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Abstract

We introduce the problem of shadow tomography : given an unknownD-dimensional quantum
mixed state ρ, as well as known two-outcome measurements E1, . . . , EM , estimate the probability
that Ei accepts ρ, to within additive error ε, for each of theM measurements. How many copies
of ρ are needed to achieve this, with high probability? Surprisingly, we give a procedure that
solves the problem by measuring only Õ

(
ε−5 · log4M · logD

)
copies. This means, for example,

that we can learn the behavior of an arbitrary n-qubit state, on all accepting/rejecting circuits
of some fixed polynomial size, by measuring only nO(1) copies of the state. This resolves an open
problem of the author, which arose from his work on private-key quantum money schemes, but
which also has applications to quantum copy-protected software, quantum advice, and quantum
one-way communication. Recently, building on this work, Brandão et al. have given a different
approach to shadow tomography using semidefinite programming, which achieves a savings in
computation time.

1 Introduction

One of the most striking features of quantum mechanics is the destructive nature of measurement.
Given a single copy of a quantum state ρ, which is otherwise unknown to us, no amount of cleverness
will ever let us recover a classical description of ρ, even approximately, by measuring ρ. Of course,
the destructive nature of measurement is what opens up many of the cryptographic possibilities of
quantum information, including quantum key distribution and quantum money.

In general, the task of recovering a description of a D-dimensional quantum mixed state ρ, given
many copies of ρ, is called quantum state tomography. This task is easily seen for information-
theoretic reasons to require Ω̃

(
D2
)
copies of ρ, while a recent breakthrough of O’Donnell and

Wright [25] and Haah et al. [17] showed that O
(
D2
)
copies also suffice.1 Unfortunately, this

number can be astronomically infeasible: recall that, if ρ is a state of n entangled qubits, then
D = 2n. No wonder that the world record, for full2 quantum state tomography, appears to have
been stuck since 2005 at 8-qubit states, for which more than 656, 000 measurement settings were
needed [18].

Besides the practical issue, this state of affairs could be viewed as an epistemic problem for
quantum mechanics itself. If learning a full description of an n-qubit state ρ requires measuring
exp (n) copies of ρ, then should we even say that the full description is “there” at all, in a single
copy of ρ?

∗University of Texas at Austin. Email: aaronson@cs.utexas.edu. Supported by a Vannevar Bush Fellowship from
the US Department of Defense, a Simons Investigator Award, and the Simons “It from Qubit” collaboration.

1Here and throughout this paper, the notations Ω̃ and Õ mean we suppress polylogarithmic factors.
2By “full,” we mean that the procedure could have recovered the state ρ regardless of what it was, rather than

requiring an assumption like, e.g., that ρ has a small matrix product state description.
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Naturally, we could ask the same question about a classical probability distribution D over n-bit
strings. In that case, the exponentiality seems to militate toward the view that no, the vector
of 2n probabilities is not “out there” in the world, but is only “in our heads,” while what’s “out
there” are just the actual n-bit samples from D, along with whatever physical process generated
the samples. Quantum mechanics is different, though, because 2n amplitudes can interfere with
each other: an observable effect that seems manifestly not just in our heads! Interference forces
us to ask the question anew.

Partly inspired by these thoughts, a long line of research has sought to show that, once we
impose some reasonable operational restrictions on what a quantum state will be used for, an n-
qubit state ρ actually contains “much less information than meets the eye”: more like n or nO(1)

classical bits than like 2n bits. Perhaps the “original” result along these lines was Holevo’s Theorem
[20], which says that by sending an n-qubit state, Alice can communicate at most n classical bits
to Bob (or 2n, if Alice and Bob have pre-shared entanglement). Subsequently, the random access
code lower bound of Ambainis, Nayak, Ta-Shma, and Vazirani [11] showed that this is still true,
even if Bob wants to learn just a single one of Alice’s n bits.

Since 2004, a series of results by the author and the others has carried the basic conclusion fur-
ther. Very briefly, these results have included the postselected learning theorem [1]; the Quantum
Occam’s Razor Theorem [4]; the “de-Merlinization” of quantum protocols [3]; a full characterization
of quantum advice [9]; and a recent online learning theorem for quantum states [7]. We’ll apply
tools from several of those results in this paper, and will discuss the results later in the introduc-
tion where it’s relevant. In any case, though, none of the previous results directly addressed the
question: information-theoretically, how much can be learned about an n-qubit state ρ by measuring
only nO(1) copies of ρ?

1.1 Our Result

Motivated by the above question, this paper studies a basic new task that we call shadow tomog-
raphy, and define as follows.

Problem 1 (Shadow Tomography) Given an unknown D-dimensional state ρ, as well as known
2-outcome measurements E1, . . . , EM , each of which accepts ρ with probability Tr (Eiρ) and rejects
ρ with probability 1−Tr (Eiρ), output numbers b1, . . . , bM ∈ [0, 1] such that |bi − Tr (Eiρ)| ≤ ε for all
i, with success probability at least 1−δ. Do this via a measurement of ρ⊗k, where k = k (D,M, ε, δ)
is as small as possible.

The name “shadow tomography” was suggested to us by Steve Flammia, and refers to the fact
that we aim to recover, not the full density matrix of ρ, but only the “shadow” that ρ casts on the
measurements E1, . . . , EM .

Observe, for a start, that shadow tomography is easy to achieve using k = Õ
(
D2/ε2

)
copies of

the state ρ, by just ignoring the Ei’s and doing full tomography on ρ, using the recent protocols
of O’Donnell and Wright [25] or Haah et al. [17]. At a different extreme of parameters, shadow
tomography is also easy using k = Õ

(
M/ε2

)
copies of ρ, by just applying each measurement Ei to

separate copies of ρ.
At a mini-course taught in February 2016 (see [6, Section 8.3.1]), the author discussed shadow

tomography—though without calling it that—and posed the question, what happens if D and
M are both exponentially large? Is it conceivable that, even then, the M expectation values
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Tr (E1ρ) , . . . ,Tr (EMρ) could all be approximated using only, say, poly (logD, logM) copies of the
state ρ? The author didn’t venture to guess an answer; other researchers’ opinions were also
divided.

The main result of this paper is to settle the question affirmatively.

Theorem 2 (Shadow Tomography Theorem) Problem 1 (Shadow Tomography) is solvable us-
ing only

k = Õ

(
log 1/δ

ε5
· log4M · logD

)
copies of the state ρ, where the Õ hides a poly

(
log logM, log logD, log 1

ε

)
factor. The procedure is

fully explicit.

In Section 1.2, we’ll give an overview of the proof of this theorem. In Section 2, we’ll discuss the
motivation, and give applications to quantum money, quantum copy-protected software, quantum
advice, and quantum one-way communication. For now, let’s make some initial comments about
the theorem itself: why it’s nontrivial, why it’s consistent with other results, etc.

The key point is that Theorem 2 lets us learn the behavior of a state of exponential dimension,
with respect to exponentially many different observables, using only polynomially many copies of
the state. To achieve this requires measuring the copies in an extremely careful way, to avoid
destroying them as we proceed.

Naturally, to implement the required measurement on ρ⊗k could, in the worst case, require
a quantum circuit of size polynomial in both M and D. (Note that the input—i.e., the list of
measurement operators Ei—already involves Θ

(
MD2

)
complex numbers.) It’s interesting to study

how much we can improve the computational complexity of shadow tomography, with or without
additional assumptions on the state ρ and measurements Ei. In Sections 1.3 and 7, we’ll say more
about this question, and about recent work by Brandão et al. [13], which builds on our work to
address it. In this paper, though, our main focus is on the information-theoretic aspect, of how
many copies of ρ are needed.

The only interesting lower bound that we know on the number of copies is Ω
(
logM
ε2

)
. We’ll

prove this lower bound in Section 6, using an entropy argument, and observe that it holds even
in the special case where the state and measurements are entirely classical. In that case, we’ll

also observe that O
(
logM
ε2

)
is a matching upper bound. In the general (quantum) case, we don’t

know whether shadow tomography is possible using a number of copies that doesn’t depend on the
Hilbert space dimension D at all.

But stepping back, why isn’t even Theorem 2 immediately ruled out by, for example, Holevo’s
Theorem [20]—which says (roughly) that by measuring a D-dimensional state, we can learn at most
O (logD) independent classical bits? One way to answer this question is to observe that there’s
no claim that the M numbers Tr (Eiρ) can all be varied independently of each other by varying ρ:
indeed, it follows from known results [11, 4] that they can’t be, unless D = exp (Ω (M)).

Another answer is as follows. It’s true that there exist so-called tomographically complete
sets of two-outcome measurements, of size M = O

(
D2
)
. These are sets E1, . . . , EM such that

knowing Tr (Eiρ) exactly, for every i ∈ [M ], suffices to determine ρ itself. So if we ran our
shadow tomography procedure on a tomographically complete set, with small enough ε, then we
could reconstruct ρ, something that we know requires k = Ω̃

(
D2
)
copies of ρ. However, this
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would require knowing the Tr (Eiρ)’s to within additive error ε ≪ 1/D, which remains perfectly
compatible with a shadow tomography procedure that uses poly

(
logM, logD, ε−1

)
copies.

One last clarifying remark is in order. After satisfying themselves that it’s not impossible, some
readers might wonder whether Theorem 2 follows trivially from the so-called “Gentle Measurement
Lemma” [29, 1], which is closely related to the concept of weak measurement in physics. We’ll
explain gentle measurement in more detail in Section 3, but loosely speaking, the idea is that if
the outcome of a measurement E on a state ρ could be predicted almost with certainty, given
knowledge of ρ, then E can be implemented in a way that damages ρ very little, leaving the state
available for future measurements. Gentle measurement will play an important role in the proof
of Theorem 2, as it does in many quantum information results.

However, all that we can easily deduce from gentle measurement is a “promise-gap” version of
Theorem 2. In particular: suppose we’re given real numbers c1, . . . , cM ∈ [0, 1], and are promised
that for each i ∈ [M ], either Tr (Eiρ) ≥ ci or Tr (Eiρ) ≤ ci − ε. In that case, we’ll state and prove,
as Proposition 18, that it’s possible to decide which of these holds, for every i ∈ [M ], with high

probability using only k = O
(
logM
ε2

)
copies of ρ. This is because, given the promise gap, we can

design an “amplified” version of Ei that decides which side of the gap we’re on while damaging ρ⊗k

only very little.
But what if there’s no promise, as there typically isn’t in real-world tomography problems? In

that case, the above approach fails utterly: indeed, every two-outcome measurement E that we
could possibly apply seems dangerous, because if ρ happens to be “just on the knife-edge” between
acceptance and rejection—a possibility that we can never rule out—then applying E to copies of ρ
will severely damage those copies. And while we can afford to lose a few copies of ρ, we have only
poly (logM, logD) copies in total, which is typically far fewer than the M measurement outcomes
that we need to learn.3 This is the central problem that we solve.

1.2 Techniques

At a high level, our shadow tomography procedure involves combining two ideas.
The first idea is postselected learning of quantum states. This tool was introduced by Aaronson

[1] in 2004 to prove the complexity class containment BQP/qpoly ⊆ PostBQP/poly, where PostBQP
means BQP augmented with postselected measurements, a class that equals PP by another result
of Aaronson [2]. Postselected learning is related to boosting in computational learning theory, as
well as to the multiplicative weights update method.

Restated in the language of this paper, the canonical example of postselected learning is as
follows. Suppose Alice knows the complete classical description of a D-dimensional quantum mixed
state ρ, and suppose she wants to describe ρ to Bob over a classical channel—well enough that
Bob can approximate the value of Tr (Eiρ), for each of M two-outcome measurements E1, . . . , EM

known to both players. To do this, Alice could always send over the full classical description of ρ,
requiring Θ̃

(
D2
)
bits. Or she could send the values of the Tr (Eiρ)’s, requiring Θ̃ (M) bits.

3As an alternative, one might hope to prove Theorem 2 by simply performing a series of “weak measurements”
on the state ρ⊗k, which would estimate the real-valued observables Tr (Eiρ), but with Gaussian noise of variance
≫ 1/k deliberately added to the measurement outcomes, in order to prevent ρ⊗k from being damaged too much by
the measurements. However, a calculation reveals that every such measurement could damage the state by 1/kO(1)

in variation distance. Thus, while this strategy would let us safely estimate poly (logM, logD) observables Tr (Eiρ)
in succession, it doesn’t appear to let us estimate all M of them.
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But there’s also something much more efficient that Alice can do, requiring only Θ̃ (logD · logM)
bits. Namely, she can assume that, being totally ignorant at first, Bob’s “initial guess” about ρ
is simply that it’s the maximally mixed state, ρ0 := I

D . She can then repeatedly help Bob to
refine his current guess ρt to a better guess ρt+1, by telling Bob the index i of a measurement on
which his current guess badly fails—that is, on which |Tr (Eiρt)− Tr (Eiρ)| is large—as well as the
approximate value of Tr (Eiρ). To use this information, Bob can let ρt+1 be the state obtained by
starting from ρt (or technically, an amplified version of ρt), measuring the observable Ei, and then
postselecting (that is, conditioning) on getting measurement outcomes that are consistent with ρ.
Of course this postselection might have only a small chance of success, were Bob doing it with the
actual state ρt, but he can instead simulate postselection using a classical description of ρt.

The key question, with this approach, is how many iterations T are needed until Bob converges
to a hypothesis state ρT such that Tr (EiρT ) ≈ Tr (Eiρ) for every i. And the key result is that
only Θ̃ (logD) iterations are needed. Intuitively, this is because the ground truth, ρ, has “weight”
at least 1

D within the maximally mixed state I
D . Repeatedly choosing measurements where the

current hypothesis still does poorly, and then postselecting on doing well on those measurements,
causes all the components of I

D other than ρ to decay at an exponential rate, until a measurement
can no longer be found where the current hypothesis does poorly. That might happen well before
we reach ρ itself, but if not, then ρ itself will be reached after Θ̃ (logD) iterations.

Postselected learning has since found further uses in quantum computing theory [3, 7]. But
there seems to be a fundamental difficulty in applying it to shadow tomography. Namely, in shadow
tomography there’s no “Alice”: that is, no agent who knows a classical description of the state ρ,
and who can thus helpfully point to measurements Ei that are useful for learning ρ’s behavior. So
any shadow tomography procedure will need to find informative measurements by itself, and do so
using only polylogarithmically many copies of ρ.

The second idea, the gentle search procedure, does exactly that. In 2006, as a central ingredient
in the proof of the complexity class containment QMA/qpoly ⊆ PSPACE/poly, Aaronson [3] claimed
a result that he called “Quantum OR Bound.” This result can be stated as follows: given an
unknown state ρ and known two-outcome measurements E1, . . . , EM , there is a procedure, using

k = O
(
logM
ε2

)
copies of ρ, to decide whether

(i) some Ei accepts ρ with probability at least c or

(ii) no Ei accepts ρ with probability greater than c− ε,

with high probability and assuming one of the cases holds. Note that the number of copies is not
only logarithmic in M , but independent of the dimension of ρ.

Aaronson’s proof of the Quantum OR Bound was based on simply applying amplified versions
of the Ei’s to ρ⊗k in a random order, and checking whether any of the measurements accepted.
Unfortunately, Aaronson’s proof had an error, which was discovered in 2016 by Harrow, Lin, and
Montanaro [19]. Happily, Harrow et al. also fixed the error, thereby recovering all the consequences
that Aaronson had claimed, as well as new consequences. To do so, Harrow et al. designed
two new measurement procedures, both of which solve the problem: one based on the “in-place
amplification” of Marriott and Watrous [21], and another that applies amplified Ei’s conditional
on a control qubit being |1⟩, and that checks not only whether any of the measurements accept
but also whether the control qubit has decohered. It remains open whether Aaronson’s original
procedure is also sound.
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For shadow tomography, however, there’s a further problem. Namely, at each iteration of the
postselected learning procedure, we need not only to decide whether there exists an i such that
|Tr (Eiρt)− Tr (Eiρ)| is large, but also to find such an i if it exists. Fortunately, we can handle this
using the “oldest trick in the book” for reducing search problems to decision problems: namely,
binary search over the list E1, . . . , EM . Doing this correctly requires carefully managing the error
budget—as we proceed through binary search, the gap between Tr (Eiρt) and Tr (Eiρ) that we’re
confident we’ve found degrades from ε to ε−α to ε−2α, etc.—and that’s what produces the factor
of log4M in the final bound.

1.3 Comparison with Related Work

While we’ve already discussed a good deal of related work, here we’ll compare Theorem 2 directly
against some previous results, and explain why those results fall short of what we need. We’ll
then discuss the recent work of Brandão et al. [13], which builds on this paper to address the
computational cost of shadow tomography.

One important inspiration for what we’re trying to do, and something we haven’t yet discussed, is
the “Quantum Occam’s Razor Theorem,” which Aaronson [4] proved in 2006. This result essentially
says that quantum states are “learnable” in the PAC (Probably Approximately Correct) sense [26],
with respect to any probability distribution over two-outcome measurements, using an amount of
sample data that increases only linearly with the number of qubits—rather than exponentially, as
with traditional quantum state tomography. More formally:

Theorem 3 (Quantum Occam’s Razor [4]) Let ρ be a D-dimensional mixed state, and let µ
be any probability distribution or measure over two-outcome measurements. Then given samples
E1, . . . , EM drawn independently from µ, with probability at least 1 − δ, the samples have the fol-
lowing generalization property: any hypothesis state σ such that |Tr (Eiσ)− Tr (Eiρ)| ≤ γε

7 for all
i ∈ [M ], will also satisfy

Pr
E∼µ

[|Tr (Eσ)− Tr (Eρ)| ≤ ε] ≥ 1− γ,

provided we took

M ≥ C

γ2ε2

(
logD

γ2ε2
log2

1

γε
+ log

1

δ

)
for some large enough constant C.

We could try applying Theorem 3 to the shadow tomography problem. If we do, however, we

get only that Õ
(
logD
γ4ε4

)
copies of ρ are enough to let us estimate Tr (Eiρ) to within error ±ε, on at

least a 1− γ fraction of the measurements E1, . . . , EM—rather than on all the measurements.
If we want a result that works for all Ei’s, then we can instead switch attention to Aaronson’s

postselected learning theorem [1], the one that he used to prove the containment BQP/qpoly ⊆
PostBQP/poly. For completeness, let us restate that theorem in the language of this paper.

Theorem 4 (implicit in [1]; see also [7]) Let ρ be an unknown D-dimensional mixed state, and
let E1, . . . , EM be known two-outcome measurements. Then there exists a classical string, of length

Õ
(
logD·logM

ε3

)
, from which Tr (Eiρ) can be recovered to within additive error ±ε for every i ∈ [M ].
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As we mentioned in Section 1.2, Theorem 4 falls short of shadow tomography simply because
it’s “nondeterministic”: it says that a short classical string exists from which one could recover
the approximate values of every Tr (Eiρ), but says nothing about how to find such a string by
measuring few copies of ρ.

There’s a different way to think about Theorem 4. Along the way to proving the containment
BQP/qpoly ⊆ QMA/poly, Aaronson and Drucker [9] observed the following, by combining a result
from classical learning theory with a result from [4] about the “fat-shattering dimension” of quantum
states as a hypothesis class.

Theorem 5 (Aaronson and Drucker [9]) Let E1, . . . , EM be two-outcome measurements on D-
dimensional Hilbert space. Then there exists a set S of real functions f : [M ] → [0, 1], of cardinality(
M
ε

)O(ε−2 logD)
, such that for every D-dimensional mixed state ρ, there exists an f ∈ S such that

|f (i)− Tr (Eiρ)| ≤ ε for all i ∈ [M ].

Up to a small difference in the parameters, Theorem 5 is equivalent to Theorem 4: either can
easily be deduced from the other. The main difference is just that Theorem 4 came with an explicit
procedure, based on postselection, for recovering the Tr (Eiρ)’s from the classical string, whereas
Theorem 5 was much less explicit.

It might seem that Theorem 5 would give rise to a shadow tomography procedure, since we’d

just need to implement a measurement, say on O
(
log|S|
ε2

)
copies of ρ, that “pulled apart” the

different elements of the set S (which is called an ε-cover). Unfortunately, we haven’t been able to
turn this intuition into an algorithm. For while one can project a quantum state onto any set of
vectors that’s sufficiently close to orthogonal—as, for example, in the algorithm of Ettinger, Høyer,
and Knill [14] for the hidden subgroup problem—in shadow tomography, there’s no guarantee that
the state ρ⊗k being measured is close to one of the measurement outcomes, and therefore that it
won’t be irreparably damaged at an early stage in the measurement process.

Extremely recently, building on the work reported here, Brandão et al. [13] have undertaken an
initial investigation of the computational complexity of shadow tomography. While we made no
attempt to optimize the computational cost of our procedure, a loose estimate is that ours requires

performing Õ
(
M logD

ε5

)
measurements on copies of ρ. Furthermore, each measurement itself could,

in the worst case, require Θ
(
D2
)
gates to implement. Our procedure also involves storing and

updating a classical description of an amplified hypothesis state, which takes DO(ε−2 log logD) time
and space.

By combining our ideas with recent quantum algorithms for semidefinite programming, Brandão
et al. [13] have shown how to perform shadow tomography using not only poly (logM, logD) copies

of ρ, but also Õ
(√

ML
)
+DO(1) quantum gates, where L = O

(
D2
)
is the maximum length of a

circuit to apply a single measurement Ei. This of course improves over our Õ (ML)+DO(log logD).
If we make some additional assumptions about the measurement matrices Ei—namely, that

they have rank at most polylogD; and that for every i ∈ [M ], one can coherently prepare the
mixed state Ei

Tr(Ei)
, and also compute Tr (Ei), in time at most polylogD—then Brandão et al. [13]

further improve the running time of their algorithm, to Õ
(√

M polylogD
)
.

Very roughly, Brandão et al. [13] keep much of the structure of our algorithm, except they
replace our linear search for informative measurements Ei by Grover-style approximate counting—
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hence the improvement from Õ (M) to Õ
(√

M
)
. They also replace our postselected learning by

the preparation of a Gibbs state, using Jaynes’ principle from statistical mechanics. By exploiting
recent progress on quantum algorithms for SDPs, Brandão et al. are able to perform the needed
manipulations on D-dimensional hypothesis states without ever writing the states explicitly in a
classical memory as D ×D matrices, like we do.

In Section 7, we’ll discuss the prospects for improving the gate complexity of shadow tomography
further, and some possible complexity-theoretic barriers to doing so.

There are many other results in the literature that can be seen, in one way or another, as trying
to get around the destructive nature of measurement, or the exponential number of copies needed
for state tomography. We won’t even attempt a survey here, but briefly, such results often put
some additional restriction on the state ρ to be learned: for example, that it’s low rank [16], or that
it has a succinct classical description of some kind (for example, that it’s a stabilizer state [23]), or
that we have an oracle to recognize the state [15]. Of course, shadow tomography requires none
of these assumptions.

2 Motivation

Perhaps the most striking way to state Theorem 2 is as follows.

Corollary 6 Let |ψ⟩ be an unknown n-qubit state, and let p be any fixed polynomial. Then it’s
possible to estimate Pr [C accepts |ψ⟩] to within additive error ±ε, for every quantum circuit C
with at most p (n) gates simultaneously, and with 1 − o (1) success probability, by a measurement

on (n/ε)O(1) copies of |ψ⟩.

Here, we’re simply combining Theorem 2 with the observation that there are at most M =
(n+ p (n))O(p(n)) different quantum circuits of size at most p (n), assuming a fixed finite gate set
without loss of generality.

We’ve already given some philosophical motivation for this: at bottom we’re trying to un-
derstand, to what extent does the destructive nature of quantum measurement force us into an
epistemically unsatisfying situation, where we need exp (n) copies of an n-qubit state |ψ⟩ just to
learn |ψ⟩’s basic properties? Corollary 6 tells us that, as long as the “basic properties” are limited
to |ψ⟩’s accept/reject behaviors on quantum circuits of a fixed polynomial size (and to whatever
can be deduced from those behaviors), we’re not in the epistemically unsatisfying situation that
might have been feared.

Besides this conceptual point, we hope that Theorem 2 will find experimental applications. In
the quest for such applications, it would of course help to tighten the parameters of Theorem 2

(e.g., the exponents in log4 M
ε5

); and to find shadow tomography procedures that are less expensive
both in computational complexity and in the required measurement apparatus. We’ll say more
about these issues in Section 7.

In the rest of this section, we’ll point out implications of Theorem 2 for several areas of quantum
computing theory: quantum money, quantum copy-protected software, and quantum advice and
one-way communication. The first of these actually provided the original impetus for this work: as
we’ll explain, Theorem 2 immediately yields a proof of a basic result called the “tradeoff theorem”
for private-key quantum money schemes [6, Section 8.3]. But even where the implications amount
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to little more than translations of the theorem to other contexts, they illustrate the wide reach of
shadow tomography as a concept.

Quantum money. The idea of quantum money—i.e., quantum states that can be traded and
verified, but are physically impossible to clone—is one of the oldest ideas in quantum information,
having been proposed by Wiesner [27] around 1970. A crucial distinction here is between so-called
public-key and private-key quantum money schemes. See Aaronson and Christiano [8] for formal
definitions of these concepts, but briefly: in a public-key money scheme, anyone can efficiently
verify a bill |$⟩ as genuine, whereas in a private-key scheme, verifying a bill requires taking it back
to the bank. It’s easy to see that, if public-key quantum money is possible at all, then it requires
computational assumptions (e.g., that any would-be counterfeiter is limited to polynomial time).
While Aaronson and Christiano [8] constructed an oracle relative to which public-key quantum
money is possible, it’s still unclear whether it’s possible in the unrelativized world.

By contrast, in Wiesner’s original paper on the subject [27], he proposed a private-key quantum
money scheme that was unconditionally secure (though a security proof would only be given in
2012, by Molina, Vidick, and Watrous [22]). The central defect of Wiesner’s scheme was that it
required the bank to maintain a gigantic database, storing a different list of secret measurement
bases for every bill in circulation. In 1982, Bennett et al. [12] fixed this defect of Wiesner’s scheme,
but only by using a pseudorandom function to generate the measurement bases—so that the scheme
again required a computational assumption.

In 2009, Aaronson [5] raised the question of whether there’s an inherent tradeoff here: that is,
does every private-key quantum money scheme require either a huge database, or else a computa-
tional assumption?4 He then answered this question in the affirmative (paper still in preparation,
but see [6, Section 8.3]). It was while proving this tradeoff theorem that the author was led to
formulate the shadow tomography problem.

To see the connection, let’s observe an immediate corollary of Theorem 2.

Corollary 7 (of Theorem 2) Consider any private-key quantum money scheme with a single
secret key k ∈ {0, 1}n held by the bank; m-qubit bills |$⟩; and a verification procedure V (k, |$⟩)
that the bank applies. Then given Õ

(
mn4

)
legitimate bills |$⟩, as well as exp (m,n) computation

time, a counterfeiter can estimate Pr [V (k, |$⟩) accepts] to within additive error o (1), for every
k ∈ {0, 1}n, with success probability 1− o (1).

We now observe that the tradeoff theorem follows immediately from Corollary 7:

Theorem 8 (Tradeoff Theorem for Quantum Money) Given any private-key quantum money
scheme, with m-qubit bills and an n-bit secret key held by the bank, a counterfeiter can produce ad-
ditional bills, which pass verification with 1 − o (1) probability, given Õ

(
mn4

)
legitimate bills and

exp (m,n) computation time. No queries to the bank are needed to produce these bills.

For given exponential time, the counterfeiter just needs to do a brute-force search (for example,
using semidefinite programming) for a state ρ such that

|Pr [V (k, ρ) accepts]− Pr [V (k, |$⟩) accepts]| = o (1)

4Actually, he claimed to have an unwritten proof of this, but working out the details took longer than expected,
and indeed ultimately relied on the 2016 work of Harrow, Lin, and Montanaro [19].
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for every key k ∈ {0, 1}n. Such a ρ surely exists, since |$⟩ itself is one, and given exponential time,
the counterfeiter can prepare ρ as often as it likes. And by assumption, this ρ must be a state
that the bank accepts with high probability given the “true” key k∗—even though the counterfeiter
never actually learns k∗ itself.

In [6, Section 8.3], the author took a somewhat different route to proving the tradeoff theorem,
simply because he didn’t yet possess the shadow tomography theorem. Specifically, he used what
in this paper we’ll call the “gentle search procedure,” and will prove as Lemma 15 along the way to
proving Theorem 2. He then combined Lemma 15 with an iterative procedure, which repeatedly
cut down the space of “possible keys” k by a constant factor, until averaging over the remaining
keys led to a state that the bank accepted with high probability. However, this approach had
the drawback that preparing the counterfeit bills required O (n) queries to the bank. Shadow
tomography removes that drawback.

Quantum copy-protected software. In 2009, Aaronson [5] introduced the notion of quan-
tum copy-protected software: roughly speaking, an nO(1)-qubit quantum state ρf that’s given to
a user, and that lets the user efficiently evaluate a Boolean function f : {0, 1}n → {0, 1}, on any
input x ∈ {0, 1}n of the user’s choice, but that can’t be used to prepare more states with which
f can be efficiently evaluated. The analogous classical problem is clearly impossible. But the
destructive nature of quantum measurements (or equivalently, the unclonability of quantum states)
raises the prospect that, at least with suitable cryptographic assumptions, it could be possible
quantumly. And indeed, Aaronson [5] sketched a construction of a quantum oracle U relative
to which quantum copy-protection is “generically” possible, meaning that one really can have a
state |ψf ⟩ that acts like an unclonable black box for any Boolean function f of one’s choice. It
remains an outstanding problem to construct explicit schemes for quantum copy-protection, which
are secure under plausible cryptographic assumptions.

But now suppose that we’re interested in quantum programs that simply accept various inputs
x ∈ {0, 1}n with specified probabilities p (x) ∈ [0, 1]: for example, programs to evaluate partial
Boolean functions, or to simulate quantum processes. In that case, we might hope for a copy-
protection scheme that was unconditionally secure, even against software pirates with unlimited
computation time. Furthermore, such a scheme would have the property—possibly desirable
to the software vendor!—that the programs would periodically get “used up” even by legitimate
use, and need to be replenished. For even if we had nO(1) copies of the program, and used the
Gentle Measurement Lemma to estimate the probabilities p (x), we still couldn’t always avoid
measurements on the “knife edge” between one output behavior and another, which would destroy
the copies.

Once again, though, Theorem 2 has the consequence that this gambit fails, so that if quantum
copy-protection is possible at all, then it indeed requires computational assumptions.

Corollary 9 (of Theorem 2) Let ρ be any nO(1)-qubit quantum program, which accepts each in-

put x ∈ {0, 1}n with probability p (x). Then given nO(1) copies of ρ and 2n
O(1)

computation time,
with 1−o (1) success probability we can “pirate” ρ: that is, produce multiple quantum programs, all
of which accept input x ∈ {0, 1}n with probability p (x) ± o (1), and which have the same running
time as ρ itself.

Here we’re using the fact that, once we know the approximate acceptance probabilities of ρ on
every input x ∈ {0, 1}n, in 2n

O(1)
time we can simply use semidefinite programming to brute-force
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search for an nO(1)-qubit state σ that approximates ρ’s acceptance probabilities on every x. Indeed,
if we further assume that ρ was prepared by a polynomial-size quantum circuit, then in 2n

O(1)
time

we can brute-force search for such a circuit as well.

Quantum advice and one-way communication. In 2003, Nishimura and Yamakami
[24] defined the complexity class BQP/qpoly, which consists (informally) of all languages that are
decidable in bounded-error quantum polynomial time, given a polynomial-size “quantum advice
state” |ψn⟩ that depends only on the input length n but could otherwise be arbitrary. This is
a natural quantum generalization of the classical notion of Karp-Lipton advice, and of the class
P/poly. Many results have since been proven about BQP/qpoly and related classes [1, 3, 9, 10];
and as we discussed in Section 1.2, some of the techniques used to prove those results will also play
major roles in this work.

But one basic question remained: given a BQP/qpoly algorithm, suppose we’re given nO(1)

copies of the quantum advice state |ψn⟩. Can we safely reuse those copies, again and again, for
as many inputs x ∈ {0, 1}n as we like? For deciding a language L, it’s not hard to show that the
answer is yes, because of the Gentle Measurement Lemma (Lemma 11 in Section 3). But if we
consider promise problems (i.e., problems of deciding which of two disjoint sets the input x belongs
to, promised that it belongs to one of them), then a new difficulty arises. Namely, what if we use
our quantum advice on an input that violates the promise—a possibility that we can’t generally
avoid if we don’t know the promise? Every such use runs the risk of destroying an advice state.

An immediate corollary of Theorem 2 is that we can handle this issue, albeit with a blowup in
a computation time.

Corollary 10 (of Theorem 2) Let Π = (ΠYES,ΠNO) be a promise problem in PromiseBQP/qpoly.
Let A be a quantum algorithm for Π that uses advice states {|ψn⟩}n. Then there exists a quan-

tum algorithm, running in 2n
O(1)

time, that uses |ψn⟩⊗nO(1)

as advice, and that approximates
Pr [A (x, |ψn⟩) accepts] to within ±o (1), for all 2n inputs x ∈ {0, 1}n, with success probability
1 − o (1). So in particular, this algorithm “generates the complete truth table of Π on inputs of
size n,” and does so even without being told which inputs satisfy the promise x ∈ ΠYES ∪ΠNO.

We can also state Corollary 10 in terms of quantum one-way communication protocols. In that
case, the corollary says the following. Suppose Alice holds an input x ∈ {0, 1}n and Bob holds an
input y ∈ {0, 1}m, and they want to compute a partial Boolean function f : S → {0, 1}, for some
S ⊂ {0, 1}n × {0, 1}m. Suppose also that, if Alice sends a q-qubit quantum state |ψx⟩ to Bob,
then Bob can compute f (x, y) with bounded probability of error, for any (x, y) ∈ S. Then given
Õ
(
qm4

)
copies of |ψx⟩, Bob can compute f (x, y) for every y such that (x, y) ∈ S simultaneously—

again, even though Bob doesn’t know which y’s satisfy (x, y) ∈ S (and therefore, which ones might
be “dangerous” to measure).

3 Preliminaries

In this section, we collect the (very basic) concepts and results of quantum information that we’ll
need for this paper. In principle, no quantum information background is needed to read the paper
beyond this.

A mixed state is the most general kind of state in quantum mechanics, encompassing both
superposition and ordinary probabilistic uncertainty. A D-dimensional mixed state ρ is described
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by a D × D Hermitian positive semidefinite matrix with Tr (ρ) = 1. If ρ has rank 1, then we
call it a pure state. At the other extreme, if ρ is diagonal, then it simply describes a classical
probability distribution over D outcomes, with Pr [i] = ρii. The state I

D , corresponding to the
uniform distribution over D outcomes, is called the maximally mixed state.

Given two mixed states ρ and σ, their trace distance is defined as

∥ρ− σ∥tr :=
1

2

∑
i

|λi| ,

where the λi’s are the eigenvalues of ρ−σ. This is a distance metric, which generalizes the variation
distance between probability distributions, and which equals the maximum bias with which ρ can
be distinguished from σ by a single-shot measurement.

Given a D-dimensional mixed state ρ, one thing we can do is to apply a two-outcome measure-
ment, and see whether it accepts or rejects ρ. Such a measurement—technically called a “Positive
Operator Valued Measure” or “POVM”—can always be described by a D ×D Hermitian matrix
E with all eigenvalues in [0, 1] (so in particular, E is positive semidefinite). The measurement E
accepts ρ with probability Tr (Eρ), and rejects ρ with probability 1− Tr (Eρ).

The POVM formalism doesn’t tell us what happens to ρ after the measurement, and indeed
the post-measurement state could in general depend on how E is implemented. However, we have
the following extremely useful fact, which was called the “Gentle Measurement Lemma” by Winter
[29].

Lemma 11 (Gentle Measurement Lemma [29]) Let ρ be a mixed state, and let E be a two-
outcome measurement such that Tr (Eρ) ≥ 1−ε. Then after we apply E to ρ, assuming E accepts,
we can recover a post-measurement state ρ̃ such that ∥ρ̃− ρ∥tr ≤ 2

√
ε.

As a historical note, Aaronson [1, 6] proved a variant of Lemma 11, which he called the “Al-
most As Good As New Lemma”; the main difference is that Aaronson’s version doesn’t involve
conditioning on the case that E accepts.

We’ll also need a stronger fact, which goes back at least to Ambainis et al. [11], and which
Aaronson [3, 6] called the “Quantum Union Bound.”

Lemma 12 (Quantum Union Bound [3, 6]) Let ρ be a mixed state, and let E1, . . . , EM be
two-outcome measurements such that Tr (Eiρ) ≥ 1 − ε for all i ∈ [M ]. Then if E1, . . . , EM are
applied to ρ in succession, the probability that they all accept is at least 1− 2M

√
ε, and conditioned

on all of them accepting, we can recover a post-measurement state ρ̃ such that ∥ρ̃− ρ∥tr ≤ 2M
√
ε.

We remark that Wilde [28] has proven a tighter version of Lemma 12, involving the bound

∥ρ̃− ρ∥tr = O
(√

Mε
)
.

However, the improvement from M
√
ε to

√
Mε won’t affect the bounds that we’re able to prove in

this paper.
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4 Gentle Search Procedure

We now develop a procedure that takes as input descriptions of two-outcome measurements E1, . . . , EM ,
as well as polylogM copies of an unknown state ρ, and that searches for a measurement Ei that
accepts ρ with high probability. In Section 5, we’ll then use this procedure as a key subroutine for
solving the shadow tomography problem.

Our starting point is a recent result of Harrow, Lin, and Montanaro [19] (their Corollary 11),
which we state below for convenience.

Theorem 13 (Harrow, Lin, and Montanaro [19]) Let ρ be an unknown mixed state, and let
E1, . . . , EM be known two-outcome measurements. Suppose we’re promised that either

(i) there exists an i ∈ [M ] such that Tr (Eiρ) ≥ 1− ϵ, or else

(ii) Ei [Tr (Eiρ)] ≤ ∆.

There is a test that uses one copy of ρ, and that accepts with probability at least (1− ϵ)2 /7 in
case (i) and with probability at most 4∆M in case (ii).

Aaronson [3] had previously claimed a version of Theorem 13, which he called the Quantum
OR Bound. However, Aaronson’s proof had a mistake, which Harrow et al. [19] both identified
and fixed.

Briefly, Harrow et al. [19] give two ways to prove Theorem 13. The first way is by adapting the
in-place amplification procedure of Marriott and Watrous [21]. The second way is by preparing a

control qubit in the state |0⟩+|1⟩√
2

, and then repeatedly applying Ei’s to ρ conditional on the control

qubit being |1⟩, while also periodically measuring the control qubit in the
{

|0⟩+|1⟩√
2
, |0⟩−|1⟩√

2

}
basis to

see whether applying the Ei’s has decohered the control qubit. Harrow et al. show that, in case
(i), either some Ei is likely to accept or else the control qubit is likely to be decohered. In case
(ii), on the other hand, one can upper-bound the probability that either of these events happen
using the Quantum Union Bound (Lemma 12).

Both of Harrow et al.’s procedures perform measurements on ρ that involve an ancilla register,
and that are somewhat more complicated than the Ei’s themselves. By contrast, the original
procedure of Aaronson [3] just applied the Ei’s in a random order. It remains an open question
whether the simpler procedure is sound.

In any case, by combining Theorem 13 with a small amount of amplification, we can obtain a
variant of Theorem 13 that’s more directly useful for us, and which we’ll call “the” Quantum OR
Bound in this paper.

Lemma 14 (Quantum OR Bound) Let ρ be an unknown mixed state, and let E1, . . . , EM be
known two-outcome measurements. Suppose we’re promised that either

(i) there exists an i ∈ [M ] such that Tr (Eiρ) ≥ c, or else

(ii) Tr (Eiρ) ≤ c− ε for all i ∈ [M ].

We can distinguish these cases, with success probability at least 1 − δ, given ρ⊗k where k =

O
(
log 1/δ

ε2
logM

)
.
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Proof. This essentially follows by combining Theorem 13 with the Chernoff bound. Assume
without loss of generality that M ≥ 50, and let ℓ = C logM

ε2
for some sufficiently large constant C.

Also, let E∗
i be an amplified measurement that applies Ei to each of ℓ registers, and that accepts

if and only if the number of accepting invocations is at least
(
c− ε

2

)
ℓ. Then in case (i) we have

Tr
(
E∗

i ρ
⊗ℓ
)
≥ 1− 1

M2

for some i ∈ [M ], while in case (ii) we have

Tr
(
E∗

i ρ
⊗ℓ
)
≤ 1

M2

for all i. So if we apply the procedure of Theorem 13 to ρ⊗ℓ, then it accepts with probability at
least (say) 1

8 in case (i), or with probability at most 4
M in case (ii).

We now just need O (log 1/δ) rounds of further amplification—involving a fresh copy of ρ⊗ℓ in
each round—to push these acceptance probabilities to 1− δ or δ respectively.

Note that the procedure of Lemma 14 requires performing collective measurements on O
(
logM
ε2

)
copies of ρ. On the positive side, though, the number of copies has no dependence whatsoever on
the Hilbert space dimension D.

Building on Lemma 14, we next want to give a search procedure: that is, a procedure that
actually finds a measurement Ei in our list that accepts ρ with high probability (if there is one),
rather than merely telling us whether such an Ei exists. To do this, we’ll use the classic trick in
computer science for reducing search problems to decision problems: namely, binary search over
the list E1, . . . , EM .

The subtlety is that, as we run binary search, our lower bound on the acceptance probability
of the measurement Ei that we’re isolating degrades at each level of the recursion, while the error
probability builds up. Also, we need fresh copies of ρ at each level of the recursion. Handling

these issues will yield a procedure that uses roughly log4 M
ε2

copies of ρ, which we suspect is not
tight.

Lemma 15 (Gentle Search) Let ρ be an unknown mixed state, and let E1, . . . , EM be known
two-outcome measurements. Suppose there exists an i ∈ [M ] such that Tr (Eiρ) ≥ c. Then we can
find a j ∈ [M ] such that Tr (Ejρ) ≥ c− ε, with success probability at least 1− δ, given ρ⊗k where

k = O

(
log4M

ε2

(
log logM + log

1

δ

))
.

Proof. Assume without loss of generality that M is a power of 2. We will apply Lemma 14
recursively, using binary search to zero in on a j such that Tr (Ejρ) ≥ c− ε.

Divide the measurements into two sets, S1 =
{
E1, . . . , EM/2

}
and S2 =

{
EM/2+1, . . . , EM

}
.

Also, let α := ε
log2 M

, and let β := δ
log2 M

. Then as a first step, we call the subroutine from Lemma
14 to check, with success probability at least 1− β, whether

(i) there exists an E ∈ S1 such that Tr (Eρ) ≥ c or

(ii) Tr (Eρ) ≤ c− α for all E ∈ S1,
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promised that one of these is the case.
Note that the promise could be violated—but this simply means that, if the subroutine returns

(i), then we can assume only that there exists an E ∈ S1 such that Tr (Eρ) ≥ c− α.
Thus, if the subroutine returns (i), then we recurse on S1. That is, we divide S1 into two sets

both of size M
4 , and then use Lemma 14 to find (again with success probability at least 1 − β) a

set that contains an E such that Tr (Eρ) ≥ c− 2α, assuming now that one of the two sets contains
an E such that Tr (Eρ) ≥ c− α. If the subroutine returns (ii), then we do the same but with S2.

We continue recursing in this way, identifying a set of size M
8 that contains an E such that

Tr (Eρ) ≥ c− 3α, then a set of size M
16 that contains an E such that Tr (Eρ) ≥ c− 4α, and so on,

until we reach a singleton set. This gives us our index j such that

Tr (Ejρ) ≥ c− α log2M

= c− ε.

By the union bound, together with the promise that there exists an i ∈ [M ] such that Tr (Eiρ) ≥
c, the whole procedure succeeds with probability at least 1− β log2M = 1− δ. Meanwhile, within
each of the log2M iterations of this procedure, Lemma 14 tells us that the number of copies of ρ
that we need is

O

(
log 1/β

α2
logM

)
= O

(
log logM

δ

(ε/ logM)2
logM

)

= O

(
log3M

ε2

(
log logM + log

1

δ

))
.

Therefore the total number of copies needed is

O

(
log4M

ε2

(
log logM + log

1

δ

))
.

5 Main Result

We’re now ready to prove Theorem 2, which we restate for convenience. Given an unknown D-
dimensional mixed state ρ, and known two-outcome measurements E1, . . . , EM , we’ll show how to
approximate Tr (Eiρ) to within additive error ±ε, with success probability at least 1− δ, given ρ⊗k

where

k = Õ

(
log 1/δ

ε5
log4M · logD

)
.

Proof of Theorem 2. At a high level, we’ll use an iterative procedure, which at the tth iteration,
maintains a current hypothesis ρt about ρ. Since we’re not concerned here with computation time,
we can assume that the entire D×D density matrix of ρt is stored to suitable precision in a classical
memory, so that we can perform updates (in particular, involving postselection) that wouldn’t be
possible were ρt an actual physical state.

Our initial hypothesis is that ρ is just the maximally mixed state, ρ0 = I
D . Of course this

hypothesis is unlikely to give adequate predictions—but by using Lemma 15 as a subroutine, we’ll
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repeatedly refine the current hypothesis, ρt, to a “better” hypothesis ρt+1. The procedure will
terminate when we reach a hypothesis ρT such that

|Tr (EiρT )− Tr (Eiρ)| ≤ ε

for all i ∈ [M ]. For at that point, for each i, we can just output Tr (EiρT ) as our additive estimate
for Tr (Eiρ).

At each iteration t, we’ll use “fresh” copies of ρ, in the course of refining ρt to ρt+1. Thus, we’ll
need to upper-bound both the total number T of iterations until termination, and the number of
copies of ρ used in a given iteration.

A key technical ingredient will be amplification. Let

q :=
C

ε2

(
log logD + log

1

ε

)
for some suitable constant C, and let ρ∗ := ρ⊗q. Then, strictly speaking, our procedure will
maintain a hypothesis ρ∗t about ρ∗: the initial hypothesis is the maximally mixed state ρ∗0 = I

Dq ;
then we’ll refine the hypothesis to ρ∗1, ρ

∗
2, and so on. At any point, we let ρt be the D-dimensional

state obtained by choosing a register of ρ∗t uniformly at random, and tracing out the remaining
q − 1 registers.

Given the hypothesis ρt, for each i ∈ [M ], let E∗
i,t,+ be a two-outcome measurement on ρ⊗q

that applies Ei to each of the q registers, and that accepts if and only if the number of accept-
ing invocations is at least

(
Tr (Eiρt) +

3ε
4

)
q. Likewise, let the measurement E∗

i,t,− apply Ei to
each of the q registers, and accept if and only if the number of accepting invocations is at most(
Tr (Eiρt)− 3ε

4

)
q.

Suppose Tr (Eiρ) ≥ Tr (Eiρt)+ε. Then by a Chernoff bound, we certainly have Tr
(
E∗

i,t,+ρ
∗
)
≥

5
6 , provided the constant C was sufficiently large: indeed, for this we need only that q grows at

least like C
ε2
. Likewise, if Tr (Eiρ) ≤ Tr (Eiρt)− ε, then Tr

(
E∗

i,t,−ρ
∗
)
≥ 5

6 .

On the other hand, suppose |Tr (Eiρ)− Tr (Eiρt)| ≤ ε
2 . Then again by a Chernoff bound, we

have Tr
(
E∗

i,t,+ρ
∗
)
≤ 1

3 and Tr
(
E∗

i,t,−ρ
∗
)
≤ 1

3 , provided the constant C is sufficiently large.

We can now give the procedure to update the hypothesis ρ∗t to ρ∗t+1. Let β := δε4

log2 D
. Then at

each iteration t ≥ 0, we do the following:

• Use Lemma 15 to search for an index j ∈ [M ] such that Tr
(
E∗

j,t,+ρ
∗
)
≥ 2

3 , promised that there

exists such a j with Tr
(
E∗

j,t,+ρ
∗
)
≥ 5

6 (which we call the + case); or alternatively, for a j ∈ [M ]

such that Tr
(
E∗

j,t,−ρ
∗
)
≥ 2

3 , promised that there exists a j such that Tr
(
E∗

j,t,−ρ
∗
)
≥ 5

6 (which

we call the − case). Set the parameters so that, assuming that one or both promises hold,
the search succeeds with probability at least 1− β.

• If no suitable j is found, then halt and return ρt as the hypothesis state: in other words,
return Tr (Eiρt) as the estimate for Tr (Eiρ), for all i ∈ [M ].

• Otherwise, if a suitable j is found, then let Ft be a measurement that applies Ej to each of
the q registers, and that accepts if and only if the number of accepting invocations is at least(
Tr (Ejρt) +

ε
4

)
q (in the + case), or at most

(
Tr (Ejρt)− ε

4

)
q (in the − case).
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• Let ρ∗t+1 be the state obtained by starting from ρ∗t , and then postselecting on Ft accepting.

Our central task is to prove an upper bound, T , on the number of iterations of the above
procedure until it terminates with states ρ∗T and ρT such that |Tr (EiρT )− Tr (Eiρ)| ≤ ε for all
i ∈ [M ].

Assume, in what follows, that every invocation of Lemma 15 succeeds in finding a j such that

Tr
(
E∗

j,t,+ρ
∗
)
≥ 2

3 or Tr
(
E∗

j,t,−ρ
∗
)
≥ 2

3 . Later we will lower-bound the probability that this indeed

happens.
To upper-bound T , let

pt = Tr (F0ρ
∗
0) · · · · · Tr

(
Ft−1ρ

∗
t−1

)
be the probability that the first t postselection steps all succeed.

Then, on the one hand, we claim that pt+1 ≤ (1− Ω(ε)) pt for all t. To see this, note that
when we run Ft on the state ρ∗t , the expected number of invocations of Ej that accept is exactly
Tr (Ejρt) q. We can’t treat these invocations as independent events, because the state ρ∗t could
be correlated or entangled across its q registers in some unknown way. Regardless of correlations,
though, by Markov’s inequality, in the + case we have

pt+1

pt
= Tr (Ftρ

∗
t ) ≤

Tr (Ejρt) q(
Tr (Ejρt) +

ε
4

)
q
= 1− Ω(ε) .

Similarly, in the − case we have

pt+1

pt
= Tr (Ftρ

∗
t ) ≤

(1− Tr (Ejρt)) q(
1− Tr (Ejρt) +

ε
4

)
q
= 1− Ω(ε) .

Thus pt ≤ (1− ε)Ω(t).

On the other hand, we also claim that pt ≥ 0.9
Dq for all t = o

(
log2 D
ε4

)
. To see this: suppose

that at iteration t, we had used ρ∗ rather than ρ∗t as the hypothesis state—except still choosing the
index j ∈ [M ] as if the hypothesis was ρ∗t . In that case, when we applied Ft to ρ

∗, the expected
number of accepting invocations of Ej would be exactly Tr (Ejρ) q.

Consider for concreteness the + case; the − case is precisely analogous. By the assumption

that the search for j succeeded, we have Tr
(
E∗

j,t,+ρ
∗
)
≥ 2

3 . In other words: when we apply Ej to q

copies of ρ, the number of invocations that accept is at least
(
Tr (Eiρt) +

3ε
4

)
q, with probability at

least 2
3 . Recall that q ≥ C

ε2
for some sufficiently large constant C. So since the q copies of ρ really

are independent, in this case we can use a Chernoff bound to conclude that Tr (Eiρ) > Tr (Eiρt)+
ε
2 .

Now we consider 1 − Tr (Ftρ
∗): that is, the probability that Ft rejects ρ∗. This is just the

probability that, when we apply Ej to q copies of ρ, the number of invocations that accept is
less than

(
Tr (Ejρt) +

ε
4

)
q. Since the copies of ρ are independent, and since (by the above) the

expected number of accepting invocations is at least
(
Tr (Eiρt) +

ε
2

)
q, we can again use a Chernoff

bound to conclude that

1− Tr (Ftρ
∗) ≤ exp

(
−Ω

(
ε2q
))

≤ exp

(
−Ω

(
ε2 · C

ε2

(
log logD + log

1

ε

)))
≤ ε8

log4D
,
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provided we took the constant C sufficiently large.
By Lemma 12 (the Quantum Union Bound), this means that, even if we applied F0, . . . , FT−1

to ρ∗ in succession, the probability that any of them would reject is at most

2T

√
ε8

log4D
=

2Tε4

log2D
.

Hence, so as long as T = o
(
log2 D
ε4

)
, all of the Ft’s accept ρ

∗ with probability at least (say) 0.9.

But we can always decompose the maximally mixed state, ρ∗0 =
I
Dq , as

ρ∗0 =
1

Dq
ρ∗ +

(
1− 1

Dq

)
σ,

where σ is some mixed state. This means that, in the “real” situation (i.e., when we run the
procedure with initial state ρ∗0), all of the Ft’s accept ρ

∗
0 with probability at least 0.9

Dq , as claimed.

Combining the two claims above—namely, pt ≤ (1− ε)Ω(t) and pt ≥ 0.9
Dq—we get

(1− ε)Ω(t) ≥ 0.9

Dq
.

Solving for t now yields

t = O

(
q logD

ε

)
= O

(
logD

ε
· C
ε2

(
log logD + log

1

ε

))
.

This then gives us the desired upper bound on T , and justifies the assumption we made before that

T = o
(
log2 D
ε4

)
.

Meanwhile, by Lemma 15 together with the union bound, the probability that all T invocations
of Lemma 15 succeed at finding a suitable index j is at least

1− Tβ = 1− o

(
log2D

ε4
· δε4

log2D

)
≥ 1− δ,

as needed.
Finally, we upper-bound the total number of copies of ρ used by the procedure. Within each

iteration t, the bound of Lemma 15 tells us that we need

ℓ = O

(
log4M

(
log logM + log

1

β

))
= O

(
log4M

(
log logM + log logD + log

1

ε
+ log

1

δ

))
copies of the amplified state ρ∗. Since ρ∗ = ρ⊗q, this translates to qℓ copies of ρ itself in each of
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the T iterations, or

Tqℓ = O

(
q logD

ε
· qℓ
)

= O

(
logD

ε
· q2 · ℓ

)

= O

 logD

ε
·

(
log logD + log 1

ε

ε2

)2

· log4M
(
log logM + log logD + log

1

ε
+ log

1

δ

)
= Õ

(
log 1/δ

ε5
· log4M · logD

)
copies of ρ total.

6 Lower Bound

We now observe that, for information-theoretic reasons having nothing to do with quantum me-

chanics, any solution to the shadow tomography problem requires at least Ω
(
logM
ε2

)
copies of ρ.

This is the best lower bound for shadow tomography that we currently know.

Theorem 16 Any strategy for the shadow tomography problem—i.e., for estimating Tr (Eiρ) to

within additive error ε for all i ∈ [M ], with success probability at least (say) 2/3—requires Ω
(
logM
ε2

)
copies of the state ρ, assuming that the Hilbert space dimension D can be arbitrary. Furthermore,
this is true even for the classical special case of the problem (i.e., where ρ and the Ei’s are all
diagonal).

Proof. Let D be a probability distribution over n-bit strings (i.e., a diagonal density matrix of
dimension D = 2n). Let f1, . . . , fM : {0, 1}n → {0, 1} be Boolean functions, and given a sample
x ∼ D, let the “measurement” Ei accept if fi (x) = 1 and reject if fi (x) = 0. Then our problem
boils down to the following: how many independent samples from D do we need, if our goal is to
estimate Ex∼D [fi (x)] to within additive error ±ε for each i ∈ [M ], with high probability?

To prove a lower bound of Ω
(
logM
ε2

)
, we will construct an explicit example, call it the “Hadamard

example,” where that number of samples is information-theoretically necessary.
Let α = 5ε. We let D be one of 2n possible distributions over {0, 1}n: the uniform distribution,

or the uniform distribution α-biased toward strings x such that s · x ≡ 1 (mod 2), for any nonzero
“secret string” s. (In other words, the distribution that has a

√
1− α2 Fourier coefficient on 0n,

and an α Fourier coefficient on s.) We imagine that s itself was chosen uniformly at random from
{0, 1}n, with the uniform distribution corresponding to the case s = 0n. We also consider M = 2n

different measurement functions: namely, fr (x) := r · x (mod 2) for each r ∈ {0, 1}n.
Imagine the samples from D as a one-way communication channel, from Alice (who knows s)

to Bob (who doesn’t). Then we claim that, if the samples let Bob solve the shadow tomography
problem—that is, determine Ex∼D [fr (x)] to within ±ε for every r—then they also let him recover
the secret string s itself. For Bob simply needs to identify the unique r such that Ex∼D [fr (x)] >
1
2 + ε (or if no such r exists, then s = 0n). We conclude that this channel must transmit n bits of
information about s.

19



Given that, it suffices to observe the following: each sample from D has mutual information at
most O

(
α2
)
with s, even if we condition on all the previous samples. To see this, we calculate:

I (x; s) = H (x)−H(x|s)

= n−H

(
1

2
+ α

)
− (n− 1)

= 1−
(
1

2
+ α

)
log2

(
1

2
+ α

)
−
(
1

2
− α

)
log2

(
1

2
− α

)
= O

(
α2
)
.

Here the second line follows by splitting x into two components: the bit s · x (mod 2), which is
α-biased toward 1, and n − 1 other bits, which remain independent and uniform. Furthermore,
conditioning on the previous samples can only decrease H (x) without affecting H (x|s), since x is
independent of the previous samples conditional on the “ground truth” s. This means that the
total mutual information is subadditive across the samples, in the sense that k samples have mutual
information at most O

(
kα2

)
with s.

We conclude that, in order for Alice to communicate s to Bob, so that Bob can recover s with
Ω (1) success probability, she must send him

Ω
( n
α2

)
= Ω

(
logM

ε2

)
samples from D.

Let’s observe that, in the classical special case, Theorem 16 has a matching upper bound.

Proposition 17 Let D be an unknown distribution over n-bit strings, and let f1, . . . , fM : {0, 1}n →
{0, 1} be known Boolean functions. Then given O

(
logM/δ

ε2

)
independent samples from D, it is pos-

sible to estimate Ex∼D [fi (x)] to within additive error ±ε for each i ∈ [M ], with success probability
at least 1− δ.

Proof. The strategy is simply, for each i ∈ [M ], to output the empirical mean of Ex∼D [fi (x)] on
the observed samples. By a Chernoff bound, this strategy fails for any particular i with probability
at most

exp

(
−ε2 logM/δ

ε2

)
≤ δ

M
,

provided the constant in the big-O is sufficiently large. So by the union bound, it succeeds for
every i simultaneously with probability at least 1− δ.

Let’s also observe a second case in which Theorem 16 has a matching upper bound.

Proposition 18 Given an unknown mixed state ρ, and known two-outcome measurements E1, . . . , EM

and reals c1, . . . , cM ∈ [0, 1], suppose we’re promised that for each i ∈ [M ], either Tr (Eiρ) ≥ ci or

Tr (Eiρ) ≤ ci − ε. Then we can decide which is the case for each i ∈ [M ] using k = O
(
logM/δ

ε2

)
copies of ρ, with success probability at least 1− δ.
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Proof. For each i ∈ [M ], we simply perform a collective measurement on ρ⊗k, which applies Ei to
each copy of ρ, and accepts if and only if the number of accepting invocations is at least

(
ci − ε

2

)
k.

By a Chernoff bound, this causes us to learn the truth for that i with probability at least

1− exp

(
−ε2 logM/δ

ε2

)
≥ 1− δ2

4M2
,

provided the constant in the big-O is sufficiently large. By Lemma 12 (the Quantum Union Bound),
this means that by applying these collective measurements successively, we can learn the truth for
every i ∈ [M ] with probability at least

1− 2M

√
δ2

4M2
= 1− δ.

We now derive some additional consequences from the proof of Theorem 16. Note that, because
recovering the secret string s boils down to identifying a single function fr such that Ex∼D [fr (x)] >
1
2 + ε, the Hadamard example from the proof also shows that the search problem of Lemma 15,

considered by itself, already requires Ω
(
logM
ε2

)
copies of ρ—again, even in the classical special case,

where ρ and the Ei’s are diagonal.
Indeed, we now make a further observation: for the specific case of the Hadamard example,

going from Lemma 14 (the Quantum OR Bound) to Lemma 15 (the gentle search procedure)
requires almost no blowup in the number of copies of ρ. This is true for two reasons. First, ρ is
classical, so in the proof of Lemma 15, we can reuse the same copies of ρ from one binary search
iteration to the next. Second, the Hadamard example assumed a “promise gap”—i.e., for each r,
the distribution D is either α-biased toward fr (x) = 1 or else not biased toward it at all—so there
is no need to replace ε by ε

logM . The only amplification we need is log logM repetitions, to push

the failure probability per binary search iteration down to 1
logM .

We conclude that the Quantum OR Bound—again, even in the classical special case—requires

Ω
(

logM
ε2 log logM

)
copies of ρ, since otherwise we could solve the search problem on the Hadamard

example with o
(
logM
ε2

)
samples, contradicting our previous reasoning. In other words, Lemma 14

is close to tight.

It’s also illuminating to consider the “converse” situation to that of Theorem 16, where we
allow the number of copies of ρ to depend on D and ε only, and let M be arbitrarily large. In
that situation, we might as well assume that the list E1, . . . , EM contains close approximations
to all possible two-outcome measurements Ei—in which case, our task simply reduces to ordinary
quantum state tomography. Therefore, it follows from the recent work of O’Donnell and Wright

[25] and Haah et al. [17] that Θ̃
(
D2

ε2

)
copies of ρ are both necessary and sufficient.

As mentioned in Section 7, we don’t know how to prove any lower bound of the form ω (logM)
on the number of copies needed for shadow tomography. This means that, for all we know, shadow

tomography might be possible in general with only O
(
logM
ε2

)
copies of ρ—independent of D—just

as it is in the classical case (by Proposition 17) and the case of a promise gap (by Proposition 18).
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7 Open Problems

This paper initiated the study of shadow tomography of quantum states, and proved that

Õ

(
log 1/δ

ε5
· log4M · logD

)
copies of a state suffice for it. But this is just the beginning of what one can ask about the problem.
Here we discuss four directions for future work.

(1) Tight Bounds. The bound of Theorem 2 is probably too large for experimental applica-
tions, but we conjecture that it’s far from tight. Our best current lower bound, Theorem 16, was

Ω
(
logM
ε2

)
. In the upper bound, can we lower the exponents 4 and 5? Even more intriguing, do we

need any dependence at all on the Hilbert space dimension D? In the proof of Theorem 2, there
was one piece that introduced a dependence on logD, namely the postselected learning procedure.
We suspect that this might be avoidable: for example, if we carefully recycled the states, or used
measurements that extracted logD bits by measuring each copy of ρ rather than only 1 bit.

Also, what happens if we consider measurements with K > 2 outcomes? In that setting, it’s
easy to give some upper bound for the state complexity of shadow tomography, by reducing to the
two-outcome case. Can we do better?

One can also study the state complexity of many other learning tasks. For example, what
about what we called the “gentle search problem”: finding an i ∈ [M ] for which Tr (Eiρ) is large,

promised that such an i exists? Can we improve our upper bound of Õ
(
log4 M

ε2

)
copies of ρ for that

task? Or what about approximating the vector of Tr (Eiρ)’s in other norms, besides the ∞-norm?

(2) Shadow Tomography with Restricted Kinds of Measurements. From an experi-
mental standpoint, there are at least three drawbacks of our shadow tomography procedure. First,
the procedure requires collective measurements on roughly logD

ε2
copies of ρ, rather than measure-

ments on each copy separately (or at any rate, collective measurements on a smaller number of
copies, like log logD). Second, the procedure requires so-called non-demolition measurements,
which carefully maintain a state across a large number of sequential measurements (or alterna-
tively, but just as inconveniently for experiments, an extremely long circuit to implement a single
measurement). Third, the actual measurements performed are not just amplified Ei’s, but the
more complicated measurements required by Harrow et al. [19].

It would be interesting to address these drawbacks, either alone or in combination. To illustrate,
if one could prove the soundness of Aaronson’s original procedure for the Quantum OR Bound [3],
that would remove the third drawback, though not the other two.

(3) Computational Efficiency. To what extent can our results be made computationally
efficient, rather than merely efficient in the number of copies of ρ? In Section 1.3, we estimated the
computational complexity of our shadow tomography procedure as Õ (ML)+DO(log logD) (ignoring
the dependence on ε and δ), where L is the length of a circuit to implement a single Ei. We also
discussed the recent work of Brandão et al. [13], which builds on this work to do shadow tomography

in Õ
(√

ML
)
+DO(1) time, again using poly (logM, logD) copies of ρ—or in Õ

(√
M polylogD

)
time under strong additional assumptions about the Ei’s.

How far can these bounds be improved, with or without extra assumptions on ρ or the Ei’s?
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There are some obvious limits. If the measurements E1, . . . , EM are given by D×D Hermitian
matrices (or by circuits of size D2), and if the algorithm first needs to load descriptions of all

the measurements into memory, then that already takes Ω
(
MD2

)
time, or Ω

(√
M
)
time just to

Grover search among the measurements. Applying a measurement with circuit complexity D2

takes D2 time. Outputting estimates for each Tr (Eiρ) takes Ω (M) time—although Brandão et
al. [13] evade that bound by letting their output take the form of a quantum circuit to prepare a
state σ such that |Tr (Eiσ)− Tr (Eiρ)| ≤ ε for all i ∈ [M ], which seems fair.

If we hope to do even better than that, we could demand that the measurements Ei be im-
plementable by a uniform quantum algorithm, which takes i as input and runs in time polylogD.
Let’s call a shadow tomography procedure hyperefficient if, given as input such a uniform quantum
algorithm A, as well as poly

(
logM, logD, 1ε

)
copies of ρ, the procedure uses poly

(
logM, logD, 1ε

)
time to output a quantum circuit C such that |C (i)− Tr (Eiρ)| ≤ ε for all i ∈ [M ]. Note that, in
the special case that ρ and the Ei’s are classical, hyperefficient shadow tomography is actually pos-
sible, since we can simply output a circuit C that hardwires the k classical samples x1, . . . , xk ∼ D,
and then on input i, returns the empirical mean of Ei (x1) , . . . , Ei (xk).

By contrast, we observe the following:

Proposition 19 Suppose there exists a hyperefficient shadow tomography procedure. Then quantum
advice can always be simulated by classical advice—i.e., BQP/qpoly = BQP/poly.

Proof. This already follows from the assumption that a quantum circuit C of size poly (logM, logD),
satisfying (say) |C (i)− Tr (Eiρ)| ≤ 1

10 for every i ∈ [M ], exists. For a description of that C can
be provided as the BQP/poly advice when simulating BQP/qpoly.

Note that Aaronson and Kuperberg [10] gave a quantum oracle relative to which BQP/poly ̸=
BQP/qpoly. By combining that with Proposition 19, we immediately obtain a quantum oracle
relative to which hyperefficient shadow tomography is impossible.

One further observation:

Proposition 20 Suppose there exists a hyperefficient shadow tomography procedure. Then quan-
tum copy-protected software (see [5] or Section 2) is impossible.

Proof. Given nO(1) copies of a piece ρ of quantum software, by assumption we could efficiently
produce an nO(1)-bit classical string s, which could be freely copied and would let a user efficiently
compute ρ’s output behavior (i.e., accepting or rejecting) on any input x ∈ {0, 1}n of the user’s
choice.

It would be interesting to know what further improvements are possible to the computational
complexity of shadow tomography, consistent with the obstacles mentioned above. Also, even if
shadow tomography inherently requires exponential computation time in the worst case, one nat-
urally seeks do better in special cases. For example, what if the Ei’s are stabilizer measurements?
Or if ρ is a low-dimensional matrix product state?

(4) Applications. A final, open-ended problem is to find more applications of shadow to-
mography. In Section 2, we gave implications for quantum money, quantum software, quantum
advice, and quantum communication protocols. But something this basic being possible seems
like it ought to have further applications in quantum information theory, and conceivably even
experiment. In the search for such applications, we’re looking for any situation where (i) one has
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an unknown entangled state ρ on many particles; (ii) one is limited mainly in how many copies of
ρ one can produce; (iii) one wants to know, at least implicitly, the approximate expectation values
of ρ on a huge number of observables; and (iv) one doesn’t need to know more than that.
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[18] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber,
U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt. Scalable
multiparticle entanglement of trapped ions. Nature, 438:643–646, 2005. quant-ph/0603217.

[19] A. Harrow, C. Lin, and A. Montanaro. Sequential measurements, disturbance and property
testing. In Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1598–1611, 2017.
arXiv:1607.03236.

[20] A. S. Holevo. Some estimates of the information transmitted by quantum communication
channels. Problems of Information Transmission, 9:177–183, 1973. English translation.

[21] C. Marriott and J. Watrous. Quantum Arthur-Merlin games. Computational Complexity,
14(2):122–152, 2005. Earlier version in CCC’2004. arXiv:cs/0506068.

[22] A. Molina, T. Vidick, and J. Watrous. Optimal counterfeiting attacks and generalizations
for Wiesner’s quantum money. In Theory of Quantum Computation, Communication, and
Cryptography, pages 45–64, 2012. arXiv:1202.4010.

[23] A. Montanaro. Learning stabilizer states by Bell sampling. arXiv:1707.04012, 2017.

[24] H. Nishimura and T. Yamakami. Polynomial time quantum computation with advice. Inform.
Proc. Lett., 90:195–204, 2003. ECCC TR03-059, quant-ph/0305100.

[25] R. O’Donnell and J. Wright. Efficient quantum tomography. In Proc. ACM STOC, pages
899–912, 2016. arXiv:1508.01907.

[26] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

[27] S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983. Original manuscript written
circa 1970.

[28] M. Wilde. Sequential decoding of a general classical-quantum channel. Proc. Roy. Soc. London,
A469(2157):20130259, 2013. arXiv:1303.0808.

[29] A. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans. Infor-
mation Theory, 45(7):2481–2485, 1999. arXiv:quant-ph/0012127.

25

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


