
A o(d) · polylog n Monotonicity Tester for Boolean Functions

over the Hypergrid [n]d

Hadley Black∗ Deeparnab Chakrabarty† C. Seshadhri‡

October 27, 2017

Abstract

We study monotonicity testing of Boolean functions over the hypergrid [n]d and design a non-
adaptive tester with 1-sided error whose query complexity is Õ(d5/6) ·poly(log n, 1/ε). Previous
to our work, the best known testers had query complexity linear in d but independent of n. We

improve upon these testers as long as n = 2d
o(1)

.
To obtain our results, we work with what we call the augmented hypergrid, which adds extra

edges to the hypergrid. Our main technical contribution is a Margulis-style isoperimetric result
for the augmented hypergrid, and our tester, like previous testers for the hypercube domain,
performs directed random walks on this structure.

∗Department of Computer Science, University of California, Santa Cruz. Email: hablack@ucsc.edu.
†Department of Computer Science, Dartmouth College. Email: deeparnab@dartmouth.edu.
‡Department of Computer Science, University of California, Santa Cruz. Email: sesh@ucsc.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2017)

mailto:hablack@ucsc.edu
mailto:deeparnab@dartmouth.edu
mailto:sesh@ucsc.edu

1 Introduction

Monotonicity testing is a classic property testing problem that asks whether a function defined
over a partial order is monotone or not. Consider a function f : D → R (where D is a partial
order and R is an ordered range). The function f is monotone if f(x) ≤ f(y) whenever x < y in
the partial order D. The distance between two functions f and g is the fraction of points they
differ in. The distance to monotonicity of f is ming∈P d(f, g), where P is the set of monotone
functions. Given a parameter ε ∈ (0, 1), the aim of a property tester is to correctly determine, with
high probability, whether f is monotone or the distance to monotonicity is at least ε. When the
distance to monotonicity of f is at least ε, we say that f is ε-far from being monotone.

In recent years, there has been a lot of work [GGL+00, CS14a, CST14, CDST15, KMS15,
BB16, CWX17] on understanding the testing question for Boolean functions defined over the d-
dimensional hypercube {0, 1}d domain. This line of work has unearthed a connection between
monotonicity testing and isoperimetric theorems on the directed hypercube.

In this paper, we investigate monotonicity testing of Boolean functions over the d-dimensional
n-hypergrid, [n]d. Apart from being a natural property testing question, our motivation is to
unearth isoperimetry theorems for richer structures. Indeed, our main technical contribution is
a Margulis-type isoperimetry theorem for a structure called the augmented hypergrid. Such a
theorem allows us to design a tester with query complexity o(d) · polylog n for Boolean functions

defined on [n]d. As long as n = 2d
o(1)

, this o(d)-query tester has the best query complexity among
the testers known so far.

Theorem 1.1. Given a function f : [n]d → {0, 1} and a parameter ε, there is a randomized
algorithm that makes O(d5/6 · log3/2 d ·(log n+log d)4/3 ·ε−4/3) non-adaptive queries and (a) returns
YES with probability 1 if the function is monotone, and (b) returns NO with probability > 2/3 if
the function is ε-far from being monotone.

1.1 Perspective

The Hypercube. Goldreich et al. [GGL+00] gives the first monotonicity testers for Boolean
functions over the {0, 1}d hypercube. Their tester makes O(d/ε) queries. Chakrabarty and Se-
shadhri [CS14a] describes a o(d) query tester via so-called directed isoperimetry theorems. Given
f , define S−f to be the set of edges of the hypercube with their “lower endpoint” evaluating to 1 and

their “upper endpoint” evaluating to 0. That is, S−f is the set of edges violating monotonicity. De-

fine I−f := |S−f |/2
d and Γ−f := |max-match(S−f)|/2d where the numerator indicates cardinality of the

largest matching in S−f . [CS14a] prove that if f is ε-far from being monotone, then I−f ·Γ
−
f = Ω(ε2).

If the edges of the hypercube were to be oriented from the point with fewer ones to the one with
more, then this result connects the structure of directed edges leaving the set of points evaluating
to one with the distance to monotonicity. In this sense, this result is a directed analogue of a result
by Margulis [Mar74] which proves a similar statement on the undirected hypercube. Using this
directed isoperimetry result, [CS14a] designs an O(d7/8ε−3/2)-query tester. Chen et al. [CST14]
refines the analysis in [CS14a] to give a tester with O(d5/6ε−4) query complexity.

A remarkable paper of Khot, Minzer, and Safra [KMS15] proves the following directed ana-
logue of Talagrand’s [Tal93] isoperimetry theorem. If S−f (x) is the number of edges in S−f in-

cident on x, then [KMS15] proves Ex[
√
|S−f (x)|] = Ω(ε/ log d). The directed analogue of Tala-

1

grand’s [Tal93] isoperimetry theorem is stronger than the Margulis-type theorem (albeit with an
extra log d in the denominator.). Khot et al. [KMS15] uses this stronger directed isoperimetry result
to obtain a Õ(

√
dε−2)-query monotonicity tester. This bound is nearly optimal for non-adaptive

testers [CDST15, KMS15].
However, the proof techniques of both these isoperimetry results are very different. Chakrabarty-

Seshadhri [CS14a] use the combinatorial structure of the “violation graph” to explicitly find either
a large number of edges in S−f , or to find a large matching in S−f . Khot et al. [KMS15] instead
propose an operator (the split operator) which converts a function that is far from monotone to a
function with sufficient structure that allows them to prove the Talagrand-type isoperimetry the-
orem in a relatively easier way. This technique of [KMS15] is reminiscent of the original result of
Goldreich et al. [GGL+00] which also defines an operator (the switch operator) to convert a function
to a monotone function and accounting for the number of violated edges. It appears that methods
which change function values are harder to generalize for the hypergrid domain. In particular, it is
not clear how to generalize the switch or the split operators for hypergrids.

The Hypergrid. Dodis et al. [DGL+99] is the first paper to study property testing on the d-
dimensional hypergrid [n]d. For Boolean functions, this paper describe a O(dε log2(dε))-query tester.
Note that the query complexity is independent of n. The proof follows via dimension reduction
theorem for Boolean functions. This result asserts that if a Boolean function on the [n]d hypergrid is
ε-far from being monotone, then the function restricted to a random line has an expected distance
of Ω(ε/d) to monotonicity. On a line it is not too hard to see that Boolean functions can be
tested with Õ(1/ε)-queries. This style of analysis was refined by Berman, Raskhodnikova and
Yarovslavstev [BRY14a] which gives a O(dε log(dε))-query tester for Boolean functions on hypergrids.
This is the current best known tester. Since these testers project to a line they (a) have no
dependence on n, and (b) they seem to need the linear dependence on d since the violations may
be restricted to O(1) unknown dimensions which, if naively done, may take Θ(d) queries to detect.

For real-valued functions over [n]d, Dodis et al. [DGL+99] give a O(dε log n log |R|)-query tester
where R is the range of the function. They do so by a clever range-reduction technique that reduces
to testing Boolean functions over [n]d. One of the key ideas to emerge from results of Ergun et
al. [EKK+00] and Bhattacharyya et al. [BGJ+12] on monotonicity testing on the line (and richer
structures) is to compare points that are far apart. Chakrabarty and Seshadhri [CS13] exploit this
idea to give an optimal O(dε log n)-query tester for real-valued functions over [n]d, removing the
dependence on R. Specifically, their tester queries pairs in the hypergrid that may be apart by an
arbitrary power of 2. One can think of adding these extra edges to get an augmented hypergrid.
(This is the central theme of the transitive closure spanner idea of Bhattacharyya et al [BGJ+12].)
This notion of the augmented hypergrid is central to our paper. The main result of [CS13] was to
show that if (even a real-valued) f is ε-far from being monotone, then this augmented hypergrid has
many violated edges. For ε-far Boolean valued functions, this implies that the “out-edge-boundary”
of the set of 1s must be large.

The main technical result of this paper is proving a Margulis-style result for the augmented
hypergrid generalizing the result of [CS14a]. It states that either the “out-edge-boundary” is “very
large”, or the “out-vertex-boundary” is large (details in §2.). One of the main tools that [CS14a]
use is a routing theorem in the hypercube due to Lehman and Ron [LR01]. One of the ways
this theorem is proved and used exploits the fact that the “directed hypercube” is a layered DAG
with vertices of the same Hamming weight forming the layers. The “directed hypergrid” is also a

2

Figure 1: The augmented line A8,1. Solid and dashed lines represent edges from the “even” and “odd”
matchings, respectively. E.g. the solid lines along the bottom make up H0

1,0 (“even” matching of length
1 = 20 edges) and the dashed lines along the bottom make up H1

1,0 (“odd” matching of length 1 = 20 edges).

layered DAG, but the augmented hypergrid is not. This technically poses many challenges, and our
way out is to define “good portions” of the hypergrid where a certain specified subgraph is indeed
layered. We generalize Lehman-Ron, but more crucially we can show if a function is ε-far, then
large good portions exists. The definitions of these good portions is perhaps our main conceptual
combinatorial contribution.

1.2 Reducing to the case when n is a power of 2

It greatly simplifies the presentation to assume that n is a power of 2. For monotonicity testing,
this is no loss of generality. In §A, we show that monotonicity testing over general hypergrids can
be reduced to the case when n is a power of 2. Specifically, in Theorem A.1 we reduce testing over
general [n]d to testing over [N]d where N is a power of 2 and N = Θ(nd). In our case, this incurs
a loss of polylog d in the query complexity. Thus, we assume that n is a power of 2 throughout
the paper except in Theorem 1.1, where, in the query complexity, log n is replaced by log n+ log d
to reflect this loss. To be specific, §3 and §4 do not need n to be a power of 2, while we stress that
§5, §B and §C do need n to be a power of 2.

1.3 The Augmented Hypergrid

Given the d-dimensional n-hypergrid [n]d, we define the augmented hypergrid An,d which is simply
the standard hypergrid with additional edges connecting any two vertices which differ in exactly one
dimension by a power of two in the range 1 ≤ 2a ≤ n. This construction was explicitly introduced
in [CS13].

It is useful to partition the edges of An,d into a collection of matchings H := {Hc
i,a : i ∈ [d], a ∈

[log n], c ∈ {0, 1}}, where

• H0
i,a := {(x, y) : yi − xi = 2a, xj = yj ∀j 6= i, xi (mod 2a+1) < 2a}.

• H1
i,a := {(x, y) : yi − xi = 2a, xj = yj ∀j 6= i, xi (mod 2a+1) ≥ 2a}.

Note that H0
i,a is a perfect matching, but H1

i,a is not. We let dA(x, y) denote the shortest-path
distance between two points in the augmented hypergrid.

1.4 The Monotonicity Tester

Our tester is a generalization of the tester described by Khot, Minzer, and Safra [KMS15] over the
Boolean hypercube, which itself is inspired by the path tester described in [CST14, CS14a]. Instead

3

of taking a random walk on the hypergrid, however, we perform a random walk on the augmented
hypergrid.

Input: A Boolean function f : [n]d → {0, 1} and a parameter ε ∈ (0, 1).

1. Let p denote the largest integer such that 2p ≤
√
d/10 log d.

Choose t ∈ {0, 1, ..., p} uniformly at random and set τ := 2t.
2. Choose x ∈ [n]d uniformly at random.
3. For each i ∈ [d] choose ai ∈R [log n] and ci ∈R {0, 1} uniformly at random to get the

matching Hi := Hci
i,ai
∈ H.

4. Let S ⊆ [d] be the set of coordinates i where x is a lower endpoint in the matching Hi.
5. If |S| < τ , set y = x.

Else, choose a subset T ⊆ S of size |T | = τ uniformly at random. Obtain y by setting
yi := xi + 2ai for all i ∈ T and yj := xj for all j ∈ [d] \ T . That is, y is obtained from x
by taking τ steps with the step length along dimension i prescribed by the matching Hi.

6. If f(x) > f(y), REJECT, otherwise ACCEPT.

Figure 2: Monotonicity Tester for Boolean Functions on [n]d

The main result of this paper is the following theorem which easily implies Theorem 1.1.

Theorem 1.2. Given a function f : [n]d → {0, 1} which is ε-far from being monotone, the tester

described in Fig. 2 with inputs f and ε detects a violation with probability Ω
(

ε4/3

d5/6 log3/2 d log4/3 n

)
.

1.5 Related Work and Remarks

Monotonicity Testing has been extensively [EKK+00, GGL+00, DGL+99, LR01, FLN+02, HK03,
AC06, HK08, ACCL07, Fis04, SS06, Bha08, BCSM12, FR10, BBM12, RRSW11, BGJ+12, CS13,
CS14a, CST14, BRY14a, BRY14b, CDST15, CDJS15, KMS15, BB16, CWX17] studied in the past
two decades; in this section we discuss a few works most relevant to this paper.

In property testing, the notion of distance between functions is usually the Hamming distance
between them, that is, the fraction of points at which they differ. More generally one can think
of a general measure over the domain and the distance is the measure of the points at which the
two functions differ. Monotonicity testing has been studied [AC06, HK08, CDJS15] over general
product measures. It is now known [CDJS15] that for functions over [n]d, there exist testers making
O(dε log n)-queries over any product distribution; in fact there exist better testers if the distribution
is known. A simple argument (Claim 3.6 in [CDJS15]) shows that testing monotonicity of Boolean
functions over {0, 1}d over any product distribution reduces to testing over [n]d over the uniform
distribution. Thus our result gives o(d)-query monotonicity testers for f : {0, 1}d → {0, 1}, even
over p-biased distributions; this holds even when pi’s are not constants and depend on d. Once
again, it is not clear how to generalize the tester of Khot, Minzer, and Safra [KMS15] to obtain
such a result.

In a different take on the distance function, Berman, Raskhodnikova, and Yaroslavtsev [BRY14a]
study property testing when the distance function is not the Hamming distance but could be a more

4

general Lp norm. That is the distance between f and g is the Lp norm of f − g (the measure over
which the Lp norm is taken is the uniform measure). One of their results is a black-box reduction
(Lemma 2.2 in [BRY14a]) of L1-testing of functions in the range [0, 1] to “usual L0”-testing of
Boolean functions. In particular, our result along with their reduction implies o(d) · polylogn-
query testers for L1-testing over [n]d. Another interesting result in the same paper is a separation
between non-adaptive and adaptive testers. For Boolean functions defined over [n]2, Berman et
al. [BRY14a] describe an O(1/ε)-query adaptive tester and a lower bound of Ω(1

ε log(1
ε))-for non-

adaptive testers. It is an interesting question (even for the hypercube) whether adaptivity helps in
Boolean monotonicity testing; it is known for real-valued functions it doesn’t [CS14b]. Some recent
results [BB16, CWX17] point out some very interesting lower bounds for adaptive testers.

Monotonicity testing is well-defined over any arbitrary poset. Our knowledge here is limited.
Fischer et al. [FLN+02] prove there exist O(

√
N/ε)-query testers over any poset of cardinality

N even for real-valued functions; they also prove an Ω(N
1

log logN)-lower bound even for Boolean
functions. On the other hand, there are good testers for the hypercube and hypergrid even for real-
valued functions. Can we understand the structure that allows for efficient testers? Our notion of
“good portions” (Lemma 2.9) holds for any poset, and may provide some directions towards this
question.

Finally, we comment on our tester’s dependence on n. If does not seem possible to improve
our current line of attack, since the number of edges in the augmented hypergrid (when divided by
nd) depends on n. One direction may be to sparsify the augmented hypergrid in such a way that
we don’t lose out on the Margulis-type inequality. It is an interesting direction to get a greater
understanding of such isoperimetric inequalities and possibly remove this dependence on n.

2 Isoperimetric Theorems on the Augmented Hypergrid

Given a function f : [n]d → {0, 1} we consider it to be defined over the vertices of An,d. We let S−f
denote the set of edges (x, y) of An,d with f(x) = 1 and f(y) = 0, where x is the lower endpoint.
We let I−f := |S−f |/n

d. If f : An,d → {0, 1} is ε-far from being monotone, then I−f = Ω(ε). This

result is implicit in many earlier papers [DGL+99, EKK+00, CS13] on monotonicity testing over
the hypergrid.

If one considers the edges of An,d being oriented from the lower to the upper endpoint, then the
above theorem lower bounds the normalized “out-edge-boundary” of the indicator set of a function
which is far from monotone. It is instructive to note that to obtain this result one needs to look at
the augmented hypergrid. If one considered the standard hypergrid then one would need an extra
n-factor in the denominator in the RHS. This is apparent even when d = 1 and the function is 1
on the first half of the line and 0 on the second half.

One can also think about the normalized out-vertex-boundary of f in An,d defined as 1
nd ·∣∣∣{x : ∃y, (x, y) ∈ S−f }

∣∣∣. In fact, we focus on the following smaller quantity

Γ−f :=
1

nd
· (Size of the maximum-cardinality matching in S−f)

Our main technical result is the following Margulis-style [Mar74] directed isoperimetry theorem
over the augmented hypergrid.

5

Theorem 2.1. If f : An,d → {0, 1} is ε-far from being monotone, then

I−f · Γ
−
f = Ω(ε2)

As in the Boolean hypercube case, the Margulis-style isoperimetry theorem allows one to analyze
the tester in Fig. 2. We follow the clean analysis of Khot et al [KMS15] and discuss this in §5.

The proof of Theorem 2.1 follows the structure of that in Chakrabarty and Seshadhri [CS14a]
for functions over the Boolean hypercube. Fix a function f which is ε-far from being monotone.
Consider a matching on the vertices of An,d consisting of disjoint pairs of violations (a matching in
the violation graph of f). A folklore theorem states that any such matching that is maximal has
cardinality ≥ εnd/2. We focus on maximal matchings in the violation graph of f which minimize
the average shortest path distance in An,d between its endpoints. That is, we consider M which
minimizes 1

|M |
∑

(x,y)∈M dA(x, y). Let r be this minimum value.

The following theorem can be proved using the techniques developed in [CS14a, CS13]. In
[CS14a], Chakrabarty and Seshadhri prove that I−f = Ω(rε) for Boolean functions over the hyper-

cube {0, 1}d. A similar observation holds for real-valued functions over An,d. Indeed, [CS13] proves
I−f = Ω(ε) for such functions. We show that I−f = Ω(rε) holds for Boolean functions over An,d and
defer the complete proof to the appendix §C as it is not the main contribution of this paper and
the techniques are very similar to the previous works discussed.

Theorem 2.2. If the average distance between the endpoints of M∗ is r, then I−f = Ω(rε).

Therefore, if r is large then the edge boundary is large. Theorem 2.1 follows from the next
theorem which shows if r is small, then there is a large matching in S−f .

Theorem 2.3. If the average distance between the endpoints of M∗ is r, then Γ−f = Ω(ε/r).

The above theorem is where the novelty of this paper lies. In the next subsection, we make key
definitions and outline the roadmap of the proof of Theorem 2.3 which constitutes the bulk of the
paper. §5 contains the final analysis of the tester which follows from the above theorem via by now
standard analysis procedures. The interested reader can read §5 independent of the remainder of
the paper.

2.1 Proof of Theorem 2.3: A Roadmap

Among all maximal matchings which have average distance r, choose M∗ to be the one which
maximizes the following potential function

Ψ(M) :=
∑

(x,y)∈M

d2
A(x, y)

Maximizing Ψ(·) has the effect of uncrossing pairs in the matching, which is useful when we use M∗

for finding structured subgraphs in the augmented hypergrid. We also point out that this is the
same potential function used in [CS14a] for the hypercube case. Let M∗i ⊆ M∗ be the pairs (x, y)
with dA(x, y) = i. Since the average distance of M∗ is r, we get

∑
i≤2r |M∗i | ≥ |M |/2 ≥ εnd/4. For

any i, let S∗i be the “lower endpoints” of M∗i which evaluate to 1 and T ∗i be the “upper endpoints”
which evaluate to 0. We now make a few definitions.

6

Figure 3: Dashed and solid lines represent the shortest paths from s1 to t1 and s2 to t2, respectively. Let
S = {s1, s2} and T = {t1, t2}. (S, T) is a 3-consistent pair since d(s1, t1) = d(s2, t2) = 3. Observe that
d(s1, t2) = 2 and d(s2, t1) = 4 and so the paths from s1 to t2 and from s2 to t1 are not in P(S,T); however
these paths will be present in the cover graph G(S,T). Furthermore, the fact that z lies at step 1 along a
length 3 shortest path from s1 to t1 and at step 2 along a length 3 shortest path from s2 to t2 shows that
G(S,T) is not a 3-layered DAG and so (S, T) is not 3-good. However, it is instructive to note that M∗ would
match s1 to t2 and s2 to t1 since this maximizes Ψ(·).

Definition 2.4 (Consistent Sets). A pair of subsets (S, T) of any poset G is said to be `-consistent
if there exists a bijection φ : S → T such that dG(s, φ(s)) = `.

Note that for all i, we have that the sets (S∗i , T
∗
i) are i-consistent. The following definitions are key

for proving the theorem.

Definition 2.5 (Cover Graph induced by Consistent Sets). Given a pair (S, T) of `-consistent sets
in a poset G, we let P(S,T) denote the collection of paths in G which originate from some vertex
s ∈ S, terminate in some vertex t ∈ T , is a shortest path from s to t, and has length exactly `. The
`-cover graph G(S,T) is a subgraph of G formed by taking the union of all paths in P(S,T).

We remark here that in any `-consistent pair (S, T) there may be s ∈ S and t ∈ T such that
dG(s, t) 6= `. In that case P(S,T) doesn’t contain any path from s to t. However, G(S,T) may contain
a path from s to t. We illustrate an example of this fact in Fig. 3.

An `-layered DAG is a directed acyclic graph with nodes partitioned into `+ 1 layers L0, . . . , L`
where each edge goes from a vertex in some Li to a vertex in Li+1. A layered DAG is a very
structured subgraph.

Definition 2.6 (Good Pairs of Consistent Sets). An `-consistent pair (S, T) is `-good if the graph
G(S,T) is an `-layered DAG.

If G is the hypercube {0, 1}d, and (S, T) are consistent pairs such that Hamming weight of each
vertex in S is the same, and that of each vertex in T is the same (that is S lies in one “level” of
the hypercube and so does T), then it is easy to see (S, T) is a good pair. Lehman and Ron [LR01]
prove that for such S and T , one can find |S| = |T | vertex-disjoint paths. Our first lemma is
a generalization of the Lehman-Ron theorem [LR01] to arbitrary good pairs in the augmented-
hypergrid. This, in some sense, abstracts out the sufficient conditions needed for a Lehman-Ron
like theorem. We prove this lemma in §4.

Lemma 2.7 (Generalized Lehman-Ron). If S, T are two subsets of An,d such that (S, T) is an
`-good, consistent pair for some ` > 0, then there exists |S| vertex disjoint paths from S to T .

Definition 2.8 (Independent Good Pairs). Two `-good pairs (S, T) and (S′, T ′) are said to be
independent if any path in G(S,T) is vertex-disjoint from any path in G(S′,T ′).

7

Independent good pairs are in some sense “far away” from each other – if we find vertex disjoint
paths from S to T , and from S′ to T ′, then these paths will not intersect each other.

Recall the definition of the matching M∗i from the beginning of this section. Our second lemma
shows that if M∗ is the Ψ-maximizing matching in any (not necessarily augmented hypergrid)
poset, then for all i there is a collection of pairwise independent, i-good, consistent pairs of total
size |M∗i |. This is proved in §3.

Lemma 2.9 (Existence of large pairwise-independent, good consistent pairs). Given any poset
G and a function f : G → {0, 1}, let M∗ be the maximal cardinality matching with minimum
average distance r and maximum Ψ(·) among these. Let M∗i be the subset of M∗ whose end-
points are at distance exactly i. Then there exists a collection of pairwise independent i-good pairs
(S1, T1), . . . , (Sk, Tk) such that S∗i = S1 ∪ · · · ∪ Sk and T ∗i = T1 ∪ · · · ∪ Tk.

Proof of Theorem 2.3. We know there exists 1 ≤ i ≤ 2r with |M∗i | ≥ |M∗|/4r ≥ εnd/8r. Lemma 2.9
gives us a collection (S1, T1), . . . , (Sk, Tk) of pairwise-independent, i-good sets for each i. Lemma 2.7
implies for each 1 ≤ j ≤ k, we have a collection of |Sj | vertex disjoint paths from Sj to Tj . Since
they are pairwise independent, the union of these collections is vertex disjoint. This implies we
have ≥ εnd/8r vertex disjoint paths from a point that evaluates to 1 to a point that evaluates to
0. Since each path must contain at least one edge from S−f , the theorem follows. �

3 Finding Good Portions in General Posets: Proof of Lemma 2.9

We are given the matching M∗ which is the maximal cardinality minimum average-distance match-
ing maximizing Ψ(M∗). M∗i is the subset which looks at pairs exactly at distance i. We find the
sets (S1, T1), . . ., (Sk, Tk) via a recursive algorithm (Procedure to Get Pairwise Conflict-free Ci’s).
To describe the algorithm, we first make a definition.

Definition 3.1 (Conflicting Sets). Given a pair of disjoint subsets C,C ′ ⊆ M∗i , let S := {s :
∃(s, t) ∈ C} and T := {t : ∃(s, t) ∈ C}, and similarly define S′ and T ′. We say that C and
C ′ conflict if there exists shortest paths p going from some s ∈ S to some t ∈ T , and p′ going
from some s′ ∈ S′ to some t′ ∈ T ′ such that (a) p and p′ have a vertex z in common, and (b)
dp(s, z) = dp′(s

′, z) = j and dp(z, t) = dp′(z, t
′) = i− j.

Therefore, two sets conflict if there are shortest paths from their respective (S, T)’s intersecting
“at the same level”. Note that the paths needn’t be from s to M∗(s), nor do we say the sets conflict
if the paths intersect but “at different levels”. However, as seen later in this section, the pairwise
conflict-free sets we obtain from M∗ via our recursive algorithm indeed have pairwise disjoint cover
graphs as otherwise we would obtain another matching with either (a) smaller average distance or
(b) the same average distance and larger Ψ(·), contradicting our definition of M∗. The following
procedure returns a collection of subsets C1, . . . , Ck of M∗i , such that they are pairwise conflict-free.
The sets Si, Ti are obtained by taking the lower and upper endpoints of Ci.

Procedure to Get Pairwise Conflict-free Ci’s:

Suppose M∗` = {(x1, y1), (x2, y2), ..., (xm, ym)}. The procedure is recursively defined:

8

Base Step: Define the leaves ofH as C
(0)
1 = {(x1, y1)}, C(0)

2 = {(x2, y2)}, ..., C(0)
m = {(xm, ym)}.

Construct the base conflict graph G(0) as follows: each C
(0)
i is a vertex and C

(0)
i is connected

by an edge to C
(0)
j if they conflict (Definition 3.1) and i 6= j. Exit if G(0) has no edges.

Recursive Step: For i ≥ 0: for the jth connected component in G(i), construct a set C
(i+1)
j

which is the union of all C
(i)
k ’s in the jth connected component. Construct the graph G(i+1) on

these nodes indexed by C
(i+1)
j ’s. Exit if G(i+1) has no edges. Note that the number of nodes in

G(i+1) is strictly less than that in G(i) since the latter has at least one edge. Also note G(i+1)

may have new edges since the conflict sets are getting bigger.

Termination: Since the number of vertices in the G(i)’s strictly decrease, this procedure

terminates. Let C
(ω)
1 , C

(ω)
2 , . . . , C

(ω)
k be the collection of sets at this level. By definition these

are pairwise conflict free. Let Si (resp, Ti) be the lower (resp, upper) set of endpoints of the

pairs in C
(ω)
i .

Return (S1, T1), . . . , (Sk, Tk).

First note that the lower and upper endpoints of any set C
(α)
j is i-consistent since they can be

paired using the matching M∗i . Also note that at any iteration α, every matched pair (s, t) ∈ M∗i
is in some C

(α)
j . Therefore, the Si’s partition S∗i and similarly Ti’s partition T ∗i . What remains to

be proven is that (a) each (Si, Ti) is good, and (b) they are pairwise independent. Before we do so
we need the following “rematching lemma” which is key.

Fix one of the sets C
(ω)
j in the conflict-free collection, and let (Sj , Tj) be the sets obtained. For

the sake of the rematching lemma let us forsake the subscript j.

Lemma 3.2 (Rematching Lemma). For any ŝ ∈ S, t̂ ∈ T , it is possible to rearrange M∗i to form
a new matching M ′ with the following properties:

• For any s ∈ S with s 6= ŝ: d(s,M ′(s)) = i.
• ŝ and t̂ are the only vertices which become unmatched.

We defer the proof of the rematching lemma and first note how it helps us. Once again, since S

and T arise from C
(ω)
j , they are i-consistent and indeed (s,M∗(s)) is the pairing. What the above

lemma says is that for any ŝ and t̂, we can “rewire” the matching to M ′ so that the average distance
still remains i. In particular, if d(ŝ, t̂) < i, we would have a contradiction since we would get a
different maximal matching with strictly less distance. With this in mind, let’s use the rematching
lemma to prove that the (Si, Ti)’s are good and pairwise independent (Definition 2.8) thus proving
Lemma 2.9.

Lemma 3.3. Let (S1, T1), . . . , (Sk, Tk) be the pairs of sets returned by “Procedure to Get Pairwise
Conflict-free Ci’s” on input M∗i . Each (Sj , Tj) is i-good. Moreover, (Sj , Tj) and (Sj′ , Tj′) are
independent for j 6= j′.

Proof. Recall the definition of the cover graph – we need to show G(Sj ,Tj) is a layered DAG. Suppose
not. Then there must exist a vertex z which (a) lies on a path p from ŝ ∈ S to t ∈ T , (b) also lies

9

on a path p′ from s ∈ S to t̂ ∈ T where both paths are of length i, are shortest paths between their
endpoints, and (c) dp(ŝ, z) 6= dp′(s, z). The situation is illustrated as follows:

ŝ
a−→ z

i−a−−→ t

and
s

b−→ z
i−b−−→ t̂.

where we assume wlog that a < b.
Now, by Lemma 3.2 (rematching lemma), there exists a rearrangement M ′ of the endpoints of

(Sj , Tj) such that ∀s 6= ŝ, d(s,M ′(s)) = i, and only ŝ and t̂ are unmatched. However, ŝ and t̂
have a path of length = a + i − b < i. Therefore, we can add (ŝ, t̂) to M ′ to obtain a matching
whose average length is strictly smaller than that of M∗. Contradiction. Therefore (Sj , Tj) must
be i-good.

We now claim (S1, T1) and (S2, T2) are independent. Suppose not, and there is a shortest
path p1 from s1 ∈ S1 to t1 ∈ T1 which intersects a shortest path p2 from s2 ∈ S2 to t2 ∈ T2.
Suppose z is the first (nearest to the s’s) at which they meet. Since each (Sj , Tj) is good, the
graph G(Sj ,Tj) is layered, and therefore these paths have to be shortest paths of length i. Two

cases arise: (a) dp1(s1, z) = dp2(s2, z). But then that would mean the corresponding C
(ω)
1 and C

(ω)
2

conflict. Contradiction. (b) dp1(s1, z) < dp2(s2, z). Again apply the rematching Lemma 3.2 to get
two rewired matchings M ′1 and M ′2 which leave s1, t1 and s2, t2 unmatched while all the other pairs
are at distance i. Now add the pairs (s1, t2) and (s2, t1) in the matching. Observe this has a larger
Ψ() since we replaced two pairs at distance i with two pairs with unequal distances summing to 2i.
Contradiction again. In sum, all the (Sj , Tj)’s are pairwise independent and good. �

3.1 Proof of the Rematching Lemma 3.2

Just for this proof, we use M∗ without the superscript. This is purely for brevity’s sake. Fig. 4
accompanies the inductive step.

Let a be the smallest index such that (ŝ,M(ŝ)) and (M−1(t̂), t̂) lie in the same C
(a)
` for some `.

We know 1 ≤ a ≤ ω. We prove by induction on a.

Base Case: a = 1. Since (ŝ,M(ŝ)), (M−1(t̂), t̂) ∈ C(1)
` , we know there is a path from {(ŝ,M(ŝ))}

to {(M−1(t̂), t̂)} in G(0). Suppose that the length of the shortest such path is q. Let this path

be from C
(0)
0 = {(ŝ,M(ŝ))} to C

(0)
q = {(M−1(t̂), t̂)}. Let the jth node in this path be C

(0)
j =

{(sj ,M(sj))}. By definition, {(sj ,M(sj))} conflicts with {(sj+1,M(sj+1))}. Therefore, we can
rewire the matching M ′ which maps for all 1 ≤ j ≤ q, sj to tj−1. By the definition of conflict, each
of these pairs are at distance exactly i. And ŝ and t̂ are the ones left unmatched. On the rest of
the pairs, M ′ and M agree.

Inductive Step: Since a is the smallest value such that (ŝ,M(ŝ)), (M−1(t̂), t̂) ∈ C
(a)
` we know

there are sets C
(a−1)
j and C

(a−1)
j′ such that they’re disjoint, and (ŝ,M(ŝ)) ∈ C(a−1)

j and (M−1(t̂), t̂) ∈
C

(a−1)
j′ . Moreover, by construction of C

(a)
` we know that there is a path from C

(a−1)
j to C

(a−1)
j′ in

the conflict graph, G(a−1). Let the shortest such path be of length q and let the shortest path

be C
(a−1)
j = C0, C1, · · · , Cq = C

(a−1)
j′ . Let Sk = {x|(x, y) ∈ Ck} and Tk = {y|(x, y) ∈ Ck} for

0 ≤ k ≤ q.

10

Figure 4: An accordion-like structure illustrating the proof of the rematching lemma. Unfilled circles
represent vertices left unmatched by inductively invoking the lemma on each Ck. Solid black, vertical lines
represent the matching M while solid green, diagonal lines represent the newly matched pairs of M ′. Dashed,
diagonal lines illustrate the additional length i shortest paths passing through each zk. This accordion-like
structure recursively takes place within each Ck. Note that s0 = ŝ and tq = t̂.

For any k in the range 0 ≤ k < q, the sets Ck and Ck+1 conflict. Therefore, we know there
exists sk ∈ Sk, tk ∈ Tk and sk+1 ∈ Sk+1, tk+1 ∈ Tk+1 and zk+1 such that

sk ≺ zk+1 ≺ tk and sk+1 ≺ zk+1 ≺ tk+1.

Also, we have d(sk, zk+1) = d(sk+1, zk+1) and d(zk+1, tk) = d(zk+1, tk+1). Thus d(s, t) = i for all
combinations of s ∈ {sk, sk+1} and t ∈ {tk, tk+1}.

By induction on C0 (which recall is C
(a−1)
j), we can rearrange M ∩ C0 to get M ′ where ŝ and

t0 are the only unmatched endpoints from C0 (since ŝ and t0 are both endpoints from C0). Now,
for all k in the range 1 ≤ k < q, by induction on Ck, we can rearrange M ∩Ck to get M ′ where sk
and tk are the only unmatched endpoints from Ck. Finally, by induction on Cq, we can rearrange
M ∩Cq to get M ′ where sq and t̂ are the only unmatched endpoints from Cq. Our matching is now
M ′ where ∀(x, y) ∈ M ′, d(x, y) = i and the sets of unmatched endpoints are {ŝ = s0, s1, s2, ..., sq}
and {t0, t1, ..., tq−1, tq = t̂}. By the existence of zk for 1 ≤ k ≤ q we can set M ′(sk) = tk−1 for
all k in the range 1 ≤ k ≤ q. Moreover, d(sk, tk−1) = i for all k. The only remaining unmatched
endpoints are ŝ and t̂. This completes the proof of the rematching Lemma 3.2.

4 Routing on the Augmented Hypergrid: Proof of Lemma 2.7

In this section we prove the generalization of the routing theorem of Lehman-Ron [LR01] for good
pairs (S, T) in An,d. This proof is akin to the proof in [LR01].

Suppose (S, T) is a `-good consistent pair in An,d with |S| = |T | = m. We show that there

exists m vertex disjoint paths from S to T in the `-cover A
(S,T)
n,d . Since (S, T) are `-consistent, there

is a bijection φ : S → T with d(s, φ(s)) = ` (recall definitions 2.4, 2.5 and 2.6). The proof is by
induction on ` and m. The base cases are trivial. If m = 1, then any path we choose from S to
T suffices. If ` = 1, then φ immediately gives a matching of edges in An,d and this gives us our
vertex disjoint paths.

Since (S, T) is good, A
(S,T)
n,d is a layered graph. Let Li be its i’th layer for 0 ≤ i ≤ `. For a

vertex u ∈ A
(S,T)
n,d , let δ−(u), δ+(u) denote the in and out degree of u in A

(S,T)
n,d .

Claim 4.1. If v is reachable from u in A
(S,T)
n,d , then δ+(u) ≥ δ+(v) and δ−(u) ≤ δ−(v).

11

Proof. For v ∈ [n]d, let v ⊕i a = (v1, ..., vi−1, vi + a, vi+1, ..., vd) and v ⊕i −a = (v1, ..., vi−1, vi −
a, vi+1, ..., vd). For notational convenience in the following proof we let V and E stand for the

vertex and edge sets of A
(S,T)
n,d .

To establish δ+(u) ≥ δ+(v) we show (v, v⊕i a) ∈ E implies (u, u⊕i a) ∈ E. Suppose u ∈ Li and
v ∈ Lj where i < j. Since, u, v ∈ V we know there is some s ∈ S and t ∈ T such that d(s, u) = i,
d(u, v) = j − i and d(v, t) = ` − j. Since v ⊕i a ∈ V there is a path from v ⊕i a to some t′ ∈ T of
length `− j − 1. Clearly, d(u⊕i a, v ⊕i a) = j − i and d(s, u⊕i a) = i+ 1. This gives a path from
s to t′ of length `. Finally, we cannot have d(s, t′) < ` since this would contradict the fact that

A
(S,T)
n,d is a `-layered DAG. That is, this would imply there is an edge in E joining a vertex in some

Lk to Lk′ where k′ > k − 1. Thus, (u, u ⊕i a) lies on a shortest path of length ` from S to T and
so (u, u⊕i a) ∈ E.

Similarly, (u ⊕i −a, u) ∈ E implies (v ⊕i −a, v) ∈ E and so δ−(u) ≤ δ−(v). The proof is
analogous to the previous paragraph and so is ommitted. �

We make use of Claim 4.1 to show that there must exist a layer of A
(S,T)
n,d with size at least m.

Claim 4.2. |L1| ≥ m or |L`−1| ≥ m.

Proof. Suppose |L`−1| = m′ < m. Pick any m′ vertices in S to get S′ and let T ′ := φ(S′) be the

image of φ on S′. Clearly, (S′, T ′) is `-consistent by virtue of the bijection φ. Moreover, A
(S′,T ′)
n,d is

a subgraph of A
(S,T)
n,d , which is an `-layered DAG since (S, T) is `-good. Thus, A

(S′,T ′)
n,d must also

be `-layered and so (S′, T ′) is `-good. Thus, by induction there exists m′ vertex disjoint paths from
S′ to T ′. This induces a bijection ψ : S′ → L`−1 such that the path beginning at s ∈ S′ contains
the vertex ψ(s). We now have the following inequality:

δ+(S) =
∑
s∈S

δ+(s) >
∑
s∈S′

δ+(s) ≥
∑
s∈S′

δ+(ψ(s)) =
∑

v∈L`−1

δ+(v) = δ−(T). (1)

The first inequality holds because every vertex in S has positive out-degree (by Definition 2.4).
The second inequality holds by Claim 4.1. The second to last equality holds since ψ is a bijection.

The final equality is because an edge (u, v) satisfies u ∈ L`−1 if and only if v ∈ L` = T since A
(S,T)
n,d

is `-layered.
Now, suppose |L1| = m′ < m. In a similar fashion, pick any m′ vertices in S to get S′ and

again let T ′ := φ(S′). By induction there exists m′ vertex disjoint paths from S′ to T ′ and this
induces a bijection ψ′ : L1 → T ′. Through an analogous argument we get

δ−(T) =
∑
t∈T

δ−(t) >
∑
t∈T ′

δ−(t) ≥
∑
t∈T ′

δ−(ψ−1(t)) =
∑
u∈L1

δ−(v) = δ+(S). (2)

Hence, |L`−1| < m implies δ+(S) > δ−(T), while |L1| < m implies δ+(S) < δ−(T) and so we
have a contradiction when both are true. Therefore, either |L1| ≥ m or |L`−1| ≥ m. �

Now, let L̂ denote Li for which |Li| ≥ m and i ∈ {1,m − 1}, which exists due to Claim 4.2.
Define the tripartite graph G

S,L̂,T
where for s ∈ S, v ∈ L̂, t ∈ T , (s, v) is an edge if v is reachable

from s in A
(S,T)
n,d and (v, t) is an edge if t is reachable from v in A

(S,T)
n,d .

12

Suppose for a moment that there are m vertex disjoint paths in G
S,L̂,T

from S to T . This induces

a 3-dimensional matching R = {(s, v, t) : s ∈ S, v ∈ V, t ∈ T} of size m such that (s, v, t) ∈ R means
that s is routed to t by a path which contains v. Furthermore, V ⊆ L̂ with |S| = |V | = |T | = m.
Now define φ1 : S → V and φ2 : V → T as φ1(s) = v, φ2(v) = t when (s, v, t) ∈ R. Observe
that the existence of φ1 and φ2 shows that (S, V) and (V, T) are i-consistent and (`− i)-consistent

pairs, respectively. Moreoever, notice that any shortest path of length i from S to V in A
(S,T)
n,d is

a subpath of some shortest path of length ` from S to T in A
(S,T)
n,d . Thus, A

(S,V)
n,d is a subgraph of

A
(S,T)
n,d . Additionally, it’s easy to see that the j’th layer of A

(S,V)
n,d is a subset of the j’th layer of

A
(S,T)
n,d for any j ∈ [i]. Thus, (S, V) is i-good in An,d and an analogous argument shows (V, T) is

(`− i)-good in An,d.
By induction, there are m vertex disjoint paths from S to V and m vertex disjoint paths from

V to T . Stitching these paths together yields m vertex disjoint paths from S to T .

Now, we prove there must be m vertex disjoint paths in G
S,L̂,T

. Suppose, for the sake of con-
tradiction, this is not true. Then, by Menger’s theorem there exists a cut C separating S from T
in G

S,L̂,T
with |C| < m.

- Case (1): C ∩ S = C ∩ T = ∅. So C ⊆ L̂. Recall that for any v ∈ L̂ there exists s ∈ S, t ∈ T
such that (s, v) and (v, t) are edges in G

S,L̂,T
(since L̂ is simply a set of vertices in the cover graph

G(S,T) and L̂ ∩ S = L̂ ∩ T = ∅). Thus if C 6= L̂, then C would not be a cut. Thus, C = L̂, but
|L̂| ≥ m and we have a contradiction.

- Case (2): C ∩ S 6= ∅ and/or C ∩ T 6= ∅. Let S′ ⊂ S be the set of vertices not in C which are
not mapped by φ to vertices in C and let T ′ = φ(S′). Note that S′ ∩ C = T ′ ∩ C = ∅. Let L̂′ ⊆ L̂
denote the set of vertices on any path from S′ to T ′. We have |S′| ≥ m − (|C ∩ S| + |C ∩ T |) >
|C| − (|C ∩ S|+ |C ∩ T |) = |C ∩ L̂|. By induction (on m) there are |S′| vertex disjoint paths from
S′ to T ′ in G′

S′,L̂′,T ′
(defined analogously to G

S,L̂,T
) and so |L̂′| ≥ |S′|. Thus, |L̂′| > |C ∩ L̂| and so

there exists a vertex in L̂′ that is not in C, contradicting the assumption that C separates S from T .

This completes the proof of Lemma 2.7.

5 Analysis of the Tester

Given our Margulis-type theorem (Theorem 2.1), one can obtain a o(d) · polylog n-tester by mod-
ifying either Chakrabarty-Seshadhri [CS14a], Chen et al [CST14], or Khot-Minzer-Safra [KMS15].
The last, in our opinion, provides the cleanest analysis. We borrow their techniques to analyze our
tester.

Recall that for each dimension i ∈ [d], our tester chooses some edge matching Hi := Hci
i,ai

from
the set H. We remind the reader that Sf is the set of edges (x, y) in An,d where f(x) 6= f(y).
Moreover, S+

f = {(x, y) ∈ Sf : f(x) = 0, f(y) = 1} and S−f = {(x, y) ∈ Sf : f(x) = 1, f(y) = 0}.
The total, positive and negative influences are denoted respectively by If := |Sf |/nd, I+

f := |S+
f |/n

d

and I−f := |S−f |/n
d.

We will need the following lemma that bounds the total influence in An,d, when the negative

13

influence is not too large. The corresponding theorem for Boolean hypercubes (Theorem 9.1 in
[KMS15]) is easy; we need to work a bit harder for An,d. We defer the proof to §5.2.

Lemma 5.1. If I−f <
√
d, then If < 7

√
d log n.

We first make some observations before taking on the main analysis.

Observation 5.2 (Edge Tester). With probability Θ(1
log d) our tester chooses τ = 1. Thus our

tester is the edge tester on An,d described by [CS13] with probability Θ(1
log d).

Observation 5.3 (Total Influence Bound). If |I−f | ≥
√
d then the edge tester detects a violation

with probability Ω
(

1√
d logn

)
since An,d contains Θ(nd · d log n) edges. This, combined with the

previous observation proves Theorem 1.2 for the case |I−f | ≥
√
d. Thus, we assume I−f <

√
d. By

Lemma 5.1, If < 7
√
d log n.

We use the following definition of τ -persistence that is nearly identical to the definition given
by [KMS15].

Definition 5.4. Fix τ and x ∈ An,d. Consider the tester selecting the parameter τ in Step 1
of Fig. 2. We define x to be τ -persistent if Pry[f(x) 6= f(y)] ≤ 1

10 . (The probability is over the
distribution of y as defined in Step 5 of Fig. 2.)

We will need the following lemma, which is obtained from the proof of Lemma 9.3 in [KMS15].

Lemma 5.5 (Paraphrased from the proof of Lemma 9.3 in [KMS15]). Consider a Boolean function
g : {0, 1}r → {0, 1}. Let τ ∈ [1,

√
r/ log r]. For any sufficiently large B, there exists constant

β > 0 such that the following holds. Pick a uniform random vertex x with Hamming weight in
[r/2 − B

√
r log r, r/2 + B

√
r log r]. Let y be a random vertex obtained by flipping τ random zeros

of x to 1. Then Prx,y[g(x) 6= g(y)] ≤ βτIg/r.
In particular, suppose B is so chosen so that the probability a uniform at random x has Hamming

weight in [r/2 − B
√
r log r, r/2 + B

√
r log r] is at least 1 − 1/r10. Given a uniform at random x,

if x has less than τ zeros, define y = x. Otherwise, obtain y as before. Then Prx,y[g(x) 6= g(y)] ≤
βτIg/r + 1

r10

We prove our main lemma for hypergrids, by applying Lemma 5.5 to randomly chosen hyper-
cubes in the hypergrid.

Lemma 5.6. Let τ ∈ [1,
√
d/10 log d] be any integer. The fraction of τ -non-persistent vertices in

An,d is at most O
(
τ · If

d logn + d−9
)
.

Remark 5.7. Readers familiar with [KMS15] will note that the extra d−9 term is absent in
Lemma 9.3 in their paper. This is because the authors implicitly assume that the point x lies in
the “middle layers” of the hypercube. Lemma 5.5 makes it explicit which leads to the correction
factor in Lemma 5.6 above. Indeed this correction is needed even in [KMS15] – consider the function
f over the Boolean hypercube which is 1 at the all-ones vector and 0 everywhere else. The total
influence If = d/2d. The vertices having exactly τ zeros are non-persistent and so the fraction

of τ -non-persistent vertices is
(
d
τ

)
/2d ≈ dτ/2d, while τIf/d = τ/2d. However, if f is ε-far from

monotone, then If ≥ ε and thus the first term subsumes the correction factor. We make it explicit
since n could in general be � d.

14

Proof of Lemma 5.6. Let U denote the uniform distribution over [n]d. We will show

Ex∼U
[

Pr
y

[f(x) 6= f(y)]
]
≤ O

(
τ ·

If
d log n

)
+O(d−9) (3)

where the probability over y is the distribution obtained by Step 5 of Fig. 2. This will prove the
lemma since Pry[f(x) 6= f(y)] > 1/10 for τ -non-persistent vertices.

Observe that y is chosen by first choosing the random collection H of matchings in Step 3, and
then (possibly) choosing T in Step 5. For a fixed x, let χ(x,H, T) denote the indicator for the event
f(x) 6= f(y) given H and T . Therefore, we get

Ex∼U Pr
y

[f(x) 6= f(y)] = Ex∼UEHET [χ(x,H, T)] (4)

Given H, consider the DAG on [n]d obtained by adding all directed edges (u, v) ∈ Hi for all Hi ∈ H.
Observe that this partitions the [n]d into connected components, each of which is a hypercube. In
particular, if x ∈ [n]d participates in k of the matchings in H, then the connected component
containing x is a k-dimensional hypercube. To see this, observe that if x participates in H1 and H2,
then if y1 and y2 are the points x is matched to in H1 and H2 respectively, then y1 also participates
in H2 and y2 also participates in H1, and indeed are matched to the same point.

Let DH be the distribution on these hypercubes, where each cube is chosen with probability
proportional to the number of vertices it contains. For any such cube C, let UC denote the uniform
distribution over all vertices in C. Note that x ∼ U can be obtained by first sampling C ∼ DH and
then sampling x ∼ UC . Therefore, we get that the RHS of (4) is

Ex∼UEHET [χ(x,H, T)] = EHExET [χ(x,H, T)] = EHEC∼DHEx∼UCET [χ(x,H, T)] (5)

Let us now analyze Ex∼UCET [χ(x,H, T)]. Let f|C be the function restricted to the points in the
hypercube C. Note that χ(x,H, T) = 1 if and only if f|C(x) 6= f|C(y) where y = x if x has less
than τ zeros, and otherwise is obtained by flipping τ random zeros of x in C to 1. This is exactly
the random process described in Lemma 5.5 above. Therefore, we get

Ex∼UCET [χ(x,H, T)] ≤ O
(
τ ·

If|C
dim(C)

)
+ dim(C)−1/10

where dim(C) is the dimension of the cube C. We now break into two cases: if dim(C) < d/4,
we use the trivial upper bound of 1, otherwise we use the inequality above. Using ψ(C) to be the
indicator that dim(C) < d/4, plugging into (5) we get

Ex∼UEHET [χ(x,H, T)] ≤ EHEC∼DH [ψ(C) +O(τIf |C/d) +O(d−10)]

= EHEC∼DH [ψ(C)] +O(τ/d)EHEC∼DH [If |C] +O(d−10) (6)

Each matching H ∈ H is of the form Hci
i,ai

and is a perfect matching if ci = 0. If more than d/4

of the d possible ci’s are set to 0, then every cube C in the partition of [n]d so obtained will have
dimension at least d/4. Thus ψ(C) = 0 for all C. The probability that less than d/4 of the ci’s are
set to 0, by a Chernoff bound, is ≤ 2−d/10. Therefore, EHEC∼DH [ψ(C)] ≤ 2−d/10.

15

We now deal with the second term in (6). For convenience, for any dimension i matching Hi,
let x+Hi be the upper endpoint of the Hi-edge containing x as a lower endpoint, if this edge exists.
If not, let x+Hi be x.

EHEC∼DH [If |C] = EHEC∼DH
∑
i∈[d]

Ex∼UC [1f(x)6=f(x+Hi)] =
∑
i∈[d]

EHiEx∈U [1f(x)6=f(x+Hi)] (7)

Observe that If =
∑

i∈[d]

∑
Hi

Ex∈U [1f(x)6=f(x+Hi)]. Since there are 2 log n choices of Hi, the ex-
pression in (7) is precisely If/(2 log n). Putting it all together, we get Ex∼UEHET [χ(x,H, T)] ≤
O(τIf/(d log n)) + O(d−10) + 2−d/10. Noting that the last two terms add up to ≤ d−9 for large
enough d, we are done due to (3) and (4). �

5.1 Main Analysis of the Tester

We are now equipped to prove the following Lemma 5.8, which is the main analysis of our tester.
Lemma 5.8 easily implies Theorem 1.2. Once again, this is similar to the analysis in [KMS15].

Lemma 5.8. Suppose there exists a matching of violated edges EM ⊆ S−f in An,d of size |EM | = σnd

(i.e. Γ−f ≥ σ) for some 1 ≥ σ ≥ ε2/3 log1/3 n
d1/6

. Then the tester described in Fig. 2 with inputs f and

ε detects a violation with probability Ω
(

σ2
√
d(log3/2 d)(log2 n)

)
= Ω

(
ε4/3

d5/6(log3/2 d)(log4/3 n)

)
.

Proof. Given σ, call τ “good” if σ
2 logn

√
d

10 log d ≤ τ ≤
σ

logn

√
d

10 log d . Note that given the bounds on

σ, the above range is a subinterval of [1,
√
d/10 log d], and therefore the probability the sampled τ

is good is Ω(1/ log d). Henceforth we condition on τ being good.
Given τ , Lemma 5.6 tells us that there are at most O(τIf/d) vertices 1 which are (τ − 1)-non-

persistent. For our choice of τ , and since If ≤ O(
√
d log n) by Observation 5.3, we get that there

are a o(σ) fraction of the vertices which are (τ − 1)-non-persistent.
Let B = {y|(x, y) ∈ EM}; we have |B| = σnd and let B′ ⊆ B be the (τ − 1)-persistent vertices

of B. Let A′ be the EM -matched vertices of B′. Note that |A′| = |B′| = (1 − o(1))σnd since the
fraction of (τ − 1)-non-persistent vertices is o(σ). Let (x, z) be the pair sampled by the tester.
Consider the following events.

• E1: x lies in A′ with the edge (x, y) ∈ EM with y ∈ B′. Let (x, y) lie in Hci
i,ai

.
• E2: The matching sampled for dimension i is indeed Hci

i,ai
.

• E3: i ∈ T , that is, i is one of the chosen τ dimensions.
• E4: f(y) = f(z), which means f(z) = 0 and thus implies (x, z) is a violation.

The probability the tester rejects is ≥ Pr[E1, E2, E3, E4]. Note that Pr[E4|E1, E2, E3] ≥ 9/10. This
is because E1, E2, E3 implies the distribution of z on taking τ steps from x is the same as taking
(τ − 1)-steps from y. Since y is (τ − 1)-persistent, we get the desired result. Also note E1, E2, E3 are
independent and therefore Pr[E1, E2, E3] = σ(1 − o(1)) · Ω(1/ log n) · (τ/d). If τ is good, the latter

is Ω
(

σ2
√
d log1/2 d·log2 n

)
. Since the probability τ is good is Ω(1/ log d), the result follows. �

1We assume here that ε > 1/d since otherwise the dependence on d is not a meaningful quantity to study. In
this case we have If ≥ ε and thus τIf/d � d−9. We do not use the logn term in the denominator as this could in
principle be � d9.

16

Proof of Theorem 1.2: Let EM ⊆ S−f be the largest matching of violated edges, and let

|EM | = σnd. If σ ≥ ε2/3 log1/3 n
d1/6

, then we are done by Lemma 5.8. Otherwise, by the Margulis-

type Theorem 2.1, we get I−f = Ω
(
ε4/3d1/6

log1/3 n

)
. Since with probability Ω(1/ log d) the tester samples

edges of the augmented hypergrid uniformly at random, and since there are O(nd · d log n) edges in
the augmented hypergrid, the theorem follows.

5.2 Proof of Lemma 5.1: An Upper Bound on the Total Influence

In this section we prove Lemma 5.1, a generalization of a theorem from [KMS15] regarding the
total influence of f . This fact may be of independent interest. Unlike the corresponding statement
in [KMS15], we weren’t able to find a simpler proof than what we provide below. It uses the
definition of Walsh functions described in [BRY14b] as a Fourier basis of functions over [n]d and
the crux is proving the bound for the d = 1 case. The

√
d appears, as in the case of [KMS15], from

Parseval’s identity and Cauchy-Schwarz.
We refer the reader to §B for the facts we need about Walsh functions (these are from Blais

et al [BRY14b]). The Fourier coefficients are indexed by a collection of d-sets; for the rest of this
section we need only one coefficient for each dimension i. In general, for i ∈ [d] and j ∈ [log n],
define eij := (S1, ..., Sd) where Si = {j} and Si′ = ∅ for all i′ 6= i. In particular, the coefficient we

need is f̂(ei,log(n/2)) which evaluates to (see Observation B.7)

f̂(ei,log(n/2)) =
1

2
IE(x,y)∈H0

i,log(n/2)
[f(x)− f(y)] (8)

That is, f̂(ei,log(n/2)) is the expected difference of f evaluated on the endpoints of a u.a.r edge from
the “longest” edge matching of dimension i, H0

i,log(n/2)
2. Henceforth, for notational simplicity we

use ei := ei,log(n/2). The only “Fourier Analysis” fact we need is
∑d

i=1 f̂
2(ei) ≤ 1 (Lemma B.6).

The proof follows by first arguing for the lines (d = 1 case) and taking a direct sum. Recall Sf
is the set of sensitive edges partitioned into S+

f ∪ S
−
f . We have If = |Sf |/n, and similarly I+

f and

I−f are defined. Let’s define ∆If := I+
f − I

−
f .

Lemma 5.9. For any function f : An,1 → {0, 1}, ∆If ≤ log n ·
(

4I−f − f̂(e1)
)

.

Before proving the above lemma, let us see how this implies Lemma 5.1. Fix a dimension i and let
Li be the lines along dimension i. Fix an ` ∈ Li and let f|` be the function restricted to `. The

above lemma gives −f̂|`(ei) ≥
∆If|`
logn − 4I−f|` . Taking average over all lines ` ∈ Li will set the LHS to

f̂(ei), while the RHS will give the contribution of I+
f and I−f in the ith dimension. Summing over

all dimensions gives

d∑
i=1

|f̂(ei)| ≥
I+
f − I

−
f

log n
− 4I−f =

If − 2I−f
log n

− 4I−f >
If

log n
− 6I−f (9)

2Note that there is no corresponding “odd” matching for the step size log(n/2), say H1
i,log(n/2), since all of the

2log(n/2) = n/2 length edges can be contained in a single perfect matching.

17

where the I+
f , I

−
f ’s are defined over An,d and the last inequality used log n > 1. Since I−f <

√
d,

we may assume If > 7 log n · I−f , for otherwise Lemma 5.1 is trivially true. Thus the RHS of (9)

>
If

7 logn , while the LHS, by Cauchy-Schwarz and Parseval is at most
√
d. This proves Lemma 5.1.

Proof of Lemma 5.9. Our first claim observes that the lemma is true for monotone f .

Claim 5.10. If f : An,1 → {0, 1} is monotone, then ∆If ≤ log n · (−f̂(e1)).

Proof. Consider the index j ∈ [n] such that f(i) = 0 if i ≤ j and f(i) = 1 if i > j. We know such

an index exists since f is monotone. From (8), we get −f̂(e1) = min(j,n−j)
n and I+

f − I
−
f = I+

f ≤
min(j,n−j) logn

n since the degree of a vertex in An,1 is at most log n. �

Given f : An,1 → {0, 1}, let S(f) be the “sorted” function which is the monotone Boolean
function over [n] with the same number of ones as f . The next claim shows that sorting only
increases ∆I.

Claim 5.11. For any f : An,1 → {0, 1}, ∆IS(f) ≥ ∆If .

Proof. First, observe that the quantity ∆If restricted to a path is precisely equal to the difference
of f evaluated on the endpoints of that path. Bearing this in mind, we partition the edge set of
An,1 into a collection of paths. We say p is a a-path if it consists of edges from An,1 only of length
2a and p is maximal if no edges can be added to p to create a longer a-path. Observe that for
a in the range 0 ≤ a < log n, there are 2a maximal a-paths, each consisting of 2logn−a vertices
and 2logn−a − 1 edges. Let P denote the set of paths p which are subgraphs of An,1 and p is a
maximal a-path for some a ∈ [log n]. Let ps,pt denote the start and end vertex of p, respectively.
For x ∈ [n] let p−(x),p+(x) denote number of paths p ∈ P for which x is a start point or end point,
respectively. It follows that

∆If =
1

n

∑
p∈P

f(pt)− f(ps) =
1

n

∑
x∈[n]

f(x) · (p+(x)− p−(x))

where the first equality is because An,1 = ∪p∈P , any two paths p,p′ ∈ P are edge-disjoint and
the observation made in the first line of this proof. The second equality is obtained simply by
rewriting as a sum over the vertices.

Notice now that increasing x can only increase p+(x) and decrease p−(x) since every path in
P is maximal. I.e., the functions p+(x) and p−(x) are monotone and anti-monotone, respectively.
Thus, we can define 1(f) = {x ∈ [n]|f(x) = 1} and 1(S(f)) = {x ∈ [n]|S(f)(x) = 1} and observe
that there is a bijection φ : 1(f)→ 1(S(f)) such that ∀x ∈ 1(f), x < φ(x). That is, sorting moves
the 1’s of f to larger values on An,1 and moves the 0’s of f to smaller values on An,1 and since
p+(x), p−(x) are monotone and anti-monotone, the claim follows. �

The final claim connects the Walsh-coefficients.

Claim 5.12. For any f : An,1 → {0, 1}, −Ŝ(f)(e1) ≤ −f̂(e1) + 4I−f .

Proof. Suppose the distance between f and S(f) is δ, that is, we can make δn changes to f to
get S(f). By definition of f̂(e1), each change can increase −f̂(e1) by at most additive 1/n. Thus,

−Ŝ(f)(e1) ≤ −f̂(e1)+δ. We next claim that δ is at most two times the distance, εf to monotonicity;
this will prove the lemma since we know for the line I−f ≥ εf/2 [EKK+00, CS13].

18

Consider the sorted version of f , S(f) = 0j1n−j where j = |{x ∈ `|f(x) = 0}|. There are z 1’s in
the j-prefix of f and z 0’s in the n− j suffix of f where δn = 2z. Let ∆p(f) = {x ∈ [1, j]|f(x) = 1}
and ∆s(f) = {y ∈ [j + 1, n]|f(y) = 0}. Changing the value of f on any set of vertices V where
|V | < z to get a new function f ′ will result in ∆p(f

′) 6= ∅ and ∆s(f
′) 6= ∅. Thus, f ′ cannot be

monotone. That is, transforming f into a monotone function requires that we change its value on
at least z vertices and so εfn ≥ z = δn/2. �

Lemma 5.9 follows from the previous three claims. �

References

[AC06] Nir Ailon and Bernard Chazelle. Information theory in property testing and mono-
tonicity testing in higher dimension. Information and Computation, 204(11):1704–1717,
2006.

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the
distance to a monotone function. Random Structures and Algorithms, 31(3):371–383,
2007.

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity.
In Proceedings of the Symposium on Theory of Computing (STOC), pages 1021–1032,
2016.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via com-
munication complexity. Computational Complexity, 21(2):311–358, 2012.

[BCSM12] Jop Briët, Sourav Chakraborty, David Garćıa Soriano, and Ari Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyoming Jung, Sofya Raskhod-
nikova, and David Woodruff. Lower bounds for local monotonicity reconstruction from
transitive-closure spanners. SIAM Journal of Discrete Math, 26(2):618–646, 2012. Con-
ference version in RANDOM 2010.

[Bha08] Arnab Bhattacharyya. A note on the distance to monotonicity of boolean functions.
Technical Report 012, Electronic Colloquium on Computational Complexity (ECCC),
2008.

[BRY14a] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Sympo-
sium on Theory of Computing (STOC), pages 164–173, 2014.

[BRY14b] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing
properties of functions over hypergrid domains. In IEEE 29th Conference on Com-
putational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages
309–320, 2014.

[CDJS15] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property
testing on product distributions: Optimal testers for bounded derivative properties. In
Proceedings of the Symposium on Discrete Algorithms, 2015.

19

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function mono-
tonicity testing requires (almost) O(n1/2) non-adaptive queries. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 519–528, 2015.

[CS13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lip-
schitz testing over hypercubes and hypergrids. In Symposium on Theory of Computing
(STOC), pages 419–428, 2013.

[CS14a] Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean
functions over the hypercube. SIAM Journal on Computing, 2014.

[CS14b] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity
testing over hypergrids. Theory of Computing, 10:453–464, 2014.

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang. Tan. New algorithms and lower bounds
for monotonicity testing. In Proceedings of Foundations of Computer Science (FOCS),
pages 286–295, 2014.

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand: New lower bounds for
testing monotonicity and unateness. In ACM Symposium on Theory of Computation
(STOC), 2017.

[DGL+99] Yevgeny Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. Proceedings of
the 3rd International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), pages 97–108, 1999.

[EKK+00] Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. Journal of Computer Systems and Sciences (JCSS),
60(3):717–751, 2000.

[Fis04] Eldar Fischer. On the strength of comparisons in property testing. Information and
Computation, 189(1):107–116, 2004.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, and Ronitt Rubinfeld.
Monotonicity testing over general poset domains. Proceedings of the 34th Annual ACM
Symposium on the Theory of Computing (STOC), pages 474–483, 2002.

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high
dimensions. ACM Tranactions on Algorithms (TALG), 6(3), 2010.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky.
Testing monotonicity. Combinatorica, 20:301–337, 2000.

[HK03] Shirley Halevy and Eyal Kushilevitz. Distribution-free property testing. Proceedings of
the 7th International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), pages 302–317, 2003.

[HK08] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Ran-
dom Structures and Algorithms, 33(1):44–67, 2008.

20

[KMS15] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean
isoperimetric type theorems. In IEEE Annual Symposium on Foundations of Computer
Science, FOCS, 2015.

[LR01] Eric Lehman and Dana Ron. On disjoint chains of subsets. Journal of Combinatorial
Theory, Series A, 94(2):399–404, 2001.

[Mar74] Grigory A. Margulis. Probabilistic characteristics of graphs with large connectivity.
Problemy Peredachi Informatsii, 10(2):101–108, 1974.

[RRSW11] Dana Ron, Ronitt Rubinfeld, Muli Safra, and Omri Weinstein. Approximating the
Influence of Monotone Boolean Functions in O(

√
n) Query Complexity. In Proceedings

of the 15th International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), 2011.

[SS06] Mike Saks and C. Seshadhri. Parallel monotonicity reconstruction. In Proceedings of
19th Annual Symposium on Discrete Algorithms (SODA), pages 962–971, 2006.

[Tal93] Michel Talagrand. Isoperimetry, logarithmic sobolev inequalities on the discrete cube,
and margulis graph connectivity theorem. Geom. Func. Anal., 3(3):295–314, 1993.

A Assuming n is a power of 2

The reduction follows directly from the next theorem.

Theorem A.1. Given query access to f : [n]d → {0, 1}, we can simulate query access to g : [N]d →
{0, 1} with the following properties.

1. N is a power of 2, and N = Θ(nd).
2. If f is monotone, so is g. If f is ε-far from monotone, then g is ε/6-far from monotone.
3. A single query to g can be simulated by a single query to f .

Proof. First, we argue that there exists an integer 0 ≤ i ≤ d − 1 such that [n(d + i), n(d + i + 1)]
contains a power of 2. This is because this set of disjoint intervals covers [nd, 2nd] which contains
a power of 2. Fix i to be the integer with the above property, and let N ∈ [n(d + i), n(d + i + 1)]
be the power of 2. Note N = Θ(nd).

Note that N = n(d + i + 1) − m for some non-negative integer m ≤ n. It is convenient to
rewrite this as N = m(d + i) + (n −m)(d + i + 1). We define a map φ : [N] → [n] as follows. If

y ≤ m(d+i), set φ(y) = b y
d+ic. If y > m(d+i), set φ(y) = m+by−m(d+i)

d+i+1 c. It is instructive to think

of φ−1 which maps the first m elements in [n] to intervals in [N] of size d + i, and the remaining
n−m elements to intervals in [N] of size d+ i+ 1. Abusing notation, we define φ : [N]d → [n]d as
φ(y1, y2, . . . , yd) = (φ(y1), φ(y2), . . . , φ(yd)). Given any x ∈ [n]d, note that φ−1(x) is a sub-hypergrid
in [N]d and for distinct x, y ∈ [n]d the sub-hypergrids φ−1(x) and φ−1(y) are disjoint. Finally the
number of points in these sub-hypergrids are between (d+ i)d and (d+ i+ 1)d.

We define g : [N]d → [n]d as g(y) = f(φ(y)). A single query to g can be answered using a single
query to f . Since φ is monotone, if f is monotone, then so is g.

Suppose f is ε-far from monotone. Then there exists a matching M of violated pairs in [n]d

with |M| ≥ εnd/2. We now construct a matching in [N]d of size ≥ εNd/6 of pairs which violate
monotonicity in g.

21

Consider any pair (x, y) inM with x ≺ y. For each j ∈ [d], let αj and βj denote the number of
length d+ i and length d+ i+ 1 intervals, respectively, seperating xj from yj . Define the function
ψ(x,y) : φ−1(x)→ φ−1(y) such that for u ∈ φ−1(x), ψ(x,y)(u) := v where, for every j ∈ [d], vj := uj
when yj = xj and vj := uj + αj(d + i) + βj(d + i + 1) when yj 6= xj . Thus, ψ(x,y) maps u to v
which for each j ∈ [d] is yj − xj many sub-grids away from u in dimension j. Observe that ψ(x,y) is
injective (not necessarily bijective since possibly |φ(x)−1| < |φ(y)−1|) and for any u ∈ φ−1(x): (a)
u ≺ ψ(x,y)(u) and (b) g(u) > g(ψ(x,y)(u)).

Now, for (x, y) ∈ M, define M(x,y) := {(u, ψ(x,y)(u)) : u ∈ φ−1(x)} and observe that this is a

matching of violated pairs in [N]d with respect to g and |M(x,y)| ≥ (d + i)d. Moreover, for two
different pairs (x, y), (x′, y′) ∈M, M(x,y) and M(x′,y′) are disjoint and their union forms a matching.

Thus, taking the union over all pairs inM, there is a violation matching (for g) of size at least

εnd

2
· (d+ i)d ≥ ε

2
· [n(d+ i+ 1)]d · (d+ i)d

(d+ i+ 1)d
≥ εNd

6

and so g is ≥ ε/6-far from monotone. �

B Fourier Analysis on An,d

The following definitions and facts are due to Blais et al [BRY14b]. Note that this section relies
heavily on n being a power of 2. Indeed this is assumed in [BRY14b]. Refer to §A for our reduction
to this case and to §1.2 for our discussion on this point.

Definition B.1 (1-dimensional Walsh functions). For i ∈ [log n], define wi : [n] → {−1, 1} by
wi(x) := (−1)biti(x−1). For any S ⊆ [log n], the Walsh function wS : [n] → {−1, 1} corresponding
to S is

wS(x) :=
∏
i∈S

wi(x).

If S = ∅, then wS(x) := 1.

Definition B.2 (d-dimensional Walsh functions). The d-dimensional Walsh function wS : [n]d →
{−1, 1} corresponding to the vector S = (S1, ..., Sd) of subsets Si ⊆ [log n] is defined by

wS(x1, ..., xd) :=
d∏
i=1

wSi(xi).

The set of d-dimensional Walsh functions form a fourier basis for the set of functions over [n]d.
That is, every function f : [n]d → {−1, 1} can be expressed as

f(x) =
∑

S=(S1,...,Sd)
Si⊆[logn]

f̂(S)wS(x)

where f̂(S) is the fourier coefficient of f corresponding to S. The fourier coefficients both contain
useful information about f and satisfy some convenient properties. The following two facts are
proved by [BRY14b].

22

Fact B.3. For any S,T, the d-dimensional Walsh function wS∆T : [n]d → {−1, 1} corresponding
to the symmetric difference of S and T satisfies wS∆T = wS · wT.

Fact B.4. IEx∈[n]d [wS(x)] = 0 unless S = ∅d, in which case IEx∈[n]d [wS(x)] = 1.

The following lemma gives a useful interpretation of the coefficient f̂(S) and follows from the
above facts.

Lemma B.5. f̂(S) = IEx∈[n]d [f(x)wS(x)].

Proof. Using the fourier expansion of f and applying Fact B.3 we get

f(x)wS(x) =
∑
T

f̂(T)wT(x) · wS(x) =
∑
T

f̂(T)wS∆T(x).

Applying Fact B.4, taking the expectation of each side and applying linearity yields

IEx∈[n]d [f(x)wS(x)] =
∑
T

f̂(T)IEx∈[n]d [wS∆T(x)] = f̂(S)w∅d = f̂(S).

�

Lemma B.6 (Parseval’s for Hypergrids). For any function f : [n]d → {−1, 1},
∑

S f̂(S)2 = 1.

Proof.

1 = IEx[f(x)2] = IEx

[(∑
S

f̂(S)wS(x)
)2]

= IEx

[∑
S,T

f̂(S)f̂(T)wS(x)wT(x)
]

=
∑
S,T

f̂(S)f̂(T)IEx[wS∆T(x)] =
∑
S

f̂(S)2

where the last equality is due to Fact B.4. �

For i ∈ [d] and j ∈ [log n], define eij := (S1, ..., Sd) where Si = {j} and Si′ = ∅ for all i′ 6= i. By

the previous lemma we have f̂(eij) = IEx[f(x)weij (x)] and by definition we see that

weij (x) =

{
1 if xi (mod 2j+1) < 2j

−1 if xi (mod 2j+1) ≥ 2j
.

That is, weij (x) is 1 when x is a lower endpoint in the matching H0
i,j and −1 when x is an

upper endpoint in H0
i,j (recall §1.3). Let I+

f,i,j , I
−
f,i,j denote the positive and negative influence,

respectively, of f restricted to the edges in H0
i,j . Combining this with Lemma B.5 we make the

following useful observation which we use to prove Lemma 5.1.

Observation B.7. f̂(eij) = 1
2 IE(x,y)∈H0

i,j
[f(x)− f(y)].

C Proof of Theorem 2.2

In this section we prove a lower bound on the number of violating edges in An,d using alternating
paths machinery developed by Chakrabarty and Seshadhri in [CS14a, CS13].

23

C.1 Structure of the Edge Matchings

Recall from §1.3 that H := {Hc
i,a|i ∈ [d], a ∈ [log n], c ∈ {0, 1}} is the collection of edge matchings

in An,d. For a matching H ∈H, let L(H) := {x|∃(x, y) ∈ H} and U(H) := {y|∃(x, y) ∈ H} denote
the lower and upper endpoints, respectively. For each H, partition M into three sets: (x, y)’s that
use a H-edge on any shortest path from x to y (H-cross pairs), (x, y)’s that do not use a H-edge on
any shortest path from x to y and have both x and y in the same L(H) or U(H) (H-straight pairs)
and (x, y)’s that do not use a H-edge on any shortest path from x to y and have one endpoint in
L(H) and one in U(H) (H-skew pairs). That is,

- crHc
i,a

(M): (x, y) ∈M such that x to y shortest paths contain an edge from H and x ∈ L(Hc
i,a).

- stHc
i,a

(M): (x, y) ∈ M such that x to y shortest paths do not contain an edge from H and

x, y ∈ L(Hc
i,a) or x, y ∈ U(Hc

i,a).
- skHc

i,a
(M): (x, y) ∈ M such that x to y shortest paths do not contain an edge from H and

x ∈ L(Hc
i,a), y ∈ U(Hc

i,a) or x ∈ U(Hc
i,a), y ∈ L(Hc

i,a).

When (x, y) ∈ crH(M), we say (x, y) crosses H.

C.2 The Potential Function

For a pair (x, y) and a matching H := Hc
i,a ∈H, define

µH(x, y) =

{
1
2a if x, y ∈ L(H) or x, y ∈ U(H)

0 if x ∈ L(H), y ∈ U(H) or y ∈ L(H), x ∈ U(H).

Note that µH(x, y) is 0 for H-skew and H-crossing pairs while it is positive only for H-straight
pairs. Importantly, this positive value is larger for H with small step size and in particular 1/2a >∑

a′>a 1/2a
′
. Thus, the following potential is designed to correct H-skew pairs by aligning endpoints

with respect to Hi,a for which a is small:

Φ(M) =
∑

(x,y)∈M

∑
H∈H

µH(x, y).

Note that Φ(·) has the same effect as the potential function described in [CS13].

C.3 Main Proof

The following lemma establishes that every H-cross pair implies the existence of a unique violating
H-edge.

Lemma C.1. Hc
i,a contains at least |crHc

i,a
(M)|/2 violations.

Lemma C.1 is the main tool for proving Theorem 2.2. We defer the proof to §C.4 and proceed
with the proof of Theorem 2.2.

Proof of Theorem 2.2: Let M be a maximal matching in the violation graph of f with the
smallest average length,

r = |M |−1
∑

(x,y)∈M

dAn,d
(x, y)

24

and among such matchings, be one that maximizes Φ(M). Notice that each (x, y) ∈ M crosses
exactly dAn,d

(x, y) matchings H ∈ H. Moreover, H contains at least |crH(M)|/2 violations by
Lemma C.1. Let ∆f denote the total number of violating edges in An,d and let ∆f |H denote the
number of violating H-edges. We have

∆f =
∑
H∈H

∆f |H ≥
1

2

∑
H∈H

|crH(M)| = 1

2

∑
(x,y)∈M

dAn,d
(x, y) =

r|M |
2
≥ rεnd

4
.

C.4 Proof of Lemma C.1

Let H denote an arbitrary Hc
i,a-matching and let X := {x : (x, y) ∈ crH(M)} be the set of start

points of crH(M). For x ∈ X, define the sequence Sx as follows:

• Sx(0) = x.
• Sx(j + 1) = H(Sx(j)) if j is even. Terminate at j + 1 if Sx(j) and H(Sx(j)) are a violation

to monotonicity.
• Sx(j + 1) = M(Sx(j)) if j is odd. Terminate if Sx(j) is stH(M)-unmatched.

We will show that every Sx contains a violating edge in H and there are at least |X|/2 disjoint
sequences. For notational simplicity, let sj := Sx(j) where Sx(j) is defined and let s−1 := y. For
simplicity, we will also use d in place of dAn,d

.
Note that Sx alternates between the matchings H and stH(M). In particular, Sx never follows

a skew-pair. Thus the structure of Sx on An,d is in many senses the same as the structure of Sx
on the hypercube {0, 1}d, where there are no skew-pairs. Thus, we get the following two claims
regarding the structure of Sx which have proofs identical to the proofs of Claims 2.9.1. and 2.9.2
in [CS14a].

Claim C.2. If sj is defined, then the following holds:

• j ≡ 0 (mod 4) ⇐⇒ f(sj) = 1 and sj ∈ L(H).
• j ≡ 1 (mod 4) ⇐⇒ f(sj) = 1 and sj ∈ U(H).
• j ≡ 2 (mod 4) ⇐⇒ f(sj) = 0 and sj ∈ U(H).
• j ≡ 3 (mod 4) ⇐⇒ f(sj) = 0 and sj ∈ L(H).

Proof. The proof is exactly analogous to the proof of Claim 2.9.1. in [CS14a]. �

Claim C.3. If sj is defined and j is odd, then

• j ≡ 1 (mod 4) ⇐⇒ sj−3 � sj and d(sj , sj−3) = d(sj−1, sj−2).
• j ≡ 3 (mod 4) ⇐⇒ sj−3 ≺ sj and d(sj−3, sj) = d(sj−2, sj−1).

Proof. The proof is exactly analogous to the proof of Claim 2.9.2. in [CS14a]. �

Lemma C.4. For any (x, y) ∈ crH(M), Sx contains a violating edge in H.

Proof. Suppose for the sake of contradiction that Sx terminates at sj (j is odd) without witnessing
a violation in H. Define the two matchings

E−(j) := {(s0, s−1), (s1, s2), (s3, s4)..., (sj−2, sj−1)} ⊆M

25

and

E+(j) := {(s1, s−1), (s0, s3), (s2, s5), ..., (sj , sj−3)}.

Notice E−(j) involves s−1, s0, ..., sj−2, sj−1 while E+(j) involves s−1, s0, ..., sj−2, sj . Clearly,
E−(j) is a collection of pairs from M . Notice |E−(j)| = |E+(j)| and let d(E) denote the average
distance of E ∈ {E−(j), E+(j)}. The following claim about E+(j) will be crucial for the rest of the
proof.

Claim C.5. E+(j) is a set of violating pairs with (a) d(E+(j)) = d(E−(j))−1 and (b) Φ(E+(j)) >
Φ(E−(j)).

Proof. Proof of (a): For all odd k in the range 3 ≤ k ≤ j we have the following by com-
bining claims C.2 and C.3. k ≡ 1 (mod 4) implies d(sk, sk−3) = d(sk−1, sk−2) and f(sk) = 1,
f(sk−3) = 0. k ≡ 3 (mod 4) implies d(sk−3, sk) = d(sk−2, sk−1) and f(sk) = 0, f(sk−3) = 1.
Finally, d(s−1, s1) = d(s0, s−1)− 1 since the shortest path joining s0 and s−1 contains a H-edge by
definition of crH(M) and s0 differs from s1 only along H.

Proof of (b): Consider an arbitrary odd k in the range 3 ≤ k ≤ j. Suppose j ≡ 3 (mod 4)
(j ≡ 1 is analogous). We have (sk−3, sk) ∈ E+(j) and (sk−2, sk−1) ∈ E−(j). Also, H(sk−3) = sk−2,
sk−3 ≺ sk−2 and H(sk) = sk−1, sk ≺ sk−1 by Claim C.3. Thus, sk−3, sk ∈ L(H) and sk−2, sk−1 ∈
U(H) so µH((sk−3, sk)) = µH((sk−2, sk−1)) = 0 and clearly µH′((sk−3, sk)) = µH′((sk−2, sk−1)) for
any other H ′ ∈ H. Finally, µH((s0, s−1)) > 0 since (s0, s−1) ∈ crH(M) while µH((s1, s−1)) = 0
since (s1, s−1) ∈ stH(M). Also, µH′((s0, s−1)) = µH′((s1, s−1)) for any other H ′ ∈ H. Thus
Φ(E+(j)) > Φ(E−(j)). �

Case (1): sj is M -unmatched. In this case we can rearrange M to get a new matching M ′ with
the same cardinality as M and strictly smaller average distance. Let

M ′ := M \ E−(j) ∪ E+(j).

Claim C.5 shows that M ′ is a matching with the same cardinality as M and average distance
strictly less than that of M . Contradiction.

Case (2): sj is crH(M)-matched. In this case we can again rearrange M to get a new matching
M ′ with the same cardinality as M and strictly smaller average distance. Let

M ′ := M \
(
E−(j) ∪ {(sj ,M(sj))}

)
∪
(
E+(j) ∪ {(sj−1,M(sj))}

)
. (10)

By Claim C.2 and the fact that j is odd, it follows that f(sj) = f(sj−1). Suppose j ≡ 1 (mod 4)
(the other case is symmetrical). Then sj−1 ≺ sj ≺M(sj) and by definition of crH(M), any shortest
path from sj to M(sj) contains an H-edge. Since sj−1 and sj differ exactly on a single H-edge, it
follows that d(sj−1,M(sj)) = d(sj ,M(sj)) since we simply are replacing an H-edge (say of length
2a) by an edge of twice its length (of length 2a+1). Combining this fact with Claim C.5 shows M ′

again decreases the average distance and |M ′| = |M |. Contradiction.

Case (3): sj is skH(M)-matched. In this case we rearrange to get M ′ with the same number
of pairs, at most the same average distance and Φ(M ′) > Φ(M). Define M ′ as in line (10).

26

Suppose j ≡ 1 (mod 4) (the other case is symmetrical). Again, f(sj) = f(sj−1) by Claim C.2
and sj−1 ≺ sj ≺ M(sj). However, since (sj ,M(sj)) ∈ skH(M) we cannot say that the distance
stays the same. However, we do know that the distance can increase only by at most 1, i.e.
d(sj−1,M(sj)) ≤ d(sj ,M(sj)) + 1 since sj−1 and sj differ only by a H-edge. Thus, the average
distance of M ′ is at most the average distance of M , but as shown in the following claim, Φ
increases. Contradiction.

Claim C.6. Φ(M ′) > Φ(M).

Proof. Since Φ(E+(j)) > Φ(E−(j)) by Claim C.5 it suffices to show that Φ({(H(sj),M(sj))}) ≥
Φ({(sj ,M(sj))}). First, observe that µH(sj ,M(Sj)) = 0 (since this is a H-skew pair) and so
µH(H(sj),M(sj)) = 1. Suppose H = Hc

i,a and let H ′ = Hc′
i′,a′ be some other matching. Observe

that µH′(H(sj),M(sj)) = µH′(sj ,M(sj)) whenever i′ 6= i since sj and Hj only differ on dimension i.
In the case that i′ = i we can show that µH′(H(sj),M(sj)) = µH′(sj ,M(sj)) whenever a′ < a. This
will strictly increase Φ(·) since 1/2a >

∑
a′>a 1/2a

′
and so any affect on Φ(·) exerted by matchings

with step size a′ > a in dimension i will be dominated by the fact that the pair (Hc
a,b(sj),M(sj))

is Hc
a,b-straight, while (sj ,M(sj)) is not.

Suppose a′ < a. Notice that for x ∈ [n]d, the value xi (mod 2a+1) determines whether x ∈
L(Hc

i,a) or x ∈ U(Hc
i,a). E.g. x ∈ L(H0

i,a) when x < 2a (mod 2a+1) and x ∈ U(H0
i,a) when x ≥ 2a

(mod 2a+1). Thus H(sj)
(i) ≡ s

(i)
j ± 2a ≡ s

(i)
j (mod 2a

′+1) where H(sj)
(i) and s

(i)
j denote the i’th

coordinate of H(sj) and sj , respectively, and this implies H(sj) lies in the same end of the matching
H ′ as sj . That is, H(sj) ∈ L(H ′) if and only if sj ∈ L(H ′). �

All three cases imply a contradiction and so the only way for Sx to terminate is by witnessing
a violating edge in H. Since Sx must terminate at some point, this proves Lemma C.4. �

Finally, Sx and Sy are disjoint unless y terminates Sx. Thus, there are at least |X|/2 =
|crH(M)|/2 disjoint sequences, each containing a violation in H. This completes the proof of
Lemma C.1.

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

