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Abstract

Chvátal-Gomory (CG) cuts and the Bienstock-Zuckerberg hierarchy capture use-
ful linear programs that the standard bounded degree Sum-of-Squares (SoS) hier-
archy fails to capture.

In this paper we present a novel polynomial-time SoS hierarchy for 0/1 prob-
lems with a custom subspace of high degree polynomials (not the standard sub-
space of low-degree polynomials). We show that the new SoS hierarchy recovers the
Bienstock-Zuckerberg hierarchy. Our result implies a linear program that reproduces
the Bienstock-Zuckerberg hierarchy as a polynomial-sized, efficiently constructible
extended formulation that satisfies all constant pitch inequalities. The construction
is also very simple, and it is fully defined by giving the supporting polynomials.
Moreover, for a class of polytopes (e.g. set covering and packing problems) it opti-
mizes, up to an arbitrarily small error, over the polytope resulting from any constant
rounds of CG cuts.

Arguably, this is the first example where different basis functions can be useful
in asymmetric situations to obtain a hierarchy of relaxations.

1 Introduction

The Lasserre/Sum-of-Squares (SoS) hierarchy [18, 24, 26, 30] is a systematic procedure
for constructing a sequence of increasingly tight semidefinite relaxations. The SoS hier-
archy is parameterized by its level (or degree) d, such that the formulation gets tighter
as d increases, and a solution of accuracy ε > 0 can be found by solving a semidefinte
program of (mn log(1/ε))O(d) size, where n is the number of variables and m the num-
ber of constraints in the original problem. It is known that the hierarchy converges
to the 0/1 polytope in n levels and captures the convex relaxations used in the best

∗Supported by the Swiss National Science Foundation project 200020-169022 “Lift and Project
Methods for Machine Scheduling Through Theory and Experiments”. Preliminary version appeared
in IPCO’17 [23].
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available approximation algorithms for a wide variety of optimization problems (see e.g.
[3, 6, 19, 20] and the references therein).

In a recent paper Kurpisz, Leppänen and the author [16] characterize the set of 0/1
integer linear problems that still have an (arbitrarily large) integrality gap at level n−1.
These problems are the “hardest” for the SoS hierarchy in this sense. In another paper,
the same authors [17] consider a problem that is solvable in O(n log n) time and proved
that the integrality gap of the SoS hierarchy is unbounded at level Ω(

√
n) even after

incorporating the objective function as a constraint (a classical trick that sometimes
helps to improve the quality of the relaxation). All these “SoS-hard” instances have a
“covering nature”.

Chvátal-Gomory (CG) rounding is a popular cut generating procedure that is often
used in practice (see e.g. [7] and Section 6 for a short introduction). There are several
prominent examples of CG-cuts in polyhedral combinatorics, including the odd-cycle
inequalities of the stable set polytope, the blossom inequalities of the matching polytope,
the simple Möbius ladder inequalities of the acyclic subdigraph polytope and the simple
comb inequalities of the symmetric traveling salesman polytope, to name a few. Chvátal-
Gomory cuts captures useful and efficient linear programs that the bounded degree SoS
hierarchy fails to capture. Indeed, the “SoS-hard” instances studied in [16] are the
“easiest” for CG cuts, in the sense that they are captured within the first CG closure.
It is worth noting that it is NP-hard [22] to optimize a linear function over the first CG
closure, an interesting contrast to lift-and-project hierarchies where one can optimize in
polynomial time for any constant number of levels.1

Interestingly, Bienstock and Zuckerberg [5] proved that, in the case of set covering,
one can separate over all CG-cuts to an arbitrary fixed precision in polynomial time.
The result in [5] is based on another result [4] by the same authors, namely on a (positive
semidefinite) lift-and-project operator (which we denote (BZ) herein) that is quite dif-
ferent from the previously proposed operators. This lift-and-project operator generates
different variables for different relaxations. They showed that this flexibility can be very
useful in attacking relaxations of some set covering problems.

These three methods, (SoS, CG, BZ), are to some extent incomparable, roughly
meaning that there are instances where one succeeds while the other fails (see [2] for a
comparison between SoS and BZ, the already cited [16] for “easy” cases for CG cuts
that are “hard” for SoS, and finally note that clique constraints are “easy” for SoS but
“hard” for CG cuts [27], to name a few).

One can think of the standard Lasserre/SoS hierarchy at level O(d) as optimizing
an objective function over linear functionals that sends n-variate polynomials of degree
at most d (over R) to real numbers. The restriction to polynomials of degree d is the
standard way (as suggested in [18, 26] and used in most of the applications) to bound
the complexity, implying a semidefinite program of size nO(d). However, this is not

1It has often been claimed in recent papers, that one can optimize over degree-d SoS via the Ellipsoid
algorithm in nO(d) time. In a recent work, O’Donnell [25] observed that this often repeated claim is
far from true. However, this issue does not apply to most of the results published so far and to the
applications of this paper.
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strictly necessary for getting a polynomial-time algorithm and it can be easily extended
by considering more general subspaces having a “small” (i.e. polynomially bounded) set
of basis functions (see e.g. Chapter 3 in [6] and [9, 11]). This is a less explored direction
and it will play a key role in this paper. Indeed, the more general view of the SoS
approach has been used so far to exploit very symmetric situations (see e.g. [9, 11, 28]).
For symmetric cases the use of a different basis functions has been proved to be very
useful.

To the best of author’s knowledge, in this paper we give the first example where
different basis functions can be useful in asymmetric situations to obtain a hierarchy of
relaxations. More precisely, we show how to reframe the Bienstock-Zuckerberg hierarchy
[4] as an augmented version of the SoS hierarchy that uses high degree polynomials (in
Section 4 we consider the set cover problem, that is the main known application of the
BZ approach, and in Section 5 we sketch the general framework that is based on the
set cover case). The resulting high degree SoS approach retains in one single unifying
SoS framework the best from the standard bounded degree SoS hierarchy, incorporates
the BZ approach and allows to get arbitrary good approximate fixed rank CG cuts
for both set covering and packing problems, in polynomial time (BZ guarantees this
only for set covering problems). Moreover, the proposed framework is very simple and,
assuming a basic knowledge in SoS machinery (see Section 2), it is fully defined by giving
the supporting polynomials. This is in contrast to the Bienstock-Zuckerberg’s hierarchy
that requires an elaborate description [4, 32]. Finally, as observed in [1] (see Propositions
25 and 26 in [1]), the performances of the Bienstock-Zuckerberg’s hierarchy depend on
the presence of redundant constraints.2 The proposed approach removes these unwanted
features.

We emphasize that one can also generalize the Sherali-Adam’s hierarchy/proof sys-
tem in the same manner to obtain the covering results. We will give a detailed descrip-
tion of this in the following. So the formulation that we are going to describe for the set
cover problem is actually an explicit linear program, see Section 4.2, that reproduces the
Bienstock-Zuckerberg hierarchy as a polynomial-sized, efficiently constructible extended
formulation that satisfies all constant pitch inequalities.

Paper Structure: In order to make this article as self-contained as possible and
accessible to non-expert readers, in Section 2 we give a basic introduction to SoS-
proofs/relaxations. However, we provide an introduction from a more general point of
view, namely in terms of a generic subspace of polynomials. This is the “non-standard”
flavour that will be advocated in this paper.

In Section 3 we consider a family of elementary Chvátal-Gomory cuts that are “hard”
for the standard Lasserre/d-SoS relaxation. More precisely, for every L, we show that
there exists ε > 0 such that the set {x ∈ [0, 1]n :

∑n
i=1 xi ≥ L+ ε} has Lasserre rank at

least n−L. On the other side, this can be easily fixed by using a different basis of high
degree polynomials.

2I thank Levent Tunçel for pointing out his work to me [1].
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Our main application is given in Section 4, where we show that the SoS framework
equipped with a suitably chosen polynomial-size spanning set of high degree polynomials,
produces a relaxation, actually a compact linear program, for set covering problems for
which all valid inequalities of a given, fixed pitch hold (Theorem 4.1). The general BZ
approach is discussed in Section 5.

In Section 6, we give the packing analog of Theorem 4.1. In this case the standard
SoS hierarchy is sufficient. Moreover, we show that the optimal value of maximizing a
linear function over the d-th CG closure of a packing polytope (an NP-hard problem in
general) can be approximated, to arbitrary precision and in polynomial time, by using
the standard SoS hierarchy.

Final remarks and future directions are given in Section 7.

Recent developments. Very recently Fiorini et al. [10] claim a new approach to re-
produce the Bienstock-Zuckerberg hierarchy. We observe that their framework is weaker
than the one presented in this paper, meaning that does not generalize to packing prob-
lems (see Section 6). Moreover, their proof is essentially based on similar arguments as
used in this paper (formerly appeared in [23]). We give more details in the appendix.

2 Sum of Squares Proofs and Relaxations

In this section we give a brief introduction to SoS-proofs/relaxations. We refer to the
monograph [20] for an excellent in-depth overview. We emphasize that there is no math-
ematical innovation in this section; all the details herein are basically known. However,
instead of the “standard” SoS description in terms of bounded degree monomials, we
provide a definition as a function of a generic subspace of polynomials. This is used in
the remainder of the paper.

We will use the following notation. Let R[x] := R[x1, . . . , xn] be the ring of poly-
nomials over the reals in n variables. Let R[x]d denote the subspace of R[x] of degree
at most d ∈ N. If S = {s1, . . . , sk} is a set of polynomials in R[x], then the span
of S, denoted 〈S〉, is the set of all linear combinations of the polynomials in S, i.e.
〈S〉 := {

∑k
i=1 ci · si : ci ∈ R}, and S is called the spanning set of 〈S〉.

The set F of feasible solutions of an optimization problem is usually described by
a finite number of polynomial equations and/or inequalities. This is formalized by the
following definition. A set F ⊂ Rn defined as

F = {x ∈ Rn : fi(x) = 0 ∀i ∈ [`], gj(x) ≥ 0 ∀j ∈ [m]}, (1)

where for each i ∈ [`] and j ∈ [m], fi(x), gj(x) ∈ R[x], is called a basic closed semi-
algebraic set. For the sake of brevity, throughout this document, while referring to a
semialgebraic set, we implicitly assume a basic closed semialgebraic set.

One could write many other constraints that are equally valid on the set F . For
example, we are able to produce further polynomials vanishing on the set F by consider-
ing linear combinations of fi(x) with polynomial coefficients. The set of all polynomials
generated this way is a polynomial ideal.

4



Definition 2.1. The ideal generated by a finite set {f1, . . . , f`} of polynomials in R[x]
is defined as

I (f1, . . . , f`) :=

{∑̀
i=1

ti · fi : t1, . . . , t` ∈ R[x]

}
.

A polynomial p ∈ R[x] is a sum of squares (SoS) if it can be written as the sum
of squares of some other polynomials. If these last polynomials belong to a subspace
〈S〉 ⊆ R[x], for a given spanning set S ⊆ R[x], then we say that p is S-SoS.

Definition 2.2. For S ⊆ R[x], a polynomial p ∈ R[x] is S-SoS if p ∈ ΣS where

ΣS := {p ∈ R[x] : p =

r∑
i=1

q2i , for some r ∈ N and q1, . . . , qr ∈ 〈S〉}.

As for the vanishing polynomials on F , we are able to produce further valid in-
equalities for set F by multiplying gj(x) against SoS polynomials, or by taking conic
combinations of valid constraints. This gives the notion of quadratic module.

Definition 2.3. For S ⊆ R[x], the S-quadratic module generated by a finite set {g1, . . . , gm}
of polynomials in R[x] is defined as

qmoduleS(g1, . . . , gm) :=

{
s0 +

m∑
i=1

si · gi : s0, s1, . . . , sm ∈ ΣS

}
.

Certifying that a polynomial p ∈ R[x] is non-negative over a semialgebraic set F
is an important problem in optimization, as certificates of non-negativity can often be
leveraged into optimization algorithms. For example let p := p′−γ, where p′ ∈ R[x] and
γ is a real number. If we can certify that p is non-negative over F then the minimum of
p′ is not smaller than γ. We will elaborate more on this in Section 2.1.

Definition 2.4. For S ⊆ R[x] and p(x) ∈ R[x], a S-SoS certificate of non-negativity of
p(x) over F (see (1)) is given by a polynomial identity of the form

p(x) = f(x) + g(x), (2)

for some f(x) ∈ I (f1, . . . , f`) and g(x) ∈ qmoduleS(g1, . . . , gm).

Notice that for all x ∈ F the right-hand side of (2) is manifestly non-negative, thereby
certifying that p(x) ≥ 0 over F .

In the following, whenever S = R[x] we drop S from the notation, so Σ, SoS
and qmodule(g1, . . . , gm) denote ΣR[x], R[x]-SoS and qmoduleR[x](g1, . . . , gm), respec-
tively.

A natural question arises: Can all valid constraints be generated this way? Unless
further assumptions are made, the answer is negative (see, e.g. [6]). However, for the
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applications of this paper, we are interested in the case F is the set of feasible solutions
of a 0/1 integer linear program, with n variables and m linear constraints:

F01 := {x ∈ Rn : x2i − xi = 0 ∀i ∈ [n], gj(x) ≥ 0 ∀j ∈ [m]}, (3)

where x2i − xi = 0 encodes xi ∈ {0, 1} and each constraint gj(x) ≥ 0 is linear. Under
this assumption the answer of the above question is positive, as shown in the following.
(Actually, the linearity of the constraints is not necessary for this purpose.) We review
this derivation from a slightly different perspective, by highlighting several aspects that
will play a role in our proofs. We start with some preliminaries.

Preliminaries. The set of polynomials in R[x] that vanish on the Boolean hypercube
Zn2 is the ideal

I01 := I
(
x21 − x1, . . . , x2n − xn

)
.

Definition 2.5. Let I be an ideal, and let f, g ∈ R[x]. We say that f and g are congruent
modulo I, written f ≡ g (mod I), if f − g ∈ I.

From the above definition, a S-SoS certificate of non-negativity of p(x) over F01 is
given by a polynomial congruence of the form

p(x) ≡ g(x) (mod I01), (4)

for some g(x) ∈ qmoduleS(g1, . . . , gm). For the sake of brevity, whenever we use “≡”
we assume that the congruence is modulo I01 (unless differently specified).

Let us introduce an indicator multilinear polynomial that will play an important role
throughout this paper. For I ⊆ Z ⊆ [n], the Kronecker delta polynomial is defined as:

δZI :=
∏
i∈I

xi
∏
j∈Z\I

(1− xj). (5)

If Z = ∅ we assume that δZI = 1. Let xZI denote the 0/1 (partial) assignment with
xi = 1 for i ∈ I, and xj = 0 for j ∈ Z \ I. Notice that δZI is an indicator polynomial
that is 1 when its variables get assigned values according to xZI . Moreover, the following
identities hold: ∑

I⊆Z
δZI = 1, (6)

(
δZI
)2 ≡ δZI , (7)

δZI δ
Z
J ≡ 0, for I, J ⊆ Z with I 6= J. (8)

By using (7) and (8) we have (for Z ⊆ [n] and W ⊆ 2Z)(∑
I∈W

δZI

)2

≡
∑
I∈W

δZI . (9)
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For any given p(x) ∈ R[x], let us use p(xZI ) to denote p(x) after the partial assignment
defined by xZI : for example if p(x) = p0 +

∑n
i=1 pi · xi then p(xZI ) = p0 +

∑
i∈I pi +∑

[n]\Z pi · xi. Then the following holds:

δZI p(x) ≡ δZI p
(
xZI
)
. (10)

These basic facts will be used several times.

SoS Proofs Over the Boolean Hypercube. For any given polynomial p(x) ∈ R[x]
that is non-negative over F01, we are interested in certifying this property by exhibiting
a SoS certificate. With this aim, partition the Boolean hypercube into two sets N+ :={
I ⊆ [n] : p

(
x
[n]
I

)
≥ 0
}

and N− :=
{
I ⊆ [n] : p

(
x
[n]
I

)
< 0
}

. If p(x) is non-negative

over F01, then for each I ∈ N− there exists a constraint that is violated on x
[n]
I , i.e.

there is a mapping h : 2[n] → [m] such that gh(I)

(
x
[n]
I

)
< 0. To ease the notation, we

drop the exponent “[n]” from x
[n]
I and δ

[n]
I . Then:

p(x) =

=1 by (6)︷ ︸︸ ︷∑
I⊆[n]

δI

 p(x)
by (10)
≡

∑
I∈N+

δIp(xI) +
∑
I∈N−

δI
p(xI)

gh(I)(xI)
gh(I)(xI)

by (9) and (10)
≡

 ∑
I∈N+

δI
√
p(xI)

2

︸ ︷︷ ︸
s0

+
∑
I∈N−

(
δI

√
p(xI)

gh(I)(xI)

)2

︸ ︷︷ ︸
sh(I)

gh(I)(x)

(11)

It follows that any non-negative polynomial over F01 admits a S-SoS certificate where
S is the set {δI : I ⊆ [n]} of Kronecker delta multilinear polynomials. The quotient ring
R[x]/I01 is the set of equivalence classes for congruence modulo I01. Polynomials from
the quotient ring R[x]/I01 are in bijection with square-free (also known as multilinear)
polynomials in R[x]. We will use R[x]/I01 to denote the subspace of multilinear polyno-
mials. The aforementioned Kronecker delta polynomials form a basis for the subspace
of multilinear polynomials R[x]/I01. The next proposition summarizes the above.

Proposition 2.1. Let 〈S〉 = R[x]/I01. If p(x) ∈ R[x] is non-negative over F01 then it
admits a S-SoS certificate of the form

p(x) ≡ g(x) (mod I01), (12)

for some g(x) ∈ qmoduleS(g1, . . . , gm).

The existence of a S-SoS certificate can be decided by solving a semidefinite pro-
gramming (SDP) feasibility problem whose matrix dimension is bounded by O(|S|). We
refer to [6, 9] and Appendix A.1 for details and an example.
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If 〈S〉 = R[x]/I01, then the SDP has exponential size. The “standard”, namely
the “most used” way to bound the complexity is to restrict the spanning set S of S-
SoS certificates to be the standard monomial basis of constant degree d = O(1). This
bounds the degrees of the polynomials in S-SoS certificates to be a constant, and a
non-negativity certificate is computed by solving a semidefinite program of size nO(d).
Clearly this restriction imposes severe limitations on the kind of proofs that can be
obtained. This type of approach was first proposed by Shor [30], and the idea was taken
further by Parrilo [26] and Lasserre [18].

However, this modus operandi with bounded degree monomials can be extended to
other subspaces 〈S〉 having “small” spanning sets S, i.e. with |S| = nO(d) for some
d = O(1). This is a less explored direction and it will play a key role in this paper.

2.1 0/1 Optimization and SoS Relaxations

Certifying that a polynomial p(x) ∈ R[x] is non-negative over a semialgebraic set F01 is
an important problem in optimization. Without loss of generality, we can assume that
p(x) is in multilinear form and therefore p(x) ∈ R[x]n. A number γ is a global lower
bound of p(x) if and only if the polynomial p(x) − γ is non-negative over F01. This
suggests considering the following optimization problem: maximize γ such that p(x)− γ
is non-negative for all x ∈ F01.

For 〈S〉 ⊆ R[x]/I01, a relaxation of the above optimization problem is obtained by
computing the largest γ such that p(x)− γ has a S-SoS certificate of nonnegativity:

max
γ
{γ : p(x)− γ ∈ CS}, (13)

where

CS := {q + r : q ∈ qmoduleS(g1, . . . , gm), r ∈ I01 ∩ R[n]2n} (14)

is a set of S-SoS certificates. Note that (13) is indeed an approximation, since it could
be that p(x)−γ is non-negative for some γ, but the set S is “too small” so that a S-SoS
certificate does not exist. However, enlarging S increases the number of possible certifi-
cates and thus tightens the approximation. For 0/1 semialgebraic sets and multilinear
p(x), we can always reduce to the case where the polynomials of SoS certificates have
degree at most 2n, since for 〈S〉 = R[x]/I01, the relaxation (13) is actually exact, as
shown in (11). This explains why we can restrict r ∈ I01 ∩ R[n]2n in (14).

2.1.1 Duality and the Lasserre/SoS Hierarchy

The linear space of all real polynomials of n variables and degree at most d is isomorphic

to the Euclidean space R(n+d
d ). Indeed, a simple combinatorial argument shows that any

degree-d polynomial p(x) can have at most
(
n+d
d

)
monomials, which we can order in some

arbitrary way (ordered basis). Then, we can put the coefficients in a column vector p,

in the selected order, and thus obtain a bijective mapping to R(n+d
d ). We will say that
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p is the column vector representation of p(x) in the (ordered) standard monomial basis.

Then, for S ⊆ R[x]/I01, set CS (see (14)) is (isomorphic to) a subset of R(n+2n
2n ), and it

can be shown to form a cone in the sense of convex geometry.
We emphasize that in the above arguments we have chosen the standard monomials

as basis for the column vector representation of polynomials. It is clear that other bases
are possible. Actually, for our main application we will use a different basis. More
generally, any linear space V (of polynomials) is isomorphic to the space of column
vectors of a certain dimension: choose an ordered basis b> = (b1, . . . , bk) for the linear
space V (of polynomials), the column vector representation of p(x) ∈ V is a vector
p ∈ Rk such that p(x) = b>p.

Dual Program. Recall that in linear algebra, a linear functional y is a linear map
from a linear space V to its field F of scalars. A linear functional y is a linear function:

y(α · v + β · w) = α · y(v) + β · y(w) ∀v, w ∈ V, ∀α, β ∈ F. (15)

In Rk, for k ∈ N, linear functionals are represented as vectors and their action on vectors
is given by the inner product: let y, z ∈ Rk, the evaluation of y at z is denoted by the
inner product 〈z, y〉, that is 〈z, y〉 = y(z). Let C be a set in Rk equipped with an inner
product 〈z, y〉 = y(z). The dual cone 3 of C is defined by

C∗ = {y ∈ Rk : y(z) ≥ 0 ∀z ∈ C}. (16)

In other words, the dual cone is the set of linear functionals that are non-negative on
the primal cone. Consider a standard conic program over a cone C and its dual:

Primal : max
z
{〈c, z〉 : p−Az ∈ C}; Dual : min

y
{〈p, y〉 : A>y = c; y ∈ C∗}. (17)

To find the dual program of (13) as a conic optimization problem, choose an (ordered)
basis for the polynomials in CS (we will say a little bit more about this later). The
dimension of this basis defines the dimension of the linear functionals y: there is one entry
in y for each polynomial in the basis. Set p in (17) to be the column vector representation
of polynomial p(x) in (13) according to the chosen (ordered) basis. Consider representing
the variable γ as the constant term of a polynomial z(x). Let z be the column vector
representation of z(x) and maximize its inner product with a suitably chosen vector c
so that 〈c, z〉 = γ.

For the standard monomial basis choose c = (1, 0, . . . , 0)> and the matrix A such
that A0,0 = 1 and Ai,j = 0 elsewhere. So under this choice, we get as the Dual:

min
y
{〈p, y〉 : y0 = 1; y ∈ C∗S}. (18)

The dual cone C∗S of CS turns out to have some nice properties, as explained below.
For any given polynomial p(x) ∈ R[x], we will use y[p(x)] to denote y(p) (or 〈p, y〉), where

3Recall, in finite dimension, topological and algebraic duals are the same.
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p is the column vector representation of p(x) according to the chosen (ordered) basis,
and y is a linear functional. With respect to any chosen vector basis for the polynomials
from CS , the elements of the dual space C∗S define linear functionals y[·] (sometimes called
pseudo-expectation functionals and denoted with Ẽ[·]) on polynomials that satisfy:

(i) (Normalization) y[1] = 1;

(ii) (Linearity) y[α · p(x) + β · q(x)] = α · y[p(x)] + β · y[q(x)], for all p(x), q(x) ∈ CS
and α, β ∈ R;

(iii) (Positivity) y
[
q(x)2

]
≥ 0, for all q(x) ∈ 〈S〉;

(iv) (Positivity) y
[
q(x)2 · gi(x)

]
≥ 0, for all q(x) ∈ 〈S〉, for all i ∈ [m];

(v) (Multilinearity) y
[
t(x) · (x2i − xi)

]
= 0, for all t(x) ∈ R[x], for all i ∈ [n].

Condition (i) says that the constant polynomial 1 is mapped to 1. Note that
in (18), y0 = 1 comes directly from (i) (in the standard monomial basis we have
y[1] =

〈
(1, 0, . . . , 0)>, y

〉
= y0).

Condition (ii) follows from the linearity of linear functionals (see (15)). Note that
assigning arbitrary values to the entries of the linear functional y guarantees linearity.
Indeed, the entries of y are linearly independent because they correspond to the “lin-
earization” of the polynomials that form a basis for CS , which are linear independent.
This is the only place where we need linear independence. Alternatively, we can choose
a spanning set of polynomials for CS and impose the linearity condition (ii).

Conditions (iii), (iv) and (v) follow from the definition of the dual cone (see (16))
of CS (see (14)). Note that the multilinearity condition (v) can be easily enforced by
restricting to multilinear polynomials: any given polynomial p(x) will be replaced by its
multilinear form, denoted p(x), i.e. the normal form after polynomial division by the
Gröbner basis {x2i − xi : i ∈ [n]}. So in conditions (iii) and (iv), we replace q(x)2 and
q(x)2 · gi(x), with their multilinear forms q(x)2 and q(x)2 · gi(x), respectively. From now
on, we will restrict to the subspace of multilinear polynomials R[x]/I01. This allows us
to enforce the multilinearity condition (v).

By the above arguments, we can restrict to the polynomials from CS that are multi-
linear. These polynomials are spanned by the following set of multilinear polynomials

T := {xi · p · q : p, q ∈ S, i ∈ [n] ∪ {0}},

where x0 := 1, and recall that we are considering linear constraints gi(x) ≥ 0, for i ∈ [m].
So, the vector y has one entry for each polynomial that belong to a chosen basis for the
span 〈T 〉 of T . By assuming this, we can reformulate (18), with respect to a chosen basis
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for 〈T 〉, as

min y[p] (19)

s.t. y[1] = 1; (20)

y
[
q(x)2

]
≥ 0, ∀q(x) ∈ 〈S〉; (21)

y
[
q(x)2 · gi(x)

]
≥ 0, ∀q(x) ∈ 〈S〉, ∀i ∈ [m]. (22)

The program (19)-(22) is actually a semidefinite program whose matrix dimension is
bounded by O(|S|), that we call S-SoS relaxation. To see this, let b> = (b1, . . . , bk) be
an (ordered) basis for 〈S〉, for some k ≤ |S|. Then, consider any polynomial q(x) ∈ 〈S〉,
and let q be its column vector representation according to the (ordered) basis b>, i.e.
q(x) = b>q. Then q(x)2 = 〈qq>, bb>〉. Let M(y) be a |b| × |b| square matrix indexed by
the pairs (bi, bj) ∈ b×b, such that the (bi, bj)-th entry of M(y) is equal to y

[
bibj
]
. Recall

that y
[
q(x)2

]
is equal to 〈y, p〉, where p is the column vector representation of q(x)2. By

simple inspection note that y
[
q(x)2

]
= 〈qq>,M(y)〉. It follows that Condition (21) is

equivalent to impose 〈qq>,M(y)〉 ≥ 0 for all q, which is equivalent to require M(y) to
be positive semidefinite. A similar argument holds for Condition (22).

Standard and Generalized SoS Relaxations. When S is the standard (multilin-
ear) monomial basis of degree ≤ d, then the S-SoS relaxation (19)-(22) is the (stan-
dard) Lasserre/SoS-hierarchy parameterized by the degree d ∈ N, in short, denoted
by d-SoS. In this case, the aforementioned matrix M(y) is the so-called (truncated)
moment matrix. S-SoS generalizes d-SoS relaxations by working with a generic set S
of polynomials.

Note that in standard SoS, set T forms a basis for 〈T 〉, and it is the set of all
(multilinear) monomials of degree at most 2d+1. The variables in d-SoS are the entries
of the linear functionals y, which correspond to the “linearization” of the polynomials
from T .

Standard and Generalized Sherali-Adams Relaxations. If S is again the stan-
dard monomial basis of degree ≤ d and we further relax (21) and (22) by

y
[
q(x)

]
≥ 0, ∀q(x) ∈ S, (23)

y
[
q(x) · gi(x)

]
≥ 0, ∀q(x) ∈ S,∀i ∈ [m], (24)

then we obtain the so called Sherali-Adams (SA) hierarchy of relaxations, denoted d-SA,
and defined by (19), (20), (23), (24). This is again parameterized by d, but it is a linear
program (this follows from (23), (24) and the definition of linear functionals where their
action on vectors is given by the dot product) of size O(|S|) = nO(d). Note that both
hierarchies, d-SoS and d-SA, have the same spanning set S of monomials, which are
non-negative over the Boolean hypercube.
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In the definition of d-SA we restrict to work with polynomials from q(x) · gi(x) for
q(x) ∈ S, and i ∈ [m]. Let

TSA := {xi · p : p ∈ S, i ∈ [n] ∪ {0}}.

When S is the standard monomial basis then TSA is a basis for 〈TSA〉, and it is the set
of all (multilinear) monomials of degree at most d + 1. It follows that the variables in
d-SA are the entries of the linear functionals y, which correspond to the “linearization”
of the polynomials from TSA.

We generalize d-SA relaxations to work with a generic set S of polynomials (that is
non-negative over the Boolean hypercube), and obtain S-SA. The relaxation S-SA is a
linear program with O(|S|) linear constraints, which correspond to (20), (23) and (24).

Provable Inequalities and Relaxations. We conclude our overview on SoS-relaxations
by pointing out the following fact.

Proposition 2.2. If p(x) admits a S-SoS certificate of non-negativity over F01, then
y[p(x)] ≥ 0 holds for the corresponding S-SoS(F01) relaxation (20)-(22).

Proof. By assumption, we have p(x) = f(x) + g(x), for some f(x) ∈ I01 and g(x) ∈
qmoduleS(g1, . . . , gm). Then, y[p(x)] = y[f(x)] + y[g(x)] = 0 + y[s0] +

∑m
i=1 y[si · gi]

for some s0, s1, . . . , sm ∈ ΣS . By (21) and (22), each addend of the sum is non-negative
and we have y[p(x)] ≥ 0.

By Proposition 2.2, if p(x) :=
∑

i aixi − a0 ≥ 0 is a valid linear inequality for all
x ∈ F01 that admits a S-SoS certificate, then y[p(x)] =

∑
i aiy[xi]− a0 ≥ 0. Note that

{y[x1], . . . , y[xn]} is the solution y of (20)-(22) projected to the original space of the
variables. So, the (projected) solution of the S-SoS relaxation (20)-(22) satisfies p(x) ≥
0. This implies the following informal “recipe” that we will follow in the remainder of
the paper. (Similar arguments hold for S-SA.)

Recipe: Assume that we are looking for a “small” relaxation for F01 that satisfies
a potentially “large” set of linear constraints Ax ≥ b that are valid for all x ∈ F01.
With this aim, search for a “small” spanning set S ⊆ R[x] (if one exists) such that
Ax− b admits a S-SoS certificate. If we succeed, then the corresponding S-SoS
relaxation (20)-(22) satisfy our goal.

3 A Simple Chvátal-Gomory Cut That is Hard for d-SoS

For illustrative purposes, in this section we consider a simple example where the standard
Lasserre/d-SoS relaxation provably fails for “small” d. However, this can be easily fixed
by using S-SoS with a “small” spanning set S of high degree polynomials.

The example is motivated by the following situation. Consider the rational polyhedra
P = {x ∈ Rn : Ax ≥ b} with A ∈ Zm×n and b ∈ Zm. Inequalities of the form
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(λ>A)x ≥ dλ>be, with λ ∈ Rm+ , λ>A ∈ Zn, and λ>b 6∈ Z are commonly referred to
Chvátal-Gomory (CG) cuts (further information on CG-cuts are provided in Section 6).
It is a natural question to study how many levels (or degree d) of the “standard” Sum-
of-Squares hierarchy, i.e. d-SoS, are necessary to strengthening (λ>A)x ≥ λ>b to get
(λ>A)x ≥ dλ>be. With this aim, consider the following semialgebraic set:

F01 = {x ∈ Rn : x2i − xi = 0 ∀i ∈ [n],
n∑
i=1

xi ≥ b}, (25)

where b ∈ Q+ is intended to be a positive fractional number. Obviously, any feasible
integral solution satisfies

∑n
i=1 xi ≥ dbe, and this is promptly captured by the first CG

closure.
The following Theorem 3.1 (the proof is postponed to Section C.1, in appendix)

shows that regardless of whether b is “small”, i.e. b = O(1), or “large”, i.e. b = Ω(n),
this CG-cut is enforced by d-SoS(F01) when d = Ω(n).

Theorem 3.1. Let F01 be defined as in (25), with b := L+1/P , L ∈
{

0, 1, . . . ,
⌈
n
2

⌉
− 1
}

and P sufficiently large (that depends on n). Then, the d-SoS(F01)-relaxation requires
d ≥ n− L for enforcing

∑n
i=1 xi ≥ dbe.

We remark that Grigoriev, Hirsch, and Pasechnik gave in [12] a very interesting and
influential result that is related to our Theorem 3.1, but significatively different in terms
of both, lower bounds and techniques. We defer the interested reader to Section 3.1 for
a discussion on this point, and for a more precise meaning of “significatively different”.

The result in Theorem 3.1 is disappointing for at least two reasons: the considered
CG-cut looks pathetically trivial, and the proof that d-SoS(F01) fails for small d is
relatively complicated (see Section C.1).

On the other side, it would be sufficient to have in the “bag” 〈S〉 the set of symmetric
polynomials, i.e. polynomials which do not change under permutations of the variables,
to promptly enforce this CG-cut within S-SoS(F01). The proof is basically the same as
the one given in (11):

n∑
i=1

xi − dbe =

=1︷ ︸︸ ︷ n∑
i=0

∑
I⊆[n]:|I|=i

δI

( n∑
i=1

xi − dbe

)
(10)
≡

n∑
i=0

symmetric︷ ︸︸ ︷ ∑
I⊆[n]:|I|=i

δI

(i− dbe)

(9)
≡

n∑
i=dbe


symmetric︷ ︸︸ ︷ ∑

I⊆[n]:|I|=i

δI

√i− dbe


2

︸ ︷︷ ︸
s0(x)

+

dbe−1∑
i=0


symmetric︷ ︸︸ ︷ ∑

I⊆[n]:|I|=i

δI

√ i− dbe
i− b


2

︸ ︷︷ ︸
s1(x)

(
n∑
i=1

xi − b

)
︸ ︷︷ ︸

g1(x)

.

Note that s0(x) and s1(x) are sum of squares of symmetric polynomials. It is a well-
known fact that every symmetric polynomial can be written uniquely as a polynomial in
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the n+ 1 elementary symmetric polynomials (see e.g. [31]). Therefore, it is sufficient to
define S as the set of elementary symmetric polynomials to guarantee that

∑n
i=1 xi−dbe

admits a S-SoS certificate. We refer to [9, 11, 28] for other more interesting symmetric
situations.

We emphasize that in this paper we show how to handle some asymmetric situations
by exploiting the problem structure, which is our main result.

3.1 On a Related Result by Grigoriev, Hirsch, and Pasechnik

Grigoriev, Hirsch, and Pasechnik (see Theorem 8.1 in [12]) gave a result related to
Theorem 3.1, but also significatively different as explained in this section. In [12], the
symmetric knapsack is defined as follows:

F ′01 = {x ∈ Rn : x2i − xi = 0 ∀i ∈ [n],
n∑
i=1

xi = b}. (26)

Note that F ′01 is a more constrained version of the set F01 defined in (25).
The Positivstellensatz Calculus [12] is a proof system for languages consisting of

unsolvable systems of polynomial equations. Note that (26) is unsolvable when b is
a non-integral value. A degree d infeasibility certificate consists of a set of degree d
polynomials, say {h1 . . . , hl}, and a derivation of

∑
j h

2
j = −1 from F ′01. Let δ denote

the step function which equals 2 outside the interval (0, n), it is 2k + 4 on the intervals
(k, k+ 1) and (n− k− 1, n− k) for all integers 0 ≤ k < n/2. In [12] the following result
is proved.

Theorem 3.2. [12] Any Positivstellensatz calculus refutation of the symmetric knapsack
problem F ′01 (see (26)) has degree min{δ(b), d(n− 1)/2e+ 1}.

Notice that any Positivstellensatz Calculus lower bound for the more constrained set
F ′01 gives a SoS lower bound for the set F01 defined in (25). However, for b < n/2,
the bounds given by Theorem 3.2 (see [12]), when applied to set F01, are weaker, and
also considerably weaker than the ones provided by our Theorem 3.1. For example,
for any given constant k and b ∈ (k, k + 1), the degree lower bound in Theorem 3.2 is
2k + 4 = O(1), whereas by Theorem 3.1 the degree lower bound is n− k.

Regarding the technique, Theorem 3.1 is proved by building on a result given in [14].
The latter has been shown to be very powerful in several other situations (see [14, 15]
for more examples).

Finally, we observe that the study of the number of levels necessary to strengthen
inequalities, as in Theorem 3.1, is useful for analyzing the SoS ability to strengthen
convex combinations of valid covering inequalities, as explained at the beginning of
Section 3. Analyzing equalities, like in (26), is less appropriate for these purposes.
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4 SoS Derivation of Pitch Inequalities for Set Covering

In this section we consider set-covering problems. For a given m× n matrix A with 0/1
entries, the feasible region FA for the Set Cover problem is defined by:

FA = {x ∈ Rn : x2i − xi = 0 ∀i ∈ [n], Ax ≥ e}, (27)

where e is the vector of 1s. We focus on the concept of pitch introduced in [4, 32].

Definition 4.1. For any given inequality a>x − a0 ≥ 0, with indices ordered so that
0 < a1 ≤ a2 ≤ · · · ≤ ah and aj = 0 for j > h, its pitch π(a, a0) is the minimum integer

such that
∑π(a,a0)

i=1 ai − a0 ≥ 0.

We start emphasizing that valid inequalities for FA of pitch at most π are “hard” to
enforce within “standard” hierarchies of relaxations, and this happens already with the
first non-trivial pitch value, namely π = 2 as shown by the following example.

Example 4.1. Consider a set-covering instance defined by a full-circulant constraint
matrix FC:

FFC = {x ∈ Rn : x2i − xi = 0 ∀i ∈ [n],
∑

j∈[n]\{i}

xj ≥ 1 ∀i ∈ [n]}. (28)

Observe that
∑n

j=1 xj ≥ 2 is a pitch 2 valid inequality for the feasible region of this
set-covering instance. However, to enforce this inequality we need n − 3 levels for
a lifting operator stronger than the Sherali-Adams hierarchy [4], and requires at least
d = Ω(log1−ε n) [14], with ε > 0 arbitrarily small, for the standard d-SoS hierarchy
(conjectured to be n/4 in [4]).

This instance will be used in the following to exemplify our approach (see examples 4.2
and 4.3).

Vice versa, we show that there is a SA(π)-SoS relaxation, where SA(π) is a set of
high degree polynomials of polynomial size, that satisfies all valid inequalities of constant
pitch π = O(1).

Theorem 4.1. Consider a set-covering problem given by a matrix A, and let π = O(1)
be a fixed non-negative integer. There is a polynomial-sized SA(π)-SoS relaxation that
satisfies all valid inequalities for FA of pitch at most π.

Note that the SA(π)-SoS relaxation of Theorem 4.1 is completely determined by
defining the set SA(π) (see Section 2.1.1 for a discussion on the size and on set of
variables that appear in a generic SA(π)-SoS relaxation). A closer look will reveal (see
Section 4.2) that the SA(π)-SoS relaxation is actually a linear program corresponding
to the generalized Sherali-Adams relaxation SA(π)-SA (see Section 2.1.1).
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Preliminaries. Given a vector a ∈ Rn, the support of a, denoted supp(a), is the set
{i ∈ [n] : ai 6= 0}. LetAi ⊆ {1, . . . , n} be the support of the i-th row ofA. By overloading
notation, we also use Ai to denote the corresponding set of variables {xj : j ∈ Ai}. We
assume that A is minimal, i.e. there is no i 6= j such that Ai ⊆ Aj .

For any given T, F ⊆ [n] with T ∩ F = ∅, let FA(T,F )
denote the subregion of FA

with xi = 1 for all i ∈ T , and xj = 0 for all j ∈ F . Let A(T,F ) be the matrix that is
obtained from A by removing all the rows where xi appears for i ∈ T (these constraints
are satisfied when xi = 1 for all i ∈ T ) and setting to zero the j-th column for all j ∈ F .
We will assume that A(T,F ) is minimal by removing the dominated rows. Therefore,
FA(T,F )

= {x ∈ {0, 1}n : A(T,F )x ≥ e, xi = 1 ∀i ∈ T, xj = 0 ∀j ∈ F} and FA(T,F )
⊆ FA.

For the sake of simplicity, we add the non-negative constraints xi ≥ 0 for i ∈ [n] to
the set of valid constraints that define the semialgebraic set (27). This is not strictly
necessary, since xi = x2i and therefore xi ≥ 0, but it will simplify the exposition.

4.1 Proof of Theorem 4.1

Let a>x − a0 ≥ 0 be a valid inequality over FA of pitch π(a, a0) ≤ π, with a ≥ 0.
First, we show a SoS certificate of non-negativity for a>x − a0. Then, we collect the
polynomials we used in the SoS-certificate and put them in the “bag” SA(π). So, the
set of polynomials SA(π) of Theorem 4.1 will be completely defined at the end of this
proof, and its definition will naturally follow from the given SoS certificate.

For the time being, it is sufficient to say that SA(π) is a set of polynomials of size
(mn)O(1), for any fixed π = O(1). In SA(π) every polynomial has the following form:∑

J∈W δVJ for some V ⊆ [n] and W ⊆ 2V . In short, we will say that set SA(π) is
delta-structured to denote this structure.

By (9), note that
∑

J∈W δVJ ≡ (
∑

J∈W δVJ )2, and therefore q(x) ≡ q(x)2 for all
q(x) ∈ SA(π). Moreover, every polynomial in SA(π) is non-negative over the Boolean
hypercube. In the remainder a certificate of non-negativity will be congruent (mod I01)
to the following form:

∑
i

qi(x)

conical combination of constraints︷ ︸︸ ︷(
λ>i (Ax− e) + γ>i x+ µi

)
, for some qi(x) ∈ SA(π), λi, γi, µi ≥ 0. (29)

By the above properties, this certificate can be immediately transformed into a SA(π)-
SoS certificate.

The proof of Theorem 4.1 will be by induction on the pitch value π. The base of
the induction π = 0 is trivial: in this case we must have a0 ≤ 0, and SA(0) = {1} is
sufficient to prove that −a0 ≥ 0. Note that SA(0) = {1} is independent on the matrix
A and it is delta-structured (recall if V = ∅ then δVJ = 1). By induction hypothesis, for
any given 0 ≤ p ≤ π − 1 and any given constraint matrix A′, we assume that any valid
pitch-p inequality for FA′ admits a SA′(p)-SoS certificate where SA′ is delta-structured.
We will prove that the induction hypothesis also holds for pitch π (induction step).

We proceed “backwards”, as in (11). We start multiplying a>x−a0 by
∑

I⊆V δ
V
I , for

a suitably chosen set V ⊆ [n] that will be specified soon. Recall that
∑

I⊆V δ
V
I = 1 (see
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(6)). Let (a>x− a0)(T,F ) denote (a>x− a0) after setting xi = 1 for i ∈ T and xj = 0 for

j ∈ F . By (10), note that δVJ (a>x−a0) ≡ δVJ (a>x−a0)(J,V \J). Let δV≥π :=
∑

I⊆V,|I|≥π δ
V
I

(zero if |V | < π). It follows that:

a>x− a0 =

=1︷ ︸︸ ︷∑
I⊆V

δVI

(a>x− a0)

≡ δV∅ (a>x− a0)(∅,V )︸ ︷︷ ︸
First

+

 ∑
J⊆V,0<|J |<π

δVJ (a>x− a0)(J,V \J)


︸ ︷︷ ︸

Second

+ (δV≥π)(a>x− a0)︸ ︷︷ ︸
Third

. (30)

Therefore, showing a SoS certificate for a>x−a0 boils down to provide a SoS certificate
for each of the three summands, First, Second and Third, in (30). Before doing this
we need to specify the set V ⊆ [n].

How to Choose V . Set V is chosen according to the following structural property of
valid inequalities for set covering (see [4, 32] and Section C.2 in appendix for a proof).

Lemma 4.2. [4, 32] Suppose a>x−a0 ≥ 0 is a valid inequality for FA with a ≥ 0. Then
there is a subset C = C(a, a0) of the rows of A with |C| ≤ π(a, a0), such that

Ai ⊆ supp(a), ∀i ∈ C, (31)

(a>x− a0)(∅,V ) ≥ 0 is valid for FC , (32)

FA(∅,V )
6= ∅, (33)

where V :=
⋃
i,j∈C,i6=j Ai ∩ Aj is the set of variables occurring in more than one row

from C, and FC := {x ∈ [0, 1]n : (
∑

j∈Ai
xj − 1)(∅,V ) ≥ 0 ∀i ∈ C}.

First SoS Certificate. Consider the First summand in (30). By Lemma 4.2, we
have that (a>x − a0)(∅,V ) ≥ 0 is valid for FC (see (32)). Note that the linear con-
straints that define the feasible region FC are just a subset of the linear constraints
from FA after setting to zero all the variables from V . It follows that (a>x− a0)(∅,V ) =(
λ>(Ax− e) + γ>x+ µ

)
(∅,V )

for some λ, γ, µ ≥ 0. Then:

δV∅ (a>x− a0)(∅,V ) = δV∅

(
λ>(Ax− e) + γ>x+ µ

)
(∅,V )

(10)
≡ δV∅

(
λ>(Ax− e) + γ>x+ µ

)
.

The latter has the form given by (29), and it yields to a SoS certificate. In order to
obtain such a certificate it is sufficient to include in SA(π) the multilinear polynomial
δV∅ . With this aim, by using Lemma 4.2: let C(π) := {C : C ⊆ [m] ∧ |C| ≤ π} and
VC :=

⋃
i,j∈C,i6=j Ai ∩ Aj be the set of variables occurring in more than one row with

index from C ∈ C(π); Add to SA(π) all δVC∅ with C ∈ C(π). For any given constant

pitch π, there are polynomially many of such δVC∅ , and one of them is equal to δV∅ by
Lemma 4.2.
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Second SoS Certificate. Consider the Second summand in (30). By Property (33)
we know that by setting to zero all the variables from V we obtain a non-empty subset
of feasible integral solutions. It follows that by setting xj = 1, for all j ∈ J , and
xh = 0, for all h ∈ V \ J , we obtain a non-empty subset of feasible integral solutions,
i.e. FA(J,V \J)

6= ∅ and (a>x − a0)(J,V \J) ≥ 0 is a valid inequality for the solutions in

FA(J,V \J)
(since a>x−a0 ≥ 0 is by assumption a valid inequality for any feasible integral

solution). Moreover the pitch p of (a>x − a0)(J,V \J) ≥ 0 is strictly smaller than π,

0 ≤ p ≤ π − |J |. By induction hypothesis, it follows that (a>x − a0)(J,V \J) has a
SA(J,V \J)

(p)-SoS certificate, which means that there is a q(x) ∈ SA(J,V \J)
(p) such that

(a>x− a0)(J,V \J) ≡ q(x)
(
λ>J (Ax− e) + γ>J x+ µJ

)
(J,V \J)

,

for some λJ , γJ , µJ ≥ 0. The claim follows by observing that

δVJ q(x)
(
λ>J (Ax− e) + γ>J x+ µJ

)
(J,V \J)

(10)
≡ δVJ q(x)

(
λ>J (Ax− e) + γ>J x+ µJ

)
.

Again, the latter has the form given by (29). Note that δVJ q(x) is delta-structured. We

define set SA(π) so that it includes p(x) := δVCJ · q(x) for all q(x) ∈ SA(J,VC\J)
(π − |J |)

and for all J ⊆ VC , 0 < |J | < π and C ∈ C(π).

Third SoS Certificate. Finally, consider the Third summand from (30). Recall, see
Definition 4.1, that 0 < a1 ≤ a2 ≤ · · · ≤ ah and aj = 0 for j > h for some h ∈ [n], so
supp(a) = {1, . . . , h}. By (31), V ⊆ supp(a). If |V | < π then δV≥π is the null polynomial
and we are done. Otherwise, let a′i := ai for i ∈ [π], a′i := aπ for i = [h] \ [π] and a′i := 0
for i ∈ supp(a) \ V . It follows that

δV≥π

(
h∑
i=1

aixi − a0

)
= δV≥π

∑
i∈V

aixi − a0 +
∑

i∈supp(a)\V

aixi


= δV≥π

∑
i∈V

a′ixi − a0 +
∑

i∈supp(a)

(ai − a′i)xi


(10)
≡

∑
I⊆V ∩[π]

|V |∑
k=π−|I|


pI,k(x)︷ ︸︸ ︷∑

J⊆V \[π]
|J |=k

δVI∪J


≥0︷ ︸︸ ︷∑

i∈I
a′i + kaπ − a0 +

∑
i∈supp(a)

(ai − a′i)xi


 .

The latter has again the form given by (29), and it yields to a SoS certificate. We define
set SA(π) so that it includes the polynomials pI,k(x) that are used in the above formula.
Note that each pI,k(x) is a symmetric polynomial with respect to the variables indexed
by set V \ [π]; therefore it admits a succinct representation by the mean of elementary
symmetric polynomials.
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4.1.1 Set SA(π)

We summarize the definition of SA(π). Let

C(π) := {C : C ⊆ [m] ∧ |C| ≤ π} (34)

VC :=
⋃

i,j∈C,i6=j
Ai ∩Aj . (35)

Set SA(π) includes the following polynomials:

{δVC∅ : C ∈ C(π)} (First)

{δVCJ · q(x) : C ∈ C(π), J ⊆ VC with 0 < |J | < π, q(x) ∈ SA(J,VC\J)
(π − |J |)} (Second)

{
∑

J⊆VC\[π]
|J |=k

δVI∪J : C ∈ C(π), I ⊆ VC with |I| ≤ π, k = π − |I|, . . . , |VC |} (Third)

Note that when π ∈ {0, 1} then SA(π) = {1}. By a simple counting argument, we have
|SA(π)| = (mn)O(1) for any fixed π = O(1).

Example 4.2 (pitch 2 certificate). Consider the set-covering instance defined by (28),
in Example 4.1, namely by a full-circulant constraint matrix FC. The entries of the i-th
row of matrix FC are all equal to 1 but the i-th entry that is zero. Let FCi := [n] \ {i}
denote the support of the i-th row of matrix FC. Let gi(x) :=

∑
j∈FCi

xj − 1 ≥ 0 be the
i-the constraint corresponding to row FCi.

As already observed,
∑

j∈[n] xj ≥ 2 is a pitch 2 valid inequality for the feasible re-
gion of this set-covering instance, and this inequality is “hard” to enforce by “standard”
hierarchies like Lasserre/d-SoS and d-SA (Sherali-Adams).

We start considering the spanning set SFC(2) (defined in Section 4.1.1). According
to the definition of set C(2), see (34), note that {1, 2} ∈ C(2); then, see (35), V{1,2} =
FC1 ∩ FC2 = {3, . . . , n}. For short let V := V{1,2}. The following set P of polynomials
is a subset of SFC(2):

P :=

P0︷ ︸︸ ︷{
δV∅
}
∪

P1︷ ︸︸ ︷{
δV{i} : i ∈ V

}
∪

P2︷ ︸︸ ︷
∑
I⊆V :
|I|=k

δVI : k = 2, . . . , n

 ⊆ SFC(2). (36)

In addition to those listed above, note that in set SFC(2) there are also other polynomials.
These polynomials are all the same under a permutation of the variables and they play a
similar role due to the symmetry of the example instance. By using the above polynomials
we obtain a proof of non-negativity as follows.
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∑
j∈[n]

xj − 2 =

=1︷ ︸︸ ︷δV∅ +
∑
i∈V

δV{i} +

n∑
k=2

∑
I⊆V :
|I|=k

δVI



∑
j∈[n]

xj − 2



≡ δV∅ (x1 + x2 − 2)︸ ︷︷ ︸
First

+

(∑
i∈V

δV{i} (x1 + x2 − 1)

)
︸ ︷︷ ︸

Second

+
n∑
k=2

∑
I⊆V :
|I|=k

δVI

 (x1 + x2 + k − 2)

︸ ︷︷ ︸
Third

(37)

≡ δV∅ (g1(x) + g2(x))︸ ︷︷ ︸
First

+

(∑
i∈V

δV{i}gi(x)

)
︸ ︷︷ ︸

Second

+

n∑
k=2

∑
I⊆V :
|I|=k

δVI

 (x1 + x2 + (k − 2))

︸ ︷︷ ︸
Third

.

The latter has the form given by (29), and it yields to a SoS certificate (and it is a SA
certificate) for the considered pitch 2 inequality.

4.2 An Explicit Compact LP Formulation

For any fixed π = O(1), in the proof of Theorem 4.1 we have shown that every valid
inequality a>x− a0 ≥ 0 of pitch ≤ π admits a certificates of non-negativity for a>x− a0
that is congruent (mod I01) to (29). By reformulating this result in an equivalent way,
we have shown that a>x− a0 belongs to the following cone of polynomials:

CSA(π) =

{∑
i

qi(x)
(
λ>i (Ax− e) + γ>i x+ µi

)
: qi(x) ∈ SA(π), λi, γi, µi ≥ 0

}
. (38)

The dual cone C∗SA(π) is the set of linear functionals y[·] that are non-negative on the

primal cone satisfying (see the discussion in Section 2.1.1, constraints (20), (23), (24)):

y[1] = 1; (39)

y
[
q(x)

]
≥ 0, ∀q(x) ∈ SA(π); (40)

y
[
q(x) · gi(x)

]
≥ 0, ∀q(x) ∈ SA(π),∀i ∈ [m+ n]; (41)

where gi(x) ≥ 0, for i ∈ [m+n], denotes a constraint from Ax ≥ e, or xj ≥ 0 for j ∈ [n].
As already discussed in Section 2.1.1, the linear functional inequalities (39),(40) and

(41), yield a linear program of size O(|SA(π)|). It is actually a hierarchy of linear
programs parameterized by the pitch π. This relaxation can be seen as a generalized
Sherali-Adams relaxation, where the standard monomial basis of degree ≤ d has been
replaced with set SA(π) of high degree polynomials.
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Example 4.3 (pitch 2 LP). We provide an explicit LP for the set cover instance con-
sidered in examples 4.1 and 4.2. With this aim, we can either compute an ordered basis
for the cone of polynomials (38), or alternatively, an ordered spanning set and impose
the linearity conditions (see the discussion in Section 2.1.1 and Condition (ii)). Here,
we follows the second option.

Let T := {xi · p : p ∈ SFC(2), i ∈ [n] ∪ {0}}, and note that T is a spanning set
for (38). The dimension of T is equal to the dimension of the linear functionals y: there
is one entry in y for each polynomial in T . So vector y is indexed by the polynomials
in T . Consider set P ⊆ SFC(2) of polynomials (see (36)).

• Variables. The LP variables are the entries of vector y. In particular there are

the following variables: y
[
q(x)xj

]
, for q(x) ∈ P = P0 ∪ P1 ∪ P2 and j ∈ [n] ∪ {0}

(recall x0 := 1).

• Constraints. By (40),(41) we have the following linear constraints in the LP for-
mulation:

y
[
q(x)xj

]
≥ 0, ∀q(x) ∈ P2, j = 0, 1, 2; (42)

y
[
δV∅ · gi(x)

]
= y
[
δV∅ xi

]
− y
[
δV∅
]
≥ 0, ∀i = 1, 2; (43)

y
[
δV{i} · gi(x)

]
= y
[
δV{i}x1

]
+ y
[
δV{i}x2

]
− y
[
δV{i}

]
≥ 0, ∀i ∈ V = {3, . . . , n}. (44)

The following valid inequality can be obtained by a conical combination of (42)-(44):

y
[
δV∅ x1

]
+ y
[
δV∅ x2

]
− 2y

[
δV∅
]

+
∑
i∈V

(
y
[
δV{i}x1

]
+ y
[
δV{i}x2

]
− y
[
δV{i}

])
+

+
∑

q(x)∈P2

(y[q(x)x1] + y[q(x)x2] + (k − 2)y[q(x)]) ≥ 0.
(45)

Note that
∑

q(x)∈P q(x) = 1, and therefore by the linearity conditions (see the discussion
in Section 2.1.1 and Condition (ii)) the following is part of the set of the LP constraints
(for j = 1, 2):

y
[
δV∅ xj

]
+
∑
i∈V

y
[
δV{i}xj

]
+

∑
q(x)∈P2

y[q(x)xj ] = y[xj ].

Analogously, note
∑n

k=1 k

(∑
I⊆V :
|I|=k

δVI

)
=
∑

i∈V xi, which by linearity, gives the follow-

ing constraint that holds for the linear functional y (and that is part of the LP formula-
tion):

n∑
k=1

k · y

∑
I⊆V :
|I|=k

δVI

 =
∑
i∈V

y[xi].

Then, (45) and the linearity conditions imply the pitch 2 inequality
∑

i∈[n] y[xi]− 2 ≥ 0.
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5 The Bienstock-Zuckerberg Hierarchy

The Bienstock-Zuckerberg hierarchy (BZ) [4, 32] generalizes the approach for set cover.
The full description requires several layers of details and here we sketch only the main
points. We refer to the original manuscripts for a more precise and comprehensive
description.

Any non-trivial constraint can be rewritten in the set-cover form:
∑

i∈I aixi +∑
j∈J aj(1 − xj) ≥ b, with all the coefficients a, b non-negative. Then the BZ hierar-

chy uses the standard concept of minimal covers4 (see e.g. [7]): a minimal cover is an
inclusion-minimal set C ⊆ supp(a) such that

∑
j 6∈C aj < b and therefore

∑
j∈C x

′
j ≥ 1 is

a valid inequality (where x′j = xj if j ∈ I or x′j = 1− xj else). In general, the number of
minimal covers can be exponential so the idea in BZ is to generate only the “k-small”
ones, which are added to the original relaxation. Here with ”k-small” we mean all the
valid minimal covers with all the variables from I (or J) but at most k, or at most k
from I (or J). These minimal covers can be enumerated in polynomial time for any
fixed k. Then the set cover approach is applied to the set cover problem given by the
k-small minimal covers. If the minimal covers are polynomially bounded this allows to
generate the pitch bounded valid inequalities as for set cover (see the application be-
low). Roughly speaking, the “power” of the BZ approach is given by the presence of
the k-small minimal covers, if this set is empty then the hierarchy is not stronger than
a variant of the Sherali-Adams hierarchy (see [2]).

The BZ approach can be reframed into the SoS framework by choosing the appropri-
ate spanning polynomials. We omit the complete mapping because this would require
the full description of BZ that is quite lengthy. Moreover the currently known most
important application of BZ is given by the set cover problem, which has been widely
explained in previous sections. By way of example, we show in Section B (in appendix)
that we do not need to explicitly add the k-small minimal covers, since they can be
implied by adding the “right” polynomials. By using the explained ideas, it should be
easy to fill in the missing details.

6 Chvátal-Gomory Cuts

Consider a rational polyhedra P = {x ∈ Rn : Ax ≥ b} with A ∈ Zm×n and b ∈ Zm.
Inequalities of the form (λ>A)x ≥ dλ>be, with λ ∈ Rm+ , λ>A ∈ Zn, and λ>b 6∈ Z, are
commonly referred to Chvátal-Gomory cuts (CG-cuts for short), see e.g. [7]. CG-cuts
are valid for the integer hull P ∗ of P .

The following rational polyhedron is commonly referred to as the first CG closure:

P (1) := {x ∈ Rn : (λ>A)x ≥ dλ>be, λ ∈ [0, 1]m, λ>A ∈ Zn}. (46)

In particular P (1) is a stronger relaxation of P ∗ than P , i.e. P ∗ ⊆ P (1) ⊆ P . We can
iterate the closure process to obtain the CG closure of P (1). We denote by P (2) this

4More precisely, in [4, 32] a closely related concept that is called obstruction is used.

22



second CG closure. Iteratively, we define the t-th CG closure P (t) of P to be the CG
closure of P (t−1), for t ≥ 2 integer. An inequality that is valid for P (t) but not for P (t−1)

is said to have CG-rank t.
Eisenbrand and Schulz [8] proved that for any polytope P contained in the unit cube

[0, 1]n, one can choose t = O(n2 log n) and obtain the integer hull P (t) = P ∗. Rothvoß
and Sanitá [29] proved that there is a polytope contained in the unit cube whose CG-rank
has order n2, thus showing that the above bound is tight, up to a logarithmic factor.

The CG-cuts that are valid for P (1) and that can be derived by using coefficients in
λ of value 0 or 1/2 only, are called {0, 1/2}-cuts. In [22] it is shown that the separation
problem for {0, 1/2}-cuts remains strongly NP-hard, even when all integer variables are
binary, P = {x ∈ Rn+ : Ax ≤ e} with A ∈ {0, 1}m×n, and e denote the all-one vector
with m entries. As pointed out in [22], the latter hardness proof can easily be adapted
to set partitioning and set covering problems. This result implies that it is NP-hard to
optimize a linear function over the first closure P (1).

For min set-covering problems, Bienstock and Zuckerberg [5] obtained the following
result. For an arbitrary fixed precision ε > 0 and a fixed t ∈ N, choose π such that(
π+1
π

)t ≤ 1 + ε. For any given set-covering instance, let opt denote the optimal integral

value and let opt(t) (≤ opt) denote the optimal value over the t-th closure P (t). Bien-
stock and Zuckerberg [5] considered the optimal solution x∗π of value optπ (≤ opt) of
a relaxation Rπ that satisfies all pitch-π valid inequalities for the integer hull. Then,
either (opt ≥) optπ ≥ opt(t), implying therefore that Rπ is a better relaxation than the
t-th closure P (t), or (opt ≥) opt(t) ≥ optπ. In the latter case, they proved that x∗π can be
rounded to satisfy all the CG-cuts of rank t. Moreover, the value of the rounded solution
is at most 1 + ε times larger than optπ. This implies that (1 + ε)optπ ≥ opt(t) and there-
fore optπ ≥ (1 − ε)opt(t). This gives a polynomial time approximation scheme (PTAS)
for approximating opt(t), i.e. for the minimization of set-covering objective functions
over P (t). It follows that the generalized SoS (or Sherali-Adams) relaxation with high
degree polynomials described in this paper, yields also to a PTAS for approximating
set-covering objective functions over P (t).

In the next section we present a more general result for packing problems, meaning
that the coefficients of the non-negative matrix A are not anymore restricted to be 0/1,
or bounded (see Section B), as for the set cover case. It remains an interesting open
question to extend the results for the set cover problem to general covering problems,
namely covering problems with general non-negative matrices A.

6.1 Approximating Fixed-Rank CG Closure for Packing Problems

In this section we consider the (standard) Lasserre/SoS-hierarchy parameterized by the
degree d, denoted d-SoS. For packing problems, we show that d-SoS yields to a PTAS
for approximating over the t-th CG closure P (t), for any fixed t. It follows that the SoS
approach can be used for approximating to any arbitrary precision, over any constant
CG closure, for both packing and set covering problems (BZ guarantees this only for set
covering problems).
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Consider any given m× n non-negative matrix A and a vector b ∈ Rm+ . Let FA,b be
the feasible region for the 0-1 packing problem defined by A and b:

FA,b = {x ∈ Rn : x2i − xi = 0 ∀i ∈ [n], Ax ≤ b}.

We extend the definition of pitch also for packing inequalities as follows.

Definition 6.1. For any given packing inequality a0 − a>x ≥ 0, with a0, a ≥ 0 and
indices ordered so that 0 < a1 ≤ a2 ≤ · · · ≤ ah and aj = 0 for j > h, its pitch π(a, a0)

is the maximum integer such that a0 −
∑π(a,a0)

i=1 ai ≥ 0.

For example, the classical clique inequality
∑

i∈C xi ≤ 1, where C is a clique, have
pitch equal to one.

The following result for packing problems can be seen as the dual of Theorem 4.1 for
set covering. It can be derived by using the so called “Decomposition Theorem” due to
Karlin, Mathieu, and Nguyen [13]. Here we give a direct simple proof that follows the
approach used throughout this paper.

Lemma 6.1. Consider any packing problem instance given by a matrix A ∈ Rm×n+ and
a vector b ∈ Rm+ . Let π = O(1) be a fixed positive integer. Then, (π + 1)-SoS satisfies
all valid inequalities for FA,b of pitch at most π.

Proof. Suppose a0 − a>x ≥ 0 is a valid inequality for FA,b of pitch π with a0, a ≥ 0.
The claim follows from Proposition 2.2 by showing that a0 − a>x admits a (π + 1)-SoS
certificate.

Let S := supp(a) and xI :=
∏
i∈I xi, for I ⊆ [n]. By (10) (choose Z = I), for any

given I ⊆ S we have xI(a0 − a>x) ≡ xI(a0 −
∑

i∈I ai −
∑

i 6∈I aixi) (mod I01).
Let F := {I : I ⊆ S, (a0−

∑
i∈I ai) < 0} and T := {J : J ⊆ S, J 6∈ F} (and therefore

if we set to 1 all the variables xi with i ∈ I, for I ∈ F , then the assumed valid inequality
a0− a>x ≥ 0 is violated). Let V := {x ∈ Rn : xI = 0 ∀I ∈ F, x2k −xk = 0 ∀k ∈ [n]} and
note that any feasible integral solution belongs to V .

For any given δSJ , let δ̄SJ denote the “truncated” version of δSJ obtained from δSJ
by zeroing all the monomials xI with I ∈ F (observe that δ̄SJ = 0 for J ∈ F ). Clearly,
deg(δ̄SJ ) ≤ π, since a0−a>x ≥ 0 has pitch at most π. Note that

∑
I⊆S δ̄

S
I =

∑
I∈T δ̄

S
I = 1,

(δ̄SI )2 ≡ δ̄SI (mod I(V )) and δ̄SI (a0 − a>x) ≡ δ̄SI (a0 −
∑

i∈I ai) (mod I(V )). These can
be derived by multilinearizing, and by zeroing all the monomials from I(V ) that are on
the left and right-hand side of (6), (7) and (10), respectively.

If follows that

δ̄SI (a0 − a>x) = δ̄SI (a0 −
∑
i∈I

ai) + hI(x) for some hI(x) ∈ I(V ). (47)

As said before, the term δ̄SI (a0 −
∑

i∈I ai), that is on the right-hand side of (47), is
obtained from the left-hand side of (47) by multilinearizing, so replacing each occurrence
of x2i with xi, and by zeroing all the monomials from I(V ) that appear on the left-
hand side. Note that these latter monomials have degree at most π + 1, since they
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derive from multiplying a degree π polynomial δ̄SI with a linear function. Therefore
deg(hI(x)) ≤ π + 1. Then

a0 − a>x =
(
a0 − a>x

) =1︷ ︸︸ ︷(∑
I∈T

δ̄SI

)
(47)
=
∑
I∈T

≥0︷ ︸︸ ︷(
a0 −

∑
i∈I

ai

)
δ̄SI + f(x), (48)

for f(x) =
∑

I∈T hI(x) ∈ I(V ) with deg(f) ≤ π + 1.
From the above equivalence we see that a0 − a>x can be written (mod I(V )) as

a conical combination of polynomials from {δ̄SI : I ∈ T} of degree at most π. The
claim follows by transforming the above congruence (mod I(V )) (48) into a congruence
(mod I01), while still using bounded degree polynomials.

Since f(x) ∈ I(V ), by looking at the definition of I(V ) note that every monomial in
f(x) belongs to I(V ) as well. Then f(x) =

∑
I∈U fI ·xI , for some U ⊆ 2[n] such that, for

all I ∈ U , we have xI ∈ I(V ) and fI ∈ R (and, as already observed, deg(xI) ≤ π + 1).
If fI ≥ 0 then fI · xI ≡ fI · (xI)2 (mod I01); otherwise (i.e. fI < 0), since xI ∈ I(V ),

then there is a valid constraint from a conical combination of valid constraints cI(x) :=(
λ>(b−Ax) + γ>x

)
≥ 0, for some λ, γ ≥ 0, that is violated by setting xi = 1 for i ∈ I,

i.e. c(xI) < 0. Therefore (recall xI · cI(xI) ≡ xI · cI(x) (mod I01))

fI · xI ≡

(√
fI

cI(xI)
xI

)2

cI(x) (mod I01).

It follows that a0 − a>x admits a (π + 1)-SoS certificate:

a0 − a>x ≡ s0 +

m∑
i=1

sigi (mod I01), for some si ∈ Σπ+1, (49)

where gi ≥ 0, for i ∈ [m], denotes the i-th constraint from b − Ax ≥ 0 and Σπ+1 :=
{
∑

i q
2
i : qi ∈ R[x]π+1}.

Let P = {x ∈ Rn : 0 ≤ xi ≤ 1 ∀i ∈ [n], Ax ≤ b} denote the linear relaxation of
FA,b. For t ∈ N, recall that P ∗ and P (t) denote the integer hull and the t-th CG closure,
respectively, of the starting linear program P , and opt(t)(c) := max{c>x : x ∈ P (t)}.
Without loss of generality, we will assume that c ∈ Rn+ (otherwise it is always optimal
to set xi = 0 whenever ci ≤ 0). Let Sol(d) denote the set of feasible solutions for d-SoS
projected to the original space of the variables. Let optd(c) := max{c>x : x ∈ Sol(d)}.

The following result shows that fixed rank CG closures of packing problems can be
approximated to any arbitrarily precision, and in polynomial time, by using the standard
SoS hierarchy.

Theorem 6.2. For any fixed t ∈ N and ε > 0, there is an integer d = d(t, ε) such that
optd(c) ≤ (1 + ε)opt(t)(c), for all c ∈ Rn+.
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Proof. For any fixed t ∈ N and ε > 0, choose d ∈ N such that (d/(d− 1))t ≤ 1 + ε. Let
optd (or opt(t)) denote optd(c) (or opt(t)(c)), for short.

If optd ≤ opt(t) than we are done. Otherwise (optd > opt(t)), let x(t) := φt · x∗ where
φt := (d−1d )t. It follows that optd = c>x∗ ≤ (1 + ε)c>x(t). We show that x(t) is feasible

for the rank-t CG closure. This imples that c>x(t) ≤ opt(t), and the claim follows since
optd ≤ (1 + ε)c>x(t) ≤ (1 + ε)opt(t).

The proof is by induction on t. As a base of induction note that when t = 0 then
clearly x(0) ∈ P = P (0). Assume now, by induction hypothesis, that x(t−1) ∈ P (t−1) for
any rank equal to (t − 1) with t ≥ 1. We need to show that it is valid also for rank
t. If the pitch of a generic rank-t valid inequality for P (t) is at most d − 1, then by
Lemma 6.1 it follows that any feasible solution x ∈ Sol(d) (and therefore x(t)) satisfies
this inequality. Otherwise, consider a generic rank-t valid inequality ba0c − a>x ≥ 0 of
pitch larger than d − 1, where a0 − a>x ≥ 0 is any valid inequality from the closure
P (t−1). By induction hypothesis note that a0 − a>x(t−1) ≥ 0. Since the pitch is higher
than d − 1 then a0 > d − 1 (vector a can be assumed, w.l.o.g., to be non-negative and
integral) and therefore a0

ba0c ≤
d
d−1 and by multiplying the solution x(t−1) ∈ P (t−1) by

(d− 1)/d we obtain a feasible solution for the rank-t CG closure.

7 Conclusions and Future Directions

A breakthrough result of Lee, Raghavendra, and Steurer [21] shows that the standard
SoS is “optimal” for Constraint Satisfaction Problems among all semidefinite programs
of comparable size. In [16] and [17], the standard SoS is shown to be “pessimal” for
simple problems, meaning that it requires exponential size to get any bounded approxi-
mation.

The standard SoS has been defined with respect to the standard monomial basis,
which looks like a “natural” choice, but in fact it turns out to be an arbitrary choice.
This way can be “good” or “bad” depending on the problem at hand.

In this paper, we have shown a first example of SoS equipped with a different basis,
that is useful in asymmetric situations. The proposed approach overcomes some provable
limitations of the standard SoS.

A very challenging open question is to understand what is the “right” basis for the
problem that we want to address. Roughly speaking, can we transform the “Recipe”
given at the end of Section 2 into an effective algorithm? Any progress in this direction
would be of considerable interest.

Acknowledgment. A mia mamma, che esiste per mancanza.
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A Sum of Squares Over the Boolean Hypercube

A.1 The Complexity of Computing S-SoS Certificates

Lemma A.1. Consider any given set of polynomials S ⊆ R[x]/I01 with |S| = nO(d),
for some d ∈ N. Then the existence of a S-SoS certificate can be decided by solving a
semidefinite programming feasibility problem. The dimension of the matrix inequality is
bounded by nO(d).

In the following we sketch the proof of the above lemma. For simplicity, we sketch
this for the case where the semialgebraic set F has no inequalities (so m = 0 in (3)).
The generalization to the case with inequalities follows in a similar vein (see e.g. Exam-
ple A.1).

Testing if f(x) is S-SoS. We start recalling how to check if a polynomial f(x) is
S-SoS, i.e check if (see Definition 2.2):

f(x) =
r∑
i=1

qi(x)2 for some q1, . . . , qr ∈ S.

Note that it is “f(x) = . . .” and not “f(x) ≡ . . . (mod I01)”. Then we show how to
generalize this for checking whether f(x) is Q-SoS (mod I01).

By overloading notation, let x denote the vector of all monomials in R[x]n in a fixed
order, say degree lexicographic. Recall that a polynomial s(x) is a sum of squares if
and only if there exists a positive semidefinite matrix W , denoted W � 0, such that
s(x) = x>Wx. We review this in the following lemma.

Lemma A.2. Let s(x) ∈ R[x]. The following statements are equivalent:

1. s(x) has a representation as a sum of squares in R[x].

2. There is a matrix W such that s(x) = x>Wx with W � 0, where x denotes the
vector of all monomials in R[x]n.

Proof. The matrix W is PSD if and only if there is a factorization W = V >V . If this
holds then s(x) = x>Wx = x>V >V x = (V x)>(V x) =

∑
i ((V x)i)

2 is a SoS. Vice
versa, if s(x) =

∑
i ((V x)i)

2 then going backward in the previous equality the claim
follows.
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By using the previous lemma it follows that f(x) is a SoS if and only if there is
a symmetric matrix W (known as the Gram matrix of the SoS representation) that
satisfies: s(x) = x>Wx, W � 0. Notice that the latter is a semidefinite program, since
f(x) = x>Wx is affine in the matrix W , and thus the set of possible Gram matrices
W is given exactly by the intersection of an affine subspace and the cone of positive
semidefinite matrices.

Consider any finite set of polynomials S ⊆ R[x] with |S| = nO(d) and let Q = 〈S〉
(for any positive constant d). Let S be the matrix having as columns the spanning set
S. It follows that for any vector q ∈ Q there is a vector u ∈ R|S| such that q = Su.

Since we want to check if f(x) is Q-SoS then we need to check if f(x) =
∑

i ((V x)i)
2

and each (V x)i belongs to Q and therefore this happens if it exists a ui ∈ R|S| such that
(Sui)

>x = (V x)i. Let U denote the matrix whose columns are the ui, then we have the
following:

∑
i ((V x)i)

2 = x>S(UU>)S>x. Polynomials are expressed in the new basis
S>x (this basis is in general not isomorphic to the standard monomial basis of degree
d) and the complexity is given by the size of the matrix UU>, i.e. nO(d).

Testing if f(x) is S-SoS (mod I01). The previous method can be adapted to check
whether f(x) is S-SoS (mod I01). Actually, it is more general, it can be adapted to
check whether f(x) is S-SoS (mod I), where I ⊆ I01 is any ideal for which we have the
Gröbner basis G (note that {xi − x2i , i ∈ [n]} is the Gröbner basis for I01). We explain
this in the following.

The vector x can be replaced by the vector of all the different monomials after the
division by G (these are all the multilinear monomials if I = I01) since R[x]/I is spanned
by these monomials. This can decrease the size of the unknown matrix W , making the
final SDP smaller than before. Setting up W as a symmetric matrix of indeterminates
we proceed as explained before (so W = S(UU>)S>). Let s = x>Wx. Let the normal
forms of f and s with respect to a reduced Gröbner basis G of I be f̄ and s̄, respectively
(for the case I = I01, f̄ and s̄ are the multilinear representation of f and s, respectively).
Then since f ≡ f̄ (mod I) and s ≡ s̄ (mod I) and f̄ and s̄ are fully reduced with respect
to G, we have that f ≡ s (mod I) if and only if f̄ = s̄. Therefore, to check if f(x) is S-
SoS (mod I), we equate the coefficients of f̄ and ḡ for like monomials and check whether
the resulting linear system in the Wij ’s has a solution with W � 0.

Example A.1. Consider the following set F = {x ∈ R2 : x1 − x21 = x2 − x22 = 0, x1 +
x2 − ε ≥ 0} where ε ∈ (0, 1). We want to show that the valid inequality x1 + x2 − 1 ≥ 0
admits a S-SoS certificate, where S is the set of the elementary symmetric polynomials
in 2 variables, i.e S = {1, x1 + x2, x1x2} and therefore 〈S〉 is the ring of all symmetric
polynomials. Let x = [1, x1, x2, x1x2]

>, the matrix S is equal to

S =


1 0 0
0 1 0
0 1 0
0 0 1

 and the new basis is S>x = [1, x1 + x2, x1x2]
>.

We want to show that x1 + x2 − 1 ≥ 0 admits a S-certificate, therefore we need to
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show that

x1 + x2 − 1 ≡ s0(x) + s1(x)(x1 + x2 − ε) (mod I01). (50)

where s0, s1 ∈ {s ∈ R[x] : s =
∑

i qi(x)2, qi ∈ 〈S〉}. By Lemma A.2 there are two PSD
matrices W0 and W1 such that s0(x) = x>W0x and s1(x) = x>W1x with the additional
constraint on the structure of W0 and W1 given by the restriction that qi ∈ 〈S〉. Let us
first perform the change of basis σi = (S>x)i for i = 0, 1, 2. So the new variables are
σ0 = 1, σ1 = x1 + x2 and σ2 = x1x2 and the corresponding vector form σ = [1, σ1, σ2]

>.
Note that in the new basis σ21 ≡ σ1 + 2σ2 (mod I01), σ

2
2 ≡ σ2 (mod I01) and σ1σ2 ≡ 2σ2

(mod I01) which correspond to the multilinear forms in the new basis. By rephrasing our
goal in the new basis, we need to show that

σ1 − 1 ≡ σ>T0σ + (σ>T1σ)(σ1 − ε) (mod I01), (51)

for some PSD matrices T0, T1 with Ti =

ti00 ti01 ti02
ti01 ti11 ti12
ti02 ti12 ti22

 for i = 0, 1. By writing (51)

in the multilinear form, our goal is to prove that there are two PSD matrices T0, T1 such
that the following is satisfied:

σ1 − 1 = t000 − εt100︸ ︷︷ ︸
α

+ (t011 + 2t001 + t100 + (t111 + 2t101)(1− ε))︸ ︷︷ ︸
β

σ1+

(2t011 + t022 + 2t002 + 4t012 + 6t111 + 4t101 + 2t122 + 4t102 + 8t112 − ε(2t111 + t122 + 2t102 + 4t112)︸ ︷︷ ︸
γ

σ2

So the solution of the following SDP= {α = −1, β = 1, γ = 0, T0 � 0, T1 � 0} gives the
desired S-SoS certificate. By choosing T0 = [0, 0, 1]>[0, 0, 1] and T1 = 1

ε [1,−1, 1]>[1,−1, 1]
the SDP is satisfied.

B k-Small Minimal Covers

Consider a generic inequality of any given integer problem as written in the covering
form, i.e. inequality g(x) = a>x − a0 ≥ 0 with a ≥ 0 (here, abusing notation, every
variable xj is either the original one or its negation 1 − xj). For each such constraint
let Va = supp(a) be the set of variables in this constraint. Add to the SA(k)-SoS
polynomials the set of all C-symmetric polynomials with C ⊆ Va and |C| ≤ k. Consider
any valid k-small minimal cover of type

∑
i∈C xi ≥ 1, with |C| ≤ k (the other cases are
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similar). We sketch that it admits an SA(k)-SoS certificate:

∑
i∈C

xi − 1 =

(∑
i∈C

xi − 1

)
=1︷ ︸︸ ︷

|C|∑
i=0

∑
I⊆C:|I|=i

δCI︸ ︷︷ ︸
symmetric

 ≡

|C|∑
i=0

(i− 1)
∑

I⊆C:|I|=i

δCI︸ ︷︷ ︸
symmetric



≡

>0︷ ︸︸ ︷(
−1∑

i∈Va\C ai − a0

)
δC0

<0︷ ︸︸ ︷ ∑
i∈Va\C

ai +
∑
i∈C

aixi − a0

+


|C|∑
i=1

(i− 1)
∑

I⊆C:|I|=i

δCI︸ ︷︷ ︸
symmetric



≡

>0︷ ︸︸ ︷(
−1∑

i∈Va\C ai − a0

)
δC0

∑
i∈Va

aixi − a0 +
∑

i∈Va\C

ai(1− xi)

+


|C|∑
i=1

(i− 1)
∑

I⊆C:|I|=i

δCI︸ ︷︷ ︸
symmetric


≡

(√
−1∑

i∈Va\C ai − a0
δC0

)2

︸ ︷︷ ︸
s(x)

(∑
i∈Va

aixi − a0

)
︸ ︷︷ ︸

g(x)

+
∑

i∈Va\C

(√
−ai∑

i∈Va\C ai − a0
δC0

)2

︸ ︷︷ ︸
si(x)

(1− xi)︸ ︷︷ ︸
gi(x)

+

+

 |C|∑
i=1

√
i− 1

∑
I⊆C:|I|=i

δCI

2

︸ ︷︷ ︸
s0(x)

B.1 An Application

As in [4, 32], Theorem 4.1 can be generalized to handle 0/1 integer problems with non-
negative constraints having pitch bounded by a constant p. More precisely, consider the
feasible region for the 0-1 problem defined by A:

FA = {x ∈ {0, 1}n : Ax ≥ b} (52)

where b ∈ Rm+ and each constraint in Ax ≥ b has pitch at most p. (For example any
inequality a>x−a0 ≥ 0 with non-negative integral coefficients ai ∈ {0, 1, . . . , p} has pitch
at most p.) In this case the number of minimal covers is polynomially bounded. Since
the integral polytope defined by using the minimal covers and the integrality constraints
coincides with (52) (see e.g. [7]), then we can extend Theorem 4.1 to this more general
case.
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C Omitted proofs

C.1 Proof of Theorem 3.1

Before proving the bound given in Theorem 3.1 on the number of levels for our simple
example we need some preliminaries. In particular we first introduce the SoS hierarchy
in matrix form that is more convenient for proving lower bounds. In the following we
assume that the SoS hierarchy is the “standard” one, namely the one that follows by
considering the subspace of bounded degree polynomials as functional basis.

C.1.1 The Sum-of-Squares Hierarchy in Matrix Form

Consider the SoS hierarchy for approximating the convex hull of the semialgebraic set

P = {x ∈ {0, 1}n : g`(x) ≥ 0,∀` ∈ [p]} (53)

where g`(x) are linear constraints and p a positive integer. The form of the SoS hierarchy
we use here is equivalent to the one introduced before and follows from applying a change
of basis to the dual certificate of the refutation of the proof system (see [14] for the
details on the change of basis). We use this change of basis in order to obtain a useful
decomposition of the moment matrices as a sum of rank one matrices of a special kind.

For any I ⊆ N = [n], let xI denote the 0/1 solution obtained by setting xi = 1
for i ∈ I, and xi = 0 for i ∈ N \ I. For a function f : {0, 1}n → R, we denote by
f(xI) the value of the function evaluated at xI . In the SoS hierarchy defined below
there is a variable yNI that can be interpreted as the “relaxed” indicator variable for
the solution xI . We point out that in this formulation of the hierarchy the number of
variables {yNI : I ⊆ N} is exponential in n, but this is not a problem in our context since
we are interested in proving lower and upper bounds rather than solving an optimization
problem.

Let Pt(N) be the collection of subsets of N of size at most t ∈ N. For every I ⊆ N ,
the q-zeta vector ZI ∈ RPq(N) is a 0/1 vector with J-th entry (|J | ≤ q) equal to 1 if and
only if J ⊆ I.5 Note that ZIZ

>
I is a rank one matrix and the matrices considered in

Definition C.1 are linear combinations of these rank one matrices.

Definition C.1. The t-th round SoS hierarchy relaxation for the set P as given in (53),
denoted by SoSt(P ), is the set of variables {yNI ∈ R : ∀I ⊆ N} that satisfy∑

I⊆N
yNI = 1, (54)

∑
I⊆N

yNI ZIZ
>
I � 0, where ZI ∈ RPt+1(N) (55)

∑
I⊆N

g`(xI)y
N
I ZIZ

>
I � 0, ∀` ∈ [p], where ZI ∈ RPt(N) (56)

5In order to keep the notation simple, we do not emphasize the parameter q as the dimension of the
vectors should be clear from the context.
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It is straightforward to see that the SoS hierarchy formulation given in Definition C.1
is a relaxation of the integral polytope. Indeed consider any feasible integral solution
xI ∈ P and set yNI = 1 and the other variables to zero. This solution clearly satisfies (54)
and (55) because the rank one matrix ZIZ

>
I is positive semidefinite (PSD), and (56) since

xI ∈ P .
For a setQ ⊆ [0, 1]n, we define the projection from SoSt(Q) to Rn as xi =

∑
i∈I⊆N y

N
I

for each i ∈ {1, ..., n}. The SoS rank of Q, ρ(Q), is the smallest t such that SoSt(Q)
projects exactly to the convex hull of Q ∩ {0, 1}n.

C.1.2 Using Symmetry to Simplify the PSDness Conditions

In this section we present a theorem given in [14] that can be used to simplify the
PSDness conditions (55) and (56) when the problem formulation is very symmetric.
More precisely, the theorem can be applied whenever the solutions and constraints are
symmetric in the sense that wNI = wNJ whenever |I| = |J | where wNI is understood to
denote either yNI or g`(xI)y

N
I . In what follows we denote by R[x] the ring of polynomials

with real coefficients and by R[x]d the polynomials in R[x] with degree less or equal to
d.

Theorem C.1 ([14]). For any t ∈ {1, . . . , n}, let St be the set of univariate polynomials
Gh(k) ∈ R[k], for h ∈ {0, . . . , t}, that satisfy the following conditions:

Gh(k) ∈ R[k]2t (57)

Gh(k) = 0 for k ∈ {0, . . . , h− 1} ∪ {n− h+ 1, . . . , n}, when h ≥ 1 (58)

Gh(k) ≥ 0 for k ∈ [h− 1, n− h+ 1] (59)

For any fixed set of values {wNk ∈ R : k = 0, . . . , n}, if the following holds

n−h∑
k=h

(
n

k

)
wNk Gh(k) ≥ 0 ∀Gh(k) ∈ St (60)

then
n∑
k=0

wNk
∑
I⊆N
|I|=k

ZIZ
>
I � 0

where ZI ∈ RPt(N).

Note that polynomial Gh(k) in (59) is non-negative in a real interval, and in (58)
it is zero over a set of integers. Moreover, constraints (60) are trivially satisfied for
h > bn/2c.

C.1.3 The Simple Example Proof

The single constraint of the simple example can be rewritten, w.l.o.g., as follows:

g(x) =
n∑
i=1

xi − L+ 1− 1

P
≥ 0
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where L and P are positive integers. Clearly any integral {0, 1}-solution requires to set
to one at least L variables.

Let (LP ) be the polytope {x ∈ [0, 1]n : g(x) ≥ 0}. The SoS rank is the minimal
number of levels needed to obtain the integer hull (IP ) of (LP ).

In the following we will restrict the analysis to L ≤ dn/2e. Consider any solution
that satisfies the following conditions:

yNk = 0 for k ≤ L− 2
yNk > 0 for k ≥ L− 1∑n

k=0 y
N
k

(
n
k

)
= 1

(61)

Note that in (61) we do not impose any restriction on the exact value of the positive
probabilities. The value of the suggested solution is

∑n
k=L−1

(
n
k

)
yNk k. By choosing P

sufficiently large we will show that almost all the probability mass (but an arbitrarily
small part) can be assigned to yNL−1, resulting therefore into an objective function value

equal to L− 1 + ε, (for any ε > 0) and an integrality gap of L
L−1+ε .

Lemma C.2. For L ≤ dn/2e and a suitable large value of P that depends on n the SoS
rank for (LP ) is at least n− L+ 1.

Proof. For any solution that satisfies (61) there is a unique nonpositive term in conditions
(60), namely zNL−1Gh(L − 1) = yNL−1(−1/P )Gh(L − 1) = −εGh(L − 1) (for some ε =
yNL−1/P > 0), where we use the following notation zNk = yNk g(k) (with g(k) denoting the
value of the constraint g(x) when exactly k variables are set to one).

If we chose h such that L− 1 = n− h then we would have that zNk Gh(k) is equal to
zero for all k 6= n − h, and by choosing Gh(k) such that Gh(L − 1) > 0 we would have
that (60) is never satisfied. To avoid this problem we assume that L− 1 ≤ n−h− 1 and
since h ≤ bn/2c, the claim holds when L ≤ n− bn/2c = dn/2c.

According to Theorem C.1 and (61) note that

• Gh(k) has 2t roots.

• Gh(k) has at least h − 1 + 1 + n − (n − h + 1) + 1 = 2h roots outside the (open)
interval (h− 1, . . . , n− h+ 1).

• Gh(k) has at most 2(t− h) roots within the (open) interval (h− 1, . . . , n− h+ 1).
Moreover Gh(k) ≥ 0 for any k ∈ (h − 1, . . . , n − h + 1) and therefore the at most
2(t−h) roots that are within the (open) interval (h−1, . . . , n−h+1) must appear
in pairs. It follows that Gh(k) has at most t− h different roots within the (open)
interval (h− 1, . . . , n− h+ 1).

Consider any h such that h ≤ L− 1 ≤ n− h− 1 (if L− 1 ≤ h− 1 then (60) is trivially
satisfied). Note that there are n − h − L + 1 terms zNk > 0 for k ∈ {L, . . . , n − h}
(note that L ≤ n − h by assumption, so set {L, . . . , n − h} is never empty). From the
above arguments we know that Gh(k) has at most t−h different roots within the (open)
interval (h−1, . . . , n−h+1). So if t−h is strictly smaller than the number n−h−L+1
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of terms zNk > 0 (with k ∈ {L, . . . , n − h}) then it exists a k∗ ∈ {L, . . . , n − h} that
is not a root for Gh(k) and such that zNk∗

(
n
k∗

)
Gh(k∗) > 0 (recall that Gh(k) ≥ 0 within

the considered interval which implies that Gh(k∗) > 0). The latter condition is satisfied
when t− h ≤ n− h−L, namely when t ≤ n−L. It follows that if t ≤ n−L then there
exists a k∗ ∈ {L, . . . , n − h} such that zNk∗

(
n
k∗

)
Gh(k∗) > 0. Moreover, let r1, . . . , r2t be

the roots of Gh(x). Then k∗ ∈ {L, . . . , n− h} can be chosen such that the following two
conditions are both satisfied:

|k∗ − ri| ≥ 1/2 for every i ∈ [2t] (62)

zNk∗

(
n

k∗

)
Gh(k∗) > 0 (63)

Let j∗ such that k∗ = L−1+j∗, where j∗ ∈ {1, . . . , n−h−L+1}. The claim follows
by showing how to choose P such that:

zNL−1+j∗

(
n

L− 1 + j∗

)
Gh(L− 1 + j∗) >

yNL−1
P

(
n

L− 1

)
Gh(L− 1)

From (63) the above condition is equivalent to satisfy the following

zNL−1+j∗ >
yNL−1
P

(
n

L−1
)(

n
L−1+j∗

) Gh(L− 1)

Gh(L− 1 + j∗)
(64)

Clearly, the interesting cases are when Gh(L− 1) > 0. By the latter, (62) and (63), we
have that:

Gh(L− 1)

Gh(L− 1 + j∗)
=

2t∏
i=1

|L− 1− ri|
|L− 1 + j∗ − ri|

≤
2t∏
i=1

(
1 +

j∗

|L− 1 + j∗ − ri|

)
≤

2t∏
i=1

(1 + 2j∗)

(65)

By (65), if the following is satisfied then (64) holds.

zNL−1+j∗ >
yNL−1
P

(
n

L−1
)(

n
L−1+j∗

) (1 + 2j∗)2t (66)

Then it is sufficient to choose P such that

P ≥ 2
yNL−1

yNL−1+j∗

(
n

L−1
)(

n
L−1+j∗

) (1 + 2j∗)2t

j∗

Note that the right-hand side of the above inequality is bounded by a function of n.

36



C.2 Proof of Lemma 4.2

The statement of Lemma 4.2 is slightly different from Proposition 4.22 in [32] (or The-
orem 6.3 in [4]). The main difference is given by Property (33) (see Lemma 4.2). This
property is not explicitly given in [4, 32], but it can be easily derived by their construction
as explained in the following.

The proof is by induction on π = π(a, a0). If π = 0 then |C| = 0, and it follows that
FC = {x : x ∈ [0, 1]n} and V = ∅. A pitch zero inequality must have a0 ≤ 0. So, since
a ≥ 0, a>x− a0 ≥ 0 is indeed valid for FC and for FA(∅,∅) = FA (6= ∅).

Now, assume that the claim holds for all valid inequalities of pitch p with 0 ≤ p ≤ π−1
and π ≥ 1. Consider a valid inequality a>x − a0 ≥ 0 of pitch π. Note that there must
be some v ∈ [m] such that Av ⊆ supp(a) or, otherwise, we could set xj = 0 for all
j ∈ supp(a), and xj = 1 everywhere else, and thereby satisfy every constraint and
nevertheless have a>x = 0 (so contradicting the hypothesis that a>x− a0 ≥ 0 is a valid
inequality of pitch π ≥ 1). Choose Av ⊆ supp(a). Note that we are assuming, w.l.o.g.,
that A is minimal, so there is no Ai, with i ∈ [m] and i 6= v, that is a proper subset of
Av. Let v(1) ∈ Av be the index of the minimum coefficient aj : j ∈ Av, where aj is the
coefficient of variable xj in the valid inequality a>x− a0 ≥ 0.

We first obtain a strengthen by setting to zero all the variables from Vv, where Vv
are all the variables from all Ai, with i 6= v, that appear in Av − {v(1)}, i.e. Vv :=
(Av − {v(1)})

⋂
(∪i 6=vAi). Consider FA(∅,Vv)

and note that FA(∅,Vv)
6= ∅ because by

assumption no Aj ⊂ Av and therefore (a>x − a0)(∅,Vv) ≥ 0 is a valid inequality for

FA(∅,Vv)
. Set xv(1) = 1 in (a>x − a0)(∅,Vv) ≥ 0 to get (a>x − a0)({v(1)},Vv) ≥ 0 which is

a valid inequality for FA(∅,Vv)
. Note that the pitch p of (a>x− a0)({v(1)},Vv) is such that

p ≤ π − 1 and therefore, by induction hypothesis, it satisfies the properties of the claim
when we consider (a>x− a0)({v(1)},Vv) ≥ 0 as valid inequality for FA(∅,Vv)

. Let a′ be the
vector that is obtained from a by setting to zero all the coefficients from Vv ∪ {v} and
let a′0 := a0 − av(1), so (a>x − a0)({v(1)},Vv) = a′>x − a′0. By the induction hypothesis
there must be a subset C ′ of the rows from A′ := A(∅,Vv) such that |C ′| ≤ p and

A′i ⊆ supp(a′), ∀i ∈ C ′, (67)

(a′>x− a′0)(∅,V ′) ≥ 0 is valid for FC′ , (68)

FA′
(∅,V ′)

6= ∅, (69)

where V ′ is the set of variables occurring in more than one row from C ′ and FC′ = {x ∈
[0, 1]n : (

∑
j∈A′i

xj − 1)(∅,V ′) ≥ 0, i ∈ C ′}.
Define C := {v}∪C ′. Therefore Condition (31) is satisfied by construction. Moreover,

note that in FC (as defined in the statement of Lemma 4.2) all the constraints are disjoint,
and basic feasible solutions are integral (in case needed, we refer to [32] for more details).
Suppose that we are given an arbitrary x̃ ∈ {0, 1}n that satisfies FC . Consider that we
must have x̃j = 1 for some j ∈ Av, such that aj ≥ av(1). If we define x′ to be the same

as x̃ but with x′j = 0, then x′ still satisfies FC′ . Thus by induction a′>x′ ≥ a0 − av(1)
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which implies that a>x̃ = a′>x′ + aj x̃j = a′>x′ + aj ≥ a0 − av(1) + aj ≥ a0. This proves
Property (32).

To prove Property (33) we show that we can set to zero all the overlapping variables
from the rows in C, namely the variables from V and still get a non empty set of integral
solutions, i.e. FA(∅,V )

6= ∅. Indeed, by the induction hypothesis we have that FA′
(∅,V ′)

6= ∅,
where A′(∅,V ′) = A(∅,Vv∪V ′). Therefore FA(∅,V )

6= ∅ because V ⊆ Vv ∪ V ′.

D On a Recent Claim by Fiorini et al. [10]

We describe the approach suggested in [10] for the 0/1 set cover problem which is also
the main application advertised in the abstract. We observe in the following that their
approach is essentially based on similar arguments as in this paper (formerly appeared in
[23]) but specialized for a weaker framework that does not generalize to packing problems
(see Section 6.1). We sketch this for pitch 2 in the following. The generalization to any
pitch is straightforward.

Let A be the m× n set cover matrix defined as in (27) and let Aij denote the (i, j)-
entry of A. By overloading notation, we will interchangeably use Ai to denote the i-th
row of A and its support. In [10], they consider the canonical monotone formula for set
cover:

φ :=

m∧
i=1

∨
Aij=1

xj (70)

Starting with any convex set Q ⊆ [0, 1]n containing FA (see (27)) the improved relaxation
is obtained by recursively “feeding” Q into the formula φ, denoted by φ(Q) and defined
as follows:

φ(Q) :=
m⋂
i=1

conv

 ⋃
Aij=1

{x ∈ Q : xj = 1}

 (71)

By starting with Q := [0, 1]n it is easy to see that φ([0, 1]n) = {x ∈ [0, 1]n : Ax ≥ e}.
This is also the base of induction in the proof of Lemma 4.2 in this paper. So their
approach obtains, after the first application, the starting linear program relaxation that
corresponds to all pitch one inequalities. Now let Q := φ([0, 1]n) and let’s analyze the
second application, namely φ(Q) = φ2([0, 1]n):

φ(Q) :=
m⋂
i=1

conv

 ⋃
Aij=1

{x ∈ [0, 1]n : Ax ≥ e, xj = 1}


︸ ︷︷ ︸

Ui

(72)

It can be easily observed that the relaxation given by (72) is obtained by considering
the “interaction” of the i-th pitch 1 constraint (for any i ∈ [m], see the outer intersection)

38



with any other constraint h ∈ [m] from Ax ≥ e. The “interaction” is given by the
common variables, denoted by Ai ∩ Ah in this paper, otherwise (i.e. j 6∈ Ah) setting
xj = 1 does not effect the corresponding constraint Ahx ≥ 1. These are exactly the
variables considered in VC with C = {i, h} (see (35), VC will be used to define the
subspace of polynomials SA(t)).

Lemma 4.2 gives a property of these interactions that are used for proving that
these pairs of interactions are sufficient to show pitch 2 inequalities. Higher pitches
use recursive polynomials which correspond to recursive application of φ by considering
triplets for pitch 3 and so on, as in this paper (see also Section C.2).
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