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Abstract

Nisan [Nis92] constructed a pseudorandom generator for length n, width n read-once
branching programs (ROBPs) with error ε and seed length O(log2 n+ log n · log(1/ε)).
A major goal in complexity theory is to reduce the seed length, hopefully, to the
optimal O(log n+log(1/ε)), or to construct improved hitting sets, as these would yield
stronger derandomization of BPL and RL, respectively. In contrast to a successful
line of work in restricted settings, no progress has been made for general, unrestricted,
ROBPs. Indeed, Nisan’s construction is the best pseudorandom generator and, prior
to this work, also the best hitting set for unrestricted ROBPs.

In this work, we make the first improvement for the general case by constructing a
hitting set with seed length Õ(log2 n + log(1/ε)). That is, we decouple ε and n, and
obtain near-optimal dependence on the former. The regime of parameters in which
our construction strictly improves upon prior works, namely, log(1/ε) � log n, is also
motivated by the work of Saks and Zhou [SZ99] who use pseudorandom generators with
error ε, for length n, width w read-once branching programs, such that w, 1/ε = 2(logn)2

in their proof for BPL ⊆ L3/2.
In fact, we introduce and construct a new type of primitive we call pseudorandom

pseudo-distributions. Informally, this is a generalization of pseudorandom generators in
which one may assign negative and unbounded weights to paths as opposed to working
with probability distributions. We show that such a primitive yields hitting sets and,
for derandomization purposes, can be used to derandomize two-sided error algorithms.
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1 Introduction

Understanding the role that randomness plays in computation is of central importance in
complexity theory. While randomness is provably necessary in many computational set-
tings such as cryptography, distributed computing, and interactive proofs, by now it is
widely believed that randomness adds no computational power to time-bounded nor to
space-bounded algorithms. Surprisingly, proving such a statement for time-bounded al-
gorithms implies circuit lower bounds which seem to be out of reach of current proof tech-
niques [NW94, IKW02, KI04].

On the other hand, there is no known barrier for proving such a statement in the
space-bounded setting. Indeed, while we cannot even rule out a scenario in which ran-
domness “buys” exponential time, the space-bounded setting is much better understood.
Savitch’s theorem [Sav70] already implies that any one-sided error randomized algorithm
can be simulated deterministically with only a quadratic overhead in space. BPL ⊆ L2

can be proved easily through a variant of Savitch’s theorem and also follows from [BCP83].
Nisan [Nis92, Nis94] proved that BPL ⊆ DTISP(poly(n), log2(n)) using pseudorandom
generators. The state of the art result was obtained by Saks and Zhou [SZ99] that build on
Nisan’s work to deterministically simulate two-sided error space s randomized algorithms in
space O(s3/2), thus, establishing that BPL ⊆ L3/2.

There has been much work on the study of derandomizing space-bounded computation
(see [NSW92, ATSWZ00, RR99, Tri08, DSTS17, MRSV17] and references therein). Un-
fortunately, the progress in derandomizing general space-bounded computation halted at
once with the work of Saks and Zhou [SZ99]. Research began to focus on natural restricted
settings and several exciting results were obtained, perhaps most notable is Reingold’s cele-
brated result SL = L [Rei08].

1.1 Pseudorandom distributions for ROBPs

Space-bounded algorithms are typically studied by considering their non-uniform counter-
parts. A length n, width w read-once branching program (ROBP) is a directed graph whose
nodes, called states, are partitioned to n layers, each consists of at most w states, as well as
an additional “start” state. The last layer consists of 2 states called “accept” and “reject”.
From every state but for the latter two, there are two outgoing edges, labeled by 0 and 1, to
the following layer. On input x ∈ {0, 1}n, the computation proceeds by following the edges
according to the labels given by the bits of x starting from the start state. The string x is
accepted by the program if the computation ends in the accept state.

A well-known fact (see, e.g., [AB09], Chapter 14.4.4) is that any space s randomized
algorithm in the Turing model can be simulated by a length n, width w ROBP with n,w =
2O(s). Thus, one approach to derandomize two-sided error space-bounded algorithms is to
construct, in bounded space, a distribution of small support that “looks random” to any
such ROBP. We say that a distribution D on n-bit strings is (n,w, ε)-pseudorandom if for
every length n, width w ROBP, a path (string) that is sampled from D has, up to an additive
error ε, the same probability to end in the accept state as a truly random path. A truly
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random path corresponds to a path picked uniformly at random from the 2n possible paths.
An (n,w, ε)-pseudorandom generator (PRG) is an algorithm ({0, 1}l → {0, 1}n) that takes
in l bits and outputs n bits such that the output distribution (uniform distribution over
the range) is (n,w, ε)-pseudorandom. The seed length of a PRG is the number of random
bits it requires to generate the distribution, that is, l. Informally, we call the PRG explicit,
if each output bit can be computed efficiently given the input and the index, that is, in
O(log n)-space.

Derandomizing using an explicit pseudorandom distribution is straightforward. By it-
erating over all the paths in the support of the distribution and calculating the fraction of
those paths that end in the accept state, one obtains an ε-approximation to the probability of
reaching the accept state while taking a truly random path in the program. The support size
being small (or, equivalently, the seed being short) allows one to perform such an iteration
in bounded space.

One can prove the existence of an (n,w, ε)-PRG with seed length O(log(nw/ε)). The
proof is non-constructive and hence, the PRG isn’t efficient. In his seminal paper,
Nisan [Nis92] gave an explicit construction of a PRG with seed length O(log n · log(nw/ε)).
Setting n,w = 2Θ(s) and ε to a small constant, the seed length is O(s2) which yields de-
randomization with quadratic overhead in space. Saks and Zhou [SZ99] applied Nisan’s
generator in a far more sophisticated way than the näıve derandomization so to obtain their
result (see Section 1.4).

While pseudorandom distributions are suitable for derandomizing two-sided error ran-
domized algorithms, hitting sets are suitable for one-sided error. An (n,w, ε)-hitting set is
a set of n-bit strings such that for every length n, width w ROBP, whenever a truly random
path ends in the accept state with probability at least ε, then there exists a path in the set
that ends at the accept state. Hitting sets can be used to derandomize RL (and coRL).
The best known hitting set for width w > 3 is in fact Nisan’s PRG. In particular, the same
seed length is required and RL ⊆ L3/2 is the strongest known inclusion. Even for the de-
ceptively simple looking problem of constructing hitting sets for width w = 3 ROBPs, no
progress was made for nearly two decades, until the works of [ŠŽ11, GMR+12]. In particular,
Gopalan et al. [GMR+12] construct near-optimal hitting sets in that setting.

There has been much success in constructing PRGs for restricted types of ROBPs
(see, e.g., [INW94, NZ96, RTV06, BPW11, Ste12, BPW12, KNP11, KNP11, De11, IMZ12,
GMR+12, GMRZ13, RSV13, SVW14, GV17] and references therein) such as permutation
and, more generally, regular ROBPs [BRRY14, BV10]. These are programs in which every
state but for start, accept and reject, has in-degree 2.

1.2 Pseudorandom pseudo-distributions for ROBPs

In this work, we obtain the first improved constructions of hitting sets for unrestricted ROBPs
(for any width w) by constructing hitting sets with near-optimal dependence on ε (pre-

cisely, the seed length is O
(

log(w/ε) log log(w/ε) + log2(n) · log
(

log(1/ε)
logn

)
+ log n · logw

)
).

In fact, we introduce and construct a new type of primitive we call a pseudorandom pseudo-
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distribution 1 that, informally speaking, lies between hitting sets and pseudorandom distri-
butions. We find this notion to be of independent interest.

Definition 1.1 (Pseudorandom pseudo-distributions). Let ρ1, . . . , ρ2s ∈ R and p1, . . . , p2s ∈
{0, 1}n. The sequence D̃ = ((ρ1, p1), . . . , (ρ2s , p2s)) is an (n,w, ε)-pseudorandom pseudo-
distribution if for every length n, width w ROBP, the sum of all ρi’s for which the respective
paths pi end in the accept state is an ε-approximation to the probability of ending at the
accept state by taking a truly random path in the program.

We stress that Definition 1.1 allows the ρi’s to take both positive and negative values.
These values are not necessarily bounded by 1 in absolute value, nor by any constant for
that matter, and they do not necessarily sum up to 1. Indeed, in our construction, it is
possible that |ρi| = poly(nw/ε). Nevertheless, the definition requires that the numbers
cancel out nicely so that summing the ρi’s of the respective paths that arrive to the accept
state yields an ε-approximation for the probability of arriving to the accept state by taking
a truly random path (and, in particular, the sum is a number in [−ε, 1 + ε]). An (n,w, ε)-
pseudorandom pseudo-generator (PRPG) is an algorithm ({0, 1}l → R× {0, 1}n) that takes
in l bits and outputs a real number and an n-bit string such that the output distribution
(sequence achieved by iterating over all l-bit inputs) is a (n,w, ε)-pseudorandom pseudo-
distribution. Informally, we call the PRPG explicit, if each output bit (and the real number)
can be computed efficiently given the input and the index, that is, in O(log n)-space2.

Pseudorandom pseudo-distributions yield hitting sets. Observe that, if one simply
ignores the ρi’s, and considers the set of paths {p1, . . . , p2s} in an (n,w, ε)-pseudorandom
pseudo-distribution, one obtains an (n,w, ε′)-hitting set for any ε′ > ε. Indeed, consider a
program in which the probability to reach the accept state is at least ε′. Then, the sum of
ρi’s which correspond to paths pi ending in the accept state is at least ε′ − ε > 0. Surely
then, at least one path pi ends in the accept state.

Pseudo-distributions are as good as distributions for derandomizing BPL. By
the above, a pseudorandom pseudo-distribution suffices to derandomize one-sided error ran-
domized algorithms. In fact, more is true. While D̃ is not a distribution per se, it is as good
as such for the purpose of derandomizing two-sided error randomized algorithms, at least
when using the näıve derandomization method described above. Indeed, the straightforward
derandomization using a pseudorandom (proper) distribution, which sums the probability
mass of the relevant paths, works just as well for pseudo-distributions as one can sum up
the ρi’s which, in some sense, generalize the probability mass. Of course, the space require-
ment now depends on

∑
i |ρi| (also assuming there’s an explicit PRPG corresponding to the

pseudo-distribution).

1The term “pseudo-distribution” is used in different contexts to mean different things, all under the
general idea that the object at hand shares some desired properties with a “proper” distribution. The
closest research field in which the term pseudo-distributions is used (with a different meaning than ours) is
Sum of Squares. However, we do not believe this will cause any confusion.

2Our construction is Õ(log2(n) + log(n) log(w) + log(1/ε))-computable.
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1.3 Main result

The main contribution of this work is an explicit construction (computable in Õ(log2 n +
log n · logw + log(1/ε)) space) of a pseudorandom pseudo-distribution with near-optimal
dependence on ε. This, in particular, yields the first improved construction of hitting sets
for unrestricted ROBPs.

Theorem 1.2 (Main result). For all integers n,w ≥ 1 and 0 < ε < 1/n, there exists an
explicit (n,w, ε)-pseudorandom pseudo-distribution with seed length

Õ (log(n) log(nw) + log(1/ε)) .

In particular, for w = n the seed length is Õ(log2 n+ log(1/ε)).

See Theorem 4.3 for the full statement and a discussion on the explicitness of our construc-
tion. Consider, for simplicity, the setting where w = n. Further, for ease of discussion, ignore
double-logarithmic factors. Recall that Nisan’s generator has seed length O(log n · log(n/ε))
whereas the optimal seed length is O(log(n/ε)). That is, the problem is all about “shav-
ing off” the redundant log n factor. In Theorem 1.2, we are able to shave off this factor
from the log(1/ε) term and obtain near-optimal dependence on ε in the setting of pseudo-
random pseudo-distributions (and, thus, for hitting sets). Whereas the result doesn’t give
any better derandomization of BPL or RL, it strictly improves upon prior works when
log(1/ε) = ω(log n), a regime of parameters that is well-motivated by the work of Saks and
Zhou [SZ99] as discussed in Section 1.4.

At a very high level, the underlying idea behind our construction is to work with a rough
approximation for the probability of acceptance together with a sequence of finer and finer
correction terms, which add up to yield the desired error guarantee. Generating and main-
taining these correction terms require the flexibility of working with negative, unbounded,
weights. In Section 2, we give a detailed overview of the proof of Theorem 1.2 in which
we emphasize the main ideas and new techniques. We hope that our techniques can find
further applications for constructing hitting sets and pseudorandom generators for other
computational models.

1.4 Towards BPL ⊆ L4/3

Recall that the seed length of Nisan’s PRG is O(log n · log(nw/ε)). In particular, even for
constant width w and constant error guarantee ε, the seed length is O(log2 n) which is the
best known result even in this setting, and is perhaps the most identified aspect of Nisan’s
PRG. Nevertheless, in their seminal paper, Saks and Zhou [SZ99] showed how to apply
Nisan’s generator in a sophisticated way so as to prove BPL ⊆ L3/2. In this section, we give
a very high-level sketch of their idea and lay down a research program towards improving
the exponent to 4/3. Theorem 1.2 accomplishes one step in our program. We stress that
the description we give here is very sketchy and the reader is referred to [SZ99] for a formal
treatment.
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1.4.1 A sketch of Saks-Zhou’s argument

It can be easily seen, also discussed in Section 2, that derandomizing space O(s) randomized
algorithms is equivalent to approximating the matrix M2s for a given 2s × 2s stochastic
matrix M . More generally, a (2r, 2s, ε)-PRG can be used to approximate M2r for a given
2s × 2s stochastic matrix M [SZ99].

Write s = r1r2 for r1, r2 integers to be chosen later on. A first attempt at approximating
M2s is to start by computing N1–an ε-approximation of M2r1 . Then, computing N2 which
is an approximation for N2r1

1 ≈ M22r1 and so on for r2 steps. Consider a (2r1 , 2s, ε)-PRG.
It can be shown that most seeds to the PRG yield an ε-approximation for M2r1 . One can
then find a “good” seed by iterating over all seeds and test each against the given matrix
M . A good seed can then be stored in memory. What Saks and Zhou showed is that by
making certain random perturbations to the approximating matrix N1, one can break the
correlation the matrix has with the seed that was used to compute it. Thus, the same seed
can be used throughout all r2 recursive levels.

In terms of parameters, one must set ε = 2−s, and O(s) fresh random bits are required for
the perturbations done in each of the r2 recursive levels. Thus, if we denote the seed length
of the (2r1 , 2s, 2−s)-PRG by d, the total number of random bits used to approximate M2s is
O(d + r2s). By using Nisan’s (2r1 , 2s, 2−s)-PRG, which has seed length d = O(r2

1 + r1s) =
O(r1s), one needs a seed of length O((r1 + r2)s) for approximating M2s . By setting r1 =
r2 =

√
s, one obtains a randomized algorithm with seed length O(s3/2) for approximating

M2s . This algorithm can then be derandomized by iterating over all seeds and taking the
average of the results.

1.4.2 On the seed length dependence on ε and w

In Theorem 1.2, we gave a construction of a pseudorandom pseudo-distribution with seed
length Õ(log(n) log(nw)+log(1/ε)). For ease of readability we ignore the double-logarithmic
factors which anyhow do not make a significant difference in this discussion. We now show
that if one decouples the width w, on top of ε, from n, to get a PRG of seed length O(log2 n+
log(w/ε)), one can apply3 the Saks-Zhou scheme to obtain a stronger derandomization of
BPL. By plugging r1, s, the seed length of the generator is O(r2

1 + s) and so the total seed
length required by the Saks-Zhou scheme is of the order of r2

1 + s+ r2s = r2
1 + s+ s2/r1. One

can then set r1 = s2/3 to get seed length s4/3 and deduce BPL ⊆ L4/3. In fact, decoupling
ε and w from n, even at some cost, would yield some improvement in derandomizing BPL.
In particular, a PRG with seed length O(log2 n+ logc(w/ε)) would yield BPL ⊆ Lmax(4/3,c).

To summarize, even without improving upon the dependence of the seed length on n,
one can obtain improved derandomization by decoupling both w, ε from n in the seed length
of the PRG. In Theorem 1.2, we obtained the desired improvement for ε in the setting
of pseudorandom pseudo-distributions, and we leave the task of doing the same for ε, w

3Assuming the PRG can be modified to have certain similar properties as Nisan’s generator; such as in
[Arm98].
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in the setting of PRGs to future research. We stress that, unlike the näıve method of
derandomization, the Saks-Zhou scheme does not work as it is with pseudo-distributions.

2 Proof Overview

Unfortunately, our construction is fairly involved and the analysis requires a significant
amount of work. To guide the reader through the formal proof, in this section we give an
informal overview of our construction and its analysis. This section is not required for the
sequel and can be skipped, though we believe the informal manner in which it is written and
the discussions it contains are of value.

We start this section by presenting the well-known reduction from the problem of con-
structing PRGs for ROBPs to the problem of sparsifying matrix product. Then, in Sec-
tion 2.2, we rederive Nisan’s result via samplers rather than using hash functions as was
done originally [Nis92], expander graphs [INW94], or seeded extractors [RR99]. While not
improving upon previous works, in this section we present the notion of a sampler [BR94],
which plays a key role in our construction, and show how it can be used for constructing
PRGs. In Section 2.3, we introduce and motivate the idea of working with differences, or
delta, of samplers. This discussion, even being very informal, should be helpful in guiding
the reader through the following sections. In Section 2.4 we introduce the notion of a matrix-
bundle sequence (MBS) and its smallness; define multiplication rules for MBSs in Section 2.5
and Section 2.6, and proceed from there to describe our construction and its analysis.

2.1 The reduction to sparsifying matrix product

It is folklore that the problem of constructing PRGs for ROBPs can be reduced to the problem
of sparsifying matrix product or, more precisely, the product of matrices when represented
in a certain way. To describe this reduction, consider a length n, width w ROBP. The
transition between a pair of consecutive layers Pt,Pt+1 in the program can be represented as
the average of two w×w zero-one matrices Mt = (M0

t +M1
t )/2, where (M0

t )i,j = 1 if and only
if the edge labeled by 0 that is going out of state i in layer t ends in state j of layer t+1. M1

t

is similarly defined with respect to edges labeled by 1. Note that for every t, the matrix Mt

is stochastic. Thus, Mt represents a single step from layer t to t+1 when the bit is uniformly
distributed over {0, 1}. Mstart,accept represents the acceptance probability when traversing a
truly random path in P . In these terms, the goal is then to approximate the matrix product
M = M1M2 · · ·Mn in bounded space. More precisely, given indices i, j ∈ [w] as inputs and
access to any entry of the matrices, one would like to compute an ε-approximation to Mi,j.

Slightly deviating from previous works, the most suitable measure of approximation for
our construction is obtained by using the infinity norm. The infinity norm of a w×w matrix
A, is defined by ‖A‖∞ = maxi∈[w]

∑w
j=1 |Ai,j|. We say that two matrices A,B are ε-close,

or that A ε-approximates B, if ‖A − B‖∞ ≤ ε. As with any norm, ‖ · ‖∞ is sub-additive,
namely, ‖A + B‖∞ ≤ ‖A‖∞ + ‖B‖∞. We make use of two further properties of the infinity
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norm. First, ‖ · ‖∞ is sub-multiplicative, namely, ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. Second, ‖A‖∞ = 1
for any stochastic matrix A.

Now, clearly, one can expand

M = 2−n
n∏
t=1

(M0
t +M1

t ) = E
r∼{0,1}n

n∏
t=1

M rt
t .

Note that M rt
t (i, j) is 1 if there is an edge from ith vertex of layer Pt to jth vertex of layer

Pt+1 labelled rt. Therefore, the RHS can be thought of as taking all paths in the ROBP,
namely, one for each choice of r ∈ {0, 1}n. A productive point of view for the construction
of PRGs for ROBPs is that of sparsifying the above product such that M is ε-approximated
by Er∼H

∏n
t=1 M

rt
t , ending up with a small set of paths H ⊆ {0, 1}n to average on.

Firstly, we introduce some notation and give intuition for a recursive sparsification pro-
cess. Let A = (A1, . . . , A2s) be a sequence of w × w stochastic matrices. From here on, all
matrices in this section are of order w × w. The matrix that is realized by A is given
by 〈A〉 = Ei [Ai]. Similarly, let B = (B1, . . . , B2s) and 〈B〉 = Ej [Bj]. Assume that

〈A〉 εA-approximates some matrix of interest Ã and 〈B〉 εB-approximates B̃ (such that

‖Ã‖∞, ‖B̃‖∞ ≤ 1). We think of s as the complexity of the “representation” and would like

to keep it small. If one wishes to approximate the product ÃB̃, the natural approach would
be to consider the product of approximations 〈A〉〈B〉 = Ei,j∼[2s] AiBj. Indeed, using the
properties of ‖ · ‖∞, we have that

‖ÃB̃ − 〈A〉〈B〉‖∞ = ‖ÃB̃ − 〈A〉B̃ + 〈A〉B̃ − 〈A〉〈B〉‖∞
≤ ‖ÃB̃ − 〈A〉B̃‖∞ + ‖〈A〉B̃ − 〈A〉〈B〉‖∞
≤ ‖Ã− 〈A〉‖∞‖B̃‖∞ + ‖〈A〉‖∞‖B̃ − 〈B〉‖∞
≤ ‖Ã− 〈A〉‖∞ · 1 + 1 · ‖B̃ − 〈B〉‖∞
≤ εA + εB. (2.1)

Thus, taking the product of the approximations 〈A〉, 〈B〉 yields a very good approximation
guarantee. However, taking this product is costly in terms of representation as it doubles
the complexity of the representation from s to 2s, that is, the expectation is over 22s terms.
To reduce the number of terms, we want to sparsify the product of the two matrix represen-
tations.

This approach was taken by many previous works, either implicitly or explicitly us-
ing hash functions [Nis92, Nis94], expander graphs [INW94, RV05], and seeded extrac-
tors [NZ96, RR99, BRRY14, Arm98]. We are going to describe such derandomization based
on samplers. Besides being a natural perspective, we work with samplers because, for our
improved construction, we require flexibility that we only know how to obtain using sam-
plers (see Section 2.5.1 for details). Interestingly enough, though, the constructions of the
samplers we make use of are based on expander graphs and seeded extractors. In the next
section we rederive Nisan’s result [Nis92] via samplers. We do so mainly for preparing the
ground for our improved construction that follows.
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2.2 Deriving Nisan’s result via samplers

In this section, we show, on a high level, that a product of n w × w stochastic matrices
can be approximated to an error of ε by a set of 2O(log2(n)+log(n) log(w/ε)) many products (with
each matrix being 0-1 stochastic) using the method of sparsification. This also gives Nisan’s
PRG through observations made in the last section. Informally, a sampler is a randomized
algorithm that, with high probability over its randomness, yields a good approximation for
the expectation of any bounded function by querying the latter on a small number of points.
A sampler has two parameters: the query complexity that determines how many queries
are required by the sampler, and its randomness complexity, which is the number of truly
random bits required for the sampling. An averaging sampler is a special type of sampler
where the randomness is only used to select the points on which to query the function,
independently of the function being considered. Only then the function is queried, and the
output is the average of the corresponding values.

In the following definition, and throughout the paper, we use the graph-theoretic per-
spective of averaging samplers and use the term sampler instead of an averaging sampler.
More on samplers can be found in the excellent survey by Goldreich [Gol11] and in Vadhan’s
excellent monograph [Vad11].

Definition 2.1 (Samplers [BR94]). A left-regular bipartite graph G = (L,R,E) is an (ε, δ)-
sampler if for every function f : R → [0, 1], for all but δ-fraction of vertices v ∈ L it holds
that ∣∣∣ E

i∼Γ(v)
[f(i)]− E

i∼R
[f(i)]

∣∣∣ ≤ ε.

Here Γ(v) is the set of neighbors of v in G. The left-degree of G is called the degree of the
sampler.

Observe that given a graph G as in Definition 2.1, the randomized algorithm that per-
forms the sampling process simply uses its randomness to select a vertex v ∈ L uniformly at
random, and then outputs the average Ei∼Γ(v) f(i).

Now that samplers have been defined, we show how they can be used to sparsify matrix
product or, more precisely, the product of the representations of the respective matrices. Let
A = (A1, . . . , A2s), B = (B1, . . . , B2s) be as before. Recall, ∀i Ai, Bi are w × w stochastic
matrices. Given a left-regular bipartite graph G = ([2s], [2s], E) with degree 2d, define the
sequence

A ◦G B = C = (Ci,j)i∈[2s],j∈[2d]

as follows: for i ∈ [2s] and j ∈ [2d], Ci,j = AiBΓ(i,j), where Γ(i, j) denotes the j’th neighbor
of vertex i in G. Note that Ci,j are all stochastic. In particular, they are 0-1 if Ai and Bj

are 0-1 (that is, all the entries are either 0 or 1). We now prove

Lemma 2.2. Let A and B be sequence of w×w stochastic matrices as defined above. Let G be
as above and 0 < ε, δ < 1. If G is an (ε, δ)-sampler then ‖〈A ◦G B〉− 〈A〉〈B〉‖∞ ≤ w2(ε+ δ).
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Proof. Note that

〈C〉 = E
i∼[2s],j∼[2d]

[Ci,j] = E
i∼[2s]

[
Ai E

j∼Γ(i)
Bj

]
.

Therefore, for every fixed α, β ∈ [w],

〈C〉α,β =
w∑
γ=1

E
i∼[2s]

[
(Ai)α,γ E

j∼Γ(i)
(Bj)γ,β

]
.

For a fixed γ ∈ [w], consider the function fγ,β : [2s]→ [0, 1] that is given by fγ,β(j) = (Bj)γ,β.
Note that the range of fγ,β is indeed [0, 1] as Bj are all stochastic matrices. Define

εγ,β(i) = E
j∼Γ(i)

[fγ,β(j)]− 〈B〉γ,β.

Informally, as 〈B〉γ,β = Ej∼[2s] [fγ,β(j)], the quantity εγ,β(i) measures the quality of the
approximation for the function fγ,β from the point of view of vertex i, that is, when the
points are sampled using the neighborhood of i. We have that

〈C〉α,β =
w∑
γ=1

E
i∼[2s]

[(Ai)α,γ(〈B〉γ,β + εγ,β(i))]

=
w∑
γ=1

〈A〉α,γ〈B〉γ,β +
w∑
γ=1

E
i∼[2s]

[(Ai)α,γεγ,β(i)]

= (〈A〉〈B〉)α,β +
w∑
γ=1

E
i∼[2s]

[(Ai)α,γεγ,β(i)].

As Ai are all stochastic, for every i ∈ [2s] we have that

|〈C〉α,β − (〈A〉〈B〉)α,β| ≤
w∑
γ=1

E
i∼[2s]

[|(Ai)α,γ| |εγ,β(i)|]

≤
w∑
γ=1

E
i∼[2s]

|εγ,β(i)|.

As G is an (ε, δ)-sampler, for all γ, for all but δ-fraction of i ∈ [2s], it holds that |εγ,βs(i)| ≤ ε
and so

|〈C〉α,β − (〈A〉〈B〉)α,β| ≤ w(ε+ δ).

The lemma follows as the above bound holds for every α, β.

Equation (2.1) and Lemma 2.2 readily imply that if 〈A〉 is an εA-approximation for some

matrix Ã of interest and 〈B〉 εB-approximates B̃ then

‖〈A ◦G B〉 − ÃB̃‖∞ ≤ ‖〈A ◦G B〉 − 〈A〉〈B〉‖∞ + ‖〈A〉〈B〉 − ÃB̃‖∞
≤ εA + εB + w2(ε+ δ). (2.2)
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Thus, one pays an additional error of w2(ε + δ) in the resulting approximation, compared
to taking the actual product, when using the sparsified product parameterized by the (ε, δ)-
sampler G. The advantage, however, is that now the expectation is over way less that 22s

terms as indeed A ◦G B is a sequence of length 2s+d (rather than 22s), where 2d is the degree
of the sampler.

It is now a question of how the degree of a sampler relates to the parameters ε, δ. It
turns out that, based on expander graphs and, in particular, Ramanujan graphs, one can
construct an (ε, δ)-sampler with degree O(ε−2δ−1) [GW97]. As ε, δ play the same role in the
bound that was derived in Lemma 2.2 and the degree has roughly the same dependence on
ε, δ (none of which is the case in our improved construction as discussed in Section 2.5) we
set ε = δ and consider a sampler of degree O(δ−3) to illustrate Nisan’s construction.

2.2.1 Going from 2 to n matrices

To approximate the product of n stochastic matrices (M1,M2, ...,Mn), one can apply recur-
sion. Let M[i,j] represent the product of matrices Mi,Mi+1, ...Mj. Let A be an approximation
of M[1,2r] and B be an approximation of M[2r+1,22r], then 〈A ◦G B〉 gives an approximation
of M[1,22r]. We iterate the process for log(n) levels to get an approximation of product
of n matrices. If we denote the approximation guarantee for multiplying 2r matrices by
ε(r) then Equation (2.2) yields the recursive relation ε(r) = 2ε(r − 1) + 2w2δ, and so
ε(r) = O(2rw2δ). Further, if one denotes by s(r) the complexity of the representation at
level r, that is the expectation is over 2s(r) terms, one has s(r) = s(r − 1) + O(log(1/δ)),
yielding s(r) = O(r log(1/δ)). If ε′ is the approximation guarantee one is aiming for, one
must set δ = O(2−rε′/w2) which yields complexity s(r) = O(r2 + r log(w/ε′)). Plugging
r = log n, the depth of the recursion, we rederive Nisan’s result, namely, the seed length of
the respective PRG, is O(log n · log(nw/ε)). The explicitness of the PRG (computability in
at least O(log n · log(nw/ε)) space) follows from the log-space computability (log in the size
of the bipartite graph of the sampler) of the neighbourhood function of the sampler.

We remark that by using the samplers that are constructed via expander graphs, the
construction above is in fact exactly the one introduced in [INW94], though the analysis is
conceptually different. Building on the notations and ideas presented so far, in the follow-
ing section we significantly deviate from existing ideas and start to describe our improved
construction.

Before proceeding further, we observe that from the way in which one sparsifies matrix
product, it is possible to obtain a description of the pseudorandom distribution or, equiva-
lently, the PRG. Thus, throughout the paper we only consider sparsifying matrix products
and do not explicitly define the induced pseudorandom pseudo-distribution for that mat-
ter. We find this point of view far more suitable for our construction and its analysis. We
point out that the construction stated space complexity follows from the space complexity
guaranteed by the samplers that we use. We elaborate more on the corresponding PRPG in
Section 9.2.
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2.3 Delta of samplers–a preliminary discussion

By inspecting the construction from the previous section, one can see that the reason the
seed length ended up being O(log n · log(nw/ε)) is that we had to set δ so low so as to
guarantee that the accumulation of errors from all n products will not exceed ε. The main
conceptual novelty of our construction is in working with differences, or delta, of samplers.
We motivate this reasoning in the following informal discussion.

Assume, as before, that A = (A1, . . . , A2s) and B = (B1, . . . , B2s) are sequences such that

〈A〉, 〈B〉 are ε-approximations for some matrices of interest Ã, B̃, respectively. For an integer
d, let Gd = ([2s], [2s], Ed) be an (ε, δ)-sampler set with ε = δ = 2−d. Recall that the degree of
Gd is 2O(d). In the previous section, we used an expensive choice of d = O(log(wn/ε)) , k.
Instead, let’s try to “break down” the matrix that is realized by this expensive product by
suggestively writing 〈A ◦Gk B〉 as

〈A ◦Gk B〉 =〈A ◦Gg B〉+
〈A ◦G2g B〉 − 〈A ◦Gg B〉+
〈A ◦G4g B〉 − 〈A ◦G2g B〉+

...

〈A ◦Gk B〉 − 〈A ◦Gk/2 B〉, (2.3)

where g � k is some parameter such that k/g is conveniently a power of two. Consider now
a summand in this telescopic sum, say, 〈A ◦G2g B〉− 〈A ◦Gg B〉. We are going to define a new
multiplication rule between matrix representations (that doesn’t approximate the product),
which for now we denote by ◦G2g−Gg

4, that has the following three properties:

Property 1 (Linearity). First, our product is linear with respect to the samplers by which
it is parameterized, namely,

〈A ◦G2g−Gg B〉 = 〈A ◦G2g B〉 − 〈A ◦Gg B〉.

That is, the matrix that is realized by the new product gives the desired difference.

Property 2 (Smallness is stored). The resulted object, A ◦G2g−Gg B, has “smallness” g
and, more generally, for integers D > d, A ◦GD−Gd B has smallness d such that: if one
considers the product

(A ◦GD−Gd B) ◦GD′−Gd′ C

for some matrix representation C, the smallness of the product is d + d′. That is,
smallness is being stored in the matrix representation and then added back when
taking future products. In fact, the product will also inherit the smallness of the right
operand. That is,

(A ◦GD−Gd B) ◦GD′−Gd′
(
C ◦GD′′−Gd′′ D

)
4Use of delta of samplers in the approximation is the reason we get a pseudorandom pseudo-distribution

instead of a PRG.
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has smallness d+ d′ + d′′ 5, and so forth.

Property 3 (Smallness implies small norm). If A has smallness s then ‖A‖∞ ≤ 2−Ω(s).

Using the new product rule, an instructive way of thinking of Equation (2.3) is by rewriting
it as

〈A ◦Gk B〉 =〈A ◦Gg B〉+
〈A ◦G2g−Gg B〉+
〈A ◦G4g−G2g B〉+

...

〈A ◦Gk−Gk/2 B〉, (2.4)

and thinking of A ◦Gg B as a “rough approximation” of the product we care about (rough
since g � k), which have 0 smallness. The object A ◦G2g−Gg B is the first “correction term”
having smallness g, A ◦G4g−G2g B the second correction term having smallness 2g, and so
forth.

In general, for D > d, the representation A ◦GD−Gd B is going to “cost” D addition to
the number of terms in the “expectation” and have smallness d. Setting D = 2d, as we did
in Equation (2.3), guarantees that in some intuitive sense, up to a constant factor, what is
being paid for is invested. Thus, as you increase the number of terms in the sparsification
of the product, the terms become smaller and this investment by using a sampler does not
go to waste as it is somehow stored as smallness in the object. And, matrices with large
smallness can be discarded without much affect on the total error. Thus, intuitively, we
get a Õ(log(1/ε)) dependence as any more investment makes the terms small enough to be
discarded in the process of recursive sparsification.

2.4 How to “store” smallness

In the construction presented in Section 2.2, a matrix was represented by a “one dimensional”
sequence A = (A1, . . . , A2s) of w×w stochastic matrices, and the matrix that was represented,
or realized, by this representation was defined by 〈A〉 = Ei[Ai]. In order to “store” smallness,
we first need to devise a more subtle representation of matrices. This will require a fair
amount of preparation, and such representation is given in Section 2.7. To begin, in this
section we define the notions of matrix bundles, matrix bundle sequences, and smallness.

Definition 2.3 (Matrix bundles). For an integer ` ≥ 0, an `-matrix bundle A is a sequence

A = ((α1, A1), . . . , (α2` , A2`)),

where the αi’s are real numbers (that are not necessarily bounded, and can take both positive
and negative values) and the Ai’s are w×w stochastic matrices6. The matrix that is realized

5We don’t achieve exactly the sum but with the right parameters, the smallness is effectively this.
6For the purpose of derandomizing ROBPs or randomized log-space, all Ai’s are 0-1 matrices.
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by A is defined by 〈A〉 =
∑2`

i=1 αiAi. We extend any matrix norm ‖ · ‖ to matrix bundles by
letting ‖A‖ = ‖〈A〉‖. We refer to the numbers α1, . . . , α2` as the coefficients of A.

Definition 2.4 (Matrix bundle sequences (MBSs)). Let dout, din ≥ 0 be integers. A (dout, din)-
matrix bundle sequence (MBS) A is a sequence of 2dout number of din-matrix bundles A =
(A1, . . . ,A2dout ). The matrix that is realized by A is defined by 〈A〉 = Ei∼[2dout ] 〈Ai〉. We
extend any matrix norm ‖ · ‖ to MBSs by letting ‖A‖ = ‖〈A〉‖. We refer to the union of the
coefficients of A1, . . . ,A2dout as the coefficients of A.

A matrix bundle sequence is not going to be the final representation of a matrix in our
construction but rather it will be used to represent a “piece” of the matrix with some small-
ness, alluded to in the above discussion as a correction term or the first rough approximation
term. Before presenting the final representation, we need to understand MBSs better. We
start by giving the formal definition of “smallness”, which we already informally discussed
above. In the following section, we define multiplication rules for MBSs and show their
interplay with smallness.

Definition 2.5 (Smallness). Let A = (A1, . . . ,A2dout ) be a (dout, din)-MBS. The smallness of
A, denoted by σ(A), is defined by

σ(A) = − log2 E
i∼[2dout ]

‖Ai‖2
∞.

It is straightforward to show that if σ(A) ≤ s then ‖A‖∞ ≤ 2s/2 (see Claim 5.6). Thus,
if an MBS has a sufficiently large smallness, it can be discarded with low cost in error.

2.5 Multiplication rules for MBSs

In Section 2.2, we defined the multiplication rule ◦G between “one-dimensional” sequence
of matrices. We now turn to define a multiplication rule for MBSs. In fact, we are going
to introduce two types of multiplication rules which we refer to as outer-multiplication and
inner-multiplication (for the actual construction, we need to consider four multiplication
rules as we need to worry about the order in which we multiply matrices. However, in this
informal proof overview, we allow ourselves to be somewhat informal regarding this point).
We define these multiplication rules to ensure that the smallness is stored while keeping
the number of the matrices in the representation in check. The outer-multiplication is an
extension of the multiplication rule used in Section 2.2 whereas the inner-multiplication
is carefully engineered to work with smallness. In the next section, we describe how the
multiplication rule is defined when parameterized by a delta of samplers.

For the description of both multiplication rules, let A be a (dout(A), din(A))-MBS and
B a (dout(B), din(B))-MBS. Let G = ([2dout(A)], [2dout(B)], E) be a left-regular bipartite graph
with left-degree 2d. Note that G may be unbalanced. Indeed, the flexibility of working with
samplers for which dout(A)� dout(B) is pivotal for our construction.
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The outer-multiplication denoted by A◦G B, is the (dout(A) + d, din(A) + din(B))-MBS
C = (Ci,j)i∈[2dout(A)],j∈[2d] that is defined as follows. For every i ∈ [2dout(A)] and j ∈ [2d], Ci,j is
the (din(A) + din(B))-matrix bundle that is obtained by taking all products of matrices, and
of the respective coefficients, from the matrix bundles Ai and BΓ(i,j) (the formal definition is
given in Definition 6.1). Note that for every i, j,

〈Ci,j〉 = 〈Ai〉〈BΓ(i,j)〉.

The inner-multiplication denoted by A•G B is a (dout(A), din(A) + din(B) + d)-MBS
C = (Ci)i∈[2dout(A)], where Ci is the (din(A) + din(B) + d)-matrix bundle that is obtained by
taking the product of all matrices in the matrix bundle Ai with all the matrices in all of the
matrix bundles in {Bj | j ∈ Γ(i)}, where the respective coefficients are multiplied accordingly
and then divided by 2d to yield

〈Ci〉 = 〈Ai〉 E
j∼Γ(i)

〈Bj〉.

The formal definition is given in Definition 6.8. Note that when applying the outer-
multiplication, we pay the degree of the sampler in dout, whereas the inner-multiplication
increases din by the degree. The fact that we need to normalize by 2−d is one reason we need
the flexibility of maintaining arbitrary coefficients in the definition of matrix bundles.

By adapting the proof of Lemma 2.2, we can prove that both the inner and outer multi-
plication rules, when parameterized by a good sampler, approximate the product.

Lemma 2.6. [Idealized] Let 0 < ε, δ < 1. Let A and B be MBSs as defined above. If G is
an (ε, δ)-sampler then

‖〈A◦G B〉 − 〈A〉〈B〉‖∞ ≤ w2(ε+ δ),

‖〈A•G B〉 − 〈A〉〈B〉‖∞ ≤ w2(ε+ δ).

For a formal statement and its proof see Lemma 6.13. The key property of the mul-
tiplication rule •G is that it preserves the smallness of both MBSs it operates on, when
parameterized with a good enough sampler G. The following lemma is an idealized version
of an assertion we can actually make (see Lemma 6.14 for the formal statement).

Lemma 2.7. [Idealized] Let A be a (dout(A), din(A))-MBS and let B be a (dout(B), din(B))-
MBS. Let 0 < ε, δ < 1. Let G = ([2dout(A)], [2dout(B)], E) be an (ε, δ)-sampler with

ε ≤ 2−σ(B),

δ ≤ 2−σ(A)−σ(B). (2.5)

Then, σ(A•G B) ≥ σ(A) + σ(B).

We prove a weaker variant of Lemma 2.7 in Section 2.5.2. Before, in Section 2.5.1, we
give some remarks on the asymmetry between the roles that ε and δ play in the lemma, and
discuss unbalanced samplers.
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2.5.1 Unbalanced samplers and the asymmetry between ε and δ

Lemma 2.7 states that the smallnesses of A,B are completely preserved, or “stored” in
A•G B, as long as the sampler G has good enough parameters. Note the asymmetry between
ε and δ. Indeed, while δ is required to be taken exponentially small in the sum σ(A) +σ(B),
ε only needs to be exponentially small in σ(B). This may allow for a significant saving in
cases where σ(A)� σ(B). However, the sampler used above has degree poly(1/ε, 1/δ) and
thus cannot exploit this saving. In fact, if one considers only balanced samplers, namely,
samplers G = (L,R,E) with |L| = |R|, then a polynomial dependence of the degree on 1/ε
and 1/δ is necessary. We are therefore led to consider unbalanced samplers.

As it turns out, unbalanced samplers are equivalent to seeded extractors [Zuc97], and
the state of the art construction of unbalanced samplers is obtained by seeded extractors.
In particular, for all integers `, r and 0 < δ < 1 such that ` ≥ r/δ2 there exists an explicit
(ε, δ)-sampler G = ([`], [r], E) with degree poly(1/ε, log(1/δ)) (see Theorem 3.10). That
is, if the ratio between the sides of the sampler is large enough, the degree of the sampler
has an exponentially better dependence on δ than what can be obtained by using balanced
samplers. Thus, roughly speaking, by working with unbalanced samplers, Lemma 2.7 tells
us that we gain the sum of smallnesses σ(A) + σ(B) by paying roughly min(σ(A), σ(B)) in
the degree.

2.5.2 Proof of a weaker version of Lemma 2.7

Next, we give a proof for a weaker version of Lemma 2.7. We give the proof for a relaxed
setting in which the matrix bundles Ai,Bj that compose A,B are of bounded norm, in
particular ‖Ai‖∞ and ‖Bj‖∞ are all bounded by 1. Moreover, we will not prove a bound as
strong as stated above for the smallness of σ(A•G B). Instead, we prove that σ(A•G B) ≥
σ(A) + σ(B)− 2. In fact, even in the formal proof we cannot give a bound of σ(A) + σ(B)
though it will be crucial to give a bound of the form σ(A)+σ(B)−τ for some suitable slowly
growing function τ = o(1).

Proof of Lemma 2.7. Write C = A•G B = (Ci)
2dout(A)

i=1 . For i ∈ [2dout(A)], define

ε(i) = E
j∼Γ(i)

‖Bj‖2
∞ − 2−σ(B).

As G is an (ε, δ)-sampler, and since we assume that for all j ∈ [2dout(B)], ‖Bj‖∞ ≤ 1, there
exists a set S ⊆ [2dout(A)] of size |S| ≥ (1 − δ)2dout(A) such that for every i ∈ S, |ε(i)| ≤ ε.
Recall that for every i ∈ [2dout(A)],

〈Ci〉 = 〈Ai〉 E
j∼Γ(i)

〈Bj〉.
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By Jensen’s inequality and since ‖ · ‖∞ is sub-multiplicative (and sub-additive),

2−σ(C) = E
i
‖Ci‖2

∞

= E
i
‖〈Ai〉 E

j∼Γ(i)
〈Bj〉‖2

∞

≤ E
i

[
‖Ai‖2

∞ E
j∼Γ(i)

‖Bj‖2
∞

]
.

Thus,

2−σ(C) ≤ E
i

[
‖Ai‖2

∞(2−σ(B) + ε(i))
]

= 2−σ(A)−σ(B) + E
i

[
‖Ai‖2

∞ε(i)
]
. (2.6)

As we assume ‖Ai‖2
∞ ≤ 1 and since |ε(i)| ≤ 1 for all i ∈ [2dout(A)],

E
i

[
‖Ai‖2

∞ε(i)
]
≤ E

i

[
‖Ai‖2

∞ε(i)
∣∣ i ∈ S]+ Pr[i 6∈ S]

≤ ε · E
i

[
‖Ai‖2

∞
∣∣ i ∈ S]+ δ.

Since we might as well assume δ ≤ 1/2, we have that Pr[i ∈ S] ≥ 1− δ ≥ 1/2, and so

E
i

[
‖Ai‖2

∞
∣∣ i ∈ S] ≤ Ei [‖Ai‖2

∞]

Pr[i ∈ S]
≤ 2−σ(A)+1.

Hence, Ei [‖Ai‖2
∞ε(i)] ≤ 2ε · 2−σ(A) + δ. Plugging this to Equation (2.6), we get

2−σ(C) ≤ 2−σ(A)−σ(B) + 2ε · 2−σ(A) + δ.

Substituting for ε, δ, we conclude that σ(C) ≥ σ(A) + σ(B)− 2, as desired.

2.6 Multiplication parameterized by a delta of samplers

Now that MBSs and the two multiplication rules are in place, we are ready to define a
multiplication rule that is parameterized by a delta of samplers. Assume, as in the previous
section, that A is a (dout(A), din(A))-MBS and B is a (dout(B), din(B))-MBS. Let D > d be
integers. Let GD = ([2dout(A)], [2dout(B)], ED) be a left-regular bipartite graph with left-degree
2D and Gd = ([2dout(A)], [2dout(B)], Ed) a left-regular bipartite graph with left-degree 2d.

Write A•GD B = C+ = (C+
i )i∈[2dout(A)] and A•Gd B = C− = (C−i )i∈[2dout(A)]. We define

A•GD−Gd B to be the sequence (Ci)i∈[2dout(A)] where Ci is the concatenation of the matrix

bundle C+
i with −C−i , where by the leading minus sign, we mean that one negates all

coefficients in C−i . The formal definition is given in Definition 6.16. It is easy to see that

〈A •GD−Gd B〉 = 〈A •GD B〉 − 〈A•Gd B〉,
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a property that we refer to as the linearity of • . Further, note that 2din(C) = 2din(A)+din(B)(2D+
2d). Thus, as D ≥ d, we have din(C) ≤ din(A)+din(B)+D+1. We remark that the relaxation
of using negative numbers in the definition of pseudo-distributions is required so as to allow
taking delta of samplers.

The smallness of A•GD−Gd B is analyzed in the following lemma, which, again, is an
idealized version of an assertion we can actually make (see Lemma 6.18).

Lemma 2.8. [Idealized] Let A,B be MBSs as above. Let G1 = ([2dout(A)], [2dout(B)], E1)
be an (ε1, δ1)-sampler and G2 = ([2dout(A)], [2dout(B)], E2) an (ε2, δ2)-sampler. Assume that
0 < ε1 ≤ ε2 < 1 and 0 < δ1 ≤ δ2 < 1. Then,

σ(A•G1−G2 B) ≥ min (log(1/ε2) + σ(A), log(1/δ2)) .

Lemma 2.8 states that the smallness of the product grows with the parameters of the
weaker (ε2, δ2)-sampler. As in Lemma 2.7, the parameter ε2, which is exponentially more
“expensive” than δ2 in terms of degree (at least for unbalanced samplers) is being added to
σ(A) and so can be set much larger than δ2. Unlike Lemma 2.7, σ(A•G1−G2 B) can grow
beyond σ(A) + σ(B) if one takes a pair of good enough samplers. That is, the smallness of
the product is not bounded by the sum of smallnesses of the operands.

2.7 Matrix representations

We are finally ready to give a high level description of how a matrix is being represented by
our construction and how to multiply two such matrix representations.

Definition 2.9. Let 1 ≤ k be an integer. A k-matrix representation is a sequence A =
(A0, . . . ,Ak) where Ai is an MBS with σ(Ai) ≥ i. The matrix that is realized by A is
defined by 〈A〉 =

∑k
i=0 〈Ai〉.

Informally, one should think of 2−k as the desired error guarantee. We think of A0 as a
rough approximation of the matrix of interest Ã. Let 1 ≤ g � k be an integer such that
that the approximation is 2−g rather than the desired 2−k, that is, ‖〈A0〉 − Ã‖∞ ≤ 2−g.
The remaining MBSs are the finer and finer correction terms. Adding them improves the
approximation up to the point that ‖〈A〉 − Ã‖∞ ≤ 2−k. For the formal construction, we
will need to weight the different MBSs and these weights, which we ignore in this high-level
description, is why we allow the ρi’s in a pseudo-distribution to be unbounded (see Section 7).

We would like to define a multiplication rule between matrix representations that approx-
imates the respective matrices. Assume that A = (A0, . . . ,Ak) and B = (B0, . . . ,Bk) are two
matrix representations. We are going to define a multiplication rule · for matrix representa-
tions such that the matrix that is realized by the product A ·B is an 2−Ω(k)-approximation
for 〈A〉〈B〉. To describe our product, we start by writing

〈A〉〈B〉 =

(
k∑
i=0

〈Ai〉

)(
k∑
j=0

〈Bj〉

)
=

k∑
i,j=0

〈Ai〉〈Bj〉.
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Consider an expensive sampler, say an (ε, δ)-sampler Gk with ε = δ = 2−k. By Idealized
Lemma 2.7, for every i, j, we can 2−Ω(k)-approximate 〈Ai〉〈Bj〉 by 〈Ai •Gk Bj〉. Doing so,
and adding the errors from all O(k2) pairs (i, j), we get a total error of 2−Ω(k)k2 = 2−Ω(k).
However, we do not want to pay for an expensive sampler in “one shot”. Instead, for every
pair of i, j ∈ {0, 1, . . . , k}, consider the sequence of MBSs

Ai •Gd Bj
Ai •G2d−Gd Bj
Ai •G4d−G2d

Bj
...

Ai •Gk−Gk/2 Bj, (2.7)

where the choice of d, and whether to use a balanced or an unbalanced sampler depends
on i, j and will be discussed later. Moreover, for some pairs i, j, we will use the outer-
multiplication rule in some of the MBSs in the list. By Idealized Lemma 2.7, σ(Ai •Gd Bj) ≥
i+ j when d is taken sufficiently large. Further, by Idealized Lemma 2.8, σ(Ai •G2d−Gd Bj) ≥
i+ j+ d (the parameters are chosen such that the smallness is effectively this) and generally
σ(Ai •G2r+1d−G2rd

Bj) ≥ i+ j + 2rd. That is, each MBS in the list has a certain smallness we
know how to bound from below.

Consider the collection of all MBSs obtained by considering the MBSs in Equation (2.7)
for all i, j ∈ {0, . . . , k}. We denote this set of MBSs by F(A,B) (see Definition 8.1). To
obtain the matrix representation C = A ·B = (C0, . . . , Ck), we collect MBSs from F(A,B)
with a common smallness s (or, more precisely, MBSs for which the best lower bound we
have on their smallness is s) and “glue” them to form the MBS Cs. We discard MBSs that
have smallness larger than k. We glue MBSs by concatenating the two sequence of matrix
bundles and factor the coefficients accordingly to yield an MBS with a slightly larger dout
(see Section 5.3).

2.8 Leveled matrix representations and setting of parameters

In this section, we give further information regarding the multiplication rule between matrix
representation discussed in the previous section. In particular, we left out details about how
to set d as a function of i, j, and whether the multiplication is parameterized by a balanced
or an unbalanced sampler. The way we set things is as follows. Let A = (A0,Ag, . . . ,Ak)
be a k-matrix representation, where k would be chosen later on. We maintain the invariant
that there are no MBSs but for A0 with smallness less than g in A. g << k would be chosen
later too. We partition the latter sequence to levels. The first MBS, A0 is in level 0. MBSs
with smallness [g, 2g) are in level 1; MBSs with smallness [2g, 4g) are in level 2, and so forth.
In fact, we are also required to maintain the invariant that all smallnesses are multiples of
g. We do the same for a second k-matrix representation B = (B0,Bg, . . . ,Bk). For a formal
treatment, see the definition of leveled matrix representation given in Section 7.

Consider now any i, j > 0. If Ai,Bj belong to the same level (implying that i/2 ≤ j ≤ 2i)
we use the inner-multiplication rule to multiply Ai,Bj using balanced samplers. If i, j belong
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to different levels, we use unbalanced samplers instead. In all such cases we are going to set
d = O(min(i, j)). Handling i = 0 or j = 0 is done similarly, using unbalanced samplers, but
using the outer-multiplication rule for the first MBS in Equation (2.7). In such cases, d is
set to O(g).

Every stochastic matrix in our construction corresponds to a path in our pseudo-
distribution. As every MBS Ai in A consists of 2din(Ai)+dout(Ai) such matrices, the total
number of paths is

∑k
i=0 2din(Ai)+dout(Ai). As din, dout are increasing functions of i, the seed

length is dominated by din(Ak) + dout(Ak). We turn to analyze each of dout, din.

Analyzing dout. Our unbalanced samplers are all set with δ = 2−Ω(k) and so we are required
to maintain the invariant that the dout of MBSs increases in “jumps” of Ω(k) across levels.
As the number of levels is logarithmic in k, this requires dout to be as large as k log k for
MBSs with smallness k. The fact that we set d = g when using the outer-multiplication rule
with i = 0 or j = 0 causes dout to further increase by g in every recursive level. As described
before, we multiply n matrices recursively, for example, we multiply the first n/2 matrices
and the last n/2 matrices separately and then multiply the outputs to get the product of n
matrices. As we have log n recursive levels, the bound that we get on the maximum dout is
O(k log k + g log n).

Analyzing din. Using the interleaved use of balanced and unbalanced samplers, we are
able to maintain the invariant din(Ai) = O(i log i) throughout the recursion, independently
of the level of the recursion. In particular, din of all MBSs is bounded by O(k log k) and is
thus dominated by dout. To give some idea of why such bound is obtained, note that for every
i, j, the first MBS in Equation (2.7) has smallness i+ j and for that we pay min(i, j) in din.
For the remaining MBSs, paying min(i, j) in din credits one with a proportional smallness.
Solving for the respective recursive relation gives the stated bound.

Setting k, g. So far, while we paid for choosing a large value of g in dout, the role of g in
the analysis was not explained. Without getting into the technical details, the finer-grained
error analysis that we conduct, guarantees that at recursive-level t, the total error is bounded
above by

ε(t) = w · (k/g)kt/g · 2−k,

and so we set g ≈ log n · log k to yield ε(log n) = w · 2−Ω(k) and then k = Ω(log(w/ε))
to guarantee total error ε. For simplicity, set w = n. In such case, k = O(log(n/ε))
and g = O(log n · log log(n/ε)). Plugging this to our bound on dout, we get seed length

of O(k log k + g log n) = Õ(log2 n + log(1/ε)). To obtain our result, which note is slightly
stronger, we make a more careful setting of parameters.
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3 Preliminaries

All logarithms in this paper are of base 2. For ease of readability, we avoid the use of
floor and ceiling. This does not affect the stated results. For an integer n ≥ 1 we use Un
to denote the uniform distribution over n-bit strings. Let b be a boolean expression. We
define the indicator 1b to be 1 if b holds and 0 otherwise. For an integer n ≥ 1 we let
[n] = {1, 2, . . . , n}. Let A ⊆ B be finite sets. We denote by µB(A) the density of A within
B, namely, µB(A) = |A|/|B|. Typically, B will be clear from context, in which case we write
µ(A).

Let G = (L,R,E) be a bipartite graph. We say G is left-regular if all nodes in L have the
same degree. If G is left-regular with left-degree d and edges labeled by {1, . . . , d}, we define
the neighborhood function ΓG : L× [d]→ R to be such that the i’th neighbor of node v ∈ L
is given by ΓG(v, i). We denote the set of neighbors of v by ΓG(v). If G is clear from context
we sometimes omit it from the subscript and simply write Γ(v, i) and Γ(v) for ΓG(v, i) and
ΓG(v), respectively.

3.1 Read-once branching programs, hitting sets, and pseudoran-
dom distributions

In this section we recall basic definitions related to read-once branching programs. Defini-
tion 3.1 below is slightly different from the informal definition that was used in the intro-
duction, though the two definitions can be easily shown to be equivalent.

Definition 3.1. Let n,w ≥ 1 be integers. An (n,w)-read-once branching program (ROBP
for short) P is a directed graph on the vertex set V = {s} ∪

⋃n
i=1 Pi, where the Pi’s are

disjoint sets of size w each. We refer to Pi as layer i of the program P. From every node
but for those that belong to Pn there are two outgoing edges, labeled by 0 and 1. The pair of
edges from s ends in P1 and for every 1 ≤ i < n and v ∈ Pi, the pair of edges going out of
v end in nodes that belong to Pi+1. There are no edges leaving Pn. The node s is called the
start node of the program P.

Given a string p ∈ {0, 1}`, with ` ≤ n, we denote by P(p) the node that is reached by
traversing the ROBP P according to the path p starting at the start node. The set of all
(w, n)-ROBPs is denoted by Pw,n.

Definition 3.2 (Hitting sets). A set {p1, . . . , p2s} ⊆ {0, 1}n is an (n,w, ε)-hitting set if for
every P ∈ Pw,n and node v ∈ Pn for which Pr[P(Un) = v] ≥ ε, there exists j ∈ [2s] such that
P(pj) = v.

It is sometimes convenient to address the function that generates the hitting set.

Definition 3.3 (Hitting set generators). A function HSG : {0, 1}s → {0, 1}n is an (n,w, ε)-
hitting set generator (HSG for short) if the image of HSG is an (n,w, ε)-hitting set. We refer
to the input of HSG as the seed. Note that 2s is an upper bound on the size of the hitting set.
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Definition 3.4 (Pseudorandom distributions). A distribution D over n-bit string is an
(n,w, ε)-pseudorandom distribution if for every P ∈ Pw,n and v ∈ Pn,∣∣Pr[P(Un) = v]−Pr[P(D) = v]

∣∣ ≤ ε.

Clearly, the support of every (n,w, ε)-pseudorandom distribution is an (n,w, ε′)-hitting
set for any ε′ > ε. As with hitting sets, it is sometimes convenient to address the function
that generates the pseudorandom distribution.

Definition 3.5 (Pseudorandom generators). A function PRG : {0, 1}s → {0, 1}n is an
(n,w, ε)-pseudorandom generator (PRG for short) if the distribution PRG(Us) is (n,w, ε)-
pseudorandom. We refer to the input of PRG as the seed.

3.2 Matrix norms

Throughout the paper, we make use of two matrix norms. Let A be a w × w real matrix.
Recall that the infinity norm of A is defined by ‖A‖∞ = maxi∈[w]

∑w
j=1 |Ai,j|. The max norm

of A is given by ‖A‖max = maxi,j∈[w] |Ai,j|. We denote the set of w × w stochastic matrices
by Sw. We make use of the following well-known, easy to verify, facts:

Claim 3.6. Let A,B be w × w real matrices. Then,

• The norm ‖ · ‖∞ is sub multiplicative, namely, ‖AB‖∞ ≤ ‖A‖∞‖B‖∞.

• Both norms (by definition) are sub-additive, that is, ‖A + B‖∞ ≤ ‖A‖∞ + ‖B‖∞ and
‖A+B‖max ≤ ‖A‖max + ‖B‖max.

• ‖A‖max ≤ ‖A‖∞ ≤ w‖A‖max.

• If A ∈ Sw then ‖A‖∞ = 1.

3.3 Samplers

Definition 3.7 ([BR94]). Let 0 < ε, δ < 1. A left-regular bipartite graph G = (L,R,E) is
an (ε, δ)-sampler if for every function f : R → [0, 1], for all but δ-fraction of vertices v ∈ L
it holds that ∣∣∣∣ E

i∼Γ(v)
[f(i)]− E

i∼R
[f(i)]

∣∣∣∣ ≤ ε.

The left-degree of G is called the degree of the sampler.

In many cases, the range of the function f , whose expectation we want to approximate,
is not bounded to [0, 1]. We thus use the following easy claim.

Claim 3.8. Let m1,m2 ≥ 0 be real numbers. Let G = (L,R,E) be an (ε, δ)-sampler and
f : R→ [−m1,m2]. Then, for all but δ-fraction of vertices v ∈ L,∣∣∣∣ E

i∼Γ(v)
[f(i)]− E

i∼R
[f(i)]

∣∣∣∣ ≤ ε(m1 +m2).

21



For our construction of pseudorandom pseudo-distributions, we make use of two construc-
tions of samplers. The first has equal sides, namely, |L| = |R| whereas the second sampler
has better parameters, albeit, it requires |L| � |R|. We refer to the first one, informally, as
a balanced sampler and to the second one as an unbalanced sampler. The constructions of
these samplers rely on expander graphs and seeded extractors, respectively, and we refer the
reader to the excellent survey by Goldreich [Gol11] for more information.

Theorem 3.9 ([GW97]). For every integer n and all ε, δ > 0, there exists an (ε, δ)-sampler
BSamp(n, ε, δ) = (L,R,E), with |L| = |R| = n, having degree d = O(δ−1ε−2).

Theorem 3.10 ([RVW01], Corollary 7.3 7). There exists a universal constant c ≥ 1 such
that the following holds. For all ε, δ > 0 such that log(1/δ) > log(1/ε)clog∗(1/δ) and for all
integers `, r such that ` ≥ r/δ2 there exists an (ε, δ)-sampler UBSamp(`, r, ε, δ) = ([`], [r], E)
with degree d = ((1/ε) log(1/δ))c .

It can be shown that both samplers are log-space computable, namely, given i ∈ L and
j ∈ [d], the j’th neighbor of vertex i can be computed in O(log |L|) space (and in time
poly log |L|). This assertion is well-known for the sampler that is given by Theorem 3.9,
whose construction is based on expander graphs, as was used in [INW94]. The assertion
with respect to Theorem 3.10 is only implicit in the literature. The assertion can be shown
to hold because the samplers are obtained by composing expander graphs, hash functions
and k-wise independent distributions in simple ways (simple to compute, not to analyze).

Working with the parameters of the sampler given by Theorem 3.10 is cumbersome.
Thus, for the sake of readability, we make use of the following sampler which has parameters
that are easier to work with. We stress that this sampler in not space-efficient. It is easy
to verify that our result holds as is when using the space-efficient sampler that is given by
Theorem 3.10. Indeed, the seed length of our construction only deteriorates by a factor of
2O(log∗(nw/ε)) which is then hidden under the Õ-notation. Further, the space complexity is
linear in the seed length.

Theorem 3.11 ([Zuc07]). There exists a universal constant csamp ≥ 1 such that the following
holds. For all integers `, r and all ε, δ > 0 for which ` ≥ r/δ2, there exists an (ε, δ)-sampler
UBSamp(`, r, ε, δ) = ([`], [r], E) with degree d = ((1/ε) · log(1/δ))csamp.

From here on, we suppress the size of the samplers n, `, r and simply write BSamp(ε, δ)
for the sampler that is given by Theorem 3.9 and UBSamp(ε, δ) for the sampler from Theo-
rem 3.11.

4 Pseudorandom Pseudo-Distributions and Main Re-

sult

In this section we introduce the notion of a pseudorandom pseudo-distribution.

7We note that there are several versions of the cited paper. The conference and journal versions do not
contain the results we need, and so we cite the version posted on ECCC.
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Definition 4.1 (Pseudorandom pseudo-distributions). Let ρ1, . . . , ρ2s ∈ R and p1, . . . , p2s ∈
{0, 1}n. The sequence D̃ = ((ρ1, p1), . . . , (ρ2s , p2s)) is an (n,w, ε)-pseudorandom pseudo-
distribution if for every P ∈ Pw,n and v ∈ Pn,

∣∣∣Pr[P(Un) = v]−
2s∑
i=1

ρi1P(pi)=v

∣∣∣ ≤ ε.

For a real number b ≥ 0, we say that D̃ is b-bounded if |ρi| ≤ b for all i ∈ [2s].

We refer to s as the seed length of the pseudorandom pseudo-distribution.
We observe that pseudo-distributions readily yield hitting sets.

Claim 4.2. Let ((ρ1, p1), . . . , (ρ2s , p2s)) be an (n,w, ε)-pseudorandom pseudo-distribution.
Then, for every ε′ > ε, p1, . . . , p2s is an (n,w, ε′)-hitting set.

Proof. Let ε′ > ε be a real number. Let P ∈ Pw,n and consider v ∈ Pn for which Pr[P(Un) =
v] ≥ ε′. We have that

2s∑
i=1

ρi1P(pi)=v ≥ Pr[P(Un) = v]− ε ≥ ε′ − ε > 0

which readily implies the existence of g ∈ [2s] such that P(pg) = v.

We are now ready to give a formal statement of our main result.

Theorem 4.3 (Main result). For every integers n,w ≥ 1 and 0 < ε < 1/n, there exists an

(n,w, ε)-pseudorandom pseudo-distribution D̃ with seed length

d = Õ(log(n) log(nw) + log(1/ε)).

Furthermore, D̃ is poly(w/ε)-bounded, and can be computed in space Õ(d).

Here, by computability in space-s, we mean that the pseudorandom pseudo-distribution
D̃ is generated by a pseudorandom pseudo-generator (PRPG) which is computable in space-
s, that is given the seed j ∈ [2d] and the index i ∈ [n], the real number ρj and ith bit of the
path pj can be computed in O(s) space.

Remark regarding explicitness. Note that in our proof of Theorem 4.3, we use the
unbalanced sampler that is given by Theorem 3.11, whose parameters are easy to work with,
though its space-complexity is high. By plugging-in, instead, the space-efficient sampler that
is given by Theorem 3.10, one can easily show that the seed length and space complexity
are as stated. Indeed, the seed length of our construction only deteriorates by a factor of
2O(log∗(nw/ε)) when using the space-efficient sampler from Theorem 3.10. This small loss is
anyhow hidden under the Õ-notation. We choose to omit the cumbersome details as this
complicates the already involved proof.
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5 Matrix Bundle Sequences

In this section, we introduce the notion of a matrix bundle sequence (MBS for short). Infor-
mally speaking, an MBS is a “piece” of a matrix that we are interested in. To represent a
matrix we make use of several MBSs. An MBS has a property we call smallness that, infor-
mally, captures how small the piece is. This is somewhat analogous to the digits of a number
when represented in a decimal expansion, where the location of the digit are analogous to
its smallness. We start by defining matrix bundles.

5.1 Matrix bundles

Definition 5.1. Let ` ≥ 0, w ≥ 1 be integers. An (`, w)-matrix bundle A is an element of
(R×Sw)2`. Namely, A = ((α1, A1), . . . , (α2` , A2`)), where the αi’s are real numbers (that are
unbounded and can be negative) and the Ai’s are w×w stochastic matrices 8. The matrix that

is realized by A is defined by 〈A〉 =
∑2`

i=1 αiAi. We extend any matrix norm ‖ · ‖ to matrix
bundles by letting ‖A‖ = ‖〈A〉‖. We refer to the numbers α1, . . . , α2` as the coefficients of
A.

Next, we define the product of a scalar by a matrix bundle.

Definition 5.2. For a real number β and an (`, w)-matrix bundle A =
((α1, A1), . . . , (α2` , A2`)), we define β · A to be the (`, w)-matrix bundle
((βα1, A1), . . . , (βα2` , A2`)). We sometimes write βA instead of β ·A. Note that 〈βA〉 = β〈A〉.

5.2 Matrix bundle sequences

Definition 5.3. Let dout, din ≥ 0 and w ≥ 1 be integers. A (dout, din, w)-matrix bundle se-
quence (MBS) A is a sequence of 2dout number of (din, w)-matrix bundles A = (A1, . . . ,A2dout ).
The matrix that is realized by A is defined by 〈A〉 = Ei∼[2dout ] 〈Ai〉. We extend any matrix
norm ‖ · ‖ to MBSs by letting ‖A‖ = ‖〈A〉‖. We refer to the union of the coefficients of
A1, . . . ,A2dout as the coefficients of A.

Definition 5.4. An MBS A is called thin if din(A) = 0 and all coefficients of A equal 1.

Definition 5.5. Let A = (A1, . . . ,A2dout ) be a (dout, din, w)-MBS. The smallness of A, de-
noted by σ(A), is defined by

σ(A) = − log E
i∼[2dout ]

‖Ai‖2
∞,

where recall that all logarithms in this paper are to the base 2. The magnitude of A, denoted
by µ(A), is defined by

µ(A) = log max
i∈[2dout ]

‖Ai‖2
∞.

8For the purpose of derandomizing ROBPs, think of each Ai as a matrix corresponding to a single path
(of some length ≤ n) and is thus, a 0-1 matrix.
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Claim 5.6. Let A = (A1, . . . ,A2dout ) be a (dout, din, w)-MBS. Then, ‖A‖∞ ≤ 2−σ(A)/2.

Proof. By the sub-additivity of ‖ · ‖∞,

‖A‖∞ = ‖〈A〉‖∞ = ‖E
i
〈Ai〉‖∞ ≤ E

i
‖Ai‖∞.

By Jensen’s inequality, (
E
i
‖Ai‖∞

)2

≤ E
i
‖Ai‖2

∞ = 2−σ(A),

and so ‖A‖2
∞ ≤ 2−σ(A), which completes the proof.

Remarks regarding the monotonicity of din, dout. Let A = (A1, . . . ,A2dout ) be a
(dout, din, w)-MBS. For any d′in ≥ din, one can consider the (dout, d

′
in, w)-MBS A′ =

(A′1, . . . ,A
′
2dout

) that is obtained by extending each of the (din, w)-matrix bundles Ai to a

(d′in, w)-matrix bundle A′i by appending 2d
′
in−din zero coefficients and arbitrary stochastic ma-

trices. Note that 〈Ai〉 = 〈A′i〉 and so this operation has no affect on the parameters of A
other than din, and in particular, σ(A′) = σ(A) and µ(A′) = µ(A). Therefore, using this
padding argument, one can think of every (dout, din, w)-MBS as an (dout, d

′
in, w)-MBS with

the same parameters for any d′in ≥ din.
Note that the same argument holds even if din is not an integer (this happens when

we concatenate the matrix bundles of two MBSs with (din)1 6= (din)2, resulting in 2din =
2(din)1 + 2(din)2 , which indeed is not a power of 2). In particular, we implicitly always round
din up to an integer by using this padding argument.

Similarly, one can consider A to be a (d′out, din, w)-MBS for any d′out ≥ dout. This is
because one can take the MBS A′′ with Ai duplicated 2d

′
out−dout times to form a sequence of

length 2d
′
out . Clearly, dout(A′′) = d′out and 〈A〉 = 〈A′′〉. Note that this transformation has no

effect on din, µ, σ.

Definition 5.7. Let A = (A1, . . . ,A2dout ) be a (dout, din, w)-MBS. For a real number α ≥ 0,
define α · A, which we also write as αA, to be the (dout, din, w)-MBS (αA1, . . . , αA2dout ).

Claim 5.8. Let A be a (dout, din, w)-MBS and α > 0 a real number. Then,

• 〈αA〉 = α〈A〉;

• σ(αA) = σ(A) + 2 log(1/α);

• µ(αA) = µ(A)− 2 log(1/α).

Proof. The first item follows as

〈αA〉 = E
i
〈αAi〉 = αE

i
〈Ai〉 = α〈A〉.

As for the second item,

2−σ(αA) = E
i
‖αAi‖2

∞ = α2 E
i
‖Ai‖2

∞ = α22−σ(A),
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and so σ(αA) = σ(A) + 2 log(1/α). As for the magnitude,

2µ(αA) = max
i
‖αAi‖2

∞ = α2 max
i
‖Ai‖2

∞ = α22µ(A),

and so µ(αA) = µ(A)− 2 log(1/α).

5.3 Gluing MBSs

For our construction, we will need to “glue” MBSs, namely, stack the matrix bundles that
compose two or more MBSs to one sequence. In this section, we formally define this operation
and analyze the resulting “glued” MBS. In the following definition, we assume that the two
MBSs to be glued have the same dout. This is essentially without loss of generality as
explained in the remark in Section 5.2.

Definition 5.9. Let A = (A1, . . . ,A2dout ), B = (B1, . . . ,B2dout ) be a pair of (dout, din, w)-
MBSs. We define the gluing of A and B, denoted by glue(A,B) to be the (dout+1, din, w)-MBS
C = (C1, . . . ,C2dout+1) that is defined by

Ci =

{
Ai, i ∈ [1, 2dout ];
Bi−2dout , i ∈ [2dout + 1, 2dout+1].

Claim 5.10. Let A = (A1, . . . ,A2dout ), B = (B1, . . . ,B2dout ) be a pair of (dout, din, w)-MBSs.
Then,

〈glue(A,B)〉 =
〈A〉+ 〈B〉

2
.

Moreover,

σ(glue(A,B)) ≥ min(σ(A), σ(B)),

µ(glue(A,B)) ≤ max(µ(A), µ(B)).

Proof. We have that

〈glue(A,B)〉 = E
i∼[2dout+1]

〈Ci〉

=
1

2dout+1

2dout∑
i=1

〈Ai〉+
2dout∑
i=1

〈Bi〉


=

1

2

(
E

i∼[2dout ]
〈Ai〉+ E

i∼[2dout ]
〈Bi〉

)
=
〈A〉+ 〈B〉

2
.
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As for the smallness of glue(A,B),

2−σ(glue(A,B)) = E
i∼[2dout+1]

‖Ci‖2
∞

=
1

2dout+1

2dout∑
i=1

‖Ai‖2
∞ +

2dout∑
i=1

‖Bi‖2
∞


=

1

2

 1

2dout

2dout∑
i=1

‖Ai‖2
∞ +

1

2dout

2dout∑
i=1

‖Bi‖2
∞


=

1

2

(
2−σ(A) + 2−σ(B)

)
≤ max

(
2−σ(A), 2−σ(B)

)
,

which implies that σ(glue(A,B)) ≥ min(σ(A), σ(B)), as claimed. The proof regarding the
magnitude of glue(A,B) is straightforward, and so we omit it.

Generally, we may need to “glue” more than two MBSs. Let A1, . . . ,Ar be r (dout, din, w)-
MBSs. We extend Definition 5.9 in the natural way to define the gluing of A1, . . . ,Ar which
we denote by glue (A1, . . . ,Ar) . The following claim can be proved similarly to the way we
proved Claim 5.10 and we omit the details.

Claim 5.11. Let r ≥ 1 be an integer. Let A1, . . . ,Ar be (dout, din, w)-MBSs. Let B =
glue (A1, . . . ,Ar). Then, 〈B〉 = Ei 〈Ai〉. Moreover,

σ(B) ≥ min
i
σ(Ai),

µ(B) ≤ max
i
µ(Ai),

dout(B) = dout + log r,

din(B) = din.

6 Multiplication Rules for Matrix Bundle Sequences

In this section we define several multiplication rules for MBSs and analyze the products.

6.1 The multiplication rules
→◦ , ←◦ parameterized by a sampler

Definition 6.1. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS, where

Ai = (((αi)1, (Ai)1) , . . . , ((αi)2din(A) , (Ai)2din(A))) .

Let B = (B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS, where

Bi = (((βi)1, (Bi)1) , . . . , ((βi)2din(B) , (Bi)2din(B))) .
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Let G = ([2dout(A)], [2dout(B)], E) be a left-regular bipartite graph with left-degree 2d. We define

the (dout(A) + d, din(A) + din(B), w)-MBS C = A →◦G B as follows: C = (Ci,j)i∈[2dout(A)],j∈[2d],
where the (din(A) + din(B), w)-matrix bundle Ci,j is defined by

(Ci,j)k,` = ((αi)k(βΓG(i,j))`, (Ai)k(BΓG(i,j))`),

with k ∈ [2din(A)], ` ∈ [2din(B)].

Note that C is indeed an MBS as the product of the stochastic matrices (Ai)k, (BΓG(i,j))`
is stochastic. Moreover, C has the dimensions that were claimed in the definition, namely, C
is a (dout(A) + d, din(A) + din(B), w)-MBS.

Claim 6.2. For every i ∈ [2dout(A)], j ∈ [2d], 〈Ci,j〉 = 〈Ai〉〈BΓG(i,j)〉.
Proof. We have that

〈Ci,j〉 =
∑
k,`

(αi)k(βΓG(i,j))`(Ai)k(BΓG(i,j))`

=
∑
k

(αi)k(Ai)k
∑
`

(βΓG(i,j))`(BΓG(i,j))`

= 〈Ai〉〈BΓG(i,j)〉.

By Claim 6.2,

〈A →◦G B〉 = E
i,j

[
〈Ai〉〈BΓG(i,j)〉

]
= E

i

[
〈Ai〉 E

j∼ΓG(i)
〈Bj〉

]
. (6.1)

In particular, note that if K is the complete bipartite graph on [2dout(A)]× [2dout(B)] then

〈A →◦K B〉 = 〈A〉〈B〉. (6.2)

Similarly to the definition of
→◦ , we define

←◦ as follows. Informally, the difference between
→◦ and

←◦ is that while sparsifying the product of A and B, whether we use A or B as the
left-side of the bipartite left-regular graph. This choice depends on the parameters of the
MBSs.

Definition 6.3. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS, where

Ai = (((αi)1, (Ai)1) , . . . , ((αi)2din(A) , (Ai)2din(A))) .

Let B = (B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS, where

Bi = (((βi)1, (Bi)1) , . . . , ((βi)2din(B) , (Bi)2din(B))) .

Let G = ([2dout(A)], [2dout(B)], E) be a bipartite left-regular graph with left-degree 2d. We define

the (dout(A) + d, din(A) + din(B), w)-MBS C = A ←◦G B as follows: C = (Ci,j)i∈[2dout(A)],j∈[2d],
where

(Ci,j)k,` = ((αi)k(βΓG(i,j))`, (BΓG(i,j))`(Ai)k),

with k ∈ [2din(A)], ` ∈ [2din(B)].
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Similarly to Claim 6.2, we have that

Claim 6.4. 〈Ci,j〉 = 〈BΓG(i,j)〉〈Ai〉.

Proof. We have that

〈Ci,j〉 =
∑
k,`

(αi)k(βΓG(i,j))`(BΓG(i,j))`(Ai)k

=
∑
`

(βΓG(i,j))`(BΓG(i,j))`
∑
k

(αi)k(Ai)k

= 〈BΓG(i,j)〉〈Ai〉.

By Claim 6.4,

〈A ←◦G B〉 = E
i,j

[
〈BΓG(i,j)〉〈Ai〉

]
= E

i

[(
E

j∼ΓG(i)
〈Bj〉

)
〈Ai〉

]
. (6.3)

In particular, if K is the complete bipartite graph on [2dout(A)]× [2dout(B)] then

〈A ←◦K B〉 = 〈B〉〈A〉. (6.4)

The following lemma relates the properties of the MBS A →◦G B to those of A,B.
Throughout the paper, we will only apply the product

→◦ with the right operand being
a thin MBS, and so we restrict ourselves to that case.

Lemma 6.5. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS. Let B =
(B1, . . . ,B2dout(B)) be a (dout(B), 0, w)-thin MBS. Let G = ([2dout(A)], [2dout(B)], E) be a left-
regular bipartite graph with left-degree 2d. Then,

σ(A →◦G B) ≥ σ(A),

µ(A →◦G B) ≤ µ(A),

dout(A
→◦G B) = dout(A) + d,

din(A
→◦G B) = din(A).

Proof. The assertions regarding din, dout follow by the definition of
→◦ and by din(B) = 0.

Write C = A →◦G B and let Γ: [2dout(A)] × [2d] → [2dout(B)] be the neighborhood function of
G. By Claim (6.2), 〈Ci,j〉 = 〈Ai〉〈BΓ(i,j)〉. As ‖ · ‖∞ is sub-multiplicative and since 〈BΓ(i,j)〉 is
stochastic (due to B’s thinness),

‖Ci,j‖∞ = ‖〈Ai〉〈BΓ(i,j)〉‖∞
≤ ‖Ai‖∞‖BΓ(i,j)‖∞
= ‖Ai‖∞.
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This proves that µ(C) ≤ µ(A). As for the smallness,

2−σ(C) = E
i,j
‖Ci,j‖2

∞ ≤ E
i
‖Ai‖2

∞ = 2−σ(A).

The proof of Lemma 6.5, which considers the product
→◦ can be adapted to prove the

same result for
←◦ . We summarize this in the following lemma.

Lemma 6.6. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS. Let B =
(B1, . . . ,B2dout(B)) be a (dout(B), 0, w)-thin MBS. Let G = ([2dout(A)], [2dout(B)], E) be a left-
regular bipartite graph with left-degree 2d. Then,

σ(A ←◦G B) ≥ σ(A),

µ(A ←◦G B) ≤ µ(A),

dout(A
←◦G B) = dout(A) + d,

din(A
←◦G B) = din(A).

We make use of the following claim regarding thinness under the products
→◦ ,←◦ .

Claim 6.7. Let A,B be a pair of (dout, 0, w)-MBSs, both thin. Let G = ([2dout ], [2dout ], E) be

a left-regular bipartite graph. Then, both A →◦G B and A ←◦G B are thin.

Proof. By Definition 6.1, din(A
→◦G B) = din(A) + din(B). As both A,B are thin, din(A

→◦G
B) = 0. Moreover, by Definition 6.1, every coefficient of A →◦G B is a product of some
coefficient of A with some coefficient of B. As both A,B are thin, their coefficients all equal
1 and so the coefficients of A →◦G B are all 1. The proof for A ←◦G B is similar and we omit
it.

6.2 The multiplication rules
→• ,←• parameterized by a sampler

Definition 6.8. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS, where

Ai = (((αi)1, (Ai)1) , . . . , ((αi)2din(A) , (Ai)2din(A))) .

Let B = (B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS, where

Bi = (((βi)1, (Bi)1) , . . . , ((βi)2din(B) , (Bi)2din(B))) .

Let G = ([2dout(A)], [2dout(B)], E) be a left-regular bipartite graph with left-degree 2d. We define

the (dout(A), din(A) + din(B) + d, w)-MBS, C = A →•G B as follows. For k ∈ [2din(A)], ` ∈
[2din(B)], and j ∈ [2d] define

(Ci)j,k,` = (2−d(αi)k(βΓG(i,j))`, (Ai)k(BΓG(i,j))`).
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Note that C is an MBS as the product of the stochastic matrices (Ai)k, (BΓ(i,j))` is
stochastic. Moreover, the dimensions of C is as asserted in the definition. That is, C is a
(dout(A), din(A) + din(B) + d, w)-MBS.

Claim 6.9. 〈Ci〉 = 〈Ai〉Ej∼ΓG(i) 〈Bj〉.
Proof.

〈Ci〉 =
∑
j,k,`

2−d(αi)k(βΓG(i,j))`(Ai)k(BΓG(i,j))`

=
∑
k

(αi)k(Ai)k2
−d
∑
j∈[2d]

∑
`

(βΓG(i,j))`(BΓG(i,j))`

=

(∑
k

(αi)k(Ai)k

)
E

j∼ΓG(i)
〈Bj〉

= 〈Ai〉 E
j∼ΓG(i)

〈Bj〉.

Claim 6.9 readily implies that

〈A →•G B〉 = E
i

[
〈Ai〉 E

j∼ΓG(i)
〈Bj〉

]
. (6.5)

Definition 6.10. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS, where

Ai = (((αi)1, (Ai)1) , . . . , ((αi)2din(A) , (Ai)2din(A))) .

Let B = (B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS, where

Bi = (((βi)1, (Bi)1) , . . . , ((βi)2din(B) , (Bi)2din(B))) .

Let G = ([2dout(A)], [2dout(B)], E) be a left-regular bipartite graph with left-degree 2d. We define

the (dout(A), din(A)+din(B)+d, w)-MBS C = A ←•G B as follows. For k ∈ [2din(A)], ` ∈ [2din(B)],
and j ∈ [2d] define

(Ci)j,k,` = (2−d(αi)k(βΓG(i,j))`, (BΓG(i,j))`(Ai)k).

Claim 6.11. 〈Ci〉 =
(
Ej∼ΓG(i) 〈Bj〉

)
〈Ai〉.

Proof.

〈Ci〉 =
∑
j,k,`

2−d(αi)k(βΓG(i,j))`(BΓG(i,j))`(Ai)k

=

2−d
∑
j∈[2d]

∑
`

(βΓG(i,j))`(BΓG(i,j))`

∑
k

(αi)k(Ai)k

=

(
E

j∼ΓG(i)
〈Bj〉

)
〈Ai〉.
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By Claim 6.11,

〈A ←•G B〉 = E
i

[(
E

j∼ΓG(i)
〈Bj〉

)
〈Ai〉

]
. (6.6)

The following claim readily follows by Equations (6.1), (6.3), (6.5), and (6.6).

Claim 6.12. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS. Let B =
(B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS. Let G = ([2dout(A)], [2dout(B)], E) be a left-
regular bipartite graph. Then,

〈A →◦G B〉 = 〈A →•G B〉,
〈A ←◦G B〉 = 〈A ←•G B〉.

Claim 6.12 together with Equation (6.2) and Equation (6.4) implies that

〈A →•K B〉 = 〈A〉〈B〉,
〈A ←•K B〉 = 〈B〉〈A〉, (6.7)

where K is the complete bipartite graph on [2dout(A)]× [2dout(B)].

The following lemma shows that the matrix that is realized by the product A →•G B
approximates 〈A〉〈B〉, where the approximation guarantee is determined by the parameters
of the sampler G (and those of A,B).

Lemma 6.13. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS and B =
(B1, . . . ,B2dout(B)) a (dout(B), din(B), w)-MBS. Let G = ([2dout(A)], [2dout(B)], E) be an (ε, δ)-
sampler with δ ≤ 1/2. Then,

‖〈A →•G B〉 − 〈A〉〈B〉‖max ≤ 4w2
µ(B)
2

(
2
µ(A)

2 δ + 2−
σ(A)

2 ε
)
. (6.8)

Furthermore, the same bound holds also for

‖〈A ←•G B〉 − 〈B〉〈A〉‖max,

‖〈A →◦G B〉 − 〈A〉〈B〉‖max,

‖〈A ←◦G B〉 − 〈B〉〈A〉‖max.

Proof. We prove Equation (6.8). A similar proof gives the same bound for ‖〈A ←•G B〉 −
〈B〉〈A〉‖max. The bound for the third and fourth expressions then follows by Claim 6.12.

Write C = A →•G B = (Ci)
2dout(A)

i=1 and let Γ: [2dout(A)] × [2d] → [2dout(B)] be the neighborhood
function of G, where 2d is the degree of the sampler. By Claim 6.9, for every i ∈ [2dout(A)],
〈Ci〉 = 〈Ai〉Ej∼Γ(i) 〈Bj〉. Therefore, for every α, β ∈ [w],

〈Ci〉α,β =
w∑
γ=1

〈Ai〉α,γ E
j∼Γ(i)

〈Bj〉γ,β,
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and so

〈C〉α,β = E
i
〈Ci〉α,β

=
w∑
γ=1

E
i

[
〈Ai〉α,γ E

j∼Γ(i)
〈Bj〉γ,β

]
. (6.9)

For fixed α, β, γ ∈ [w], define

εγ,β(i) = E
j∼Γ(i)

〈Bj〉γ,β − 〈B〉γ,β.

Note that |εγ,β(i)| ≤ 2µ(B)/2+1 for all i ∈ [2dout(A)]. Moreover, as 〈B〉γ,β = Ej∼[2dout(B)] 〈Bj〉γ,β
and since |〈Bj〉γ,β| ≤ 2µ(B)/2, Claim 3.8 implies that there exists a set S ⊆ [2dout(A)] with
|S| ≥ (1− δ) · 2dout(A) such that for all i ∈ S, |εγ,β(i)| ≤ ε · 2µ(B)/2+1. Therefore,

E
i

[
〈Ai〉α,γ E

j∼Γ(i)
〈Bj〉γ,β

]
= E

i
[〈Ai〉α,γ (〈B〉γ,β + εγ,β(i))]

= 〈A〉α,γ〈B〉γ,β + E
i

[〈Ai〉α,γεγ,β(i)]. (6.10)

As |〈Ai〉α,γ| ≤ 2µ(A)/2 and |εγ,β(i)| ≤ 2µ(B)/2+1 for all i ∈ [2dout(A)], we have that

E
i

[〈Ai〉α,γεγ,β(i)] ≤ E
i

[〈Ai〉α,γεγ,β(i) | i ∈ S] + 2
µ(A)+µ(B)

2
+1 Pr[i 6∈ S]

≤ E
i

[〈Ai〉α,γεγ,β(i) | i ∈ S] + 2
µ(A)+µ(B)

2
+1δ. (6.11)

By Jensen’s inequality, and using the fact that (〈Ai〉α,γ)2 ≥ 0,(
E
i

[〈Ai〉α,γεγ,β(i) | i ∈ S]
)2

≤ E
i

[
(〈Ai〉α,γεγ,β(i))2 | i ∈ S

]
≤
(
ε2µ(B)/2+1

)2
E
i

[
(〈Ai〉α,γ)2 | i ∈ S

]
≤
(
ε2µ(B)/2+1

)2 Ei

[
(〈Ai〉α,γ)2]

Pr[i ∈ S]

≤
(
ε2µ(B)/2+1

)2 2−σ(A)

Pr[i ∈ S]
.

As δ ≤ 1/2, we have Pr[i ∈ S] ≥ 1− δ ≥ 1/2 and so∣∣∣E
i

[〈Ai〉α,γεγ,β(i) | i ∈ S]
∣∣∣ ≤ 2

µ(B)
2
−σ(A)

2
+2ε.

Equations (6.10), (6.11) then implies∣∣∣∣Ei
[
〈Ai〉α,γ E

j∼Γ(i)
〈Bj〉γ,β

]
− 〈A〉α,γ〈B〉γ,β

∣∣∣∣ ≤ 2
µ(A)+µ(B)

2
+1δ + 2

µ(B)
2
−σ(A)

2
+2ε.
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As the bound holds for all γ ∈ [w], Equation (6.9) yields

|〈C〉α,β − (〈A〉〈B〉)α,β| ≤ 4w2
µ(B)
2

(
2
µ(A)

2 δ + 2−
σ(A)

2 ε
)
.

The proof follows as the bound holds for every α, β ∈ [w].

Next, we show that by taking a good enough sampler, the smallness of the product
A →•G B (and of the other products) approaches the sum σ(A)+σ(B) and that the magnitude
of the product is bounded by µ(A) + µ(B).

Lemma 6.14. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS and B =
(B1, . . . ,B2dout(B)) a (dout(B), din(B), w)-MBS. Let τ ∈ (0, 1] and G = ([2dout(A)], [2dout(B)], E) be
an (ε, δ)-sampler with

ε ≤ 2−λ(B)−µ(B)−log(1/τ)−3,

δ ≤ 2−λ(A)−λ(B)−µ(A)−µ(B)−log(1/τ)−3, (6.12)

for some λ(A), λ(B) such that 0 ≤ λ(A) ≤ σ(A) and 0 ≤ λ(B) ≤ σ(B).
Then,

σ(A →•G B) ≥ λ(A) + λ(B)− τ,
µ(A →•G B) ≤ µ(A) + µ(B).

Proof. Write C = A →•G B = (Ci)
2dout(A)

i=1 and let Γ: [2dout(A)] × [2d] → [2dout(B)] be the neigh-
borhood function of G, where 2d is the degree of the sampler. For i ∈ [2dout(A)], define

ε(i) = E
j∼Γ(i)

‖Bj‖2
∞ − 2−σ(B).

As G is an (ε, δ)-sampler, and since 0 ≤ ‖Bj‖2
∞ ≤ 2µ(B) for all j ∈ [2dout(B)], Claim 3.8 implies

that there exists a set S ⊆ [2dout(A)] with |S| ≥ (1 − δ)2dout(A) such that for every i ∈ S,
|ε(i)| ≤ ε2µ(B). By Claim 6.9, for every i ∈ [2dout(A)],

〈Ci〉 = 〈Ai〉 E
j∼Γ(i)

〈Bj〉.

By Jensen’s inequality and since ‖ · ‖∞ is sub-multiplicative (and sub-additive),

2−σ(C) = E
i
‖Ci‖2

∞

= E
i
‖〈Ai〉 E

j∼Γ(i)
〈Bj〉‖2

∞

≤ E
i

[
‖Ai‖2

∞ E
j∼Γ(i)

‖Bj‖2
∞

]
.
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Thus,

2−σ(C) ≤ E
i

[
‖Ai‖2

∞(2−σ(B) + ε(i))
]

= 2−σ(A)−σ(B) + E
i

[
‖Ai‖2

∞ε(i)
]
. (6.13)

As ‖Ai‖2
∞ ≤ 2µ(A) and since |ε(i)| ≤ 2µ(B) for all i ∈ [2dout(A)],

E
i

[
‖Ai‖2

∞ε(i)
]
≤ E

i

[
‖Ai‖2

∞ε(i)
∣∣ i ∈ S]+ 2µ(A)+µ(B) Pr[i 6∈ S]

≤ ε2µ(B) E
i

[
‖Ai‖2

∞
∣∣ i ∈ S]+ 2µ(A)+µ(B)δ.

As δ ≤ 1/2, Pr[i ∈ S] = 1− δ ≥ 1/2 and since ‖Ai‖2
∞ ≥ 0,

E
i

[
‖Ai‖2

∞
∣∣ i ∈ S] ≤ 1

Pr[i ∈ S]
E
i

[
‖Ai‖2

∞
]

≤ 2−σ(A)+1.

Hence, Ei [‖Ai‖2
∞ε(i)] ≤ 2µ(B)−σ(A)+1ε+ 2µ(A)+µ(B)δ. Plugging this to Equation (6.13), we get

2−σ(C) ≤ 2−σ(A)−σ(B) + 2µ(B)−σ(A)+1ε+ 2µ(A)+µ(B)δ.

Substituting for ε, δ we conclude

2−σ(C) ≤
(

1 +
3τ

8

)
2−λ(A)−λ(B) ≤ 2−λ(A)−λ(B)+τ ,

where, for the last inequality we used the fact that 1 + x ≤ ex for all x.
We move to analyze the magnitude. As ‖ · ‖∞ is sub-multiplicative (and sub-additive),

for every i ∈ [2dout(A)],

‖Ci‖2
∞ ≤ ‖Ai‖2

∞

∥∥∥ E
j∼Γ(i)

〈Bj〉
∥∥∥2

∞

≤ ‖Ai‖2
∞ E
j∼Γ(i)

‖Bj‖2
∞

≤ 2µ(A)+µ(B),

which implies that µ(C) ≤ µ(A) + µ(B).

The proof of Lemma 6.14, which considers the product
→• can be adapted to prove the

same lemma for
←• , which is given by the following lemma.

Lemma 6.15. Let A be a (dout(A), din(A), w)-MBS and B a (dout(B), din(B), w)-MBS. Let
τ ∈ (0, 1] and G = ([2dout(A)], [2dout(B)], E) be an (ε, δ)-sampler for which Equation (6.12)

holds. Then, σ(A ←•G B) ≥ λ(A) + λ(B)− τ and µ(A ←•G B) ≤ µ(A) + µ(B).
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6.3 The multiplication rules
→• ,←• parameterized by delta of sam-

plers

In this section we define multiplication rules that are parameterized by the difference, or
delta, between two samplers.

Definition 6.16. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS, where

Ai = (((αi)1, (Ai)1) , . . . , ((αi)2din(A) , (Ai)2din(A))) .

Let B = (B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS, where

Bi = (((βi)1, (Bi)1) , . . . , ((βi)2din(B) , (Bi)2din(B))) .

Let D ≥ d ≥ 1 be integers. Let GD = ([2dout(A)], [2dout(B)], ED) be a left-regular bipartite
graph with left-degree 2D and Gd = ([2dout(A)], [2dout(B)], Ed) a left-regular bipartite graph with

left-degree 2d. We define the (dout(A), din(A) + din(B) +D+ 1, w)-MBS C = A →•GD−Gd B as
follows: For i ∈ [2dout(A)], k ∈ [2din(A)], ` ∈ [2din(B)], and j ∈ [2D], define

(Ci)
D
j,k,` = (2−D(αi)k(βΓGD (i,j))`, (Ai)k(BΓGD (i,j))`).

For i ∈ [2dout(A)], k ∈ [2din(A)], ` ∈ [2din(B)], and j ∈ [2d], define

(Ci)
d
j,k,` = (−2−d(αi)k(βΓGd (i,j))`, (Ai)k(BΓGd (i,j))`).

Finally, C = (Ci)i∈[2dout(A)] where Ci is the concatenation of the sequences CD
i ,C

d
i .

Note that C is an MBS as the stochastic property is preserved. Further, by definition,

2din(C) = 2din(A)+din(B) ·
(
2D + 2d

)
≤ 2din(A)+din(B) · 2D+1,

and so we indeed may regard C as having the stated din (see the remark regarding the
monotonicity of din in Section 5.2). We have the following claim.

Claim 6.17. With the notation of Definition 6.16, for every i ∈ [2dout(A)],

〈Ci〉 = 〈Ai〉
(

E
j∼ΓGD (i)

〈Bj〉 − E
j∼ΓGd (i)

〈Bj〉
)
.

Proof. Let i ∈ [2dout(A)]. As Ci is the concatenation of (Ci)
D and (Ci)

d, 〈Ci〉 = 〈(Ci)
D〉 +

〈(Ci)
d〉. Thus,

〈Ci〉 =
∑
k,`

∑
j∈[2D]

(Ci)
D
j,k,` +

∑
k,`

∑
j∈[2d]

(Ci)
d
j,k,`
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The first summand in the RHS of the above equation equals to∑
k,`

∑
j∈[2D]

(Ci)
D
j,k,` =

∑
k,`

∑
j∈[2D]

2−D(αi)k(βΓGD (i,j))`(Ai)k(BΓGD (i,j))`

=
∑
k

(αi)k(Ai)k E
j∼ΓGD (i)

∑
`

(βj)`(Bj)`

= 〈Ai〉 E
j∼ΓGD (i)

〈Bj〉.

As for the second summand,∑
k,`

∑
j∈[2d]

(Ci)
d
j,k,` =

∑
k,`

∑
j∈[2d]

−2−d(αi)k(βΓGd (i,j))`(Ai)k(BΓGd (i,j))`

= −
∑
k

(αi)k(Ai)k E
j∼ΓGd (i)

∑
`

(βj)`(Bj)`

= −〈Ai〉 E
j∼ΓGd (i)

〈Bj〉,

which completes the proof.

Claim 6.17, together with Equation (6.5), readily yields

〈A →•GD−Gd B〉 = 〈A →•GD B〉 − 〈A
→•Gd B〉. (6.14)

We refer to this property as the linearity of
→• .

Lemma 6.18. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS and B =
(B1, . . . ,B2dout(B)) a (dout(B), din(B), w)-MBS. Let GD = ([2dout(A)], [2dout(B)], ED) be an (ε1, δ1)-
sampler and Gd = ([2dout(A)], [2dout(B)], Ed) an (ε2, δ2)-sampler. Assume that 0 < ε1 ≤ ε2 < 1
and 0 < δ1 ≤ δ2 ≤ 1/(4w2). Denote the degrees of GD, Gd by 2D, 2d, respectively, and assume
that D ≥ d. Then,

din(A
→•GD−Gd B) ≤ din(A) + din(B) +D + 1;

dout(A
→•GD−Gd B) = dout(A);

σ(A →•GD−Gd B) ≥ min
(

2 log

(
1

ε2

)
+ σ(A), log

(
1

δ2

)
− µ(A)

)
− µ(B)− 2 logw − 6;

µ(A →•GD−Gd B) ≤ µ(A) + µ(B) + 2.

Proof. The assertions regarding din, dout readily follow by Definition 6.16 as since we assume
D ≥ d. We turn to analyze the smallness of the product. Write C = A →•GD−Gd B =

(Ci)
2dout(A)

i=1 . Let Γ1 : [2dout(A)] × [2D] → [2dout(B)] be the neighborhood function of GD and
Γ2 : [2dout(A)] × [2d] → [2dout(B)] the neighborhood function of Gd. By Claim 6.17, for all
i ∈ [2dout(A)],

〈Ci〉 = 〈Ai〉
(

E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
)
,
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and so, using the fact that ‖ · ‖∞ is sub-multiplicative,

‖Ci‖∞ ≤ ‖Ai‖∞
∥∥∥ E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
∥∥∥
∞
. (6.15)

By standard norm inequalities (see Claim 3.6),∥∥∥ E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
∥∥∥
∞
≤ w

∥∥∥ E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
∥∥∥

max

≤ w

(∥∥∥ E
j∼Γ1(i)

〈Bj〉 − 〈B〉
∥∥∥

max
+
∥∥∥ E
j∼Γ2(i)

〈Bj〉 − 〈B〉
∥∥∥

max

)
.

(6.16)

Fix α, β ∈ [w]. For s ∈ {1, 2} and i ∈ [2dout(A)], define

εα,βs (i) = E
j∼Γs(i)

〈Bj〉α,β − 〈B〉α,β.

Note that 〈B〉α,β = Ej∼[2dout(B)] 〈Bj〉α,β. Thus, as Gs is an (εs, δs)-sampler (here, we refer to GD

byG1 andGd byG2), and since |〈Bj〉α,β| ≤ 2µ(B)/2 for all j ∈ [2dout(B)], there exists a set Sα,βs ⊆
[2dout(A)] of size |Sα,βs | ≥ (1 − δs)2dout(A) such that for every i ∈ Sα,βs , |εα,βs (i)| ≤ 2µ(B)/2+1εs.
Moreover, for every i ∈ [2dout(A)], |εα,βs (i)| ≤ 2µ(B)/2+1. For s ∈ {1, 2} and i ∈ [2dout(A)], define

εs(i) = max
α,β∈[w]

∣∣εα,βs (i)
∣∣.

By Equation (6.16), ∥∥∥ E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
∥∥∥
∞
≤ w (ε1(i) + ε2(i)) .

Let

S =
w⋂

α,β=1

(
Sα,β1 ∩ Sα,β2

)
.

Note that

|S| ≥
(
1− (δ1 + δ2)w2

)
2dout(A) ≥

(
1− 2δ2w

2
)

2dout(A). (6.17)

Moreover, for every i ∈ S,

ε1(i) + ε2(i) ≤ (ε1 + ε2)2µ(B)/2+1 ≤ ε22µ(B)/2+2. (6.18)

By Equation (6.15),
‖Ci‖2

∞ ≤ ‖Ai‖2
∞w

2 (ε1(i) + ε2(i))2 .
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Taking expectation over i ∼ [2dout(A)], we get

2−σ(C) = E
i
‖Ci‖2

∞

≤ w2 E
i

[
‖Ai‖2

∞ (ε1(i) + ε2(i))2]
≤ w2 E

i

[
‖Ai‖2

∞ (ε1(i) + ε2(i))2
∣∣ i ∈ S]+ 2µ(A)+µ(B)+4 Pr[i 6∈ S]

≤ w2ε2
22µ(B)+4 E

i

[
‖Ai‖2

∞
∣∣ i ∈ S]+ 2µ(A)+µ(B)+4 Pr[i 6∈ S], (6.19)

where, for the penultimate inequality we used the fact that ‖Ai‖2
∞ ≤ 2µ(A) and εs(i) ≤

2µ(B)/2+1 for all i, and the last inequality follows by Equation (6.18). By Equation (6.17),

Pr[i 6∈ S] ≤ 2δ2w
2. (6.20)

In particular, Pr[i ∈ S] ≥ 1/2 per our assumption on δ2. Using the fact that ‖Ai‖2
∞ ≥ 0,

E
i

[
‖Ai‖2

∞
∣∣ i ∈ S] ≤ Ei [‖Ai‖2

∞]

Pr[i ∈ S]
≤ 2 E

i

[
‖Ai‖2

∞
]

= 2−σ(A)+1. (6.21)

Equations (6.19), (6.20),(6.21) then imply 2−σ(C) ≤ 2µ(B)+5w2
(
ε2

22−σ(A) + 2µ(A)δ2

)
, which

concludes the proof regarding the smallness of C.
As for the magnitude, by Claim (6.17),

〈Ci〉 = 〈Ai〉
(

E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
)
,

and so, as ‖ · ‖∞ is sub-multiplicative (and sub-additive),

‖Ci‖∞ ≤ ‖Ai‖∞
∥∥∥ E
j∼Γ1(i)

〈Bj〉 − E
j∼Γ2(i)

〈Bj〉
∥∥∥
∞

≤ ‖Ai‖∞
(∥∥∥ E

j∼Γ1(i)
〈Bj〉

∥∥∥
∞

+
∥∥∥ E
j∼Γ2(i)

〈Bj〉
∥∥∥
∞

)
≤ ‖Ai‖∞

(
E

j∼Γ1(i)
‖Bj‖∞ + E

j∼Γ2(i)
‖Bj‖∞

)
.

Hence, by Jensen’s inequality,

‖Ci‖2
∞ ≤ ‖Ai‖2

∞

(
E

j∼Γ1(i)
‖Bj‖∞ + E

j∼Γ2(i)
‖Bj‖∞

)2

≤ ‖Ai‖2
∞ · 2

((
E

j∼Γ1(i)
‖Bj‖∞

)2

+

(
E

j∼Γ2(i)
‖Bj‖∞

)2
)

≤ ‖Ai‖2
∞ · 2

(
E

j∼Γ1(i)
‖Bj‖2

∞ + E
j∼Γ2(i)

‖Bj‖2
∞

)
≤ 4 · 2µ(A)+µ(B).

As this holds for all i, µ(C) ≤ µ(A) + µ(B) + 2, as claimed.
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Definition 6.19. Let A = (A1, . . . ,A2dout(A)) be a (dout(A), din(A), w)-MBS, where

Ai = (((αi)1, (Ai)1) , . . . , ((αi)2din(A) , (Ai)2din(A))) .

Let B = (B1, . . . ,B2dout(B)) be a (dout(B), din(B), w)-MBS, where

Bi = (((βi)1, (Bi)1) , . . . , ((βi)2din(B) , (Bi)2din(B))) .

Let D ≥ d ≥ 1 be integers. Let GD = ([2dout(A)], [2dout(B)], ED) be a left-regular bipartite
graph with left-degree 2D and Gd = ([2dout(A)], [2dout(B)], Ed) a left-regular bipartite graph with

left-degree 2d. We define the (dout(A), din(A) + din(B) +D+ 1, w)-MBS C = A ←•GD−Gd B as
follows: For i ∈ [2dout(A)], k ∈ [2din(A)], ` ∈ [2din(B)], and j ∈ [2D], define

(Ci)
D
j,k,` = (2−D(αi)k(βΓGD (i,j))`, (BΓGD (i,j))`(Ai)k).

For i ∈ [2dout(A)], k ∈ [2din(A)], ` ∈ [2din(B)], and j ∈ [2d], define

(Ci)
d
j,k,` = (−2−d(αi)k(βΓGd (i,j))`, (BΓGd (i,j))`(Ai)k).

Finally, C = (Ci)i∈[2dout(A)] where Ci is the concatenation of the sequences CD
i ,C

d
i .

Similarly to the product
→• , one can show that

〈A ←•GD−Gd B〉 = E
i

[(
E

j∼ΓGD (i)
〈Bj〉 − E

j∼ΓGd (i)
〈Bj〉

)
〈Ai〉

]
,

and that 〈A ←•GD−Gd B〉 = 〈A ←•GD B〉 − 〈A
←•Gd B〉. The following lemma follows by similar

arguments to those used to prove Lemma 6.18.

Lemma 6.20. Let A be a (dout(A), din(A), w)-MBS and B a (dout(B), din(B), w)-MBS. Let
GD = ([2dout(A)], [2dout(B)], ED) be an (ε1, δ1)-sampler and Gd = ([2dout(A)], [2dout(B)], Ed) an
(ε2, δ2)-sampler. Assume that 0 < ε1 ≤ ε2 < 1 and 0 < δ1 ≤ δ2 ≤ 1/(4w2). Denote the
degrees of Gd, Gd by 2D, 2d, respectively, and assume that D ≥ d. Then,

din(A
←•GD−Gd B) ≤ din(A) + din(B) +D + 1;

dout(A
←•GD−Gd B) = dout(A);

σ(A ←•GD−Gd B) ≥ min
(

2 log

(
1

ε2

)
+ σ(A), log

(
1

δ2

)
− µ(A)

)
− µ(B)− 2 logw − 6;

µ(A ←•GD−Gd B) ≤ µ(A) + µ(B) + 2.

7 Leveled Matrix Representations

Definition 7.1. A (k, w)-matrix representation is a sequence A = ((a0,A0), . . . , (ak,Ak))
where:

• ai ≥ 0 are real numbers and Ai are MBSs; and

• for every i ≥ 1, σ(Ai) ≥ i− (i− 1)τ , where τ = 1/(10k2).

The matrix that is realized by A is defined by 〈A〉 =
∑k

i=0 ai〈Ai〉. We define the weight of
A by ϑ(A) =

∑
i ai.
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Remark regarding τ . Ideally, the property σ(Ai) ≥ i−(i−1)τ would have been replaced
by σ(Ai) ≥ i which captures in a cleaner way the fact that the smallness, or more precisely,
the bound we can guarantee on the smallness, increases with i. However, the machinery we
developed in Section 6 does not allow us to maintain such invariant. Thus, we are forced to
introduce and work with this small relaxation.

Matrix representations capture the way in which we represent matrices. However, we
will require, and maintain, some more structure. We find it useful to define this extra
structure “on top” of the basic definition rather than mix them into one. We start with some
preparations. For integers k ≥ g ≥ 1, define the function levelk,g : {0, g, g+ 1, . . . , k} → N by

levelk,g(i) =

{
0, i = 0;

1 +
⌊

log
(
i
g

)⌋
, i ≥ 1.

When k, g are clear from context, we omit them from the subscript and simply write level(i).
Note that if i, j > 0 are such that level(i) = level(j) then i/2 ≤ j ≤ 2i. From this point on,
for simplicity, we assume that g divides k.

For ease of readability, from this point on we define the function ω(w) = 2 logw + 6.
When w is clear from the context, we omit it and write ω instead of ω(w). We remind the
reader that all matrices considered are of order w × w.

Definition 7.2. Let k, g, w be integers such that

k ≥ g ≥ 10(ω + log k). (7.1)

A (k, g, w)-leveled matrix representation (LMR for short) A is a (k, w)-matrix representation
A = ((a0,A0), . . . , (ak,Ak)) such that

• A0 is thin and a0 = 1;

• ai = 0 for all i such that g 6 | i; and

• µ(Ai) ≤ i.

Moreover, for every i, j ∈ {0, g, . . . , k},

• If level(i) = level(j) then dout(Ai) = dout(Aj); and

• If level(i) > level(j) then dout(Ai) ≥ dout(Aj) + 10k.

As we care mainly about 〈A〉, the matrix that is realized by A, whenever ai = 0 we also
write Ai = ∅.

Definition 7.3. Let δout, δin, µ
′, ϑ : R → R be monotone non-decreasing functions. Let A =

((1,A0), . . . , (ak,Ak)) be a (k, g, w)-LMR. We say that:

• A respects the out-function δout if dout(Ai) ≤ δout(i) for all i ≥ 0;
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• A respects the in-function δin if din(Ai) ≤ δin(i) for all i > 0;

• A respects the magnitude-function µ′ if µ(Ai) ≤ µ′(i) for all i > 0;

• A respects the weight-function ϑ if ai ≤ ϑ(i) for all i > 0;

• A respects (δout, δin, µ
′, ϑ) if A respects the out-function δout, the in-function δin, the

magnitude-function µ′, and the weight-function ϑ.

Remark. Note that we do not make any requirement of din, µ and ϑ for i = 0. This is
because in some cases the functions δin, µ

′, ϑ that we work with are not well-defined at i = 0.
While one can always tweak the functions appropriately, it is cumbersome and in any case,
as A is an LMR, a0 = 1 and A0 is thin, and so din(A0) = µ(A0) = 0.

We sometimes abuse notation and also use dout, din, µ instead of introducing the notation
δout, δin, µ

′. The meaning will always be clear from context.

8 The Family F(A,B)

From this point, given an integer k, we set

δ = 2−5k. (8.1)

For integers n, d, let BS(n, d) be the balanced sampler BSamp(n, 2−d, 2−d) = ([n], [n], E)
that is given by Theorem 3.9. By Theorem 3.9, the degree of BS(n, d) is O(23d). For ease of
readability, we omit n and write BS(d) whenever n is clear from context. For integers `, r, d for
which ` ≥ r/δ2 let US(`, r, d) be the sampler UBSamp(`, r, 2−d, δ) = ([`], [r], E) that is given
by Theorem 3.11. By Theorem 3.11, the degree of US(`, r, d) is O((2d·5k)csamp)=O((2d·k)csamp).
When `, r are clear from context we omit them and write US(d).

Definition 8.1. Let A = ((1,A0), . . . , (ak,Ak)), B = ((1,B0), . . . , (bk,Bk)) be a pair of
(k, g, w)-LMRs. Assume that dout(Ai) = dout(Bi) for all i. Define F(A,B) to be the following
collection of MBSs:

1. {
A0

→◦BS(2g) B0

}
∪
{
A0

→•BS(2r+1g)−BS(2rg) B0

∣∣∣ r = 1, . . . , log(k/g)
}

;

2. For every j ∈ {g, 2g, . . . , k},{
Bj
←◦US(g) A0

}
∪
{
Bj
←•US(2r+1g)−US(2rg) A0

∣∣∣ r = 0, 1, . . . , log(k/g)
}

;

3. For every i ∈ {g, 2g, . . . , k},{
Ai
→◦US(g) B0

}
∪
{
Ai
→•US(2r+1g)−US(2rg) B0

∣∣∣ r = 0, 1, . . . , log(k/g)
}

;
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4. For every i, j ∈ {g, 2g, . . . , k} such that level(i) = level(j),{
Ai
→•BS(8i) Bj

}
∪
{
Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj

∣∣∣ r = 0, 1, . . . , log (k/i)
}

;

5. For i, j ∈ {g, 2g, . . . , k} such that level(i) > level(j),{
Ai
→•US(8j) Bj

}
∪
{
Ai
→•US(2r+1·8j)−US(2r·8j) Bj,

∣∣∣ r = 0, 1, . . . , log(k/j)
}

;

6. For i, j ∈ {g, 2g, . . . , k} such that level(j) > level(i),{
Bj
←•US(8i) Ai

}
∪
{
Bj
←•US(2r+1·8i)−US(2r·8i) Ai,

∣∣∣ r = 0, 1, . . . , log(k/i)
}
.

Remark on the validity of Definition 8.1. The MBSs listed in Definition 8.1 are
obtained by multiplying MBSs where the product is parameterized by a balanced or an
unbalanced sampler (or delta of such). Therefore, one must verify that the MBSs that are
being multiplied have dout as required by the corresponding sampler. This indeed holds for
all MBSs listed in Definition 8.1. Indeed,

• For all products that are parameterized by an unbalanced sampler (or by the delta
of such), the requirement regarding the ratio between the sides of the sampler holds.
Indeed, by the hypothesis, and since A,B are LMRs, for every i, j ∈ {0, g, . . . , k} with
level(i) > level(j) it holds that

dout(Ai) ≥ dout(Aj) + 10k = dout(Bj) + 10k

(and similarly, dout(Bi) ≥ dout(Aj) + 10k). Hence, the ratio between the two sides
of the sampler is bounded below by 210k = δ−2, per Equation (8.1), as required by
Theorem 3.11.

• When taking a product with balanced samplers (or the delta of such), the two sides of
the samplers are of equal size, as for i, j with level(i) = level(j) it holds that dout(Ai) =
dout(Aj) = dout(Bj).

We set some useful notation. Let A,B be a pair of (k, g, w)-LMRs. For i, j ∈
{0, g, 2g, . . . , k} we let Si,j be the sum of all matrices that are realized by MBSs in the
corresponding item of Definition 8.1. Let C ∈ F(A,B) and let i, j ∈ {0, g, 2g, . . . , k} be such
that C is obtained by taking the product of Ai and Bj when parameterized by some sampler
or delta of such. We denote this corresponding indices by i(C), j(C)9.

The following claim states that the sum of all MBSs in F(A,B), when weighted properly,
approximates the product 〈A〉〈B〉.

9By just looking at an MBS C, i(C) and j(C) are not well defined but given the context of C belonging to
F(A,B), these quantities are well defined and we will use the notation only in such context.
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Claim 8.2. Let A,B be a pair of (k, g, w)-LMRs. Then,∥∥∥〈A〉〈B〉 − k∑
i,j=0

aibjSi,j

∥∥∥
max
≤ 8wϑ(A)ϑ(B)2−k.

Proof. For i = j = 0 we have,

S0,0 = 〈A0
→◦BS(2g) B0〉+

log(k/g)∑
r=1

〈A0
→•BS(2r+1g)−BS(2rg) B0〉

= 〈A0
→•BS(2k) B0〉,

where the last equality follows by Claim 6.12 and by the linearity of
→• (see Equation (6.14)).

As BS(2k) is a (2−2k, 2−2k)-sampler, Lemma 6.13 implies that ‖〈A0〉〈B0〉 − S0,0‖max ≤
8w2−2k ≤ 8w2−k.

Similarly, for every j ∈ {g, 2g, . . . , k},

S0,j = 〈Bj
←◦US(g) A0〉+

log(k/g)∑
r=0

〈Bj
←•US(2r+1g)−US(2rg) A0〉

= 〈Bj
←•US(2k) A0〉.

As US(2k) is a (2−2k, δ)-sampler, Lemma 6.13 yields ‖〈A0〉〈Bj〉−S0,j‖max ≤ 8w2−k (Assuming
that µ(Bj) ≤ j ≤ k). In the same way one can show that for i ∈ {g, 2g, . . . , k}, ‖〈Ai〉〈B0〉 −
Si,0‖max ≤ 8w2−k. Consider i, j ∈ {g, 2g, . . . , k} with level(i) = level(j), namely, MBSs from

Item 4 of Definition 8.1. By the linearity of
→• , Si,j = 〈Ai

→•BS(16k) Bj〉 (we assumed that
dout(Ai) = dout(Aj) whenever level(i) = level(j)) and so, by Lemma 6.13,

‖〈Ai〉〈Bj〉 − Si,j‖max ≤ 4w2
µ(Bj)

2 ·
(

2
µ(Ai)

2
−16k + 2−

σ(Ai)
2
−16k

)
≤ 8w2−k.

The same bound can be shown to hold for MBSs from Items 5,6 of Definition 8.1. We show
here for Item 5. By the linearity of

→• , Si,j = 〈Ai
→•US(16k) Bj〉 and so, by Lemma 6.13,

‖〈Ai〉〈Bj〉 − Si,j‖max ≤ 4w2
µ(Bj)

2 ·
(

2
µ(Ai)

2
−5k + 2−

σ(Ai)
2
−16k

)
≤ 8w2−k.

Thus, altogether we established that for every i, j ∈ {0, g, 2g, . . . , k},

‖〈Ai〉〈Bj〉 − Si,j‖max ≤ 8w2−k. (8.2)

Now,

〈A〉〈B〉 =

(
k∑
i=0

ai〈Ai〉

)(
k∑
j=0

bj〈Bj〉

)

=
k∑

i,j=0

aibj〈Ai〉〈Bj〉.
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Equation (8.2) together with the triangle inequality then implies∥∥∥〈A〉〈B〉 − k∑
i,j=0

aibjSi,j

∥∥∥
max
≤

k∑
i,j=0

aibj‖〈Ai〉〈Bj〉 − Si,j‖max

≤ 8wϑ(A)ϑ(B)2−k.

8.1 Basic properties of the MBSs in F(A,B): dout, din, µ, σ

In this section we give a series of claims that analyze the MBSs in F(A,B) in terms of
their dout, din, magnitude µ, and smallness σ. Throughout this section, A,B is a pair of
(k, g, w)-LMRs as in Definition 8.1. We further recall that δ = 2−5k per Equation (8.1) and
that τ = 1/(10k2) per Definition 7.2. We start by considering the MBSs that are given in
Item 1 of Definition 8.1.

Claim 8.3. The MBS A0
→◦BS(2g) B0 is thin and dout(A0

→◦BS(2g) B0) ≤ dout(A0) + 7g.
Moreover, for every r ∈ {1, . . . , log(k/g)},

din

(
A0

→•BS(2r+1g)−BS(2rg) B0

)
≤ 2r+3g;

dout

(
A0

→•BS(2r+1g)−BS(2rg) B0

)
= dout(A0);

σ
(
A0

→•BS(2r+1g)−BS(2rg) B0

)
≥ 2rg − ω;

µ
(
A0

→•BS(2r+1g)−BS(2rg) B0

)
≤ 2.

Proof. As both A0,B0 are thin, Claim 6.7 implies that A0
→◦BS(2g) B0 is thin. As the sampler

BS(2g) has degree O(26g) which we assume is bounded by 27g, Lemma 6.5 implies that

dout(A0
→◦BS(2g) B0) ≤ dout(A0) + 7g, as stated. Moving to the moreover part, fix r ∈

{1, . . . , log(k/g)} and write C = A0
→•BS(2r+1g)−BS(2rg) B0. By Lemma 6.18, whose hypothesis

is satisfied per Equation (7.1), and using the fact that A0,B0 are thin, we get din(C) =
3 · 2r+1g + O(1), which yields the stated bound. The assertion regarding dout(C) readily
follows by Definition 6.16. As for the smallness, Lemma 6.18 implies that σ(C) ≥ 2rg − ω.
Lastly, as µ(A0) = µ(B0) = 0, Lemma 6.18 implies that µ(C) ≤ 2.

Claim 8.4. For every j ∈ {g, 2g, . . . , k},

din

(
Bj
←◦US(g) A0

)
= din(Bj);

dout

(
Bj
←◦US(g) A0

)
≤ dout(Bj) + 2csampg;

σ
(
Bj
←◦US(g) A0

)
≥ σ(Bj);

µ
(
Bj
←◦US(g) A0

)
≤ µ(Bj).
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Moreover, for every r ∈ {0, 1, . . . , log(k/g)},

din

(
Bj
←•US(2r+1g)−US(2rg) A0

)
≤ din(Bj) + csamp2

r+2g;

dout

(
Bj
←•US(2r+1g)−US(2rg) A0

)
= dout(Bj);

σ
(
Bj
←•US(2r+1g)−US(2rg) A0

)
≥ min (σ(Bj) + 2rg, k + 1) ;

µ
(
Bj
←•US(2r+1g)−US(2rg) A0

)
≤ µ(Bj) + 2.

Proof. As A0 is thin, Lemma 6.6 implies the assertions regarding din(Bj
←◦US(g) A0),

σ(Bj
←◦US(g) A0) and µ(Bj

←◦US(g) A0). The bound dout(Bj
←◦US(g) A0) ≤ dout(Bj) + 2csampg

follows as the degree of US(g) is O((2g · k)csamp) ≤ 22csampg, where we used the fact that
g ≥ 10 log k.

Moving to the moreover part of the claim, denote C = Bj
←•US(2r+1g)−US(2rg) A0. Recall that

the degree of US(2r+1g) is O((22r+1g · k)csamp) ≤ 2csamp2r+2g10 per our assumption g ≥ 10 log k.
Lemma 6.20 then implies that din(C) ≤ din(Bj) + csamp2

r+2g. The assertion regarding dout(C)
follows by definition, and the bound on the magnitude follows by Lemma 6.20 and since A0

is thin. As for the smallness, by Lemma 6.20,

σ(C) ≥ min
(
2r+1g + σ(Bj), 5k − µ(Bj)

)
− ω

≥ min (σ(Bj) + 2rg, k + 1) ,

where in the above inequality we used the hypothesis g ≥ ω and that µ(Bj) + ω ≤ j + ω ≤
2k.

Claim 8.5. For every i ∈ {g, 2g, . . . , k},

din

(
Ai
→◦US(g) B0

)
= din(Ai);

dout

(
Ai
→◦US(g) B0

)
≤ dout(Ai) + 2csampg;

σ
(
Ai
→◦US(g) B0

)
≥ σ(Ai);

µ
(
Ai
→◦US(g) B0

)
≤ µ(Ai).

Moreover, for every r ∈ {0, 1, . . . , log(k/g)},

din

(
Ai
→•US(2r+1g)−US(2rg) B0

)
≤ din(Ai) + csamp2

r+2g;

dout

(
Ai
→•US(2r+1g)−US(2rg) B0

)
= dout(Ai);

σ
(
Ai
→•US(2r+1g)−US(2rg) B0

)
≥ min (σ(Ai) + 2rg, k + 1) ;

µ
(
Ai
→•US(2r+1g)−US(2rg) B0

)
≤ µ(Ai) + 2.

10g is larger than a large enough constant.
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The proof of Claim 8.5 is similar to the proof of Claim 8.4 and we omit it.

Claim 8.6. For every i, j ∈ {g, 2g, . . . , k} such that level(i) = level(j),

din

(
Ai
→•BS(8i) Bj

)
≤ din(Ai) + din(Bj) + 25i;

dout

(
Ai
→•BS(8i) Bj

)
= dout(Ai);

σ
(
Ai
→•BS(8i) Bj

)
≥ min(σ(Ai), i) + min(σ(Bj), j)− τ ;

µ
(
Ai
→•BS(8i) Bj

)
≤ µ(Ai) + µ(Bj).

Moreover, for every r ∈ {0, 1, . . . , log(k/i)},

din

(
Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj

)
≤ din(Ai) + din(Bj) + 50i · 2r;

dout

(
Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj

)
= dout(Ai);

σ
(
Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj

)
≥ 2r+2i;

µ
(
Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj

)
≤ µ(Ai) + µ(Bj) + 2.

Proof. We wish to invoke Lemma 6.14. Thus, we first must verify that Equation (6.12) holds
for λ(Ai) = min(σ(Ai), i) and λ(Bj) = min(σ(Bj), j). As BS(8i) is a (2−8i, 2−8i)-sampler, it
suffices to check that

8i ≥ i+ j + µ(Ai) + µ(Bj) + log(1/τ) + 3.

As level(i) = level(j) we have j ≤ 2i. Since µ(Ai) ≤ i and µ(Bj) ≤ j it holds that

i+ j + µ(Ai) + µ(Bj) + log(1/τ) + 3 ≤ 6i+ 2 log k + 7,

where we have used the remark regarding σ that appears after Definition 7.1. As i ≥ g ≥
10 log k, the RHS is indeed bounded by 8i. Lemma 6.14 then implies the assertion regarding
the smallness and magnitude of Ai

→•BS(8i) Bj. The assertion regarding dout(Ai
→•BS(8i) Bj)

follows by Definition 6.8. Since the degree of BS(8i) is O(224i) which we assume is bounded

by 225i, the bound on din(Ai
→•BS(8i) Bj) follows.

Fix r ∈ {0, 1, . . . , log(k/i)} and write C = Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj. Recall that the

degree of BS(2r+1 · 8i) is O(23·2r+1·8i) ≤ 249i·2r . Therefore, Lemma 6.18 implies the asserted
bound on din(C). The bound on dout(C) follows by Definition 6.16, and the bound on µ(C)
readily follows by Lemma 6.18. As for the smallness, by Lemma 6.18,

σ(C) ≥ min
(
σ(Ai) + 2r+4i, 2r+3i− µ(Ai)

)
− µ(Bj)− ω

= 2r+3i− µ(Ai)− µ(Bj)− ω
≥ 2r+3i− 4i

≥ 2r+2i,
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where we used the fact that σ(Ai) ≥ i − (i − 1)τ , µ(Ai) ≤ i, µ(Bj) ≤ j ≤ 2i which follows
as level(i) = level(j), and that i ≥ g ≥ ω.

Claim 8.7. For every i, j ∈ {g, 2g, . . . , k} such that level(i) > level(j),

din

(
Ai
→•US(8j) Bj

)
≤ din(Ai) + din(Bj) + 9csampj;

dout

(
Ai
→•US(8j) Bj

)
= dout(Ai);

σ
(
Ai
→•US(8j) Bj

)
≥ min(σ(Ai), i) + min(σ(Bj), j)− τ ;

µ
(
Ai
→•US(8j) Bj

)
≤ µ(Ai) + µ(Bj).

Moreover, for every r ∈ {0, 1, . . . , log(k/j)},

din

(
Ai
→•US(2r+1·8j)−US(2r·8j) Bj

)
≤ din(Ai) + din(Bj) + csamp2

r+5j;

dout

(
Ai
→•US(2r+1·8j)−US(2r·8j) Bj

)
= dout(Ai);

σ
(
Ai
→•US(2r+1·8j)−US(2r·8j) Bj

)
≥ min

(
σ(Ai) + 2r+3j, k + 1

)
;

µ
(
Ai
→•US(2r+1·8j)−US(2r·8j) Bj

)
≤ µ(Ai) + µ(Bj) + 2.

Proof. Recall that US(8j) is a (2−8j, δ)-sampler where δ = 2−5k. To invoke Lemma 6.14,
we must first verify that Equation (6.12) holds for λ(Ai) = min(σ(Ai), i) and λ(Bj) =
min(σ(Bj), j), namely,

8j ≥ j + µ(Bj) + log(1/τ) + 3,

5k ≥ i+ j + µ(Ai) + µ(Bj) + log(1/τ) + 3.

The first inequality holds as

j + µ(Bj) + log(1/τ) + 3 ≤ 2j + log(10k2) + 3,

which is indeed bounded above by 8j as j ≥ g ≥ 10 log k (see the remark regarding σ that
appears after Definition 7.1). As for the second inequality,

i+ j + µ(Ai) + µ(Bj) + log(1/τ) + 3 ≤ 2i+ 2j + log(1/τ) + 3

≤ 4k + log(10k2) + 3

≤ 5k.

Thus, the asserted bounds regarding the smallness and magnitude of Ai
→•US(8j) Bj follow

by Lemma 6.14. That dout(Ai
→•US(8j) Bj) = dout(Ai) follows by Definition 6.8. As for

din(Ai
→•US(8j) Bj), recall that the degree of the sampler US(8j) is O((28j · k)csamp) ≤ 29csampj,
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where the inequality follows as j ≥ g ≥ 10 log k. The bound on din(Ai
→•US(8j) Bj) then

follows by Definition 6.8.
Write C = Ai

→•US(2r+1·8j)−US(2r·8j) Bj. The bounds on dout(C), µ(C) readily follow by

Lemma 6.18. As US(2r+1 · 8j) has degree O((22r+1·8j · k)csamp), Lemma 6.18 implies the stated
bound on din(C). As for σ(C), by Lemma 6.18,

σ(C) ≥ min
(
2r+4j + σ(Ai), 5k − µ(Ai)

)
− µ(Bj)− ω

≥ min
(
σ(Ai) + 2r+3j, k + 1

)
,

which completes the proof.

Claim 8.8. For every i, j ≥ g such that level(i) < level(j),

din

(
Bj
←•US(8i) Ai

)
≤ din(Ai) + din(Bj) + 9csampi;

dout

(
Bj
←•US(8i) Ai

)
= dout(Bj);

σ
(
Bj
←•US(8i) Ai

)
≥ min(σ(Ai), i) + min(σ(Bj), j)− τ ;

µ
(
Bj
←•US(8i) Ai

)
≤ µ(Ai) + µ(Bj).

Moreover, for every r ∈ {0, 1, . . . , log(k/i)},

din

(
Bj
←•US(2r+1·8i)−US(2r·8i) Ai

)
≤ din(Ai) + din(Bj) + csamp2

r+5i;

dout

(
Bj
←•US(2r+1·8i)−US(2r·8i) Ai

)
= dout(Bj);

σ
(
Bj
←•US(2r+1·8i)−US(2r·8i) Ai

)
≥ min

(
σ(Bj) + 2r+3i, k + 1

)
;

µ
(
Bj
←•US(2r+1·8i)−US(2r·8i) Ai

)
≤ µ(Ai) + µ(Bj) + 2.

The proof of Claim 8.8 is similar to the proof of Claim 8.7 and we omit the details.

8.2 The slices of F(A,B)

In this section we define the s-slice of F(A,B) that, roughly speaking, consists of all MBSs
C ∈ F(A,B) for which s is the best lower bound we can give on the σ(C).

Definition 8.9. Let A = ((1,A0), . . . , (ak,Ak)), B = ((1,B0), . . . , (bk,Bk)) be a pair of
(k, g, w)-LMRs. Let s ∈ {0, 1, . . . , k}. Define Fs(A,B) to be the following collection of
MBSs:

1. A0
→◦BS(2g) B0 if s = 0, and A0

→•BS(2r+1g)−BS(2rg) B0 if there is r ∈ {1, . . . , log(k/g)}
such that s = (2r − 1)g;

2. Bs
←◦US(g) A0, and Bj

←•US(2r+1g)−US(2rg) A0 for all r ∈ {0, 1, . . . , log(k/g)} and j ∈
{g, 2g, . . . , k} such that j + 2rg = s;
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3. As
→◦US(g) B0, and Ai

→•US(2r+1g)−US(2rg) B0 for all r ∈ {0, 1, . . . , log(k/g)} and i ∈
{g, 2g, . . . , k} such that i+ 2rg = s;

4. Ai
→•BS(8i) Bj for every i, j ∈ {g, 2g, . . . , k} such that level(i) = level(j) and

i + j = s, as well as Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj for every i, j ∈ {g, 2g, . . . , k} and

r ∈ {0, 1, . . . , log(k/i)} such that level(i) = level(j) and 2r+2i = s.

5. Ai
→•US(8j) Bj for every i, j ∈ {g, 2g, . . . , k} such that level(i) > level(j) and

i + j = s, as well as Ai
→•US(2r+1·8j)−US(2r·8j) Bj for every i, j ∈ {g, 2g, . . . , k} and

r ∈ {0, 1, . . . , log(k/j)} such that level(i) > level(j) and i+ 2r+3j = s.

6. Bj
←•US(8i) Ai for every i, j ∈ {g, 2g, . . . , k} such that level(j) > level(i) and

i + j = s, as well as Bj
←•US(2r+1·8i)−US(2r·8i) Ai for every i, j ∈ {g, 2g, . . . , k} and

r ∈ {0, 1, . . . , log(k/i)} such that level(j) > level(i) and j + 2r+3i = s.

We start by analyzing the slices of F(A,B).

Claim 8.10. Let A,B be a pair of (k, g, w)-LMRs. Then, for every s : g 6 | s, Fs(A,B) = ∅.

Proof. By inspecting the MBSs in Definition 8.9, one can readily see that the MBSs in
Fs(A,B) are products of MBSs Ai, Bj such that ai + bj + cg = s for some integers a, b, c.
As A,B are (k, g, w)-LMRs, both i, j are divisible by g and so s is also divisible by g. Put
differently, for s not divisible by g, the collection Fs(A,B) is empty.

Claim 8.11. Let A,B be a pair of (k, g, w)-LMRs. Then, for every s ∈ {g, 2g, . . . , k} and
C ∈ Fs(A,B), it holds that

σ(C) ≥ s− (s− 1)τ.

Moreover,

{C ∈ F(A,B) | σ(C) ≤ k} ⊆
⋃

s={0,g,2g,...,k}

Fs(A,B). (8.3)

Proof. Consider the MBS C = A0
→•BS(2r+1g)−BS(2rg) B0 where r ∈ {1, . . . , log(k/g)} is such

that s = (2r − 1)g. By Claim 8.3, σ(C) ≥ s as desired. By Claim 8.4, σ(Bs
←◦US(g)

A0) ≥ σ(Bs). As B is an LMR, σ(Bs) ≥ s − (s − 1)τ , as desired. Consider the MBS

C = Bj
←•US(2r+1g)−US(2rg) A0 for r ∈ {0, 1, . . . , log(k/g)} and j ∈ {g, 2g, . . . , k} such that

j + 2rg = s. By Claim 8.4, σ(C) ≥ min(σ(Bj) + 2rg, k + 1). If σ(Bj) + 2rg > k + 1 then
σ(C) > k > s and we are done. Otherwise, using that B is an LMR,

σ(C) ≥ σ(Bj) + 2rg

≥ j − (j − 1)τ + 2rg

≥ s− (s− 1)τ.

A similar argument can be used to prove the assertion for MBSs from Item 3 of Definition 8.9
and we omit the details.
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Consider now the MBS Ai
→•BS(8i) Bj where i, j ∈ {g, 2g, . . . , k} are such that level(i) =

level(j) and i+ j = s. By Claim 8.6 and since A,B are LMRs,

σ(Ai
→•BS(8i) Bj) ≥ min(σ(Ai), i) + min(σ(Bj), j)− τ

≥ i− (i− 1)τ + j − (j − 1)τ − τ
= s− (s− 1)τ,

as stated. Let C = Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj where i, j ∈ {g, 2g, . . . , k} and r ∈

{0, 1, . . . , log(k/i)} are such that level(i) = level(j) and 2r+2i = s. By Claim 8.6,
σ(C) ≥ 2r+2i = s, as desired. A similar argument can be used for the remaining MBSs
in Fs(A,B), for which level(i) 6= level(j), and we omit the details.

Moving to the moreover part, a careful inspection of Definition 8.1, Definition 8.9 and the
claims in Section 8.1 yields that we did not “leave out” any MBS of smallness not larger than
k in Definition 8.9. This, together with the fact that σ(C) ≥ s−(s−1)τ for all s ∈ Fs(A,B),
yields

{C ∈ F(A,B) | σ(C) ≤ k} ⊆
k⋃
s=0

Fs(A,B).

We omit the details of the proof. Equation (8.3) then follows by Claim 8.10.

Claim 8.12. Let A,B be a pair of (k, g, w)-LMRs. Then, for every s ∈ {g, 2g, . . . , k},
|Fs(A,B)| = O((s/g)2).

Proof. Clearly, Item 1 in Definition 8.9 contributes at most one MBS to Fs(A,B). As for
Item 2, for every fixed j, the number of MBSs contributed is one. As B is an LMR, we only
need to consider j that is divisible by g and so the total number of MBSs contributed by
Item 2 is O((s/g)). As A is also an LMR, a similar argument gives the same bound on the
number of MBSs coming from Item 3.

Moving on to Item 4, the number of MBSs of the form Ai
→•BS(8i) Bj is equal to the

number of solutions to i + j = s. As i, j are divisible by g, the number of solutions is
O(s/g). The remaining MBSs in Item 4 are of the form Ai

→•BS(2r+1·8i)−BS(2r·8i) Bj where
i, j ∈ {g, 2g, . . . , k}, level(i) = level(j), and r ∈ {0, 1, . . . , log(k/i)} is such that 2r+2i = s.
As i ≥ g and i is divisible by g, the number of (i, r) pairs the satisfy the latter equation is
O(s/g). For every such (i, r) pair, the number of j’s for which level(i) = level(j) is O(i/g).
Indeed the latter constraint implies that i/2 ≤ j ≤ 2i, and j is divisible by g. Summing over
all these values, we conclude that the total number of MBSs of the latter form is O((s/g)2).
Similar arguments can be used to bound the number of MBSs from Item 5 and Item 6 by
O((s/g)2) and we omit the details.

8.3 Analyzing dout, din, µ of the slices of F(A,B)

In this section we further analyze the MBSs in Fs(A,B) based on the calculations done in
Section 8.1. We start by analyzing din(C) for MBSs C ∈ Fs(A,B). Then, in Claim 8.14 and
Claim 8.15, we analyze dout(C) and µ(C), respectively.
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Claim 8.13. Let cin = 100csamp, where csamp ≥ 1 is the constant from Theorem 3.11. Assume
that A,B is a pair of (k, g, w)-LMRs that respect the in-function din(i) = cini log i. Then,
for every s ∈ {g, 2g, . . . , k} and C ∈ Fs(A,B), din(C) ≤ cins log s.

Proof. Consider the MBS C = A0
→•BS(2r+1g)−BS(2rg) B0 with s = (2r − 1)g, assuming such r

exists, as defined in Item 1 of Definition 8.9. By Claim 8.3, din(C) ≤ 2r+3g. It is therefore
suffices to show that

2r+3g ≤ cin(2
r − 1)g log((2r − 1)g),

which holds as cin ≥ 16.
Moving to Item 2 of Definition 8.9, consider the MBS Bs

←◦US(g) A0. By Claim 8.4,

din(Bs
←◦US(g) A0) = din(Bs) which by the hypothesis is bounded above by cins log s, as

desired. Now, let C = Bj
←•US(2r+1g)−US(2rg) A0 where r ∈ {0, 1, . . . , log(k/g)} and j are such

that s = j+ 2rg. By Claim 8.4, din(C) ≤ din(Bj) + csamp2
r+2g. It is therefore suffices to prove

that
din(Bj) + csamp2

r+2g ≤ cin(j + 2rg) log (j + 2rg).

As B respects the in-function din(j) = cinj log j, it suffices to show that csamp2
r+2g ≤ cin2

rg,
which holds by our choice of cin. A similar calculation, using Claim 8.5, can be applied for
analyzing the MBSs that are given by Item 3 of Definition 8.1. We omit the details.

Take i, j ∈ {g, 2g, . . . , k} with level(i) = level(j) such that i + j = s. Consider the MBS

C = Ai
→•BS(8i) Bj. By Claim 8.6, din(C) ≤ din(Ai) + din(Bj) + 25i, and so we ought to show

that
cini log i+ cinj log j + 25i ≤ cin(i+ j) log(i+ j).

Observe that it suffices to prove that the above equation holds for i ≥ j. Rearranging, and
using the fact that j ≤ i ≤ k, it suffices to verify that

25i ≤ cini log

(
1 +

j

i

)
.

As level(i) = level(j), j ≥ i/2 and so one only needs to verify that 25i ≤ cini/2, which holds
as cin ≥ 50.

Consider an MBS of the form C = Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj where i, j ∈ {g, 2g, . . . , k}

and r ∈ {0, 1, . . . , log(k/i)} are such that level(i) = level(j) and 2r+2i = s. By Claim 8.6,
din(C) ≤ din(Ai) + din(Bj) + 50i · 2r. Therefore, we ought to prove that

cini log i+ cinj log j + 50i · 2r ≤ cin2
r+2i log(2r+2i).

As level(i) = level(j), j ≤ 2i, and so it suffices to verify that

3cini log(2i) + 50i · 2r ≤ cin2
r+2i log i

which holds since cin ≥ 50 and r ≥ 0.
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Moving on to Item 5 of Definition 8.9, consider i, j ∈ {g, 2g, . . . , k} such that level(i) >

level(j) and i+j = s. Let C = Ai
→•US(8j) Bj. By Claim 8.7, din(C) ≤ din(Ai)+din(Bj)+9csampj.

It is therefore suffices to show that

cini log i+ cinj log j + 9csampj ≤ cin(i+ j) log(i+ j).

Rearranging, it suffices to verify that

9csampj ≤ cini log

(
1 +

j

i

)
.

Using the inequality log2(1 + x) ≥ x/(1 + x) which holds for all x ≥ 0, it suffices to prove
that

9csampj ≤ cin
ij

i+ j
.

The above inequality holds as i ≥ j and cin ≥ 18csamp.

Consider now an MBS of the form C = Ai
→•US(2r+1·8j)−US(2r·8j) Bj where i, j ∈

{g, 2g, . . . , k} and r ∈ {0, 1, . . . , log(k/j)} are such that level(i) > level(j) and i+ 2r+3j = s.
By Claim 8.7, din(C) ≤ din(Ai) + din(Bj) + csamp2

r+5j. Hence, we ought to prove that

cini log i+ cinj log j + csamp2
r+5j ≤ cin(i+ 2r+3j) log (i+ 2r+3j).

Rearranging, it is sufficient to show that

cinj log j + csamp2
r+5j ≤ cin2

r+3j log i.

which readily follows. The remaining MBSs in Fs(A,B), given by Item 6, follow a similar
analysis and we omit the details.

In the following claim we turn to analyze dout(C) for MBSs C ∈ Fs(A,B).

Claim 8.14. Let A,B be a pair of (k, g, w)-LMRs that respect the out-function dout(i) = 10k·
level(i) + d for some integer d. Then, for every s ∈ {0, g, 2g, . . . , k} and MBS C ∈ Fs(A,B),

dout(C) ≤ 10k · level(s) + d+ 7csampg.

Proof. By inspecting the claims in Section 8.1, one can verify that if C ∈ Fs(A,B) is such that
both i(C), j(C) are non-zero then dout(C) = max (dout(Ai), dout(Bj)) whereas s ≥ max (i, j) in
which case the proof readily follows. Hence, we only need to consider C such that at least
one of i(C), j(C) is zero. Consider the MBS A0

→◦BS(2g) B0. By Claim 8.3,

dout(A0
→◦BS(2g) B0) ≤ dout(A0) + 7g ≤ d+ 7g.

As csamp ≥ 1 and level(0) = 0, the proof for this MBS follows. The assertion for MBSs of the

form C = A0
→•BS(2r+1g)−BS(2rg) B0 readily follows as by Claim 8.3, dout(C) = dout(A0) ≤ d.
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Moving to Item 2 of Definition 8.9, consider the MBS Bs
←◦US(g) A0. By Claim 8.4,

dout(Bs
←◦US(g) A0) ≤ dout(Bs) + 2csampg

≤ 10k · level(s) + d+ 2csampg,

as desired. Let C = Bj
←•US(2r+1g)−US(2rg) A0 where r ∈ {0, 1, . . . , log(k/g)} and j ∈

{g, 2g, . . . , k} are such that j + 2rg = s. By Claim 8.4, dout(C) = dout(Bj) which together
with the fact that s ≥ j, completes the proof for C. A similar argument proves the claim for
MBSs from Item 3 of Definition 8.9 and we omit the details.

Claim 8.15. Let A,B be a pair of (k, g, w)-LMRs that respect the magnitude-function µ(i) =
2i/g. Then, for every s ∈ {0, g, 2g, . . . , k} and MBS C ∈ Fs(A,B), it holds that µ(C) ≤ 2s/g.

Proof. By Claim 8.3, the MBS A0
→◦BS(2g) B0 is thin and so the assertion readily follows for

it. Consider the MBS C = A0
→•BS(2r+1g)−BS(2rg) B0 where r ∈ {1, . . . , log(k/g)} is such that

s = (2r − 1)g. The assertion for C follows as by Claim 8.3, µ(C) ≤ 2.

By Claim 8.4, µ(Bs
←◦US(g) A0) ≤ µ(Bs) and so the claim readily follows in this case.

Now, consider the MBS C = Bj
←•US(2r+1g)−US(2rg) A0 where r ∈ {0, 1, . . . , log(k/g)} and

j ∈ {g, 2g, . . . , k} are such that j + 2rg = s. By Claim 8.4,

µ(C) ≤ µ(Bj) + 2 ≤ 2j

g
+ 2 ≤ 2s

g
,

where the last inequality holds as s ≥ j + g. A similar argument, based on Claim 8.5,
can be used to analyze MBSs from Item 3 of Definition 8.9. Let i, j ∈ {g, 2g, . . . , k} be

such that level(i) = level(j) and i + j = s. Denote C = Ai
→•BS(8i) Bj. By Claim 8.6,

µ(C) ≤ µ(Ai) + µ(Bj) and so, it suffices to verify that µ(Ai) + µ(Bj) ≤ 2(i + j)/g, which
readily holds by the hypothesis.

Denote C = Ai
→•BS(2r+1·8i)−BS(2r·8i) Bj where i, j ∈ {g, 2g, . . . , k} and r ∈

{0, 1, . . . , log(k/i)} are such that level(i) = level(j) and 2r+2i = s. By Claim 8.6,
µ(C) ≤ µ(Ai) + µ(Bj) + 2. Hence, it suffices to prove that

µ(Ai) + µ(Bj) + 2 ≤ 2r+3i

g
.

As level(i) = level(j), j ≤ 2i and so, using the hypothesis, it suffices to show that

6i

g
+ 2 ≤ 2r+3i

g
,

which holds as r ≥ 0 and i ≥ g.
Consider the MBS C = Ai

→•US(8j) Bj where i, j ∈ {g, 2g, . . . , k} are such that level(i) >
level(j) and i + j = s. By Claim 8.7, we have the same bound on µ(C) as we have for the

MBS Ai
→•BS(8i) Bj which we analyzed above, and so the exact same analysis can be used
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for it. Now, consider the MBS C = Ai
→•US(2r+1·8j)−US(2r·8j) Bj where i, j ∈ {g, 2g, . . . , k} and

r ∈ {0, 1, . . . , log(k/j)} are such that level(i) > level(j) and i + 2r+3j = s. By Claim 8.7,
µ(C) ≤ µ(Ai) + µ(Bj) + 2. Therefore, it suffices to prove that

µ(Ai) + µ(Bj) + 2 ≤ 2(i+ 2r+3j)

g
.

Using the hypothesis, it suffices to verify that

2j

g
+ 2 ≤ 2r+4j

g

which holds as j ≥ g and r ≥ 0. MBSs from Item 6 of Definition 8.9 follow a similar analysis.
We omit the details.

9 The Multiplication Rule for Leveled Matrix Repre-

sentations

In this section we define a product rule between a pair of LMRs A,B, which we denote by
A · B, based on the definition of F(A,B) and its slices. Following the definition of A · B,
we prove in Claim 9.2 that the product is indeed an LMR and show that it respects certain
out-function and magnitude function. In Claim 9.3 we prove that 〈A · B〉 approximates
〈A〉〈B〉. The weight function of A · B is analyzed in Claim 9.4. Lastly, we collect all the
results in Proposition 9.5.

Definition 9.1. Let A = ((1,A0), . . . , (ak,Ak)), B = ((1,B0), . . . , (bk,Bk)) be a pair of
(k, g, w)-LMRs. We define the sequence C = A · B = ((c0, C0), . . . , (ck, Ck)) , where ci ∈ R
and Ci MBSs, as follows. For s ∈ {0, g, 2g, . . . , k} let

ms = max
(
ai(D)bj(D) | D ∈ Fs(A,B)

)
.

Define

Cs = glue

(
ai(D)bj(D)

ms

D
∣∣∣ D ∈ Fs(A,B)

)
and cs = |Fs(A,B)| ·ms.

For the glue operation to be defined above, we assume that ∀D ∈ Fs(A,B), we pad to
make all the dout’s and din’s to be equal to the maximum.

Claim 9.2. Let A,B be a pair of (k, g, w)-LMRs that respect the magnitude-function µ(i) =
2i/g and the out-function dout(i) = 10k · level(i) + d for some integer d. Then, the sequence
C is a (k, g, w)-LMR. Furthermore, C respects the out-function d′out(i) = dout(i) + 8csampg
and the same magnitude-function µ(i) = 2i/g.
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Proof. We start by proving that C is a (k, w)-matrix representation. First, by definition,
cs ≥ 0 for all s. Second, we ought to show that for all s ≥ 1, σ(Cs) ≥ s − (s − 1)τ . By
Claim 8.11 for every D ∈ Fs(A,B), σ(D) ≥ s − (s − 1)τ . Claim 5.11 and Claim 5.8 then
imply that

σ(Cs) = σ

(
glue

(
ai(D)bj(D)

ms

D
∣∣∣ D ∈ Fs(A,B)

))
≥ min

(
σ

(
ai(D)bj(D)

ms

D
) ∣∣∣ D ∈ Fs(A,B)

)
= min

(
σ(D) + 2 log

(
ms

ai(D)bj(D)

) ∣∣∣ D ∈ Fs(A,B)

)
≥ min (σ(D) | D ∈ Fs(A,B))

≥ s− (s− 1)τ.

This proves that C is a (k, w)-matrix representation.
We turn to show that C is in fact a (k, g, w)-LMR. To this end, note that by Definition 8.9,

C0 = A0
→◦BS(2g) B0. Hence, by Claim 8.3, C0 is thin. Now, as c0 = a0b0 and since A,B

are LMRs, we have that c0 = 1. Moreover, by Claim 8.10, for every s not divisible by g,
cs = 0. Next, we ought to show that µ(Cs) ≤ s for all s ≥ 0. This clearly holds for s = 0 as
C0 is thin. Consider s ≥ g. By Claim 8.15 and by the hypothesis, for every D ∈ Fs(A,B),
µ(D) ≤ 2s/g ≤ s. Therefore, by Claim 5.11 and Claim 5.8,

µ(Cs) = µ

(
glue

(
ai(D)bj(D)

ms

D
∣∣∣ D ∈ Fs(A,B)

))
≤ max

(
µ

(
ai(D)bj(D)

ms

D
) ∣∣∣ D ∈ Fs(A,B)

)
≤ max

(
µ(D)− 2 log

(
ms

ai(D)bj(D)

) ∣∣∣ D ∈ Fs(A,B)

)
≤ max (µ(D) | D ∈ Fs(A,B))

≤ 2s/g,

which is bounded by s, as desired. The above equation also proves that C respects the
magnitude-function µ(s) = 2s/g. By Claim 8.14 and by the hypothesis, for every s ∈
{0, g, 2g, . . . , k} and MBS D ∈ Fs(A,B),

dout(D) ≤ 10k · level(s) + d+ 7csampg.

Claim 5.11 and Claim 8.12, together with the hypothesis g ≥ 10 log k, then imply that

dout(Cs) ≤ 10k · level(s) + d+ 7csampg + log |Fs(A,B)|
≤ 10k · level(s) + d+ 7csampg + 4 log k

≤ 10k · level(s) + d+ 8csampg.
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Here, we used that |Fs(A,B)| = O((s/g)2) ≤ k211. By the remark in Section 5.2, we may
assume that the above holds with equality, namely,

dout(Cs) = 10k · level(s) + d+ 8csampg. (9.1)

Thus, for every i, j ∈ {0, g, 2g, . . . , k}, if level(i) = level(j) then dout(Ci) = dout(Cj). Further-
more, if level(i) > level(j) then dout(Ci) ≥ dout(Cj) + 10k. To complete the proof, note that
Equation (9.1) implies that C respects the out-function d′out(i) = dout(i) + 8csampg.

Claim 9.3. For every pair A,B of (k, g, w)-LMRs,

‖〈A ·B〉 − 〈A〉〈B〉‖max ≤ (k3 + 8w)2−k/2ϑ(A)ϑ(B).

Proof. Write C = A · B = ((1, C0), (cg, Cg), . . . , (ck, Ck)). By Claim 5.11 and Claim 5.8, for
every s for which Fs(A,B) 6= ∅,

〈Cs〉 =

〈
glue

(
ai(D)bj(D)

ms

D
∣∣∣ D ∈ Fs(A,B)

)〉
=

1

|Fs(A,B)|
∑

D∈Fs(A,B)

〈
ai(D)bj(D)

ms

D
〉

=
1

|Fs(A,B)|
∑

D∈Fs(A,B)

ai(D)bj(D)

ms

〈D〉.

Recall that cs = |Fs(A,B)| ·ms and so

cs〈Cs〉 =
∑

D∈Fs(A,B)

ai(D)bj(D)〈D〉.

Thus, if we denote F≤k(A,B) = ∪ks=0Fs(A,B) then

〈C〉 =
k∑
s=0

cs〈Cs〉 =
∑

D∈F≤k(A,B)

ai(D)bj(D)〈D〉.

Note that, by linearity, ∑
D∈F(A,B)

ai(D)bj(D)〈D〉 =
∑
i,j

aibjSi,j,

and so, if we denote F>k(A,B) = F(A,B) \ F≤k(A,B) then

〈C〉 −
∑
i,j

aibjSi,j =
∑

D∈F>k(A,B)

ai(D)bj(D)〈D〉.

11g is large enough.
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As |F>k(A,B)| ≤ |F(A,B)| ≤ k3 (because there are k different values of s and as we saw
before |Fs(A,B)| ≤ k2) and since, by Claim 5.6, ‖D‖max ≤ ‖D‖∞ ≤ 2−k/2 for every D with
σ(D) > k, we have that∥∥∥〈C〉 −∑

i,j

aibjSi,j

∥∥∥
max
≤
∥∥∥ ∑
D∈F>k(A,B)

ai(D)bj(D)〈D〉
∥∥∥

max

≤
∑

D∈F>k(A,B)

ai(D)bj(D)‖D‖max

≤ k3ϑ(A)ϑ(B)2−k/2.

The proof then follows as by Claim 8.2,∥∥∥〈A〉〈B〉 −∑
i,j

aibjSi,j

∥∥∥
max
≤ 8wϑ(A)ϑ(B)2−k.

Claim 9.4. Let A = ((1,A0), . . . , (ak,Ak)), B = ((1,B0), . . . , (bk,Bk)) be a pair of (k, g, w)-
LMRs that respect the weight-function ϑ(s) = (s/g)(3s/g)t12 for some t ≥ 0. Then, A · B
respects the weight-function c′(s/g)(3s/g)(t+1)), where c′ is a large enough constant.

Proof. Write C = A ·B = ((c0, C0), . . . , (ck, Ck)) (c0 = 1). Let s ≥ g. Recall that

cs = |Fs(A,B)| ·max
(
ai(D)bj(D) | D ∈ Fs(A,B)

)
.

By inspecting the MBSs in Definition 8.9, one can see that i(D) + j(D) ≤ s for every
D ∈ Fs(A,B). Moreover, by Claim 8.12, |Fs(A,B)| = O((s/g)2). We assume, for simplicity,
that the bound is c′(s/g)3 where c′ is a large enough constant. Thus,

cs ≤ c′(s/g)3 max (ϑ(i, t)ϑ(j, t) | i+ j ≤ s)

≤ c′(s/g)3 max
(
(i/g)(3i/g)t(j/g)(3j/g)t | i+ j ≤ s

)
≤ c′(s/g)3 max

(
(s/g)(3i/g)t(s/g)(3j/g)t | i+ j ≤ s

)
= c′(s/g)3(s/g)(3s/g)t

≤ c′(s/g)3(s/g)(t+1),

where for the last inequality we used the fact that s ≥ g.

We summarize the results obtained so far in the following proposition.

Proposition 9.5. Let k, g, w be integers where k ≥ g ≥ 10(ω + log k)13. Let A =
((1,A0), . . . , (ak,Ak)), B = ((1,B0), . . . , (bk,Bk)) be a pair of (k, g, w)-LMRs. Assume that

12Implicitly we are assuming that ϑ(0) = 1.
13Actually, we assume k ≥ c · g, where c is a large enough constant.
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both A,B respect (dout, din, µ, ϑ), where

dout(s) = 10k · level(s) + d,

din(s) = cins log s,

µ(s) = 2s/g,

ϑ(s) = c′t(s/g)(3s/g)t.

for some d, t ≥ 0 and the constant cin is as defined in Claim 8.13. Then, A ·B is a (k, g, w)-
LMR that respects (d′out, din, µ, ϑ

′) where

d′out(s) = dout(s) + 8csampg,

ϑ′(s) = c′t+1(s/g)(3s/g)(t+1).

Moreover,
‖〈A ·B〉 − 〈A〉〈B〉‖max ≤ (k3 + w)(k/g)(8k/g)(t+1)2−k/2.

Proof. Write C = A·B = ((1, C0), . . . , (ck, Ck)). As dout, µ satisfy the hypothesis of Claim 9.2,
the fact that A,B are LMRs implies that C is also an LMR, and that C respects the out-
function d′out and the magnitude-function µ. By Claim 8.13, for every D ∈ Fs(A,B) it holds
that din(D) ≤ din(s). Recall that

Cs = glue

(
ai(D)bj(D)

ms

D
∣∣∣ D ∈ Fs(A,B)

)
.

Therefore, by Claim 5.11, din(Cs) = max (din(D) | D ∈ Fs(A,B)) , which is bounded above
by din(s), as desired. The assertion that C respects the weight-function ϑ′ readily follows by
Claim 9.4. Lastly, by Claim 9.3 (and assuming k/g ≥ c′),

‖〈C〉 − 〈A〉〈B〉‖max ≤ (k3 + 8w)ϑ(A)ϑ(B)2−k/2

≤ (k3 + w)k(8k/g)(t+1)2−k/2.

9.1 Multiplying a sequence of LMRs

We start by introducing some notation. Let Ã be a w × w stochastic matrix. Let A be
a stochastic matrix approximating Ã such that ‖A − Ã‖∞ ≤ ε

2n
and A = Ej∼[poly(wn/ε)] A

j

where each Aj is a 0-1 stochastic matrix14. We define a sequence of poly(wn/ε) (0, w)-
matrix bundles Aj = ((1, Aj)); the (O(log(wn/ε), 0, w)-MBS A = (A1,A2, ...) and the matrix
representation canon(A) = ((1,A)). Note that A is thin and 〈canon(A)〉 = A. Moreover, we
may regard canon(A) as a (k, g, w)-LMR for any k, g ≥ 1.

14Such an approximation can be easily found by truncating each entry of Ã to O(log(wn/ε)) bits after the
decimal point.
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Let h ≥ 0 be an integer and write n = 2h. We want to approximate the product of n
stochastic matrices Ã1, Ã2, ..., Ãn. Let A1, . . . , An be the corresponding sequence of w × w
stochastic matrices as defined above. Firstly, ‖

∏n
i=1Ai −

∏n
i=1 Ãi‖max ≤ ε/2. Next, we

approximate
∏n

i=1 Ai. Let T be the complete rooted binary tree of depth h. We label every
node u of T by a matrix representation, which we denote by Au. The i’th leaf of the tree,
counting from the left, is labeled by canon(Ai). Then, inductively over the depth, if u is
the parent of the nodes v, w, we define Au = Av ·Aw. For a node u in T , define Au to be
the product of all matrices that correspond to the matrices associated to the leaves in the
subtree rooted by u.

Claim 9.6. For every ` ≥ 0 and every node u of height ` in T it holds that

‖〈Au〉 − Au‖max ≤ (k3 + w)(k/g)(8k/g)(`+1)2−k/2.

Moreover, Au is an LMR that respects (dout, din, µ, ϑ) where

dout(s) = 10k · level(s) + 8csampg`;

din(s) = cins log s;

µ(s) = 2s/g;

ϑ(s) = c′l(s/g)(3s/g)`.

Proof. The proof is by a straightforward induction. The base case ` = 0 readily holds
(as k ≥ c4 log(wn/ε) for large enough constant c4). As for the inductive step, the fact
that the respective matrix representation is an LMR that respects (dout, din, µ, ϑ) as defined
above readily follows by the inductive hypothesis and by Proposition 9.5. For a node u, let
ε(u) = ‖〈Au〉 − Au‖max. Let u be a node in level ` > 0 and v, w its left and right children,
respectively. Then,

ε(u) = ‖〈Au〉 − Au‖max

= ‖〈Av ·Aw〉 − AvAw‖max

≤ ‖〈Av ·Aw〉 − 〈Av〉〈Aw〉‖max + ‖〈Av〉〈Aw〉 − AvAw‖max

≤ (k3 + w)(k/g)(8k/g)(`)2−k/2 + ‖〈Av〉〈Aw〉 − AvAw‖max, (9.2)

where the last inequality follows by Proposition 9.5 and by the induction hypothesis. As for
the second summand in Equation (9.2),

‖〈Av〉〈Aw〉 − AvAw‖max ≤ ‖〈Av〉〈Aw〉 − AvAw‖∞
≤ ‖〈Av〉〈Aw〉 − 〈Av〉Aw‖∞ + ‖〈Av〉Aw − AvAw‖∞
≤ ‖Av‖∞‖〈Aw〉 − Aw‖∞ + ‖Aw‖∞‖〈Av〉 − Av‖∞. (9.3)

Consider the first summand. As Av is stochastic, we have that

‖Av‖∞‖〈Aw〉 − Aw‖∞ = ‖〈Av〉 − Av + Av‖∞‖〈Aw〉 − Aw‖∞
≤ (‖〈Av〉 − Av‖∞ + ‖Av‖∞) ‖〈Aw〉 − Aw‖∞
= (‖〈Av〉 − Av‖∞ + 1) ‖〈Aw〉 − Aw‖∞
= (ε(v) + 1)ε(w).
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As Aw is stochastic, the second summand on the right hand side of Equation (9.3) is bounded
above by ε(v). Thus,

‖〈Av〉〈Aw〉 − AvAw‖max ≤ (ε(v) + 1)ε(w) + ε(v)

≤ 2(ε(v) + ε(w)).

Plugging this to Equation (9.2), and using the induction hypothesis, we get

ε(u) ≤ 2(ε(v) + ε(w)) + (k3 + w)(k/g)(8k/g)(`)2−k/2

≤ 5(k3 + w)(k/g)(8k/g)(`)2−k/2

≤ (k3 + w)(k/g)(8k/g)(`+1)2−k/2,

where the last inequality holds as k ≥ 2g.

As a corollary of Claim 9.6 we get that

Corollary 9.7. There exist universal constants c1, c2 ≥ 1 such that the following holds. Let
n,w be integers and ε > 0 such that ε < 1/n2. Set

g = c1

(
log(n) · log

(
log(1/ε)

log n

)
+ logw + log log(1/ε)

)
k = c2 (g + log(w/ε)) .

Let r be the root of T . Then, ∥∥∥〈Ar〉 −
n∏
i=1

Ai

∥∥∥
max
≤ ε/2.

Moreover, write Ar = ((1,A0), (ag,Ag), . . . , (ak,Ak)). Then, for every s ∈ {0, g, . . . , k},

dout(As) + din(As) = O

(
log(w/ε) log log(w/ε) + log2(n) · log

(
log(1/ε)

log n

)
+ log n · logw

)
.

Proof. First, we show that Equation (7.1) is satisfied by our choice of k, g. Indeed, by taking
any c2 ≥ 1, we get k ≥ g. Furthermore, by taking c1 ≥ 40, we get that g ≥ 20ω. Therefore,
it suffices to verify that g ≥ 20 log k which is guaranteed to holds assuming c1 ≥ 40.

By Claim 9.6 applied to the root r of T ,∥∥∥〈Ar〉 −
n∏
i=1

Ai

∥∥∥
max
≤ (k3 + w)(k/g)(8k/g)(logn+1)2−k/2.

First, we show that
(k/g)(8k/g)(logn+1) ≤ 2k/4. (9.4)
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By rearranging, it suffices to show that

g ≥ 32(log(n) + 1) log(k/g). (9.5)

Now,

k

g
=
c2(g + log(w/ε))

g

= c2

(
1 +

log(w/ε)

g

)
.

As ε < 1/n2, g ≥ c1(logw + log n), and so

k

g
≤ c2

(
1 +

log(w/ε)

c1(logw + log n)

)
≤ c2

(
1 +

log(1/ε)

log n

)
≤ 2c2 log(1/ε)

log n
. (9.6)

Hence, to prove Equation (9.5), it suffices to show that

g ≥ 32(log(n) + 1) log

(
2c2 log(1/ε)

log n

)
.

The above equation holds assuming that

c1

32
· log

(
log(1/ε)

log n

)
≥ log

(
2c2 log(1/ε)

log n

)
,

which holds by choosing the constants c1, c2 such that c1 ≥ 64 + 32 log c2, which is consistent
with the restrictions imposed so far.

Now that we proved Equation (9.4), we have that∥∥∥〈Ar〉 −
n∏
i=1

Ai

∥∥∥
max
≤ (k3 + w)2−k/4.

For large enough k, the RHS is bounded by w2−k/5. As k ≥ c2 log(w/ε), by taking c2 ≥ 10
we get w2−k/5 ≤ ε/2, as desired.

Moving to the moreover part, by Claim 9.6, for every s ∈ {0, g, 2g, . . . , k},

dout(As) = 10k · level(s) + 8csampg log n

= O(k log k + g log n).

Note that

log(n) · log

(
log(1/ε)

log n

)
= O(log(1/ε)),

62



and so k = O(log(w/ε)), which yields

dout(As) = O(log(w/ε) log log(w/ε) + g log n)

= O

(
log(w/ε) log log(w/ε) + log2(n) · log

(
log(1/ε)

log n

)
+ log n · logw

)
.

Note that din is dominated by dout as din(As) = O(s log s) = O(dout(As)).

9.2 Proof of Theorem 4.3

In this section we deduce Theorem 4.3.

Proof of Theorem 4.3. The pseudo-distribution D̃ is induced in a natural way from the mul-
tiplication rule between LMRs. As in Section 2.1, for any width-w, length-n branching
program P , we can represent the transition between a pair of consecutive layers Pt, Pt+1 of
the program by a w × w stochastic matrix Mt, which is an average of two 0-1 stochastic
matrices M0

t and M1
t representing the transitions when the tth bit is 0 and 1 respectively.

And as sparsification of matrix product gave us a PRG for ROBPs, the above mentioned
process of multiplying a sequence of LMRs gives us a PRPG for ROBPs.

To be more precise, let A = ((1,A0), . . . , (ak,Ak)) be the final LMR at the root of the
tree described in Section 9.1 while multiplying the matrices M1, ...,Mn. ∀ i ∈ {0, 1, ..., k}, let
Ai = (Ai,1, ...,Ai,2dout(Ai)) and ∀ j ∈ [2doutAi ], Ai,j = ((αi,j,1, Ai,j,1), ..., (αi,j,2din(Ai) , Ai,j,2din(Ai))).
It’s easy to see that because we started with 0-1 stochastic matrices M0

t , M1
t in the matrix

bundles at the leaves, ∀ i, j,m, Ai,j,m is a 0-1 stochastic matrix and corresponds to a single
n-length path in the branching program, say, pi,j,m. This can be seen by induction on the
levels of the tree; the innermost matrices at level l corresponds to paths of length 2l.

Thus, the PRPG is the sequence ((ρi,j,m, pi,j,m))i∈{0,1,...,k},j∈[2dout (Ai)],m∈[2din (Ai)] where

ρi,j,m = ai · 1
2dout(Ai)

· αi,j,m. By following the matrix products, it’s easy to see that the
weights and coefficients depend only on the types of products used (starting with all co-
efficients being 1 at the leaves) and not on the entries of M0

t and M1
t and hence, PRPG

is input-oblivious and does not depend on the ROBP. Next, each bit of the string, corre-
sponding to the path pi,j,m, can be computed knowing the definitions of the matrix products
and corresponding samplers and inductively going down the tree (the information can be
calculated from the indices i, j,m).

As the samplers that we use for the product between LMRs are log-space com-
putable (log in the size of the bipartite graph), one can see that the D̃ is

Õ
(

log(w/ε) log log(w/ε) + log2(n) · log
(

log(1/ε)
logn

)
+ log n · logw

)
-space computable. The

seed length, which is given by,

log

(
k∑
i=0

2din(Ai)+dout(Ai)

)
≤ din(Ak) + dout(Ak) + log k

readily follows by Corollary 9.7.
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As for the bound on the weights of D̃, note that the ρi’s in D̃ are obtained by multiplying
the weights of A with the coefficients of the MBSs composing A. It is easy to verify that
the coefficients are all bounded above by 1 in absolute value. Therefore, it suffices to bound
the weights of A. By Claim 9.6, ϑ(k) ≤ c′ log(n)(k/g)(3k/g) logn, and so

log ϑ(k) ≤ 3k log n

g
log(k/g) + c′ log(n)

≤
(

log n+
log n · log(w/ε)

g

)
3c2 log(k/g) + c′ log(n).

By Equation (9.6), k/g ≤ 2c2 log(1/ε)/ log n. Let t = log
(

2c2 log(1/ε)
logn

)
. Then,

log ϑ(k) ≤ 3c2

(
log n+

log n · log(w/ε)

g

)
t+ c′ log(n)

= O

(
log(1/ε) +

log n · log(w/ε) · t
g

)
As g = Ω(t log n+ logw), we have that

log ϑ(k) = O(log(1/ε) + log (w/ε)) = O(log(w/ε)),

which completes the proof.
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