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Abstract

We study the computational power of deciding whether a given truth-table can be described
by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and of the
variant denoted as MKTP where circuit size is replaced by a polynomially-related Kolmogorov
measure. All prior reductions from supposedly-intractable problems to MCSP / MKTP hinged
on the power of MCSP / MKTP to distinguish random distributions from distributions produced
by hardness-based pseudorandom generator constructions. We develop a fundamentally different
approach inspired by the well-known interactive proof system for the complement of Graph
Isomorphism (GI). It yields a randomized reduction with zero-sided error from GI to MKTP.
We generalize the result and show that GI can be replaced by any isomorphism problem for
which the underlying group satisfies some elementary properties. Instantiations include Linear
Code Equivalence, Permutation Group Conjugacy, and Matrix Subspace Conjugacy. Along the
way we develop encodings of isomorphism classes that are efficiently decodable and achieve
compression that is at or near the information-theoretic optimum; those encodings may be of
independent interest.

1 Introduction

Finding a circuit of minimum size that computes a given Boolean function constitutes the over-
arching goal in nonuniform complexity theory. It defines an interesting computational problem in
its own right, the complexity of which depends on the way the Boolean function is specified. A
generic and natural, albeit verbose, way to specify a Boolean function is via its truth-table. The
corresponding decision problem is known as the Minimum Circuit Size Problem (MCSP): Given a
truth-table and a threshold θ, does there exist a Boolean circuit of size at most θ that computes
the Boolean function specified by the truth-table? The interest in MCSP dates back to the dawn
of theoretical computer science [Tra84]. It continues today partly due to the fundamental nature
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of the problem, and partly because of the work on natural proofs and the connections between
pseudorandomness and computational hardness.

A closely related problem from Kolmogorov complexity theory is the Minimum KT Problem
(MKTP), which deals with compression in the form of efficient programs instead of circuits. Rather
than asking if the input has a small circuit when interpreted as the truth-table of a Boolean function,
MKTP asks if the input has a small program that produces each individual bit of the input quickly.
To be more specific, let us fix a universal Turing machine U . We consider descriptions of the input
string x in the form of a program d such that, for every bit position i, U on input d and i outputs
the i-th bit of x in T steps. The KT cost of such a description is defined as |d| + T , i.e., the
bit-length of the program plus the running time. The KT complexity of x, denoted KT(x), is the
minimum KT cost of a description of x. KT(x) is polynomially related to the circuit complexity
of x when viewed as a truth-table (see Section 2.1 for a more formal treatment). On input a string
x and an integer θ, MKTP asks whether KT(x) ≤ θ.

Both MCSP and MKTP are in NP but are not known to be in P or NP-complete. As such, they
are two prominent candidates for NP-intermediate status. Others include factoring integers, discrete
log over prime fields, graph isomorphism (GI), and a number of similar isomorphism problems.

Whereas NP-complete problems all reduce one to another, even under fairly simple reductions,
less is known about the relative difficulty of presumed NP-intermediate problems. Regarding MCSP
and MKTP, factoring integers and discrete log over prime fields are known to reduce to both under
randomized reductions with zero-sided error [ABK+06, Rud17]. Recently, Allender and Das [AD14]
showed that GI and all of SZK (Statistical Zero Knowledge) reduce to both under randomized
reductions with bounded error.

Those reductions and, in fact, all prior reductions of supposedly-intractable problems to MCSP
/ MKTP proceed along the same well-trodden path. Namely, MCSP / MKTP is used as an efficient
statistical test to distinguish random distributions from pseudorandom distributions, where the
pseudorandom distribution arises from a hardness-based pseudorandom generator construction. In
particular, [KC00] employs the construction based on the hardness of factoring Blum integers,
[ABK+06, AD14, AKRR10, Rud17] use the construction from [HILL99] based on the existence of
one-way functions, and [ABK+06, CIKK16] make use of the Nisan-Wigderson construction [NW94].
The property that MCSP / MKTP breaks the construction implies that the underlying hardness
assumption fails relative to MCSP / MKTP, and thus that the supposedly hard problem reduces
to MCSP / MKTP.

Contributions. The main conceptual contribution of our paper is a fundamentally different way
of constructing reductions to MKTP based on a novel use of known interactive proof systems. Our
approach applies to GI and a broad class of isomorphism problems. A common framework for those
isomorphism problems is another conceptual contribution. In terms of results, our new approach
allows us to eliminate the errors in the recent reductions from GI to MKTP, and more generally
to establish zero-sided error randomized reductions to MKTP from many isomorphism problems
within our framework. These include Linear Code Equivalence, Matrix Subspace Conjugacy, and
Permutation Group Conjugacy (see Section 6 for the definitions). The technical contributions
mainly consist of encodings of isomorphism classes that are efficiently decodable and achieve com-
pression that is at or near the information-theoretic optimum.

Before describing the underlying ideas, we note that our techniques remain of interest even in
light of the recent quasi-polynomial-time algorithm for GI [Bab16]. For one, GI is still not known
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to be in P, and Group Isomorphism stands as a significant obstacle to this (as stated at the end
of [Bab16]). Moreover, our techniques also apply to the other isomorphism problems mentioned
above, for which the current best algorithms are still exponential.

Let us also provide some evidence that our approach for constructing reductions to MKTP differs
in an important way from the existing ones. We claim that the existing approach can only yield
zero-sided error reductions to MKTP from problems that are in NP∩coNP, a class which GI and—a
fortiori—none of the other isomorphism problems mentioned above are known to reside in. The
reason for the claim is that the underlying hardness assumptions are fundamentally average-case,1

which implies that the reduction can have both false positives and false negatives. For example,
in the papers employing the construction from [HILL99], MKTP is used in a subroutine to invert
a polynomial-time-computable function (see Lemma 1 in Section 2.1), and the subroutine may fail
to find an inverse. Given a reliable but imperfect subroutine, the traditional way to eliminate false
positives is to use the subroutine for constructing an efficiently verifiable membership witness, and
only accept after verifying its validity. As such, the existence of a traditional reduction without
false positives from a language L to MKTP implies that L ∈ NP. Similarly, a traditional reduction
from L to MKTP without false negatives is only possible if L ∈ coNP, and zero-sided error is only
possible if L ∈ NP ∩ coNP.

Main Idea. Instead of using the oracle for MKTP in the construction of a candidate witness and
then verifying the validity of the candidate without the oracle, we use the power of the oracle in
the verification process. This obviates the need for the language L to be in NP ∩ coNP in the case
of reductions with zero-sided error.

Let us explain how to implement this idea for L = GI. Recall that an instance of GI consists
of a pair (G0, G1) of graphs on the vertex set [n], and the question is whether G0 ≡ G1, i.e.,
whether there exists a permutation π ∈ Sn such that G1 = π(G0), where π(G0) denotes the result
of applying the permutation π to the vertices of G0. In order to develop a zero-sided error algorithm
for GI, it suffices to develop one without false negatives. This is because the false positives can
subsequently be eliminated using the known search-to-decision reduction for GI [KST93].

The crux for obtaining a reduction without false negatives from GI to MKTP is a witness
system for the complement GI inspired by the well-known two-round interactive proof system
for GI [GMW91]. Consider the distribution RG(π)

.
= π(G) where π ∈ Sn is chosen uniformly

at random. By the Orbit–Stabilizer Theorem, for any fixed G, RG is uniform over a set of size
N

.
= n!/|Aut(G)| and thus has entropy s = log(N), where Aut(G)

.
= {π ∈ Sn : π(G) = G} denotes

the set of automorphisms of G. For ease of exposition, let us assume that |Aut(G0)| = |Aut(G1)|
(which is actually the hardest case for GI), so both RG0 and RG1 have the same entropy s. Consider
picking r ∈ {0, 1} uniformly at random, and setting G = Gr. If (G0, G1) ∈ GI, the distributions
RG0 , RG1 , and RG are all identical, and therefore RG also has entropy s. On the other hand, if
(G0, G1) 6∈ GI, the entropy of RG equals s+1. The extra bit of information corresponds to the fact
that in the nonisomorphic case each sample of RG reveals the value of r that was used, whereas
that bit gets lost in the reduction in the isomorphic case.

The difference in entropy suggests that a typical sample of RG can be compressed more in
the isomorphic case than in the nonisomorphic case. If we can compute some threshold such that
KT(RG) never exceeds the threshold in the isomorphic case, and exceeds it with nonnegligible

1In some settings worst-case to average-case reductions are known, but these reductions are themselves randomized
with two-sided error.
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probability in the nonisomorphic case, we have the witness system for GI that we aimed for: Take
a sample from RG, and use the oracle for MKTP to check that it cannot be compressed at or below
the threshold. The entropy difference of 1 may be too small to discern, but we can amplify the
difference by taking multiple samples and concatenating them. Thus, we end up with a randomized
mapping reduction of the following form, where t denotes the number of samples and θ the threshold:

Pick r
.
= r1 . . . rt ∈ {0, 1}t and πi ∈ Sn for i ∈ [t], each uniformly at random.

Output (y, θ) where y
.
= y1 . . . yt and yi

.
= πi(Gri).

(1)

We need to analyze how to set the threshold θ and argue correctness for a value of t that is
polynomially bounded. In order to do so, let us first consider the case where the graphs G0 and
G1 are rigid, i.e., they have no nontrivial automorphisms, or equivalently, s = log(n!).

◦ If G0 6≡ G1, the string y contains all of the information about the random string r and the t
random permutations π1, . . . , πt, which amounts to ts+ t = t(s+ 1) bits of information. This
implies that y has KT-complexity close to t(s+ 1) with high probability.

◦ If G0 ≡ G1, then we can efficiently produce each bit of y from the adjacency matrix repre-
sentation of G0 (n2 bits) and the function table of permutations τi ∈ Sn (for i ∈ [t]) such
that yi

.
= πi(Gri) = τi(G0). Moreover, the set of all permutations Sn allows an efficiently

decodable indexing, i.e., there exists an efficient algorithm that takes an index k ∈ [n!] and
outputs the function table of the k-th permutation in Sn according to some ordering. An
example of such an indexing is the Lehmer code (see, e.g., [Knu73, pp. 12-13] for specifics).
This shows that

KT(y) ≤ tdse+ (n+ log(t))c (2)

for some constant c, where the first term represents the cost of the t indices of dse bits each,
and the second term represents the cost of the n2 bits for the adjacency matrix of G0 and the
polynomial running time of the decoding process.

If we ignore the difference between s and dse, the right-hand side of (2) becomes ts + nc, which
is closer to ts than to t(s + 1) for t any sufficiently large polynomial in n, say t = nc+1. Thus,
setting θ halfway between ts and t(s + 1), i.e., θ

.
= t(s + 1

2), ensures that KT(y) > θ holds with
high probability if G0 6≡ G1, and never holds if G0 ≡ G1. This yields the desired randomized
mapping reduction without false negatives, modulo the rounding issue of s to dse. The latter can
be handled by aggregating the permutations τi into blocks so as to make the amortized cost of
rounding negligible. The details are captured in the Blocking Lemma of Section 3.1.

What changes in the case of non-rigid graphs? For ease of exposition, let us again assume that
|Aut(G0)| = |Aut(G1)|. There are two complications:

(i) We no longer know how to efficiently compute the threshold θ
.
= t(s+ 1

2) because s
.
= log(N)

andN
.
= log(n!/|Aut(G0)|) = log(n!/|Aut(G1)|) involves the size of the automorphism group.

(ii) The Lehmer code no longer provides sufficient compression in the isomorphic case as it requires
log(n!) bits per permutation whereas we only have s to spend, which could be considerably
less than log(n!).

In order to resolve (ii) we develop an efficiently decodable indexing of cosets for any subgroup of
Sn given by a list of generators (see Lemma 3 in Section 3.2). In fact, our scheme even works for
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cosets of a subgroup within another subgroup of Sn, a generalization that may be of independent
interest (see Lemma 8 in the Appendix). Applying our scheme to Aut(G) and including a minimal
list of generators for Aut(G) in the description of the program p allows us to maintain (2).

Regarding (i), we can deduce a good approximation to the threshold with high probability by
taking, for both choices of r ∈ {0, 1}, a polynomial number of samples of RGr and using the oracle
for MKTP to compute the exact KT-complexity of their concatenation. This leads to a randomized
reduction from GI to MKTP with bounded error (from which one without false positives follows
as mentioned before), reproving the earlier result of [AD14] using our new approach (see Remark 1
in Section 3.2 for more details).

In order to avoid false negatives, we need to improve the above approximation algorithm such
that it never produces a value that is too small, while maintaining efficiency and the property that
it outputs a good approximation with high probability. In order to do so, it suffices to develop
a probably-correct overestimator for the quantity n!/|Aut(G)|, i.e., a randomized algorithm that
takes as input an n-vertex graph G, produces the correct quantity with high probability, and never
produces a value that is too small; the algorithm should run in polynomial time with access to an
oracle for MKTP. Equivalently, it suffices to develop a probably-correct underestimator of similar
complexity for |Aut(G)|.

The latter can be obtained from the known search-to-decision procedures for GI, and answering
the oracle calls to GI using the above two-sided error reduction from GI to MKTP. There are
a number of ways to implement this strategy; here is one that generalizes to a number of other
isomorphism problems including Linear Code Equivalence.

1. Find a list of permutations that generates a subgroup of Aut(G) such that the subgroup
equals Aut(G) with high probability.

Finding a list of generators for Aut(G) deterministically reduces to GI. Substituting the oracle
for GI by a two-sided error algorithm yields a list of permutations that generates Aut(G) with
high probability, and always produces a subgroup of Aut(G). The latter property follows
from the inner workings of the reduction, or can be imposed explicitly by checking every
permutation produced and dropping it if it does not map G to itself. We use the above
randomized reduction from GI to MKTP as the two-sided error algorithm for GI.

2. Compute the order of the subgroup generated by those permutations.

There is a known deterministic polynomial-time algorithm to do this [Ser03].

The resulting probably-correct underestimator for |Aut(G)| runs in polynomial time with access
to an oracle for MKTP. Plugging it into our approach, we obtain a randomized reduction from GI
to MKTP without false negatives. A reduction with zero-sided error follows as discussed earlier.

Before applying our approach to other isomorphism problems, let us point out the important
role that the Orbit–Stabilizer Theorem plays. A randomized algorithm for finding generators for a
graph’s automorphism group yields a probably-correct underestimator for the size of the automor-
phism group, as well as a randomized algorithm for GI without false positives. The Orbit–Stabilizer
Theorem allows us to turn a probably-correct underestimator for |Aut(G)| into a probably-correct
overestimator for the size of the support of RG, thereby switching the error from one side to the
other, and allowing us to avoid false negatives instead of false positives.
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General Framework. Our approach extends to several other isomorphism problems. They can
be cast in the following common framework, parameterized by an underlying family of group actions
(Ω, H) where H is a group that acts on the universe Ω. We typically think of the elements of Ω as
abstract objects, which need to be described in string format in order to be input to a computer;
we let ω(z) denote the abstract object represented by the string z.

Definition 1 (Isomorphism Problem). An instance of an Isomorphism Problem consists of a
pair x = (x0, x1) that determines a universe Ωx and a group Hx that acts on Ωx such that ω0(x)

.
=

ω(x0) and ω1(x)
.
= ω(x1) belong to Ωx. Each h ∈ Hx is identified with the permutation h : Ωx → Ωx

induced by the action. The goal is to determine whether there exists h ∈ Hx such that h(ω0(x)) =
ω1(x).

When it causes no confusion, we drop the argument x and simply write H, Ω, ω0, and ω1. We
often blur the—sometimes pedantic—distinction between z and ω(z). For example, in GI, each z
is an n×n binary matrix (a string of length n2), and represents the abstract object ω(z) of a graph
with n labeled vertices; thus, in this case the correspondence between z and ω(z) is a bijection.
The group H is the symmetric group Sn, and the action is by permuting the labels.

Table 1 summarizes how the problems we mentioned earlier can be cast in the framework (see
Section 6 for details about the last three).

Problem H Ω

Graph Isomorphism Sn graphs with n labeled vertices
Linear Code Equivalence Sn subspaces of dimension d in Fnq

Permutation Group Conjugacy Sn subgroups of Sn
Matrix Subspace Conjugacy GLn(Fq) subspaces of dimension d in Fn×nq

Table 1: Instantiations of the Isomorphism Problem

We generalize our construction for GI to any Isomorphism Problem by replacing RG(π)
.
= π(G)

where π ∈ Sn is chosen uniformly at random, by Rω(h)
.
= h(ω) where h ∈ H is chosen uniformly at

random. The analysis that the construction yields a randomized reduction without false negatives
from the Isomorphism Problem to MKTP carries over, provided that the Isomorphism Problem
satisfies the following properties.

1. The underlying group H is efficiently samplable, and the action (ω, h) 7→ h(ω) is efficiently
computable. We need this property in order to make sure the reduction is efficient.

2. There is an efficiently computable normal form for representing elements of Ω as strings.
This property trivially holds in the setting of GI as there is a unique adjacency matrix that
represents any given graph on the vertex set [n]. However, uniqueness of representation need
not hold in general. Consider, for example, Permutation Group Conjugacy. An instance of
this problem abstractly consists of two permutation groups (Γ0,Γ1), represented (as usual)
by a sequence of elements of Sn generating each group. In that case there are many strings
representing the same abstract object, i.e., a subgroup has many different sets of generators.

For the correctness analysis in the isomorphic case it is important that H acts on the abstract
objects, and not on the binary strings that represent them. In particular, the output of the
reduction should only depend on the abstract object h(ω), and not on the way ω was provided
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as input. This is because the latter may leak information about the value of the bit r that
was picked. The desired independence can be guaranteed by applying a normal form to the
representation before outputting the result. In the case of Permutation Group Conjugacy,
this means transforming a set of permutations that generate a subgroup Γ into a canonical
set of generators for Γ.

In fact, it suffices to have an efficiently computable complete invariant for Ω, i.e., a mapping
from representations of objects from Ω to strings such that the image only depends on the
abstract object, and is different for different abstract objects.

3. There exists a probably-correct overestimator for N
.
= |H|/|Aut(ω)| that is computable

efficiently with access to an oracle for MKTP. We need this property to set the threshold
θ
.
= t(s+ 1

2) with s
.
= log(N) correctly.

4. There exists an encoding for cosets of Aut(ω) in H that achieves KT-complexity close to
the information-theoretic optimum (see Section 2.2 for the definition of an encoding). This
property ensures that in the isomorphic case the KT-complexity is never much larger than
the entropy.

Properties 1 and 2 are fairly basic. Property 4 may seem to require an instantiation-dependent
approach. However, in Section 4 we develop a generic hashing-based encoding scheme that meets
the requirements. In fact, we give a nearly-optimal encoding scheme for any samplable distribution
that is almost flat, without reference to isomorphism. Unlike the indexings from Lemma 8 for
the special case where H is the symmetric group, the generic construction does not achieve the
information-theoretic optimum, but it comes sufficiently close for our purposes.

The notion of a probably-correct overestimator in Property 3 can be further relaxed to that of a
probably-approximately-correct overestimator, or pac overestimator for short. This is a randomized
algorithm that with high probability outputs a value within an absolute deviation bound of ∆ from
the correct value, and never produces a value that is more than ∆ below the correct value. More
precisely, it suffices to efficiently compute with access to an oracle for MKTP a pac overestimator
for s

.
= log(|H|/|Aut(ω)|) with deviation ∆ = 1/4. The relaxation suffices because of the difference

of about 1/2 between the threshold θ and the actual KT-values in both the isomorphic and the
non-isomorphic case. As s = log |H| − log |Aut(ω)|, it suffices to have a pac overestimator for
log |H| and a pac underestimator for log |Aut(ω)|, both to within deviation ∆/2 = 1/8 and of the
required efficiency.

Generalizing our approach for GI, one way to obtain the desired underestimator for log |Aut(ω)|
is by showing how to efficiently compute with access to an oracle for MKTP:

(a) a list L of elements of H that generates a subgroup 〈L〉 of Aut(ω) such that 〈L〉 = Aut(ω)
with high probability, and

(b) a pac underestimator for log |〈L〉|, the logarithm of the order of the subgroup generated by a
given list L of elements of H.

Further mimicking our approach for GI, we know how to achieve (a) when the Isomorphism Problem
allows a search-to-decision reduction. Such a reduction is known for Linear Code Equivalence, but
remains open for problems like Matrix Subspace Conjugacy and Permutation Group Conjugacy.
However, we show that (a) holds for a generic isomorphism problem provided that products and
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inverses in H can be computed efficiently (see Lemma 5 in Section 5.2). The proof hinges on
the ability of MKTP to break the pseudo-random generator construction of [HILL99] based on a
purported one-way function (Lemma 1 in Section 2.1).

As for (b), we know how to efficiently compute the order of the subgroup exactly in the case of
permutation groups (H = Sn), even without an oracle for MKTP, and in the case of many matrix
groups over finite fields (H = GLn(Fq)) with oracle access to MKTP, but some cases remain open
(see footnote 2 in Section 5.2 for more details). Instead, we show how to generically construct a
pac underestimator with small deviation given access to MKTP as long as products and inverses
in H can be computed efficiently, and H allows an efficient complete invariant (see Lemma 6 in
Section 5.2). The first two conditions are sufficient to efficiently generate a distribution p̃ on 〈L〉
that is uniform to within a small relative deviation [Bab91]. The entropy s̃ of that distribution
equals log |〈L〉| to within a small additive deviation. As p̃ is almost flat, our encoding scheme from
Section 4 shows that p̃ has an encoding whose length does not exceed s̃ by much, and that can be
decoded by small circuits. Given an efficient complete invariant for H, we can use an approach
similar to the one we used to approximate the threshold θ to construct a pac underestimator for
s̃ with small additive deviation, namely the amortized KT-complexity of the concatenation of a
polynomial number of samples from p̃. With access to an oracle for MKTP we can efficiently
evaluate KT. As a result, we obtain a pac underestimator for log |〈L〉| with a small additive
deviation that is efficiently computable with oracle access to MKTP.

The above ingredients allow us to conclude that all of the isomorphism problems in Table 1
reduce to MKTP under randomized reductions without false negatives. Moreover, we argue that
Properties 1 and 2 are sufficient to generalize the construction of Allender and Das [AD14], which
yields randomized reductions of the isomorphism problem to MKTP without false positives (ir-
respective of whether a search-to-decision reduction is known). By combining both reductions,
we conclude that all of the isomorphism problems in Table 1 reduce to MKTP under randomized
reductions with zero-sided error. See Sections 5 and 6 for more details.

Open Problems. The difference in compressibility between the isomorphic and non-isomorphic
case is relatively small. As such, our approach is fairly delicate. Although we believe it yields zero-
sided error reductions to MCSP as well, we currently do not know whether that is the case. An
open problem in the other direction is to develop zero-error reductions from all of SZK to MKTP.
We refer to Section 7 for further discussion and other future research directions.

Relationship with ECCC TR15-162. This report subsumes and significantly strengthens the
earlier report [AGM15].

◦ Whereas [AGM15] only proves the main result for GI on rigid graphs, and for Graph Auto-
morphism (GA) on arbitrary graphs, this report proves it for GI on arbitrary graphs (which
subsumes the result for GA on arbitrary graphs).

◦ Whereas [AGM15] only contains the main result for GI, this report presents a framework
for a generic isomorphism problem, and generalizes the main result for GI to any problem
within the framework that satisfies some elementary conditions. In particular, this report
shows that the generalization applies to Linear Code Equivalence, Permutation Group Con-
jugacy, and Matrix Subspace Conjugacy. The generalization involves the development of
a generic efficient encoding scheme for samplable almost-flat distributions that is close to
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the information-theoretic optimum, and reductions to MKTP for the following two tasks:
computing a generating set for the automorphism group, and approximating the size of the
subgroup generated by a given list of elements.

◦ The main technical contribution in [AGM15] (efficiently indexing the cosets of the automor-
phism group) was hard to follow. This report contains a clean proof using a different strategy,
which also generalizes to indexing cosets of subgroups of any permutation group, answering
a question that was raised during presentations of [AGM15].

◦ The exposition is drastically revised.

2 Preliminaries

We assume familiarity with standard complexity theory, including the bounded-error randomized
polynomial-time complexity classes BPP (two-sided error), RP (one-sided error, i.e., no false posi-
tives), and ZPP (zero-sided error, i.e., no false positives, no false negatives, and bounded probability
of no output). In the remainder of this section we provide more details about KT-complexity, for-
mally define the related notions of indexing and encoding, and review some background on graph
isomorphism.

2.1 KT Complexity

The measure KT that we informally described in Section 1, was introduced and formally defined as
follows in [ABK+06]. We refer to that paper for more background and motivation for the particular
definition.

Definition 2 (KT). Let U be a universal Turing machine. For each string x, define KTU (x) to
be

min{ |d|+ T : (∀σ ∈ {0, 1, ∗}) (∀i ≤ |x|+ 1) Ud(i, σ) accepts in T steps iff xi = σ }.

We define xi = ∗ if i > |x|; thus, for i = |x| + 1 the machine accepts iff σ = ∗. The notation Ud

indicates that the machine U has random access to the description d.

KT(x) is defined to be equal to KTU (x) for a fixed choice of universal machine U with logarithmic
simulation time overhead [ABK+06, Proposition 5]. In particular, if d consists of the description of
a Turing machine M that runs in time tM (n) and some auxiliary information a such that Ma(i) = xi
for i ∈ [n], then KT(x) ≤ |a| + cMTM (log n) log(TM (log n)), where n

.
= |x| and cM is a constant

depending on M . It follows that (µ/ log n)Ω(1) ≤ KT(x) ≤ (µ · log n)O(1) where µ represents the
circuit complexity of the mapping i 7→ xi [ABK+06, Theorem 11].

The Minimum KT Problem is defined as MKTP
.
= {(x, θ) | KT(x) ≤ θ}. [ABK+06] showed

that an oracle for MKTP is sufficient to invert on average any function that can be computed
efficiently. We use the following formulation:

Lemma 1 (follows from Theorem 45 in [ABK+06]). There exists a polynomial-time proba-
bilistic Turing machine M using oracle access to MKTP so that the following holds. For any circuit
C on n input bits,

Pr [C(M(C,C(σ)) = C(σ)] ≥ 1/poly(n)
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where the probability is over the uniform distribution of σ ∈ {0, 1}n and the internal coin flips of
M .

2.2 Random Variables, Samplers, Indexings and Encodings

A finite probability space consists of a finite sample space S, and a probability distribution p on S.
Typical sample spaces include finite groups and finite sets of strings. The probability distributions
underlying our probability spaces are always uniform.

A random variable R is a mapping from the sample space S to a set T , which typically is the
universe Ω of a group action or a set of strings. The random variable R with the uniform distribution
on S induces a distribution p on T . We sometimes use R to denote the induced distribution p as
well.

The support of a distribution p on a set T is the set of elements τ ∈ T with positive probability
p(τ). A distribution is flat if it is uniform on its support. The entropy of a distribution p is the
expected value of log(1/p(τ)). The min-entropy of p is the largest real s such that p(τ) ≤ 2−s for
every τ ∈ T . The max-entropy of p is the least real s such that p(τ) ≥ 2−s for every τ ∈ T . For
a flat distribution, the min-, max-, and ordinary entropy coincide and equal the logarithm of the
size of the support. For two distributions p and q on the same set T , we say that q approximates p
within a factor 1 + δ if q(τ)/(1 + δ) ≤ p(τ) ≤ (1 + δ) · q(τ) for all τ ∈ T . In that case, p and q have
the same support, and if p has min-entropy s, then q has min-entropy at least s− log(1 + δ), and
if p has max-entropy s, then q has max-entropy at most s+ log(1 + δ).

A sampler within a factor 1+δ for a distribution p on a set T is a random variableR : {0, 1}` → T
that induces a distribution that approximates p within a factor 1 + δ. We say that R samples T
within a factor 1 + δ from length `. If δ = 0 we call the sampler exact. The choice of {0, 1}` reflects
the fact that distributions need to be generated from a source of random bits. Factors 1 + δ with
δ > 0 are necessary in order to sample uniform distributions whose support is not a power of 2.

We consider ensembles of distributions {px} where x ranges over {0, 1}∗. We call the ensemble
samplable by polynomial-size circuits if there exists an ensemble of random variables {Rx,δ} where
δ ranges over the positive rationals such that Rx,δ samples px within a factor 1 + δ from length `x,δ
and Rx,δ can be computed by a circuit of size poly(|x|/δ). We stress that the circuits can depend
on the string x, not just on |x|. If in addition the mappings (x, δ) 7→ `x,δ and (x, δ, σ) 7→ Rx,δ(σ)
can be computed in time poly(|x|/δ), we call the ensemble uniformly samplable in polynomial time.

One way to obtain strings with high KT-complexity is as samples from distributions with high
min-entropy.

Proposition 1. Let y be sampled from a distribution with min-entropy s. For all k, we have
KT(y) ≥ s− k except with probability at most 2−k.

One way to establish upper bounds on KT-complexity is via efficiently decodable encodings
into integers from a small range. Encodings with the minimum possible range are referred to as
indexings. We use these notions in various settings. The following formal definition is for use with
random variables and is general enough to capture all the settings we need. It defines an encoding
via its decoder D; the range of the encoding corresponds to the domain of D.

Definition 3 (encoding and indexing). Let R : S → T be a random variable. An encoding of
R is a mapping D : [N ]→ S such that for every τ ∈ T there exists i ∈ [N ] such that R(D(i)) = τ .
We refer to dlog(N)e as the length of the encoding. An indexing is an encoding with N = |T |.
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Definition 3 applies to a set S by identifying S with the random variable that is the identity
mapping on S. It applies to the cosets of a subgroup Γ of a group H by considering the random
variable that maps h ∈ H to the coset hΓ. It applies to a distribution induced by a random variable
R by considering the random variable R itself.

We say that an ensemble of encodings {Dx} is decodable by polynomial-size circuits if for each
x there is a circuit of size poly(|x|) that computes Dx(i) for every i ∈ [Nx]. If in addition the
mapping (x, i) 7→ Dx(i) is computable in time poly(|x|), we call the ensemble uniformly decodable
in polynomial time.

2.3 Graph Isomorphism and the Orbit-Stabilizer Theorem

Graph Isomorphism (GI) is the computational problem of deciding whether two graphs, given as
input, are isomorphic. A graph for us is a simple, undirected graph, that is, a vertex set V (G),
and a set E(G) of unordered pairs of vertices. An isomorphism between two graphs G0, G1 is
a bijection π : V (G0) → V (G1) that preserves both edges and non-edges: (v, w) ∈ E(G0) if and
only if (π(v), π(w)) ∈ E(G1). An isomorphism from a graph to itself is an automorphism; the
automorphisms of a given graph G form a group under composition, denoted Aut(G). The Orbit–
Stabilizer Theorem implies that the number of distinct graphs isomorphic to G equals n!/|Aut(G)|.
A graph G is rigid if |Aut(G)| = 1, i.e., the only automorphism is the identity, or equivalently, all
n! permutations of G yield distinct graphs.

More generally, let H be a group acting on a universe Ω. For ω ∈ Ω, each h ∈ H is an
isomorphism from ω to h(ω). Aut(ω) is the set of isomorphisms from ω to itself. By the Orbit–
Stabilizer Theorem the number of distinct isomorphic copies of ω equals |H|/|Aut(ω)|.

3 Graph Isomorphism

In this section we show:

Theorem 1. GI ∈ ZPPMKTP.

The crux is the randomized mapping reduction from deciding whether a given pair of n-vertex
graphs (G0, G1) is in GI to deciding whether (y, θ) ∈ MKTP, as prescribed by (1). Recall that (1)
involves picking a string r

.
= r1 . . . rt ∈ {0, 1}t and permutations πi at random, and constructing

the string y = y1 . . . yt, where yi = πi(Gri). We show how to determine θ such that a sufficiently
large polynomial t guarantees that the reduction has no false negatives. We follow the outline of
Section 1, take the same four steps, and fill in the missing details.

3.1 Rigid Graphs

We first consider the simplest setting, in which both G0 and G1 are rigid. We argue that θ
.
= t(s+ 1

2)
works, where s = log(n!).

Nonisomorphic Case. If G0 6≡ G1, then (by rigidity), each choice of r and each distinct sequence
of t permutations results in a different string y, and thus the distribution on the strings y has
entropy t(s+ 1) where s

.
= log(n!). Thus, by Proposition 1, KT(y) > θ = t(s+ 1)− t

2 with all but
exponentially small probability in t. Thus with high probability the algorithm declares G0 and G1

nonisomorphic.
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Isomorphic Case. If G0 ≡ G1, we need to show that KT(y) ≤ θ always holds. The key insight
is that the information in y is precisely captured by the t permutations τ1, τ2, . . . , τt such that
τi(G0) = yi. These permutations exist becauseG0 ≡ G1; they are unique by the rigidity assumption.
Thus, y contains at most ts bits of information. We show that its KT-complexity is not much larger
that this. We rely on the following encoding, due to Lehmer (see, e.g., [Knu73, pp. 12–33]):

Proposition 2 (Lehmer code). The symmetric groups Sn have indexings that are uniformly de-
codable in time poly(n).

To bound KT(y), we consider a program d that has the following information hard-wired into
it: n, the adjacency matrix of G0, and the t integers k1, . . . , kt ∈ [n!] encoding τ1, . . . , τt. We use
the decoder from Proposition 2 to compute the i-th bit of y on input i. This can be done in time
poly(n, log(t)) given the hard-wired information.

As mentioned in Section 1, a näıve method for encoding the indices k1, . . . , kt only gives the
bound tdse+ poly(n, log(t)) on KT(y), which may exceed t(s + 1) and—a fortiori—the threshold
θ, no matter how large a polynomial t is. We remedy this by aggregating multiple indices into
blocks, and amortizing the encoding overhead across multiple samples. The following technical
lemma captures the technique. For a set T of strings and b ∈ N, the statement uses the notation
T b to denote the set of concatenations of b strings from T ; we refer to Section 2.2 for the other
terminology.

Lemma 2 (Blocking Lemma). Let {Tx} be an ensemble of sets of strings such that all strings in
Tx have the same length poly(|x|). Suppose that for each x ∈ {0, 1}∗ and b ∈ N, there is a random
variable Rx,b whose image contains (Tx)b, and such that the Rx,b is computable by a circuit of size
poly(|x|, b) and has an encoding of length s′(x, b) decodable by a circuit of size poly(|x|, b). Then
there are constants c1 and c2 so that, for every constant α > 0, every t ∈ N, every sufficiently large
x, and every y ∈ (Tx)t

KT(y) ≤ t1−α · s′(x, dtαe) + tα·c1 · |x|c2 .

We first show how to apply the Blocking Lemma and then prove it. For a given rigid graph G, we
let TG be the image of the random variable RG that maps π ∈ Sn to π(G) (an adjacency matrix
viewed as a string of n2 bits). We let RG,b be the b-fold Cartesian product of RG, i.e., RG,b takes
in b permutations τ1, . . . , τb ∈ Sn, and maps them to τ1(G)τ2(G) · · · τb(G). RG,b is computable by
(uniform) circuits of size poly(n, b). To encode an outcome τ1(G)τ2(G) · · · τb(G), we use as index
the number whose base-(n!) representation is written k1k2· · ·kb, where ki is the index of τi from
the Lehmer code. This indexing has length s′(G, b)

.
=
⌈
log(n!b)

⌉
≤ bs+ 1. Given an index, the list

of permutations τ1, . . . , τb can be decoded by (uniform) circuits of size poly(n, b). By the Blocking
Lemma, we have that

KT(y) ≤ t1−α(dtαes+ 1) + tαc1 · nc2 ≤ ts+ t1−α · nc0 + tαc1 · nc2 (3)

for some constants c0, c1, c2, every constant α > 0, and all sufficiently large n, where we use the
fact that s = log n! ≤ nc0 . Setting α = α0

.
= 1/(c1 + 1), this becomes KT(y) ≤ ts + t1−α0n(c0+c2).

Taking t = n1+(c0+c2)/α0 , we see that for all sufficiently large n, KT(y) ≤ t(s+ 1
2)

.
= θ.

Proof (of Lemma 2). Let Rx,b and Dx,b be the hypothesized random variables and corresponding
decoders. Fix x and t, let m = poly(|x|) denote the length of the strings in Tx, and let b ∈ N be a
parameter to be set later.
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To bound KT(y), we first break y into dt/be blocks ỹ1, ỹ2, . . . , ỹdt/be where each ỹi ∈ (Tx)b. As

the image of Rx,b contains (Tx)b, ỹi is encoded by some index kj of length s′(x, b).
Consider a program d that has x, t, m, b, the circuit for computingRx,b, the circuit for computing

Dx,b, and the indices k1, k2, . . . , kdt/be hardwired, takes an input i ∈ N, and determines the i-th bit
of y as follows. It first computes j0, j1 ∈ N so that i points to the j1-th bit position in ỹj0 . Then,
using Dx,b, kj0 , αx,b, and j1, it finds σ such that Rx,b(σ) equals the ỹj0 . Finally, it computes Rx,b(σ)
and outputs the j1-th bit, which is the i-th bit of y.

The bit-length of d is at most dt/be·s′(x, b) for the indices, plus poly(|x|, b, log t) for the rest. The
time needed by p is bounded by poly(|x|, b, log t). Thus KT(y) ≤ dt/be ·s′(x, b)+poly(|x|, b, log t) ≤
t/b·s′(x, b)+poly(|x|, b, log t), where we used the fact that s′(x, b) ≤ poly(|x|, b). The lemma follows
by choosing b = dtαe. �

3.2 Known Number of Automorphisms

We generalize the case of rigid graphs to graphs for which we know the size of their automorphism
groups. Specifically, in addition to the two input graphs G0 and G1, we are also given numbers
N0, N1 where Ni

.
= n!/|Aut(Gi)|. Note that if N0 6= N1, we can right away conclude that G0 6≡ G1.

Nevertheless, we do not assume that N0 = N1 as the analysis of the case N0 6= N1 will be useful in
Section 3.3.

The reduction is the same as in Section 3.1 with the correct interpretation of s. The main
difference lies in the analysis, where we need to accommodate for the loss in entropy that comes
from having multiple automorphisms.

Let si
.
= log(Ni) be the entropy in a random permutation of Gi. Set s

.
= min(s0, s1), and

θ
.
= t(s + 1

2). In the nonisomorphic case the min-entropy of y is at least t(s + 1), so KT(y) > θ
with high probability. In the isomorphic case we upper bound KT(y) by about ts. Unlike the rigid
case, we can no longer afford to encode an entire permutation for each permuted copy of G0; we
need a replacement for the Lehmer code. The following encoding, applied to Γ = Aut(G), suffices
to complete the argument from Section 3.1.

Lemma 3. For every subgroup Γ of Sn there exists an indexing of the cosets2 of Γ that is uniformly
decodable in polynomial time when Γ is given by a list of generators.

We prove Lemma 3 in the Appendix as a corollary to a more general lemma that gives, for each
Γ ≤ H ≤ Sn, an efficiently computable indexing for the cosets of Γ in H.

Remark 1. Before we continue towards Theorem 1, we point out that the above ideas yield an
alternate proof that GI ∈ BPPMKTP (and hence that GI ∈ RPMKTP). This weaker result was
already obtained in [AD14] along the well-trodden path discussed in Section 1; this remark shows
how to obtain it using our new approach.

The key observation is that in both the isomorphic and the nonisomorphic case, with high
probability KT(y) stays away from the threshold θ by a growing margin, Moreover, the above
analysis allows us to efficiently obtain high-confidence approximations of θ to within any constant
using sampling and queries to the MKTP oracle.

2The choice of left (πΓ) vs right (Γπ) cosets is irrelevant for us; all our results hold for both, and one can usually
switch from one statement to the other by taking inverses. Related to this, there is an ambiguity regarding the order
of application in the composition gh of two permutations: first apply g and then h, or vice versa. Both interpretations
are fine. For concreteness, we assume the former.
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More specifically, for i ∈ {0, 1}, let ỹi denote the concatenation of t̃ independent samples from
RGi . Our analysis shows that KT(ỹi) ≤ t̃si+ t̃1−α0nc always holds, and that KT(ỹi) ≥ t̃si− t̃1−α0nc

holds with high probability. Thus, s̃i
.
= KT(ỹi)/t̃ approximates si with high confidence to within an

additive deviation of nc/t̃α0 . Similarly, s̃
.
= min(s̃0, s̃1) approximates s to within the same deviation

margin, and θ̃
.
= t(s̃ + 1

2) approximates θ to within an additive deviation of tnc/t̃α0 . The latter

bound can be made less than 1 by setting t̃ to a sufficiently large polynomial in n and t. Moreover,
all these estimates can be computed in time poly(t̃, n) with access to MKTP as MKTP enables us
to evaluate KT efficiently.

3.3 Probably-Correct Underestimators for the Number of Automorphisms

The reason the BPPMKTP-algorithm in Remark 1 can have false negatives is that the approximation
θ̃ to θ may be too small. Knowing the quantities Ni

.
= n!/|Aut(Gi)| exactly allows us to compute

θ exactly and thereby obviates the possibility of false negatives. In fact, it suffices to compute
overestimates for the quantities Ni which are correct with non-negligible probability. We capture
this notion formally as follows:

Definition 4 (probably-correct overestimator). Let g : Ω → R be a function, and M a ran-
domized algorithm that, on input ω ∈ Ω, outputs a value M(ω) ∈ R. We say that M is a
probably-correct overestimator for g if, for every ω ∈ Ω, M(ω) = g(ω) holds with probability
at least 1/ poly(|ω|), and M(ω) > g(ω) otherwise. A probably-correct underestimator for g is
defined similarly by reversing the inequality.

We point out that, for any probably-correct over-/underestimator, taking the min/max among
poly(|ω|) independent runs yields the correct value with probability 1− 2− poly(|ω|).

We are interested in the case where g(G) = n!/|Aut(G)|. Assuming this g on a given class
of graphs Ω has a probably-correct overestimator M computable in randomized polynomial time
with an MKTP oracle, we argue that GI on Ω reduces to MKTP in randomized polynomial time
without false negatives.

To see this, consider the algorithm that, on input a pair (G0, G1) of n-vertex graphs, computes
Ñi = M(Gi) as estimates of the true values Ni = log(n!/|Aut(Gi)|), and then runs the algorithm
from Section 3.2 using the estimates Ñi.

◦ In the case where G0 and G1 are not isomorphic, if both estimates Ñi are correct, then the
algorithm detects G0 6≡ G1 with high probability.

◦ In the case where G0 ≡ G1, if Ñi = Ni we showed in Section 3.2 that the algorithm always
declares G0 and G1 to be isomorphic. Moreover, increasing θ can only decrease the probability
of a false negative. As the computed threshold θ increases as a function of Ñi, and the estimate
Ñi is always at least as large as Ni, it follows that G0 and G1 are always declared isomorphic.

3.4 Arbitrary Graphs

A probably-correct overestimator for the function G 7→ n!/|Aut(G)| on any graph G can be com-
puted in randomized polynomial time with access to MKTP. The process is described in full detail
in Section 1, based on a BPPMKTP algorithm for GI (taken from Remark 1 or from [AD14]). This
means that the setting of Section 3.3 is actually the general one. The only difference is that we no
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longer obtain a mapping reduction from GI to MKTP, but an oracle reduction: We still make use
of (1), but we need more queries to MKTP in order to set the threshold θ.

This shows that GI ∈ coRPMKTP. As GI ∈ RPMKTP follows from the known search-to-decision
reduction for GI, this concludes the proof of Theorem 1 that GI ∈ ZPPMKTP.

4 Estimating the Entropy of Flat Samplable Distributions

In this section we develop a key ingredient in extending Theorem 1 from GI to other isomorphism
problems that fall within the framework presented in Section 1, namely efficient near-optimal
encodings of cosets of automorphism groups. More generally, our encoding scheme works well for
any samplable distribution that is flat or almost flat. It allows us to probably-approximately-
correctly underestimate the entropy of such distributions with the help of an oracle for MKTP.

We first develop our encoding, which only requires the existence of a sampler from strings of
polynomial length. The length of the encoding is roughly the max-entropy of the distribution,
which is the information-theoretic optimum for flat distributions.

Lemma 4 (Encoding Lemma). Consider an ensemble {Rx} of random variables that sample
distributions with max-entropy s(x) from length poly(|x|). Each Rx has an encoding of length
s(x) + log s(x) +O(1) that is decodable by polynomial-size circuits.

To see how Lemma 4 performs, let us apply to the setting of GI. Consider the random variable
RG mapping a permutation π ∈ Sn to π(G). The induced distribution is flat and has entropy
s = log(n!/|Aut(G)|), and each π ∈ Sn can be sampled from strings of length O(n log n). The
Encoding Lemma thus yields an encoding of length s + log s + O(1) that is efficiently decodable.
The bound on the length is worse than Lemma 3’s bound of dse, but will still be sufficient for the
generalization of Theorem 1 and yield the result for GI.

We prove the Encoding Lemma using hashing. Here is the idea. Consider a random hash
function h : {0, 1}` → {0, 1}m where ` denotes the length of the strings in the domain of Rx for a
given x, and m is set slightly below `−s. For any fixed outcome y of Rx, there is a positive constant
probability that no more than about 2`/2m ≈ 2s of all samples σ ∈ {0, 1}` have h(σ) = 0m, and at
least one of these also satisfies Rx(σ) = y. Let us say that h works for y when both those conditions
hold. In that case—ignoring efficiency considerations—about s bits of information are sufficient to
recover a sample σy satisfying Rx(σy) = y from h.

Now a standard probabilistic argument shows that there exists a sequence h1, h2, . . . of O(s)
hash functions such that for every possible outcome y, there is at least one hi that works for y.
Given such a sequence, we can encode each outcome y as the index i of a hash function hi that
works for y, and enough bits of information that allow us to efficiently recover σy given hi. We show
that s+ O(1) bits suffice for the standard linear-algebraic family of hash functions. The resulting
encoding has length s+ log(s) +O(1) and is decodable by circuits of polynomial size.

Proof (of Lemma 4). Recall that a family H`,m of functions from {0, 1}` to {0, 1}m is universal if
for any two distinct σ0, σ1 ∈ {0, 1}`, the distributions of h(σ0) and h(σ1) for a uniform choice of
h ∈ H`,m are independent and uniform over {0, 1}m. We make use of the specific universal family

H(lin)
`,m that consists of all functions of the form σ 7→ Uσ+v, where U is a binary (m×`)-matrix, v is

a binary column vector of dimension `, and σ is also viewed as a binary column vector of dimension

` [CW79]. Uniformly sampling from H(lin)
`,m means picking U and v uniformly at random.
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Claim 1. Let `,m ∈ N and s ∈ R.

1. For every universal family H`,m with m = `−dse−2, and for every S ⊆ {0, 1}` with |S| ≥ 2`−s,

Pr[(∃σ ∈ S)h(σ) = 0m and |h−1(0m)| ≤ 2dse+3] ≥ 1

4
,

where the probability is over a uniformly random choice of h ∈ H`,m.

2. The sets h−1(0m) have indexings that are uniformly decodable in time poly(`,m), where h

ranges over H(lin)
`,m .

Assume for now that the claim holds, and let us continue with the proof of the lemma.

Fix an input x, and let ` = `(x) and s = s(x). Consider the family H(lin)
`,m with m = `− dse − 2.

For each outcome y of Rx, let Sy consist of the strings σ ∈ {0, 1}` for which Rx(σ) = y. Since the
distribution induced by Rx has max-entropy s, a fraction at least 1/2s of the strings in the domain
of Rx map to y. It follows that |Sy| ≥ 2`−s.

A hash function h ∈ H(lin)
`,m works for y if there is some σ ∈ Sy with h(σ) = 0m and |h−1(0m)| ≤

2dse+3. By the first part of Claim 1, the probability that a random h ∈ H(lin)
`,m works for a fixed y

is at least 1/4. If we now pick 3dse hash functions independently at random, the probability that
none of them work for y is at most (3/4)3dse < 1/2s. Since there are at most 2s distinct outcomes

y, a union bound shows that there exists a sequence of hash functions h1, h2, . . . , h3dse ∈ H
(lin)
`,m such

that for every outcome y of Rx there exists iy ∈ [3dse] such that hiy works for y.

The encoding works as follows. Let D(lin) denote the uniform decoding algorithm from part 2 of
Claim 1 such that D(lin)(h, ·) decodes the set h−1(0m). For each outcome y of Rx, let jy ∈ [2dse+3]
be such that D(lin)(hiy , jy) = σy ∈ Sy. Such a jy exists since hiy works for y. Let ky = 2dse+3iy + jy.
Given h1, h2, . . . , h3dse and ` and m as auxiliary information, we can decode σy from ky by parsing

out iy and jy, extracting hiy from the auxiliary information, and running D(lin)(hiy , jy). This gives
an encoding for Rx of length dse+ 3 + dlog(3dse)e = s+ log s+O(1) that can be decoded in time
poly(|x|) with the hash functions as auxiliary information. As each hash function can be described
using (`+ 1)m bits and there are 3dse ≤ poly(|x|) many of them, the auxiliary information consists
of no more than poly(|x|) bits. Hard-wiring it yields a decoder circuit of size poly(|x|). �

For completeness we argue Claim 1.

Proof (of Claim 1). For part 1, let m = ` − dse − 2, and consider the random variables X
.
=

|h−1(0m) ∩ S| and Y
.
= |h−1(0m)|. Because of universality we have that V(X) ≤ E(X) = |S|/2m,

and by the choice of parameters |S|/2m ≥ 4. By Chebyshev’s inequality

Pr(X = 0) ≤ Pr(|X − E(X)| ≥ E(X)) ≤ V(X)

(E(X))2
≤ 1

E(X)
≤ 1

4
.

We have that E(Y ) = 2`/2m = 2dse+2. By Markov’s inequality

Pr(Y ≥ 2dse+3) = Pr(Y ≥ 2E(Y )) ≤ 1

2
.

A union bound shows that

Pr(X = 0 or Y ≥ 2dse+3) ≤ 1

4
+

1

2
,
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from which part 1 follows.
For part 2, note that if |h−1(0m)| > 0 then |h−1(0m)| = 2`−r where r denotes the rank of U .

In that case, given U and v, we can use Gaussian elimination to find binary column vectors σ̂ and
σ1, σ2, . . . , σ`−r such that Uσ̂ + v = 0m and the σi’s form a basis for the kernel of U . On input
j ∈ [2`−r], the decoder outputs σ̂ +

∑`−r
i=1 jiσi, where

∑`−r
i=1 ji2

i−1 is the binary expansion of j − 1.
The image of the decoder is exactly h−1(0m). As the decoding process runs in time poly(`,m) when
given U and u, this gives the desired indexing. �

Remark 2. The proof of the Encoding Lemma shows a somewhat more general result: For any
ensemble {Rx} of random variables whose domains consist of strings of length poly(|x|), and for
any bound s(x), the set of outcomes of Rx with probability at least 1/2s(x) has an encoding of
length s(x) + log s(x) + O(1) that is decodable by a circuit of size poly(|x|). In the case of flat
distributions of entropy s(x) that set contains all possible outcomes.

We also point out that a similar construction (with a single hash function) was used in [PP10]
to boost the success probability of randomized circuits that decide CircuitSAT as a function of the
number of input variables.3

In combination with the Blocking Lemma, the Encoding Lemma yields upper bounds on KT-
complexity in the case of distributions p that are samplable by polynomial-size circuits. More
precisely, if y is the concatenation of t samples from p, we can essentially upper bound the amortized
KT-complexity KT(y)/t by the max-entropy of p. On the other hand, Proposition 1 shows that if
the samples are picked independently at random, with high probability KT(y)/t is not much less
than the min-entropy of p. Thus, in the case of flat distributions, KT(y)/t is a good probably-
approximately-correct underestimator for the entropy, a notion formally defined as follows.

Definition 5 (probably-approximately-correct underestimator). Let g : Ω→ R be a func-
tion, and M a randomized algorithm that, on input ω ∈ Ω, outputs a value M(ω) ∈ R. We say
that M is a probably-approximately-correct underestimator (or pac underestimator) for g with
deviation ∆ if, for every ω ∈ Ω, |M(ω)− g(ω)| ≤ ∆ holds with probability at least 1/ poly(|ω|), and
M(ω) < g(ω) otherwise. A probably-approximately-correct overestimator (or pac overestimator)
for g is defined similarly, by reversing the last inequality.

Similar to the case of probably-correct under-/overestimators, we can boost the confidence level of
a pac under-/overestimator from 1/ poly(|ω|) to 1− 2− poly(|ω|) by taking the max/min of poly(|ω|)
independent runs.

More generally, we argue that the amortized KT-complexity of samples yields a good pac
underestimator for the entropy when the distribution is almost flat, i.e., the difference between the
max- and min-entropy is small. As KT can be evaluated efficiently with oracle access to MKTP,
pac underestimating the entropy of such distributions reduces to MKTP.

3More precisely, suppose there exists a randomized circuit family A of size f(n,m) that decides CircuitSAT without
false positives on instances consisting of circuits C with n input variables and of description length m such that the
probability of success is at least 1/2αn. Applying our encoding to the set of random bit sequences that make A
accept on a positive instance C, and hard-wiring the input C into the circuit A, yields an equivalent instance C′

on αn variables of size f(n,m) + µ(D), where µ(D) denotes the circuit size of D. Applying A to the description of
this new circuit C′ yields a randomized circuit A′ to decide whether C is satisfiable without false positives. For the
linear-algebraic family of hash functions, A′ has size O(f(n,m) polylog(f(n,m))). Its success probability is at least

1/2α
2n, which is larger than 1/2αn when α < 1.
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Corollary 1 (Entropy Estimator Corollary). Let {px} be an ensemble of distributions such
that px is supported on strings of the same length poly(|x|). Consider a randomized process that on
input x computes KT(y)/t, where y is the concatenation of t independent samples from px. If px is
samplable by circuits of polynomial size, then for t a sufficiently large polynomial in |x|, KT(y)/t is
a pac underestimator for the entropy of px with deviation ∆(x) + o(1), where ∆(x) is the difference
between the min- and max-entropies of px.

Proof. Since the entropy lies between the min- and max-entropies, it suffices to show that KT(y)/t
is at least the min-entropy of px with high probability, and is always at most the max-entropy of
px (both up to o(1) terms) when t is a sufficiently large polynomial. The lower bound follows from
Proposition 1. It remains to establish the upper bound.

Let {Rx,δ} be the ensemble of random variables witnessing the samplability of {px} by circuits
of polynomial size, and let s(x) denote the max-entropy of px. The Blocking Lemma allows us to
bound KT(y) by giving an encoding for random variables whose support contains the b-tuples of
samples from px. Let R′x,b denote the b-fold Cartesian product of Rx,1/b. R

′
x,b induces a distribution

that approximates to within a factor of (1 + 1/b)b = O(1) the distribution of the b-fold Cartesian
product of px, which is a distribution of max-entropy bs(x). It follows that the distribution induced
by R′x,b has min-entropy at most bs(x) +O(1). Its support is exactly the b-tuples of samples from
px. Moreover, the ensemble {R′x,b} is computable by circuits of size poly(n, b). By the Encoding
Lemma there exists an encoding of R′x,b of length bs(x) + log b+ log s(x) +O(1) that is decodable
by circuits of polynomial-size. The Blocking Lemma then says that there exist constants c1 and c2

so that for all α > 0 and all sufficiently large n

KT(y) ≤ t1−α · (dtαe · s(x) + log s(x) + α log t+O(1)) + tαc1 · nc2

≤ ts(x) + t1−α · (nc0 + c0 log n+ α log t+O(1)) + tαc1 · nc2 ,

where we use the fact that there exists a constant c0 such that s(x) ≤ nc0 . A similar calculation as
the one following Equation (3) shows that KT(y) ≤ ts(x)+t1−α0nc0+c2) for t ≥ nc and n sufficiently
large, where α0 = 1/(1 + c1) and c = 1 + (1 + c1)(c0 + c2). Dividing both sides by t yields the
claimed upper bound. �

5 Generic Isomorphism Problem

In Section 1 we presented a common framework for isomorphism problems and listed some instan-
tiations in Table 1. In this section we state and prove a generalization of Theorem 1 that applies
to many problems in this framework, including the ones from Table 1.

5.1 Generalization

The generalized reduction makes use of a complete invariant for the abstract universe Ω. For future
reference, we define the notion with respect to a representation for an arbitrary ensemble of sets.

Definition 6 (representation and complete invariant). Let {Ωx} denote an ensemble of sets.
A representation of the ensemble is a surjective mapping ω : {0, 1}∗ → ∪xΩx. A complete invariant
for ω is a mapping ν : {0, 1}∗ → {0, 1}∗ such that for all strings x, z0, z1 with ω(z0), ω(z1) ∈ Ωx

ω(z0) = ω(z1)⇔ ν(z0) = ν(z1).
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ω(z) denotes the set element represented by the string z. The surjective property of a representation
guarantees that every set element has at least one string representing it.

Note that for the function ν to represent a normal form (rather than just a complete invariant),
it would need to be the case that ω(ν(z)) = ω(z). Although this additional property holds for all
the instantiations we consider, it is not a requirement. In our setting, all that matters is that ν(z)
only depends on the element ω(z) that z represents, and is different for different elements.4

We are now ready to state the generalization of Theorem 1.

Theorem 2. Let Iso denote an Isomorphism Problem as in Definition 1. Consider the following
conditions:

1. [action sampler] The uniform distribution on Hx is uniformly samplable in polynomial time,
and the mapping (ω, h) 7→ h(ω) underlying the action (Ωx, Hx) is computable in ZPP.

2. [complete universe invariant] There exists a complete invariant ν for the representation ω that
is computable in ZPP.

3. [entropy estimator] There exists a probably-approximately-correct overestimator for (x, ω) 7→
log (|Hx|/|Aut(ω)|) with deviation ∆ = 1/4 that is computable in randomized time poly(|x|)
with access to an oracle for MKTP.

With these definitions:

(a) If conditions 1 and 2 hold, then Iso ∈ RPMKTP.

(b) If conditions 1, 2, and 3 hold, then Iso ∈ coRPMKTP.

In the case of GI, Ω denotes the universe of graphs on n vertices (represented as adjacency matrices
viewed as strings of length n2), and H the group of permutations on [n] (represented as function
tables). All conditions in the statement of Theorem 2 are met. The identity mapping can be used
as the complete invariant ν in condition 2, and the probably-correct overestimator for n!/|Aut(G)|
that we argued in Sections 1 and 3 immediately yields the pac overestimator for log(n!/|Aut(G)|)
required in condition 3.

Note that log(n!/|Aut(G)|) equals the entropy of the distribution induced by the random vari-
able RG. In general, the quantity log(|Hx|/|Aut(ω)|) in condition 3 represents the entropy of
ν(h(ω)) when h ∈ Hx is picked uniformly at random.

Proof (of Theorem 2). Let x denote an instance of length n
.
= |x|, defining a universe Ω, a group

H that acts on Ω, and two elements ωi = ωi(x) for i ∈ {0, 1}. Both parts (a) and (b) make use of
the random variables Ri for i ∈ {0, 1} where Ri : H → {0, 1}∗ maps h ∈ H to ν(h(ωi)).

Part (a). We follow the approach from [AD14]. Their argument uses Lemma 1, which states
the existence of a randomized polynomial-time machine M with access to an MKTP oracle which,
given a random sample y from the distribution induced by a circuit C, recovers with non-negligible
probability of success an input σ so that C(σ) = y. If we can model the Ri as circuits of size
poly(n) that take in an element h from H and output Ri(h), this means that, with non-negligible

4For complexity-theoretic investigations into the difference between complete invariants and normal forms, see,
e.g., [BG84a, BG84b, FG11, FH16].
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probability over a random h0 ∈ H, M(R0, R0(h0)) outputs some h1 so that h1(ω0) = h0(ω0). The
key observation is that when ω0 ≡ ω1, R0 and R1 induce the same distribution, and therefore, for
a random element h0, M(R1, R0(h0)) outputs some h1 so that h1(ω0) = h0(ω0) with non-negligible
probability probability of success. Thus Iso can be decided by trying the above a polynomial
number of times, declaring ω0 ≡ ω1 if a trial succeeds, and declaring ω0 6≡ ω1 otherwise.

We do not know how to model the Ri exactly as circuits of size poly(n), but we can do so
approximately. Condition 1 implies that we can construct circuits Ci,δ in time poly(n/δ) that
sample h(ωi) within a factor 1 + δ. Combined with the ZPP-computability of ν in condition 2 this
means that we can construct a circuit Cν in time poly(n) such that the composed circuit Cν ◦Ci,δ
samples Ri within a factor 1 + δ from strings σ of length poly(n/δ). We use the composed circuits
in lieu of Ri in the arguments for M above. More precisely, we pick an input σ0 for C0,δ uniformly
at random, and compute σ1 = M(C1,δ, C0,δ(σ0)). Success means that h1(ω0) = h0(ω0), where
hi = Ci,δ(σi). The probability of success for an approximation factor of 1 + δ is at least 1/(1 + δ)2

times the probability of success in the exact setting, which is 1/ poly(n/δ) in the isomorphic case.
Fixing δ to any positive constant, a single trial runs in time poly(n), success can be determined
in ZPP (by the second part of condition 1), and the probability of success is at least 1/ poly(n)
in the isomorphic case. Completing the argument as in the exact setting above, we conclude that
Iso ∈ RPMKTP.

Part (b). We generalize the argument from Section 3. Let si
.
= log (|H|/|Aut(ωi)|) for i ∈ {0, 1},

and let M be the pac overestimator from condition 3. We assume that M has been amplified
such that it outputs a good estimate with probability exponentially close to 1. Condition 1 and
the ZPP-computability of ν imply that the distribution induced by Ri is uniformly samplable in
polynomial time, i.e., for each i ∈ {0, 1} and δ > 0, there is a random variable Ri,δ that samples
Ri within a factor 1 + δ from length poly(|x|/δ), and that is computable in time poly(|x|/δ).

Let t ∈ N and δ be parameters to be determined. On input x, the algorithm begins by computing
the estimates s̃i = M(x, ωi) for i ∈ {0, 1}, and sets s̃

.
= min(s̃0, s̃1) and θ̃

.
= t(s̃+ 1

2). The algorithm
then samples r ∈ {0, 1}t uniformly, and constructs y = (Rri,δ(σi))

t
i=1, where each σi is drawn

independently and uniformly from {0, 1}poly(n,1/δ). If KT(y) > θ̃, the algorithm declares ω0 6≡ ω1;
otherwise, the algorithm declares ω0 ≡ ω1.

Nonisomorphic Case. If ω0 6≡ ω1, we need to show KT(y) > θ̃ with high probability. Since
Ri,δ samples Ri within a factor of 1 + δ, and Ri is flat with entropy si, it follows that Ri,δ has
min-entropy at least si− log(1 + δ), and that y is sampled from a distribution with min-entropy at
least

t(1 + min(s0, s1)− log(1 + δ)).

Since M is a pac overestimator with deviation ∆ = 1/4, |s̃0 − s0| ≤ 1/4 and |s̃1 − s1| ≤ 1/4 with
high probability. When this happens, s̃ ≤ min(s0, s1) + 1/4,

θ̃ ≤ t(min(s0, s1) + 3/4),

and Proposition 1 guarantees that KT(y) > θ̃ except with probability exponentially small in t as
long as δ is a constant such that 1− log(1 + δ) > 3/4. Such a positive constant δ exists.

Isomorphic Case. If ω0 ≡ ω1, we need to show that KT(y) ≤ θ̃ always holds for t a sufficiently
large polynomial in n, and n sufficiently large. Recall that, since ω0 ≡ ω1, R0 and R1 induce the
same distribution, so we can view y as the concatenation of t samples from R0. Each R0 is flat,
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hence has min-entropy equal to its max-entropy, and the ensemble of all R0 (across all inputs x) is
samplable by (uniform) polynomial-size circuits. The Entropy Estimator Corollary with ∆(x) ≡ 0
then implies that KT(y) ≤ t(s0 + o(1)) holds whenever t is a sufficiently large polynomial in n, and
n is sufficiently large. In that case, KT(y) ≤ t(s̃+ 1

4 + o(1)) < θ̃ holds because s0 ≤ s̃+ 1/4 follows
from M being a pac overestimator for s0 with deviation 1/4. �

Remark 3. The notion of efficiency in conditions 1, and 2 can be relaxed to mean the underly-
ing algorithm is implementable by a family of polynomial-size circuits which is constructible in
ZPPMKTP. It is important for our argument that the circuits themselves do not have oracle access
to MKTP, but it is all right for them to be constructible in ZPPMKTP rather than P or ZPP. For
example, a sampling procedure that requires knowing the factorization of some number (dependent
on the input x) is fine because the factorization can be computed in ZPPMKTP [ABK+06] and then
can be hard-wired into the circuit.

In particular, this observation yields an alternate way to show that integer factorization being
in ZPPMKTP implies that the discrete log over prime fields is in ZPPMKTP [Rud17]. Recall that an
instance of the discrete log problem consists of a triple x = (g, z, p), where g and z are integers, and p
is a prime, and the goal is to find an integer y such that gy ≡ z mod p, or report that no such integer
exists. The search version is known to reduce to the decision version in randomized polynomial
time, and the above observation shows that the decision version is in ZPPMKTP. This is because
computing the size of the subgroup of F×p generated by g or z reduces to integer factorization, and

can thus be computed in ZPPMKTP.

5.2 Construction of Probably-Correct Overestimators

We now discuss some generic methods to satisfy condition 3 in Theorem 2, i.e., how to construct
a probably-approximately-correct overestimator for the quantity log(|H|/|Aut(ω)|) that is com-
putable in ZPPMKTP.

Here is the generalization of the approach we used in Section 3.4 in the context of GI:

1. Find a list L of elements of H that generates a subgroup 〈L〉 of Aut(ω) such that 〈L〉 = Aut(ω)
with high probability.

2. Pac underestimate log |〈L〉| with deviation 1/8. This yields a pac underestimator for log |Aut(ω)|.

3. Pac overestimate log |H| with deviation 1/8.

4. Return the result of step 3 minus the result of step 2. This gives a pac overestimator for
log(|H|/|Aut(ω)|) with deviation 1/4.

Although in the setting of GI we used the oracle for MKTP only in step 1, we could use it to
facilitate steps 2 and 3 as well.

The first step for GI follows from the known search-to-decision reduction. It relies on the fact
that Colored Graph Isomorphism reduces to GI, where Colored Graph Isomorphism allows one to
assign colors to vertices with the understanding that the isomorphism needs to preserve the colors.
For all of the isomorphism problems in Table 1, finding a set of generators for the automorphism
group reduces to a natural colored version of the Isomorphism Problem, but it is not clear whether
the colored version always reduces to the regular version. The latter reduction is known for Linear
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Code Equivalence, but remains open for problems like Permutation Group Conjugacy and Matrix
Subspace Conjugacy.

However, there is a different, generic way to achieve step 1 above, namely based on Lemma 1,
i.e., the power of MKTP to efficiently invert on average any efficiently computable function.

Lemma 5. Let Iso denote an Isomorphism Problem as in Definition 1 that satisfies conditions 1
and 2 of Theorem 2, and such that products and inverses in Hx are computable in BPPMKTP. There
exists a randomized polynomial-time algorithm using oracle access to MKTP with the following
behavior: On input any instance x, and any ω ∈ Ωx, the algorithm outputs a list of generators for
a subgroup Γ of Aut(ω) such that Γ = Aut(ω) with probability 1− 2−|x|.

Proof. Consider an instance x of length n
.
= |x|, and ω ∈ Ωx. We first argue that the uniform

distribution on Aut(ω) is uniformly samplable in polynomial time with oracle access to MKTP.
Let Rω denote the random variable that maps h ∈ H to ν(h(ω)). As in the proof of Part 1 of
Theorem 2, we can sample h from H uniformly (to within a small constant factor) and use Lemma 1
to obtain some h′ ∈ H such that h′(ω) = h(ω). In that case, h−1h′ is an automorphism of ω. The
key observation is the following: if h were sampled perfectly uniformly then, conditioned on success,
the distribution of h−1h′ is uniform over Aut(ω). Instead, h is sampled uniformly to within a factor
1 + δ; in that case h−1h′ is uniform on Aut(ω) to within a factor 1 + δ and, as argued in the proof
of Theorem 2, the probability of success is 1/ poly(n/δ).

We run the process many times and retain the automorphism h−1h′ from the first successful
run (if any); poly(n/δ) runs suffice to obtain, with probability 1− 2−2n, an automorphism that is
within a factor 1 + δ from uniform over Aut(ω). By the computability parts of conditions 1 and
2, and by the condition that products and inverses in H can be computed in BPPMKTP, each trial
runs in time poly(n/δ). Success can be determined in ZPP as the group action is computable in
ZPP. It follows that the uniform distribution on Aut(ω) is uniformly samplable in polynomial time
with oracle access to MKTP.

Finally, we argue that a small number of independent samples h1, h2, . . . , hk for some constant
δ > 0 suffice to ensure that they generate all of Aut(ω) with very high probability. Denote by Γi the
subgroup of Hx generated by h1, . . . , hi. Note that Γi always is a subgroup of Aut(ω). For i < k, if
Γi is not all of Aut(ω), then |Γi| ≤ |Aut(ω)|/2. Thus, with probability at least 1

2 ·
1

1+δ , hi+1 6∈ Γi,
in which case |Γi+1| ≥ 2|Γi|. For any constant δ > 0, if follows that k ≥ Θ(n + log |Aut(ω)|) =
O(poly(n)) suffices to guarantee that Γk = Aut(ω) with probability at least 1− 2−2n. The lemma
follows. �

The second step for GI followed from the ability to efficiently compute the order of permutation
groups exactly. Efficient exact algorithms (possibly with access to an oracle for MKTP) are known
for larger classes of groups, including most matrix groups over finite fields, but not for all.5 We
show how to generically pac underestimate log |〈L〉| with small deviation (step 2), namely under the
prior conditions that only involve H, and the additional condition of a ZPP-computable complete
invariant ζ for H.

5For many cases where L ⊆ GLn(Fq), [BBS09] shows how to compute the exact order of 〈L〉 in ZPP with oracles
for integer factorization and the discrete log. Combined with follow-up results of [KM13, LO16, KM15], the only
cases that remain open are those over a field of characteristic 2 where 〈L〉 contains at least one of the Ree groups
2F4(22n+1) as a composition factor, and those over a field of characteristic 3 where 〈L〉 contains at least one of the
Ree groups 2G2(32n+1) as a composition factor. The claim follows as integer factorization and discrete log can be
computed in ZPPMKTP.
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The construction hinges on the Entropy Estimator Corollary and viewing log |〈L〉| as the entropy
of the uniform distribution pL on 〈L〉.

(α) Provided that pL is samplable by circuits of polynomial size, the corollary allows us to pac
underestimate log |〈L〉| as KT(y)/t, where y is the concatenation of t independent samples
from pL.

(β) If we are able to uniformly sample {pL} exactly in polynomial time (possibly with access to
an oracle for MKTP), then we can evaluate the estimator KT(y)/t in polynomial time with
access to MKTP. This is because the oracle for MKTP lets us evaluate KT in polynomial
time.

Thus, if we were able to uniformly sample {pL} exactly in polynomial time, we’d be done. We do
not know how to do that, but we can do it approximately, which we argue is sufficient.

The need for a ZPP-computable complete invariant comes in when representing the abstract
group elements as strings. In order to formally state the requirement, we make the underlying
representation of group elements explicit; we denote it by η.

Lemma 6. Let {Hx} be an ensemble of groups. Suppose that the ensemble has a representation η
such that the uniform distribution on Hx is uniformly samplable in polynomial-time, products and
inverses in Hx are computable in ZPP, and there exists a ZPP-computable complete invariant for
η. Then for any list L of elements of Hx, the logarithm of the order of the group generated by L,
i.e., log |〈L〉|, can be pac underestimated with any constant deviation ∆ > 0 in randomized time
poly(|x|, |L|) with oracle access to MKTP.

Proof. Let ζ be the ZPP-computable complete invariant for η. For each list L of elements of Hx,
let pL denote the distribution of ζ(h) when h is picked uniformly at random from 〈L〉. Note that
pL is flat with entropy s = log |〈L〉|.

Claim 2. The ensemble of distributions {pL} is uniformly samplable in polynomial time.

For every constant δ > 0, the claim yields a family of random variables {RL,δ} computable uniformly
in polynomial time such that RL,δ induces a distribution pL,δ that approximates pL to within a
factor 1 + δ. Note that the min-entropy of pL,δ is at least s − log(1 + δ), and the max-entropy of
pL,δ at most s+ log(1 + δ), thus their difference is no more than 2 log(1 + δ).

Let Mδ(L) denote KT(y)/t, where y is the concatenation of t independent samples from pL,δ.

(α) The Entropy Estimator Corollary guarantees that for any sufficiently large polynomial t, Mδ

is a pac underestimator for the entropy of pL,δ with deviation 2 log(1 + δ) + o(1), and thus a
pac underestimator for s = log |〈L〉| with deviation 3 log(1 + δ) + o(1).

(β) For any polynomial t, we can compute Mδ in polynomial time with access to an oracle for
MKTP. This is because RL,δ enables us to generate y in polynomial time. We then use the
oracle for MKTP to compute KT(y) exactly, and divide by t.

Thus, Mδ meets all the requirements for our estimator as long as 3 log(1 + δ) < ∆, which holds for
some positive constant δ.

This completes the proof of Lemma 6 modulo the proof of the claim. �
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The proof of Claim 2 relies on the notion of Erdős–Rényi generators. A list of generators L =
(h1, . . . , hk) is said to be Erdős–Rényi with factor 1 + δ if a random subproduct of L approximates
the uniform distribution on 〈L〉 within a factor 1 + δ, where a random subproduct is obtained by
picking ri ∈ {0, 1} for each i ∈ [k] uniformly at random, and outputting hr11 h

r2
2 · · ·h

rk
k .

Proof (of Claim 2). By definition, if L happens to be Erdős–Rényi with factor 1 + δ, then pL can
be sampled to within a factor 1 + δ with fewer than |L| products in Hx.

Erdős and Rényi [ER65] showed that, for any finite group Γ, a list of poly(log |Γ|, log(1/δ))
random elements of Γ form an Erdős–Rényi list of generators with factor 1 + δ. For Γ = 〈L〉, this
gives a list L′ for which we can sample pL′ = pL. By hard-wiring the list L′ into the sampler for
pL′ , it follows that pL is samplable by circuits of size poly(log |〈L〉|, log(1/δ)) ≤ poly(|L|/δ).

As for uniformly sampling {pL} in polynomial time, [Bab91, Theorem 1.1] gives a randomized
algorithm that generates out of L a list L′ of elements from 〈L〉 that, with probability 1 − ε, are
Erdős–Rényi with factor 1+δ. The algorithm runs in time poly(|x|, |L|, log(1/δ), log(1/ε)) assuming
products and inverses in Hx can be computed in ZPP. For ε = δ/|〈L〉|, the overall distribution
of a random subproduct of L′ is within a factor 1 + 2δ from pL, and can be generated in time
poly(|x|, |L|, log(1/δ)) ≤ poly(|x|, |L|, 1/δ). As δ can be an arbitrary positive constant, it follows
that pL is uniformly samplable in polynomial time. �

Following the four steps listed at the beginning of this section, we can replace condition 3 in
Theorem 2 by the conditions of Lemma 5 (for step 1), those of Lemma 6 (for step 2), and the
existence of an estimator for the size |H| of the sample space as stated in step 3. This gives the
following result:

Theorem 3. Let Iso denote an Isomorphism Problem as in Definition 1. Suppose that the ensemble
{Hx} has a representation η such that conditions 1 and 2 of Theorem 2 hold as well as the following
additional conditions:

4. [group operations] Products and inverses in Hx are computable in ZPP.

5. [sample space estimator] The map x 7→ |Hx| has a pac overestimator with deviation ∆ = 1/8
computable in ZPPMKTP.

6. [complete group invariant] There exists a complete invariant ζ for the representation η that
is computable in ZPP.

Then Iso ∈ ZPPMKTP.

As was the case for Theorem 2, the conditions of Theorem 3 can be satisfied in a straightforward
way for GI. The representation η of the symmetric groups Sn meets all the requirements that
only involve the underlying group: uniform samplability as in the first part of condition 1, efficient
group operations as in condition 4, the sample space size |H| = |Sn| = n! can be computed
efficiently (condition 5), and the identity mapping can be used as the complete group invariant ζ
(condition 6). The efficiency of the action (the second part of condition 1) and condition 2 about
a complete universe invariant are also met in the same way as before.

We point out that Claim 2 can be used to show that the uniform distribution on Hx is uniformly
samplable in polynomial time (the first part of condition 1), provided a set of generators for Hx

can be computed in ZPP. This constitutes another use of [Bab91, Theorem 1.1].
On the other hand, the use of [Bab91, Theorem 1.1] in the proof of Theorem 3 can be eliminated.

Referring to parts (α) and (β) in the intuition and proof of Lemma 6, we note the following:
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(α) The first part of the proof of Claim 2 relies on [ER65] but not on [Bab91, Theorem 1.1]. It
shows that pL is samplable by polynomial-size circuits, which is sufficient for the Entropy
Estimator Corollary to apply and show that Mδ(L) = KT(y)/t is a pac underestimator for
log |〈L〉| with deviation 3 log(1 + δ) + o(1), where y is the concatenation of t independent
samples from pL,δ for a sufficiently large polynomial t.

(β) In the special case where 〈L〉 = Aut(ω), the first part of the proof of Lemma 5 shows that, for
any constant δ > 0, pL,δ is uniformly samplable in polynomial time with access to an oracle
for MKTP. Once we have generated y with the help of MKTP, we use MKTP once more to
evaluate KT(y) and output Mδ(L) = KT(y)/t.

This way, for any constant δ > 0 we obtain a pac underestimator Mδ for log |Aut(ω)| with deviation
3 log(1 + δ) + o(1) that is computable in polynomial time with access to MKTP.

This alternate construction replaces steps 1 and 2 in the outline from the beginning of this
section. The resulting alternate proof of Theorem 3 is more elementary (as it does not rely on
[Bab91, Theorem 1.1]) but does not entirely follow the approach we used for GI of first finding a
list L of elements that likely generates Aut(ω) (and never generates more) and then determining
the size of the subgroup generated by L.

Remark 4. Remark 3 on relaxing the efficiency requirement in conditions 1 and 2 of Theorem 2
extends similarly to Theorem 3. For Theorem 3, it suffices that all the computations mentioned in
conditions 1, 2, 4, and 6 be do-able by ZPPMKTP-constructible ordinary circuits.

6 Instantiations of the Isomorphism Problem

In this section we argue that Theorem 3 applies to the instantiations of the Isomorphism Problem
listed in Table 1 (other than GI, which we covered in Section 3). We describe each problem, provide
some background, and show that the conditions of Theorem 3 hold, thus proving that the problem
is in ZPPMKTP.

Linear code equivalence. A linear code over the finite field Fq is a d-dimensional linear subspace
of Fnq for some n. Two such codes are (permutationally) equivalent if there is a permutation of the
n coordinates that makes them equal as subspaces.

Linear Code Equivalence is the problem of deciding whether two linear codes are equivalent,
where the codes are specified as the row-span of a d×n matrix (of rank d), called a generator matrix.
Note that two different inputs may represent the same code. There exists a mapping reduction from
GI to Linear Code Equivalence over any field [PR97, Gro12]; Linear Code Equivalence is generally
thought to be harder than GI.

In order to cast Code Equivalence in our framework, we consider the family of actions (Sn,Ωn,d,q)
where Ωn,d,q denotes the linear codes of length n and dimension d over Fq, and Sn acts by permuting
the coordinates. To apply Theorem 3, as the underlying group is Sn, we only need to check the effi-
ciency of the action (second part of condition 1) and the complete universe invariant (condition 2).
The former holds because the action only involves swapping columns in the generator matrix. For
condition 2 we can define ν(z) to be the reduced row echelon form of z. This choice works because
two generator matrices define the same code iff they have the same reduced row echelon form, and
it can be computed in polynomial time.
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Corollary 2. Linear Code Equivalence is in ZPPMKTP.

Permutation Group Conjugacy. Two permutation groups Γ0,Γ1 ≤ Sn are conjugate (or per-
mutationally isomorphic) if there exists a permutation π ∈ Sn such that Γ1 = πΓ0π

−1; such a π is
called a conjugacy.

The Permutation Group Conjugacy problem is to decide whether two subgroups of Sn are
conjugate, where the subgroups are specified by a list of generators. The problem is known to
be in NP ∩ coAM, and is at least as hard as Linear Code Equivalence. Currently the best known
algorithm runs in time 2O(n) poly(|Γ1|) [BCQ12]—that is, the runtime depends not only on the
input size (which is polynomially related to n), but also on the size of the groups generated by the
input permutations, which can be exponentially larger.

Casting Permutation Group Conjugacy in the framework is similar to before: Sn acts on the
subgroup by conjugacy. The action is computable in polynomial time (second part of condition 1)
as it only involves inverting and composing permutations. It remains to check condition 2. Note
that there are many different lists that generate the same subgroup. We make use of the normal
form provided by the following lemma.

Lemma 7. There is a poly(n)-time algorithm ν that takes as input a list L of elements of Sn, and
outputs a list of generators for the subgroup generated by the elements in L such that for any two
lists L0, L1 of elements of Sn that generate the same subgroup, ν(L0) = ν(L1).

The normal form from Lemma 7 was known to some experts (Babai, personal communication); for
completeness we provide a proof in the Appendix. By Theorem 3 we conclude:

Corollary 3. Permutation Group Conjugacy is in ZPPMKTP.

Matrix Subspace Conjugacy. A linear matrix space over Fq is a d-dimensional linear subspace
of n× n matrices. Two such spaces V0 and V1 are conjugate if there is an invertible n× n matrix
X such that V1 = XV0X

−1 .
= {X ·M ·X−1 : M ∈ V0}, where “·” represents matrix multiplication.

Matrix Subspace Conjugacy is the problem of deciding whether two linear matrix spaces are
conjugate, where the spaces are specified as the linear span of d linearly independent n×n matrices.
There exist mapping reductions from GI and Linear Code Equivalence to Matrix Subspace Con-
jugacy [Gro12]; Matrix Subspace Conjugacy is generally thought to be harder than Linear Code
Equivalence.

In order to cast Matrix Subspace Conjugacy in our framework, we consider the family of actions
(GLn(Fq),Ωn,d,q) where GLn(Fq) denotes the n-by-n general linear group over Fq (consisting of all
invertible n-by-n matrices over Fq with multiplication as the group operation), Ωn,d,q represents
the set of d-dimensional subspaces of Fn×nq , and the action is by conjugation. As was the case with
Linear Code Equivalence, two inputs may represent the same linear matrix space, and we use the
reduced row echelon form of ω when viewed as a matrix in Fd×n2

q as the complete universe invariant.
This satisfies condition 2 of Theorem 3. The action is computable in polynomial time (second part
of condition 1) as it only involves inverting and multiplying matrices in GLn(Fq).

The remaining conditions only depend on the underlying group, which is different from before,
namely GLn(Fq) instead of Sn. Products and inverses in GLn(Fq) can be computed in polynomial
time (condition 4), and the identity mapping serves as the complete group invariant (condition 6).
Thus, only the uniform sampler for GLn(Fq) (first part of condition 1) and the pac overestimator
for |GLn(Fq)| (condition 5) remain to be argued.
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The standard way of constructing the elements of GLn(Fq) consists of n steps, where the i-th
step picks the i-th row as any row vector that is linearly independent of the (i − 1) prior ones.
The number of choices in the i-th step is qn − qi−1. Thus, |GLn(Fq)| =

∏n
i=1(qn − qi−1) which can

be computed in time poly(|x|) (condition 5). It also follows that the probability that a random
(n × n)-matrix over Fq is in GLn(Fq) is at least some positive constant (independent of n and q),
which implies that {Hx} can be uniformly sampled in time poly(|x|), satisfying the first part of
condition 1.

Corollary 4. Matrix Subspace Conjugacy is in ZPPMKTP.

Before closing, we note that there is an equivalent of the Lehmer code for GLn(Fq). We do not
need it for our results, but it may be of interest in other contexts. In general, Lehmer’s approach
works for indexing objects that consist of multiple components where the set of possible values
for the i-th component may depend on the values of the prior components, but the number of
possible values for the i-th component is independent of the values of the prior components. An
efficiently decodable indexing follows provided one can efficiently index the possible values for the
i-th component given the values of the prior components. The latter is possible for GLn(Fq). We
include a proof for completeness.

Proposition 3. For each n and prime power q, GLn(Fq) has an indexing that is uniformly decod-
able in time poly(n, log(q)).

Proof. Consider the above process. In the i-th step, we need to index the complement of the
subspace spanned by the i − 1 row vectors picked thus far, which are linearly independent. This
can be done by extending those i− 1 row vectors by n− i+ 1 new row vectors to a full basis, and
considering all qi−1 linear combinations of the i− 1 row vectors already picked, and all (qn−i+1 −
1) non-zero linear combinations of the other basis vectors, and outputting the sum of the two
components. More precisely, on input k ∈ [qn − qi−1], write k − 1 as k0 + k1q

i−1 where k0 and
k1 are nonnegative integers with k0 < qi−1, and output v0 + v1 where v0 is the combination of
the i − 1 row vectors already picked with coefficients given by the binary expansion of k0, and v1

is linear combination of the other basis vectors with coefficients given by the binary expansion of
k1 + 1. Using Gaussian elimination to construct the other basis vectors, the process runs in time
poly(n, log(q)). �

7 Future Directions

We end with a few directions for further research.

7.1 What about Minimum Circuit Size?

We suspect that our techniques also apply to MCSP in place of MKTP, but we have been unsuc-
cessful in extending them to MCSP so far. To show our result for the complexity measure µ = KT,
we showed the following property for polynomial-time samplable flat distributions R: There exists
an efficiently computable bound θ(s, t) and a polynomial t such that if y is the concatenation of t
independent samples from R, then

µ(y) > θ(s, t) holds with high probability if R has entropy s+ 1, and (4)

µ(y) ≤ θ(s, t) always holds if R has entropy s. (5)
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We set θ(s, t) slightly below κ(s+ 1, t) where κ(s, t)
.
= st. (4) followed from a counting argument,

and (5) by showing that

µ(y) ≤ κ(s, t) ·
(

1 +
nc

tα

)
(6)

always holds for some positive constants c and α. We concluded by observing that for a sufficiently
large polynomial t the right-hand side of (6) is significantly below κ(s+ 1, t).

Mimicking the approach with µ denoting circuit complexity, we set

κ(s, t) =
st

log(st)
·
(

1 + (2− o(1)) · log log(st)

log(st)

)
.

Then (4) follows from [Yam11]. As for (5), the best counterpart to (6) we know of (see, e.g., [FM05])
is

µ(y) ≤ st

log(st)
·
(

1 + (3 + o(1)) · log log(st)

log(st)

)
.

However, in order to make the right-hand side of (6) smaller than κ(s+1, t), t needs to be exponential
in s.

One possible way around the issue is to boost the entropy gap between the two cases. This
would not only show that all our results for MKTP apply to MCSP as well, but could also form
the basis for reductions between different versions of MCSP (defined in terms of different circuit
models, or in terms of different size parameters), and to clarify the relationship between MKTP
and MCSP. Until now, all of these problems have been viewed as morally equivalent to each other,
although no efficient reduction is known between any two of these, in either direction. Given the
central role that MCSP occupies, it would be desirable to have a theorem that indicates that MCSP
is fairly robust to minor changes to its definition. Currently, this is lacking.

On a related point, it would be good to know how the complexity of MKTP compares with the
complexity of the KT-random strings: RKT = {x : KT(x) ≥ |x|}. Until now, all prior reductions
from natural problems to MCSP or MKTP carried over to RKT—but this would seem to require
even stronger gap amplification theorems. The relationship between MKTP and RKT is analogous
to the relationship between MCSP and the special case of MCSP that is denoted MCSP′ in [MW15]:
MCSP′ consists of truth tables f of m-ary Boolean functions that have circuits of size at most 2m/2.

7.2 Statistical Zero Knowledge

Allender and Das [AD14] generalized their result that GI ∈ RPMKTP to SZK ⊆ BPPMKTP by
applying their approach to a known SZK-complete problem. Our proof that GI ∈ coRPMKTP

similarly generalizes to SZK ⊆ BPPMKTP. We use the SZK-complete problem known as Entropy
Difference: Given two circuits C0 and C1 that induce distributions whose entropy is at least one
apart, decide which of the two has the higher entropy [GV99]. By combining the Flattening Lemma
[GV99] with the Entropy Estimator Corollary, one can show that for any distribution of entropy s
sampled by a circuit C, the concatenation of t random samples from C has, with high probability,
KT complexity between ts− t1−α0 · poly(|C|) and ts+ t1−α0 · poly(|C|) for some positive constant
α0. Along the lines of Remark 1, this allows us to determine which of C0 or C1 has the higher
entropy in BPPMKTP.

A natural next question is whether this can be strengthened to show SZK ⊆ ZPPMKTP. For this
it suffices to prove that SZK is in RPMKTP or in coRPMKTP as SZK is closed under complementation
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[Oka00]. In fact, the above approach shows that the following variant is in RPMKTP: Given a circuit
C and a threshold θ with the promise that C induces a flat distribution of entropy either at least
θ + 1 or else at most θ − 1, decide whether the former is the case. This is the problem Entropy
Approximation [GSV99] restricted to flat distributions. The general version is known to be complete
for SZK under oracle reductions [GSV99, Lemma 5.1], and therefore is in ZPPMKTP if and only if
all of SZK is. Thus, showing that Entropy Approximation is in RPMKTP is tantamount to reducing
the two-sided error in the known result that SZK ⊆ BPPMKTP to zero-sided error.

This suggests that the difficulty lies in handling non-flat distributions. For example, it may
be the case that the distribution sampled by C is supported on every string, but the entropy s
is relatively small. In that case, there is no nontrivial worst-case bound on the KT complexity of
samples from C; with positive probability, t samples from C may have KT-complexity close to t
times the length of each sample, far above t(s+ 1).

Trying to go beyond SZK, recall that except for the possible use of the MKTP oracle in the
construction of the probably-correct overestimator from condition 3 in Theorem 2 (or as discussed
in Remark 3), the reduction in Theorem 2 makes only one query to the oracle. It was observed in
[HW16] that the reduction also works for any relativized KT problem MKTPA (where the universal
machine for KT complexity has access to oracle A). More significantly, [HW16] shows that any
problem that is accepted with negligible error probability by a probabilistic reduction that makes
only one query, relative to every set MKTPA, must lie in AM ∩ coAM. Thus, without significant
modification, our techniques cannot be used in order to reduce any class larger than AM ∩ coAM
to MKTP.

The property that only one query is made to the oracle was subsequently used in order to
show that MKTP is hard for the complexity class DET under mapping reductions computable in
nonuniform NC0 [AH17]. Similar hardness results (but for a more powerful class of reducibilities)
hold also for MCSP [OS17]. This has led to unconditional lower bounds on the circuit complexity
of MKTP [AH17, HS17], showing that MKTP does not lie in the complexity class AC0[p] for any
prime p; it is still open whether similar circuit lower bounds hold for MCSP.
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Appendix: Coset Indexings and Normal Forms for Permutation
Groups

In this appendix we develop the efficiently decodable indexings for cosets of permutation subgroups
claimed in Lemma 3, and also use some of the underlying ideas to establish the normal form for
permutation groups stated in Lemma 7.

Indexing Cosets. The indexings are not strictly needed for our main results as the generic en-
coding from the Encoding Lemma can be used as a substitute. However, the information-theoretic
optimality of the indexings may be useful in other contexts. In fact, we present a further general-
ization that may be of independent interest, namely an efficiently decodable indexing for cosets of
permutation subgroups within another permutation subgroup.
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Lemma 8. For all Γ ≤ H ≤ Sn, there exists an indexing of the cosets6 of Γ within H that is
uniformly decodable in polynomial time when Γ and H are given by a list of generators.

Lemma 3 is just the instantiation of Lemma 8 with H = Sn. The proof of Lemma 8 requires
some elements of the theory of permutation groups. Given a list of permutations π1, . . . , πk ∈ Sn,
we write Γ = 〈π1, . . . , πk〉 ≤ Sn for the subgroup they generate. Given a permutation group Γ ≤ Sn
and a point i ∈ [n], the Γ-orbit of i is the set {g(i) : g ∈ Γ}, and the Γ-stabilizer of i is the subgroup
{g ∈ Γ : g(i) = i} ≤ Γ.

We make use of the fact that (a) the number of cosets of a subgroup Γ of a group H equals
|H|/|Γ|, and (b) the orbits of a subgroup Γ of H form a refinement of the orbits of H. We also need
the following basic routines from computational group theory (see, for example, [HEO05, Ser03]).

Proposition 4. Given a set of permutations that generate a subgroup Γ ≤ Sn, the following can
be computed in time polynomial in n:

(1) the cardinality |Γ|,

(2) a permutation in Γ that maps u to v for given u, v ∈ [n], or report that no such permutation
exists in Γ, and

(3) a list of generators for the subgroup Γv of Γ that stabilizes a given element v ∈ [n].

The proof of Lemma 8 makes implicit use of an efficient process for finding a canonical repre-
sentative of πΓ for a given permutation π ∈ H, where “canonical” means that the representative
depends on the coset πΓ only. The particular canonical representative the process produces can be
specified as follows.

Definition 7. For a permutation π ∈ Sn and a subgroup Γ ≤ Sn, the canonical representative of π
modulo Γ, denoted π mod Γ, is the lexicographically least π′ ∈ πΓ, where the lexicographic ordering
is taken by viewing a permutation π′ as the sequence (π′(1), π′(2), . . . , π′(n)).

We describe the process as it provides intuition for the proof of Lemma 8.

Lemma 9. There exists a polynomial-time algorithm that takes as input a generating set for a
subgroup Γ ≤ Sn and a permutation π ∈ Sn, and outputs the canonical representative π mod Γ.

Proof (of Lemma 9). Consider the element 1 of [n]. Permutations in πΓ map 1 to an element v in
the same Γ-orbit as π(1), and for every element v in the Γ-orbit of π(1) there exists a permutation
in πΓ that maps 1 to v. We can canonize the behavior of π on the element 1 by replacing π with a
permutation π1 ∈ πΓ that maps 1 to the minimum element m in the Γ-orbit of π(1). This can be
achieved by multiplying π to the right with a permutation in Γ that maps π(1) to m.

Next we apply the same process to π1 but consider the behavior on the element 2 of [n]. Since
we are no longer allowed to change the value of π1(1), which equals m, the canonization of the
behavior on 2 can only use multiplication on the right with permutations in Γm, i.e., permutations
in Γ that stabilize the element m. Doing so results in a permutation π2 ∈ π1Γ.

We repeat this process for all elements k ∈ [n] in order. In the k-th step, we canonize the
behavior on the element k by multiplying on the right with permutations in Γπk−1([k−1]), i.e.,
permutations in Γ that pointwise stabilize all of the elements πk−1(`) for ` ∈ [k − 1]. �

6Recall footnote 2 on page 13.
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Proof (of Lemma 8). The number of canonical representatives modulo Γ in H equals the number
of distinct (left) cosets of Γ in H, which is |H|/|Γ|. We construct an algorithm that takes as input
a list of generators for Γ and H, and an index i ∈ [|H|/|Γ|], and outputs the permutation σ that is
the lexicographically i-th canonical representative modulo Γ in H.

The algorithm uses a prefix search to construct σ. In the k-th step, it knows the prefix
(σ(1), σ(2), . . . , σ(k − 1)) of length k − 1, and needs to figure out the correct value v ∈ [n] to
extend the prefix with. In order to do so, the algorithm needs to compute for each v ∈ [n] the
count cv of canonical representatives modulo Γ in H that agree with σ on [k−1] and take the value
v at k. The following claims allow us to do that efficiently when given a permutation σk−1 ∈ H
that agrees with σ on [k − 1]. The claims use the notation Tk−1

.
= σk−1([k − 1]), which also equals

σ([k − 1]).

Claim 3. The canonical representatives modulo Γ in H that agree with σ ∈ H on [k−1] are exactly
the canonical representatives modulo ΓTk−1

in σk−1HTk−1
.

Proof. The following two observations imply Claim 3.

(i) A permutation π ∈ H agrees with σ ∈ H on [k − 1]
⇔ π agrees with σk−1 on [k − 1]
⇔ σ−1

k−1π ∈ HTk−1

⇔ π ∈ σk−1HTk−1
.

(ii) Two permutations in σk−1HTk−1
, say π

.
= σk−1g and π′

.
= σk−1g

′ for g, g′ ∈ HTk−1
, belong to

the same left coset of Γ iff they belong to the same left coset of ΓTk−1
. This follows because

if σk−1g
′ = σk−1gh for some h ∈ Γ, then h equals g−1g′ ∈ HTk−1

, so h ∈ Γ∩HTk−1
= ΓTk−1

.�

Claim 4. The count cv for v ∈ [n] is nonzero iff v is the minimum of some ΓTk−1
-orbit contained

in the HTk−1
-orbit of σk−1(k).

Proof. The set of values of π(k) when π ranges over σk−1HTk−1
is the HTk−1

-orbit of σk−1(k). Since
ΓTk−1

is a subgroup of HTk−1
, this orbit is the union of some ΓTk−1

-orbits. Combined with Claim 3
and the construction of the canonical representatives modulo ΓTk−1

, this implies Claim 4. �

Claim 5. If a count cv is nonzero then it equals |HTk−1∪{v}|/|ΓTk−1∪{v}|.

Proof. Since the count is nonzero, there exists a permutation σ′ ∈ H that is a canonical represen-
tative modulo Γ that agrees with σk−1 on [k− 1] and satisfies σ′(k) = v. Applying Claim 3 with σ
replaced by σ′, k by k′

.
= k + 1, Tk−1 by T ′k

.
= Tk−1 ∪ {v}, and σk−1 by any permutation σ′k ∈ H

that agrees with σ′ on [k], yields Claim 5. This is because the number of canonical representatives
modulo ΓT ′k in σ′kHT ′k

equals the number of (left) cosets of ΓT ′k in HT ′k
, which is the quantity stated

in Claim 5. �

The algorithm builds a sequence of permutations σ0, σ1, . . . , σn ∈ H such that σk agrees with σ
on [k]. It starts with the identity permutation σ0 = id, builds σk out of σk−1 for increasing values
of k ∈ [n], and outputs the permutation σn = σ.

Pseudocode for the algorithm is presented in Algorithm 1. Note that the pseudocode modifies
the arguments Γ, H, and i along the way. Whenever a group is referenced in the pseudocode, the
actual reference is to a list of generators for that group.

The correctness of the algorithm follows from Claims 4 and 5. The fact that the algorithm runs
in polynomial time follows from Proposition 4. �
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Algorithm 1

Input: positive integer n, Γ ≤ H ≤ Sn, i ∈ [|H|/|Γ|]
Output: lexicographically i-th canonical representative modulo Γ in H

1: σ0 ← id
2: for k = 1 to n do
3: O1, O2, . . . ← Γ-orbits contained in the H-orbit of σk−1(k), in increasing order of min(Oi)
4: find integer ` such that

∑`−1
j=1 cmin(Oj) < i ≤

∑`
j=1 cmin(Oj), where cv

.
= |Hv|/|Γv|

5: i← i−
∑`−1

i=1 cmin(Oj)

6: m← min(O`)
7: find τ ∈ H such that τ(σk−1(k)) = m
8: σk ← σk−1τ
9: H ← Hm; Γ← Γm

10: return σn

Normal Form. Finally, we use the canonization captured in Definition 7 and Lemma 9 to estab-
lish the normal form for permutation groups given by Lemma 7 (restated below):

Lemma 7. There is a polynomial-time algorithm ν that takes as input a list L of elements of Sn,
and outputs a list of generators for the subgroup generated by the elements in L such that for any
two lists L0, L1 of elements of Sn that generate the same subgroup, ν(L0) = ν(L1).

Proof. Let Γ denote the subgroup generated by L, and recall that Γ[i] denotes the subgroup of Γ
that stabilizes each element in [i], for i ∈ {0, 1, . . . , n}. We have that Γ[0] = Γ, and Γ[n−1] consists
of the identity only.

We define ν(L) as follows. Start with ν being the empty list. For i ∈ [n − 1], in the i-th step
we consider each j ∈ [n] that is in the Γ[i−1]-orbit of i in order. Note that for each such j, the
permutations in Γ[i−1] that map i to j form a coset of Γ[i−1] mod Γ[i]. We append the canonical
representative of this coset to ν. ν(L) is the value of ν after step n− 1.

As we only include permutations from Γ, ν(L) generates a subgroup of Γ. By construction, for
each i ∈ [n − 1], the permutations we add in the i-th step represent all cosets of Γ[i−1] mod Γ[i].
It follows by induction on n − i that the permutations added to ν during and after the i-th step
generate Γ[i−1] for i ∈ [n]. Thus, ν(L) generates Γ[0] = Γ.

That ν(L) only depends on the subgroup Γ generated by L follows from its definition, which
only refers to the abstract groups Γ[i], their cosets, and their canonical representatives. That ν(L)
can be computed in polynomial time follows by tracking a set of generators for the subgroups Γ[i]

based on Proposition 4. More specifically, we use item 2 to check whether a given j is in the
Γ[i−1]-orbit of i, and item 3 to obtain Γ[i] out of Γ[i−1] as Γ[i] = (Γ[i−1])i. �
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