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Gurus are individuals who claim to possess mental powers of insight and pre-
diction that far surpass those of the average person; they compete over followers,
offering them insight in return for continued devotion. Followers wish to harness a
(true) Guru’s predictive power but (i) have limited attention span and (ii) doubt
the Guru’s predictive advantage over them. This dynamic raises the question of
follower retention: how do Gurus retain the faith of their flock in the face of limited
attention and competition? This problem is not merely a spiritual one but one that
also affects automated interactive processes competing for limited user attention in
today’s congested Information World.

The phenomenon that a Guru wishes to instruct her followers about is modeled
here by a distribution over a sequence of (possibly correlated) events. We define a
natural class of retentive scoring rules to model the way followers evaluate Gurus
they interact with. We show that these rules are tightly connected to the classical
notion of truth-eliciting “proper scoring rules” studied in Decision Theory since the
1950’s [McCarthy, PNAS 1956].

Next, we move our attention from the dynamics of interaction between Guru and
follower to the study of the intrinsic properties of distributions that deem them
appropriate for instruction by a Guru. More to the point, we define the retention
complexity of a distribution as the minimal initial level of “faith” that a follower
should have before approaching the Guru, in order for the Guru to retain that
follower throughout the full collaborative discovery process.

Finally, we initiate the study of the retention complexity of linear spaces over finite
fields. We show (i) the retention complexity of Walsh-Hadamard codes is constant
and (ii) that of random Low Density Parity Check (LDPC) codes is, with high
probability, linear in the code’s blocklength; intriguingly, for these two interesting
families of codes, retention complexity is roughly equal to query complexity as locally
testable codes.
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1. Introduction

An aspiring Guru will necessarily face the problem of attracting new followers and retaining
existing ones as she attempts to lead them all to a better future. This problem is rather old.
Moses, for instance, raised it before The Lord before assuming leadership of the Israelite Exodus
from Egypt, asking: “What if they won’t believe me or listen to me? What if they say, ’The Lord
never appeared to you’?” [Exodus 4:1]. Many a Guru has addressed the problem by attempting
to predict unlikely events as a sign of power; the Biblical Exodus story contains several such
events, culminating with the crossing of the Red Sea predicted by Moses.

Fast-forwarding to today’s Information Society, the problem of follower retention is one that
affects social networks like Facebook, news websites like CNN and MSNBC, polling services
and weather forecasting channels, financial investment services, scientists discussing Climate
Change, and the multitude of smartphone apps that all compete to win the limited resource of
user attention, promising those users (or followers) great value and utility in return for devoted
and continued usage. This challenge also extends to automated Gurus: Modern crowd-based
expert systems gather data from users on a voluntary basis in order to produce meaningful
insights. The quality of insights greatly depends on the amount and quality of input gathered
from the users, but those users have limited attention, giving rise to the study of attention econ-
omy [Gol97, Lan06]. By asking “interesting questions” and making “meaningful predictions”,
an automated system can induce users to linger, but only if it “knows” how to ask “interesting”
questions and provide “meaningful” feedback.

Gurus compete to attract followers, but the problem addressed in this paper, although related
to that of competition and ranking of Gurus, is slightly different. We are interested in modelling
the dynamics of follower retention, i.e., the interactive process played out between a Guru and
her followers as she tries to retain them by providing them with meaningful insights about their
particular situation. In this setting, it suffices to consider only a single Guru and her followers,
and ask “will the Guru succeed in leading the followers to Enlightment?”. This interaction
revolves around a “complex phenomenon” which the followers care about, but those followers
have short attention span and, moreover, they doubt the Guru’s ability to enlighten them.
Thus, another question that will interest us is: “is the complex phenomenon one that allows
the Guru to satisfy her followers and retain them?”. In other words, we are interested in the
intrinsic properties of phenonema that deem them suitable for collaborative discovery and in
the dynamics of follower-retention for various phenomena.

The phenomenon that motivated this research is that of early child development ; the Gurus
are experts in this field and the followers are parents of newborn babies [BBJS17]. For the
sake of concreteness we shall continue using this particular setting to describe our model but
it may be conveniently replaced by the reader with Doctors or psychologists playing the Gurus
as they interact with patients (followers) regarding a complex medical or mental problem, or
with financial advisors as Gurus and their follower clientele. In all of these settings (and many
more) the two types of parties interact about some complex phenomenon that evolves over time,
which the followers are passionate about and wish to understand, and about which the Guru
claims to have an advantage of “wisdom” over the followers.

The incentives of Guru and followers are rather different. The follower has access to a particu-
lar instance of the complex phenomenon — a mother tracks her child’s development attentively
and cares deeply about the particular trajectory that her child will follow. She is willing to
“pay” the Guru with information about her baby in return for “meaningful” predictions about
that child’s future development. However, attention is a limited resource that must be spent
wisely, and so the follower (mother) will terminate the interaction if the Guru reciprocates her
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“payment” of time and information with observations and predictions that are either wrong,
or obvious. Summarizing, the follower is willing to interact but expects a near-immediate re-
turn on investment in the form of “meaningful” predictions. We shall return to the notion of
“meaningful information” later on.

Next, consider the Guru’s view on the interaction. A “true” Guru does understand the
phenomena better than her followers but even she must obtain some initial information about
each follower before offering personal, accurate advice. Thus, the Guru is torn between the
need to learn as much as possible about the follower’s particular case, and the requirement to
provide “surprising” and accurate predictions as quickly as possible; this feedback is essential
to retain the follower and maintain faith in the guidance powers of the Guru.

How does a follower judge the quality of the Guru’s insights, given that the follower is ignorant
about the phenomenon? The answer is that even ignorant followers know some simple facts
about the world, for instance, that there is abundant sunlight at noon in Egypt. A prophet
predicting a period of darkness at noon (as in the Plague of Darkness [Exodus 10:22]), if correct,
would easily retain followers. Today, a prophet claiming clairvoyant powers by predicting a Solar
eclipse would likely receive less retention power because Solar eclipse times are, by now, common
knowledge. Summarizing this discussion, the power of retention by a Guru corresponds to the
amount of “surprise” regarding future events, where surprise means some “discrepancy” between
the follower’s assessment of the likelihood of some future event and the probability assigned to
that event by the Guru. We move on to define the formal model that abstracts the problem
after briefly putting it in context of other works.

1.1. Related work

The study of reputation systems is interested in ranking Gurus in “meaningful” ways, and is
highly investigated empirically and theoretically; cf. [RKZF00, RZ02] and references therein.
Two particularly interesting and relevant papers are (i) that of Chan et al. [CKY09] that classi-
fies interactive crowd-computation games using a small list of modeling parameters, and (ii) that
of Ban and Linial [BL11] which uses the theory of random processes to identify situations where
Gurus (called “experts” there) can be robustly ranked, assuming user participation continues
indefinitely.

In the context of machine learning, the task of detecting users who are likely to stop par-
ticipating in a voluntary system is known as churn prediction. For this task, machine learning
algorithms are trained to recognize typical usage patterns and predict the likelihood of a termi-
nation [WC02, DPRS12]. Even though general machine learning models provide good “black-
box” churn predictors when trained correctly, gaining deep understanding of the underlying
phenomena might be challenging.

Comparing our model to prior work, there are two main differences. First, our aim is to
model the dynamics of long-term interaction between a follower and her Guru about a single
complex phenomenon of interest, asking when do followers abandon their Gurus. Second, we are
interested in the mathematical properties of phenomena that are prone to collaborative discovery,
meaning that for these phenomena a “good” Guru will successfully instruct her followers from
start to end without losing their attention and faith. This motivation is somewhat similar
to that taken in the field of Property Testing [GGR98] which attempts to understand which
properties are amenable to “testing”. (See Section 1.5 for more connections between our model
and locally testable codes.)
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1.2. The Collaborative Discovery Model

The phenomenon about which the Guru and her followers interact is modeled by a distribution
T over X Γ, where Γ is the set of properties manifested by the phenomenon and X is an arbitrary
input space. The two input spaces mentioned in this paper are the binary space X = {0, 1} and
the finite categorical space X = {0, . . . , n}. In the context of childhood development, Γ is the
set of developmental milestones like “first smile”, and each follower (associated, for simplicity,
with a parent of a single child) is represented by a sample u ∈ X Γ that describes the ages at
which that child achieved each milestone. By time t, the follower discloses to the Guru u�Γt , the
restriction of her sample u to a subset Γt ⊆ Γ. Additional attributes of u may be revealed later
in time, others might be disclosed if prompted to do so, while certain attributes will remain
forever latent.

The follower seeks the Guru’s assistance in predicting “meaningful information” that is cur-
rently unknown to the follower. The Guru and follower interact over a number of rounds but
the follower will terminate the interaction if the Guru is judged to be unhelpful (in a manner
fomralized below). During each round of interaction, the Guru makes a prediction by announc-
ing a distribution Pγt over X that she claims is the true one for a latent attribute γt 6∈ Γt; the
follower has a distribution Qγ that she believes corresponds to γt. (Modern Gurus and followers
are comfortable discussing probabilities rather than predicting a single event as is the case with
pre-election polling results.) The way γt is selected from Γ \ Γt and its effect on the process is
left to future work. The follower now queries γt and reports the true value, denoted uγt , which
is derived from Nature’s “true” distribution. After each round the follower updates the strength
of her retention by the Guru. We assume this strength is given by a retention parameter rt that
starts with a fixed value r0 and varies with time; once rt turns negative the follower will be said
to have lost all faith in the Guru and therefore terminate the interaction. The main objective
of the Guru is to maintain rt ≥ 0 for all t ≥ 0; jumping ahead, a distribution T for which there
exists a Guru that, in expectation, manages to retain followers to eternity (or until t = |Γ| for
finite Γ) will be said to be r0-retainable and the retention complexity of T will be the minimal
r0 such that T is r0-retainable (see Definitions 1.5, 1.6).

When the user updates her retention parameter at the end of the tth round, she uses a function
S(·, ·, ·) that is real-valued and takes three inputs: (i) the Guru’s predicted distribution Pγt ;
(ii) the follower’s assessment of that distribution Qγt ; and (iii) the value uγt that materialized,
sampled by Nature. The retention parameter at time t is given by

rt = rt−1 + S(Pγt , Qγt , uγt) (1.1)

Remark 1.1 (Simplifying assumptions). The formula (1.1) makes the following assumptions
on the follower’s update rule: that it is Markovian, uses rt−1 additively and does not depend on
the follower’s identity nor on the identity of the attribute γt being predicted. Such assumptions
are common when modeling human behavior and we leave the study of more general update
functions to future work.

1.3. Retentive scoring rules

The definition of the function S above, and the surprising corollaries of this definition, is what
dominates the first part of our study. We assume S belongs to a class of functions that elicit
the true beliefs of both Guru and follower regarding the distribution for the attribute γt. Truth
eliciting rules are ones that incentivize (rational) players to supply the rule with what they
believe to be the truth. A famous early example of a truth eliciting rule is that of a one-party
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proper scoring rule, which will be tightly related to our two-party retentive scoring rule S, so
we start with the simpler, one-party, case.

Proper (one-party) Scoring Rules One-party proper scoring rules are used to compensate a
single forecaster of Nature in a truth-eliciting manner; these rules are studied extensively in
the Decision Theory literature [McC56, Sav71, GR07] and have interesting connections to the
fields of estimation, information theory, and machine learning; See [DM14] for a recent survey.
A scoring rule receives a single forecast, which is a distribution P over X as an input (say, this
could be the temperature at noon tomorrow at a fixed location), and scores the forecaster based
on the outcome selected by Nature (the actual temperature). A scoring rule is called proper if
it is maximized by forecasting the true distribution.

Definition 1.1 (Proper Scoring Rule). Let P be a convex set of distributions over an arbitrary
input space X . A (one-party) scoring rule is a function s : P × X → R. The scoring rule s is
proper with respect to P if, for all R ∈ P (viewed as Nature’s true distribution), the expected
score Ex∼R [s(P, x)] is maximized over P ∈ P at P = R:

∀P ∈ P Ex∼R [s(P, x)] ≤ Ex∼R [s(R, x)] (1.2)

Intuitively, when the agent forecasts a distribution P ∈ ∆(X ) and event x ∈ X materializes,
the reward for the expert is s(P, x). To increase clarity when one-party and two-party (retentive)
scoring rules are involved, we will use a lowercase s to denote a proper (one-party) scoring rule,
and a calligraphic S to denote a retentive (two-party) one.

Many proper scoring rules can be constructed using elementary functions, for example the
logarithmic scoring rule:

s(P, i) = log pi (1.3)

and Brier’s scoring rule[Bri50]:

s(P, i) = 2pi −
∑
j

p2
j = 2pi − ‖P‖22 (1.4)

Retentive (two-party) scoring rules A retentive scoring rule involves two parties: Guru and
follower. The definition below states that it satisfies three conditions that we discuss before
giving the formal definition. The “cost of ignorance” condition models the “attention economy”
cost of interaction, and captures the intuition that the follower will penalize Gurus that are no
“smarter” than she is. The penalty constant is normalized to −1 to simplify analysis.

The output of S is a quantity that the Guru wishes to maximize because doing so will mean
the follower is retained longer, as seen by Equation (1.1). Therefore, the Guru-side properness
requirement (Equation (1.6) below) implies that a rational Guru will strive to report the correct
distribution used by Nature (R), if the Guru knows that distribution. In other words, we
require the scoring rule to elicit truthful Guru-side inputs. Similarly, since the follower has a
limited attention span, the follower is incentivized to judge the Guru’s quality “honestly”, and
this is modeled by the follower-side properness condition (Equation (1.7 below)); it means the
follower too will supply the rule S with Nature’s distribution, if known to her. Notice that the
combination of the cost of ignorance and two properness results mean that a rational Guru will
not offer “obvious advice” about which both Guru and follower “know the (same) truth”.

Definition 1.2 (Retentive Scoring Rule). Let P be a convex set of distributions over an arbi-
trary input space X . A function S : P × P × X → R is called a retentive scoring rule if
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1. Cost of ignorance: For all distributions P ∈ P and outcomes x ∈ X ,

S(P, P, x) = −1 (1.5)

2. Proper scorings: for any distribution R ∈ P dictated by Nature:

a) Guru-side: For any fixed follower belief Q ∈ P, the best Guru prediction P ∈ P is
Nature’s:

Ex∼R [S(P,Q, x)] ≤ Ex∼R [S(R,Q, x)] (1.6)

b) Follower-side: For any fixed Guru prediction P ∈ P, the best follower belief Q ∈ P
is Nature’s:

Ex∼R [S(P,Q, x)] ≥ Ex∼R [S(P,R, x)] (1.7)

Retentive Rule Construction One-party scoring rules give rise to a straightforward way of
constructing two-party retentive scoring rules: Score the Guru and follower separately based
on Nature’s outcome (using perhaps two different functions) and define the retentive score as
the difference between the one-party scores (minus a fixed constant, due to cost of ignorance
(1.5)). A retentive scoring rule of this form is said to be separable, and a special case is that
of a symmetric rule, in which both Guru and follower are scored using the same (one-party)
scoring rule, formally:

Definition 1.3 (Symmetric Retentive Scoring Rule). A retentive scoring rule S : P×P×X → R
is called symmetric if there exists a proper one-party scoring rule s : P × X → R such that:

S(P,Q, i) = s(P, i)− s(Q, i)− 1 (1.8)

Characterization Restricting the discussion to categorical distributions, i.e., to cases where
X is finite, and assuming the retentive scoring rules are analytic, meaning that a uniformly
convergent power series expansion exists about any P ∈ P, our first main result is the following
statement:

Theorem 1.1 (Retentive Scoring Rules are Symmetric). The function S : P ×P ×X → R is a
an analytic retentive scoring rule for categorical distributions if and only if there exists a proper
and analytic scoring rule s : P × X → R such that:

S(P,Q, x) = s(P, x)− s(Q, x)− 1 (1.9)

We find the statement somewhat surprising because it is not intuitively clear that a two-party
retentive rule be separable (once separability has been proved the ensuing symmetry follows
easily from it and the “cost of ignorance assumption”). For the proof (given in Section 2) we
use a known result which relates proper scoring rules to convex functions over the probability
simplex. We show that each retentive scoring rule corresponds to a solution of a system of
partial differential equations (PDEs). Solving the system and characterizing the family of
solutions yields the result (see Section 2.2).
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1.4. Memory Span

A variety of psychological studies could be summarized by saying that the human short-term
memory has a capacity of about “seven, plus-or-minus two” chunks, where each chunk can be
roughly defined as a collection of elementary information relating to a single concept [Mil56,
TC00]. When making a prediction, an agent (Guru or follower) may juggle several pieces of
information in her mind. In this spirit, the forecasting ability of agents in the Collaborative
Discovery model is characterized by a parameter called memory span. In what follows, let
∆
(
X Γ
)

denote the simplex of probability distributions over X Γ and ∆(X ) is the simplex of
distributions over X .

Definition 1.4 (Memory Span). Let T ∈ ∆
(
X Γ
)

be a distribution. An agent is said to have
memory span m ≥ 0 when its prediction Pγ ∈ ∆(X ) for coordinate γt ∈ Γ of a sampled instance
u ∈ X Γ with disclosed parameters Γt ⊆ Γ (i.e. for which u�Γt is known) is based on m disclosed
coordinates or less, i.e.:

∀γ ∈ Γ, ∃It ⊆ Γt : |It| ≤ m, Pγ = (Tγ | u�It) (1.10)

where (Tγ | u�It) is the marginal distribution of T on coordinate γ, conditioned on the event that
the coordinates It are set to u�It.

Intuitively, this means that every prediction of an agent is based on its entire knowledge of
at most m coordinates. When m = 0, a prediction is only based on the marginal distribution
of the corresponding parameter in the entire population.

1.4.1. Retainability as a function of memory span discrepancy

From here on we assume that the Guru has memory span mg, and her follower has memory span
mf and moreoever, both parties provide to the retentive scoring rule a distribution that is the
correct marginal Tγt | u�Jt , conditioned on some subset of Jt ⊂ Γt of size mg for the Gure and mf

for the follower, respectively. Under this assumption, notice that if mg = mf then both parties
supply the same distribution, so the “cost of ignorance” assumption of Definition 1.2 means
the follower will terminate the interaction within r0 steps; in other words, ignorant Gurus will
not prevail. Henceforth assume mg > mf . Combining the concepts of limited user attention,
retentive scoring, and limited memory span, we can now ask: Is it possible for the Guru to
retain her follower throughout the process? This leads to the concept of retainablility :

Definition 1.5 (Retainable Distribution). Let T ∈ ∆
(
X Γ
)
, and assume |Γ| = n. Given a

retentive scoring rule S : P × P × X → R, Guru memory span mg ≥ 0, follower memory span
mf ≥ 0, and an initial retention parameter r0 > 0, we say that T is retentively learnable with
respect to (S,mg,mf , r0) if there exists an ordering γ1, . . . , γn of of Γ, and a sequence of sets
I1, . . . , In such for all t ∈ [n]:

1. It ⊆ {γ1, . . . , γt−1}

2. |It| ≤ mg

3. For every sequence of sets J1, . . . , Jn such that Jt ⊆ {γ1, . . . , γt−1}, |Jt| ≤ mf :

rt = r0 +

t∑
t′=1

S
((
Tγt′ | u�It′

)
,
(
Tγt′ | u�Jt′

)
, T
)
≥ 0 (1.11)
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Intuitively, a probability distribution is retainable when it is possible to maintain a positive
retention parameter throughout the process. From (1.11) we can see that increasing r0 does
not hurt retainability. In other words, for r′0 > r0, if a distribution is retainable with respect
to (S,mg,mf , r0), then it is also retainable for (S,mg,mf , r

′
0). We know that attention is a

very limited resource, so we cannot expect it to be arbitrarily large. This leads to the following
question: How large should the “initial retention” be in order for the Guru to sustain her
follower throughout the collaborative discovery process?

Definition 1.6 (Retention Complexity). The retention complexity of a distribution T ∈ ∆
(
X Γ
)

with respect to (S,mg,mf ) is the minimal value of r0 such that T is retainable:

rS,mg ,mf
(T ) = min {r0 | T is retainable with respect to (S,mg,mf , r0)} (1.12)

1.4.2. Monotonicity

Our second result, stated next, says that if guru G is “smarter” than guru G′, meaning her
memory span (mg) is greater than his (m′g), the smarter guru G will also have higher success
in retaining followers, in expectation. (Whether this optimistic result holds in the real world
is highly debatable.) This result is not implied directly by the definition of the Collaborative
Discovery model, and shows that it exhibits intuitive and desirable properties that substantiate
its theoretical appeal.

Theorem 1.2 (Knowledgeable Gurus Retain Followers). Let S : P×P×X → R be an analytic

retentive scoring rule, let G1, G2 be two Gurus with memory spans m
(1)
g ≥ m

(2)
g . Then for any

distribution T , any coordinate x, and follower with memory span mf ≤ m
(2)
g :

ET [S(P1, Q, x)] ≥ ET [S(P2, Q, x)] (1.13)

where P1, P2 ∈ ∆(X ) are the distributional forecasts of gurus G1 and G2 respectively, and
Q ∈ ∆(X ) is the belief of the follower.

A technical discussion of the theorem and its proof are provided in Section 3.

1.5. The retention complexity of Low Density Parity Check codes

In this section, we will consider a realization of the model in which each attribute ranges over a
binary space, i.e., X Γ = {0, 1}n. The Binary Attributes model describes a universe where each
attribute is either present or not for a given user. Binary attributes can describe mathematical
concepts such as subsets of [n], but also real-world properties such as gender (male or female),
marital status, and so on.

Restricting our scope to binary attributes makes it possible to use the rich frameworks of
locally testable codes (LTCs) and Property Testing [GGR98] to draw theoretic conclusions
and build intuition. We start by redefining the problem using finite-field linear algebra, and
then study the retention complexity of several natural families of linear codes, including the
Walsh-Hadamard codes and the family of random Low Density Parity Check (LDPC) codes.

In particular, identify {0, 1} with the two-element finite field F2 and consider a uniform
distribution U over a linear space U ⊆ F2

n over F2, and let U⊥ denote the space dual to U . Let
d(U) denote the Hamming distance of U (and d(U⊥) is its dual distance), recalling that distance
is equal to the minimum Hamming weight of a non-zero word in U (or U⊥, respectively). We
assume the Guru has infinite memory span and the follower has memory span 0. (The study
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of the general case of 0 < mf < mg < ∞ is left for future work.) This means the follower’s
distribution for each i ∈ [n] is the uniform distribution on F2 (this assumes U is not constant
on any i ∈ [n]). We shall use a retentive scoring rule denoted Sbin, that has expected value 1
when the Guru can predict the next coordinate exactly, i.e., when the value of that coordinate
depends linearly on the values of coordinates exposed thus far, and gives expected value −1
otherwise, when the distribution on that coordinate is linearly independent of all previously
revealed bits. The following result sets the bounds for our study of retention complexity in this
setting:

Lemma 1.1 (Retention Complexity Bounds for Linear Spaces). For a uniform distribution U
over a linear space U ⊆ F2

n with unbounded guru memory span and zero follower memory span,
the retention complexity satisfies:

d
(
U⊥
)
− 1 ≤ r(Sbin,∞,0)(U) ≤ dim (U) (1.14)

Next, we show that the both bounds are tight. We begin by showing that a uniform distribu-
tion over codewords of the Walsh-Hadamard (WH) code achieves the lower retention complexity
bound:

Lemma 1.2. For all k ∈ N, a k-dimensional Walsh-Hadamard code satisfies:

r(Sbin,∞,0)(WH) = 2 (1.15)

Finally, we show that a random LDPC code achieves the upper bound (up to multiplicative
constants) with high probability:

Theorem 1.3. For a proper choice of constants c, d > 0 and sufficiently large n, the retention
complexity of a random (c, d)-regular LDPC code over Fn2 is linear with high probability:

r(Sbin,∞,0)(LDPC) =
w.h.p

Ω(k) (1.16)

The proofs of these results are provided in Section 4.2, the most technically challenging one
is the third one and relies on the lower bounds for the testability of random LDPC codes
of [BSHR05].

1.6. Discussion of Main Contributions and future directions

The properties of retentive scoring rules, the effect of memory span discrepancy on the retention
of followers, and the study of retention complexity of specific distributions are the main topics
of this work. The main contributions reported here are:

1. Characterizing the functions that can act as retentive scoring rules, and showing that they
can each be written in a surprisingly simple form, as symmetric (and separable) rules.

2. For memory span, we prove the monotonicity theorem (“more knowledge is better”), which
shows that experts with larger memory span retain followers longer in expectation.

3. We initiate the study of retention complexity, focusing on uniform distributions over linear
spaces in Fn2 , exhibiting non-trivial lower bounds for random LDPC codes.

We point out a few questions that emerge from the paper:
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1. Walsh-Hadamard codes are locally testable, correctable and decodable, while random
LDPC codes have none of these properties; moreover, the retention complexity for both
families of codes is approximately equal to their query complexity (for testability and
correctability). This leads to our first question: Are there tighter connections between
retention complexity and query complexity of locally testable/correctable codes? Do all
q-query locally testable (or correctable) codes have retention complexity f(q) for some
function that depends only on q and is independent of n (input size)? Likewise, it seems
interesting to ask whether retention complexity is related to basic machine learning mea-
sures like VC dimension.

2. The Gurus and followers studied here are assumed to have optimal knowledge of the
distribution, up to their memory span limit. In particular, a Guru with infinite memory
span does not need to learn the distribution at all. However, in most realistic settings
the distribution is unknown, leading to the question of learning distributions in a way
that also maintains good retention properties. For instance, suppose the distribution is
an unknown linear space U with retention complexity r. What is the minimal number of
followers with initial retention parameter r0 > r (say, r0 = 2 · r) that will be “spent” or
“lost” by the Guru before she learns enough about U to fully retain new followers? This
particular question is highly relevant to automated Gurus that seek to attract users while
maintaining high reputation (e.g., high app-store ratings).

3. The Gurus and followers used here are computationally unbounded (they are bounded only
by attention span). Realistically, the computational complexity of computing marginals
and evaluating which new attribute γt to interact about will be highly non-trivial.
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2. Retentive Scoring

In this section we study retentive scoring rules, and prove Theorem 1.1.

2.1. Preliminaries and Notations

Categorical Probability Distributions Recall that a categorical distribution is a discrete prob-
ability distribution that describes the possible results of a random event that can take one of K
possible outcomes. In this section, we assume P is a convex set of categorical with K = (n+ 1)
possible outcomes, i.e. X = {0, . . . , n}. We define the number of possible outcomes as n + 1
instead of n to simplify later calculations.

In addition, recall that the space of categorical distributions with (n+ 1) possible outcomes
is equivalent to the n-dimensional simplex:

P ⊆ ∆n =

{
(p0, . . . , pn) ∈ Rn+1 |

∑
i

pi = 1;∀i : pi ≥ 0

}
(2.1)

where pi is the probability of categorical event i.

10



Expected Score Notation Recall Definition 1.2. Following the conventions of the proper
scoring literature, and given probability distributions P,Q,R ∈ P, we denote the expected
retentive score as:

S(P,Q,R) ≡ Ei∼R [S(P,Q, i)] (2.2)

To avoid difficulties in (2.2), we will assume S(P,Q,R) exists and is finite. Similarly, for one-
party scoring rules, the common notation of expected score is:

s(P,R) ≡ Ei∼R [s(P, i)] (2.3)

The analysis below will use both the single event notation S(P,Q, i) and the expected score
notation S(P,Q,R) (and similarly for one-party scoring rules). To avoid confusion, we will
always use upper-case letters to denote random variables and lower-case letters to denote events.

Remark 2.1 (Scoring Rules on Infinite Sample Spaces). Similar to proper (one-party) scoring
rules, it is possible to define retentive scoring rules on infinite sample spaces using measure-
theoretic tools. Computers are finite, and therefore many applications can be modeled as finite-
dimensional categorical distributions. In this work we consider the finite sample space for con-
creteness and simplicity, and leave the rigorous measure-theoretic analysis to future work.

Characterization of Proper Scoring Rules One of the fundamental results in the research of
proper scoring rules is the characterization theorem, which defines a correspondence between
proper scoring rules and convex functions over the probability simplex. We start with some
preliminary definitions, and proceed with the characterization theorem itself:

Definition 2.1 (Subgradient). A function ∇∗G : P → Rn+1 is a subgradient of G at the point
P if the following inequality holds for all Q ∈ P :

G(Q) ≥ G(P ) + 〈∇∗G(P ), (Q− P )〉 (2.4)

where 〈·, ·〉 denotes the euclidean inner product over Rn+1: 〈X,Y 〉 =
∑n

i=0 xiyi.

Remark 2.2 (Subgradients of Differentiable Functions). If G is differentiable at P ∈ P then

G has a unique subgradient at P and it equals the gradient ∇G =
(
∂G
∂p0

, . . . , ∂G∂pn

)
at P .

Recall that a real-valued function G : P → R is convex if: G((1− λ)P + λQ) ≤ (1− λ)G(P )+
λG(Q) for all P,Q ∈ P and λ ∈ [0, 1].

Lemma 2.1 ([HB71], Theorem 2.1). G : P → R is convex if and only if it has a subgradient
∇∗G at each point P ∈ P.

Theorem 2.1 (McCarthy’s Theorem, [GR07]). A scoring rule s : P ×Ω→ R̄ is proper relative
to P if and only if there exists a convex, real-valued function G on P such that:

s(P, i) = G(P )− 〈∇∗G(P ), P 〉 − (∇∗G)i (2.5)

where (∇∗G)i is the ith component of (∇∗G).

We also define the Generalized Entropy as the convex function which is induced by the proper
scoring rule:

Definition 2.2 (Generalized Entropy). The convex function G(P ) = s(P, P ) induced by a
proper scoring rule s is called the generalized entropy function of s.

11



Note that a convex general entropy function exists for every proper scoring rule by The-
orem 2.1. For the logarithmic scoring rule defined in (1.3), the associated general entropy
function is the additive inverse of the Shannon entropy: G(P ) =

∑n
i=0 pi log pi. Additional

information-theoretic quantities can be generalized using proper scoring rules. See [DM14] for
a recent review.

2.2. Separability of Retentive Scoring Rules

In this section, we prove that every proper retentive scoring rule can be written as the difference
between two proper scoring rules. Recall Theorem 1.1:

Theorem 1.1 (Retentive Scoring Rules are Symmetric). The function S : P ×P ×X → R is a
an analytic retentive scoring rule for categorical distributions if and only if there exists a proper
and analytic scoring rule s : P × X → R such that:

S(P,Q, x) = s(P, x)− s(Q, x)− 1 (1.9)

The proof has several steps:

1. We verify that symmetric retentive scoring rules are indeed proper (Lemma 2.2).

2. Conversely, we first define the notion of a separable scoring rule, which is a rule which can
be written as the difference between two one-party scoring rules. Given a retentive scor-
ing rule, we use the proper scoring characterization theorem (Theorem 2.1) to construct
a system of partial differential equations which describes the constraints that must be
satisfied by such a rule (Lemma 2.3). We then solve the characterizing system of partial
differential equations (Lemma 2.4), and show that every possible solution corresponds to
a separable retentive scoring rule (Lemma 2.5).

3. Finally, we show that every separable retentive scoring rule with constant cost of ignorance
is also symmetric, proving the theorem.

We proceed by stating and proving the lemmas, and conclude the section by proving the theorem
itself.

Preliminaries The proofs of Lemma 2.2 and Lemma 2.3 rely on the formalism of proper scoring
rules and retentive scoring rules. The proof of Lemma 2.4 relies on basic results from the theory
of quasi-linear partial differential equations (refer to [PR05] for a thorough introduction). For
D ⊆ Rn, we will refer to a function f : D → R as analytic if its Taylor expansion about x ∈ D
converges to f(x) for all x ∈ D. We use ei ∈ Rn to denote the ith vector of the standard
basis. The gradient of a differentiable function g(x,y) : Rn × Rn → R with respect to x ∈ Rn

is denoted by ∂g
∂x ≡

(
∂g
∂x1

, . . . , ∂g
∂xn

)T
.

2.2.1. Symmetric Rules are Retentive

Lemma 2.2. Let S : P ×P ×X → R be a retentive scoring rule. If there a proper scoring rule
s : P × X → R such that: S(P,Q, i) = s(P, i)− s(Q, i)− 1, then S(P,Q, i) is retentive.

Proof. Let P,Q,R ∈ P. Using (1.8), the expected score S(P,Q,R) is:

S(P,Q,R) = s(P,R)− s(Q,R)− 1 (2.6)
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s is proper, and therefore s(P,R) ≤ s(R,R). Plugging into (2.6) we obtain:

S(P,Q,R) ≤ s1(R,R)− s2(Q,R) = S(R,Q,R) (2.7)

satisfying (1.6). Similarly, s2 is also proper, and therefore:

S(P,Q,R) ≥ s1(P,R)− s2(R,R) = S(P,R,R) (2.8)

satisfying (1.6). For Q = P we get S(P, P, i) = −1 for all i ∈ X , and therefore S is retentive
according to Definition 1.2.

2.2.2. Retentive Rules are Separable

We start by formally defining the notion of a separable scoring rule:

Definition 2.3 (Separable Retentive Scoring Rule). A proper retentive scoring rule S : P ×
P × Ω→ R̄ is called separable if there exists two proper scoring rules s1, s2 : P × Ω→ R̄ such
that:

S(P,Q, i) = s1(P, i)− s2(Q, i) (2.9)

We also say that a two-party scoring rule is proper if it satisfies (1.6), (1.7). In the following
lemma, we say that a bi-variate function G : P × P → R is convex with respect to its first
argument if G(P,Q) is a convex function of P for any constant Q ∈ P; convexity with respect
to the second argument is similarly defined by switching the roles of P and Q.

Lemma 2.3 (Characterization by subgradients). A two-party scoring rule S is proper with
respect to class P if and only if there exists two functions G,H : P × P → R such that:

1. G(P,Q) is convex with respect to P .

2. H(P,Q) is convex with respect to Q.

3. For all P,Q,R ∈ P:

G+ 〈∇∗PG, (R− P )〉 = −
(
H +

〈
∇∗QH, (R−Q)

〉)
(2.10)

where ∇∗PG is a subgradient of G(P,Q) with respect to its first argument, and ∇∗QH is a
subgradient of H(P,Q) with respect to its second argument.

Proof. For the first direction, let S(P,Q, i) be a proper retentive scoring rule, and define
sQ(P, i) ≡ S(P,Q, i). Using (1.6) we obtain that sQ(P,R) ≤ sQ(R,R). Therefore sQ is proper,
and according to Theorem 2.1 there exists a convex function GQ : P → R that depends on Q,
such that:

sQ(P, i) = GQ(P )− 〈∇∗GQ(P ), P 〉+ (∇∗GQ(P ))i (2.11)

where (∇∗GQ(P ))i is ith entry of ∇∗GQ at point P . Similarly, define sP (Q, i) ≡ S(P,Q, i). By
the same reasoning and using (1.7) we obtain that −sP is proper, and therefore there exists a
convex function HP : P → R such that:

− sP (Q, i) = HP (Q)− 〈∇∗HP (Q), Q〉+ (∇∗HP (Q))i (2.12)

Define G(P,Q) ≡ GQ(P ) and H(P,Q) ≡ HP (Q). Note that G is convex with respect to P
and H is convex with respect to Q, satisfying conditions 1, 2. Let R ∈ P. Using the fact that
sP (P,R) = sQ(Q,R), we can combine (2.11), (2.12) to obtain:

G+ 〈∇∗PG, (R− P )〉 = −
(
H +

〈
∇∗QH, (R−Q)

〉)
(2.13)
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satisfying condition 3.
Conversely, let G,H be the functions which satisfy the three conditions above. Define:

sQ(P, i) ≡ G− 〈∇∗PG,P 〉+ (∇∗PG)i (2.14)

sP (Q, i) ≡ −
(
H −

〈
∇∗QH,H

〉
+
(
∇∗QH

)
i

)
(2.15)

Note that sQ = −sP by equation (2.10), and that sP and −sQ are proper by Theorem 2.1.
Define S(P,Q, i) = sQ(P, i) = −sP (Q, i). sQ is proper, and therefore S(P,Q,R) ≤ S(R,Q,R),

satisfying the properness condition in (1.6). Similarly, the properness of−sP implies S(P,R,R) ≤
S(P,Q,R), satisfying (1.7), and therefore S is proper.

The following lemma contains a solution of a partial differential equation that will assist us
in solving the characterizing equations of proper retentive scoring rules. We obtain the solution
using basic tools from the theory of partial differential equations, and the proof is given in
Appendix A for completeness:

Lemma 2.4. Let D ⊆ Rn such that x,y ∈ D. For every analytic function u : D × D → R
satisfying the equation

u(x,y)−
n∑
i=1

(yi − xi)
∂u(x,y)

∂xi
= 0 (2.16)

there exist functions α1, . . . , αn : D → R such that:

u(x,y) =

n∑
i=1

αi(y)(yi − xi) (2.17)

The following lemma is the heart of this part of the proof of Theorem 1.1 .

Lemma 2.5 (Proper Retentive Rules are Separable). Let S : P × P × X → R be a retentive
scoring rule. If S is a proper retentive scoring rule with analytic generalized entropy functions,
then there exists two functions s1, s2 : P × Ω→ R̄ such that S(P,Q, i) = s1(P, i)− s2(Q, i).

Proof outline:

1. Given a proper retentive scoring rule, Lemma 2.3 implies the existence of two generalized
entropy functions G,H : P × P → R related by equation (2.10).

2. We choose a parametrization for points on the simplex ∆n, and use it to define (2.10) in
the convex domain D =

{
(x1, . . . , xn) ∈ Rn+ |

∑
i xi ≤ 1

}
.

3. We simplify the resulting equation, and solve it using Lemma 2.4.

4. Applying the correspondence established in Theorem 2.1 between convex functions on the
simplex and proper scoring rules, we show that the generalized entropy functions G,H
induce a separable scoring rule.

Following the conventions of multivariate calculus, in the proof we will use the · symbol
to denote the euclidean inner product over Rn: x · y =

∑n
i=1 xiyi. In addition, the proof

employs terms from the theory of multivariate convex analysis: Given a non-empty convex
subset S ⊆ Rn, its affine hull Aff(S) is the smallest affine set containing S. A relative interior
point is a member of the set {x ∈ S : ∃ε > 0, Nε(x) ∩Aff(S) ⊆ S}, where Nε(x) is the ε-ball
around point x. Refer to [Roc15] for an introduction to convex analysis. In the proof, we also
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use the gradient theorem for line integrals, which is a common generalization of the fundamental
theorem of calculus. We recall it here without proof. Refer to Wikipedia entry [Gra17] for
discussion and proof:

Claim 2.1 (Gradient Theorem). Let ϕ : U ⊆ Rn → R and γ is any curve from p to q. Then:

ϕ (q)− ϕ (p) =

∫
γ[p,q]

∇ϕ(r) · dr (2.18)

Proof of Lemma 2.5. Let S be a proper retentive scoring rule. By Lemma 2.3, there exists two
functions G,H : P × P → R such that G(P,Q) is convex with respect to its first argument,
H(P,Q) is convex with respect to its second argument, and equation (2.10) is satisfied.

When P , Q and R are categorical random variables with n + 1 possible outcomes, equation
(2.10) is defined over the n-dimensional simplex ∆n. Let D =

{
(x1, . . . , xn) ∈ Rn+ |

∑
i xi ≤ 1

}
.

Each point P on the simplex can be represented by a vector P = (p0, . . . , pn) ∈ Rn+1
+ such that∑n

i=0 pi = 1. To simplify the constraints, we define a bijection f : ∆n → D as follows:

f(P ) ≡ (p1, . . . , pn) ∈ Rn (2.19)

f−1(x) ≡

(
1−

n∑
i=1

xi, x1, . . . , xn

)
∈ ∆n (2.20)

using this bijection, we represent each point on the simplex using a n-dimensional vector in the
domain. Denote: P ≡ f−1(x), Q ≡ f−1(y), R ≡ f−1(z), f(P) ≡ {f(P ) | P ∈ P}.

Using this correspondence, we also define g(x,y) ≡ G(P,Q), h(x,y) ≡ H(P,Q). The as-
sumption that G,H are analytic implies that the gradients of each function coincide with their
corresponding subgradients (See Remark 2.2).

We will now write (2.10) using the new parametrization. Let x,y, z ∈ f(P). For the left-hand
side of (2.10) we obtain:

∂g

∂x
· (z− x) =

n∑
i=1

∂g

∂xi
(zi − xi) (2.21)

[Calculate the derivative of g using the chain rule]

=

n∑
i=1

(
∂G

∂pi
− ∂G

∂p0

)
(zi − xi) (2.22)

[Rearrange the summations]

=
∂G

∂p0

n∑
i=1

(−zi + xi) +
n∑
i=1

∂G

∂pi
· (zi − xi) (2.23)

=
∂G

∂p0

((
1−

n∑
i=1

zi

)
−

(
1−

n∑
i=1

xi

))
+

n∑
i=1

∂G

∂pi
· (zi − xi) (2.24)

[Use the definition of x, z]

=
n∑
i=0

∂G

∂pi
(ri − pi) (2.25)

= ∇G · (R− P ) (2.26)
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A similar argument on the right-hand side of (2.10) shows that ∇H · (R−Q) = h+ ∂h
∂y · (z− y),

and therefore the system defined in (2.10) is equivalent to:

∀x,y, z ∈ f(P) : g +
∂g

∂x
· (z− x) = −

(
h+

∂h

∂y
· (z− y)

)
(2.27)

We will now simplify (2.27) using its linear properties. Denote the affine hull of f(P) by
Aff(f(p)) ≡ v0 +V , and assume v0 is a relative interior point. Taking z = v0 in equation (2.27)
yields:

g +
∂g

∂x
· (v0 − x) = −

(
h+

∂h

∂y
· (v0 − y)

)
(2.28)

Similarly, denote the ith basis vector of V by v̄i. For any i ∈ [dimV ], taking z = v0 + v̄i in
equation (2.27), with appropriate scaling of v̄i such that z ∈ f(P), yields:

∀i ∈ [dimV ] : g +
∂g

∂x
· (v0 + v̄i − x) = −

(
h+

∂h

∂y
· (v0 + v̄i − y)

)
(2.29)

Subtracting (2.28) from (2.29) we obtain:

∀i ∈ [dimV ] :
∂g(x,y)

∂x
· v̄i = −∂h(x,y)

∂y
· v̄i (2.30)

thus ∂g(x,y)
∂x and −∂h(x,y)

∂y are equal component-wise, and therefore ∂g(x,y)
∂x + ∂h(x,y)

∂y is orthogonal
to the affine hull:

∀v ∈ V :

(
∂g(x,y)

∂x
+
∂h(x,y)

∂y

)
· v = 0 (2.31)

Note that (z− x), (z− y), (y − x) ∈ V . Substitute (2.31) back into (2.27) to obtain:

g +
∂g

∂x
· (y − x) = −h (2.32)

Apply ∂
∂y on both sides to get:

∂g

∂y
+

∂

∂y

n∑
i=1

∂g

∂xi
(yi − xi) = −∂h

∂y
(2.33)

And using (2.31) again we obtain:

∂

∂y

n∑
i=1

∂g

∂xi
(yi − xi) = 0 (2.34)

Which is equivalent to:

∀k ∈ [n] :
∂g

∂yk
+

n∑
i=1

(yi − xi)
∂

∂xi

∂g

∂yk
= 0 (2.35)

This is a system of n independent first-order partial differential equations for each element in
∂g
∂y . Using Lemma 2.4, we obtain the general solution for each k:

∀k ∈ [n] , ∃αk,1, . . . , αk,n :
∂g

∂yk
=

n∑
i=1

αk,i(y)(yi − xi) (2.36)
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Packing back the equations to vector form, we define a matrix operator A : D → Rn×n such
that Ai,j [y] = αk,i(y). The system in (2.36) in now be compactly represented using matrix
multiplication:

∂g

∂y
= A [y] (y − x) (2.37)

We now use the correspondence established in Theorem 2.1 to show that the generalized
entropy functions G,H induce a separable scoring rule. Applying the gradient theorem (2.18)
along the curve γ(t) = 0 + ty for t ∈ [0, 1] yields:

g(x,y)− g(x,0) =

∫ 1

0

(
yT

(
∂g

∂y

∣∣∣∣
x,ty

))
dt (2.38)

=

∫ 1

0

(
yTA [ty] (ty − x)

)
dt (2.39)

Denote ψ(x) ≡ g(x,0) and ϕ(x,y) ≡
∫ 1

0

(
yTA [ty] (ty − x)

)
dt. Note that ϕ(x,y) is a linear

function of x. The scoring rule which corresponds to g is given by Theorem 2.1:

S(x,y, z) =g(x,y) +
∂g(x,y)

∂x
· (z− x) (2.40)

=ψ(x) +
∂ψ(x)

∂x
· (z− x)︸ ︷︷ ︸

≡s1

+ϕ(x,y) +
∂ϕ(x,y)

∂x
· (z− x)︸ ︷︷ ︸

≡s2

(2.41)

The terms denoted by s1 only depend on x and z, and therefore s1 = s1(x, z). In addition,

ϕ(x,y) is a linear function of x and therefore both ∂ϕ(x,y)
∂x and

(
ϕ(x,y)− ∂ϕ(x,y)

∂x · x
)

do not

depend on x, thus s2 = s2(y, z). The scoring rule S(x,y, z) can therefore be written in the
following form:

S(x,y, z) = s1(x, z)− s2(y, z) (2.42)

and applying the reverse transformation from x,y, z ∈ D to P,Q,R ∈ P implies the separability
of the original scoring rule S.

2.2.3. Concluding the Proof

We can now conclude the section by proving the separability theorem. For the final proof, recall
Definition 1.3 of symmetric retentive rules.

Proof of Theorem 1.1. Given a proper scoring rule s : P × X → R such that S(P,Q, i) =
s(P, i)− s(Q, i)− 1, we can apply Lemma 2.2 to show that S(P,Q, i) is retentive. Conversely,
given an analytic retentive scoring rule, we can apply Lemma 2.5 and obtain s1, s2 such that
S(P,Q, i) = s1(P, i) − s2(Q, i). The rule S is retentive, and therefore satisfies (1.5). for all
P ∈ P and Q = P we obtain:

S(P, P, i) = s1(P, i)− s2(P, i) = −1 (2.43)

and therefore s1(P, i) = s2(P, i)− 1 for all P , proving that S is symmetric.
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3. Monotonicity

In this section we show that expected retention score in each round grows with the size of
memory span, proving Theorem 1.2:

Theorem 1.2 (Knowledgeable Gurus Retain Followers). Let S : P×P×X → R be an analytic

retentive scoring rule, let G1, G2 be two Gurus with memory spans m
(1)
g ≥ m

(2)
g . Then for any

distribution T , any coordinate x, and follower with memory span mf ≤ m
(2)
g :

ET [S(P1, Q, x)] ≥ ET [S(P2, Q, x)] (1.13)

where P1, P2 ∈ ∆(X ) are the distributional forecasts of gurus G1 and G2 respectively, and
Q ∈ ∆(X ) is the belief of the follower.

The proof will require a definition and a lemma: We first define the notion of Localized
Expected Gain (Definition 3.1), which is a set function that quantifies the expected score for
different choices of prior data. We then show that this function is monotonous by proving
Lemma 3.1, and use the result to prove the theorem itself.

Preliminaries We denote the jointly distributed vector by (X1, . . . , Xn) ∼ T . The marginal
distribution of coordinate i is denoted by Xi. For t ∈ [n] and I ⊆ [n] such as t /∈ I, the
marginal value of coordinate t conditioned on the event X�I = x�I is denoted by (Xt | xI).
When probability calculations are involved, we will omit the harpoon notation for brevity, and
xI and x�I will be used interchangeably.

Definition 3.1 (Localized Expected Gain). Let (X1, . . . , Xt) ∼ D ∈ ∆
(
X t
)

be a set of t jointly-
distributed random variables, let I ⊆ [t− 1], and let s : ∆(X )×X → R be a proper (one-party)
scoring rule. The localized expected gain is a set function f : 2[t−1] → R defined as follows:

∀I ⊆ [t− 1] : f(I) ≡ E(x1,...,xt)∼D [s((Xt|xI), xt)] (3.1)

Intuitively, the localized expected gain function f(I) describes the expected score when X�I

is being used as a prior. For example, for the log scoring rule s(P, i) = log pi defined in (1.3),
the associated expected localized gain function is:

flog(I) =
∑
xI

Pr (xI)
∑
xt

Pr (xt | xI) log Pr (xt | xI) = −H(Xt | XI) (3.2)

which is the additive inverse of the conditional entropy of Xt given XI .
We now show that this function is also monotonous for general proper scoring rules, which

means that expected scores don’t decrease when adding prior information, or “more knowledge
doesn’t hurt“ regardless of the proper scoring rule being used:

Lemma 3.1. f is a monotonous set function:

∀I ⊆ J ⊆ [t− 1] : f(I) ≤ f(J) (3.3)
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Proof. We start with the definition of f(I):

f(I) = E(x1,...,xt)∼D [s((Xt|xI), xt)] (3.4)

=
∑

x[t−1],xt

Pr
(
x[t−1], xt

)
s((Xt|xI), xt) (3.5)

[Decompose Pr
(
x[t−1], xt

)
using the law of total probability]

=
∑

x[t−1],xt

Pr (xJ) Pr (xt | xJ) Pr
(
x[t−1]\J | xt, xJ

)
s((Xt|xI), xt) (3.6)

[s does not depend on y[t]\J . Rearrange the summation]

=
∑
xJ

Pr (xJ)
∑
xt

Pr (xt | xJ)s((Xt|xI), xt)
∑

x[t−1]\J

Pr
(
x[t−1]\J | xt, xJ

)
(3.7)

[The rightmost factor is equal to 1]

=
∑
xJ

Pr (xJ)
∑
xt

Pr (xt | xJ)s((Xt|xI), xt) (3.8)

Using the definition of expected one-party score defined in (2.3), we obtain that the rightmost
factor in (3.8) is the expected score of P = (Xt | xI) when the reference distribution is R =
(Xt | xJ):

f(I) =
∑
xJ

Pr (xJ)s((Xt|xI), (Xt|xJ)) (3.9)

We can now use the properness of s (see Definition 1.1) to obtain:

f(I) ≤
∑
xJ

Pr (xJ)s((Xt|xJ), (Xt|xJ)) (3.10)

and apply steps (3.4),...,(3.8) in reverse order to obtain∑
xJ

Pr (xJ)s((Xt|xJ), (Xt|xJ)) = f(J) (3.11)

proving that f(I) ≤ f(J).

Using Lemma 3.1 we can generalize the result to retentive scoring rules, and prove the mono-
tonicity theorem for retentive scoring rules:

Proof of Theorem 1.2. Guru 1 has memory span m1
g, and therefore P1 = (T | u�I1) such that

|I1| = m1
g. Similarly, for Guru 2 we obtain P2 = (T | u�I2) such that |I2| = m2

g and for the
follower Q = (T | u�J) such that |J | = mf .
S is analytic, and therefore symmetric according to Theorem 1.1. Denote S(P,Q, i) = s(P, i)−

s(Q, i)− 1. Taking the expectation over T we obtain:

ET [S(P,Q, i)] = ET [s(P, i)]− ET [s(Q, i)]− 1 (3.12)

Using Definition 3.1 we obtain:

ET [S(P,Q, i)] = f(I)− f(J)− 1 (3.13)
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When m1
g ≥ m2

g and under the optimal choice of I1, there exists I ′1 such that I2 ⊆ I ′1 and
f(I ′1) ≤ f(I1). Applying Lemma 3.1 we obtain:

ET [S(P1, Q, i)] = f(I1)− f(J)− 1 (3.14)

≥ f
(
I ′1
)
− f(J)− 1 (3.15)

≥ f(I2)− f(J)− 1 (3.16)

= ET [S(P2, Q, i)] (3.17)

and therefore ET [S(P1, Q, i)] ≥ ET [S(P2, Q, i)].

4. The Binary Attributes Model

Under the Binary Attributes model, the universe of users is modeled using a k-dimensional
linear subspace of Fn2 .

U = span {ū1, . . . , ūk} (4.1)

where ū1, . . . , ūk ∈ Fn2 are a choice of basis vectors for the subspace. Under this realization
of the Collaborative Discovery model, each user is represented using an n-dimensional binary
vector, formally X n = Fn2 .

Preliminaries This section will assume familiarity with basic linear algebra over finite fields.
A view I ⊆ [n] of a vector u ∈ Fn2 , denoted by u�I , is a linear projection of u to the subspace
VI = span {ei | i ∈ I}. Similar to the previous section, we omit the harpoon notation when
complex conditional probability expressions are involved. Given a vector space U , its dual space
is defined as the set of linear constraints: U⊥ ≡ {v ∈ Fn2 | ∀u ∈ U : 〈u, v〉 = 0}. The support of
a vector u ∈ U is the of coordinates that contain non-zero elements: support(u) = {i | ui 6= 0}.
We denote the hamming distance of a vector u ∈ U by d(u) = |support(u)|. The hamming
distance of the space U is defined as d(U) = minu∈U d(u).

4.1. User Types as a Linear Subspace

We follow with a rigorous definition of the process under the Binary Attributes realization:

Initialization At the start of the Collaborative Discovery process, the type of user u is picked
uniformly from U , all the coordinates are undisclosed, and the initial retention parameter is r0.
We will denote the uniform random variable over the linear space by U ∼ Uniform(U).

Prediction Rounds During each round, the expert picks a coordinate i and provides a predic-
tion distribution P ∈ ∆({0, 1}) for its value. The retentive scoring function for this realization
of the model is:

Sbin(P,Q, x) = 2 log2 px − 2 log2 qx − 1 (4.2)

where x ∈ {0, 1}. Sbin can be represented as Sbin(P,Q, x) = s(Q, x) − s(Q, x) − 1, where
s(P, x) = 2 log2 px is the logarithmic scoring rule defined in (1.3), and therefore Sbin is symmetric
according to Definition 1.3.

We’ll proceed to show that Sbin has very intuitive properties. We start with a few claims
about the structure of this probability space. The claims can be proved using basic linear
algebra and probability. Proofs are included in Appendix B:
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Claim 4.1. Let I ⊆ [n]. For every vector uI ∈ UI :

Pr (UI = uI) = 2− dim (UI) (4.3)

For the following claim, recall that a singleton distribution is a probability distribution in
which a single outcome has probability 1.

Claim 4.2. Let I ⊆ [n] and m ∈ [n] \ I, and assume a vector u ∈ Fn2 has been picked uniformly
at random from a vector space U . Pr (um | uI) is a singleton distribution if and only if em ∈
U⊥�[n]\I .

Claim 4.3. Let U be a linear space over F2
n, and let I ⊆ [n],m ∈ [n] \ I. em ∈ U⊥�[n]\I if and

only if dim (U�I) = dim
(
U�I∪{m}

)
.

Using this framework, we now have enough tools to characterize the dynamics of scoring rule
we defined:

Lemma 4.1 (Binary Attributes Scoring Rule Dynamics). For a uniform distribution U over
a linear space U without constant bits, the retention score for a collaborative discovery process
with infinite expert locality and zero layperson locality is given by:

Sbin((Xm | xI), Xm,U) =

{
1 em ∈ U⊥�[n]\I

−1 otherwise
(4.4)

=

{
1 dim

(
U�I∪{m}

)
= dim (U�I)

−1 dim
(
U�I∪{m}

)
= dim (U�I) + 1

(4.5)

Proof. When em /∈ U⊥�[n]\I , we get that dim
(
U�{m}

)
= 1, allowing us to apply Claim 4.1 and

obtain Pr (um = 0 | uI) = 1
2 .

When em ∈ U⊥�[n]\I there exists v ∈ U⊥, I ′ ⊆ I such that support(v) = I ′ ∪ {m}. Claim 4.2
implies that um is determined given uI .

Combining the results, we obtain for all I ⊆ [n],m /∈ I:

Pr (um = 0 | uI) ∈

{
{0, 1} em ∈ U⊥�[n]\I{

1
2

}
otherwise

(4.6)

There are no constant bits in U , and therefore dimU�{m} = 1 for all m ∈ [n]. By Claim 4.1 we
obtain that the marginal distribution for each coordinate is uniform, and therefore a layperson
with zero locality will always predict a uniform distribution.

Plugging (4.6) into the definition of Sbin in equation (4.2), the score for the first case is

log2
1

2·0.52 = 1, and the score for the second case is log2
0.52

2·0.52 = −1, leading to equation (4.4).
The transition from (4.4) to (4.5) is given by Claim 4.3.

4.2. Retention Complexity of Linear Codes

We will now apply the notion of retention complexity introduced in Definition 1.6 to the Binary
Attributes model. We will first show that there exists non-trivial upper and lower bounds for
retention complexity in this realization of the Collaborative Discovery model, and then show
that the bounds are tight. Recall Lemma 1.1:

21



Lemma 1.1 (Retention Complexity Bounds for Linear Spaces). For a uniform distribution U
over a linear space U ⊆ F2

n with unbounded guru memory span and zero follower memory span,
the retention complexity satisfies:

d
(
U⊥
)
− 1 ≤ r(Sbin,∞,0)(U) ≤ dim (U) (1.14)

Proof of Lemma 1.1. The retention parameter at the end of each round t is defined according
to equation (1.1):

rt = r0 +
t∑
i=1

Sbin((Xσi | xIi), Xσi ,U) (4.7)

For the lower bound, observe that U⊥�[n]\It does not contain any singleton element when |It| ≤
d
(
U⊥
)
− 2. Since |It| ≤ t − 1 by definition, we can combine the inequalities and obtain that

no punctured-dual-space singleton exists when t ≤ d
(
U⊥
)
− 1. We can now apply Lemma 4.1

and obtain that Sbin((Xσi | xIi), Xσi ,U) = −1 for all i ∈ {1, . . . , t}. Plugging into the retention
parameter at time t = d

(
U⊥
)
− 1:

rt = r0 +

d(U⊥)−1∑
i=1

(−1) = r0 −
(
d
(
U⊥
)
− 1
)

(4.8)

And the positivity constraint on rt implies that r0 ≥
(
d
(
U⊥
)
− 1
)
.

For the upper bound, assume without loss of generality that the first k = dim (U) coordinates
of U are linearly independent, and set σi = i, Ii = {1, . . . , (i− 1)} for all i ∈ {1, . . . , k}. Observe
that:

dim (U�Ii) =

{
i− 1 1 ≤ i ≤ k
k k < i

(4.9)

Applying Lemma 4.1 we get:

Sbin((Xσi | xIi), Xσi ,U) =

{
−1 1 ≤ i ≤ k
1 k < i

(4.10)

Hence for r0 = k we get rt ≥ 0 for all t ∈ {1, . . . , n}.

In the asymptotic setting it is common to consider n, k → ∞. In this case, d
(
U⊥
)

can stay
constant, forming a large gap between the bounds. We will proceed to show that the upper and
lower bounds are indeed tight in the asymptotic setting.

4.2.1. Walsh-Hadamard Codes are Easy to Retain

Let n = 2k − 1. Given a binary message x ∈ {0, 1}k, the Walsh-Hadamard code (WH) encodes
the message into a codeword WH(x) using an encoding function WH : {0, 1}k → {0, 1}n, such

that for every y ∈
(
{0, 1}k \

{
0k
})

, the yth coordinate of WH(x) is equal to (x · y).

Walsh-Hadamard a
[
2k − 1, k, 2k−1

]
2

locally-correctable code with q = 2 queries1. See [AB09]
for a thorough discussion of Walsh-Hadamard codes and its applications in theoretical computer
science.

We will show that a uniform distribution over the WH code achieves the retention complexity
lower bound for all k ∈ N. Recall Lemma 1.2:
1Note that we slightly deviate from the common definition by omitting the 0th coordinate which is always equal

to zero.
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Lemma 1.2 (,). For all k ∈ N, a k-dimensional Walsh-Hadamard code satisfies:

r(Sbin,∞,0)(WH) = 2 (1.15)

In order to prove the theorem, we first characterize the constraints of the WH code (Claim 4.4,
Claim 4.5), and then use the results to construct an explicit formula for the retention score
when the Sbin retentive score rule is being used (Lemma 4.2), giving an upper bound for
r(Sbin,∞,0)(WH) which is equal to the lower bound we established in Lemma 1.1. Proofs for
the claims can be found in Appendix B.

Claim 4.4. Let y(1), . . . , y(m) ∈
(
{0, 1}k \

{
0k
})

.(
m∑
i=1

ey(i)

)
∈WH⊥ ⇐⇒

m∑
i=1

y(i) = 0 (4.11)

Claim 4.5.
d
(

WH⊥
)

= 3 (4.12)

Lemma 4.2. For collaborative discovery over u ∈R WH with respect to (Sbin,∞, 0), where
σi =

(
i mod 2k

)
and r0 = 2, and for all t ∈

{
1, . . . , 2k − 1

}
:

∀1 ≤ t < 2k : rt = t− 2blog2 tc (4.13)

Proof. By induction. For t ∈ {1, 2}, we can use Claim 4.5 and an argument similar to the
one in Lemma 1.1 to show that there’s no singleton in the punctured dual-space in the first
two rounds. Therefore r1 = 1, r2 = 0, and indeed we can substitute 0, 1 into (4.13) see that
1− 2blog2 1c = 1 and 1− 2blog2 2c = 1.

For t > 2, assume the formula holds for t− 1, and consider the two following cases:

• When t is not a power of two, it can be represented as the XOR between two preceding
coordinates, for example t′ = 2blog2 tc and t′′ = t−2blog2 tc. Using Claim 4.4 we obtain that
et is a singleton in the punctured dual-space, and therefore rt = rt−1 + 1 by Lemma 4.1.
Using the induction hypothesis and the fact that blog2 tc = blog2 (t− 1)c when t is not a
power of two, we obtain:

rt = rt−1 + 1

= (t− 1)− 2blog2 (t− 1)c+ 1

= t− 2blog2 tc

• When t is a power of two, it cannot be represented as the XOR between preceding coordi-
nates, as for all of them the index of the most significant bit is strictly less than log2 t. By
Lemma 4.1 we obtain that rt = rt−1−1, and using the fact that blog2 tc = blog2 (t− 1)c+1
when t is a power of two we indeed get:

rt = rt−1 − 1

= (t− 1)− 2blog2 (t− 1)c − 1

= t− 2blog2 tc
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Remark 4.1. Using a slight variation of this proof it is possible to construct an upper bound
for the stricter case of r(Sbin,2,0)(WH) (using a proper choice of reference groups It ⊆ [n]), but
for now we are interested with the simpler case of mg →∞.

We can now conclude and prove Lemma 1.2:

Proof of Lemma 1.2. Lemma 4.2 shows an upper bound of 2 for the retention complexity of
WH. Lemma 1.1 tells us that this is also the lower bound for the retention complexity in this
case, and therefore r(Sbin,∞,0)(WH) = 2.

4.2.2. Random LDPC Codes are Asymptotically Hard to Retain

Let G = (L,R,E) be a bipartite multigraph with |L| = n, |R| = m. Associate a distinct
Boolean variable xi with any i ∈ L. For each j ∈ R, let N(j) ⊆ L be the set of neighbors of j.
The jth constraint is Aj(x1, . . . , xn) =

∑
i∈N(j) xi mod 2. The code defined by G is:

C(G) = {x ∈ {0, 1}n | ∀j ∈ [m]Aj(x) = 0}

A random (c, d)-regular LDPC code of length n is obtained by taking C(G) for a random
(c, d)-regular G with n left vertices. Random LDPC codes were first described and analyzed by
[Gal62]. We will show that a randomly chosen LDPC code asymptotically achieves the upper
bound for retention complexity with high probability. Recall Theorem 1.3:

Theorem 1.3 (,). For a proper choice of constants c, d > 0 and sufficiently large n, the retention
complexity of a random (c, d)-regular LDPC code over Fn2 is linear with high probability:

r(Sbin,∞,0)(LDPC) =
w.h.p

Ω(k) (1.16)

Definition 4.1 ((q, µ) code locality, [BSHR05]). A linear space V is (q, µ)-local if every v ∈ V
that is a sum of at least µm basis vectors has d(v) ≥ q.

The following lemma shows that a random LDPC code has (q, µ)-locality with high probability
for a proper choice of parameters:

Lemma 4.3 ([BSHR05], Lemma 3.6). Fix odd integer c ≥ 7 and constants µ, δ, d > 0 satisfying:

µ ≤ c−2

100
; δ < µc; d >

2µc2

(µc − δ)2 (4.14)

Then, for all sufficiently large n, with high probability for a random (c, d)-regular graph G
with n left vertices and m = c

dn right vertices, the corresponding LDPC code C(G) is linearly-
independent, and (δn, µ)-local.

Remark 4.2 (A Proper Choice of Parameters). For our proof of Theorem 1.3, the constants
in (4.14) need be chosen such that δ − 2µc

d ≥ 0.
Such a choice of random code parameters is indeed possible: For example, by fixing c ≥ 7 and

taking µ = c−2

100 , δ = (µc − ε0), d = 8µc2

(µc−δ)2 we get:

δ − 2
µc

d
= µc − ε0 − 2

µc
8µc2

(µc−δ)2
= µc − ε0 −

ε2
0

4c

Which is strictly larger than zero for all 0 < ε0 < 2c

(√
1 + µc

c − 1

)
.
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We now use this to prove Theorem 1.3:

Proof of Theorem 1.3. Fix odd integer c ≥ 7 and constants µ, ε, δ, d > 0 satisfying equation
(4.14) and δ ≥ µc

d . See Remark 4.2 for a specific choice of such constants. Let V be a random
LDPC code of dimension n corresponding to this choice of constants. Assume that n is large

enough to satisfy Lemma 4.3. Assume by contradiction that r0 ≤ n
(
δ − 2µc

d

)
− 1, and the

Collaborative Discovery process lasts until round n. Set t = bδnc − 1.
At the end of round t, the coordinates It ⊆ [n] are disclosed. Denote by n− the number of

times a uniform distribution was predicted by the expert. Using Lemma 4.1, the total retention
accumulated at the end of round t is equal to:

rt = r0 − n− + (t− n−) (4.15)

rt ≥ 0, and therefore n− ≤ t+r0
2 . Using Lemma 4.1 again we, obtain that n− = dim (V�It).

Since the dimensions of a vector space and its dual sum up to t we also get dim
(

(V�It)
⊥
)
≥ t−r0

2 .

This gives us a lower bound for dim
(

(V�It)
⊥
)

.

(V�It)
⊥ consists of vectors v ∈ V ⊥ such that support(v) ⊆ It. The conditions of Lemma 4.3

are satisfied by our choice of constants, and we can apply it to obtain that V ⊥ of the random
code we picked is (δn, µ)-local with high probability, and therefore every v ∈ V ⊥ that is a sum
of at least c

dµn dual basis vectors has d(v) ≥ δn. For t < δn, all the vectors of (V�It)
⊥ are

a sum of c
dµn basis vectors at most, hence dim

(
V ⊥I
)
≤ c

dµn, implying an upper bound for

dim
(

(V�It)
⊥
)

.

Combining the bounds we obtain:

t− r0

2
≤ dim

(
(V�It)

⊥
)
<
c

d
µn (4.16)

For t = bδnc − 1 and r0 ≤ n
(
δ − 2µc

d

)
− 1 we have:

t− r0

2
≥

(δn− 1)−
(
n
(
δ − 2µc

d

)
− 1
)

2
=
c

d
µn (4.17)

Leading to a contradiction, since the lower bound in equation (4.16) must be greater than the

upper bound. From this we get r0 > n
(
δ − 2µc

d

)
, and therefore r0 = Ω(n) = Ω(k).

Appendices

A. Retentive Scoring Appendices

Lemma 2.4 (,). Let D ⊆ Rn such that x,y ∈ D. For every analytic function u : D ×D → R
satisfying the equation

u(x,y)−
n∑
i=1

(yi − xi)
∂u(x,y)

∂xi
= 0 (2.16)

there exist functions α1, . . . , αn : D → R such that:

u(x,y) =

n∑
i=1

αi(y)(yi − xi) (2.17)
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Proof of Lemma 2.4. u(x,y) is analytic in D, and therefore it has a unique representation as a
convergent power series about (y,y):

u(x) =
∞∑

j1,...,j2n=0

cj1,...,j2n

n∏
k=1

(yk − xk)jk
2n∏

k′=n+1

y
jk′
k′ (A.1)

Note that (y − x)∂(y−x)a

∂x = −a(y − x)a for all a ∈ R, and therefore:

n∑
i=1

(yi − xi)
∂

∂xi

n∏
k=1

(yk − xk)jk = −
n∑
i=1

ji

n∏
k=1

(yk − xk)jk (A.2)

Using the above, we obtain for (2.16):

0 = u+
n∑
i=1

(yi − xi)
∂u

∂xi
(A.3)

[Use (A.1) to represent the rightmost term as a power series]

= u+

n∑
i=1

(yi − xi)
∂

∂xi

 ∞∑
j1,...,j2n=0

cj1,...,j2n

n∏
k=1

(yk − xk)jk
2n∏

k′=n+1

y
jk′
k′

 (A.4)

[Derivative operator does not affect the factors that don’t depend on x]

= u+

∞∑
j1,...,j2n=0

cj1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(
n∑
i=1

(yi − xi)
∂

∂xi

n∏
k=1

(yk − xk)jk
)

(A.5)

[Apply the derivative using (A.2)]

= u+

∞∑
j1,...,j2n=0

cj1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(
−

n∑
i=1

ji

)
n∏
k=1

(yk − xk)jk (A.6)

[Use (A.1) to represent the leftmost term as a power series]

=
∞∑

j1,...,j2n=0

cj1,...,j2n

(
1−

n∑
i=1

ji

)
2n∏

k′=n+1

y
jk′
k′

n∏
k=1

(yk − xk)jk (A.7)

If a convergent power series is equal to zero, then all its coefficients must be equal to zero as
well. From (A.7) we obtain:

∀j1, . . . , jn ∈ N : cj1,...,jn

(
1−

n∑
i=1

ji

)
= 0 (A.8)

Therefore cj1,...,jn = 0 when
∑n

i=1 ji 6= 1, and analytic solutions for (2.16) can only contain
linear coefficients of (yi − xi) in their series expansion. Let k ∈ [n]. when jk = 1 we denote
cj1,...,j2n ≡ ck,jn+1,...,j2n . Plug back into the series representation (A.1) to obtain:

u(x) =
n∑
i=1

 ∞∑
jn+1,...,j2n=0

ci,jn+1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(yi − xi) (A.9)

Denoting αi(y) ≡
(∑∞

jn+1,...,j2n=0 ci,jn+1,...,j2n

∏2n
k′=n+1 y

jk′
k′

)
leads to the linear representation

of u in (2.17).
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B. Binary Attributes Appendices

B.1. The Binary Attributes Model

Claim 4.1 (,). Let I ⊆ [n]. For every vector uI ∈ UI :

Pr (UI = uI) = 2− dim (UI) (4.3)

Proof of Claim 4.1. Without loss of generality assume that I = {1, . . . , |I|}, and choose a basis
U = span {ū1, . . . , ūk} which is diagonalized. Each vector in U can be represented as linear
combination of basis elements. By definition, only only the first dim (UI) diagonalized basis
vectors have support in I, and therefore every vector in UI can be written as a linear combination
of the view of the first dimUI basis vectors of U :

∀uI ∈ UI , ∃α1, . . . , αdim (UI) : uI =

dim (UI)∑
i=1

αi(ūi)�I (B.1)

Picking u at random is equivalent to choosing each αi uniformly, or equivalently, pick-

ing
(
α1, . . . , αdim (UI)

)
∼ Uniform

(
{0, 1}dim (UI)

)
. From this correspondence it follows that

Pr (uI) = Pr
(
α1, . . . , αdim (UI)

)
= 2− dim (UI).

Claim 4.2 (,). Let I ⊆ [n] and m ∈ [n] \ I, and assume a vector u ∈ Fn2 has been picked
uniformly at random from a vector space U . Pr (um | uI) is a singleton distribution if and only
if em ∈ U⊥�[n]\I .

Proof of Claim 4.2. When em ∈ U⊥�[n]\I there exists a vector v ∈ U⊥ and I ′ ⊆ I such that
support(v) = {m} ∪ I ′. v is a dual-space vector, and therefore

∑
i∈I′ ui + um = 0. The value

um ∈ {0, 1} is completely determined by the values of uI′ , and therefore Pr (um | uI) is a
singleton distribution.

Conversely, observe that restricting a vector to a subset of coordinates I ⊆ [n] can be viewed
as a linear projection operation PI ≡

∑
i∈I eie

T
i . Let v ∈ U be a vector for which vI = uI . The

set of vectors u′ ∈ U for which u′I = uI is an affine subspace U ′ of U :

U ′ = v + V ′ =
{
v + v′ | v′ ∈ U,PIv′ = 0

}
(B.2)

Note that V ′ is a linear subspace of U , and therefore:(
V ′
)⊥

= span
(
U⊥ ∪ {ei | i ∈ I}

)
(B.3)

Using the assumption that Pr (um | uI) is a singleton distribution, we get that the m-th co-
ordinate is constant in U ′, and therefore P{m}V

′ = 0, and em ∈ (V ′)⊥. denote U⊥ =

span
{
ū⊥1 , . . . , ū

⊥
n−k
}

. Using (B.3) we can write em as a linear combination of spanning set
elements:

em =

|I|∑
i=1

αiei +
n−k∑
j=1

βj ū
⊥
j (B.4)

Restricting the view to coordinates [n] \ I, the terms in the first sum vanish, yielding:

em = P[n]\Iem =

n−k∑
j=1

βjP[n]\I ū
⊥
j (B.5)

We have shown that it’s possible to write em as a linear combination of punctured dual space
elements, hence em ∈ U⊥�[n]\I .
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Claim 4.3 (,). Let U be a linear space over F2
n, and let I ⊆ [n],m ∈ [n] \ I. em ∈ U⊥�[n]\I if

and only if dim (U�I) = dim
(
U�I∪{m}

)
.

Proof of Claim 4.3. Assume a uniform distribution over U , then em ∈ U⊥�[n]\I , if and only if
Pr (um | uI) is a singleton distribution by Claim 4.2.

According to the law of total probability, Pr (um | uI) is a singleton distribution if and only
if the following marginal distributions are equal: Pr

(
uI∪{m}

)
= Pr (uI).

Using Claim 4.1 we obtain that the two probabilites are equal if and only if dim (U�I) =
dim

(
U�I∪{m}

)
.

B.2. Retention Complexity of the Walsh-Hadamard Code

Claim 4.4 (,). Let y(1), . . . , y(m) ∈
(
{0, 1}k \

{
0k
})

.(
m∑
i=1

ey(i)

)
∈WH⊥ ⇐⇒

m∑
i=1

y(i) = 0 (4.11)

Proof of Claim 4.4. By definition,
(∑m

i=1 ey(i)
)
∈ WH⊥ if and only if

(∑m
i=1 ey(i)

)
· u = 0 for

all u ∈WH. For an arbitrary u, let w ∈ {0, 1}k such that u = WH(w). Plug into the definition
of WH and obtain: (

m∑
i=1

ey(i)

)
· u =

m∑
i=1

uy(i)

=
m∑
i=1

w · y(i)

= w ·

(
m∑
i=1

y(i)

)

Observe that the inner product is equal to zero for all u ∈WH if and only if w ·
(∑m

i=1 y
(i)
)

for

all w ∈ {0, 1}k. This happens if and only if
(∑m

i=1 y
(i)
)

= 0, proving our claim.

Claim 4.5 (,).

d
(

WH⊥
)

= 3 (4.12)

Proof of Claim 4.5. By Claim 4.4, the vectors corresponding to the support of each constraint
in WH⊥ must have their XORs equal to zero.

0k /∈
(
{0, 1}k \

{
0k
})

, and therefore there are no constraints of size 1, and we have d
(
WH⊥

)
>

1. Similarly, for all x, y ∈
(
{0, 1}k \

{
0k
})

such that x 6= y we get x + y 6= 0, and therefore

there are no constraints of size 2, and d
(
WH⊥

)
> 2.

Taking x 6= y and z = x + y gives 3 coordinates with corresponding vectors that sum up to
zero, and therefore d

(
WH⊥

)
≤ 3 according to Claim 4.4. Combining the conclusions we obtain

d
(
WH⊥

)
= 3.
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