
Lifting Nullstellensatz to Monotone Span Programs over any Field

Toniann Pitassi
University of Toronto and IAS

toni@cs.toronto.edu

Robert Robere∗

University of Toronto
robere@cs.toronto.edu

November 2, 2017

Abstract

We characterize the size of monotone span programs computing certain “structured” boolean func-
tions by the Nullstellensatz degree of a related unsatisfiable Boolean formula. This yields the first expo-
nential lower bounds for monotone span programs over arbitrary fields, the first exponential separations
between monotone span programs over fields of different characteristic, and the first exponential sepa-
ration between monotone span programs over arbitrary fields and monotone circuits. We also show tight
quasipolynomial lower bounds on monotone span programs computing directed st-connectivity over ar-
bitrary fields, separating monotone span programs from non-deterministic logspace and also separating
monotone and non-monotone span programs over GF (2). Our results yield the same lower bounds for
linear secret sharing schemes due to a known relationship between monotone span programs and linear
secret sharing developed by Karchmer and Wigderson [32] and Beimel [7]. To prove our characteri-
zation we introduce a new and general tool for lifting polynomial degree to rank over arbitrary fields,
generalizing a result of Sherstov [43].

1 Introduction

Span programs (and monotone span programs) are an elegant model of computation introduced by Karchmer
and Wigderson [32] that capture the computational power of linear algebra over a field. To be precise, a span
program over a field F is defined by a matrix M over F whose rows are labelled with literals over boolean
variables z1, z2, . . . , zn (possibly with repeats); the program is monotone if there are no negative literals
(i.e. of the form ¬zi) labelling any rows. Given an assignment z ∈ {0, 1}n to these literals, the span
program accepts z if the rows of M labelled with literals that are consistent with z span the all-1s vector —
with this definition a span program computes a boolean function in the natural way. In the monotone case, we
have a very interesting model of computation, since monotone span programs use non-monotone operations
(algebra over F) to compute monotone functions (recall that a boolean function f : {0, 1}n → {0, 1} is
monotone if x ≤ y implies f(x) ≤ f(y)). This makes them surprisingly powerful — for instance, it is
known that there are monotone functions f computable by polynomial-size monotone span programs over
GF (2), but require super-polynomial size monotone circuits [4]. Further, monotone span programs have an
interesting connection to cryptography since they exactly characterize the amount of information that must
be shared in linear secret sharing schemes [8, 32].

These reasons make monotone span programs an interesting model to study, but due to their power
proving strong lower bounds against them is a difficult task. For monotone span programs over the reals,
exponential lower bounds were recently proven by [36,42]. However, the strongest lower bounds known for
arbitrary fields was nΩ(logn), shown by Gál [22].
∗Research supported by NSERC.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 165 (2017)

Our Contribution. The main contribution of the present work is a new characterization of monotone span
program size over arbitrary fields for certain “structured” boolean functions. This characterization allows
us to resolve a number of open problems about the complexity of monotone span programs (and, therefore,
linear secret sharing schemes), and generalize the main results of [36, 42] to arbitrary fields. To summarize:

1. We show, for every field F, that the F-monotone span program size of the directed st-connectivity
function STCONN is nΘ(logn). This is notable as polynomial-size non-monotone span programs over
GF (2) are known to be able to compute STCONN [44], and thus we give the first field-independent
superpolynomial separation between monotone span programs and non-monotone span programs —
further, this shows that monotone span programs over any field can be weaker than monotone non-
deterministic logspace. Previously this lower bound for STCONN was only known for real span
programs [42], and it was not known whether or not there existed a field F such that monotone span
programs over F could efficiently simulate monotone polynomial-size circuits.

2. For every field F we show that the F-monotone span program size of the GEN function is nΘ(nε)

for some fixed constant ε > 0. Since GEN is computable by polynomial-size monotone circuits this
yields the first superpolynomial separation between F-monotone span program size and monotone
circuit size for all F; once again, this was previously only known for real span programs [42].

3. Finally, for each field F of finite characteristic, we construct an explicit monotone function f com-
putable in NP such that mSPF(f) = O(poly(n)), but for every field F′ of characteristic different from
F we have mSPF′(f) = 2Ω(n), where mSPF(f) denotes the monotone span program size of f over
F. This is the first exponential separation between monotone span programs of different characteristic
(indeed, the lower bound is in fact strongly exponential in the sense of [36], and so is tight up to con-
stants in the exponent for any monotone function). The best previous separations between monotone
span programs of different characteristic are due to Beimel and Weinreb [10], who exhibited a similar
separation result, but in which the lower bound was on the order of mSPF′(f) = nΩ(

√
logn).

Since these results are easy corollaries of our main theorem we leave their proofs to Appendix B. Further, as
our results generalize the results of [42], we obtain as corollaries the lower bounds for monotone switching
networks obtained by Potechin and Chan-Potechin [15, 37], the depth hierarchy theorem for monotone NC
obtained by Raz and McKenzie [39], and the monotone depth lower bounds for st-connectivity obtained by
Karchmer and Wigderson [31].

Let us now discuss some of the ingredients of our characterization. At the core of our results is a
new lifting theorem. Our lifting theorem is in the style of Raz and McKenzie [39] who showed how to
construct from any unsatisfiable CNF C = C1 ∧C2 ∧ · · · ∧Cm over n variables and any “two-party” gadget
g : X × Y → {0, 1} a monotone boolean function fC,g which we will call a lifted function. Raz and
McKenzie showed that for a particular choice of gadget g, the monotone circuit depth of the function fC,g
is characterized by the decision tree depth of the search problem Search(C) associated with C (i.e. given an
assignment to the variables of C, output a falsified clause of C) — hence, they lifted lower bounds from a
“simple” computational model (decision trees) to a “complicated” computational model (monotone boolean
circuits). (See the Related Works section for other hardness escalation theorems.)

In the present work we prove such a lifting theorem for monotone span programs. In particular, for
any field F, we show that for any unsatisfiable CNF C and for any “good” gadget g the minimum degree
of any Nullstellenstaz refutation of C over F characterizes the size of the smallest monotone span program
computing fC,g over F. The open problems above are then resolved by appealing to the broad literature of
Nullstellensatz lower bounds [6, 12, 13, 18, 41].

To be more precise, let P = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of polyno-
mial equations over F[z1, z2, . . . , zn]. A Nullstellensatz refutation of P is given by a set of polynomials

2

q1, q2, . . . , qm such that
m∑
i=1

piqi = 1. (1)

The degree of the refutation is maxi deg(piqi), and the Nullstellensatz degree of P is the minimum degree
NSF(P) of any refutation of P . For an unsatisfiable CNF C, we let NSF(C) denote the minimum degree of
any Nullstellensatz refutation of C encoded as a system of polynomial equations.

To lift the Nullstellensatz degree, we use an interesting characterization of monotone span program size
given by Gál [22]. Let f : {0, 1}n → {0, 1} be a monotone boolean function, and for any i ∈ [n] define

Xi =
{

(x, y) ∈ f−1(1)× f−1(0) | xi = 1, yi = 0
}

to be the coordinate rectangle of the ith input. An algebraic tiling of f is given by a sequence of n matrices
A1, A2, . . . , An over F, each of size |f−1(1)| × |f−1(0)|, such that all non-zero entries of Ai are indexed
by Xi and

n∑
i=1

Ai = 1 (2)

where 1 is the all-1s matrix. The size of an algebraic tiling is
∑n

i=1 rankF(Ai), and the algebraic tiling
number of f is the minimum size χF(f) of any algebraic tiling of f . Gál showed that the algebraic tiling
number of f is exactly the size of the smallest monotone1 span program computing f . Superficially, one
might expect that there is a connection between algebraic tiling and Nullstellensatz given the similiarities of
the expressions (1) and (2).

Using this measure, Gál was able to show that a simple rank-based complexity measure of Razborov [40]
lower-bounded monotone span program size, and this measure also plays an important role in the proof of
our main theorem. Let F be any field, and letA be any |f−1(1)|×|f−1(0)|matrix over F. The rank measure
of f at A is defined to be

µF(f,A) :=
rankF(A)

max
i∈[n]

rankF(A�Xi)

where A�Xi denotes the submatrix of A obtained by zeroing all entries of A outside of Xi. Let µF(f) :=
maxA µF(f,A) denote the maximal2 rank measure of f over all matrices A.

Barring the definition of a “good” gadget (see Section 3), we are now ready to state our characterization.
We note that there are small and simple gadgets that are good, and when we refer to the rank of a gadget
g : X × Y → F we mean the rank of g when treated as an |X | × |Y| matrix over F.

Theorem 1.1. Let C be a constant-width unsatisfiable CNF on n variables, and let F be any field. For any
good gadget g over F with rank(g) = n2, the lifted function fC,g satisfies

µF(fC,g) = Θ(χF(fC,g)) = nΘ(NSF(C)).

Further, if NSF(C) = Θ(n), then for any good gadget g (of sufficiently large but constant rank),

µF(fC,g) = Θ(χF(fC,g)) = 2Θ(n).

1Gál also gave a similar characterization of non-monotone span program size.
2Note that the rank of A is integral and bounded by min

{
|f−1(1)|, |f−1(0)|

}
and thus we can safely place a maximum instead

of a supremum.

3

In the process of proving our main theorem, we prove an interesting technical result that we hope will
have other applications. If p ∈ F[z1, z2, . . . , zn] is a polynomial over F and g : X × Y → F is a gadget
then we can create a matrix p ◦ gn : X n×Yn → F (called a pattern matrix, following Sherstov [43]) in the
natural way by composing g with p:

p ◦ gn := [p(g(x1, y1), g(x2, y2), . . . g(xn, yn))]x,y∈Xn×Yn .

We show that when g is good then the rank of the matrix p ◦ gn can be calculated directly from the set of
monomials occurring in p.

Theorem 1.2. Let p ∈ F[z1, z2, . . . , zn] be a multilinear polynomial and let F be a field. For any good
gadget g : X × Y → F we have

rankF(p ◦ gn) =
∑

S:p̂(S)6=0

rankF(g)|S|

where p̂(S) denotes the coefficient of the monomial
∏
i∈S zi in p.

A special case of this theorem follows from a result of Sherstov [43, Theorem 4.3], however, his result
only works for real polynomials p and for a specific choice of gadget g. In contrast, our result works for
arbitrary fields and for any gadget g satisfying a general condition (in fact, Sherstov’s gadget satisfies our
general condition — see Section 4 for details).

Related Work. Span programs were introduced by Karchmer and Wigderson [32], who also showed a
connection with secret sharing schemes and produced the first superlinear lower bounds on non-monotone
span program size. Monotone span programs have a long history of lower bounds. Shortly after Karchmer
and Wigderson’s paper, Csirmaz [20] proved an Ω(n2/ log n) lower bound on monotone span program size.
Beimel et al. [9] gave a lower bound of n5/2, and then Babai et al. [3] proved the first superpolynomial
lower bound on the order of nΩ(logn/ log logn). Each of these results were obtained by direct combinatorial
arguments, which were simplified and improved by Gál to nΩ(logn) [22]. In the same paper, Gál observed
the connection between monotone span programs and the rank measure, and this connection was further in-
vestigated by Gál and Pudlák [23]. The superpolynomial lower bounds cited above only applied to functions
computable in NP; Beimel and Weinreb [10] gave quasipolynomial lower bounds nΩ(

√
logn) for a mono-

tone function in uniform NC2, establishing that monotone span programs can be weaker than polynomial
time. Pudlák and Sgall [38] made the first connection between span programs and Nullstellensatz degree in
the context of feasible interpolation. The first exponential lower bounds for monotone span programs were
proved by Robere, Pitassi, Rossman and Cook [42], who showed exponential lower bounds for real span
programs. Later, Pitassi and Robere [36] proved the first strongly exponential lower bounds for an explicit
monotone function (in NP), again over the reals.

These last results bear further discussion, as they were a direct inspiration for the present paper. The
results of [36, 42] show that lower bounds on the rank measure µR(fC,g) of the lifted function fC,g can be
obtained from query complexity lower bounds for C, using a new query measure called the algebraic gap
complexity gap(C). This can be seen as establishing one direction of a lifting theorem from algebraic gaps
to the rank measure over the reals. For the purpose of proving lower bounds, it was then required to prove
strong lower bounds on the algebraic gap, which was done directly for each application in an ad-hoc manner.
Here, we prove that the algebraic gap measure is exactly the same as the well-studied Nullstellensatz degree
measure in proof complexity, obtaining a full two-way lifting theorem from Nullstellensatz degree to the
rank measure over every field. This allows us to obtain all applications (the new ones mentioned above
as well as all of the old ones) by simply plugging in the appropriate gadget and unsatisfiable C, and then
applying known Nullstellensatz degree bounds.

4

Hardness escalation techniques like those employed in the present paper are a rapidly growing area of
research in complexity theory, and are often used to study the amount of communication needed to compute
composed problems of the form F ◦ gn := F (g(x1, y1), g(x2, y2), . . . , g(xn, yn)) where F is an n-input
function or relation and g is some two-input “gadget”. Such composed problems yield a natural two-player
communication task: Alice receives x ∈ X n, Bob receives y ∈ Yn, and their goal is to evaluate F on the
input

z = g(x1, y1)g(x2, y2) · · · g(xn, yn)

using a minimal amount of communication about their inputs. For many models of communication, if one
chooses the “right” gadget g it is possible to show that the communication complexity of the composed
function F ◦gn is closely related to the query complexity of F in some appropriate query model — a typical
query model studied is a decision tree, which measures the number of input bits of F that need to be queried
before we can determine the output of f . Such a result is often very powerful since query models are usually
much easier to study than communication models.

Lifting theorems have introduced powerful new tools into complexity theory, and have recently led to
the resolution of open problems in many areas of theoretical computer science and discrete mathematics,
including: graph theory [24], linear programming formulations for combinatorial optimization [33, 34],
circuit complexity and cryptography [26, 36, 39, 42], proof complexity [21, 26, 29], game theory [5], and
communication complexity [1, 17, 27, 28, 43]. Moreover the field has led to a revival of query complexity,
with new techniques leading to the resolution of some longstanding open problems [1, 2, 24].

2 Preliminaries

Let Z be a set, and let n be a positive integer. We will use the standard notation of Zn to represent the set
of all n-tuples over Z , and the less-standard notation Z≤n to denote the set of all tuples of length at most
n over Z . If z ∈ Zn then zi denotes the ith element of the tuple z, and if A ⊆ [n] then zA is the tuple of
elements in z indexed by A.

Let F be a field. It will be useful to think of matrices over F as having their rows and columns being
indexed by more general objects. Thus, if X ,Y are sets then we consider functions A : X × Y → F as
|X | × |Y| matrices, where the rows of A are indexed by elements of X and columns of A are indexed by Y .
To simplify notation, we will refer to such a function A as a X ×Y matrix over F, and use regular function
notation (e.g. A(x, y) for x, y ∈ X × Y) to index into such matrices. We let 1X ,Y denote the X × Y all-1s
matrix, but will often leave out the subscript if the dimensions of the matrix are clear from the context.

If A is an m × n matrix and B is a p × q matrix then the Kronecker product A ⊗ B is the mp × nq
matrix defined by

A⊗B = [A(i, j) ·B]i∈[m],j∈[n].

If we think of A and B as mappings A : [m]× [n]→ F, B : [p]× [q]→ F, then the Kronecker product has
a natural interpretation as the mapping A⊗B : ([m]× [p])× ([n]× [q])→ F defined by

(A⊗B)((i, k), (j, `)) = A(i, j)B(k, `).

If X ,Y are sets then a combinatorial rectangle in X ×Y is a subset R ⊆ X ×Y for which we can write
R = X × Y for some subsets X ⊆ X , Y ⊆ Y . If A : X × Y → F is a matrix and R is a rectangle in
X ×Y then we let A�R denote the submatrix of A indexed by elements of R. It will be formally convenient
to think of A�R as having the same dimensions as A, and thus we formally define A�R : X × Y → F by

(A�R)(x, y) =

{
A(x, y) if (x, y) ∈ R
0 otherwise.

5

We say that A is embedded in R if A = A�R — that is, all non-zero entries of A are indexed by R.
If x, y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i. Let f : {0, 1}n → {0, 1} be a boolean

function, a partial boolean function is a function f : {0, 1}n → {0, 1, ∗} (informally, if f(x) = ∗ then we
“don’t care” what the output of the function is). A total boolean function f : {0, 1}n → {0, 1} is monotone
if f(x) ≤ f(y) whenever x ≤ y; a partial boolean function f : {0, 1}n → {0, 1, ∗} is monotone if it can be
extended to a total monotone boolean function by choosing {0, 1}-assignments for the ∗ outputs.

If f(x) = 1 we call x an accepting instance or a yes instance, while if f(x) = 0 then we call x a
rejecting instance or a no instance. If f is monotone and x ∈ f−1(1), y ∈ f−1(0) then there exists an
index i ∈ [n] such that xi = 1, yi = 0, as otherwise we would have x ≤ y, contradicting the fact that f is
monotone.

2.1 Circuit Complexity: Karchmer-Wigderson Games and Monotone Span Programs

In this section we review some definitions from circuit complexity. Let F be a field. An F-span program is
a computational device for computing boolean functions defined by a matrixA over F with its rows labelled
by boolean literals over variables z1, z2, . . . , zn. Given a span program A, a row vector Ai of A is consistent
with an input z ∈ {0, 1}n if the literal labelling Ai is set to 1 under z. The span program A then accepts an
input assignment z ∈ {0, 1}n if the set of rows consistent with z spans the all-1s vector; with this definition
a span program A computes a boolean function f : {0, 1}n → {0, 1} in the natural way. A span program
is monotone if all literals labelling rows of A are positive, and note that monotone span programs compute
monotone functions since adding row vectors can only increase the span. If f is a partial monotone boolean
function then we let mSPF(f) denote the minimum size of a F-monotone span program computing f .

A set of extremely useful tools in studying the circuit complexity of boolean functions originate in
communication complexity. Let f : {0, 1}n → {0, 1, ∗} be a partial, monotone boolean function, and let
U = f−1(1),V = f−1(0). The monotone Karchmer-Wigderson game of f is the relation

KW+(f) = {(x, y, i) ∈ U × V × [n] | xi = 1, yi = 0} .

We think of this relation as a computation task between two parties, Alice and Bob: Alice receives an
input x ∈ U , Bob receives an input y ∈ V , and they wish to agree on an index i such that xi = 1 and
yi = 0. Indeed, the relation KW+(f) was introduced by Karchmer and Wigderson [31], who showed that
the minimum number of bits that Alice and Bob need to communicate to compute KW+(f) is exactly the
minimum depth of any monotone circuit3 computing f .

Similarly, Gál [22] characterized the size of span programs computing f using a different complexity
measure of the Karchmer-Wigderson game. For any i ∈ [n] we refer to the set Xi = {x ∈ U | xi = 1} ×
{y ∈ V | yi = 0} as the coordinate rectangle for the input xi, and note that Xi is a combinatorial rectangle
in U × V .

Definition 2.1. Let f : {0, 1}n → {0, 1, ∗} be a partial monotone boolean function, and let U = f−1(1),
V = f−1(0). Let F be a field. If A : U × V → F is a matrix and Xi is a coordinate rectangle of KW+(f)
then A is embedded in Xi if A only takes non-zero values inside Xi, i.e. A = A�Xi. An algebraic tiling of
KW+(f) is given by a set of matrices A1, A2, . . . , An such that

n∑
i=1

Ai = 1

and Ai is embedded in Xi for each i; the size of the tiling is
∑n

i=1 rankF(Ai). The algebraic tiling number
of KW+(f), denoted χF(f), is the minimum size of any algebraic tiling of KW+(f).

3Karchmer and Wigderson also showed that a similar relation characterized non-monotone circuit depth.

6

Theorem 2.2 (Theorem 3.4 in [22]). For any partial monotone boolean function f and any field F, mSPF(f) =
χF(f).

Using the algebraic tiling number Gál showed that the following measure (originally introduced by
Razborov) is a lower bound on span program size.

Definition 2.3. Let f : {0, 1}n → {0, 1, ∗} be a partial, monotone boolean function and let U = f−1(1),V =
f−1(0). Let F be any field and let A be any U × V matrix over F. Let Xi denote the coordinate rectangle
Xi = {u ∈ U | ui = 1}×{v ∈ V | vi = 0} from the relation KW+(f). The rank measure of f with respect
to A is

µF(f,A) :=
rankF(A)

max
i∈[n]

rankF(A�Xi)
.

Let µF(f) = maxA µF(f,A).

Theorem 2.4 (Lemma 3.2 in [22]). For any partial monotone boolean function f and any field F, µF(f) ≤
χF(f).

2.2 Proof Complexity: Nullstellensatz Proofs and Algebraic Gaps

Next we review some preliminaries from proof complexity, and in particular the Nullstellensatz proof system
[6]. Let p ∈ F[z1, z2, . . . , zn] be a polynomial over a field F. The polynomial p is multilinear if no
individual variable appears in p with degree greater than 1. If p is multilinear, it follows that all terms in
p are products of variables

∏
i∈S zi for some S ⊆ [n], and thus it has at most 2n distinct terms. Given

a multilinear polynomial p, we will borrow notation from Fourier analysis and let p̂(S) ∈ F denote the
coefficient of the monomial zS :=

∏
i∈S zi in p. Furthermore, if π : [n]→ F∪ {∗} is a partial restriction of

the variables of p, then we let p�π denote the polynomial over the unrestricted variables of π obtained from
p in the natural way.

Definition 2.5. Let {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of polynomial equations over
variables z1, z2, . . . , zm. A Nullstellensatz refutation of the system is given by polynomials q1, q2, . . . , qm
over the same set of variables satisfying

m∑
i=1

piqi = 1

where the equality is syntactic. The degree of the refutation is maxi deg(piqi).

It is fruitful to compare this definition with Definition 2.1: Nullstellensatz degree is the analogue of the
algebraic tiling number for polynomials.

Let C = C1∧C2∧· · ·∧Cm be an unsatisfiable CNF over boolean variables z1, z2, . . . , zm. We will need
to convert C to an equivalent system of polynomial equations; here we give two standard encodings that we
will use later. The first encoding treats the variables zi as having {0, 1} values, and it can be used when the
underlying field is arbitrary. If C is a clause we let C+ denote the set of variables occurring positively in C
and C− denote the set of variables occurring negatively in C; with this notation we can write

C =
∨
z∈C+

z1 ∨
∨
z∈C−

z0.

From C we can define the polynomial equation

E(C) ≡
∏
z∈C+

(1− z)
∏
z∈C−

z = 0,

7

observing that E(C) is satisfied (over 0/1 assignments to zi) if and only if the corresponding assignment
satisfies C. We will abuse notation and let E(C) = {E(C) | C ∈ C} ∪

{
z2
i − zi = 0

}
i∈[m]

.

The second encoding treats the variables zi as having {±1} values (in this encoding,−1 is considered to
be “True”, and 1 is considered to be “False”), and as such can only be used if the underlying field F satisfies
char(F) 6= 2. Now each clause C is encoded as

E∗(C) ≡
∏
z∈C+

(1 + z)
∏
z∈C−

(1− z) = 0.

Once again, we abuse notation and let E∗(C) = {E∗(C) | C ∈ C} ∪
{
z2
i − 1 = 0

}
.

It is important to note that the choice of encoding does not affect the degree of the resulting refutation
as one can pass from one encoding to the other in a degree-preserving way. (To go from E(C) to E∗(C),
simply replace each variable zi with yi = 1−2zi; the reverse direction is obtained symmetrically.) Thus we
can, without loss of generality, define the Nullstellensatz degree NSF(C) of an unsatisfiable CNF C as the
minimum degree of any Nullstellensatz refutation of either E(C) or E∗(C).

One can also consider these two encodings as encodings of C in F[z1, z2, . . . , zn]/I for different ideals I:
the first encoding uses the ideal generated by I1 =

{
z2
i − zi

}
i∈[m]

, and the second uses the ideal generated

by I2 =
{
z2
i − 1

}
i∈[m]

. It is well known that all polynomials in F[z1, z2, . . . , zn] are equivalent to a
multilinear polynomial modulo either of these ideals.

Unsatisfiable CSPs and Search Problems. Just as we can study the complexity of computing a function
f : {0, 1}n → {0, 1} by studying an associated search problem KW+(f), one can study the complexity of
refuting an unsatisfiable CNF C by studying an associated search problem Search(C); we define this search
problem next.

A constraint satisfaction problem (CSP) is defined by a collection z1, z2, . . . , zn of variables over a do-
main Z and a collection C = {P1(Z1), P2(Z2), . . . , Pm(Zm)} of predicates over these variables; formally,
for all i we have Pi : Zt → {0, 1} and Pi(Zi) = P (zi1 , zi2 , . . . , zit) for some t ≤ n and for distinct indices
i1, i2, . . . , it. We say that C is a k-CSP if every predicate has arity at most k, and C is satisfiable if there is
an assignment z ∈ Zn such that Pi(z) = 1 for all i ∈ [m].

If P : Zt → {0, 1} is a predicate over Z then a certificate of P is a falsifying assignment of P ;
furthermore, if C = {P1(Z1), P2(Z2), . . . , Pm(Zm)} is a CSP then a certificate of C is a partial restriction
π : [n]→ Z∪{∗} encoding a certificate of a constraint Pi. If π is a certificate of C then we let vars(π) ⊆ [n]
denote the set of variables which are assigned to values in Z by π. A certificate π of C is consistent with an
assignment z ∈ Zn if zi = π(i) for all i ∈ vars(π). Let Cert(C) denote the set of all certificates of C.

Definition 2.6. Let C be an unsatisfiable CSP on Z-valued variables z1, z2, . . . , zn. The search problem
associated with C is the relation

Search(C) ⊆ Zn × Cert(C)

which contains all pairs (z, π) ∈ Zn × Cert(C) such that π is consistent with z.

To illustrate this definition we give two examples.

Example 2.7. Let C = {C1, C2, · · · , Cm} be an unsatisfiable k-CNF over variables z1, z2, . . . , zn. The
search problem Search(C) ⊆ {0, 1}n × Cert(C) is defined as follows: given a boolean assignment to the
variables z, choose any falsified clause Ci and output the assignment to the variables of Ci. (Equivalently,
since clauses have a unique falsifying assignment, one can instead just output the index of the falsified clause
i.)

8

Example 2.8. Let C = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of polynomials in a poly-
nomial ring F[z1, z2, . . . , zn]. The search problem Search(C) is defined as follows: given an assignment
Fn to the variables of C, choose any falsified polynomial equation pi = 0 and output the assignment to the
variables appearing in pi.

Just as we think of Nullstellensatz as the “polynomial analogue” of the algebraic tiling number, we can
introduce a “polynomial analogue” of the rank measure (cf. Definition 2.3) using the definition of the search
problem Search(C) above (in particular, using the set of certificates of C).

Definition 2.9. Let C = {p1 = 0, p2 = 0, . . . , pm = 0} be a system of unsatisfiable polynomial equations
and let F be a field. The algebraic gap complexity of Search(C) is the largest integer gapF(C) for which
there exists a multilinear polynomial p over F such that

deg p = n and ∀π ∈ Cert(C),deg p�π ≤ n− gapF(C).

The prior definition of algebraic gap complexity [36, 42] was for unsatisfiable CNFs C and not unsat-
isfiable systems of equations — we state it more generally as we will be considering multiple encodings
of CNFs as polynomial systems of equations E∗(C) and E(C) (indeed, the previous definition of algebraic
gap complexity is equivalent to gapR(E∗(C))). We note that the main difference between gapF(E(C)) and
gapF(E∗(C)) is in the definition of the certificates: the certificates of E(C) are {0, 1}-valued and the certifi-
cates of E∗(C) are {±1} valued.

Since the rank measure µF(f) is a lower bound on χF(f) (Theorem 2.4) it is reasonable to expect that
gapF(C) is a lower bound on NSF(C). When each equation pi = 0 has a unique certificate we can show that
this is true — this applies in particular when C is obtained from an unsatisfiable CNF.

Proposition 2.10. Let C = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of polynomial equa-
tions and suppose that each equation pi = 0 has a unique certificate. Then gapF(C) ≤ NSF(C).

Proof. Let q1, q2, . . . , qm be any set of polynomials such that
∑m

i=1 piqi = 1 and maxi deg(piqi) =
NSF(C). Let r be a polynomial witnessing the algebraic gap of C. Multiplying the Nullstellensatz refu-
tation

∑m
i=1 piqi = 1 by r we can express r(z) =

∑m
i=1 rpiqi(z). Observe that (rpiqi)(z) 6= 0 only if z is

consistent with the unique certificate πi of the constraint pi = 0; it follows that r(z) =
∑m

i=1 rpiqi(z) =∑m
i=1(r�πi)piqi(z). Using this observation and noting that deg r = n we get that

n = deg r ≤ max
i∈[m]

deg((r�πi)piqi) ≤ max
i∈[m]

deg(r�πi) + deg(piqi) ≤ n− gapF(C) + max
i∈[m]

deg(piqi).

Rearranging yields gapF(C) ≤ maxi∈[m] deg(piqi) = NSF(C).

2.3 Connecting Proofs and Circuits

Next we connect the search problem Search(C) associated with unsatisfiable k-CSPs and monotone Karchmer-
Wigderson games KW+(f). Special cases of the construction in this section have been implicitly used by
several other works in the literature [26, 35, 36, 39, 42]; we give a very general presentation in the hope that
it will be useful elsewhere.

Let X ,Y,Z be arbitrary sets, and letR ⊆ X ×Y ×Z be a relation. We always assume that relationsR
are minimal in the sense that there are no pairs of “duplicate elements”; i.e. there are no distinct a, a′ ∈ A
such that for all b, c, (a, b, c) ∈ R if and only if (a′, b, c) ∈ R (and the analogous conditions hold for B
and C). The relation R is total if for all (a, b) ∈ A × B there is a c ∈ C such that (a, b, c) ∈ R, and R is
rectangular if for each c ∈ C the set

Rc = {(a, b) ∈ A× B | (a, b, c) ∈ R}

9

is either empty or is a combinatorial rectangle.
Now, let f : {0, 1}n → {0, 1, ∗} be a partial monotone boolean function and consider the monotone

Karchmer-Wigderson game KW+(f). It is easy to see that KW+(f) is both total and rectangular. In fact,
it is not hard to see that these two properties characterize monotone Karchmer-Wigderson games in the
following sense.

Definition 2.11 (Folklore, [10, 22, 40]). Let X ,Y be sets, and let R ⊆ X × Y × [m] be a relation that is
total and rectangular. For each i ∈ [m] let Ri = Xi × Yi ⊆ X × Y denote the rectangle corresponding
to the output i of the relation, and define a partial monotone boolean function fR : {0, 1}m → {0, 1, ∗} as
follows. For each a ∈ X define the string ua ∈ {0, 1}m by setting uai = 1 if a ∈ Xi and uai = 0 otherwise.
Similarly, for each b ∈ Y define the string vb ∈ {0, 1}m by setting vbi = 0 if b ∈ Xi and vbi = 1 otherwise.
Then define

fR(x) =


1 if ∃a ∈ A : x = ua

0 if ∃b ∈ B : x = vb

∗ otherwise.

Proposition 2.12. Let X ,Y be sets, and let R ⊆ X × Y × [m] be a relation that is total and rectangular.
Then fR is well defined and KW+(fR) is equivalent (up to renaming elements of the relation) toR.

Proof. By way of contradiction suppose that fR is not well defined and let (a, b) ∈ A × B be a pair of
elements chosen so that ua = vb. By construction, it follows that there does not exist an i ∈ [m] such
that (a, b, i) ∈ R, contradicting the totality of R. Furthermore, it is clear that (a, b, i) ∈ R if and only if
(ua, vb, i) ∈ KW+(f).

With this proposition in mind, consider an unsatisfiable CSP C with variables taking values in a domain
Z and observe that the relation Search(C) is total. If g : X ×Y → Z is a matrix (also called a gadget) then
we can compose (or lift) Search(C) with g to obtain a new total relation

Search(C, g) ⊆ X n × Yn × Cert(C)

in the natural way: on input (x, y) ∈ X n × Yn, find a certificate π ∈ Cert(C) that is consistent with the
string

z = gn(x, y) := g(x1, y1)g(x2, y2) · · · g(xn, yn).

The lifted search problem Search(C, g) is total since the search problem Search(C) is, however, we cannot
immediately apply Proposition 2.12 to construct a boolean function since the lifted problem is not necessar-
ily rectangular. To avoid this issue, we instead consider a canonical version of the search problem obtained
by replacing the outputs of Search(C, g) with a rectangle covering (in the language of communication com-
plexity, we are showing that the search problem has bounded certificate complexity).

Definition 2.13. Let C = {C1, C2, · · · , Cm} be an unsatisfiable k-CSP on variables z1, z2, . . . , zn with
domain Z , and let g : X × Y → Z be any function. The canonical search problem is the relation

CanSearch(C, g) ⊆ X n × Yn × (Cert(C)×X≤k)

defined by

((x, y), (π, α)) ∈ CanSearch(C, g)⇐⇒ z = gn(x, y) is consistent with π and x�vars(π) = α.

10

The canonical search problem CanSearch(C, g) also satisfies the rectangularity property and so it can
be used to construct monotone boolean functions via Proposition 2.12. To see this, let π ∈ Cert(C) and
α ∈ X≤k be chosen so that there exists ((x, y), (π, α)) ∈ CanSearch(C, g). We claim the set

Xπ,α = {(x, y) ∈ X n × Yn | ((x, y), (π, α)) ∈ CanSearch(C, g)}

is a combinatorial rectangle. Towards this, let (x, y), (x′, y′) ∈ Xπ,α be two pairs inXπ,α; clearly x�vars(π) =
x′�vars(π) = α, thus it follows immediately that (x′, y), (x, y′) ∈ Xπ,α.

Now by applying Proposition 2.12 we obtain from CanSearch(C, g) a partial monotone boolean func-
tion fCanSearch(C,g) on N ≤ |Cert(C)||X |k input variables such that KW+(fCanSearch(C,g)) is equivalent to
CanSearch(C, g); to reduce clutter we will write fC,g instead of fCanSearch(C,g). The function fC,g can be
viewed as a monotone version of the CSP-SAT problem (as observed by [26, 35]), we refer to Appendix A
for details.

3 Proof Outline

The rest of the paper is devoted to the proof of Theorem 1.1.

Theorem 1.1. Let C be a constant-width unsatisfiable CNF on n variables, and let F be any field. For any
good gadget g over F with rank(g) = n2, the lifted function fC,g satisfies

µF(fC,g) = Θ(χF(fC,g)) = nΘ(NSF(C)).

Further, if NSF(C) = Θ(n), then for any good gadget g (of sufficiently large but constant rank),

µF(fC,g) = Θ(χF(fC,g)) = 2Θ(n).

In this section we give a technical overview of this result. Let us first state what it means for a gadget g
to be good.

Definition 3.1. Let F be a field. A gadget g : X ×Y → F is good if |X | = O(rank(g)) and for any matrices
A,B over F of the same dimension

rank(1⊗A+ g ⊗B) = rank(A) + rank(g)rank(B).

For the sake of concreteness, let F be a field, let C be an unsatisfiable k-CNF, and let g : X × Y → F
be a good gadget. Our goal is to relate Nullstellensatz refutations of C (under an appropriate encoding) to
monotone span programs computing the function fC,g.

The proof of Theorem 1.1 proceeds, broadly, in two steps: an upper bound and a lower bound. A hint
that the upper bound holds can be seen by comparing Nullstellensatz refutations of C and algebraic tilings
of KW+(fC,g) side-by-side. To be even more concrete, let us suppose that char(F) 6= 2 and we are using
the encoding E∗(C) of the unsatisfiable CNF as a system of polynomials: then, a Nullstellensatz refutation
of E∗(C) is given by a collection of polynomials q1, q2, . . . , qm satisfying

m∑
i=1

piqi = 1, (3)

where pi = E∗(Ci) for each clause Ci and the degree of the refutation is maxi deg(piqi).
On the other hand, by the construction in the preliminaries, the Karchmer-Wigderson game KW+(fC,g)

is the same as the canonical search problem CanSearch(C, g) from Definition 2.13. For the sake of sim-
plicity, let us briefly suppose that the Karchmer-Wigderson game KW+(fC,g) was instead equivalent to the

11

simpler search problem Search(C, g), and therefore that the coordinate rectangles for the function fC,g were
exactly the sets

Xπ = {(x, y) ∈ X n × Yn | z = gn(x, y) consistent with π}
for π ∈ Cert(C). In this simpler setting, an algebraic tiling of KW+(fC,g) can be written as∑

π∈Cert(C)

Aπ =
m∑
i=1

Aπi = 1, (4)

where Aπ is embedded in Xπ for each π, πi is the unique certificate for the equation pi = 0, and the size of
the tiling is

∑
rank(Aπi).

To connect these two representations we use pattern matrices. Namely, if p ∈ F[z1, z2, . . . , zn] is a
polynomial then we can compose p with the gadget g in the natural way to obtain a X n×Yn pattern matrix
p ◦ gn over F defined by

p ◦ gn(x, y) = p(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).

For our purposes, observe that for any clause Ci we have that (piqi) ◦ gn(x, y) 6= 0 only if z = gn(x, y) is
consistent with the certificate πi of pi = 0 — in other words, the pattern matrix (piqi) ◦ gn is embedded in
the coordinate rectangle Xπi for each i. Thus if

∑m
i=1 piqi = 1 is a Nullstellensatz refutation of E∗(C) then∑m

i=1 piqi ◦ gn = 1 is an algebraic tiling of KW+(fC,g)!
A problem with the above argument is that it is not obvious if the size of the algebraic tiling

∑m
i=1 rank(piqi◦

gn) is related to the degree of underlying Nullstellensatz refutation maxi∈[m] deg(piqi). In order to guaran-
tee this, we need to choose the gadget g so that for every polynomial p, the degree of p is directly related
to the rank of the pattern matrix p ◦ gn. In the case that the polynomial p is real-valued, such a gadget was
(implicitly) shown to exist by Sherstov [43].

Theorem 3.2 (Corollary of Theorem 4.3 in [43]). Let p be a real multilinear polynomial over n variables
z1, z2, . . . , zn. For each λ ∈ Z+ there is a gadget gλ such that

rankR(p ◦ gnλ) =
∑

S:p̂(S)6=0

λ|S|.

Using the gadget gλ from the previous theorem would immediately yield the upper bound of Theorem
1.1 when F = R by following the proof sketch above. However, there is a problem in trying to generalize
the proof of Theorem 3.2 to arbitrary fields: in [43] the singular values of p ◦ gnλ are exactly computed for
every real polynomial p, and the singular value decomposition becomes quite useful for other results in that
work. Since singular values are not well-defined over finite fields this proof cannot be directly generalized.

One of the main contributions of the present paper, which we hope will have other applications, is the
following strengthening of Theorem 3.2 to all fields.

Theorem 1.2. Let p ∈ F[z1, z2, . . . , zn] be a multilinear polynomial and let F be a field. For any good
gadget g : X × Y → F we have

rankF(p ◦ gn) =
∑

S:p̂(S)6=0

rankF(g)|S|

where p̂(S) denotes the coefficient of the monomial
∏
i∈S zi in p.

We note that from this theorem we can recover Theorem 3.2 directly: Sherstov’s gadget gλ from the
statement of Theorem 3.2 is good for all fields with char(F) 6= 2 and also satisfies rankR(gλ) = λ. Using
Theorem 1.2 instead of Theorem 3.2, along with the proof sketch above (suitably modified using the search
problem CanSearch(C, g) instead of Search(C, g)), yields the upper bound in Theorem 1.1:

12

Theorem 3.3. Let n, k be positive integers and let C be an unsatisfiable k-CNF with n variables and m
clauses. Let F be a field and let g be a good gadget with rank(g) = O(poly(n)) over F. Then

χF(fC,g) ≤ mnO(NSF(C)).

Furthermore, suppose NSF(C) ≥ εn for some constant ε independent of n. Then for any good gadget g
over F with rank(g) > 21/ε,

χF(fC,g) ≤ m2O(n).

Next let us discuss the lower bound in Theorem 1.1. In principle, a direct proof would proceed by taking
an algebraic tilingA1, A2, . . . , AN of KW+(fC,g) of size χF(fC,g) and then extracting a Nullstellensatz refu-
tation of the underlying system of polynomial equations in C with degree roughly O(logχF(fC,g)/ log n);
indeed, this is the approach that the other lifting theorems in the literature tend to follow [16, 25, 33, 39]. In
particular, approaching the problem this way seems to require extracting a polynomial qi from each matrix
Ai in the tiling such that deg(qi) ≈ log rank(Ai)/ log n. Since the tiling we begin with is chosen arbitrarily
it does not have the structure of a pattern matrix, and so it is not clear how to go about extracting such a
polynomial.

We deviate from this approach, and instead prove a different lifting theorem from the algebraic gap
complexity gapF(C) to Razborov’s rank measure µF(fC,g) — this allows us to exploit the structure of pattern
matrices and Theorem 1.2.

Theorem 3.4. Let n, k be positive integers and let C be an unsatisfiable k-CNF over n variables. Let F be
a field and let g be a good gadget with rank(g) = n2 over F. Then

µF(fC,g) ≥ Ω(ngapF(C)).

Furthermore, suppose gapF(C) ≥ εn for some ε > 0. Then for any good gadget g over F with rank(g) >
21/ε,

µF(fC,g) ≥ 2Ω(n).

A special case of this theorem was proven in [42] when the field F is the real numbers: indeed, the
proof of the special case crucially relied on the “real rank-lifting” Theorem 3.2. We obtain Theorem 3.4
by following the proof from [42] while replacing each application of Theorem 3.2 with the more general
Theorem 1.2. However, we note that this lower bound does not immediately imply the lower bound in
Theorem 1.1 since it is in terms of the algebraic gap complexity and not Nullstellensatz degree. To obtain
Theorem 1.1 we show that the algebraic gap complexity and the Nullstellensatz degree are the same for
unsatisfiable CNFs.

Theorem 3.5. For any unsatisfiable CNF C and any field F we have NSF(C) = gapF(C).

We have abused notation in the statement of Theorem 3.5, as gapF is defined for polynomial systems
of equations and not CNFs. Theorem 3.5 turns out be quite sensitive to the encoding of unsatisfiable CNFs
C as polynomial systems of equations — in particular, we can only prove NSF(C) = gapF(E∗(C)) when
char(C) 6= 2 and NSF(C) = gapF(E(C)) when char(C) = 2. As a result, we define

gapF(C) =

{
gapF(E∗(C)) if char(F) 6= 2

gapF(E(C)) if char(F) = 2.

We conjecture that gapF(E∗(C)) 6= gapF(E(C)) in general for fields of characteristic other than 2, and
note that this is somewhat remarkable since Nullstellensatz degree is easily seen to be independent of the
encoding.

13

The rest of the paper is organized as follows. In Section 4 we prove our main degree-to-rank connection,
Theorem 1.2, and construct two families of good gadgets g. Using this construction, we prove Theorem 3.4
in Section 4.2. In Section 5 we prove Theorem 3.5, showing algebraic gaps and Nullstellensatz are dual.
Finally in Section 6 we prove Theorem 3.3 and then Theorem 1.1 follows as an easy corollary. The main
applications are proved in the Appendix.

4 Rank Lifting Over All Fields

In this section we prove Theorem 1.2, which is our general degree-to-rank lifting theorem, and then Theorem
3.4, which lifts algebraic gap complexity gapF to the rank measure µF.

4.1 Proof of Theorem 1.2 and Gadget Construction

As discussed above, Theorem 1.2 is a generalization of a result of Sherstov, which holds for real polynomials
and only for a particular choice of gadget g. We generalize the “real rank-lifting theorem” to work over
all fields, and also give a general sufficient property on gadgets g for which such a degree-to-rank lift is
possible. In fact, this general property is satisfied by Sherstov’s gadget for all fields of characteristic other
than 2, which we prove after proving Theorem 1.2.

The proof of Theorem 1.2 is elementary, using induction and basic algebraic properties of the Kronecker
product. In contrast, the special case of Theorem 1.2 for real polynomials and a special gadget g [43,
Theorem 4.3] follows from an explicit calculation of the singular values of p ◦ gn.

Theorem 1.2. Let p ∈ F[z1, z2, . . . , zn] be a multilinear polynomial and let F be a field. For any good
gadget g : X × Y → F we have

rankF(p ◦ gn) =
∑

S:p̂(S)6=0

rankF(g)|S|

where p̂(S) denotes the coefficient of the monomial
∏
i∈S zi in p.

Proof. Suppose that A is an m × n matrix and B is a p × q matrix over F. Recall from the preliminaries
that if we think of A and B as mappings A : [m]× [n]→ F, B : [p]× [q]→ F, then the Kronecker product
has a natural interpretation as the mapping A⊗B : ([m]× [p])× ([n]× [q])→ F defined by

(A⊗B)((i, k), (j, `)) = A(i, j)B(k, `). (5)

From this fact we have the following claim.

Claim. Let S ⊆ [n], and let zS =
∏
i∈S zi denote a monomial over F[z1, z2, . . . , zn]. Then

zS ◦ gn =
n⊗
i=1

MS(i)

where MS(i) = g if i ∈ S and MS(i) = 1 otherwise.

Proof of Claim. For notational simplicity suppose that S = {1, 2, . . . , t} for some t ≤ n, and a symmetric

14

calculation applies for general S. Then

zS ◦ gn = [zS(g(x1, y1), g(x2, y2), · · · , g(xn, yn))](x,y)∈Xn×Yn

=

[∏
i∈S

g(xi, yi)

]
(x,y)∈Xn×Yn

= [g(x1, y1)g(x2, y2) · · · g(xt, yt)1(xt+1, yt+1) · · ·1(xn, yn)](x,y)∈Xn×Yn

= g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
t times

⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−t times

=
n⊗
i=1

MS(i),

where we have used Equation 5.

We need the following useful properties of the Kronecker product.

1. For any matrices A and B taking values over F,

rankF(A⊗B) = rankF(A)rankF(B).

2. The Kronecker product is bilinear: if A,B,C,D are matrices then

(A+B)⊗ C = A⊗ C +B ⊗ C

and
A⊗ (C +D) = A⊗ C +A⊗D

whenever the sums are well-defined.

Using these properties and the claim, we prove the lemma by induction on n. Recall from Definition 3.1
that a gadget g : X × Y → F is good if for any matrices A,B over F of the same dimension

rank(1⊗A+ g ⊗B) = rank(A) + rank(g)rank(B).

When n = 0 the polynomial p is just a constant in F, and the matrix p ◦ g0 is the 1 × 1 matrix [p̂(∅)].
In this case the conclusion of the theorem is trivially satisfied — if p̂(∅) = 0 then rank(p ◦ g0) = 0 and if
p̂(∅) 6= 0 then rank(p ◦ g0) = 1 = rank(g)0.

Now, suppose that n ≥ 0, and write p = q + z1r, where q, r ∈ F[z2, z3, . . . , zn]. By the claim and the
bilinearity of the Kronecker product, we can write

p ◦ gn =
∑

S:p̂(S) 6=0

p̂(S)
n⊗
i=1

MS(i)

=
∑

S:p̂(S)6=0
1 6∈S

p̂(S) · 1⊗
n⊗
i=2

MS(i) +
∑

S:p̂(S)6=0
1∈S

p̂(S) · g ⊗
n⊗
i=2

MS(i)

= 1⊗

 ∑
S:p̂(S)6=0

1 6∈S

p̂(S)
n⊗
i=2

MS(i)

+ g ⊗

 ∑
S:p̂(S)6=0

1∈S

p̂(S)
n⊗
i=2

MS(i)


= 1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1).

15

Therefore, applying the inductive assumption, we have

rankF(p ◦ gn) = rankF(1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1))

= rankF(q ◦ gn−1) + rankF(g)rankF(r ◦ gn−1)

=
∑

T :q̂(T)6=0

rankF(g)|T | +
∑

T :r̂(T)6=0

rankF(g)|T |+1

=
∑

S:p̂(S)6=0
1 6∈S

rankF(g)|S| +
∑

S:p̂(S)6=0
1∈S

rankF(g)|S| =
∑

S:p̂(S) 6=0

rankF(g)|S|,

where we note that in the above sums T ⊆ {2, 3, . . . , n} and S ⊆ [n].

In the rest of the subsection, we describe two families of good gadgets: one that will be used for fields
of characteristic other than 2 and the other that will be used for characteristic 2. First, for characteristic
other than 2, we use the following gadget (originally introduced by Sherstov [43], and also used by Göös
and Pitassi [26] and [36, 42]).

Definition 4.1. For any positive integer λ, define the gadget gλ : ([λ]×{−1, 1})×{−1, 1}λ → {−1, 1} by

gλ((x, b), y) = byx.

Lemma 4.2. Let λ be a positive integer and let F be a field with characteristic other than 2. Then gλ is
good and satisfies rank(gλ) = λ.

Proof. To see that rankF(gλ) = λ it will be helpful to describe the structure of the matrix gλ. Let x ∈ [λ]
and b ∈ {±1}. By definition of gλ it should be clear that gλ is equivalent (up to a permutation of rows) to
the matrix (

Fλ
−Fλ

)
where Fλ : [λ] × {±1}λ is defined by Fλ(x, y) = yx. Note that Fλ is full rank (that is, it has rank λ),
implying that rankF(gλ) = rankF(Fλ) = λ.

By the definition of the Kronecker product

12λ,2λ ⊗A+ g ⊗B = 12λ,2λ ⊗A+

(
Fλ ⊗B
−Fλ ⊗B

)
=

(
1λ,2λ ⊗A+ Fλ ⊗B
1λ,2λ ⊗A− Fλ ⊗B

)
.

By adding the top half of the resulting matrix to the bottom half, we obtain(
1λ,2λ ⊗A+ Fλ ⊗B

2 · 1λ,2λ ⊗A

)
,

from which we get the matrix (
Fλ ⊗B

1λ,2λ ⊗A

)
after dividing the bottom half by 2 and then subtracting it from the top half. Since the Kronecker product
is multiplicative with respect to rank we have that rank(Fλ ⊗ B) = λ · rank(B), and thus there exists a
sequence of row operations that can be applied to the matrix Fλ ⊗ B to obtain the matrix (Iλ·rank(B) 0)
where 0 is a block matrix of 0s. Applying these row operations to the top half of the previous matrix we
obtain (

Iλ·rank(B) 0

1λ,2λ−1 ⊗A 1λ,2λ−1 ⊗A

)
.

The rank of this matrix is clearly rankF(A) + λ · rankF(B) = rankF(A) + rankF(gλ)rankF(B).

16

We note that one can remove some unnecessary rows and columns from the gadget gλ to obtain a smaller
gadget that is also good with the same rank. Next, we introduce a new good gadget that will be used for
characteristic 2.

Definition 4.3. For any positive integer λ define hλ : [λ+ 1]× [λ+ 1]→ {0, 1} by

hλ(x, y) =

{
1 if x = y = i for some i ∈ [λ]

0 otherwise.

That is, hλ is the (λ+ 1)× (λ+ 1) identity matrix with one of the 1s deleted.

Lemma 4.4. Let λ be a positive integer and let F be any field. Then hλ is good and satisfies rank(hλ) = λ.

Proof. Clearly rank(hλ) = λ, so we focus on the linearity property of rank. By definition of 1, hλ, and the
Kronecker product, we have

1⊗A =


A A · · · A
A A · · · A

...
A A · · · A

 hλ ⊗B =


B 0 · · · 0 0
0 B · · · 0 0

...
0 0 · · · B 0
0 0 · · · 0 0

 .

Adding them yields the matrix 
A+B A · · · A A
A A+B · · · A A

...
A A · · · A+B A
A A · · · A A

 ,

which is easily verified to be row- and column-equivalent to
B 0 · · · 0 0
0 B · · · 0 0

...
0 0 · · · B 0
0 0 · · · 0 A

 ,

by subtracting the final column from each other column, and then subtracting the last row from all other
rows. The rank property follows since there are λ copies of B on the diagonal.

4.2 Lifting Algebraic Gaps to the Rank Measure

Next, using Theorem 1.2 we show how to lift algebraic gap complexity to the rank measure over all fields.
In the statement of Theorem 3.4 below we abuse notation and write gapF(C) for an unsatisfiable CNF C
to mean gapF(E∗(C)) when char(F) 6= 2 and gapF(E(C)) when char(F) = 2. The proof of the theorem
is actually insensitive to the details of the encoding C as a system of polynomial equations: our choice of
encodings is made due to Theorem 3.5.

17

Theorem 3.4. Let n, k be positive integers and let C be an unsatisfiable k-CNF over n variables. Let F be
a field and let g be a good gadget with rank(g) = n2 over F. Then

µF(fC,g) ≥ Ω(ngapF(C)).

Furthermore, suppose gapF(C) ≥ εn for some ε > 0. Then for any good gadget g over F with rank(g) >
21/ε,

µF(fC,g) ≥ 2Ω(n).

Proof. Let g be a good gadget over F (for concreteness, one can think of g as being gλ if char(F) 6= 2 and g
as hλ if char(F) = 2). Let p ∈ F[z1, z2, . . . , zn] be the polynomial witnessing the algebraic gap complexity
gapF(C), and let A = p ◦ gn be the X n × Yn matrix generated by composing p and g. First suppose that
rank(g) = n2, and we prove

µF(fC,g, A) =
rankF(A)

max
Xπ,α

rankF(A�Xπ,α)
≥ Ω(ngapF(C)).

The numerator is easy to bound. Since g is good, by Theorem 1.2 we have

rankF(A) =
∑

S:p̂(S)6=0

rank(g)|S| ≥ rank(g)n

since deg p = n by the definition of algebraic gaps. For the denominator, let Xπ,α be an arbitrary rectangle
from CanSearch(C, g). We show that

rankF(A�Xπ,α) =
∑

S:p̂�π(S)6=0

rank(g)|S|. (6)

To see Equation 6, we claim that the matrix A�Xπ,α is column-equivalent to the block matrix

[(p�π) ◦ g[n]\vars(π)), (p�π) ◦ g[n]\vars(π)), . . . , (p�π) ◦ g[n]\vars(π))]

for some number of copies of the matrix (p�π) ◦ g[n]\vars(π). Equation 6 immediately follows as the claim
implies that

rankF(A�Xπ,α) = rankF((p�π) ◦ g[n]\vars(π)) =
∑

S:p̂�π(S) 6=0

rank(g)|S|

by Theorem 1.2. So let us prove the claim.
By the definition of CanSearch(C, g), for all (x, y) ∈ Xπ,α we have that gvars(π)(xvars(π), yvars(π)) = π

and xvars(π) = α . Let us first fix any assignment β to yvars(π) so that gvars(π)(α, β) = π. Then for all
(x, y) ∈ Xπ,α such that yvars(π) = β we have

gn(x, y) = gvars(π)(α, β)g[n]\vars(π)(x[n]\vars(π), y[n]\vars(π))

= πg[n]\vars(π)(x[n]\vars(π), y[n]\vars(π)),

thus ranging x[n]\vars(π), y[n]\vars(π) over all values yields the matrix (p�π) ◦ g[n]\vars(π). Ranging yvars(π)

over all β such that gvars(π)(α, β) = π yields the claim and Equation 6.
By Equation 6, we have

µF(fC,g, A) =

∑
S:p̂(S)6=0

rank(g)|S|

max
π∈Cert(C)

∑
S:p̂�π(S)6=0

rank(g)|S|
≥ rank(g)n

max
π∈Cert(C)

∑
S:p̂�π(S) 6=0

rank(g)|S|

18

where the inequality follows since deg p = n. Since p witnesses the algebraic gap of C, we have that
deg p�π ≤ n−gapF(C) for all π ∈ Cert(C). We may clearly assume that p̂(S) = 0 when |S| < n−gapF(C),
and so let us first set rank(g) = n2. Then for any π ∈ Cert(C)

∑
S:p̂�π(S)6=0

rank(g)|S| ≤
k∑
i=0

(
n

gapF(C)− i

)
n2(n−gapF(C)−i)

≤
k∑
i=0

(
en

gapF(C)− i

)gapF(C)−i
n2(n−gapF(C)−i)

≤
k∑
i=0

(
e

gapF(C)− i

)gapF(C)−i
n2n−gapF(C)−i

≤ n2n−gapF(C)
k∑
i=0

(
e

gapF(C)− i

)gapF(C)−i
≤ 6n2n−gapF(C)

since e+ (e/2)2 + (e/3)3 + · · · ≤ 6. Putting it all together, we get

µF(fC,g, A) ≥ n2n

6n2n−gapF(C) = cngapF(C)

where c = 1/6, proving the first part of the theorem.
Next we prove the second part of the theorem. Assume gapF(C) ≥ εn and rank(g) > 21/ε. By Equation

6,

∑
S:p̂�π(S)6=0

rank(g)|S| ≤
k∑
i=0

(
n

gapF(C)− i

)
· rank(g)n−gapF(C)−i ≤ 2n · rank(g)n−gapF(C).

Then

µF(fC,g, A) ≥ rank(g)n

2n · rank(g)n−gapF(C) =
rank(g)gapF(C)

2n
≥ 2(ε log rank(g)−1)n = 2Ω(n).

5 Algebraic Gaps and Nullstellensatz

In this section we prove Theorem 3.5, which we restate here for convenience.

Theorem 3.5. For any unsatisfiable CNF C and any field F we have NSF(C) = gapF(C).

The proof uses the dual characterization of Nullstellensatz degree by d-designs [12, 14]. Let F be a
field of characteristic other than 2, and let P be an unsatisfiable system of multilinear polynomial equations
over F[z1, z2, . . . , zn]. A d-design for P is a linear functional D on the space of polynomials satisfying the
following axioms:

1. D(1) = 1.

2. For all P ∈ F and all polynomials Q such that deg(PQ) ≤ d, we have D(PQ) = 0.

3. D(z2P) = D(zP) for all variables z and all polynomials P of degree less than d− 1.

19

It is known (see, for example, [12]) that the system P does not have a Nullstellensatz refutation of degree d
if and only if it has a d-design, and thus every system of polynomial equations F has a (NS(F)−1)-design.

We prove Theorem 3.5 in two steps: one for characteristic 2 and the other for characteristic different
than 2 (although, the proofs are essentially the same). Before we begin, we will need the following easy
lemma regarding the dual of a CNF. Let C be an unsatisfiable CNF. For any clause C ∈ C let C† denote the
clause obtained by negating every literal in C (so, z is replaced with ¬z and ¬z is replaced with z). Let C†
be the CNF obtained from C by replacing each clause in C with its dual, and note that C† is unsatisfiable if
and only if C is unsatisfiable.

Lemma 5.1. For any field F, NSF(C) = NSF(C†).

Proof. Let C = {C1, C2, . . . , Cm} be an unsatisfiable CNF over variables z1, z2, . . . , zn. We prove NSF(E(C)) =
NSF(E(C†)), and note that NSF(E∗(C)) = NSF(E(C)) over every field. It will be convenient to consider
the following alternative encoding of CNFs C as a system of polynomial equations. For each variable zi
introduce two variables, denoted zi and zi, along with the axioms

∀i : zi(1− zi) = 0, zi + zi = 1

which enforce that zi = 1−zi and zi, zi ∈ {0, 1} (this encoding is typically used in the “polynomial calculus
with resolution”, or PCR, proof system). Then encode each clause Ci as

E�(Ci) =
∏
j∈C+

i

zj
∏
j∈C−i

zi,

which yields an encoding of C in F[z1, z1, z2, z2, . . . , zn, zn]. We show that NSF(E(C)) = NSF(E�(C))
and then that NSF(E�(C)) = NSF(E�(C†)).

First observe that NSF(E(C)) ≤ NSF(E�(C)) is easy: in the refutation of E�(C) replace every literal zi
with zi and every literal zi with 1− zi. So, we focus on proving NSF(E�(C)) ≤ NSF(E(C)).

Suppose we have a Nullstellensatz refutation of E(C), and we construct a Nullstellensatz refutation of
E�(C) of the same degree. For this, it suffices to show that there is a low degree proof of E(C) from E�(C)
for each clause C ∈ C. Write E�(C) as

∏
i∈C+ zi

∏
i∈C− zi, and we use the axioms zj + zj − 1 = 0 for

each j ∈ C+ to derive E(C). To do this, multiply the axiom by −
∏
i∈C− zi, yielding

−
∏
i∈C−

zi(zj + zj − 1) = (1− zj)
∏
i∈C−

zi − zj
∏
i∈C−

zi.

Doing this for each i ∈ C+ and factoring yields∏
j∈C+

(1− zj)
∏
j∈C−

zi −
∏
j∈C+

zj
∏
j∈C−

zi

which yields E(C) (over zi variables) after adding E�(C). Performing this multiplication for each C ∈ C
yields E(C), and it is easy to see that the degree is less than the degree of E(C).

Now let us prove E�(C) = E�(C†). Observe that if
∑

C∈C E�(C)qi = 1 is a Nullstellensatz refuta-
tion of E�(C) then

∑
C∈C E�(C†)q†i = 1 is a Nullstellensatz refutation of C†, where q†i is the polynomial

obtained from qi by exchanging the variables zi and zi for each i ∈ [n] and b ∈ {0, 1}. This shows that
NSF(E�(C)) = NSF(E�(C†)), and thus NSF(C) = NSF(C†).

Using this proposition we are ready to prove Theorem 3.5. First we prove the theorem for fields of
characteristic other than 2.

20

Lemma 5.2. Let F be a field of characteristic other than 2 and let C be an unsatisfiable k-CNF. Then
NSF(C) = gapF(E∗(C)).

Proof. Proposition 2.10 shows that gapF(E∗(C)) ≤ NSF(C), so, we show that gapF(E∗(C)) ≥ NSF(C)
(note that the Nullstellensatz degree of C is independent of the encoding). We show that if E∗(C†) has a d-
design then E∗(C) has algebraic gap complexity at least d+1. By Lemma 5.1, E∗(C†) has an (NSF(C)−1)-
design, and so this completes the proof of the lemma.

So, let D be a d-design for E∗(C†) and for any S ⊆ [n] let zS denote the monomial
∏
i∈S zi. Recall

from Section 2.2 that

E∗(C) =
∏
i∈C+

(1 + zi)
∏
j∈C−

(1− zj) =
∑

T⊆vars(C)

(−1)|T∩C
−|zT . (7)

From D we define a multilinear polynomial p witnessing algebraic gaps for E∗(C). (Note that the d-design
is defined for the dual C† of C, while the algebraic gaps are for C.) We define the (multilinear) polynomial p
by its coefficients: namely, for each S ⊆ [n] let p̂(S) = D(z[n]\S).

Clearly deg p = n since p̂([n]) = D(1) = 1 so we focus on proving that deg(p�π) ≤ n− (d+ 1) for all
certificates π ∈ Cert(E∗(C)). This condition is equivalent to the following system of linear equations on the
coefficients of p̂: for any clause C and any subset S ⊆ [n] with S ∩ vars(C) = ∅ and |S| ≥ n− d we have

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|p̂(S, T). (8)

By the definition of p, to finish the proof we must verify that

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|D(z[n]\(S∪T)).

Letting U = [n] \ (S ∪ vars(C)) we can re-write this equation as

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|D(zUzvars(C)\T).

Observing that (−1)|T∩C
+|(−1)|(vars(C)\T)∩C+| = (−1)|C

+|, the linearity of D and Equation 7 implies that

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|D(zUzvars(C)\T)

= D

 ∑
T⊆vars(C)

(−1)|T∩C
+|zUzvars(C)\T


= D

zU
 ∑
T⊆vars(C)

(−1)|T∩C
+|zvars(C)\T


= D

zU
 ∑
T⊆vars(C)

(−1)|C
+|(−1)|(vars(C)\T)∩C+|zvars(C)\T

 = (−1)|C
+|D(zUE∗(C†)).

Since |S| ≥ n − d and U = [n] \ (S ∪ vars(C†)) we have that |U ∪ vars(C†)| ≤ |[n] \ S| ≤ d, and so
deg(zUE∗(C†)) ≤ d, implying that D(zUE∗(C†)) = 0 by the design property.

21

It is natural to ask what goes wrong in the previous proof if we used the encoding E(C) instead of E∗(C).
When we consider algebraic gaps this implies that the certificates of E(C) take {0, 1}-values instead of
{−1, 1}-values. Now, instead of Equation 7 we obtain

E(C) =
∏
i∈C+

(1− zi)
∏
j∈C−

zj = zC−

 ∑
T⊆vars(C)

(−1)|T∩C
+|zT

 ,

and a problem arises with the alternating factor (−1)|T∩C
+|. Namely, if we consider algebraic gaps with

respect to {0, 1} restrictions, we again get a system of equations on the coefficients p̂(S) of the polynomial
p, but now without the alternation present in Equation 8. Instead, the system of equations is of the following
form: for each set S ⊆ [n] with |S| ≥ n− d we have

0 =
∑
T⊆C+

p̂(S, T)

since all variables in C− are restricted to 0 and all variables in C+ are restricted to 1. However, over
characteristic 2 this alternation is not a problem since −1 = 1!

Lemma 5.3. Let F be a field of characteristic 2 and let C be an unsatisfiable k-CNF. Then gap(E(C)) =
NSF(C).

Proof. This proof is very similar to the proof of Lemma 5.2. LetD be a d-design for E(C†). For any S ⊆ [n]
we let xS denote the monomial

∏
i∈S xi. We define the polynomial p by its coefficients in the same way as

before: namely, for each S ⊆ [n] let p̂(S) = D(x[n]\S). Again, deg p = n since p̂([n]) = D(1) = 1 so we
focus on proving the second property. By definition, since F has characteristic 2 we have

E(C) =
∏
i∈C+

(1− zi)
∏
i∈C−

zi =
∏
i∈C+

(1 + zi)
∏
i∈C−

zi = zC−
∑
T⊆C+

zT .

The second condition in the definition of the gap complexity is now equivalent to the following system of
linear equations on the coefficients of p̂: for any clause C† and any subset S ⊆ [n] with S ∩ vars(C) = ∅
and |S| ≥ n− k + 1 we have

0 =
∑
T⊆C−

p̂(S, T).

By the definition of p, we must therefore verify that

0 =
∑
T⊆C−

D(x[n]\S∪T).

Letting U = [n] \ S ∪ vars(C) we can re-write this equation as

0 =
∑
T⊆C−

D(xUxC+xT).

By linearity of D this is equivalent to

0 = D

xUxC+

 ∑
T⊆C−

xT


= D(xUE(C†)).

22

Since |S| ≥ n − d and U = [n] \ S ∪ vars(C) we have that |U ∪ T | ≤ d, and so deg(xUE(C†)) ≤ d,
implying thatD(xUE(C†)) = 0 by the design property, and we have shown that gapF(C) ≥ d+1. To finish
the proof of this direction, observe that the system E(C†) has an NSF(C)− 1 design by definition, and so it
follows that gapF(C) ≥ NSF(C).

Theorem 3.5 is an immediate corollary of Lemma 5.2 and Lemma 5.3.

6 Lifting Nullstellensatz to Algebraic Tiling

As discussed in Section 3, the upper bounds will be proven by lifting Nullstellensatz upper bounds to alge-
braic tiling upper bounds.

Theorem 3.3. Let n, k be positive integers and let C be an unsatisfiable k-CNF with n variables and m
clauses. Let F be a field and let g be a good gadget with rank(g) = O(poly(n)) over F. Then

χF(fC,g) ≤ mnO(NSF(C)).

Furthermore, suppose NSF(C) ≥ εn for some constant ε independent of n. Then for any good gadget g
over F with rank(g) > 21/ε,

χF(fC,g) ≤ m2O(n).

Proof. For the sake of simplicity, let us consider the encoding E(C) and for each clause Ci let pi = E(Ci).
Let q1, q2, . . . , qm be multilinear polynomials in F[z1, z2, . . . , zn] such that

∑m
i=1 piqi = 1 is a minimum-

degree Nullstellensatz refutation. From this we immediately have that
∑m

i=1 piqi ◦ gn = 1, where 1 is the
X n×Yn all-1s matrix. However, this is not an algebraic tiling since the matrices piqi◦gn are not necessarily
embedded in the rectangles Xπ,α.

To avoid this, observe that for each polynomial pi in C and each z ∈ {0, 1}n we have pi(z) 6= 0 if
and only if z is consistent with the certificate of pi; by extension, for all (x, y) ∈ X n × Yn we have that
piqi ◦ gn(x, y) = 0 unless gn(x, y) is consistent with the certificate of pi. Therefore, letting πi be the
certificate of pi, for each α ∈ X≤k let (piqi ◦ gn)�Xπi,α be the matrix obtained by zeroing all entries of
piqi ◦ gn outside of Xπi,α. Clearly this restricted matrix is embedded within Xπi,α, and furthermore it is
clear that the matrices

{
Xπi,α | πi ∈ Cert(πi), α ∈ X≤k

}
have disjoint support. Thus we can write

1 =
m∑
i=1

piqi ◦ gn =

m∑
i=1

∑
α∈X≤k

(piqi ◦ gn)�Xπi,α.

Since rank(g) = poly(n) then by Theorem 1.2

rankF((piqi ◦ gn)�Xπi,α) ≤ rankF(piqi ◦ gn) =
∑

S:p̂iqi(S) 6=0

rank(g)|S| ≤ nO(NSF(P))

for all i ∈ [m] and α ∈ X≤k. By taking a rank-1 decomposition of the sum, this implies that

χF(fP,g) ≤ m · |X≤k| · nO(NSF(P)) ≤ m|X |k+1nO(NSF(P)) ≤ mnO(NSF(C))

since |X | = O(rank(g)) = O(poly(n)) and NSF(C) ≥ k. An analogous calculation holds if NSF(P) ≥
εn.

With this we can prove Theorem 1.1 as an easy corollary.

23

Theorem 1.1. Let C be a constant-width unsatisfiable CNF on n variables, and let F be any field. For any
good gadget g over F with rank(g) = n2, the lifted function fC,g satisfies

µF(fC,g) = Θ(χF(fC,g)) = nΘ(NSF(C)).

Further, if NSF(C) = Θ(n), then for any good gadget g (of sufficiently large but constant rank),

µF(fC,g) = Θ(χF(fC,g)) = 2Θ(n).

Proof. Let C be a width-k unsatisfiable CNF on n variables and let F be any field. In both cases, the lower
bound holds by applying Theorem 3.4. The upper bound follows from Theorem 3.3 since m ≤ nO(k). To
see this, observe that in the first case k = O(NSF(C)) and in the second case k = O(1) implies nO(k) is
O(poly(n)).

References

[1] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris Smotrovs.
Separations in query complexity based on pointer functions. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 800–813, 2016.

[2] Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin Kothari, Troy
Lee, and Miklos Santha. Separations in communication complexity using cheat sheets and information
complexity. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 555–564, 2016.

[3] László Babai, Anna Gál, János Kollár, Lajos Rónyai, Tibor Szabó, and Avi Wigderson. Extremal
bipartite graphs and superpolynomial lower bounds for monotone span programs. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996, pages 603–611, 1996.

[4] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone span
programs. Combinatorica, 19(3):301–319, 1999.

[5] Yakov Babichenko and Aviad Rubinstein. Communication complexity of approximate nash equilibria.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 878–889, 2017.

[6] Paul Beame, Russell Impagliazzo, Jan Krajı́cek, Toniann Pitassi, and Pavel Pudlák. Lower bound
on hilbert’s nullstellensatz and propositional proofs. In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 794–806, 1994.

[7] Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Technion, 1996.

[8] Amos Beimel. Coding and Cryptology: Third International Workshop, IWCC 2011, Qingdao, China,
May 30-June 3, 2011. Proceedings, chapter Secret-Sharing Schemes: A Survey, pages 11–46. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[9] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span programs. Computa-
tional Complexity, 6(1):29–45, 1997.

24

[10] Amos Beimel and Enav Weinreb. Separating the power of monotone span programs over different
fields. SIAM J. Comput., 34(5):1196–1215, 2005.

[11] Josh Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Homogenization
and the polynomial calculus. Computational Complexity, 11(3-4):91–108, 2002.

[12] Samuel R. Buss. Lower bounds on nullstellensatz proofs via designs. In Proof Complexity and Feasible
Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24,
1996, pages 59–72, 1996.

[13] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci., 62(2):267–289,
2001.

[14] Samuel R. Buss and Toniann Pitassi. Good degree bounds on nullstellensatz refutations of the induction
principle. In Proceedings of the Eleveth Annual IEEE Conference on Computational Complexity,
Philadelphia, Pennsylvania, USA, May 24-27, 1996, pages 233–242, 1996.

[15] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via fourier analy-
sis. Theory of Computing, 10:389–419, 2014.

[16] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint satisfac-
tion requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

[17] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation theo-
rems via pseudorandom properties. CoRR, abs/1704.06807, 2017.

[18] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm to find
proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 174–183, 1996.

[19] Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA, pages 29–33, 1973.

[20] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hun-
gary, 32(3-4):429–437, 1996.

[21] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders real
communication (and what it means for proof and circuit complexity). In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 295–304, 2016.

[22] Anna Gál. A characterization of span program size and improved lower bounds for monotone span
programs. Computational Complexity, 10(4):277–296, 2001.

[23] Anna Gál and Pavel Pudlák. A note on monotone complexity and the rank of matrices. Inf. Process.
Lett., 87(6):321–326, 2003.

[24] Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual Symposium on Founda-
tions of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1066–1076,
2015.

25

[25] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles are
nonnegative juntas. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 257–266, 2015.

[26] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
847–856, 2014.

[27] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition number.
In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1077–1088. IEEE Computer Society,
2015.

[28] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, pages
132–143. IEEE Computer Society, 2017.

[29] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communication com-
plexity hardness to time-space trade-offs in proof complexity. In Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
233–248, 2012.

[30] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science &
Business Media, 2012.

[31] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-logarithmic
depth. SIAM J. Discrete Math., 3(2):255–265, 1990.

[32] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, pages 102–111,
1993.

[33] Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by juntas and
weakly-exponential lower bounds for LP relaxations of csps. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 590–603, 2017.

[34] James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite
programming relaxations. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
o of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 567–576, 2015.

[35] Igor Oliveira. Unconditional Lower Bounds in Complexity Theory. PhD thesis, Columbia University,
2015.

[36] Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone computation.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 1246–1255, 2017.

[37] Aaron Potechin. Bounds on monotone switching networks for directed connectivity. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, pages 553–562, 2010.

26

[38] Pavel Pudlák and Jirı́ Sgall. Algebraic models of computation and interpolation for algebraic proof
systems. In Proof Complexity and Feasible Arithmetics, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, April 21-24, 1996, pages 279–296, 1996.

[39] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403–
435, 1999.

[40] Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in computa-
tional complexity. Combinatorica, 10(1):81–93, 1990.

[41] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity,
7(4):291–324, 1998.

[42] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential lower bounds
for monotone span programs. Electronic Colloquium on Computational Complexity (ECCC), 23:64,
2016.

[43] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000, 2011.

[44] Avi Wigderson.⊕ l/ poly = nl / poly. http://www.math.ias.edu/˜avi/PUBLICATIONS/MYPAPERS/W94/proc.pdf.
Accessed: 2017-09-30.

A Monotone CSP-SAT and Linear Secret Sharing Schemes

Monotone CSP-SAT. It turns out that the function fC,g has a natural interpretation as a monotone variant
of the CSP-SAT problem, which we will now spell out in some detail.

Let Σ be a finite alphabet and let H = (L ∪ R,E) be a bipartite graph. In H , we think of the left
vertices L correspond to a collection of Σ-valued variables, and the right vertices R correspond to a set of
constraints over these variables. Given a constraint C ∈ R, let vars(C) denote the variables involved in C
(or, equivalently, the neighborhood of C in the graph H).

Definition A.1. Let H = (L ∪ R,E) be a bipartite graph, let Σ be a finite alphabet, and let N =∑
C∈R |Σ||vars(C)|. The monotone function SATΣ,H : {0, 1}N → {0, 1} is defined as follows. An in-

put x ∈ {0, 1}N defines a CSP instance H(x) with topology H by specifying for each constraint C in H a
truth table Σvars(C) → {0, 1} of satisfying assignments to that constraint. Given an input x, SATΣ,H(x) = 1
if and only if the CSPH(x) is satisfiable.

For any Σ, H observe that SATΣ,H is monotone since replacing a 0 with a 1 in the truth table of any
constraint preserves the constraint’s satisfying assignments, and furthermore it is clearly always computable
in NP as we can guess and verify a satisfying assignment. Note that if H represents the topology of a
linear-size d-CSP then N = Θ(n) if d, |Σ| are constants.

Now, suppose that C is an unsatisfiable k-CSP on Z-valued variables z1, z2, . . . , zn, and let H = (L ∪
R,E) be the constraint graph representing the topology of C. If g : X ×Y → Z is any function then there is
a natural way to convert inputs x ∈ X n and y ∈ Yn in the canonical search problem CanSearch(C, g) into
accepting and rejecting instances of SATX ,H :

Accepting Inputs U . Each x ∈ X n maps to accepting input Y (x) of SATX ,H for which the unique satis-
fying assignment to the CSP encoded by Y (x) is x. Formally, for each constraint C ∈ R, the truth
table X vars(C) → {0, 1} is entirely 0 except for a single 1 in the position x�vars(C).

27

Rejecting Inputs V . Each y ∈ Yn into the rejecting inputN(y) of SATX ,H as follows. For each constraint
C ∈ R, the truth table tC : X vars(C) → {0, 1} has tC(α) = 1 if and only if gvars(C)(α, y�vars(C)) ∈
Zvars(C) satisfies the corresponding constraint C of the underlying CSP C.

It is clear that the inputs Y (x) are accepted by SATX ,H , since the CSP encoded by Y (x) is satisfied
by x. To see that the inputs N(y) are rejecting inputs, suppose otherwise and let x ∈ Xm be the satisfying
assignment of the CSP encoded by N(y). By definition of N(y), it follows that for each constraint C ∈ C
we have tC(x�vars(C)) = 1, which only occurs if gm(x, y) is a satisfying assignment to the CNF formula C.
This is a contradiction since C is unsatisfiable.

Proposition A.2. Let C be an unsatisfiable CSP and let H be the bipartite graph encoding the topology of
C. The function fC,g is the same as the partial function obtained by restricting SATX ,H to U and V .

Linear Secret Sharing Schemes. Closely related to monotone span programs are secret sharing schemes,
which are a basic cryptographic device defined as follows. We have a “dealer” who has some “secret” (say,
an element k of a field F), a set of n parties, and an upward-closed collection A ⊆ 2[n] of subsets of the n
parties called an access structure. A secret sharing scheme for A is a method of sharing information with
the n parties such that any set of parties in A can reconstruct the dealer’s secret, while any subset of parties
not inA are unable to reconstruct the secret. For the sake of completeness we record the definition of secret
sharing schemes here and refer the interested reader to [8] for further details.

Definition A.3. A distribution scheme over a domain K is a pair Σ = (Π, µ) where µ is a probability
distribution over a set R and Π maps pairs in K×R to tuples K1×K2×· · ·×Kn, where Kj is the domain
of shares of player pj . Given a distribution scheme Σ, a dealer distributes a secret k ∈ K to n players as
follows: first, the dealer samples a random string r ∈ R and computes Π(k, r) = (s1, s2, . . . , sn). Then for
each i ∈ [n], the dealer privately communicates share si to the ith player. A distribution scheme is a secret
sharing scheme for an access structure A ⊆ 2[n] if it satisfies the following two properties:

Perfect Reconstruction. The secret can be reconstructed by any set of parties in the access structure, i.e.
for any set of parties A ∈ A there exists a mapping RA :

∏
i∈AKi → K such that for every k ∈ K

Pr[RA(Π(k, r)A) = k] = 1.

Perfect Privacy Every unauthorized set cannot learn anything from their shares (in the statistical sense). In
other words, for any B 6∈ A, for every pair of secrets k1, k2 ∈ K, and every vector of shares v(si)i∈B
we have

Pr[Π(k1, r) = v] = Pr[Π(k2, r) = v].

The information ratio of a distribution scheme is max1≤j≤n log |Kj |/ log |K|, and measures the relative
amount of information shared between parties. A secret sharing scheme is linear over a field F if K = F,
the random strings are field elements chosen uniformly random from F, and the shares are vectors over F
chosen by taking linear combinations of the secret and the random strings.

Linear secret sharing schemes are an important subclass of secret sharing schemes as many of the
schemes from the literature turn out to be linear. Karchmer and Wigderson [32] proved that monotone
span programs over a finite field F of size s for a monotone function f : {0, 1}n → {0, 1} imply secret
sharing schemes with information ratio s for the natural access structure associated with f (take all sub-
sets A ⊆ [n] such that f(A) = 1, using set-theoretic notation for boolean functions). Conversely, Beimel
showed that linear secret sharing schemes imply monotone spans programs, and thus the two objects are
equivalent [7].

28

Theorem A.4. Let f : {0, 1}n → {0, 1} be a monotone boolean function and let Af denote the related
access structure. For any finite field F there exists a monotone span program for f of size s if and only if
there exists a linear secret sharing scheme for Af with information ratio s.

B Applications

Let us restate Theorem 1.1 for convenience.

Theorem 1.1. Let C be a constant-width unsatisfiable CNF on n variables, and let F be any field. For any
good gadget g over F with rank(g) = n2, the lifted function fC,g satisfies

µF(fC,g) = Θ(χF(fC,g)) = nΘ(NSF(C)).

Further, if NSF(C) = Θ(n), then for any good gadget g (of sufficiently large but constant rank),

µF(fC,g) = Θ(χF(fC,g)) = 2Θ(n).

Using this theorem we first characterize the complexity of computing the layered st-connectivity func-
tion by monotone span programs over all fields. Let m,n be positive integers, and let Gn,m denote the
following directed graph with mn + 2 vertices V = {vi,j | i ∈ [n], j ∈ [m]} ∪ {s, t}. We think of the ver-
tices as being arranged in m+ 2 layers indexed by i = 0, 1, . . . ,m+ 1: layer 0 contains the vertex s, layer
m+ 1 contains the vertex t, and the jth layer for j = 1, 2, . . . ,m contains vertices {vi,j | i ∈ [n]}. Finally,
for each pair of adjacent layers Li, Li+1 add all edges oriented from Li to Li+1, and note that the final graph
contains mn2 + 2n edges.

With this graph in mind, the layered st-connectivity function STCONNn,m is defined as follows: the
input is a boolean string of length mn2 + 2n describing a subgraph of the graph Gn,m defined above, and
the function outputs 1 if and only if there is a directed path from s to t. In a seminal work, Karchmer
and Wigderson [31] showed that optimal monotone formulas computing STCONNn,m have size mΩ(logn)

— the upper bound follows from recursive doubling, and the lower bound was shown via communication
complexity. Their lower bound was improved by Potechin [37] to hold for monotone switching networks,
and by Robere, Pitassi, Rossman and Cook [42] to real monotone span programs and monotone comparator
circuits. We show the same theorem holds for monotone span programs over all fields. This fact is notable as
non-monotone span programs over GF (2) are known to be able to compute STCONNn,m efficiently [44].

Theorem B.1. For all sufficiently large n and for every field F, mSPF(STCONN2n2,n) = nΘ(logn).

Proof. The upper bound holds since monotone span programs can simulate monotone formulas. For the
other direction, Buss and Pitassi [14] show that NSF(INDm) = Ω(logm) where INDm is the unsatisfiable
CNF formula

INDm = z1 ∧ (z1 ∨ z2) ∧ (z2 ∨ z3) ∧ · · · ∧ (zm−1 ∨ zm) ∧ zm,

and several previous works [26,39,42] have observed that if g : X×Y → Z is a gadget then STCONN|X |,m
is a total extension of fINDm,g. Applying the lower bound from Theorem 1.1 completes the proof.

Since polynomial-size monotone circuits can compute STCONNn,m, the previous theorem yields a
quasipolynomial separation between mSPF and mP over all fields F. We can improve this to a (weakly)
exponential separation by considering the GEN function, defined next.

Let n be a positive integer and let T ⊆ [n]3 be a subset of triples of [n]. We say that T generates a point
w ∈ [n] if w = 1, or if there is a triple (u, v, w) ∈ T such that T generates u and v. The GENn problem
is then defined as follows: as input, we receive a subset T ⊆ [n]3, encoded as a bitstring of length n3, and
must decide whether or not T generates the point n.

29

Let h be a positive integer. A pyramid graph of height h is the graph ∆h on n =
(
h
2

)
vertices V , which

are partitioned into h sets V1, V2, . . . , Vh where Vi has i vertices. Ordering each Vi as vi,1, vi,2, . . . , vi,i;
then for each i = 2, 3, . . . , h, if vi,j and vi,j+1 are adjacent vertices in Vi add two edges (vi,j , vi−1,j) and
(vi,j+1, vi−1,j). A pyramid instance of GEN is a collection of triples T which is naturally isomorphic to a
pyramid graph: the top point of the pyramid is n, and we assume that the point 1 is connected to each of
the points v1,i in the first layer of the pyramid by triples (1, 1, i). Define ∆h-GENn to be the restriction
of GENn wherein one only needs to recognize if the input generates n by a height-h pyramid instance ∆h

(necessarily n ≥
(
h
2

)
).

It is not hard to see that the ∆h-GENn problem has polynomial-size monotone circuits, and it has been
used in several previous works studying the strength of circuit classes inside mP. For instance, Raz and
McKenzie [39] have used the function to separate mNCi from mNCi+1 for all i, and Chan and Potechin [15]
used it to prove strong lower bounds against monotone switching networks.

Theorem B.2. Let h be a positive integer and let n =
(
h+1

2

)
. For every field F, mSPF(∆h-GEN2n3) =

NΘ(Nε) for some constant ε > 0 and N is the number of input variables to the function.

Proof. First we note that N ≤ O(n6) ≤ O(h12). The upper bound holds since there are nO(h) pyramid
instances of GENn of height h, and by brute force we can construct a monotone formula checking each of
these with the same size. We therefore focus on the lower bound.

Consider the following unsatisfiable CNF Peb∆h
. There is one boolean variable zv for each vertex v in

∆h, and we have the following clauses:

1. The target clause (¬zt).

2. For each source vertex u ∈ R add the source clause (zu).

3. For each internal vertex w with in-neighbours W ⊆ V add the edge clause
(
zw ∨

∨
v∈W ¬zv

)
.

Let g : X × Y → F be the matrix from Theorem 1.1, and note that |X | ≤ 2n2. It has been observed by
several works [26, 39, 42] that ∆h-GENn|X | is a total extension of the partial function fPeb∆h

,g, and thus
lower bounds on NSF(Peb∆h

) will yield the theorem.
Buresh-Oppenheim et al. [11] show that the formula PebG requires Nullstellensatz degree at least the

pebbling number of the graph G over every field. Cook [19] showed that the pebbling number of the height-
h pyramid ∆h is Ω(h). Applying the lower bound from Theorem 1.1 and using the crude bounds on N in
terms of h and n yields the theorem.

Finally, we come to the question of separating the strength of monotone span programs over different
fields. Beimel and Weinreb showed that for each prime p there is a function with polynomial size monotone
span programs over GF (p), but all fields with characteristic different from p require monotone span pro-
grams of size nΩ(

√
logn). We improve this separation to its limit: we show that for each prime p there is a

function f with polynomial-size monotone span programs over fields of characteristic p, but for all fields of
characteristic q 6= p the function f requires monotone span programs of strongly exponential size (i.e 2Ω(N)

where N is the number of input variables). The function f is also computable in NP, and thus we obtain
strongly exponential lower bounds for monotone span programs over all characteristics, nearly matching the
lower bounds for non-explicit functions obtained by counting arguments [30].

Theorem B.3. For every prime p there exists a monotone boolean function f with N inputs such that f
satisfies mSPF(f) = poly(N) for all fields F of characteristic p, but for every field F′ of characteristic
q 6= p, mSPF′(f) = 2Θ(N). Furthermore, the function is f is computable in NP.

Proof. Buss, Grigoriev, Impagliazzo and Pitassi [13] describe, for each positive integer n and each prime p
a constant-width linear-size unsatisfiable CNF formula MODp

n satisfying:

30

1. For each field F of characteristic p, NSF(MODp
n) ≤ O(1), and

2. For each field F of characteristic q 6= p, NSF(MODp
n) = Ω(n).

(In fact, each of these bounds holds for the stronger polynomial calculus proof system.) Applying the upper
and lower bounds, respectively, from Theorem 1.1 immediately yields the result.

31
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

