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Abstract

In this paper we study the complexity of constructing a hitting set for VP, the class of poly-
nomials that can be infinitesimally approximated by polynomials that are computed by poly-
nomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that
there is a PSPACE algorithm that given n, s, r in unary outputs a set of inputs from Qn of size
poly(n, s, r), with poly(n, s, r) bit complexity, that hits all n-variate polynomials of degree r that
are the limit of size s algebraic circuits. Previously it was known that a random set of this size
is a hitting set, but a construction that is certified to work was only known in EXPSPACE (or
EXPH assuming the generalized Riemann hypothesis). As a corollary we get that a host of other
algebraic problems such as Noether Normalization Lemma, can also be solved in PSPACE de-
terministically, where earlier only randomized algorithms and EXPSPACE algorithms (or EXPH
assuming the generalized Riemann hypothesis) were known.

The proof relies on the new notion of a robust hitting set which is a set of inputs such that any
nonzero polynomial that can be computed by a polynomial size algebraic circuit, evaluates to
a not too small value on at least one element of the set. Proving the existence of such a robust
hitting set is the main technical difficulty in the proof.

Our proof uses anti-concentration results for polynomials, basic tools from algebraic geom-
etry and the existential theory of the reals.

1 Introduction

This paper studies the following question. What is the complexity of constructing a set of points
H ⊂ Rn, of small bit complexity, that is guaranteed to be a hitting set for polynomials that can be
infinitesimally approximated by small algebraic circuits over the real or complex numbers? Recall
thatH is a hitting set for a class of polynomials C if for every f ∈ C there is some v ∈ H such that
f (v) 6= 0. The class of polynomials that can be infinitesimally approximated by poly-size algebraic
circuits is commonly denoted by VP. Thus, we ask what is the complexity of constructing a hitting
set for VP.1
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Relying on a result of Heintz and Sieveking [HS80b], who proved that the variety of efficiently
computed polynomials has polynomial dimension and exponential degree, Heintz and Schnorr
[HS80a] showed that there is a poly-size hitting set for VP, and that a random set of the appro-
priate polynomial size is a hitting set with high probability. If we were satisfied with a 99.9%
percent guarantee then picking H at random would work [HS80a]. The main difficulty however
is certifying that the set that we constructed is a hitting set.

The problem of explicitly constructing an object whose existence is known by probabilistic ar-
guments has received a lot of attention. The question is usually most difficult when there is no
efficiently computable certificate to test whether a candidate construction satisfies the required
properties. For example, consider d-regular expander graphs that have expansion larger than
half the degree. By probabilistic arguments we know that random d-regular graphs are such ex-
panders. Yet, we don’t know of an efficiently checkable certificate that certifies such large expan-
sion (for expansion less than d/2 we can use spectral methods to certify expansion). Another such
question arises in construction of Ramsey graphs. We know that when picking a graph at random
from G(n, 1/2) (i.e. each edge is picked with probability 1/2) with high probability it will not
have cliques nor anti-cliques of size larger than, say, 3 log n. Despite many recent advances it is
not known how to efficiently construct such graphs nor to check whether a given graph has this
property. Constructing binary codes that meet the Gilbert-Varshamov bound is yet another such
problem and so is the question of constructing a truth table of length n that cannot be computed
by boolean circuits (on log n bits) of size, say,

√
n. A more extreme example is that of constructing

strings with large Kolmogorov complexity. A random string of length n will have Kolmogorov
complexity of Ω(n), but the question of deciding the Kolmogorov complexity of a string is unde-
cidable.

We note that even when an object is known to exist via probabilistic arguments it is still not
clear that it can be deterministically constructed, even in PSPACE. Indeed, in PSPACE we can go
over all choices of random coins for our randomized algorithm and for each construct the potential
object, yet when no efficiently checkable certificate is known it is not clear how to verify that the
object that we constructed have the required properties. For the questions mentioned above, of
constructing expander graphs, Ramsey graphs, codes that meet the Gilbert-Varshamov bound or
hard truth tables, it is clear how to check in PSPACE whether they have the required property.

The situation is quite different when we think about hitting sets for VP. One such difference
is that for hitting sets it is impossible to go over all polynomials in VP as there are infinitely many
such polynomials. Furthermore, we do not know an efficient way of representing them as they
are limits of polynomials in VP and are not believed to have small circuits themselves: Recall
that over the real or complex numbers VP has several equivalent definitions, the easiest may be
that a polynomial f is in VP if there exists a sequence of polynomials { fi} such that each fi can
be computed by a size nc (for some constant c) algebraic circuit such that fi → f coefficient-
wise.2 The best upper bound on the complexity of polynomials in VP is exponentially larger than
the complexity of the approximating polynomials (which is nontrivial as the degrees could be
polynomially large). See [LL89, Bür04] for the exponential upper bound and also [GMQ16] for
polynomial upper bound if one tweaks the definition of VP by restricting the type of allowed
approximations. Thus, there is no guarantee that polynomials in VP have concise representation
using algebraic circuits. To get a sense of why the complexity of a limit polynomial may be larger
consider the tensor associated with univariate polynomial multiplication modulo X2. That is,
T = x0y0z0 + (x1y0 + x0y1)z1. It is known that the tensor rank of T is 3. However, T can be

2One can define the class VP over fields of positive characteristic using notion similar to border rank but we do not
need this alternative definition here.
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represented as the limit of rank 2 tensors: For any ε 6= 0 consider the tensor

Tε =
1
ε
· (x0 + εx1) · (y0 + εy1) · z1 + x0 · y0 · (z0 −

1
ε

z1) = x0y0z0 + (x1y0 + x0y1)z1 + ε · x1y1z1 .

It is clear that as ε → 0 we get Tε → T. This example shows that limits of algebraic computations
can have smaller complexity than each of the polynomials in the sequence.

The question of constructing a hitting set for VP that is guaranteed to work was raised by Mul-
muley [Mul17]. Specifically, Mulmuley asked what is the complexity of constructing a set that is
guaranteed to be a hitting set for VP and VP. For VP he observed that a hitting set can be con-
structed in PSPACE (when the parameters of the circuits are given in unary) and that, assuming
the generalized Riemann hypothesis (GRH for short), it can be brought down to PH using a result
of Koiran [Koi96]. The idea is to reduce the question of checking whether a given set of points
is not a hitting set to a question regarding the satisfiability of a certain set of polynomial equa-
tions in poly(n) variables and polynomial degree. I.e., to an instance of Hilbert’s Nullstellensatz
problem. However, for VP the situation is more complicated as polynomials in this class are not
known (nor believed) to have small algebraic circuits. Thus, it is not clear whether the question of
checking whetherH is or is not a hitting set could be reduced to Hilbert’s Nullstellensatz problem.
Using Gröbner basis, Mulmuley gave an EXPSPACE algorithm3 for constructing such a hitting set
[Mul17].

Mulmuley raised this question due of its applicability to other questions on the borderline of
geometry and complexity, mainly the so called Noether Normalization Lemma (NLL) question.
He showed that constructing a normalization map could be reduced to constructing a hitting set
for VP and thus concluded that it can be solved using randomness with a Monte Carlo algorithm,
or deterministically in EXPSPACE.

We note that the problem we consider is that of constructing a (qualitatively) optimal hitting
set. This in particular implies a deterministic black-box PIT algorithm for VP which inherits the
PSPACE complexity of our construction. However, this latter result is easy to obtain directly, as
one can simply evaluate the circuit over the (exponentially large) set {0, . . . , r}n. The correctness
follows from polynomial interpolation, and one can iteratively evaluate a circuit on all points of
this set in PSPACE.

1.1 Our results

Here we show that the problem of constructing a hitting set for VP is in PSPACE, which bears the
same consequences for the results obtained in Mulmuley’s paper.

Theorem 1.1 (Informal statement of main result (Theorem 7.1)). For integers n, s, r there is an algo-
rithm that runs in space poly(n, s, r) and constructs a poly(n, s, r)-size hitting set for all polynomials that
can be infinitesimally approximated by n-variate homogeneous algebraic circuits of size s and degree r.

From the work of Mulmuley it follows that PSPACE algorithms could also be devised for
constructing normalizing maps (as in Noether Normalization Lemma). We refer the readers to
[Mul17] for more on Noether Normalization Lemma. As introducing all the relevant definitions
and concepts from [Mul17] requires substantial work and this is not the main focus of our work
we rely on the notation of [Mul17] in the statement of the next two theorems.

3Assuming the generalized Riemann hypothesis his algorithm can be modified to yield an EXPH algorithm using
[Koi96].
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Theorem 1.2 (NNL for ∆[det, m] in PSPACE (see Theorem 4.1 of [Mul17])). The problem of construct-
ing an h.s.o.p. for ∆[det, m], specified succinctly, belongs to PSPACE.

A similar result holds for other explicit varieties.

Theorem 1.3 (NNL for explicit varieties in PSPACE (see Theorem 5.5 of [Mul17])). The problem of
constructing an h.s.o.p. for an explicit variety Wn belongs to PSPACE.

Another corollary of our result is that for every s = poly(n) we can construct in PSPACE the
coefficients of an n-variate polynomial of constant degree that cannot even be approximated by
algebraic circuits of size s.

Theorem 1.4. For every constant c there is a constant c′ such that there is a PSPACE algorithm that
outputs the coefficients of an n variate polynomial of degree c′ that is not in the closure of algebraic circuits
of size nc.

Sketch of proof. The idea is to find in PSPACE a hitting set for the closure of size s circuits. This
hitting set has size |H| = poly(s). Then, by solving a system of linear equations one can find a
non zero polynomial of degree roughly log |H|/ log n, that vanishes on the points in H. By the
construction ofH this polynomial is not in the closure of size s algebraic circuits.

We end this part of the introduction by mentioning a natural open problem.

Open Problem 1. Can the problem of constructing a hitting set for VP be solved in PH (assuming GRH)?

1.2 Sketch of proof

The first observation is that constructing a hitting set for size s and degree r homogeneous circuits
(i.e. for circuits in VP) can be done in PSPACE. The idea is that one can enumerate over all subsets
of, say, [r2]n of size, say, (nrs)10, and for each such subset check whether there exists a circuit that
computes a nonzero polynomial that vanishes over the subset. The existence of such a circuit
can be checked using the universal circuit. The universal circuit Ψ(x, y) is a circuit in n essential
variables x and poly(r, s) auxiliary variables y such that for any size s and degree r circuit Φ(x)
there is an assignment a, to the auxiliary variables, so that the polynomials computed by Ψ(x, a)
and Φ(x) are the same. Thus, if our subset is v1, . . . , vm we can check whether there exists a
solution to Ψ(vi, a) = 0 for all i ∈ [m] and Ψ(u, a) = 1.4 The problem of deciding whether a system
of polynomial equalities has a complex solution is known as Hilbert’s Nullstellensatz problem in
the computer science literature. It is solvable in PSPACE and assuming the Generalized Riemann
Hypothesis (GRH) it is solvable in PH (the polynomial hierarchy), see [Koi96].

We would like to use the same idea to construct hitting sets for polynomials that can be in-
finitesimally approximated by size s and degree r circuits. The problem is that even if H is a
hitting set for size s and degree r, it may be the case that for a sequence of polynomials { fi}, even
if fi(v) 6= 0 for all i, the limit polynomial may still vanish at v. Thus, it is not clear thatH also hits
the closure of size s and degree r. Indeed, consider the example given in Section 1:

T = x0y0z0 + (x1y0 + x0y1)z1

and

Tε =
1
ε
· (x0 + εx1) · (y0 + εy1) · z1 + x0 · y0 · (z0 −

1
ε

z1) = x0y0z0 + (x1y0 + x0y1)z1 + ε · x1y1z1 .

4Since Ψ(x, a) is a homogeneous polynomial in x, if it is not identically zero then on some input u it evaluates to 1.

4



In addition to showing that the complexity of T (measured in terms of tensor rank) is larger than
that of any of the polynomials approximating it, it also demonstrates that constructing a hitting
set for VP may not be sufficient for constructing a hitting set for VP. Just to illustrate the difference
consider the input (x0, x1) = (y0, y1) = (z0, z1) = (0, 1). Each of the tensors in the sequence
is nonzero on this input, and indeed Tε((0, 1), (0, 1), (0, 1)) = ε 6= 0, but in the limit we get zero,
whereas the limit tensor is not the zero tensor. Thus, the input (x0, x1) = (y0, y1) = (z0, z1) = (0, 1)
“hits” every polynomial in the sequence but the limit polynomial vanishes on it. Thus, a hitting
set for a class of polynomials C does not necessarily extends to the closure of C. However, this
does not rule out getting hitting sets for C̄ via hitting sets for a class of polynomials only slightly
stronger than C, or by strengthening the notion of a hitting set for C which is what we do here.

To overcome the discrepancy between a hitting set for VP and a hitting set for VP, we would
like to find what we call a “robust hitting set”. In a nutshell, a robust hitting set H is such that
for every polynomial f that can be computed by a size s and degree r circuit, after an adequate
normalization, there will be a point in H on which f evaluates to at least, say, 1. Thus, if fi are all
normalized and evaluate to at least 1 on v, then if lim fi = f then by continuity f also evaluates to
at least 1 on v. Thus,H hits f as well (this idea is captured by Claim 5.2).

Hence, the first step in our proof is to first prove the existence of robust hitting sets. We note
that Heintz and Schnorr [HS80a] proved the existence of a small hitting set for size s and degree
r circuits, but their proof does not yield robust hitting sets. To prove the existence of such hitting
sets we use anti-concentration results for polynomials of Carbery-Wright [CW01]. These results
show that for a given polynomial, if we sample enough evaluation points at random, then with
high probability the polynomial will evaluate to a large value on at least one of those points. This
is not enough though as we cannot use the union bound since there are infinitely many circuits.
What we do instead is find an ε-net in the set of all efficiently computable polynomials. For this
we use the bounds given by Heintz and Sieveking [HS80b] on the dimension and degree of the
algebraic variety of efficiently computable polynomials. We prove that for an algebraic variety in
CN , of dimension d and degree D, there exists an ε-net of size roughly D · (N/ε)O(d). Combining
the two results we are able to prove the existence of a polynomially small robust hitting set for the
variety of efficiently computable polynomials. Showing the existence of robust hitting sets is the
main technical difficulty in the proof.

Now that we know that robust hitting sets exist the PSPACE algorithm works as follows. It
enumerates over all subsets of a relevant domain of polynomial size. For each such subset it checks
whether there exists an algebraic circuit that has the right normalization (e.g. that evaluates to at
least 1 on some input from [−1, 1]n) and that evaluates to at most ε on all points in the subset. If
such a solution is found then the subset is not robust and we move to the next subset. To check
whether such a solution exists we need to express this system of inequalities as a formula in the
language of the existential theory of the reals. Then we use the fact that formulas in this language
can be decided in PSPACE to conclude that our algorithm works in PSPACE.

1.3 Organization

The rest of the paper is organized as follows. Section 2 contains some preliminaries including the
notation we use throughout the paper (Section 2.1), the definition of universal algebraic circuit
(Section 2.2) and some basic results concerning norms of polynomials and the relation between
them (Section 2.3). Section 3 contains results concerning anti-concentration of polynomials. In
Section 4 we discuss basic properties of algebraic varieties and state some results concerning the
variety of polynomials computed by poly-size algebraic circuits. In Section 4.1 we give an upper
bound on the size of ε-net for algebraic varieties of polynomial dimension and exponential degree.
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Then, in Section 5 we prove the existence of a robust hitting set for algebraic circuits. We discuss
the existential theory of the reals in Section 6 and in Section 7 we give the PSPACE algorithm for
constructing a hitting set for VP.

2 Preliminaries

2.1 Notation

We shall use the following notation. We do not mention which variety or circuit we study rather
just that we shall use this parameters for every circuit or variety.

• n is number of variables in the circuit

• s is size of circuit

• r is degree of circuit

• d is dimension of variety

• D is degree of variety

• Nhom
n,r = (n+r−1

r ) is number of homogeneous monomials in n variables of degree r

• v, u, e points in R∗

• x vector of variables

• f (x) is a polynomial and f is its vector of coefficients

• For 0 < δ < 1, Gδ = {−1,−1 + δ,−1 + 2δ, . . . , 1− 2δ, 1− δ}n is the grid

• ι =
√
−1 is the complex imaginary root of −1

• [−1, 1]NC = [−1, 1]N + ι · [−1, 1]N = {a + ι · b | a, b ∈ [−1, 1]N}.

• For 0 < δ < 1, GC
δ = {a + ι · b | a, b ∈ {−1,−1 + δ,−1 + 2δ, . . . , 1− 2δ, 1− δ}n} is the grid

in C.

• For 0 < δ < 1, Gδ,r , {a + k · b | a, b ∈ Gδ and 0 ≤ k ≤ r}.

• Ψ, Φ denote circuits

2.2 Algebraic Circuits

An algebraic circuit is a directed acyclic graph whose leaves are labeled by either variables x1, . . . , xn
or elements from the field F,5 and whose internal nodes are labeled by the algebraic operations of
addition (+) or multiplication (×). Each node in the circuit computes a polynomial in the natural
way, and the circuit has one or more output nodes, which are nodes of out-degree zero. The size
of the circuit is defined to be the number of wires, and the depth is defined to be the length of a
longest path from an input node to the output node. A circuit is called homogeneous if every gate
in it computes a homogeneous polynomial.

A useful notion is that of a universal algebraic circuit, which is a circuit that “encodes” all
circuits of somewhat smaller size.

5In this paper we only consider fields of characteristic zero.
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Definition 2.1 (Universal circuit). A homogeneous algebraic circuit Ψ is said to be universal for n-variate
homogeneous circuits of size s and degree r if Ψ has n essential-inputs x and m auxiliary-inputs y, such that
for every homogeneous n-variate polynomial f of degree r that is computed by an homogeneous algebraic
circuit of size s there exists an assignment a to the m auxiliary-variables of Ψ such that the polynomial
computed by Ψ(x, a) is f (x). ♦

The existence of efficiently computable universal circuits was shown by Raz [Raz10] (see also
[SY10]).

Theorem 2.2 (Universal circuit). There exist constants c1 and c2 such that the following hold. For any
natural numbers n, s, r there exists a homogeneous circuit Ψ such that Ψ has n essential-variables, c1 · sr4

auxiliary-variables, degree c2 · r and size c1 · sr4,6 and it is universal for n-variate homogeneous circuits of
size s and degree r. Furthermore, for any polynomial f (x) that can be computed by Ψ and any constant α,
the polynomial α · f can also be computed by Ψ.

2.3 Norms of polynomials

Definition 2.3 (Norm of a polynomial). For an n-variate polynomial f (x) ∈ R[x] we denote

‖ f ‖2 :=
(∫

[−1,1]n
| f (x)|2dµ(x)

)1/2

=
(
Eµ[ f 2]

)1/2
,

where µ(x) is the uniform probability measure on [−1, 1]n. We also denote

‖ f ‖∞ = max
v∈[−1,1]n

| f (v)|.

♦

Remark 2.4. We shall also need to work with the usual Euclidean norm of vectors. To avoid confusion we
shall denote the usual Euclidean norm of a vector v with ‖v‖. I.e., we omit the subscript when dealing with
the Euclidean norm. ♦

We will need some basic results relating the L∞ norm of a polynomial to its L2 norm. We
start by stating a result of Wilhelmsen that generalizes a classical result by Markov for univariate
polynomials.

Theorem 2.5 (Multivariate Markov’s theorem [Wil74]). Let f : Rn → R be a homogeneous polynomial
of degree r, that for every v ∈ [−1, 1]n satisfies | f (v)| ≤ 1. Then, for every ‖v‖ ≤ 1 it holds that
‖∇( f )(v)‖ ≤ 2r2.

Denote with B(n, α, u) the n-dimensional ball of radius α around u and with Vol(n, α) its vol-
ume.

Corollary 2.6. Let f : Rn → R be a homogeneous polynomial of degree r. Then,

‖ f ‖2 ≥
1

22n+2 ‖ f ‖∞ ·Vol(n,
1

4r2 ) .

Proof. By normalizing f it is enough to prove the result for the case ‖ f ‖∞ = 1.
Let u ∈ [−1, 1]n be such that 1 = ‖ f ‖∞ = | f (u)|. Assume further, w.l.o.g. that f (u) = 1.

Consider the intersection A = B(n, 1
4r2 , u) ∩ [−1, 1]n. We have that µ(A) ≥ 1

4n · Vol(n, 1
4r2 ), where

6We can assume without loss of generality that the number of auxiliary variables is the same as the size of the circuit
as we can ignore some of the variables.
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µ(x) is the uniform measure on [−1, 1]n. Indeed, µ scales down by a factor of 2n the usual measure
of A, and it is immediate that A contains at least a fraction 2−n of Vol(B(n, 1

4r2 , u)).
Theorem 2.5 implies that for any v ∈ A, it holds that f (v) ≥ 1

2 . Indeed, this follows im-
mediately from the bound on the gradient of f , the assumption that f (u) = 1 and the fact that
‖u− v‖ ≤ 1

4r2 . Thus, we get that

‖ f ‖2 =
∫
| f (x)|2dµ(x) ≥ 1

4
µ(A) ≥ 1

22n+2 ·Vol(n,
1

4r2 ) .

We shall also need the following lower bound on the norm of f when it has at least one not too
small coefficient.

Lemma 2.7. Let f be an n-variate homogeneous of degree r. Assume that one of the coefficients in f is at
least α in absolute value. Then ‖ f ‖2 ≥ α · 2n/2 · e−r.

The proof will use Legendre polynomials as a basis for the space of polynomials. Recall that
Legendre polynomials {Lk(x)} are univariate polynomials such that deg(Lk) = k and∫ 1

−1
Lk(x) · Lm(x)dµ(x) = δk=m ·

2
2k + 1

.

For an exponent vector ē = (e1, . . . , en) we denote Lē(x) := ∏n
i=1 Lei(xi). It is again easy to see that

when we run over all ē we get an orthogonal family of polynomials. For a polynomial we denote
with f = ∑ē cē ·∏n

i=1 xei
i its usual monomial expansion and with f = ∑ē `ē · Lē its expansion with

respect to the Legendre basis. We shall also need the fact that the coefficient of xk in Lk(x) is
1
2k · (2k

k ). For more on Legendre polynomials see e.g. [San91].

Claim 2.8. Let f (x) be a homogeneous polynomial of degree r. Then for any exponent vector ē0 =
(e0

1, . . . , e0
n) such that ∑i e0

i = r we have that

`ē0 = cē0 ·
n

∏
i=1

2e0
i · 1

(
2e0

i
e0

i
)

.

In particular `ē0 ≥ cē0 .

Proof. From the properties above it is not hard to see that

`ē0 =
n

∏
i=1

2e0
i + 1
2

∫
[−1,1)n

f · Lē0 dµ(x) =
n

∏
i=1

2e0
i + 1
2 ∑̄

e

∫
[−1,1)n

cē ·
n

∏
i=1

xei
i · Lē0 dµ(x)

Since f is homogeneous, any exponent vector ē 6= ē0 appearing in the equation has a coordinate i
with ei < e0

i . As Le0
i
(xi) is perpendicular to all lower degree polynomials we get that

=
n

∏
i=1

2e0
i + 1
2

∫
[−1,1)n

cē0 ·
n

∏
i=1

xe0
i

i · Lē0 dµ(x).

By the same reasoning can add lower degree terms to ∏n
i=1 xe0

i
i to get the polynomial b · Lē0 where b

is the inverse of the product of the leading coefficients of the Le0
i
. That is, b = ∏n

i=1 2e0
i · 1

(
2e0

i
e0
i
)
. Hence

=
n

∏
i=1

2e0
i + 1
2

· cē0 ·
n

∏
i=1

2e0
i · 1

(
2e0

i
e0

i
)
·
∫
[−1,1)n

L2
ē0 dµ(x) = cē0 ·

n

∏
i=1

2e0
i · 1

(
2e0

i
e0

i
)

.
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We now prove Lemma 2.7.

Proof of Lemma 2.7. Let f = ∑ē `ē · Lē be the expansion of f in the Legendre basis. From orthogo-
nality we get that

Eµ[ f 2] = ∑̄
e
Eµ[`

2
ē · L2

ē ] = ∑̄
e
`2

ē ·
n

∏
i=1

2
2ei + 1

≥ α2 · 2n

(2r/n + 1)n ≥ α2 · 2n · e−2r.

Finally, we will need the following simple result connecting the usual Euclidean norm of the
vector of coefficients of a polynomial and its ‖‖2 norm.

Lemma 2.9. Let f (x) be an n-variate polynomial with S monomials. Let f ∈ RS be its vector of coefficients.
Then,

‖ f ‖2 ≤ ‖ f ‖∞ ≤ ‖f‖ ·
√

S.

Proof. Let f = ∑M cM · M be the representation of f as sum of monomials. We have that for all
v ∈ [−1, 1]n

| f (v)| = |∑
M

cm M(v)| ≤∑
M
|cM| ≤

(
∑
M
|cM|2

)1/2

·
√

S = ‖f‖ ·
√

S.

3 Anti-concentration results for polynomials

We will rely on the following theorem of Carbery-Wright (see Theorem 8 in [CW01]).

Theorem 3.1 (Carbery-Wright). There exists an absolute constant C such that if f : Rn → R is a
polynomial of degree at most r, 0 < q < ∞, and µ is a log-concave probability measure on Rn, then, for
α > 0, it holds that(∫

| f (x)|q/rdµ(x)
)1/q

· µ{v ∈ Rn | | f (v)| ≤ α} ≤ C · q · α1/r.

We give a version specialized to our purposes.

Theorem 3.2 (Carbery-Wright). There exists an absolute constant CCW such that if f : Rn → R is a
polynomial of degree at most r, and ‖ f ‖2 = 1 then, for α > 0, it holds that

Pr
v∈U [−1,1)n

[| f (v)| ≤ α] ≤ CCW · r · α1/r.

Proof. Apply Theorem 3.1 for µ the uniform measure on [−1, 1)n and q = 2 deg( f ). Observe that∫
[−1,1)n

| f (x)|q/rdµ(x) =
∫
[−1,1)n

| f |2dµ(x) = ‖ f ‖2
2 = 1.

We need a discrete version of this theorem which we state below. Let δ > 0 be such that 1/δ is
an integer. Recall that Gδ = {−1,−1 + δ,−1 + 2δ, . . . , 1− 2δ, 1− δ}n.
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Theorem 3.3 (Discrete Carbery-Wright). Let CCW be the constant guaranteed in Theorem 3.2. Let
δ > 0 be such that 1/δ is an integer. If f : Rn → R is a homogeneous polynomial of degree at most r with
‖ f ‖2 = 1 then, for α > 0, it holds that

Pr
v∈U Gδ

[
| f (v)| ≤ α− δ · (8nr2)n+1

]
≤ CCW · r · α1/r.

For the proof of the theorem it will be helpful to think of the uniform distribution on Gδ as
generated in the following way: we first sample a point v ∈ [−1, 1)n uniformly at random and
then round each coordinate vi to miδ for some integer mi such that miδ ≤ vi < (mi + 1)δ.

To prove the theorem we need the following simple result regarding polynomials.

Lemma 3.4. Let f : Rn → R be a homogeneous polynomial of degree at most r. Let δ > 0 be such that
1/δ is an integer. Let v ∈ [−1, 1)n and u be obtained from v by the rounding process described above (i.e.
rounding each coordinate vi to the largest integer multiple of δ that is smaller than or equal to vi). Then
| f (v)− f (u)| ≤ δ · (8nr2)n+1 · ‖ f ‖2.

Proof. By the mean value theorem there exists a point w on the line segment connecting u and v
such that | f (v)− f (u)| = ‖u− v‖ · | f ′(w)|, where f ′(w) is the derivative of f in direction u− v
evaluated at w. From Theorem 2.5 it follows that | f ′(w)| ≤ 2 · ‖ f ‖∞ · r2. Corollary 2.6 implies that

| f (v)− f (u)| = ‖u−v‖ · | f ′(w)| ≤ 2 · ‖u−v‖ · ‖ f ‖∞ · r2 ≤ 2 · ‖u−v‖ · r2 · ‖ f ‖2 · 22n+2 · 1
Vol(n, 1

2r2 )
.

As ‖u− v‖ ≤ δ ·
√

n and Vol(n, 1
2r2 ) ≥

( 1
2nr2

)n
we get that

| f (v)− f (u)| ≤ δ ·
√

n · r2 · ‖ f ‖2 · 22n+3 · (2nr2)n ≤ δ · (8nr2)n+1 · ‖ f ‖2 .

Corollary 3.5. Let f : Rn → R be a polynomial of degree at most r with ‖ f ‖2 = 1. Let δ > 0 be such
that 1/δ is an integer. Assume that for some v ∈ [−1, 1]n, | f (v)| > α and that u is obtained from v by the
rounding process described above. Then | f (u)| > α− δ · (8nr2)n+1.

We now give the proof of Theorem 3.3.

Proof of Theorem 3.3. We use the sampling procedure described above to sample a point u ∈ Gδ.
That is, we first pick v ∈ [−1, 1)n at random and then round it to u. By Theorem 3.2 with probabil-
ity at least 1−CCW · r · α1/r, v is such that | f (v)| > α. By Corollary 3.5, for any such v we have that
| f (u)| > α− δ · (8nr2)n+1. Thus, the probability that we sample u with | f (u)| ≤ α− δ · (8nr2)n+1

is at most CCW · r · α1/r.

We will be working over the complex numbers and so we need to slightly adjust the results
above. Let f : Cn → C be a homogeneous polynomial of degree r. Consider the real and imaginary
parts of f , <( f ) and =( f ), respectively. We can view both as polynomials <( f ),=( f ) : R2n → R.
That is, for every a, b ∈ Rn, f (a + ιb) = <( f )(a, b) + ι · =( f )(a, b). It is clear that both <( f ) and
=( f ) are homogeneous polynomials of degree r as well. We define ‖ f ‖2 , ‖<( f )‖2 + ‖=( f )‖2.
As we work over the complex numbers we will refer to the set GC

δ = {a + ι · b | a, b ∈ Gδ}.

Theorem 3.6 (Discrete Carbery-Wright over C). Let CCW be the constant guaranteed in Theorem 3.2.
If f : Cn → C is a homogeneous polynomial of degree at most r with ‖ f ‖2 = 1 then, for α > 0, it holds
that

Pr
v∈U GC

δ

[
|( f )(v)| ≤ α− 1

2
δ · (16nr2)2n+1

]
≤ CCW · r · (2α)1/r.
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Proof. As ‖ f ‖2 = 1 either ‖<( f )‖2 ≥ 1/2 or ‖=( f )‖2 ≥ 1/2. Assume without loss of generality
the former happens. Note also that if |<( f )(a, b)| > γ then | f (a + ι · b)| > γ. Theorem 3.3 implies
that the probability that we sample a, b ∈ Gδ with |<( f )(a, b)| ≤ 2α− δ · (16nr2)2n+1 · ‖<( f )‖2 is
at most CCW · r · (2α)1/r. Thus, with probability at least 1− CCW · r · (2α)1/r we get that (a + ιb) is
such that

| f (a + ι · b)| > 2α− δ · (16nr2)2n+1 · ‖<( f )‖2 ≥
1
2
(2α− δ · (16nr2)2n+1).

4 The algebraic variety of small algebraic circuits

We start by providing some basic definitions from algebraic geometry. For more on algebraic
geometry see [CLO06]. We follow essentially the same treatment given in [HS80a, HS80b].
Definition 4.1 (Basic AG definitions). A subset V ⊆ Cn is called (Zariski-)closed7 if there exists a set of
polynomials F ⊆ C[x] such that V = {v ∈ Cn | ∀ f ∈ F , f (v) = 0}. The closed sets define the Zariski
topology of Cn. The closure of a set V ⊆ Cn is the intersection of all closed sets containing V. A closed set
V is called irreducible if for any two closed sets V1, V2 such that V1 ∪ V2 = V it holds that either V1 = V
or V2 = V. ♦

Closed sets are also called varieties. Irreducible closed sets are irreducible varieties.
Definition 4.2 (Dimension). The dimension of an irreducible variety V, denoted dim(V) is the maximal
integer m such that there exist m irreducible varieties {Vi} satisfying ∅ ( V1 ( V2 ( . . . ( Vm ( V. The
dimension of a reducible variety is the maximal dimension of its irreducible components. ♦

We now give some basic facts.

Fact 4.3. 1. Each variety V can be represented uniquely as a minimal finite union of irreducible vari-
eties. Each irreducible set in this representation is called a component of V.

2. The dimension of every variety ∅ 6= V is finite.

3. If U, V are varieties, where U is irreducible and U 6⊆ V then dim(U ∩V) < dim(U).

It is a basic fact that any irreducible variety over C is connected (as a complex manifold).

Theorem 4.4 (Irreducible varieties are connected). Every irreducible variety V ⊆ CN is connected as
a topological space (in the usual Euclidean topology).

Proof. The claim follows immediately from Theorem 1 in Chapter VII section 2.2 of [Sha88], noting
that in our variety every point is closed (thus, X(C) in the statement of Theorem 1 there is our
irreducible variety).

Another important definition is that of a degree of a variety.
Definition 4.5 (Degree). The degree of an irreducible variety V ⊆ Cn, denoted deg(V), is the maximal
cardinality of a finite intersection of V with an affine linear space. That is,

deg(V) = max {|V ∩ A| | A ⊂ Cn is an affine linear space, and |V ∩ A| < ∞} .

7Over C if a set is closed in the Zariski topology then it is also closed in the usual Euclidean topology.
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When V is not irreducible, let V = ∪iVi, where Vi are the irreducible components of V. We define deg(V)
as

deg(V) = ∑
i

deg(Vi) .

♦

We will rely on the following estimates of Heintz and Sieveking.

Theorem 4.6 (Variety of easy polynomials [HS80b]). For every natural numbers n, s, r there exists a
set W(n, s, r) ⊆ CNhom

n,r such that W(n, s, r) contains the coefficient vectors of all n-variate homogeneous
polynomials, f ∈ C[x], of degree r, that can be computed by homogeneous algebraic circuits of size at most
s. Furthermore,

dim(W(n, s, r)) ≤ (s + 1 + n)2

and
deg(W(n, s, r)) ≤ (2sr)(s+1+n)2

.

Remark 4.7. We note that the result above holds not only for homogeneous polynomials and can be slightly
improved if we restrict our attention to the homogeneous case as we do here, but this is not crucial for our
purposes. ♦

Remark 4.8. We note that the main message behind Theorem 4.6 is that the dimension of the ambient space,
Nhom

n,r , does not appear in the upper bounds on dim(W(n, s, r)) and deg(W(n, s, r)). ♦

To prove our main result it will be convenient to consider the universal circuit. As the universal
circuit for n-variate homogeneous circuits of size s and degree r has size O(sr4) we obtain the
following immediate corollary. Note that when speaking of the polynomials that can be computed
by the universal circuit we think of the set of polynomials that is obtained by running over all
assignments to the auxiliary variables. Indeed, for any such assignment the circuit that is obtained
is homogeneous in its essential variables and of size O(sr4).

Theorem 4.9 (Variety of projection of the universal circuit). For all natural numbers n, r, s there exists
a set V(n, s, r) ⊆ CNhom

n,r such that V(n, s, r) contains the coefficient vectors of all homogeneous polynomials
of degree r that can be computed by the universal circuit for n-variate homogeneous circuits of size s and
degree r. Furthermore, there exists a constant c such that

dim(V(n, s, r)) ≤ c · (sr4 + 1 + n)2

and
deg(V(n, s, r)) ≤ (csr5)c·(sr4+1+n)2

.

To ease notations we shall use the following corollary.

Corollary 4.10. Let V(n, s, r) be as in Theorem 4.9. Then, there exists a constant c4.10 such that

dim(V(n, s, r)) ≤ (srn)c4.10

and
deg(V(n, s, r)) ≤ 2(srn)c4.10 .

Theorem 4.9 speaks about a variety containing coefficient vectors of easy polynomials. As
varieties are closed, the same variety also contains all coefficient vectors of polynomials that are
limits of easy polynomials.
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Definition 4.11 (Closure of easy polynomials). A homogeneous polynomial f ∈ C[x] is in the closure
of size s and degree r algebraic circuits if there exists a sequence of n-variate, degree r, homogeneous poly-
nomials { fi(x)}, such that each fi can be computed by a homogeneous circuit of size s and degree r, and
limi→∞ fi = f . In other words, there exists a sequence of homogeneous algebraic circuits of degree r and
size s such that the coefficients vector of the polynomials they compute converge to the coefficient vector of
f . ♦

Remark 4.12. At first sight it may seem, thanks to the definition of the universal circuit Ψ(x, y), that if
f ∈ VP that f also has a small circuit. Indeed, if fi → f and fi = Ψ(x, ai) then it seems that f =
Ψ(x, limi→∞ ai). The problem with this argument however is that {ai} may not converge. An example for
this phenomenon may be seen in the the difference between the border rank of a tensor and its rank. It may
be the case that a tensor has border rank r yet it’s rank may be larger. See e.g. Section 1 in this paper and
Section 6 in [Blä13]. ♦

Corollary 4.13. The variety V(n, s, r) defined in Theorem 4.9 contains all coefficient vectors of homoge-
neous polynomials that are in the closure of size s and degree r algebraic circuits.

Finally, we define a notion that will be useful in the upcoming proofs.
Definition 4.14 (Axis-parallel random variety). We say that a variety V is axis-parallel random if for
any axis-parallel affine subspace A (i.e. a subspace defined by setting some coordinates to constants) it holds
that dim(V ∩ A) ≤ dim(V)− codim(A). ♦

One way to think of this definition is that a variety is axis-parallel-random if by restricting a
variable to a constant we move to a strictly smaller subvariety.

It is clear that if V is axis-parallel random then for every axis-parallel affine subspace A, V ∩ A
is also axis-parallel random. Next we show that by slightly perturbing a variety makes it an axis-
parallel random one. That is, we will show that for a linear transformation T, the variety T(V) is
axis-parallel random.

Theorem 4.15 (A random perturbation makes a variety axis-parallel random). ] Let 0 < δ and let
T = IN + A, where IN is the N × N identity matrix and A is a random matrix where each ai,j is chosen
independently uniformly at random from [0, δ]. Let V ⊆ CN be a variety of dimension d. Then T(V) with
probability 1 T(V) is axis-parallel random.

To prove the theorem we will need the following theorem that characterizes the dimension of
a variety in terms of the algebraic rank of the polynomials defining that variety. See e.g. Theorem
2 in Chapter 9, §5 of [CLO06].

Theorem 4.16 (Characterization of dimension via algebraic dependence). Let V ⊆ CN be a variety
and let I = I(V) be the ideal of all polynomials vanishing on V. Let the coordinate ring of V be C[V] ,
C[x]/I. Then the dimension of V equals the maximal number of elements of C[V] that are algebraically
independent.

Proof of Theorem 4.15. To prove the theorem we first show that with high probability no variable
(or actually no linear function of the form xi = c) will be in the ideal I(V). Then we prove that
restricting any variable to a constant reduces the algebraic rank of C[V].

Lemma 4.17. Let L ⊂ I(T(V)) be the linear space of all linear functions in I(T(V)). If dim(V) = d
then for any d variables xi1 , . . . , xid the probability that there exists a non zero linear combination ∑d

j=1 αj ·
xij + α0 ∈ I(T(V)) is 0.8

8That is, this can fail only for a set of matrices of measure zero
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Proof. First observe that d ≤ N − dim(L), or dim(L) ≤ N − d. Further, observe that the effect
of applying T to V on L is essentially applying T−1 to the linear functions in L. Thus, the event
that we are considering checks whether a random subspace of dimension at most N− d intersects
a given d dimensional affine space. This probability is 0 over the reals. This holds even for a T
chosen as in the theorem. For example, this can be seen by noting that the two subspaces intersect
iff a certain determinant is zero: the rows of the determinant will compose of the basis for the two
subspaces. It is easy to see that the determinant is a nonzero polynomial in the A variables and
thus it is nonzero with probability 1.

Next we wish to show that setting any k ≤ dim(V) variables to constant reduces the algebraic
rank of C[V] by k with probability 1. We prove this property for irreducible varieties and then
conclude it to arbitrary varieties. A property that will be useful is that if V is an irreducible variety
then I(V) is a prime ideal (see e.g., [CLO06]).

Lemma 4.18. Let f1, . . . , fd be algebraically independent polynomials in C[T(V)]. Let xi1 , . . . , xik be any
k ≤ d different variables. Then for any k field elements α1, . . . , αk restricting xi = αi reduces the algebraic
rank of { fi} by k with probability 1 (over the choice of T).

Proof. We will prove the claim by induction on k. For k = 1 note that since the fi are maximally
algebraically independent in C[T(V)] then for any other nonzero polynomial g in C[T(V)] there
exists a nonzero polynomial Fg(z1, . . . , zd+1) such that Fg( f1, . . . , fd, g) ≡ 0, where by that we mean
that Fg( f1, . . . , fd, g) is the zero element in C[T(V)], that is, Fg( f1, . . . , fd, g) ∈ I(T(V)). Observe
further that since I(T(V)) is a prime ideal (applying an invertible linear transformation does not
affects the irreducibility of the variety) if g · h ∈ I(T(V)) then h ∈ I(T(V)). Hence, we can assume
without loss of generality that zd+1 does not divide Fg.

From Lemma 4.17 we know that for any α, g = xi1 − α is not the zero polynomial in
C[T(V)]. Thus, there is such polynomial Fg. As zd1 does not divide Fg we can express it as Fg =
zd+1 · F1(z1, . . . , zd+1) + F0(z1, . . . , zd), where F0 6= 0. Thus the polynomial g · F1( f1, . . . , fd, g) +
F0( f1, . . . , fd) is in I(T(V)). Now, adding the linear polynomial g to I(T(V)) to get I(1) =
(I(T(V)), g) (the ideal generated by I(T(V)) and g), it follows that F0( f1, . . . , fd) ∈ I(1). Thus,
the { fi} become algebraic dependent when setting g = 0, i.e. when restricting xi1 = α.

To prove the case of general k we just notice that the same argument will work thanks to
Lemma 4.17, where at the kth step we consider any algebraically independent set f ′1, . . . , f ′d−k+1 in
C[I(k−1)].

The proof of Theorem 4.15 now follows since the probability of a bad event is 0 and each
variety it the union of a finite number of irreducible components.

4.1 ε-nets for algebraic varieties

In this section we construct ε-nets for varieties. We shall use the Euclidean norm for this and to
avoid confusion we shall denote the Euclidean norm of a vector a with it with ‖a‖. That is, there
is no subscript 2 when using the Euclidean norm.
Definition 4.19 (ε-net). Let V ⊆ CN . A set E ⊆ V is an ε-net for V if for every v ∈ V there exists e ∈ E
such that ‖e− v‖ ≤ ε. ♦

Recall the notation [−1, 1]NC = [−1, 1]N + ι · [−1, 1]N = {a + ι · b | a, b ∈ [−1, 1]N}.
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Theorem 4.20 (ε-net for varieties). Let N, d, D be integers such that d <
√

N, and ε > 0. Let V ⊆ CN

be a d-dimensional variety of degree D which is axis-parallel random. Denote V̂ = V ∩ [−1, 1]NC . There
exists an ε-net E ⊆ V̂ of size smaller or equal to D · (75N2/ε2)d+1.

Proof. The proof is by induction on the dimension of V. If dim(V) = 0 then |V| = D and the claim
is trivial. Furthermore, it is a δ-net for any δ > 0. Assume d > 0. For α ∈ C and i ∈ [N] let

Hi(α) = {v ∈ CN | vi = α}.

That is, Hi(α) is the hyperplane obtained by fixing the i’th coordinate to α. Let Vi(α) = V ∩
Hi(α) and V̂i(α) = Vi(α) ∩ [−1, 1]NC . As V is axis-parallel random, Vi(α) is a variety of dimension
d − 1 and degree at most D, which is also axis-parallel random. Let η, δ > 0 be constants to
be determined later, such that 1/η is an integer. By the induction hypothesis, there is a subset
Ei(α) ⊆ V̂i(α) which is a δ-net for Vi(α) ∩ [−1, 1]NC of size D · (75N2/δ)(d−1)+1. Let

E′ =
⋃

i∈[N],α,β∈{−1,−1+η,...,1−η,1}
Ei(α + ι · β).

It is clear that
|E′| ≤ N · (2/η + 1)2 · D · (75N2/δ2)d.

The set E′ is almost our ε-net. All that is left to do is to cover points of V that are not close to any
intersection point of V with any of the hyperplanes we considered.

Let
H =

⋃
i∈[N],α,β∈{−1,−1+η,...,1−η,1}

Hi(α + ι · β).

Consider the set [−1, 1]NC \ H. It is a union of disjoint “cells” whose “walls” have been removed
(the walls being the hyperplanes). Recall that by Theorem 4.4 we have that an irreducible variety is
connected. Thus, when considering the irreducible components of V, we see that each component
either intersects a “wall” of a cell or is completely contained in it (or completely disjoint from
it). Thus, as V is of degree D, it has at most D irreducible components and in particular, at most
D of V’s irreducible components are contained in cells. From each connected component that is
contained in such a cell pick any point. Let B be the set of points thus chosen. It follows that,
|B| ≤ D. Finally, let E = E′ ∪ B. We claim that for

η =
1
d 2N

ε e
and δ =

(
1− 1√

2N

)
· ε ,

the set E is an ε-net for V̂. Indeed, let v ∈ V̂ be arbitrary. Consider the connected component to
which v belongs. If this component is contained in one of the cells, then there is some e ∈ B ⊆
E in the same cell as v. As each cell is contained in a cube whose diameter is

√
2Nη, it holds

that ‖v − e‖ ≤
√

2Nη ≤ ε. On the other hand, if the connected component containing v is not
contained in any of the cells, then it must intersect the closure of the cell containing v. Let u be
this intersection point. By the construction of E′, there is some point e such that ‖e− u‖ ≤ δ. As
‖v− u‖ ≤

√
2Nη we get by the triangle inequality that ‖e− v‖ ≤

√
2Nη + δ ≤ ε. To conclude the
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proof we note that

|E| ≤ N · (2/η + 1)2 · D · (75N2/δ2)d + D

≤ N · (5N/ε)2 · D ·
(

75
(

1 +
1√
N

)
N2/ε2

)d

+ D

≤ (70N2/ε2) · D ·
(
75N2/ε2)d

+ D

≤ D · (75N2/ε2) ·
(
75N2/ε2)d

= D ·
(
75N2/ε2)d+1

,

where we have used the fact that for N ≥ 2 and d <
√

N it holds that (1 + 1/
√

N)d < 2.8.

We would like to apply the result of Theorem 4.20 for V(n, s, r). A small technical issue is that
V(n, s, r) is not axis-parallel random. Nevertheless, Theorem 4.15 guarantees that for a random
transformation T the set T(H) is an (η/2)-robust hitting set for V(n, s, r).

Let T be as guaranteed by Theorem 4.15 for V = V(n, s, r). Note that if V = V(F ) and we
define V ′ = V(F ◦ T) then V = T(V ′). Indeed, v ∈ V ′ iff ( f ◦ T)(v) = 0 for all f ∈ F which is
equivalent to Tv ∈ V or v ∈ T−1V.

Lemma 4.21. Let V ′ = T−1(V) ⊆ CN be an axis-parallel random variety where T = I + A such that
each entry of A lies in [0, 1/N2d].9 Let E′ ⊆ V ′ be an ε-net for V ′ ∩ [−1, 1]NC . Then E := T(E′) ⊂ V is
an (1 + 1/N) · ε-net for V ∩ [−(1− 1

N ), 1− 1
N ]NC .

Proof. Note that by construction of T we have that T−1 = I + ∑∞
k=1(−A)k and that each entry of

T−1 − I is bounded in absolute value by, say, 1
Nd . In particular,

T−1
(
[−(1− 1

N
), 1− 1

N
]NC

)
⊆ [−1, 1]NC ,

where, as before, we have [−(1− 1
N ), 1− 1

N ]NC = [−(1− 1
N ), 1− 1

N ]N + ι[−(1− 1
N ), 1− 1

N ]N .10

Let v ∈ V ∩ [−(1− 1
N ), 1− 1

N ]NC . We have that

T−1(v) ∈ T−1(V) ∩ T−1
(
[−(1− 1

N
), 1− 1

N
]NC

)
⊆ T−1(V) ∩ [−1, 1]NC = V ′ ∩ [−1, 1]NC .

Let e ∈ E′ be such that ‖e′ − T−1(v)‖ ≤ ε. We thus have that ‖T(e)− v‖ ≤ ‖T‖ · ‖e− T−1v‖ ≤(∗)

(1+ 1/N)ε, where inequality (∗) follows easily from the construction of T (and ‖T‖ is the operator
norm of T).

As corollary we get the same parameters for varieties that are not necessarily axis-parallel
random.

Corollary 4.22 (ε-net for varieties). Let N, d, D be integers such that d <
√

N, and ε > 0. Let V ⊆ CN

be a d-dimensional variety of degree D. Denote V̂ = V ∩ [−(1 − 1
N ), 1 − 1

N ]NC . There exists an ε-net
E ⊆ V̂ of size smaller or equal to D · (76N2/ε2)d+1.

Proof. This immediately follows from Theorem 4.20 and Lemma 4.21 by plugging ε′ = ε/(1 + 1
N )

to the bounds there.
9Observe that the conclusion of Theorem 4.15 holds for any choice of 0 < δ, in particular for δ = N−2d.

10Notice that as T is real it operates on the real part and the imaginary part of each vector separately.
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5 Robust hitting sets

In this section we define the notion of a robust hitting set and prove its existence.
Definition 5.1 (ε-Robust hitting set). A subsetH ⊆ Cn is an ε-robust hitting set for a set of polynomials
V ⊆ F[x] if for every f ∈ V there is some v ∈ H such that | f (v)| ≥ ε · ‖ f ‖2.

Let n, r, s be integers. We say that H is an ε-robust hitting set for size s and degree r if it is an ε-robust
hitting set for the set of n-variate polynomials that can be computed by size s and degree r homogeneous
algebraic circuits. ♦

The next claim shows that a robust hitting set for size s algebraic circuits is also a robust hitting
set for the closure of such circuits, that is for V(n, s, r).

Claim 5.2. If a finiteH ⊆ Rn is an ε(n)-robust hitting set for size s and degree r then for any f ∈ V(n, s, r)
there is v ∈ H such that | f (v)| ≥ ε(n) · ‖ f ‖2.

Proof. Let f ∈ V(n, s, r). For i ∈N let fi ∈ V(n, s, r) be such that limi→∞ fi = f and each fi is com-
puted by a homogeneous circuit of size s and degree r. Clearly, it also holds that limi→∞ ‖ fi‖2 =
‖ f ‖2. AsH is finite there is v ∈ H at which infinitely many fi evaluate (in absolute value) to at least
ε(n) · ‖ fi‖2. Thus, there is a subsequence fij satisfying limj→∞ fij = f and | fij(v)| ≥ ε(n) · ‖ fij‖2.
By continuity it holds that | f (v)| ≥ ε(n) · ‖ f ‖2 as well.

In the next lemma we think of each point f ∈ CNhom
n,r as being the coefficient vector of some

homogeneous n variate polynomial f of degree r. That is f (x) = ∑deg(M)≤r fM · M(x), and we

index coordinates of CNhom
n,r with degree r monomials. The lemma shows that in order to construct

a robust hitting set for a set of polynomials it is enough to construct a good enough robust hitting
set for an ε-net in the variety.

Lemma 5.3. Let V ⊆ [−1, 1]N
hom
n,r

C
be such that if f ∈ V and αf ∈ [−1, 1]N

hom
n,r

C
then αf ∈ V.11 Let E ⊆ V

an ε-net for V. Assume that H ⊆ [−1, 1]nC is such that for every g ∈ E there exists v ∈ H such that
g(v) ≥ η · ‖g‖2, for some η < 1. Assume further that η, ε, Nhom

n,r and r satisfy that

10 · ε ·
√

Nhom
n,r <

1
8

η · 2n/2 · e−r <
1
4

.

Then, for every f ∈ V there exists v ∈ H such that | f (v)| ≥ 1
4 η‖ f ‖2.

Proof. Let f ∈ V. Assume w.l.o.g. that the maximal coefficient of f is 1/2. This can be easily
obtained by multiplying f by a field element. Let g ∈ E be such that ‖f− g‖ ≤ ε. Observe that
‖ f ‖2 ≤ ‖g‖2 + ‖ f − g‖2 and that by Lemma 2.9

‖=( f )−=(g)‖∞ , ‖<( f )−<(g)‖∞ ≤ ‖f− g‖ ·
√

Nhom
n,r = ε ·

√
Nhom

n,r .

Thus
‖ f − g‖∞ ≤

√
2 · ε ·

√
Nhom

n,r .

11Notice that this property holds for V(n, s, r) ∩ [−1, 1]
Nhom

n,r
C

.

17



Since <( f ) has a large coefficient and ‖f− g‖ ≤ ε < 1/10 it follows that some coefficient in R(g)
is at least 1/4. Let v ∈ H be such that |g(v)| ≥ η · ‖g‖2. Then,

| f (v)| ≥ |g(v)| − |( f − g)(v)| ≥ η · ‖g‖2 −
√

2 · ε ·
√

Nhom
n,r ≥ η · ‖g‖2 −

1
8

η · 2n/2 · e−r (5.4)

≥ 1
2

η · ‖g‖2 (5.5)

≥ 1
4

η · ‖ f ‖2 (5.6)

where Equation 5.4 holds because of the assumption in the lemma, Equation 5.5 follows from
Lemma 2.7 using the fact that some coefficient in g is at least 1/4. Indeed, Lemma 2.7 implies that
‖g‖2 ≥ 1

4 2n/2 · e−r. Finally, Equation 5.6 holds since

‖ f ‖2 ≤ ‖g‖2 + ‖ f − g‖2

= ‖g‖2 + ‖<( f − g)‖2 + ‖=( f − g)‖2

≤ ‖g‖2 + ‖<( f − g)‖∞ + ‖=( f − g)‖∞

≤ ‖g‖2 + 2ε ·
√

Nhom
n,r ≤ 2‖g‖2.

5.1 Robust hitting sets for polynomial varieties

In this section we prove that for any variety of n-variate degree r polynomials of polynomial di-
mension and exponential degree there exists an exp(−poly(nr)) robust hitting set of polynomials
size.

As before we think of every point f ∈ CNhom
n,r as vector of coefficients of a homogeneous n-

variate, degree r polynomial f (x).

Theorem 5.7 (Robust hitting sets for varieties). Let V ⊂ CNhom
n,r be a variety of dimension d and degree

D satisfying the assumption of Lemma 5.3. Let η = 2−n · 1
2·(CCW ·n·r)r and δ = η

(16nr2)2n+1 . There exists an

(η/4)-robust hitting setH for V satisfyingH ⊂ GC
δ of size

|H| = max{2 log D, 12r(n + r) · d}.

Proof. Let k = max{2 log D, 18(n + r) · d}. Sample k points v1, . . . , vk ∈ GC
δ uniformly and inde-

pendently at random. SetH = {v1, . . . , vk}.
Let ε =

(
1

Nhom
n,r

)r
and E ⊂ V(n, s, r) ∩ [−(1− 1

N ), 1− 1
N ]NC be the ε-net guaranteed by Corol-

lary 4.22. From Theorem 3.6 (by taking α = η · ‖g‖2) it follows by the union bound that the
probability that there exists g ∈ E such that for every i,

|g(vi)| ≤
(

η − 1
2
· δ · (16nr2)2n+1

)
· ‖g‖2 = η/2 · ‖g‖2,
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is at most (
CCW · r · (2η)1/r

)k
· |E| ≤

(
CCW · r · (2η)1/r

)k
· D · (75Nhom

n,r
2
/ε2)d+1

< 2−nk/r ·
(

1
n

)k

· D · Nhom
n,r

12rd

< 2−nk/r ·
(

1
n

)k

· D · 212rd(n+r)

≤ 1,

where the last inequality follows from the definition of k. Notice that our choice of η and ε satisfy
the condition in Lemma 5.3, that is,

10 · ε ·
√

Nhom
n,r <

1
8

η · 2n/2 · e−r <
1
4

.

The claim of the theorem now follows from Lemma 5.3.

Corollary 5.8 (Robust hitting sets for V(n, s, r)). There exists a constant c such that for every integers
n, s, r, for η = 2−n · 1

2·(CCW ·nr)r and δ = η
(16nr2)2n+1 , there is an η/4-robust hitting set H ⊂ GC

δ , for
V(n, s, r), of size

|H| ≤ (nsr)c.

Proof. The proof follows immediately from applying Theorem 5.7 to V(n, s, r) using the estimates
given in Corollary 4.10.

We note that the proof above gives a robust hitting setH for V(n, s, r) whose points come from
Cn. We obtain a hitting set for V(n, s, r) over R by using a simple trick.

Theorem 5.9 (Robust-hitting sets for V(n, s, r) over R). LetH be an ε-robust hitting set for V(n, s, r).
For each v = a + ι · b ∈ H and an integer k let vk = a + k · b. Set HR , {vk | v ∈ H and k ∈
{0, . . . , r}}. It holds thatHR is an ε

(r+2)! -robust hitting set for V(n, s, r).

Proof. The fact thatHR hits V(n, s, r) is simple. Let z be a new variable. For each v = a + ι · b ∈ H
and f ∈ V(n, s, r) consider a new univariate polynomial Fv(z) = f (a + z · b). Clearly, there is
some v ∈ H for which Fv(z) 6≡ 0 as setting z = ι gives Fv(ι) = f (v).

Let ck, for k ∈ {0, . . . , r}, be constants satisfying that for every degree r polynomial g it holds
that g(ι) = ∑r

k=0 ck · g(k). Such constants exist by simple interpolation. Furthermore, we have that
|ck| ≤ (r + 1)!. Indeed, note that ck is the k’th entry in the result of the following matrix-vector
product: The vector has length (r + 1) and its k’th entry is ιk. That is, denoting the vector with
w we have that wk = ιk. The matrix is the inverse matrix of the Vandermonde matrix A whose
(k, `)-entry, for k, ` ∈ {0, . . . , r}, is k`, where 00 = 1. To get the bound on |ck| we observe that the

`’th column of the inverse matrix is given by the coefficient vector of the polynomial ∏k 6=`(x−k)
∏k 6=`(`−k) .

The (very) crude bound we gave on |ck| follows easily.
To see that HR is a robust hitting set we note that for v ∈ H for which | f (v)| ≥ ε · ‖ f ‖2 we
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have that

ε · ‖ f ‖2 ≤ | f (v)| = |Fv(ι)| =

∣∣∣∣∣ r

∑
k=0

ckFv(k)

∣∣∣∣∣
=

∣∣∣∣∣ r

∑
k=0

ck f (vk)

∣∣∣∣∣
≤ (r + 1) ·max

k
|ck| ·max

k
| f (vk)|

≤ (r + 2)! ·max
k
| f (vk)| .

We now state the consequence for the robust hitting set constructed in Corollary 5.8. We denote
Gδ,r , {a + k · b | a, b ∈ Gδ and 0 ≤ k ≤ r}.

Corollary 5.10 (Robust-hitting sets for V(n, s, r) over R). There exists a constant c such that for every
integers n, s, r, for η = 2−n · 1

20·(CCW ·nr2)
r and δ = η

(16nr2)2n+1 , there is an η/4-robust hitting set H ⊂ Gδ,r,
for V(n, s, r), of size

|H| ≤ (nsr)c.

Proof. The proof follows immediately from combining Corollary 5.8 with Theorem 5.9 and observ-
ing that (r + 2)! < 10rr.

6 Existential theory of the reals

We will need the following theorem regarding the decidability of existential formulas over the re-
als. To keep this manuscript at a reasonable length we will not give a formal definition of sentences
and formulas over the reals. The interested reader is referred to [BPR06]. Intuitively, formulas are
constructed as follows. The atoms are polynomial equalities “ f (x) = 0” or inequalities “ f (x) ≥ 0”.
From them we build formulas in a similar fashion to the way we build formulas in first order logic
using the connectives ¬,∨,∧ and the quantifiers ∃, ∀ (however, in the existential theory we only
allow existential quantifiers). For a set of polynomials F ⊂ R[x], an F -formula is a formula in
which all the polynomials appearing in the atoms are from F .

Theorem 6.1 (Existential theory of the reals in PSPACE [Can88]). Let F ⊂ R[x] be a set of poly(n)
polynomials each of degree at most r = poly(n) and let ∃x1∃x2 . . . ∃xnF(x1, . . . , xn) be a sentence where
F(x) is a quantifier free F -formula. There is a PSPACE algorithm for deciding the truth of the sentence,
where the size of the input to the algorithm is the bit complexity of the formula F.

6.1 Formulas capturing computations by algebraic circuits

Lemma 6.2 (Computation by the universal circuit). Let n, s, r be natural numbers and ε be a rational
number with poly(n) bit complexity. For real vectors v, a over the reals there exists an existential sentence
over the reals, φ(v, a, ε), such that φ(a, v, ε) is true iff the polynomial computed by the universal circuit for
size s and degree r, whose auxiliary variables are set to a, evaluates on input v, in absolute value, to at least
ε. That is, for Ψ(x, y) as in Theorem 2.2, |Ψ(v, a)| ≥ ε.
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Proof. Let Ψ(x, y) be the universal circuit for size s and degree r (and n variables), where y are the
auxiliary variables. For each gate u of Ψ let Ψu(x, y) be the polynomial computed at u. For each
gate u of Ψ let zu be a new variable and denote with zo be the variable corresponding to the output
gate.

For each internal gate we assign a polynomial equation as follows: If u is an addition gate with
children w1 and w2 then we assign the equation zu − (zw1 + zw2) = 0 to u. If it is a multiplication
gate with children w1, w2 then we assign the equation zu − zw1 · zw2 = 0 to u. In addition we
assign the inequality z2

o ≥ ε2 to the output gate. For an input gate u corresponding to a variable
xi consider the equation zu − vi = 0. For an input gate corresponding to yi we have the equation
zu − ai = 0.

Let F be the set of all equalities and inequalities constructed above. Consider the sentence

φ(v, a, ε) , ∃z
∧

g∈F
g(z) ,

where ∃z is a short hand for writing ∃zu for all gates u in Ψ. It is not hard to see that the exists an
assignment to the zu satisfying this sentence iff |Ψ(v, a)| ≥ ε.

The next lemma shows that deciding whether a polynomial computed by the universal circuit
evaluates to at least 1 on some input from [−1, 1]n can be done in PSPACE.

Lemma 6.3. Let Ψ(x, y) be the universal circuit for size s and degree r (and n variables). Let f (x) ∈ R[x]
be computed by Ψ(x, y) when assigning a to the auxiliary variables. That is, f (x) = Ψ(x, a). Given n, s, r
in unary encoding there is a PSPACE algorithm for deciding whether there exists v ∈ [−1, 1]n on which
| f (v)| ≥ 1.

Proof. Let F be the set of polynomials in the definition of φ(v, a, 1) in Lemma 6.2. Define

ψ(a, 1) , ∃v∃z

∧
g∈F

g(z)

∧(∧
i

(
(1− v2

i ) ≥ 0
))

.

It is not hard to see that ψ(a, 1) is true iff there exists v ∈ [−1, 1]n such that | f (v)| = |Ψ(v, a)| ≥
1.

7 Construction of a hitting set for VP in PSPACE

Theorem 7.1 (Main theorem). Let c be a constant as in Corollary 5.10). Algorithm 1 returns an ε =
1
4 ·
(

1
CCW ·n·r

)r
·
( 1

32·n·r2

)n robust hitting set of size (nsr)c for V(n, s, r) and can be executed in PSPACE,
given n, s, r in unary encoding.

Proof. We first prove that the algorithm always returns some H and then prove that any H re-
turned by the algorithm is an ε robust hitting set.

The algorithm always outputs some set: Corollary 5.10 guarantees that for m = (nsr)c there
exist v1, . . . , vm ∈ Gm

δ,r so thatH = {v1, . . . , vm} is an 1
4 ·

2−n

20·(CCW ·n·r2)
r robust hitting set for V(n, s, r).

Assume that our while loop reached that set v1, . . . , vm (that is, the algorithm did not output any
set so far).
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Algorithm 1 : Finding a robust hitting set
Input: Parameters n, s, r

1: Let η, δ be as in Corollary 5.10.
2: Set ε = 1

4 · η ·
( 1

32·n·r2

)n
.

3: Let m = (nsr)c (as in Corollary 5.10).
4: Let v1, . . . , vm ∈ Gδ,r so that (v1, . . . , vm) is the lexicographically first string in Gm

δ,r.
5: while Robust set not found yet do
6: Check whether there is a for which ψ(a, 1) (of Lemma 6.3) is true and for all i ∈ [m],

φ(vi, a, ε) (of Lemma 6.2) is false.
7: If no solution a is found then halt and returnH = {v1, . . . , vm}.
8: Otherwise, move to the next v1, . . . , vm ∈ Gδ,r

Let a be any assignment for the auxiliary variables of the universal circuit and let f = Ψ(x, a).
If ψ(a, 1) (of Lemma 6.3) is true then for some u ∈ [−1, 1]n, | f (u)| ≥ 1. As ‖ f ‖∞ ≥ 1, Corollary 2.6
implies that

‖ f ‖2 ≥
1

22n+2 ·V(n,
1

4r2 ) ≥
(

1
32 · n · r2

)n

.

AsH is an η
4 = 1

4 ·
2−n

20·(CCW ·n·r2)
r robust hitting set for V(n, s, r), for some i,

| f (vi)| ≥
1
4
· 2−n

20 · (CCW · n · r2)r · ‖ f ‖2 ≥
1
4
· 2−n

20 · (CCW · n · r2)r ·
(

1
32 · n · r2

)n

= ε .

Thus, φ(vi, a, ε) will return true. In particular, no solution a will be found and so the algorithm will
returnH if it did not halt before reaching this particularH. Finally, note that there are polynomials
f for which ψ(a, 1) is true. Indeed, if f 6≡ 0 then there is some multiple of it that at some point
in [−1, 1]n will get value at least 1. By Theorem 2.2 this multiple of f is also computed by the
universal circuit.

Every output is a robust hitting set: Assume that the algorithm returned some set H =
{u1, . . . , um}. Let f be a nonzero polynomial computed by a homogeneous algebraic circuit of
size s and degree r and assume further that ‖ f (u)‖∞ = 1.12 In particular there is some assignment
a to the auxiliary variables of the universal circuit Ψ so that Ψ(x, a) = f (x). Clearly, for this a,
ψ(a, 1) is true. As H was returned it means that for some i, | f (ui)| ≥ ε. As ‖ f ‖2 ≤ ‖ f ‖∞ = 1 we
get that

| f (ui)| ≥ ε ≥ ε · ‖ f ‖2 .

As both size of the equation scale the same way when we multiply f by a field element, this
equation holds regardless of ‖ f ‖∞. In other words,H is an ε-robust hitting set for all polynomials
that can be computed by size s and degree r homogeneous circuits and hence it is an ε-robust
hitting set for V(n, s, r).

Complexity: The fact that the algorithm can be run in PSPACE follows from the fact that all
the vectors that are considered (and also ε) have polynomial bit length and from Lemma 6.2 and
Lemma 6.3.

12We can restrict our attention to such f ’s as for any constant α the universal circuit also computes α · f . See Theo-
rem 2.2.

22



References
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