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Abstract
A map f : [n]` → [n]n has locality d if each output symbol in [n] = {1, 2, . . . , n}

depends only on d of the ` input symbols in [n]. We show that the output distribution
of a d-local map has statistical distance at least 1−2 · exp(−n/ logcd

n) from a uniform
permutation of [n]. This seems to be the first lower bound for the well-studied prob-
lem of generating permutations. Because poly(n)-size AC0 circuits can sample almost
uniform permutations, the result also separates AC0 sampling from local.

As an application, we prove that any cell-probe data structure for storing permuta-
tions π of n elements such that π(i) can be retrieved with d non-adaptive probes must
use space ≥ log2 n! + n/ logcd

n . This is arguably the first lower bound for a natural
data structure problem that is obtained from a sampling lower bound.

1 Introduction, results, and discussion

Permutations are fundamental objects which permeate computer science. A large literature
has studied several problems on permutations, such as fast generation of a nearly uniform
permutation and data structures for permutations.

Generating nearly-uniform permutations efficiently. There exist several surprising
algorithms to generate permutations efficiently. Matias and Vishkin [MV91] and Hagerup
[Hag91] show that poly(n)-size AC0 circuits can generate a uniform random permutation of
[n] = {1, 2, . . . , n}, up to an exponentially small statistical error. (Their context is slightly
different, for a streamlined presentation of the said result see [Vio12a].) They give several
algorithmic applications of this result, and more applications have been found since then.
The latter include sampling the output of any symmetric function together with its input in
AC0 [Vio12a], and constructing efficient secret-sharing schemes [BIVW16].

Another line of works studies generating random permutations using switching networks.
A recent paper by Czumaj [Czu15] gives an explicit construction of switching networks
with depth O(log2 n) and O(n log n) switches that generate a nearly-uniform permutation
on n elements, improving on previous work (see [Czu15] for discussion). The paper also
conjectures that the depth can be improved to O(log n), and proves a partial result in this
direction.
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On the side of lower bounds apparently nothing was known, and the above algorithms
and conjectures arguably explain the difficulty of proving negative results. In this paper
we prove a lower bound in the cell-probe model, with the restriction that all probes are
non-adaptive. Specifically, we divide the memory in ` cells of log n bits (all logarithms in
this paper are in base 2 unless otherwise noted), which are initialized uniformly at random.
We consider algorithms that output n cells representing a function from [n] to [n] in the
natural way. Each output cell only depends on a small number d of input cells. There is no
restriction on the number ` of input cells the algorithm may use, though ` ≤ dn without loss
of generality.

Theorem 1. Let f : [n]` → [n]n be a d-local map, i.e., a map such that each output symbol
in [n] depends only on d input symbols in [n]. Let Π ∈ [n]n be a random permutation of n
elements. Let f(U) be the output distribution of f for a uniformly chosen U in [n]`. Then

the statistical distance between f(U) and Π is at least 1−2 · exp(−n/ logcd

n) for an absolute
constant c, where exp(x) = 2x.

Theorem 1 remains nontrivial for locality d up to d = ε log log n for a small enough
constant ε. (The factor 2 in the conclusion makes the bound trivially true if d is larger.)
Note that the 1-local identity map f(x) = x achieves statistical distance 1 − exp(O(n)), so
for small locality the statistical bound in Theorem 1 is not far from optimal. Such a large
statistical distance lower bound enables an application discussed next.

Data structures. The work [Vio12a] shows that sampling lower bounds with large sta-
tistical distance such as in Theorem 1 imply lower bounds for static data structures. This
approach to obtain data structure lower bounds remains mostly unexplored. Although some
data structure lower bounds proved this way appear in [Vio12a, LV12, BIL12], these bounds
are either very weak or concern unnatural data structure problems. We suggest that the
sampling approach could be used to attack some of the long-standing open problems in the
area. Two central open problems are improving Siegel’s state-of-the-art 1989 lower bound
(Theorem 3.1 in [Sie04], rediscovered in [Lar12]), or proving lower bounds for the succinct
dictionary problem (Problem 5 in Patrascu’s obituary [Tho13]).

In this paper we obtain arguably the first new, natural data structure lower bound that
is obtained from a sampling lower bound. The data structure problem is that of storing a
permutation π : [n] → [n] so that π(i) can be retrieved fast. At one extreme one can use
n log2 n bits to store the permutation and answer each query π(i) by reading just one cell
of log2 n bits, at the other extreme we can use the minimum amount dlog2 n!e of space and
answer queries by reading the entire memory. Our goal is to understand what is the right
tradeoff between the time it takes to answer a query and redundancy, the amount of extra
space the data structure needs over dlog2 n!e. As a corollary to Theorem 1 we obtain the
following tradeoff.

Corollary 2. Consider any cell-probe data structure for storing permutations π of n elements
such that π(i) can be retrieved with d non-adaptive probes in cells of log2 n bits. The data

structure must use space ≥ log2 n! + n/ logcd

n bits.
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Proof. If we fill the memory uniformly at random, we will be uniform over encodings of
permutations with probability 2−r. Hence if we run the data structure algorithm on uniform
memory we obtain a sampler with statistical distance < 1 − 2−r. The result then follows
from Theorem 1.

In particular, for constant time d = O(1) the redundancy is r ≥ n/poly log n. By contrast,
for other important problems there are surprising data structures that can achieve d = O(1)
and r = O(1), and are also non-adaptive [Pǎt08, DPT10] (for an exposition of the relevant
result in [DPT10] see [Vio09], Lectures 23-24).

Previous work has studied the problem of storing π so that π(i) and both π−1(i) can be
retrieved fast. [MRRR11] give several data structures for this problem. In particular, they
give a data structure that can store a permutation using log2 n!+n/ log2−o(1) n bits such that
π(i) (and both π−1(i)) can be computed in time O(log n)/ log log n. This data structure is
based on a switching network known as the Benes network. They achieve their saving by
“brute-forcing” certain small components.

On the side of lower bounds, Golynski shows in [Gol09] that any cell-probe data structure
for representing a permutation π : [n] → [n] so that π can be computed with t cell probes
and π−1 with t′ must use log2 n!+Ω(n log n)/(t · t′). This bound essentially matches the data
structure in [MRRR11] for t = log n, but tight bounds are not known in other parameter
regimes. His technique is unlikely to apply to our simpler problem where we do not have
the inverse queries π−1(i). In fact, none of the available techniques seems applicable for
this problem: essentially, the only other technique available is the one in [PV10]. That
technique requires that the mutual information between two sets of t queries is Ω(t). However,
a calculation shows that in the case of permutations the mutual information is at most
O(t(t/n)), and this prevents us from obtaining any non-trivial bound reasoning as in [PV10].

The complexity of distributions. Theorem 1 contributes a new type of lower bounds
to the growing literature on lower bounds for sampling tasks [Vio12a, LV12, Vio14, DW11,
Vio12b, BIL12, BCS14, Vio16]. Previously, lower bounds with statistical distance approach-
ing 1 exponentially fast were only known for the problem of sampling error-correcting codes.
These lower bounds applied to AC0 samplers. By contrast, as mentioned at the beginning of
this paper, AC0 can sample nearly uniform permutations. For tasks that can be sampled in
AC0, the previous sampling lower bounds were much weaker. Thus, this work gives a new,
strong separation between the sampling power of AC0 and small-locality maps.

The role of adaptivity. We emphasize that the long-standing data-structure open prob-
lems mentioned earlier are also open for non-adaptive probes, and, as also mentioned earlier,
some of the best-known data structures are non-adaptive. On the other hand, the succinct
data structure for permutations in [MRRR11] does use adaptivity to follow a path in a
switching network.

So far, in the case of static data structure lower bounds (which is our interest here), the
restriction to non-adaptive probes has not made it easier to obtain lower bounds. This is in
stark contrast with dynamic data structure problems, where for non-adaptive data structures
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we have polynomial lower bounds [BL15], wheres for non-adaptive data structures the best
available lower bounds remain polylogarithmic (for the state-of-the-art see [LWY17]).

Open problems Despite a lot of effort, we have not been able to extend Theorem 1 to
the case of adaptive probes.

Challenge: Let f : [n]` → [n]n be a map such that each output symbol depends on d = O(1)
adaptively chosen input cells. Show that the output distribution of f has statistical distance
Ω(1) from a uniform random permutation.

Another question is to separate the power of adaptive and non-adaptive cell probes.
Consider the distribution D over [n]R+n where the first R cells Di are uniform in [n]R and
each other cell is sampled as follows: Pick a uniform, independent index j in {1, 2, . . . , R}
and output Dj. By definition D can be sampled with 2 adaptive probes. We conjecture that
for R = n1−Ω(1) sampling D requires a large number of non-adaptive probes.

Finally, recall that the statistical bound in Theorem 1 is not far from optimal for small
locality. At the other end of the spectrum, it is an interesting question what is the minimum
locality sufficient to reduce the statistical distance to 1− Ω(1).

1.1 Techniques

Theorem 1 is proved by induction on the locality d. Consider a d-local map f and write
f = (f1, f2, . . . , fn) where fi is the function outputting the cell i. In the induction step, we
start with a relatively standard covering argument. That says that either we have (A) a
small number of input cells C that intersect the probes made by all the fi, or else (B) we
have many fi whose set of probes are disjoint.

In case (A), suppose we fix the contents of the cells C. Because every fi probes a cell in
C, this reduces the locality of f . Thus, we can write our sampler f as a convex combination
of samplers with smaller locality, one for each possible fixing of the contents of the cells
in C. To analyze this step we show (Corollary 5) that if D is a distribution that is a
convex combination of 2s distributions Di (the samplers obtained by any possible fixing of
the s = |C| log n bits in the cells C) where each Di has statistical distance ≥ 1 − ε from
a target distribution T , then D has distance ≥ 1 − csε from T . By setting the parameters
appropriately, we can ensure that ε� 1/cs, concluding this case.

In case (B), we have many fi which are independent. We obtain large statistical distance
just considering these independent fi. The high-level idea is that if the fi have small entropy,
then the result follows because a uniform permutation has large entropy. Otherwise, if the
fi have high entropy we can show by the birthday paradox that the outputs of the fi will
collide (i.e., fi = fj for some i 6= j) with high probability. Since this never happens for
permutations, we obtain statistical distance.

Formalizing case (B) requires finding the right notion of “high-entropy.” If we have t
independent fi, we define one fi to be “high-entropy” if for every set S of t/2 values, the
probability that fi ∈ S is Ω(|S|/n). Now, if there are t/2 functions fi that have high-
entropy, then we can run a folklore, simplified proof of the birthday paradox: fix the other
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t/2 functions arbitrarily, and define S to be the set of values they take. By high-entropy and
independence, the probability of not having a collision will be

(1− Ω(|S|/n))t/2 ≤ e−Ω(t2/n)

which is small enough when t = n0.5+Ω(1). Since a uniform permutation by definition never
has a collision, we obtain statistical distance 1− e−Ω(t2/n).

If on the other hand we have t/2 functions which are low entropy, we use concentration
of measure to show that they will land in their sets S too often. Here again we obtain a
statistical distance 1− e−Ω(t2/n).

We shall start with t = Ω(n) for d = 0, and then progressively update it via t → t2/n
from the above abounds. Losing along the way log n factors that arise from having cells of
log n bits, this gives the bound in Theorem 1.

2 Proof of Theorem 1

In this section we prove Theorem 1. First, in §2.1 we show that a convex combination of
distributions that are distant from a target distribution remains distant. Then in §2.2 we
show that any collection of independent random variables is distant from uniform variables
conditioned on not colliding. Finally, in §2.3 we use these results to prove Theorem 1.

2.1 Combo of far distributions is far

We start with a lemma about two distributions and then we obtain our main result as a
corollary.

Definition 3. The L1 norm of a vector u is L1(u) :=
∑

x |u(x)|. The statistical distance
between two vectors is ∆(u, v) := 1

2
L1(u− v).

Lemma 4. Let p and q and t be distributions over the same arbitrary domain. Let r =
1
2
(p + q) be a convex combination of p and q. If ∆(p, t) ≥ 1 − ε and ∆(q, t) ≥ 1 − ε

then ∆(r, t) ≥ 1 − O(ε). Moreover, there exist distributions for which the conclusion is
∆(r, t) = 1− 2ε.

Proof. First, we claim that without loss of generality we can assume that our distributions
are over only O(1) points. Indeed, if you have two points x and y in the domain where the
order of p, q, r, t is the same (e.g., p(x) > t(x) > r(x) > q(x), and the same for y) then you can
sum the two points. This does not change the statistical distances (because all the absolute
values have the same “sign”). Specifically, it clearly does not change the distances between t
and p and q. To illustrate what happens to the distance between r and t, consider two points
x and y where r(x) > t(x) and r(y) > t(y). Let’s put all the mass of x and y on a new point
z. Then we have r(z) = (p(x) + p(y) + q(x) + q(y))/2 = r(x) + r(y) > t(x) + t(y) = t(z).
So the contribution to the statistical distance for z is r(z)− t(z) = r(x) + r(y)− t(x)− t(y)
which is the sum of the contributions for x and y.
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Because there are only O(1) choices for the order of p, q, r, t, we can have distributions
over O(1) points with all the distances preserved. Now we claim that on every point, if t ≥ ε
then max{p, q} ≤ ε, and if max{p, q} ≥ ε then t ≤ ε. This is because otherwise the distances
∆(p, t),∆(q, t) are contradicted.

Now modify the distributions p, q, t by setting them to 0 if they are ≤ ε. This only
changes their mass by O(ε), which is where we use that the support has size O(1). Call
the new vectors p′, q′, t′. Note these are non-negative vectors with sum (aka L1 norm) in
[1−O(ε), 1]. Let r′ = (p′ + q′)/2, which has sum in [1−O(ε), 1] too. Also,

∆(r, r′) =
1

2

∑
x

|p(x) + q(x)

2
− p′(x) + q′(x)

2
| ≤ 1

2

∑
x

|p(x)− p′(x)

2
|+ |q(x)− q′(x)

2
|

=
1

2
(∆(p, p′) + ∆(q, q′)) ≤ O(ε).

Now note ∆(r′, t′) ≤ ∆(r′, r)+∆(r, t)+∆(t, t′). So ∆(r, t) ≥ ∆(r′, t′)−O(ε). There remains
to prove a lower bound on ∆(r′, t′). But this is easy, for either t′ ≥ 0 or exclusively r′ ≥ 0.
So ∆(t′, r′) = 1

2

∑
x |t′(x)−r′(x)| = 1

2

∑
x(t′(x)+r′(x)) ≥ 1−O(ε), because recall the vectors

have sum 1−O(ε).
To prove the last sentence in the lemma statement, consider the domain {1, 2, 3, 4} and

distributions as follows:
p(1) = ε, q(1) = 0, t(1) = ε/2,
p(2) = 0, q(2) = ε, t(2) = ε/2,
p(3) = 0, q(3) = 0, t(3) = 1− ε,
p(4) = 1− ε, q(4) = 1− ε, t(4) = 0.
Note that r(i) = p(i) = q(i) for i ∈ {3, 4}. We have ∆(p, t) = ∆(q, t) = ε/2 + 1 − ε =

1− ε/2, but ∆(r, t) = 1− ε.

Corollary 5. Let r and t be distributions over the same arbitrary domain. Suppose that
r = 1

2s

∑2s

i=1 pi and that each pi is a distribution with ∆(pi, t) ≥ 1−ε. Then ∆(r, t) ≥ 1−csε,
for a constant c.

Proof. We proceed by induction on s. Let c be a constant so that Lemma 4 has conclusion
1− cε. Write r = 1

2
(r1 + r2) where the ri are convex combinations of 2s−1 distributions. By

hypothesis ∆(r1, t) ≥ 1−cs−1ε, and the same holds for r2. By Lemma 4, ∆(r, t) ≥ 1−csε.

2.2 Independent vs. permutation

We shall need a lemma about concentration of measure.

Lemma 6. Let x1, x2, . . . , xm be random variables such that for every i, conditioned on any
outcome of all the variables except xi, we have Pr[xi = 1] ≥ p. For all sufficiently small p
we have Pr[

∑
xi ≤ 0.5pm] ≤ exp(−Ω(pm)).

Similar lemmas have been proved many times. For completeness we give a proof relying
on a bound in [PS97]. We use the presentation in [IK10].
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Proof. Define yi := 1−xi. We have Pr[yi = 1] ≤ 1−p conditioned on any outcome of all the
y variables except yi. We need to bound Pr[

∑
yi ≥ m(1 − 0.5p)]. The variables yi satisfy

the property that for any set S ⊆ [m], Pr[∀i ∈ S, yi = 1] ≤ (1−p)|S|, because the probability
can be written as Pr[yi1 = 1] · Pr[yi2 = 1|yi1 = 1] · · · , where i1, i2, . . . are the elements of S,
and each term is at most 1− p. So we can apply Theorem 1.1 in [IK10] to obtain

Pr[
∑

yi ≥ m(1− 0.5p)] ≤ e−mD(1−0.5p|1−p)

where D is the relative entropy defined as D(x|y) = x loge(x/y)+(1−x) loge((1−x)/(1−y)).
From the definition we observe D(x|y) = D(1 − x|1 − y), hence the above upper bound is
e−mD(0.5p|p). Finally, we claim that D(0.5p|p) ≥ Ω(p). Indeed, again by definition we have

D(0.5p|p) = 0.5p loge 0.5 + (1− 0.5p) loge

1− 0.5p

1− p
.

The first summand is about 0.5p · (−0.693 . . .). The second can be written as (1 −
0.5p) loge(1 + 0.5p/1−p). For small enough p this converges to 0.5p. More precisely we have
loge(1 + x) ≥ x− x2/2 by Taylor approximation, and the result follows.

We can now state and prove our main result of this subsection.

Lemma 7. Let x1, x2, . . . , xt be t independent random variables over [n]. Let Π be a
random, uniform permutation over [n]. The statistical distribution between the xi and
Π(1),Π(2), . . . ,Π(t) is at least 1− exp(−Ω(t2/n)).

Proof. Let p := 0.5t/n. Call a variable xi low-entropy if there is a set Si of size t/2 = pn
such that Pr[xi ∈ Si] ≤ 0.1p. We consider two cases:

Case 1: There are t/2 low-entropy variables xi:
In this case select any b := 0.1t low-entropy variables. Without loss of generality assume

that they are x1, x2, . . . , xb and let Y1, Y2, . . . , Yb be the indicator variables corresponding to
the events “xi ∈ Si”. Consider the statistical test “

∑
i≤b Yi ≥ 0.2p · b”. In the sampler case,

E[
∑

i≤b Yi] ≤ 0.1p · b. The probability that the test passes is at most the probability that∑
Yi deviates from its expectation by a constant factor. Without loss of generality we can

assume that E[
∑

i≤b Yi] is exactly 0.1bp. The variables are independent, and so by a Chernoff
bound this probability is at most exp(−0.1bp) = exp(−Ω(t2/n)).

Now consider the permutation case and let Y1, Y2, . . . , Yb be the indicator variables corre-
sponding to the events “Π(i) ∈ Si”. We observe that regardless of the outcome of any other
r ≤ b variables Π(j), j 6= i, (note that Π(j) determines Yj)

Pr[Yi = 1] ≥ |S| − r
n− r

=
0.5t− r
n− r

≥ 0.4t

n
= 0.8p.

The probability that the test does not pass is at most the probability that
∑

i Yi <
0.5(0.8p)b, and that by Lemma 6 is ≤ exp(−Ω(t/n) · b) = exp(−Ω(t2/n)).

Case 2: There are not t/2 low-entropy variables xi:
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In this case there are ≥ t/2 high-entropy variables, i.e., variables such that for every set
Si of size t/2, the probability of landing in Si is ≥ 0.1p. Let H be the index set of t/2 of
these variables, and L be the index set of the other t/2 variables (which may or may not be
high entropy). The probability that the xi collide (i.e., two variables take the same value)
is at least the probability that the variables collide conditioned on the event that there is
no collision among the variables in L. Fix any outcome for the variables in L conditioned
on the event that they do not collide. Because they do not collide, they take t/2 distinct
values. Let S be the set of t/2 values they take. Now the probability that the xi variables
collide is at least the probability that some variable in H lands in S. Because the variables
are independent, this probability is at least

1− (1− 0.1p)t/2 ≥ 1− e−Ω(pt) = 1− e−Ω(t2/n).

On the other hand, by definition, the variables Π(i) never collide. Hence the statistical test
that simply checks if the variables collide gives the desired statistical distance.

2.3 Proof of Theorem 1

We proceed by induction on d. We can take d = 0 as base case. In this case f is constant
and the statistical distance is 1− 1/n! which is larger than 1− 2−n/ log n.

For the induction step, you ask the question whether there are

t := n/ logcd/4 n

variables with indexes T ⊆ [n] whose probes intersect the probes of all other variables. If
the answer is affirmative, then by considering any possible fixing for the values of the cells
probed by the variables in T your distribution is a convex combination of 2t·d·log n distributions
which are (d− 1)-local. By the induction hypothesis applied to each of these samplers, and
Corollary 5 the statistical distance will be

1−O(1)t·d·log n · 2−n/ logcd−1
n.

This quantity equals 1− 2−x where

x =
n

logcd−1
n
−O(td log n) = n

(
1

logcd−1
n
− O(d log n)

logcd/4 n

)
≥ 0.5

n

logcd−1
n
≥ n

logcd
n
.

Here the inequalities hold for d ≤ log n say (for else the theorem is trivial) and a suitable
choice of c.

If the answer is no then there are t variables which are independent. (This can be shown
by iteratively collecting variables whose probes are disjoint. We can’t stop before we collect
t, for else the answer is yes.) By Lemma 7 just considering those variables the statistical

distance is at least 1−exp(−Ω(t2/n)). Noting that t2/n = n/ logcd/2 n ≥ (logcd/2 n)n/ logcd

n
concludes the argument for all large enough n.
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