. Since the pitch is higher than d then
ag > d (vector a can be assumed, w.l.o.g., to be nonnegative and integral) and therefore
Zgj < d%l and by multiplying the solution z(*-1 e Pt~ by d/(d 4+ 1) we obtain a
easible solution for the rank-t CG closure. 0

Open Problems. It would be nice to understand if it is possible (i) to generalize
Theorem 5.2 to work with general covering problems, (ii) to get a PTAS to approximate
all the CG-cuts constraints for more general problems.

Acknowledgment. This paper is dedicated to Elsa.

References
[1] Y. H. Au and L. Tuncel. A comprehensive analysis of polyhedral lift-and-project methods.
SIAM J. Discrete Math., 30(1):411-451, 2016.

[2] Y. H. Au and L. Tungel. Elementary polytopes with high lift-and-project ranks for strong
positive semidefinite operators. arXiv preprint arXiv:1608.07647, 2016.

[3] N. Bansal. Hierarchies reading group. http://www.win.tue.nl/ nikhil /hierarchies/index.html.

[4] D. Bienstock and M. Zuckerberg. Subset algebra lift operators for 0-1 integer programming.
SIAM Journal on Optimization, 15(1):63-95, 2004.

[5] D. Bienstock and M. Zuckerberg. Approximate fixed-rank closures of covering problems.
Math. Program., 105(1):9-27, 2006.

[6] G. Blekherman, P. A. Parrilo, and R. R. Thomas. Semidefinite optimization and convex
algebraic geometry, volume 13. Siam, 2013.

[7] M. Conforti, G. Cornuejols, and G. Zambelli. Integer Programming. Springer Publishing
Company, Incorporated, 2014.

[8] F. Eisenbrand and A. S. Schulz. Bounds on the chvatal rank of polytopes in the 0/1-cube.
Combinatorica, 23(2):245-261, 2003.

[9] H. Fawzi, J. Saunderson, and P. A. Parrilo. Equivariant semidefinite lifts and sum-of-squares
hierarchies. STAM Journal on Optimization, 25(4):2212-2243, 2015.

[10] S. Fiorini, T. Huynh, and S. Weltge. Strengthening convex relaxations of 0/1-sets using
boolean formulas. https://arziv.org/abs/1711.01358v1, November, 2017.

[11] K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of
squares. Journal of Pure and Applied Algebra, 192(1):95-128, 2004.

[12] D. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Complexity of semialgebraic proofs. Moscow
Mathematical Journal, 2(4):647-679, 2002.

[13] A. R. Karlin, C. Mathieu, and C. T. Nguyen. Integrality gaps of linear and semi-definite pro-
gramming relaxations for knapsack. In Integer Programming and Combinatoral Optimization
- 15th International Conference, IPCO, pages 301-314, 2011.

[14] A. Kurpisz, S. Leppéanen, and M. Mastrolilli. Sum-of-squares hierarchy lower bounds for
symmetric formulations. In Integer Programming and Combinatorial Optimization - 18th
International Conference, IPCO 2016, pages 362—-374, 2016.

18



[15]

A

A. Kurpisz, S. Leppénen, and M. Mastrolilli. Tight sum-of-squares lower bounds for bi-
nary polynomial optimization problems. In 43rd International Colloguium on Automata,
Languages, and Programming, ICALP 2016, pages 78:1-78:14, 2016.

A. Kurpisz, S. Leppénen, and M. Mastrolilli. On the hardest problem formulations for the
0/1 lasserre hierarchy. Math. Oper. Res., 42(1):135-143, 2017.

A. Kurpisz, S. Leppénen, and M. Mastrolilli. An unbounded sum-of-squares hierarchy inte-
grality gap for a polynomially solvable problem. Mathematical Programming, Jan 2017.

J. B. Lasserre. Global optimization with polynomials and the problem of moments. STAM
Journal on Optimization, 11(3):796-817, 2001.

M. Laurent. A comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre relaxations
for 0-1 programming. Mathematics of Operations Research, 28(3):470-496, 2003.

A. N. Letchford, S. Pokutta, and A. S. Schulz. On the membership problem for the {0,
1/2}-closure. Oper. Res. Lett., 39(5):301-304, 2011.

M. Mastrolilli. High degree sum of squares proofs, bienstock-zuckerberg hierarchy and CG
cuts. In Integer Programming and Combinatorial Optimization - 19th International Confer-
ence, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 405416,
2017.

Y. Nesterov. Global quadratic optimization via conic relaxation, pages 363-384. Kluwer
Academic Publishers, 2000.

P. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Ro-
bustness and Optimization. PhD thesis, California Institute of Technology, 2000.

P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math.
Program., 96(2):293-320, 2003.

P. Pudlak. Lower bounds for resolution and cutting plane proofs and monotone computations.
J. Symb. Log., 62(3):981-998, 1997.

A. Raymond, J. Saunderson, M. Singh, and R. R. Thomas. Symmetric sums of squares over
k-subset hypercubes. arXiv preprint arXiv:1606.05639, 2016.

T. Rothvofl and L. Sanita. 0/1 polytopes with quadratic chvétal rank. In Integer Program-
ming and Combinatorial Optimization - 16th International Conference, IPCO, pages 349-361,
2013.

N. Shor. Class of global minimum bounds of polynomial functions. Cybernetics and Systems
Analysis, 23(6):731-734, 1987.

M. Zuckerberg. A set theoretic approach to lifting procedures for 0, 1 integer programming.
PhD thesis, Columbia University, 2004.

Background material

Definition A.1. The ideal generated by a finite set of polynomials {f1,..., fm} in R[x]
is defined as

ideal (f1,..., fm) =={fIf =D _tifi t; €R[X]}

i=1

Definition A.2. The set of polynomials that vanish in a given set S C R™ is called the
vanishing ideal of S and denoted:

I(S) :={f eR[x]: f(a1,...,a,) =0 V(ay,...,a,) € S}
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Definition A.3. Let {f1,..., fm} in R[X] be a finite set of polynomials in R[x]. Let V
be

V(fi,---s fm) = {(a1,...,an) € R"|fi(a1,...,ap) =0 1<i<m}
We call V(fi,..., fm) the affine variety defined by fi,..., fm.

Definition A.4. Let I be an ideal, and let f,g € R[x|. We say f and g are congruent
modulo I, written

f=g (modlI)

if f —g € 1. The quotient ring R[x|/I is the set of equivalence classes for congruence
modulo 1.

Quotient rings are particularly useful when considering a polynomial function p(z)
over the algebraic variety defined by V(f1,..., fim).

Proposition A.1l. If we define the ideal I = ideal(f1,..., fm), then any polynomial q
that is congruent with p modulo I takes exactly the same values in the variety.

The set of functions that vanish on the boolean hypercube Z§ is the ideal I(Z%) in
R[x] generated by the polynomials 22 — x; for all i € [n]. In this paper we focus on
R[Z%], i.e. the set of functions on Z%. This set can be identified with the quotient ring
R[x]/I(Z%). The elements of R[x]/I(Z5) are in bijection with the square-free polynomials
in R[x], namely, those polynomials in which every monomial is square-free or multilinear.
As a vector space, it will be convenient to identify R[Z5] with the set of all square-free
polynomials in R[x].

A multivariate polynomial is a sum of squares (s0s) if it can be written as the sum
of squares of some other polynomials. Formally, we have the following.

Definition A.5. A polynomial p € R[x] is a sum of squares (SOS) if there exists q1, ..., qm €
R[x] such that p=>"1", ¢>.

It quickly follows from its definition that SOS polynomials are invariant under nonneg-
ative scalings and convex combinations; i.e., it is a convex cone. If a feasible set is defined
by a system of inequalities {g1(x) > 0,...,g¢(x) > 0} then we can define the following
nonnegative region on the feasible set.

Definition A.6. Given a set of multivariate polynomials {g1,...,g¢}, let

l
cone(gi,...,q0) = {glg = so + Zsigi}

i=1
where each s; € R[x] is a SOS.

These algebraic objects will be used for deriving wvalid inequalities, which are logical
consequences of the given constraints. Note that by construction, every polynomial in
ideal (f;) vanishes in the solution set of f;(x) = 0. Similarly, every element of cone(g;)
is clearly nonnegative on the feasible set of g;(z) > 0.

Notice that as geometric objects, ideals are affine sets, and cones are closed under
convex combinations and nonnegative scalings (i.e., they are actually cones in the convex
geometry sense). These convexity properties, coupled with the relationships between SDP
and s0s, will be key for our developments.
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B Sum of squares over the boolean hypercube

B.1 The complexity of computing ()-SOs representations

Lemma B.1. Consider any finite set of polynomials S C R[x]/I(Z) with |S| = n®®
and let Q@ = (S). Then the existence of a QQ-SOS representation can be decided by solving

a semidefinite programming feasibility problem. The dimension of the matrix inequality
is bounded by n°@

In the following we sketch the proof of the above lemma. If f is ()-SOs, then a SOS
certificate for it can be found by solving semidefinite programs (see e.g. [6] for more
details and Example B.1 below). Indeed, by simply expanding the right-hand side of (4)
as expressed in multilinear form, and matching the coefficient of x, we obtain a system
of linear equalities with the coefficients of polynomials s;(z) as variables. We need now
to impose that each s;(x) is a s0s. Let us review this. We start considering the case
that the polynomials are expressed in the standard monomial basis. Let P([n]) denote
the collection of all subsets of [n] and let N = |P([n])|. Then any polynomial can be seen
as a vector in RP®Y) and let = denote the vector of all possible multilinear monomials of
degree at most n (so x is a vector with N entries).

Lemma B.2. Let s(x) € R[x]. The following statements are equivalent:
1. s(z) has a representation as a sum of squares in R[x].

2. There is a matriz W such that s(z) = "Wz with W = 0 and x is the vector of
different multilinear monomials.

Proof. The matrix W is PSD if and only if there is a factorization W = VTV. If this
holds then s(z) =2 Wz =2V Vz = (Va) (Vz) =3, ((Vz);)? is a s0s. Vice versa,
if s(z) =), ((Vz);)? then going backward in the previous equality the claim follows. [

By using the previous lemma it follows that s(x) is a sos if and only if there is a
symmetric matrix W (known as the Gram matrix of the SOS representation) that satisfies:
s(z) = 2" Wa, W = 0. Notice that the latter is a semidefinite program, since s(z) =
' Wz is affine in the matrix W, and thus the set of possible Gram matrices W is given
exactly by the intersection of an affine subspace and the cone of positive semidefinite
matrices.

Consider any finite set of polynomials S C R[x]/I(Z%) with |S| = n°@ and let
Q = (S) (for any positive constant d). Let S be the matrix having as columns the
spanning set S. It follows that for any vector ¢ € Q there is a vector u € RIS! such that
q = Su.

Since we are assuming that s(x) is @-s0S then s(z) = ), ((Vz);)* and each (Vz);
belongs to @ and therefore there exists a u; € RIS| such that (Su;)'z = (Va);. Let U
denote the matrix whose columns are the u;, then we have the following: . (Va))? =
z " S(UUT)STz. Polynomials are expressed in the new basis Sz (this basis is in general
not isomorphic to the standard monomial basis of degree d) and the complexity is given
by the size of the matrix UU T, i.e. n9@,

By the above discussion it follows that a Q-SOS proof (i.e. a proof where the nonnega-
tive can be proved only for polynomials that admit a Q-SOS representation) is completely

specified by giving the set of spanning polynomials.
Example B.1. Consider the following set F = {x € R2: 2 —x% = I9 —a;% =0,21+x2—
e > 0} where e € (0,1). We want to show that the valid inequality x1 + 9 —1 > 0 admits
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a (S)-s0s representation, where S is the set of the elementary symmetric polynomials
in 2 variables, i.e S = {1,x1 + x2, 122} and therefore (S) is the ring of all symmetric
polynomials. Let x = [1,11, 29, x122]", the matriz S is equal to

1 00

010 o aT T
S = 01 0 and the new basis is '« = [1,x1 + z2, 122 ' .

0 01

We want to show that F |—<S> x1 4+ 22 — 1 > 0 therefore we need to show that
x1+x2 —1=50(x) + s1(x)(r1 + 22 —€) (mod I(Z7)) (24)

where sg,s1 € {s € R[x] : s = 3. qi(x)%,¢; € (S)}. By Lemma B.2 there are two PSD
matrices Wy and Wy such that so(x) = ' Wox and s1(x) = ' Wiz with the additional
constraint on the structure of Wy and W1 given by the restriction that ¢; € (S). Let us first
perform the change of basis o; = (S'x); for i =0,1,2. So the new variables are oy = 1,
01 = 21 + x2 and o3 = x1x2 and the corresponding vector form o = [1,01,02]T. Note
that in the new basis 0? = o1 + 202 (mod I(Z3)), 02 = o2 (mod I(Z%)) and o109 = 209
(mod I(Z%)) which correspond to the multilinear forms in the new basis. By rephrasing
our goal in the new basis, we need to show that

o1—1=0"Tyo + (0 ' T1o)(o1 —¢) (mod I(Z3)) (25)

tioo tio1  tio2
for some PSD matrices Ty, Ty with T; = |tio1 ti11 tiz| for i =0,1. By writing (25)

tioz  tin2  tiz2
in the multilinear form, our goal is to prove that there are two PSD matrices Ty, T1 such

that the following is satisfied:

o1 — 1 =tooo — et100 + (to11 + 2too1 + tioo + (t111 + 2t101)(1 —€)) o1+

@ B
(2to11 + to22 + 2too2 + 4to12 + 66111 + 4t101 + 2t122 + 4t102 + 8t112 — (28111 + t122 + 2t102 + 4t112) 02

5

So the solution of the following SDP= {a = —1,8=1,7=0,Tp = 0,71 = 0} gives the de-
sired (S)-S0S representation. By choosing Ty = [0,0,1]7[0,0,1] and Ty = %[1, ~1,1]7[1, —1,1]
the SDP is satisfied.

B.2 The complexity of (S)-s0s relaxation (9)

Lemma B.3. Consider any S C R[x]/I(Z}). Then the (S)-sos relazation (9) is a
semidefinite programming with m + 1 matriz inequalities. The dimension of each matriz
inequality is bounded by |S|.

We sketch the proof of the above lemma. The positivity condition (7) corresponds
to the fact that, when viewed as a matrix, L[] is positive semidefinite. Indeed, consider
the (exponentially large) moment matriz M € RP([7) % RP(") where the generic entry
My = yrus = L{[Tiequy @], with I,J € P([n]) and yg = L[1]. Then any multilinear
polynomial ¢ € (S) can be written as q(x) = > ;c, 91 [1;e; i for some gy, as written
in the standard monomial basis. Note that we are using and restricting to multilinear
polynomials. Let ¢ denote the vector representation of g(z), i.e. the column vector of the
coefficients of ¢(x), then condition (7) is equivalent to require ¢" Mq >0V ¢ € (S).
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We now consider a change of basis. Let S denote the matrix whose columns are the
vectors from S. The vector representation of ¢ € (S) belongs to the vector space of matrix
S, namely ¢ = Su, for some vector u € RISl Tt follows that if we restrict to polynomials
q € (S) then condition (7) is equivalent to require

g Mg=u" (STMS>'LLZO v u e RIS
N——
Mis)

and therefore condition (7) is equivalent to the PSD condition M5y = 0. A similar
argument holds for the other condition (8). It follows that the restriction to polynomials
from (S) implies that the computation of a solution to (7)-(8) boils down to solving
a semidefinite programming problem where the dimension of each matrix inequality is
bounded by |S|.

Note that when S is the set of monomials of degree at most d, then M) is equal to
the familiar truncated moment matriz (see e.g. [19]) with rows and columns indexed by
sets of size at most d. More in general, the polynomials u are expressed in the new basis
o1,...,04, where o; = (STx); and t = |S| (here  denotes the vector of all multilinear
monomials and the column vector of S are the representation of the vectors from S
according to the standard monomial basis).

C Omitted proofs

C.1 Proof of Lemma 5.4

The proof will be by induction on m = 7(a, ap). If # = 0 it follows that Fp = {z : z €
{0,1}"} and V = . As a pitch zero constraint we must have ag < 0, so since a > 0,
a'z — ag > 0 is indeed valid for Fg = {z : = € {0,1}"} and for Fage =Fa (#0).

Assume now that the claim holds for all valid inequalities of pitch p, p < 7 —1 > 0,
and consider a valid inequality a 'z — ag > 0 of pitch m. Note that there must be some
A, C supp(a) for v € [m] or else we could set z; = 0 for all j € supp(a), and z; =1
everywhere else, and thereby satisfy every constraint and nevertheless have 'z = 0 (so
contradicting the hypothesis that a'x — ag > 0 is a valid inequality of pitch 7 > 1).
Choose A, C supp(a). Note that we are assuming, w.l.o.g., that A is minimal, so there is
no A;, with ¢ € [m] and i # v, that is a proper subset of A,. Let v(1) € A, be the index
of the minimum coefficient a; : j € A,, where a; is the coefficient of variable x; in the
valid inequality o'z — ag > 0.

We first obtain a strengthen by setting to zero all the variables from V,,, where V,, are
all the variables from all A;, with ¢ # v, that appear in A, — {v(1)}, i.e. V, := (4, —
{v(D)}) N(UizpAi). Consider Fa,,,  and note that Fa, = # 0 because by assumption
no A; C A, and therefore (a'z — ao)@,v,) = 0 is a valid inequality for Fyu,, . Set
Ty) = 1lin (a'z— ao)(,v,) = 0 to get (a'z— ao)({v(1)},v,) = 0 which is a valid inequality
for Fa.,,- Note that the pitch p of (a2 — ao)({v(1)},v,) is such that p < 7 — 1 and
therefore, by induction hypothesis, it satisfies the properties of the claim when we consider
(a'x — ao)({v(1)},v,) = 0 as valid inequality for Fagv,,  Let a’ be the vector that is
obtained from a by setting to zero all the coefficients from V,U{v} and let af, := ag— Ay (1)s
so (a'x — ao0) (fv(1)},Ve) = ala— ag. By the induction hypothesis there must be a subset
C’ of the rows from A" := Ay, such that |C"| < p and

Al C supp(a') Vie ' (26)
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Bj=Aj— |J A.#0 vieC (27)

reC’'—{i}
(a/Tx— ag),vry > 0is valid for Fpr = {x € {0,1}" : Z r;>1,ieC}  (28)
jEB!
Fuy o 20 (29)

where V' is the set of variables occurring in more than one row from C’.

Define the collection C' := {v} U C” and therefore Condition (14) is satisfied for this
collection by construction.

Define B; for ¢ € C as in the statement of the claim. Clearly B; = Bj for i € '
as these sets had their indices that overlap with A, — {v(1)} removed, and they never
overlapped v(1) (because they belong to supp(a’)). Moreover, v(1) € B, so B, # (), and
Condition (15) is satisfied as well.

Suppose now that we are given an arbitrary = € {0,1}" that satisfies Fp. Consider
that we must have x; = 1 for some j € B,, that a; > a,(;), and that, since all B; for
i € C are disjoint, if we define 2’ to be the same as « but with z; = 0, then 2’ still satisfy
all 7 cp x > 1 for i € C'. Thus by induction vtz > ag — ay(1) Which implies that
a'r=ad"2 +ajzj=a 2 +a; >ay— ay(1) + a; > ag. This proves Property (16).

To prove Property (17) we show that we can set to zero all the overlapping variables
from the rows in C, namely the variables from V and still get a non empty set of integral
solutions, i.e. Fa,, # 0. Indeed, by the induction hypothesis we have that }_A/((o,v/) # 0,

where Al(@,vf) = A(p,v,uv). Therefore Fyu, , # 0 because V C V, UV".

C.2 Proof of Theorem 4.1

Before proving the bound given in Theorem 4.1 on the number of levels for our simple
example we need some preliminaries. In particular we first introduce the sos hierarchy in
matrix form that is more convenient for proving lower bounds. In the following we assume
that the sos hierarchy is the “standard” one, namely the one that follows by considering
the subspace of bounded degree polynomials as functional basis.

C.2.1 The Sum-of-Squares hierarchy in matrix form

Consider the sos hierarchy for approximating the convex hull of the semialgebraic set
P ={xe{0,1}" | go(x) = 0,V € [p]} (30)

where g;(x) are linear constraints and p a positive integer. The form of the sOs hierarchy
we use here is equivalent to the one introduced before and follows from applying a change
of basis to the dual certificate of the refutation of the proof system (see [14] for the
details on the change of basis). We use this change of basis in order to obtain a useful
decomposition of the moment matrices as a sum of rank one matrices of special kind.

For any I C N ={1,...,n}, let 7 denote the 0/1 solution obtained by setting z; = 1
fori e I, and x; =0 for i € N\ I. For a function f : {0,1}"" — R, we denote by f(z;) the
value of the function evaluated at xy. In the sOs hierarchy defined below there is a variable
y}v that can be interpreted as the “relaxed” indicator variable for the solution x;. We
point out that in this formulation of the hierarchy the number of variables {y» : I C N}
is exponential in n, but this is not a problem in our context since we are interested in
proving lower and upper bounds rather than solving an optimization problem.
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Let P;(N) be the collection of subsets of N of size at most t € N. For every I C N,
the g-zeta vector Z; € RP«(N) is a 0/1 vector with J-th entry (|.J| < q) equal to 1 if and
only if J C I.> Note that Z IZ}r is a rank one matrix and the matrices considered in
Definition C.1 are linear combinations of these rank one matrices.

Definition C.1. The t-th round SoS hierarchy relazation for the set P as given in (30),
denoted by SOS;(P), is the set of variables {yY € R:VI C N} that satisfy

oyt =1, (31)

ICN
Z yNZiZ] = 0, where Z; € RP+1(Y) (32)
ICN
> gyt Z1Z] = 0, VE€ [p], where Zp € RPN (33)

ICN

It is straightforward to see that the SoS hierarchy formulation given in Definition C.1
is a relaxation of the integral polytope. Indeed consider any feasible integral solution
x; € P and set y» = 1 and the other variables to zero. This solution clearly satisfies (31)
and (32) because the rank one matrix Z;Z] is positive semidefinite (PSD), and (33) since
xr € P.

For a set @ C [0, 1]", we define the projection from S0S¢(Q) to R™ as z; = > ;c;cn Y
for each i € {1,...,n}. The SoS rank of Q, p(Q), is the smallest ¢ such that S0S;(Q)
projects exactly to the convex hull of @ N{0,1}".

C.2.2 Using symmetry to simplify the PSDness conditions

In this section we present a theorem given in [14] that can be used to simplify the PSDness
conditions (32) and (33) when the problem formulation is very symmetric. More precisely,
the theorem can be applied whenever the solutions and constraints are symmetric in the
sense that wY = w’ whenever |I| = |J| where wY is understood to denote either y& or
ge(z I)yfv . In what follows we denote by R[z] the ring of polynomials with real coefficients

and by R[z]|4 the polynomials in R[z] with degree less or equal to d.

Theorem C.1 ([14]). For any t € {1,...,n}, let S; be the set of univariate polynomials
Gn(k) € R[k], for h € {0, ... ,t}, that satisfy the following conditions:

Gh(k)) S R[k]gt (34)
Gn(k)=0 forke{0,...,h—1}U{n—h+1,...,n}, when h > 1 (35)
Gn(k) >0 forkelh—1,n—h+1] (36)
For any fized set of values {w,]cv eER:k=0,...,n}, if the following holds
n—h
ny N
> <k> wGL(k) >0 YGL(k) € S (37)
k=h

then

n
Sul Y 77 2o
k=0 ICN

|I|=k

where Z1 € RPN

°In order to keep the notation simple, we do not emphasize the parameter ¢ as the dimension of the
vectors should be clear from the context.
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Note that polynomial G (k) in (36) is nonnegative in a real interval, and in (35) it is
zero over a set of integers. Moreover, constraints (37) are trivially satisfied for h > [n/2].

C.2.3 The simple example proof

The single constraint of the simple example can be rewritten, w.l.o.g., as follows:

n
1
g(x)—;:ci—L—i—l—PZO

where L and P are positive integers. Clearly any integral {0, 1}-solution requires to set
to one at least L variables.

Let (LP) be the polytope {z € [0,1]" : g(x) > 0}. The SOS rank is the minimal
number of levels needed to obtain the integer hull (I P) of (LP).

In the following we will restrict the analysis to L < [n/2]. Consider any solution that
satisfies the following conditions:

y =0 fork<L-2
y >0 fork>L-1 (38)
Zﬁzoyﬁ(ﬁ)zl

Note that in (38) we do not impose any restriction on the exact value of the positive
probabilities. The value of the suggested solution is Y ,_; (Z) y,ivk By choosing P
sufficiently large we will show that almost all the probability mass (but an arbitrarily

small part) can be assigned to y]LV_l, resulting therefore into an objective function value
_L

equal to L — 1 +¢, (for any € > 0) and an integrality gap of —5-.

Lemma C.2. For L < [n/2] and a suitable large value of P that depends on n the SOS
rank for (LP) is at least n — L + 1.

Proof. For any solution that satisfies (38) there is a unique nonpositive term in conditions
(37), namely 2 GR(L — 1) = y¥ [ (=1/P)Gp(L — 1) = —eGx(L — 1) (for some ¢ =
yN /P > 0), where we use the following notation zi' =y g(k) (with g(k) denoting the
value of the constraint g(z) when exactly k variables are set to one).

If we chose h such that L —1 = n — h then we would have that z}Y G}, (k) is equal to
zero for all kK # n — h, and by choosing G}, (k) such that G,(L — 1) > 0 we would have
that (37) is never satisfied. To avoid this problem we assume that L —1 <n —h — 1 and
since h < |n/2], the claim holds when L <n — |n/2] = [n/2].

According to Theorem C.1 and (38) note that

e Gp(k) has 2t roots.

o Gj(k) has at least h —1+1+n—(n—h+1)+ 1 = 2h roots outside the (open)
interval (h —1,...,n —h+1).

e Gp(k) has at most 2(t — h) roots within the (open) interval (h —1,...,n —h+ 1).
Moreover Gp(k) > 0 for any k € (h—1,...,n — h + 1) and therefore the at most
2(t — h) roots that are within the (open) interval (h—1,...,n—h+ 1) must appear
in pairs. It follows that G (k) has at most ¢ — h different roots within the (open)
interval (h —1,...,n—h+1).
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Consider any h such that h < L —1<n—h—1(if L —1 < h —1 then (37) is trivially
satisfied). Note that there are n — h — L + 1 terms zY > 0 for k € {L,...,n — h} (note
that L < n — h by assumption, so set {L,...,n — h} is never empty). From the above
arguments we know that Gy, (k) has at most ¢ — h different roots within the (open) interval
(h—1,....,n—h+1). Soif t — h is strictly smaller than the number n —h — L + 1 of
terms z > 0 (with k € {L,...,n — h}) then it exists a k* € {L,...,n — h} that is
not a root for G (k) and such that 2P (1) Gr(k*) > 0 (recall that G (k) > 0 within the
considered interval which implies that G}, (k*) > 0). The latter condition is satisfied when
t—h <n-—h— L, namely when t <n — L. It follows that if ¢ < n — L then there exists
ak*€{L,...,n— h} such that z}Y (,?)Gh(k*) > 0. Moreover, let r1,...,r9 be the roots
of Gp(x). It is easy to see that k* € {L,...,n — h} can be chosen such that the following
two conditions are both satisfied:

|k* —r;| > 1/2  for every i € [2t] (39)
2 ()6 =0 (40)

Let j* such that k* = L — 1+ j*, where j* € {1,...,n—h — L+ 1}. The claim follows
by showing how to choose P such that:

n

N
% Yr— n
ziv_lﬂ*(L_lH*)Gh(L—lﬂ ) > ;1<L_1)Gh<L—1>

From (40) the above condition is equivalent to satisfy the following

N n
N Yr—1 (L 1) Gi(L —1)
B T ) L1 ) 4

Clearly, the interesting cases are when G, (L — 1) > 0. By the latter, (39) and (40), we
have that:

Gi(L H L—1-r <ﬁ<1+ J > <[+ 2
Ga(L —1+y AR e e R ~ AT Ty et ’

=1
(42)
By (42), if the following is satisfied then (41) holds.
N n
2 gy > prl(“) (14 25%)* (43)
(L 1+5* )
Then it is sufficient to choose P such that
v (1) (14250
Y144+ (L71+j*) J
Note that the right-hand-side of the above inequality is bounded by a function of n.
O
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D On a very recent claim by Fiorini et al. [10]

We describe the approach suggested in [10] for the 0/1 set cover problem which is also
the main application advertised in the abstract. We observe in the following that their
approach is essentially based on similar arguments as in this paper (formerly appeared in
[21]) but specialized for a weaker framework that does not generalize to packing problems
(see Section 7.1). We sketch this for pitch 2 in the following. The generalization to any
pitch is straightforward.

Let A be the m x n set cover matrix defined as in (21) and let A;; denote the (i, j)-
entry of A. By overloading notation, we will interchangeably use A; to denote the i-th
row of A and its support. In [10], they consider the canonical monotone formula for set
cover:

¢ = /\1 \ (44)

Aij=1

Starting with any convex set @ C [0, 1]™ containing F4 (see (21)) the improved relaxation
is obtained by recursively “feeding” @ into the formula ¢, denoted by ¢(Q) and defined
as follows:

$(Q) :=(Neconv | |J{zre@:a;=1} (45)
=1

Ajj=1

By starting with @ := [0,1]™ it is easy to see that ¢([0,1]") = {x € [0,1]" : Ax > e}.
This is also the base of induction in the proof of Lemma 5.4 in this paper. So their
approach obtains, after the first application, the starting linear program relaxation that
corresponds to all pitch one inequalities (also used in (20)). Now let @ := ¢([0,1]™) and
let’s analyze the second application, namely ¢(Q) = ¢([0, 1]"):

»(Q) := ﬂ conv U {zr€0,1]": Az > e,zj; = 1} (46)
=1

Aij=1

U;

It can be easily observed that the relaxation given by (46) is obtained by considering
the “interaction” of the i-th pitch 1 constraint (for any i € [m], see the outer intersection)
with any other constraint i € [m] from Az > e. The “interaction” is given by the common
variables, denoted by A;N Ay, in this paper, otherwise (i.e. j & Ap,) setting z; = 1 does not
effect the corresponding constraint Apx > 1. These are exactly the variables considered
in Vo with C = {i,h} (see Definition 5.1, Vo will be used to define the subspace of
polynomials @Q4(t)).

Lemma 5.4 gives a property of these interactions that are used for proving that these
pairs of interactions are sufficient to show pitch 2 inequalities. Higher pitches use recursive
polynomials which correspond to recursive application of ¢ by considering triplets for pitch
3 and so on, as in this paper.
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