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Abstract

We construct pseudorandom generators with improved seed length for several classes
of tests. First we consider the class of read-once polynomials over GF(2) in m variables.
For error ε we obtain seed length Õ(log(m/ε)) log(1/ε), where Õ hides lower-order
terms. This is optimal up to the factor Õ(log(1/ε)). The previous best seed length
was polylogarithmic in m and 1/ε.

Second we consider product tests f : {0, 1}m → C≤1. These tests are the product
of k functions fi : {0, 1}n → C≤1, where the inputs of the fi are disjoint subsets of
the m variables and C≤1 is the complex unit disk. Here we obtain seed length n ·
poly log(m/ε). This implies better generators for other classes of tests. If moreover
the fi have outputs independent of n and k (e.g., {−1, 1}) then we obtain seed length
Õ(n + log(k/ε)) log(1/ε). This is again optimal up to the factor Õ(log 1/ε), while the
previous best seed length was ≥

√
k.

A main component of our proofs is showing that these classes of tests are fooled by
almost d-wise independent distributions perturbed with noise.
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1 Introduction

The construction of unconditional pseudorandom generators (PRGs) that fool restricted
classes of tests is a fundamental research direction that has found disparate applications. In
this work we obtain new generators for several classes of tests. We start with the simplest.

Fooling read-once polynomials. Pseudorandom generators for polynomials have been
studied since at least the 1993 work by Luby, Veličković, and Wigderson [LVW93], who

gave a generator for GF(2) polynomials of size s with error ε and seed length 2O(
√
s/ε).

See [Vio07] for an alternative proof. Servedio and Tan [ST18] recently improved the seed
length to 2O(

√
log s) · log(1/ε), and any significant improvement on the seed length would

require breakthrough progress on circuit lower bounds. For low-degree polynomials, better
generators are known [BV10, Lov09, Vio09]. In this work we consider read-once polynomials
on m variables, which are a sum of monomials on disjoint variables. For this class, a generator
with seed length polylogarithmic in m and 1/ε is given in [GLS12] and it applies more
generally to read-once ACC0. We obtain a seed length which is optimal up to a factor of
Õ(log 1/ε), where Õ hides factors log log(m/ε). In particular, when ε is not too small, our
generator has seed length optimal up to poly log logm.

Theorem 1. There exists an explicit generator G : {0, 1}` → {0, 1}m that fools any read-once
GF(2) polynomial with error ε and seed length Õ(log(m/ε)) log(1/ε).

A specific motivation for studying read-once polynomials comes from derandomizing
space-bounded algorithms, a major line of research in pseudorandomness whose leading
goal is proving RL = L. Despite a lot of effort, for general space-bounded algorithms
there has been no improvement over the seed length ≥ log2m since the classic 1992 paper
by Nisan [Nis92]. In fact, no improvement is known even under the restriction that the
algorithm uses constant-space. Read-once polynomials can be implemented by constant-
space algorithms, and were specifically pointed out by several researchers as a bottleneck for
progress on space-bounded algorithms, see for example this survey talk by Trevisan [Tre10].
Thus our work can be seen as progress towards derandomizing small-space algorithms. We
note that the concurrent work of Chattopadhyay, Hatami, Reingold and Tal [CHRT18] gives
a generator for space-bounded algorithms which implies a generator for polynomials with
seed length Õ(log3m) log2(m/ε).

Theorem 1 also holds for polynomials modulo M for any fixed M ; and in fact we obtain
it as an easy corollary of a more general generator.

Fooling products. We consider tests on m bits that can be written as the product of
k bounded functions on disjoint inputs of n bits. Such tests generalize the well-studied
combinatorial rectangles [AKS87, Nis92, NZ96, INW94, EGL+98, ASWZ96, Lu02, Vio14,
GMR+12, GY14] as well as other classes of tests, see [GKM15]. They were introduced in the
latter paper by Gopalan, Kane, and Meka who call them Fourier shapes. However, in their
definition the partition of the m-bit input into the k n-bit inputs to the functions is fixed
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and known to the generator. Following a recent push for breaking the mold of “fixed-order”
tests, we consider such tests under arbitrary order. We call them product tests and define
them formally next.

Definition 2 (Product tests). A function f : {0, 1}m → C≤1 is a product test with k func-
tions of input length n if there exist k disjoint subsets I1, I2, . . . , Ik ⊆ {1, 2, . . . ,m} of size
≤ n such that f(x) =

∏
i≤k fi(xIi) for some functions fi with range in C≤1. Here C≤1 is the

complex unit disk {z ∈ C : |z| ≤ 1}, and xIi are the |Ii| bits of x indexed by Ii.

Handling arbitrary order is significantly more challenging, because the classical space-
bounded generators such as Nisan’s [Nis92] only work in fixed order [Tzu09, BPW11]. Our
previous work with Haramaty [HLV17] gave the first generators, but in it the dependency
on k is poor: the seed length is always ≥

√
k. In this work we improve the dependency on

k exponentially, though the results in [HLV17] are still unsurpassed when k is very small,
e.g. k = O(1). We actually obtain two incomparable generators.

Theorem 3. There exists an explicit generator G : {0, 1}` → {0, 1}m that fools any product
test with k functions of input length n with error ε and seed length Õ(n+log k) log(1/ε) log(k/ε) =
n logO(1)(m/ε).

By the reductions in [GKM15], we also obtain generators that fool variants of prod-
uct tests where the outputs of the fi are not simply multiplied but combined in other
ways. These variants include generalized halfspaces [GOWZ10] and combinatorial shapes
[GMRZ13, De15], extended to arbitrary order. For those we obtain seed length n2 logO(1)(m/ε),
whereas the previous best was ≥ n

√
k [HLV17]. As this application amounts to plugging the

above theorem in previous reductions, we don’t discuss it further in this paper and instead
refer the reader to Section 6 in [HLV17].

We then give another generator whose seed length is optimal up to a factor Õ(log 1/ε),
just like Theorem 1. However, for this we need the functions fi in the definition of prod-
uct tests to take constant values. This condition is satisfied by Boolean and most natural
functions. For simplicity one can think of the fi having outputs {−1, 1}.

Definition 4 (Nice product tests). A product test as in Definition 2 is nice if each function
fi outputs constant values.

Formally, one should talk about a nice family of product tests; but for simplicity we’ll
just say “nice product test.”

Theorem 5. There exists an explicit generator G : {0, 1}` → {0, 1}m that fools any nice prod-
uct test with k functions of input length n with error ε and seed length Õ(n+log(k/ε)) log(1/ε).

This is the result from which the generator for polynomials in Theorem 1 follows easily.
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Bounded independence plus noise. The framework in which we develop these genera-
tors was first laid out by Ajtai and Wigderson in their pioneering work [AW89] of constructing
generators for AC0 with polynomial seed length. The framework seems to have been for-
gotten for a while, possibly due to the spectacular successes by Nisan who gave better and
arguably simpler generators [Nis91, Nis92]. It has been recently revived in a series of pa-
pers starting with the impressive work by Gopalan, Meka, Reingold, Trevisan, and Vadhan
[GMR+12], who use it to obtain a generator for read-once CNF on m bits with error ε and
seed length Õ(log(m/ε)). This significantly improves on the previously available seed length
of O(logm) log(1/ε) when ε is small.

The Ajtai–Wigderson framework goes by showing that the test is fooled by a distribution
with limited independence [NN93], if we perturb it with noise. (Previous papers use the
equivalent language of restrictions, we instead follow [HLV17].) Then the high-level idea
is to recurse on the noise. This has to be coupled with a separate, sometimes technical
argument showing that each recursion simplifies the test, which we address later. Thus
our goal is to understand if bounded independence plus noise fools product tests. For our
application, it would be convenient to view the distribution as D+T ∧U , the bit-wise XOR
of D and T ∧ U , where ∧ is bit-wise AND and T ∧ U is a noise vector: if a bit chosen
by T is 1 then we set it to uniform. For the application it is important that T is selected
pseudorandomly, though the result is interesting even if T is uniform in {0, 1}m. We now
state the result in [HLV17] after defining almost bounded independence.

Definition 6 ((δ, d)-closeness). The random variables X1, . . . , Xm are (δ, b)-close to Y1, . . . , Ym
if for every i1, . . . , ib ∈ {1, 2, . . . ,m} the b-tuples (Xi1 , . . . , Xib) and (Yi1 , . . . , Yib) have sta-
tistical distance ≤ δ.

Note that when δ = 0, the variables Xi are exactly dn-wise independent.

Theorem 7 ([HLV17]). Let f : {0, 1}m → C≤1 be a product test with k functions of input
length n. Let D and T be two independent distributions over {0, 1}m that are (0, dn)-close
to uniform. Then ∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k2−Ω(d2n/k),

where U is the uniform distribution.

Note that the dependence on the number k of functions is poor: when k = Ω(d2n), the
error bound does not give anything non-trivial. A main technical contribution of this work
is obtaining exponentially better dependency on k using different techniques from [HLV17].
Our theorem gives non-trivial error bound even when d = O(1) and k is exponential in n.

Theorem 8. Let f : {0, 1}m → C≤1 be a product test with k functions of input length n.
Let D and T be two independent distributions over {0, 1}m that are (δ, dn)-close to uniform.
Then ∣∣ E

D,T,U
[f(D + T ∧ U)]− E

U
[f(U)]

∣∣ ≤ 2−Ω(d) +Bδ,

where U is the uniform distribution, for the following choices of B:
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i. B = (k2n)O(d);

ii. if f is nice, then B = (d2n)O(d).

Setting δ = 0, Theorem 8 has a better bound than Theorem 7 when k = Ω(dn). An
interesting feature of Theorem 8 is that for nice products the parameter δ can be independent
of k. We complement this feature with a negative result showing that for general products
a dependence on k is necessary. Thus, the distinction between products and nice products
is not an artifact of our proof but is inherent.

Claim 9. For every sufficiently large k, there exists a distribution D over {0, 1}k that is
(k−Ω(1), kΩ(1))-close to uniform, and a product test f : {0, 1}k → C≤1 with k functions of
input length 1 such that ∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≥ 1/10,

where T and U are the uniform distribution over {0, 1}k.

This claim also shows that for n = 1 and ε = Ω(1) one needs δ ≤ k−Ω(1), and even for
distributions which are (δ, kΩ(1))-close to uniform, instead of just (δ, O(1))-close.

For the class of combinatorial rectangles, which corresponds to product tests with each fi
outputting values in {0, 1}, the classic result [EGL+92] (extended in [CRS00], for an expo-
sition see Lecture 1 in [Vio17]) shows that dn-wise independence alone fools rectangles with
error 2−Ω(d) and this error bound is tight. So Theorem 8 does not give better bounds for
rectangles, even with the presence of noise. We develop additional machinery and obtain an
improvement on Theorem 8. While the improvement is modest, the machinery we develop
may be useful for further improvements. Since this improvement is not used in our construc-
tion of PRGs, we only state and prove it for exact bounded independence. For technical
reasons we restrict the range of the fi slightly.

Theorem 10. Let f be a product test with k functions of input length n. Suppose the range
of each function fi of f is the set {0, 1}, or the set of all M-th roots of unity for some fixed
M . Let D and T be two independent distributions over {0, 1}m that are dn-wise independent.
Then ∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ n−Ω(d).

Finally, it is natural to ask if similar techniques fool non-read-once polynomials. In
this regard, we are able to show that small-bias distributions [NN93] plus noise fool F2-
polynomials of degree 2.

Claim 11. Let p : {0, 1}m → {0, 1} be any F2-polynomial of degree 2. Let D and T be two
distributions over {0, 1}m, where D is δ-biased, and T sets each bit to 1 independently with
probability 2/3. Then ∣∣E[p(D + T ∧ U)]− E[p(U)]

∣∣ ≤ δ.
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1.1 Techniques

We first explain how to prove bounded independence plus noise fools product tests, i.e.,
Theorem 8. After that, we will explain the additional ideas that go into constructing our
PRGs.

Following the literature, at a high level we do a case analysis based on the total-variance
of the product test f we want to fool. This is defined as the sum of the variances Var[fi] of
the functions fi in the definition of product test. The variance of a function g is E[|g(x)|2]−
|E[g(x)]|2 where x is uniform.

Low total-variance. Our starting point is a compelling inequality in [GKM15] (cf. [GMR+12,
GY14]) showing that bounded independence alone without noise fools low total-variance
product tests. However, their result is only proved for exact bounded independence, i.e.,
every d bits are exactly uniform, whereas it is critical for our seed lengths to handle almost
bounded independence, i.e., every d bits are close to uniform.

One technical contribution in this paper is extending the inequality in [GKM15] to work
for almost bounded independence. The proof of the inequality in [GKM15] is somewhat
technical, and our extension introduces several complications. For example, the expectations
of the fi under the almost-bounded independent distribution D and the uniform distribution
U are not guaranteed to be equal, and this requires additional arguments. However our proof
follows the argument in [GKM15], which we also present in a slightly different way that is
possibly of interest to some readers. Finally we mention that Claim 9 shows that our error
term is close to tight in certain regimes, cf. Section 7.

High total-variance. Here we take a different approach from the ones in the literature:
The papers [GLS12, GKM15] essentially reduce the high total-variance case to the low total-
variance case. However their techniques either blow up the seed length polynomially [GLS12]
or rely on space-bounded generators that only work in fixed order [GKM15].

We instead observe that bounded independence plus noise fools even high total-variance
product tests. We now give some details of our approach. A standard fact is that the
expectation of a product test f is bounded above by∏

i

|E[fi]| ≤
∏
i

(1− Var[fi])
1/2 ≤ e−

∑
i Var[fi]/2.

So if the total-variance
∑

i Var[fi] is large then the expectation of the product test under the
uniform distribution is small. Thus, it suffices to show that the expectation is also small under
bounded independence plus noise. To show this, we argue that typically, the total-variance
remains high even considering the fi as functions of the noise only. Specifically, we first show
that on average over a uniform x and t, the variance of the functions f ′i(y) := fi(x + t ∧ y)
is about as large as that of the fi. This uses Fourier analysis. Then we use concentration
inequalities for almost bounded independent distributions to derandomize this fact: we show
that it also holds for typical x and t sampled from D and T .

This suffices to prove Theorem 8.i. Proving Theorem 8.ii requires extra ideas.
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We first note that the high total-variance case actually does not appear in the read-once
CNF generator in [GMR+12]. This is because one can always truncate the CNF to have
at most 2w log(1/ε) number of clauses of width w, which suffices to determine the expected
value of the CNF up to an additive error of ε, and such a CNF has low total-variance (for this
one argues that noise helps reduce the variance a little.) To handle an arbitrary read-once
CNF, [GMR+12] partition the clauses according to their width, and handle each partition
separately.

However, one cannot truncate polynomials without noise. To see why, consider, for a
simple example, the linear polynomial x1 + x2 + . . . + xm (corresponding to a product test
that computes the parity function). Here no strict subset of the monomials determines the
expectation of the polynomial. Indeed, one can construct distributions which look random
to m− 1 monomials, but not to m.

Truncation using noise. Although we cannot truncate polynomials without noise, we
show that something almost as good can still be done, and this idea is critical to obtaining
our seed lengths. We show that the statistical closeness parameter in D and T can be selected
as if the polynomial was truncated : it is independent from the number k of functions. This is
reflected in Theorem 8.ii, where δ is independent from k. The proof goes by showing that if
the number k of functions is much larger than 22n then noise alone will be enough to fool the
test, regardless of anything else. This proof critically uses noise: without noise a dependence
on k is necessary, as shown in the parity example in our discussion. Also, for the proof
to work the functions must have expectation at most 1− Ω(2−n). As mentioned earlier, we
further prove that this last requirement is necessary (Claim 9): we construct functions whose
expectation is about 1−1/k but their product is not fooled by almost bounded independence
plus noise, if the statistical closeness parameter is larger than 1/kc for a suitable constant c.

Extra ideas for improved bound. To obtain the improved error bound in Theorem 10,
we show that whenever the total-variance of a product test lies below dn0.1, we can use noise
bring it down to below dn−0.1. This produces a gap of [dn−0.1, dn0.1] between the high and
low total-variance cases, which gives the better bound using the previous arguments. Reduc-
ing the total-variance requires a few additional ideas. First, we use Theorem 7 to handle the
functions fi in the product test which have high variances. Then we use the hypercontrac-
tivity theorem to reduce the variances of the rest of the fi individually. [GMR+12] also uses
noise to reduce variance, but their fi are just AND and so they do not need hypercontrac-
tivity. To combine both ideas, we prove a new “XOR Lemma” for bounded independence, a
variant of an XOR lemma for small-bias, which was proved in [GMR+12].

Constructing our PRGs. We now explain how to use Theorem 8 to construct our PRGs.
The high-level idea of our PRG construction is to apply Theorem 8 recursively following the
Ajtai–Wigderson framework: Given D+ T ∧U , we can think of T as selecting each position
in {1, . . . ,m} with probability 1/2. For intuition, it would be helpful to assume each position
is selected independently.
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We will focus on how to construct a PRG using a seed of length Õ(logm) for read-once
polynomials with constant error, as this simplifies the parameters and captures all the ideas.
Without loss of generality, we can assume the degree of a polynomial to be n = O(logm),
because the contribution of higher-degree terms can be shown to be negligigle under a small-
bias distribution (See the proof of Theorem 1.)

Let p : {0, 1}m → {0, 1} be a degree-n read-once polynomial with k monomials. It would
be convenient to think of p outputting values {−1, 1}. Further, we can write p as a product∏k

i=1 pi, where each pi is a monomial on at most n bits (with outputs in {−1, 1}.)
Now suppose we only assign the values in D to the positions not chosen by T , that is,

setting the input bits xi = Di for i 6∈ T . This induces another polynomial pD,T defined on
the positions in T . Clearly, pD,T also has degree at most n, and so we can reapply Theorem 8
to pD,T .

Repeating the above argument t times induces a polynomial defined on the positions
Tt := ∧ti=1Ti. One can think of Tt as a single distribution that selects each position with
probability 2−t. Viewing Tt this way, it is easy to see that we can terminate the recursion
after t := O(logm) steps, as the set Tt should become empty with high probability.

By standard constructions [NN93], it takes s := Õ(n) bits to sample D and T in Theo-
rem 8.ii each time. Therefore, we get a PRG of seed length t · s = Õ(n) logm.

To obtain a better seed length, we will instead apply Theorem 8 in stages. Our goal
in each stage is to reduce the degree of the polynomial by half. In other words, we want
the restricted polynomial defined on the positions in ∧ti=1Ti to have degree n/2. It is not
difficult to see that in order to reduce the degree of the m monomials of p to n/2 with high
probability, it suffices to apply our above argument recursively for t := O(logm)/n times.
So in each stage, we use a seed of length

t · s = Õ(n) ·
( logm

n

)
= Õ(logm).

After repeating the same argument for O(log n) = Õ(1) stages, with high probability the
restricted polynomial would have degree 0 and we are done. Therefore, the total seed length
of our PRG is Õ(logm).

Here we remark that it is crucial in our argument that D and T are almost-bounded
independent, as opposed to being small-biased. Otherwise, we cannot have seed length
s = Õ(n) when n = o(logm). For example, when n = O(1), with small-bias we would need
s = O(logm) bits, whereas we just use O(log logm) bits.

We remark that [GMR+12] uses the number of clauses in the CNF as their progress
measure. They show that this number drops polynomially at each iteration, allowing them
to recurse for only O(log logm) steps. However this only holds for truncated CNFs, and is
false for example for the linear polynomial x1 + x2 + . . . + xm. This is why we are not able
to get a PRG with seed length Õ(logm) for polynomially small error.

Organization. We prove bounded independence plus noise fools product (Theorem 8) in
Section 2, except the proof of the low total-variance case, which we defer to Section 4. Then
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Conditions Uses Follows from Error

(1)
∑

i≤k Var[fi] ≤ αd D Lemma 12 2−Ω(d) + (k2n)O(d)δ

(2)
∑

i≤k Var[fi] ≥ αd D + T ∧ U Derandomized Claim 13 2−Ω(d) + kO(d)δ

(3) k ≥ 22n+1d, nice products T ∧ U Claim 12 2−Ω(d) + 2O(dn)δ

Table 1: Error bounds for fooling a product tests of k functions of input length n under
different conditions. Here D and T are (δ, dn)-close to uniform, and α is a small constant.

we give constructions of our PRGs in Section 3. In Section 5, we show how to obtain the
modest improvement of Theorem 8. After that, we prove our result on fooling degree-2
polynomials in Section 6. Finally, we prove Claim 9 in Section 7.

2 Bounded independence plus noise fools products

In this section we prove Theorem 8. As we mentioned in the introduction, the proof consists
of 3 parts: (1) Low total-variance, (2) high total-variance, and (3) truncation using noise
for nice products. We summarize the conditions and the error bounds we obtain for these
cases in Table 1. Let us now quickly explain how to put them together to prove Theorem 8.
Clearly, combining (1) and (2) immediately gives us a bound of 2−Ω(d) +(k2n)O(d) for product
tests, proving Theorem 8.i. For nice product tests, we can apply (3) if k ≥ 22n+1d, otherwise
we can plug in k ≤ 22n+1d in the previous bound, proving Theorem 8.ii.

We now discuss each of the 3 cases in order. Since the proof of the low total-variance case
is quite involved, we only state the lemma in this section and defer its proof to Section 4.

Lemma 12. Let X1, X2, . . . , Xk be k independent random variables over C≤1 with minz∈Supp(Xi)

Pr[Xi = z] ≥ 2−n for each i ∈ {1, . . . , k}. Let Y1, Y2, . . . , Yk be k random variables over C≤1

that are (ε, 16d)-close to X1, . . . , Xk. Then∣∣∣∣∣E [
k∏
i=1

Yi

]
− E

[ k∏
i=1

Xi

]∣∣∣∣∣ ≤ 2O(d)

(∑k
i=1 Var[Xi]

d

)d/2

+ (k2n)O(d)ε.

We now prove a claim that handles the high total-variance case. This claim shows that
for uniform x and t, the variance of the function g(y) := f(x+ t∧ y) is close to the variance
of f in expectation. Its proof follows from a simple calculation in Fourier analysis. Later,
we will derandomize this claim in the proof of Theorem 8.

Claim 13. Let T be the distribution over {0, 1}n where the Tj’s are independent and E[Tj] =
η for each j. Let f : {0, 1}n → C be any function. Then

E
U,T

[
Var
U ′

[f(U + T ∧ U ′)]
]
≥ ηVar[f ].
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Proof of Claim 13. By the definition of variance and linearity of expectation, we have

E
U,T

[
Var
U ′

[f(U + T ∧ U ′)]
]

= E
U,T

[
E
U ′

[
|f(U + T ∧ U ′)|2

]
−
∣∣∣E
U ′

[f(U + T ∧ U ′)]
∣∣∣2]

= E
U,T

[
E
U ′

[
|f(U + T ∧ U ′)|2

]]
− E

U,T

[∣∣∣ E
U ′

[f(U + T ∧ U ′)]
∣∣∣2].

The first term is equal to

E
U

[|f(U)|2] =
∑
α,α′

f̂αf̂α′ E
U

[χα−α′(U)] =
∑
α

|f̂α|2.

The second term is equal to

E
U,T

[
E
U ′

[∑
α

f̂αχα(U + T ∧ U ′)
]
E
U ′′

[∑
α′

f̂α′χα′(U + T ∧ U ′′)
]]

= E
U,T

[∑
α,α′

f̂αf̂α′ E
U ′

[χα(U + T ∧ U ′)] E
U ′′

[χα′(U + T ∧ U ′′)]
]

=
∑
α,α′

f̂αf̂α′ E
U

[χα+α′(U)]E
T

[
E
U ′

[χα(T ∧ U ′)] E
U ′′

[χα′(T ∧ U ′′)]
]

=
∑
α

|f̂α|2 E
T,U ′,U ′′

[χα(T ∧ (U ′ + U ′′))]

=
∑
α

|f̂α|2(1− η)|α|.

Therefore,

E
U,T

[
Var
U ′

[f(U + T ∧ U ′)]
]

=
∑
α

|f̂α|2
(

1− (1− η)|α|
)
≥ η

∑
α 6=0

|f̂α|2 = ηVar[f ],

where the inequality is because 1− (1− η)|α| ≥ 1− (1− η) ≥ η for any α 6= 0.

With Lemma 12 and Claim 13, we now prove Theorem 8.

Proof of Theorem 8.i. Let σ denote (
∑

i≤k Var[fi])
1/2. We will consider two cases: σ2 ≤ αd

and σ2 > αd, where α > 0 is a sufficiently small constant.
If σ2 ≤ αd, we use Lemma 12. Specifically, since Pr[fi(U) = z] ≥ 2−n for every z ∈

Supp(fi), it follows from Lemma 12 that

∣∣∣E [ k∏
i=1

fi(D)
]
− E

[ k∏
i=1

fi(U)
]∣∣∣ ≤ 2−Ω(d) + (k2n)O(d)δ,

and the desired bound holds for every fixing of T and U .
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If σ2 ≥ αd, then the expectation of f under the uniform distribution is small. More
precisely, we have ∣∣∣∏

i≤k

E
U

[fi(U)]
∣∣∣ =

∏
i≤k

(1− Var[fi])
1/2 ≤ e−

1
2
σ2 ≤ 2−Ω(d). (1)

Thus, it suffices to show that its expectation under D+T ∧U is at most 2−Ω(d) + (k2n)O(d)δ.
We now use Claim 13 to show that∣∣∣ E

D,T,U

[ k∏
i=1

fi(D + T ∧ U)
]∣∣∣ ≤ 2−Ω(d) + (k2n)O(d)δ. (2)

For each t, x ∈ {0, 1}m, and each i ∈ {1, 2, . . . , k}, let σ2
t,x,i denote VarU ′ [fi(x+ t ∧ U ′)]. We

claim that
∑

i≤k σ
2
t,x,i is large for most x and t sampled from D and T respectively. From

Claim 13 we know that this quantity is large in expectation for uniform x and t. By a tail
bound for almost bounded independent distributions, we show that the same is true for most
x ∈ D and t ∈ T . By a similar calculation to (1) we show that for these x and t we have
that |E[f(x+ t ∧ U)]| is small.

To proceed, let T ′ be the uniform distribution over {0, 1}m. Applying Claim 13 with
η = 1/2, we have ET ′,U [σ2

T ′,U,i] ≥ Var[fi]/2. So by linearity of expectation,

E
T ′,U

[∑
i≤k

σ2
T ′,U,i

]
≥ σ2/2 ≥ αd/2.

Since T and D are both (δ, dn)-close to uniform, the random variables σ2
T,D,1, . . . , σ

2
T,D,k are

(2δ, dn)-close to σ2
T ′,U,1, . . . , σ

2
T ′,U,k. Let µ = ET ′,U [

∑
i≤k σ

2
T ′,U,i] ≥ αd/2. By Lemma 48,

Pr
T ′,U

[∑
i≤k

σ2
T ′,U,i ≤ µ/2

]
≤ 2−Ω(d) + kO(d)δ.

Hence, except with probability 2−Ω(d) + kO(d)δ over t ∈ T and x ∈ D, we have∑
i≤k

σ2
t,x,i =

∑
i≤k

Var
U ′

[fi(x+ t ∧ U ′)] ≥ αd/4.

For every such t and x, we have∣∣∣∏
i≤k

E
U

[fi(x+ t ∧ U)]
∣∣∣ ≤∏

i≤k

∣∣∣E
U

[fi(x+ t ∧ U)]
∣∣∣

=
∏
i≤k

(1− σ2
t,x,i)

1/2

≤ e−
1
2

∑
i≤k σ

2
t,x,i ≤ 2−Ω(d). (3)

In addition, we always have |f | ≤ 1. Hence, summing the R.H.S. of (2) and (3), we have∣∣∣∣∣ E
D,T,U

[∏
i≤k

fi(D + T ∧ U)
]∣∣∣∣∣ ≤ E

D,T

[∣∣∣∏
i≤k

E
U

[fi(D + T ∧ U)]
∣∣∣] ≤ 2−Ω(d) + kO(d)δ.
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To prove Theorem 8.ii, we use the following additional observation that noise alone fools
nice products when k is suitably larger than 22n. The high-level idea is that in such a case
there will be at least k2−n ≥ 2n functions fi whose inputs are completely set to uniform by
the noise. Since the expectation of each fi is bounded by 1 − O(2−n), the expectation of
their product becomes small when k is suitably larger than 22n. On the other hand, E[f(U)]
can only get smaller under the uniform distribution, and so the expectations under uniform
and noise are both small.

Claim 14 (Noise fools nice products with large k). Let f : {0, 1}m → C≤1 be a nice product
test with k ≥ 22n+1d of input length n. Let T be a distribution over {0, 1}m that is (δ, dn)-
close to uniform. Then ∣∣∣ E

T,U
[f(T ∧ U)]− E[f(U)]

∣∣∣ ≤ 2−Ω(d) + 2O(dn)δ.

Proof. We will bound above both expectations in absolute value. Let k′ := 22n+1d ≤ k.
Write f =

∏k
i=1 fi, where fi : {0, 1}Ii → C≤1. Since f is nice, there is a constant α ∈ (0, 1]

such that |E[fi(U)]| ≤ 1−α2−n for every i ∈ {1, . . . , k}. Under the uniform distribution, we
have ∣∣E[f(U)]

∣∣ =
k∏
i=1

∣∣E[fi(U)]
∣∣ ≤ (1− α2−n)k ≤ e−Ω(k2−n) ≤ 2−Ω(d). (4)

It suffices to show that the expectation under T ∧ U is at most 2−Ω(d) + 2O(dn)δ. Note that

∣∣E[f(T ∧ U)]
∣∣ ≤ E

T

[ k∏
i=1

∣∣E
U

[fi(T ∧ U)]
∣∣] ≤ E

T

[ k′∏
i=1

∣∣E
U

[fi(T ∧ U)]
∣∣].

We now show that the R.H.S. is at most 2−Ω(d) + 2O(dn)δ. We first show that the expected
number of fi whose inputs are all selected by T when T is uniform is large, and then apply
a tail bound for almost bounded independent distributions to show that it holds for most
t ∈ T . Let T ′ be the uniform distribution over {0, 1}m. Then

E
[ k′∑
i=1

1(T ′Ii = 1|Ii|)
]

=
k′∑
i=1

Pr[T ′Ii = 1|Ii|] ≥ k′2−n = 2n+1d.

Since T is (δ, dn)-close to uniform, the TIi are (δ, d)-close to uniform. By Lemma 48,

Pr
T

[ k′∑
i=1

1(TIi = 1|Ii|) ≤ 2nd
]
≤ 2−Ω(dn) + 2O(dn)δ. (5)

Note that if TIi = 1|Ii|, then |EU [fi(T ∧ U)]| = |E[f ]| ≤ 1 − α2−n. Thus, conditioned on∑k′

i=1 1(TIi = 1|Ii|) ≥ 2nd, we have

k′∏
i=1

∣∣E[fi(T ∧ U)]
∣∣ ≤ (1− α2−n)2nd ≤ 2−Ω(d). (6)

11



Since we always have |f | ≤ 1, the error bound follows from summing the R.H.S. of (4), (5)
and (6).

Theorem 8.ii now follows easily from Claim 14 and Theorem 8.i.

Proof of Theorem 8.ii. Since f is nice, there is a constant α ∈ (0, 1] such that |E[fi]| ≤
1 − α2−n. If k ≥ 22n+1d, then the theorem follows from Claim 14. Otherwise, k ≤ 22n+1d
and the theorem follows from Theorem 8.i.

3 Pseudorandom generators

In this section we construct our generators. As explained in the introduction, all construc-
tions follow from applying the Theorem 8 recursively. The following lemma captures the
trade-off between the number of recursions and the simplification on a product test. As a
first read, we suggest the readers to refer to the Õ notations in the statements and proofs,
i.e., ignore polylogarithmic factors in n, log k, log(1/ε) and logm, and think of k as m and
ε as some arbitrary small constant.

Lemma 15. If there is an explicit generator G′ : {0, 1}`′ → {0, 1}m that fools product tests
with k functions of input length r with error ε′ and seed length `′, then there is an explicit
generator G : {0, 1}` → {0, 1}m that fools product tests with k functions of input length n

with error ε′ + tε, where t = O
( log(k/ε)

r+1
+ log( n

r+1
)
)

= Õ
( log(k/ε)

r+1
+ 1
)
, and seed length

i. ` = `′ + t ·O((log k + n) log(1/ε) + log logm) = `′ + t · Õ((log k + n) log(1/ε));

ii. if the product tests are nice, then ` = `′+ t ·O((n+log log(1/ε)) log(1/ε)+ log logm) =
t · Õ(n log(1/ε)).

We defer its proof to the end. Our generator for arbitrary product tests (Theorem 3)
easily follows from the lemma. Our generator for nice product tests (Theorem 5) requires
applying the lemma in stages, where in each stage we apply the lemma with a different value
of n. XORing its output with a small-bias distribution gives our generator for polynomials
(Theorem 1).

Proof of Theorem 3. We apply Lemma 15.i with r = 0 with error ε/t, where t = O(log(k/ε)+
log n) = Õ(log(k/ε)). Note that a product test of input length 0 is a constant function, which
can always be fooled with zero error. So we have a generator that fools product tests with
k functions of input length n, with error ε and seed length

t ·O (n log(t/ε) + log(1/δ) + log logm) = Õ(log(k/ε))(n+ log k) log(1/ε).

We will apply Lemma 15 in O(log n) stages. In each stage our goal is to halve the input
length of the product test.

12



Proof of Theorem 5. Let f be a nice product test with k functions of input length n. Note
that by applying Lemma 15 with r = n/2 and error ε/(t log n), where t = O(log(k/ε)/n+1),
we can halve its input length by incurring an error of ε/O(log n) and using a seed of length

t ·O
(
n log(t log n/ε) + log(1/δ) + log logm

)
= t · Õ

(
n log(1/ε) + log(1/δ)

)
= Õ(log(k/ε) + n) log(1/ε).

Now we repeat the argument for s = O(log n) steps until the input length is zero, which
is a constant function and can be fooled with zero error. So we have a generator that
fools nice product tests with k functions of input length n, with error ε and seed length
s · Õ(log(k/ε) + n) log(1/ε) = Õ(log(k/ε) + n) log(1/ε).

Theorem 1 follows from XORing the output of the above generator with a small-bias
distribution.

Proof of Theorem 1. Let c be a sufficiently large constant. Let D be a (ε/m)c-biased distri-
bution over {0, 1}m [NN93]. Let G be the output distribution of the generator in Theorem 5
that fools product tests with m functions and input length c log(m/ε) with ε/2. The gener-
ator outputs D +G. By [NN93] and Theorem 5, it takes a seed of length

O(log(m/ε)) + Õ
(
log(m/ε) + c log(m/ε)

)
log(1/ε) = Õ(log(m/ε)) log(1/ε).

Let p : {0, 1}m → {−1, 1} be any read-once GF(2) polynomial. Consider the polynomial
p′ obtained from p by removing all the monomials with degree greater than c log(m/ε) in p.
We claim that the expectation of p and p′ under D differs by at most ε. Note that under
any (ε/m)c-biased distribution X, the probability that any c log(m/ε) bits are 1 is at most
ε/4m, and so by a union bound we have Pr[p(X) 6= p′(X)] ≤ ε/4. In particular, this holds
for D and U . It follows that∣∣E[p(D +G)]− E[p(U)]

∣∣ ≤ ∣∣E[p′(D +G)]− E[p′(U)]
∣∣+ ε/2 ≤ ε,

where the last inequality holds for any fixed D because of Theorem 5.

We now prove Lemma 15. First we state a claim that will be used in the proof to reduce
the input length of the product test.

Claim 16. Let T (1), . . . , T (t) be t independent and identical distributions over {0, 1}n that
are δ-close to uniform. Then Pr[wt(∧ti=1T

(i)) > r] ≤
(
n
r+1

)
(2−(r+1) + δ)t.

Proof. Since T (1), . . . , T (t) are independent and each T (i) is δ-close to uniform,

Pr
[
wt(∧ti=1T

(i)) > r
]
≤

∑
S:|S|=r+1

Pr
[
∧ti=1 ∧j∈S(T

(i)
j = 1)

]

=
∑

S:|S|=r+1

t∏
i=1

Pr
[
∧j∈S(T

(i)
j = 1)

]
≤

∑
S:|S|=r+1

(2−(r+1) + δ)t =

(
n

r + 1

)
(2−(r+1) + δ)t.
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Proof of Lemma 15. For S ⊆ {1, 2, . . . ,m}, define the function PADS(x) : {0, 1}|S| → {0, 1}m
to output m bits of which the positions in S are the first |S| bits of x0|S| and the rest are 0.

Let C be a sufficiently large constant. The generator G will output H(1), where we define
the distribution H(i) recursively for t = O

( log(k/ε)
r+1

+ log( n
r+1

)
)

steps: At the i-th step, H(i)

samples two independent distributions D(i), T (i) over {0, 1}m that are (δ, Cn log(1/ε))-close
to uniform, where δ is taken to be

1. δ = 2−C(log k+n) log(1/ε);

2. if the product tests are nice, then δ = 2−C(n+log log(1/ε)) log(1/ε).

Then output
H(i) := D(i) + T (i) ∧ PADT (i)(H(i+1)).

We define H(t+1) to be G′(U`′).
By [NN93, Lemma 4.2], sampling D(i) and T (i) takes a seed of length O(n log(1/ε) +

log(1/δ) + log logm). The total seed length of G is therefore ` = `′ + t · O(n log(1/ε) +
log(1/δ) + log logm).

We now analyze the error of G. For i ∈ {1, 2, . . . , t}, consider the variant H
(i)
U of H(1),

which is the same as H(1) but at the i-th step replace PADT (i)(H(i+1)) with PADT (i)(Um).

Let H
(0)
U = Um.

For every i ∈ {1, . . . , t}, for every fixed D(1), . . . , D(i−1) and T (1), . . . , T (i−1), the function
f restricted to ∧j<iT (j) remains a product test with k functions of input length n, and
remains nice if f is nice. Call the restricted function g. Then, by Theorem 8, we have∣∣E[f(H

(i−1)
U )]− E[f(H

(i)
U )]
∣∣ =

∣∣E[g(U)]− E[g(D(i) + T (i) ∧ Um)]
∣∣ ≤ ε.

Hence, summing over i we have

∣∣E[f(Um)]− E[f(H
(t)
U ]
∣∣ ≤ t∑

i=1

∣∣E[f(H
(i−1)
U )]− E[f(H

(i)
U )]
∣∣ ≤ tε.

We now prove that |E[f(H
(t)
U )] − E[f(H(1))]| ≤ ε′ + 2ε. We will show that except with

probability ε, the function f restricted to ∧j≤tT (j) is a product test of input length r and so
we can fool the restricted function using G′ given by our assumption.

Write f =
∏

i≤k fi, where each fi is defined on {0, 1}Ii with |Ii| ≤ n. We claim that

Pr
[
wt(∧ti=1T

(i)
Ij

) > r for some j ∈ {1, . . . , k}
]
≤ ε.

It suffices to analyze Pr[wt(∧ti=1T
(i)
Ij

) > r] for each j and take a union bound over j ≤ k.

Since |Ij| ≤ n, T
(i)
Ij

is 2−Cn-close to uniform, by Claim 16 and a union bound over j ≤ k,
the probability that some fi has input length > r is at most

k

(
n

r + 1

)(
2−(r+1) + 2−Cn

)t ≤ k ·
(

ne

r + 1

)r+1 (
2−r
)Ω
(

log(k/ε)
r+1

+log( n
r+1

)
)
≤ ε.
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Hence, for every D(1), . . . , D(t), with probability 1 − ε over the choice of T (1), . . . , T (t), the
function f restricted to ∧ti=1T

(i) becomes a product with k functions of input length r,
and remains nice if f is nice. Conditioned on this, we have by the definition of G′ that
|E[f(H

(t)
U )] − E[f(H(1))]| ≤ ε′. Otherwise, as |f | is bounded by 1, the absolute difference is

always at most 2. Hence, |E[f(H
(t)
U )] − E[f(H(1))]| ≤ ε′ + 2ε, and so the total error is at

most ε′ + (t+ 2)ε.

4 On almost k-wise independent variables with small

total-variance

In this section we will prove Lemma 12. Our proof follows closely to the one in [GKM15],
which proves the lemma for ε = 0, that is, when the Xi’s are d-wise independent. We first
give an overview of their proof.

For independent random variables Z1, . . . , Zk, we will use σ(Z) to denote the standard
deviation of

∑
i≤k Zi, that is, σ(Z) := (

∑k
i=1 Var[Zi])

1/2.
As a first step, let us assume each E[Xi] is nonzero and normalize the variables Xi by

writing ∏
i

Xi =
∏
i

(E[Xi] + (Xi − E[Xi])) =
∏
i

E[Xi] ·
∏
i

(
1 +

Xi − E[Xi]

E[Xi]

)
.

Let Zi denote (Xi − E[Xi])/E[Xi]. If |Zi| is small, then intuitively a low-order Taylor’s
expansion of

∏
i(1 + Zi) should approximate the original function well. To write down its

Taylor’s expansion, a convenient way is to rewrite
∏

i(1 + Zi) as e
∑
i log(1+Zi). It suffices to

bound above its error term in expectation. This is equivalent to bounding the d-th moment
of
∑

i log(1 + Zi). A standard calculation gives a bound in terms of the norm and variance
of the functions log(1 + Zi). Since |Zi| is small, log(1 + Zi) behaves similarly as Zi. So we
can relate the error term in terms of |Zi| and σ(Z)2 :=

∑
i Var[Zi]. In particular if |Zi| ≤ B

for all i then we would get an error bound of the form 2O(d)(
√
σ(Z)2/d + B)O(d). For now

let’s think of E[Xi] being bounded away from 0 so that Var[Zi] = Θ(Var[Xi]).
Now we handle the case where |Zi| is large. Note that this implies either (1) |Xi−E[Xi]|

is large, or (2) E[Xi] is small. We will handle the two conditions separately by a reduction
to the case where the |Zi|’s are small.

The recurring idea throughout is that we can always tolerate O(d) bad variables that
violates the conditions, provided with high probability there can be at most O(d) bad vari-
ables. This is because by affording an extra O(d) amount of independence in the beginning,
we can condition on the values of these variables and work with the remaining ones.

As a simple illustration of this idea, throughout the proof we can assume each Var[Xi]
is bounded by

∑
i Var[Xi]/d =: σ(X)2/d, as there can be at most d bad variables Xi that

violate this inequality, and so we can start with 2d-wise independence, then conditioned on
values of the bad variables Xi, the rest of the Xi would satisfy the bound.
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We first assume the |E[Xi]|’s are large and handle (1), we will round the Xi to E[Xi]
whenever |Xi − E[Xi]| ≥ B. Note that by Chebyshev’s inequality an Xi gets rounded with
probability Var[Xi]/B

2. It follows that the probability that there are more than d such Xi’s
is bounded by (σ(X)/Bd)d. This suggests taking B to be (σ(X)/d)α for some constant
α ∈ (0, 1) to balance the error terms.

It remains to handle condition (2), for Zi to be bounded by B = (σ(X)2/d)Ω(1), as ex-
plained above it suffices to show that all but O(d) of the Xi’s satisfy |E[Xi]| ≥ (σ(X)2/d)O(1).
If |E[Xi]| ≥ (σ(X)/d)Ω(1) for Ω(d) of the Xi’s, then by a similar argument as above one can
show that with high probability at least half of them is bounded by (σ(X)2/d)Ω(1). Hence,
E[
∏

iXi] is at most (σ(X)2/d)Ω(d) when the Xi’s are d-wise independent. This finishes the
proof.

Note that in the case of ε > 0, each Xi is only ε-close to the corresponding Yi and they
are not exactly identical. As a result, throughout the proof we will often have to introduce
hybrid terms to move from functions of Xi to functions of Yi, and vice versa, and we will
show that each of these steps introduces an error of at most kO(d)ε.

Also, there is some loss in ε whenever we condition on the values of any subset of the
Yi’s, see Claim 24 for a formal claim. This introduces the extra condition that each Xi must
put a certain mass on each outcome.

4.1 Preliminaries

In this section, we prove several claims that will be used in the proof of Lemma 12.

Lemma 17. For any z ∈ C with |z| ≤ 1/2, |log(1 + z)| ≤ 2|z|, where we take the principle
branch of the logarithm.

Proof. From the Taylor series expansion of the complex-valued log function we have

|log(1 + z)| =

∣∣∣∣∣
∞∑
n=1

(−1)n−1

n!
zn

∣∣∣∣∣ ≤
∞∑
n=1

|z|n ≤ |z|
∞∑
n=0

(1/2)n = 2|z|.

Lemma 18. Let Z ∈ C be a random variable with |Z| ≤ 1/2, E[Z] = 0 and W = log(1 +Z)
the principle branch of the logarithm function (phase between (−π, π)). We have Var[W ] ≤
4 Var[Z].

Proof. By the definition of Variance, Lemma 17, and that E[Z] = 0,

Var[W ] = E[|W |2]− |E[W ]|2

≤ E[|W |2]

≤ 4E[|Z|2]

= 4 Var[Z].

Lemma 19 (Taylor’s approximation). For w ∈ C and d > 0,∣∣∣∣∣ew −
d−1∑
j=0

wj/j!

∣∣∣∣∣ ≤ O(1)
|w|d

d!
·max{1, e<(w)}.
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Lemma 20. For any random variable W ∈ C, |eE[W ]| ≤ E[|eW |].

Proof. By Jensen’s inequality, we have

|eE[W ]| = |eE[<(W )]| ≤ |E[e<(W )]| = E[|eW |].

Claim 21. |ez1 − ez2| ≤ |ez2| ·O(|z1 − z2|) if |z1 − z2| ≤ 1,

Proof. By Lemma 19 with d = 1,

|ez1−z2 − 1| ≤ O(1) · |z1 − z2| ·max{1, e<(z1−z2)} = O(|z1 − z2|),

because <(z1 − z2) ≤ |z1 − z2| ≤ 1. Therefore,

|ez1 − ez2| = |ez2(ez1−z2 − 1)|
= |ez2||ez1−z2 − 1|
≤ |ez2| ·O(|z1 − z2|).

Claim 22. Let X, Y ∈ Ω be two discrete random variables such that sd(X, Y ) ≤ ε. Let
f : Ω→ C be any function. We have |E[f(X)]− E[f(Y )]| ≤ 2 maxz|f(z)| · sd(X, Y ).

Proof. Let p and q be the probability function of X and Y . Using the fact that sd(X, Y ) =
1
2

∑
z|p(z)− q(z)|, we have∣∣∣E[f(X)]− E[f(Y )]

∣∣∣ =
∣∣∣∑

z

p(z)f(z)−
∑
z

q(z)f(z)
∣∣∣

≤
∑
z

|f(z)||p(z)− q(z)|

≤ max
z
|f(z)| ·

∑
z

|p(z)− q(z)|

= 2 max
z
|f(z)| · sd(X, Y ).

Claim 23 (Maclaurin’s inequality (cf. [Ste04])). Let z1, . . . , zk be k non-negative numbers.
For any i ∈ {0, . . . , k}, we have

Si(z1, . . . , zk) :=
∑
S:|S|=i

∏
j∈S

zj ≤ (e/i)i(
k∑
j=1

zj)
i.

4.2 Proof of Lemma 12

We now prove Lemma 12. For independent random variables Z1, . . . , Zk, we will use σ(Z) to
denote the standard deviation of

∑
i≤k Zi, that is, σ(Z) := (

∑k
i=1 Var[Zi])

1/2. We will also
denote σ(Z)2/d by v for notational simplicity.
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4.2.1 Assuming the variances are not too small

As hinted in the overview above, throughout the proof we will without loss of generality
assume Var[Xi] ≤ σ(X)2/d for every i ∈ {1, . . . , k}. This assumption will be used in the
proof of Lemma 30 to give a uniform bound on how close the rounded Xi’s and Xi’s are in
expectation.

We first prove a claim that shows the Yi’s remains close to the Xi even if we condition
on the values of a few of the Yi’s. This claim will be used multiple times throughout the
proof. Note that this claim is immediate for exact independence (ε = 0) but less for almost
independence. We shall use the assumption that the Xi take any value with probability at
least 2−n.

Claim 24. Let X1, X2, . . . , Xk be k independent random variables over C≤1 with minz∈Supp(Xi) Pr[Xi =
z] ≥ 2−n. Let Y1, Y2, . . . , Yk be k random variables over C≤1 that are (ε, d)-close to X1, X2, . . . , Xk.
Let S ⊆ {1, . . . , k} be a subset of size t. Then conditioned on any values of the Yi for i ∈ S,
the Yi for i 6∈ S are (3 · 22tnε, d− t)-close to the Xi for i 6∈ S.

Proof. Let T ⊆ [k]−S be a subset of size at most d− t. We have for any value z` for ` ∈ S,∑
zj :j∈T

∣∣∣∣∣Pr
[ ∧
j∈T

Yj = zj |
∧
`∈S

Y` = z`

]
− Pr

[ ∧
j∈T

Xj = zj

]∣∣∣∣∣
=
∑
zj :j∈T

∣∣∣∣∣∣
Pr
[∧

j∈S∪T Yj = zj

]
pY

−
Pr
[∧

j∈S∪T Xj = zj

]
pX

∣∣∣∣∣∣,
where pX := Pr[∧`∈SX` = z`] and pY := Pr[∧`∈SY` = z`]. Hence, we can rewrite above as∑

zj :j∈T

∣∣∣∣∣( 1

pY
− 1

pX

)
Pr
[ ∧
j∈S∪T

Yj = zj

]
+

1

pX

(
Pr
[ ∧
j∈S∪T

Yj = zj

]
− Pr

[ ∧
j∈S∪T

Xj = zj

])∣∣∣∣∣
≤
∣∣∣ 1

pY
− 1

pX

∣∣∣ ∑
zj :j∈T

Pr
[ ∧
j∈S∪T

Yj = zj

]
+

ε

pX

≤ |1/pY − 1/pX |+ ε/pX

≤ (1/pXpY + 1/pX)ε.

The first and last inequalities are because the Xi’s are (ε, d)-close to the Yi’s. As the Xi’s are
independent, by our assumption we have pX =

∏
`∈S Pr[X` = z`] ≥ 2−tn, and so pY ≥ 2−tn−

ε ≥ 2−tn/2. (Otherwise the conclusion is trivial.) Therefore, (1/pXpY + 1/pX)ε ≤ 3 · 22tnε,
and the proof follows.

Claim 25. Let X1, X2, . . . , Xk be k independent random variables over C≤1 with minz∈Supp(Xi) Pr[Xi =
z] ≥ 2−n for each i ∈ {1, . . . , k}. Let Y1, Y2, . . . , Yk be k random variables over C≤1. If
Lemma 12 holds when the Yi’s are (Cd, ε)-close to the Xi’s assuming Var[Xi] ≤ σ(X)2/d for
every i ∈ [k], then Lemma 12 holds when the Yi’s are ((C+ 1)d, ε)-close the Xi’s without the
assumption.
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Proof. Note that there can be at most d different such indices. Let J be the set of these
indices. We have∏

i

Xi −
∏
i

Yi =
∏
j∈J

Xj

∏
i 6∈J

Xi −
∏
j∈J

Yj
∏
i 6∈J

Yi

=
(∏
j∈J

Xj −
∏
j∈J

Yj

)∏
i 6∈J

Xj +
∏
j∈J

Yj

(∏
i 6∈J

Xj −
∏
i 6∈J

Yj

)
.

We first bound the expectation of the first term. Since the Xi’s are independent,∣∣∣∣∣ EX,Y [(∏
j∈J

Xj −
∏
j∈J

Yj

)∏
i 6∈J

Xj

]∣∣∣∣∣ =

∣∣∣∣∣E [∏
j∈J

Xj

]
− E

[∏
j∈J

Yj

]∣∣∣∣∣ ·
∣∣∣∣∣E [∏

i 6∈J

Xj

]∣∣∣∣∣
≤

∣∣∣∣∣E [∏
j∈J

Xj

]
− E

[∏
j∈J

Yj

]∣∣∣∣∣
≤ ε.

For the second term, note that conditioning on the values of the Yj for which j ∈ J , by
Claim 24, the remaining variables are (2O(dn)ε, Cd)-close to the corresponding Xj’s. So we
can apply the above Lemma 12 with our assumption and the claim follows.

4.2.2 Assuming the variables are close to their expectations and the expecta-
tions are large

Lemma 26. Let X1, X2, . . . , Xk be k independent discrete random variables over C≤1. Let
Y1, Y2, . . . , Yk be k discrete random variables over C≤1 that are (ε, d)-close to X1, . . . , Xk.
Assume for each Xi and Yi, there exist Zi and Z ′i such that

Xi = E[Xi](1 + Zi) and Yi = E[Xi](1 + Z ′i),

where |Zi| ≤ B ≤ 1/2 and |Z ′i| ≤ B ≤ 1/2. Then∣∣∣∣∣E [
k∏
i=1

Xi

]
− E

[ k∏
i=1

Yi

]∣∣∣∣∣ ≤ 2O(d)

(
σ(Z)

√
d+Bd

d

)d

+ (Bk)O(d)ε.

Remark 27. Note that we define Yi above in terms of E[Xi] but not E[Yi]. The Zi’s are
independent, but the Zi’s may not be. Also, later we will take B to be v1/3.

Proof. Define Wi, Ŵi such that

Wi = log(1 + Zi) and Ŵi = Wi − E[Wi].

Likewise, define W ′
i , Ŵ

′
i such that

W ′
i = log(1 + Z ′i) and Ŵ ′

i = W ′
i − E[W ′

i ].
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Let Ŵ =
∑

i Ŵi and Ŵ ′ =
∑

i Ŵ
′
i . Note that Xi = E[Xi]e

Ŵi+E[Wi] and Yi = E[Yi]e
Ŵ ′i+E[W ′i ].

We have
k∏
i=1

Xi =
( k∏
i=1

E[Xi]e
E[Wi]

)
eŴ and

k∏
i=1

Yi =
( k∏
i=1

E[Xi]e
E[W ′i ]

)
eŴ
′
.

Hence the difference is
k∏
i=1

Xi −
k∏
i=1

Yi =
( k∏
i=1

E[Xi]
)( k∏

i=1

eE[Wi] · eŴ −
k∏
i=1

eE[W ′i ] · eŴ ′
)

=
( k∏
i=1

E[Xi]
)(( k∏

i=1

eE[Wi] −
k∏
i=1

eE[W ′i ]
)
eŴ +

k∏
i=1

eE[W ′i ] ·
(
eŴ − eŴ ′

))
.

The lemma follows from the two claims below:

Claim 28. For every outcome of Ŵ ,
∣∣∣(∏k

i=1 E[Xi]
)(∏k

i=1 e
E[Wi] −

∏k
i=1 e

E[W ′i ]
)
eŴ
∣∣∣ ≤ O(kε).

Claim 29.
∣∣∣(∏k

i=1 E[Xi]e
E[W ′i ]

)(
E[eŴ ]− E[eŴ

′
]
)∣∣∣ ≤ 2O(d)

(
σ(Z)

√
d+Bd
d

)d
+ (Bk)O(d)ε.

Proof of Claim 28. We have∣∣∣∣∣(
k∏
i=1

E[Xi]
)( k∏

i=1

eE[Wi] −
k∏
i=1

eE[W ′i ]
)
eŴ

∣∣∣∣∣ =
∣∣∣ k∏
i=1

E[Xi]
∣∣∣ · ∣∣∣ k∏

i=1

eE[Wi] −
k∏
i=1

eE[W ′i ]
∣∣∣ · ∣∣∣eŴ ∣∣∣

Since |
∑

i E[Wi]−
∑

i E[W ′
i ]| ≤

∑
i|E[Wi]− E[W ′

i ]| ≤ kε, by Claim 21,∣∣∣ k∏
i=1

eE[Wi] −
k∏
i=1

eE[W ′i ]
∣∣∣ =

∣∣∣e∑i E[Wi] − e
∑
i E[W ′i ]

∣∣∣
≤
∣∣∣e∑i E[Wi]

∣∣∣ ·O(kε)

=
∣∣∣ k∏
i=1

eE[Wi]
∣∣∣ ·O(kε),

Therefore,∣∣∣ k∏
i=1

E[Xi]
∣∣∣ · ∣∣∣ k∏

i=1

eE[Wi] −
k∏
i=1

eE[W ′i ]
∣∣∣ · ∣∣∣eŴ ∣∣∣ ≤ ∣∣∣ k∏

i=1

E[Xi]
∣∣∣ · ∣∣∣ k∏

i=1

eE[Wi]
∣∣∣ ·O(kε) ·

∣∣∣eŴ ∣∣∣
=

∣∣∣∣∣(
k∏
i=1

E[Xi]e
E[Wi]

)
eŴ

∣∣∣∣∣ ·O(kε)

=
∣∣∣ k∏
i=1

Xi

∣∣∣ ·O(kε)

≤ O(kε).
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Proof of Claim 29. We first rewrite eŴ − eŴ ′ as a sum of 3 terms:

eŴ − eŴ ′ =
(
eŴ −

d−1∑
j=0

Ŵ j/j!
)

+
( d−1∑
j=0

(Ŵ j − Ŵ ′j)/j!
)

+
( d−1∑
j=0

Ŵ ′j/j!− eŴ ′
)
.

It suffices to bound above the expectation of each term multiplied by γ :=
∏k

i=1 E[Xi]e
E[W ′i ].

We bound the first and last terms using Taylor’s approximation (Lemma 19), and the second
term using (ε, d)-closeness of the variables. We will show the following:

E

[∣∣∣∣∣γ · (eŴ ′ −
d−1∑
j=0

Ŵ ′j/j!
)∣∣∣∣∣
]
≤ 2O(d)

(
σ(Z)

√
d+Bd

d

)d

+ (kB)O(d)ε (7)

E

[∣∣∣∣∣γ · (eŴ −
d−1∑
j=0

Ŵ j/j!
)∣∣∣∣∣
]
≤ 2O(d)

(
σ(Z)

√
d+Bd

d

)d

(8)∣∣∣∣∣γ · E [
d−1∑
j=0

(Ŵ j − Ŵ ′j)/j!
]∣∣∣∣∣ ≤ kdε. (9)

For (7), by Lemma 19 we have∣∣∣∣∣γ · (eŴ ′ −
d−1∑
j=0

Ŵ ′j/j!
)∣∣∣∣∣ ≤ |γ| ·O(1)

|Ŵ ′|d

d!
·max{1, e<(Ŵ ′)}.

We now bound above |γ ·max{1, e<(Ŵ ′)}| by 1. We have

|γ| =
∣∣∣ k∏
i=1

E[Xi]e
E[W ′i ]

∣∣∣
=
∣∣∣ k∏
i=1

E[Xi]
∣∣∣ · ∣∣∣eE[

∑
iW
′
i ]
∣∣∣

≤
∣∣∣ k∏
i=1

E[Xi]
∣∣∣ · E[|e

∑
iW
′
i |] (Jensen’s inequality, see Lemma 20)

= E

[∣∣∣ k∏
i=1

E[Xi] · e
∑
iW
′
i

∣∣∣]

= E

[∣∣∣ k∏
i=1

Yi

∣∣∣]
≤ 1.

Moreover,

|γ · e<(Ŵ ′)| =
∣∣∣ k∏
i=1

E[Xi]e
E[W ′i ]

∣∣∣ · e<(Ŵ ′) =
∣∣∣ k∏
i=1

E[Xi]e
E[W ′i ]eŴ

′
∣∣∣ =

∣∣∣ k∏
i=1

Yi

∣∣∣ ≤ 1.
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Hence, it suffices to bound above E[|Ŵ ′|d]. Note that the Ŵ ′
i ’s are (ε, d)-close to the Ŵi’s.

So we bound above |Ŵi| and Var[Ŵi] and then apply Lemma 47. First, since |Zi| ≤ B, we
have |Wi| ≤ 2B because of Lemma 17, and so |Ŵi| ≤ |Wi| + |E[Wi]| ≤ 4B. Next, we have
Var[Ŵi] ≤ 4 Var[Zi] because of Lemma 18, and so σ(Ŵ ) ≤ 2σ(Z). Therefore, by Lemma 47,

E

[∣∣∣∣∣(
k∏
i=1

E[Xi]e
E[W ′i ]

)(
eŴ
′ −

d−1∑
j=0

Ŵ ′j/j!
)∣∣∣∣∣
]
≤ O(1)

E[|Ŵ ′|d]
d!

≤ 2O(d)

(
σ(Ŵ )

√
d+ 4Bd

d

)d

+ (kB)O(d)ε

≤ 2O(d)

(
σ(Z)

√
d+Bd

d

)d

+ (kB)O(d)ε.

We prove Inequality (8) similarly. Note that

|e
∑
i E[W ′i ]|

|e
∑
i E[Wi]|

= |e
∑
i E[W ′i ]−

∑
i E[Wi]|

≤ e|
∑
i E[W ′i ]−

∑
i E[Wi]|

≤ e
∑
i|E[W ′i ]−E[Wi]|

≤ ekε

≤ O(1),

because ε < 1/k, otherwise the conclusion is trivial. Hence,∣∣∣∣∣(
k∏
i=1

E[Xi]e
E[W ′i ]

)(
eŴ −

d−1∑
j=0

Ŵ j/j!
)∣∣∣∣∣ ≤

∣∣∣∣∣(
k∏
i=1

E[Xi]e
E[Wi]

)(
eŴ −

d−1∑
j=0

Ŵ j/j!
)∣∣∣∣∣ ·O(1).

Therefore, it follows by Inequality (1) by considering ε = 0 that

E

[∣∣∣∣∣(
k∏
i=1

E[Xi]e
E[W ′i ]

)(
eŴ −

d−1∑
j=0

Ŵ j/j!
)∣∣∣∣∣
]
≤ 2O(d)

(
σ(Z)

√
d+Bd

d

)d

.

Finally we prove Inequality (9). By linearity of expectation,

E
[ d−1∑
j=0

(Ŵ j − Ŵ ′j)/j!
]

=
d−1∑
j=0

(E[Ŵ j]− E[Ŵ ′j])/j! .

Note that Ŵ j = (
∑

i Ŵi)
j can be written as a sum of kj terms where each term is a product

of at most j ≤ d different Wi’s. Moreover, we have |Wi| ≤ 2B ≤ 1 for each i because of
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Lemma 17. So we have |E[Ŵ j]− E[Ŵ ′j]| ≤ kjε. Hence,∣∣∣∣∣E [
d−1∑
j=0

(Ŵ j − Ŵ ′j)/j!
]∣∣∣∣∣ ≤

d−1∑
j=0

|E[Ŵ j]− E[Ŵ ′j]|

≤
d−1∑
j=0

kjε

≤ kdε.

Recall that |γ| ≤ 1, this concludes (9).

4.2.3 Assuming the expectations are large

We now prove the main lemma assuming the expectation of the Xi are far from zero.

Lemma 30. Let X1, X2, . . . , Xk be k independent random variables over C≤1, with minz∈Supp(Xi)

Pr[Xi = z] ≥ 2−n. Let Y1, Y2, . . . , Yk be k random variables over C≤1 that are (ε, 9d)-close
to X1, . . . , Xk. Assume |E[Xi]| ≥ (σ(X)2/d)1/6 for each i. We have∣∣∣∣∣E [

k∏
i=1

Xi

]
− E

[ k∏
i=1

Yi

]∣∣∣∣∣ ≤ 2O(d)

(
σ(X)2

d

)d
+ (k2n)O(d)ε.

Proof of Lemma 30. We will assume σ(X)2/d is less than a sufficiently small constant and
ε ≤ (k2n)−Cd for a sufficiently large C; otherwise the R.H.S. of the inequality is greater than
2 and there is nothing to prove.

For each i ∈ {1, 2, . . . , k}, we define a new function rdi : C≤1 → C≤1 that will be used to
round the variables Xi and Yi. We define rdi as

rdi(z) :=

{
z if |z − E[Xi]| ≤ (σ(X)2/d)1/3

E[Xi] otherwise.

Let X̃i = rdi(Xi) and Ỹi = rdi(Yi). We will write both
∏

iXi and
∏

i Yi as

k∏
i=1

Xi =
k∏
i=1

(Xi − X̃i + X̃i) =
∑

S⊆{1,2,...,k}

∏
i∈S

(Xi − X̃i)
∏
i 6∈S

X̃i,

and
k∏
i=1

Yi =
k∏
i=1

(Yi − Ỹi + Ỹi) =
∑

S⊆{1,2,...,k}

∏
i∈S

(Yi − Ỹi)
∏
i 6∈S

Ỹi.

Let m = 3d. Define

Pm(z1, z2, . . . , zk) =
∑
|S|<m

∏
i∈S

(zi − rdi(zi))
∏
i 6∈S

rdi(zi).
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We will show that Pm is a good approximation of the product in expectation over both Xi’s
and Yi’s and then show that the expectations of Pm under Xi’s and Yi’s are close.

We will use the following inequalities repeatedly.

Claim 31. Pr[X̃i 6= Xi] ≤ Var[Xi]v
−2/3 ≤ v1/3. In particular,

∑
i Pr[X̃i 6= Xi] ≤ (dσ)2/3.

Proof. The first inequality follows from Chebyshev’s inequality and second follows from the
assumption Var[Xi] ≤ v. The last sentence is implied by the first inequality.

Claim 32.
∣∣∣E [∏i Yi − Pm(Y1, . . . , Yk)

]∣∣∣ ≤ 2O(d)vd + kO(d)ε.

Proof. Consider the product
∏

i∈S(Yi − Ỹi). Let N ′ be the number of i ∈ {0, 1, 2, . . . , k}
such that Ỹi 6= Yi. If N ′ < m then any set S of size at least m must contain an i such that
Ỹi = Yi. In this case the product is 0 and thus∏

i

Yi − Pm(Y1, . . . , Yk) =
∑
|S|≥m

∏
i∈S

(Yi − Ỹi)
∏
i 6∈S

Ỹi = 0.

So,∣∣∣∣∣E [∏
i

Yi − Pm(Y1, . . . , Yk)
]∣∣∣∣∣ =

∣∣∣∣∣E [1(N ′ ≥ m) ·
(∏

i

Yi − Pm(Y1, . . . , Yk)
)]∣∣∣∣∣

≤ E
[
1(N ′ ≥ m) ·

(∣∣∣∏
i

Yi

∣∣∣+ |Pm(Y1, . . . , Yk)|
)]

= E
[
1(N ′ ≥ m) ·

∣∣∣∏
i

Yi

∣∣∣]+ E
[
1(N ′ ≥ m) · |Pm(Y1, . . . , Yk)|

]
.

If N ′ ≥ m then there can be at most
∑m−1

`=0

(
N ′

`

)
≤
∑m−1

`=0

(
N ′

m

)(
m
`

)
≤ 2m

(
N ′

m

)
subsets in the

sum in Pm for which the product is nonzero, and each such product can be at most 2m

because |S| < m. Thus,

1(N ′ ≥ m) ·
∣∣∣Pm(Y1, . . . , Yk)

∣∣∣ ≤ 1(N ′ ≥ m) · 2m
m−1∑
`=0

(
N ′

`

)
≤ 1(N ′ ≥ m) · 2m · 2m

(
N ′

m

)
≤ 22m

(
N ′

m

)
.

Therefore,

E
[
1(N ′ ≥ m) ·

(∣∣∣∏
i

Yi

∣∣∣+ |Pm(Y1, . . . , Yk)|
)]
≤ E

[
1(N ′ ≥ m) ·

∣∣∣∏
i

Yi

∣∣∣]+ 22m E
[(N ′

m

)]
≤ E[1(N ′ ≥ m)] + 22m E

[(N ′
m

)]
.

We will show the following
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Claim 33. Pr[N ′ ≥ m] ≤ E
[(

N ′

m

)]
≤ vd + kO(d)ε.

Assuming the claim it follows that∣∣∣∣∣E [1(N ′ ≥ m) ·
(∏

i

Yi − Pm(Y1, . . . , Yk)
)]∣∣∣∣∣ ≤ E[1(N ′ ≥ m)] + 22m E

[(
N ′

m

)]
≤ (1 + 26d)((2v)d + kO(d)ε) (m = 6d)

≤ 2O(d)vd + kO(d)ε.

We now prove Claim 33.

Proof of Claim 33. The first inequality is clear.

E
[(
N ′

m

)]
≤
∑
|S|=m

Pr[∧i∈SYi 6= Ỹi]

≤
∑
|S|=m

(∏
i∈S

Pr[Xi 6= X̃i] + ε
)

(each Yi is ε-close to Xi)

≤
∑
|S|=m

∏
i∈S

Pr[Xi 6= X̃i] + kmε

≤

(
e
∑k

i=1 Pr[Xi 6= X̃i]

m

)m

+ kmε (Maclaurin’s inequality)

≤
(
e(d · σ(X))2/3

3d

)3d

+ kmε (Claim 31)

≤ vd + kO(d)ε.

Now, we show that Pm(Y1, . . . , Yk) is close to Pm(X1, . . . , Xk) in expectation.

Claim 34. |E[Pm(X1, . . . , Xk)]− E[Pm(Y1, . . . , Yk)]| ≤ 2O(d)vd +O(k)3dε .

Proof. The difference between Pm(X1, . . . , Xk) and Pm(Y1, . . . , Yk) equals

Pm(X1, . . . , Xk)− Pm(Y1, . . . , Yk) =
∑
|S|<m

(∏
i∈S

(Xi − X̃i)
∏
i 6∈S

X̃i −
∏
i∈S

(Yi − Ỹi)
∏
i 6∈S

Ỹi

)
.

We can rewrite the R.H.S. as

∑
|S|<m

((∏
i∈S

(Xi − X̃i)−
∏
i∈S

(Yi − Ỹi)
)∏
i 6∈S

X̃i +
∏
i∈S

(Yi − Ỹi)
(∏
i 6∈S

X̃i −
∏
i 6∈S

Ỹi

))
.
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It suffices to show that∣∣∣∣∣∣E
∑
|S|<m

(∏
i∈S

(Xi − X̃i)−
∏
i∈S

(Yi − Ỹi)
)∏
i 6∈S

X̃i

∣∣∣∣∣∣ ≤ kO(d)ε (10)

∣∣∣∣∣∣E
∑
|S|<m

∏
i∈S

(Yi − Ỹi)
(∏
i 6∈S

X̃i −
∏
i 6∈S

Ỹi

)∣∣∣∣∣∣ ≤ 2O(d)vd + (k2n)O(d)ε. (11)

We first prove Inequality (10). Because the Xi’s are independent, the L.H.S. of the inequality
equals ∣∣∣∣∣∣

∑
|S|<m

(
E
[∏
i∈S

(Xi − X̃i)
]
− E

[∏
i∈S

(Yi − Ỹi)
])

E
[∏
i 6∈S

X̃i

]∣∣∣∣∣∣
≤

m−1∑
`=1

∑
|S|=`

∣∣∣∣∣E [∏
i∈S

(Xi − X̃i)
]
− E

[∏
i∈S

(Yi − Ỹi)
]∣∣∣∣∣ ·
∣∣∣∣∣E [∏

i 6∈S

X̃i

]∣∣∣∣∣
≤

m−1∑
`=1

∑
|S|=`

∣∣∣∣∣E [∏
i∈S

(Xi − X̃i)
]
− E

[∏
i∈S

(Yi − Ỹi)
]∣∣∣∣∣

≤
m−1∑
`=1

∑
|S|=`

2 · 2`ε

≤
m−1∑
`=1

k` · 2 · 2`ε

≤ 2(2k)mε

= kO(d)ε.

To see the third inequality, note that |z − rdi(z)| ≤ 2, and so |
∏

i∈S(zi − rdi(zi))| ≤ 2|S|. So
we can apply Claim 22 to bound above the absolute difference by 2 · 2|S|ε.

Now we prove Inequality (11). As |S| ≤ m = 3d and Yi’s are (ε, 9d)-close to Xi’s,
conditioned on the values of X̃i for which i ∈ S, by Claim 24, the remaining Ỹi’s for which
i 6∈ S are still (2O(m·n)ε, 6d)-close to the corresponding X̃i’s. (Recall that we can assume
ε = (k2n)−Cd for a sufficiently large C.) We will apply Lemma 26 to them.

Define Zi, Z
′
i such that X̃i = E[X̃i](1 +Zi) and Ỹi = E[X̃i](1 +Z ′i). To apply Lemma 26,

we need the following two claims to bound above |Zi|, |Z ′i| and σ(Z)2. We defer their proofs
to the end.

Claim 35. Let B = 4v1/6. Then |Zi| ≤ B and |Z ′i| ≤ B.

Claim 36. σ(Z)2 ≤ 4σ(X)2v−1/3.

26



Therefore, by Lemma 26 with ε′ = 2O(m·n)ε and B = 4(σ(X)2/d)1/6 ≤ 1/2 (Recall that
we can assume σ(X)2/d less than a sufficiently small constant),∣∣∣∣∣∣E

∑
|S|<m

∏
i∈S

(Yi − Ỹi)
(∏
i 6∈S

X̃i −
∏
i 6∈S

Ỹi

)∣∣∣∣∣∣ ≤
∑
|S|<m

E

[∣∣∣∣∣∏
i∈S

(Yi − Ỹi)

∣∣∣∣∣
]
·M,

where

M ≤ 2O(d)

(
σ(Z)

√
d+ dB

d

)6d

+ (Bk)O(d)ε′

≤ 2O(d)

(
σ(X)(σ(X)/

√
d)−1/3

√
d

+B

)6d

+ (Bk2n)O(d)ε

≤ 2O(d)

(
σ(X)(σ(X)/

√
d)−1/3

√
d

+ 4v1/6

)6d

+ (k2n)O(d)ε

= 2O(d)
(
v1/3 + v1/6

)6d
+ (k2n)O(d)ε

= 2O(d)vd + (k2n)O(d)ε.

We now bound above E[|
∏

i∈S(Yi − Ỹi)|]. Note that |
∏

i∈S(zi − rdi(zi))| ≤ 2|S|. Hence by
Claim 22,

E

[∣∣∣∣∣∏
i∈S

(Yi − Ỹi)

∣∣∣∣∣
]
≤ E

[∣∣∣∣∣∏
i∈S

(Xi − X̃i)

∣∣∣∣∣
]

+ 2|S|ε.

Let N be the number of i ∈ {0, 1, . . . , k} such that X̃i 6= Xi. Note that

∑
|S|<m

E

[∣∣∣∣∣∏
i∈S

(Xi − X̃i)

∣∣∣∣∣
]
≤

m−1∑
`=0

(
2` E

[(
N

`

)])
≤ 2m E[2N ]

= 2m
k∏
i=1

(
1 + Pr[Xi 6= X̃i]

)
≤ 2me

∑
i Pr[Xi 6=X̃′i]

≤ 2me(d σ(X))2/3

≤ 2O(d),

where the last inequality is because σ(X)2/d ≤ 1 and so σ(X)2/3 ≤ d1/3. Therefore,

∑
|S|<m

E

[∣∣∣∣∣∏
i∈S

(Yi − Ỹi)

∣∣∣∣∣
]
≤ 2O(d) +

∑
|S|<m

2|S|ε ≤ 2O(d) + (2k)mε ≤ 2O(d),
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where the last inequality is because ε ≤ k−Cd for a sufficiently large C. So altogether the
bound is 2O(d) ·M as desired.

We now prove Claim 35 and 36. By Claim 31, |E[Xi] − E[X̃i]| ≤ (σ(X)2/d)1/3. Also by
assumption, |E[Xi]| ≥ (σ(X)2/d)1/6. So, we have |E[X̃i]| ≥ |E[Xi]|/2 ≥ (σ(X)2/d)1/6/2.

Proof of Claim 35. As |E[X̃i]| ≥ v1/6/2, we have

|Z̃i| =
|X̃i − E[X̃i]|
|E[X̃i]|

≤ |X̃i − E[Xi]|+ |E[X̃i]− E[Xi]|
|E[X̃i]|

≤ 4v1/3/v1/6

≤ 4v1/6,

and the same argument holds for |Z̃ ′i| because |Ỹi − E[Xi]| ≤ v1/3.

Proof of Claim 36. Since z∗ = E[Z] is the minimizer of E[|Z − z|2], we have

Var[X̃i] = E[|X̃i − E[X̃i]|2]

≤ E[|X̃i − E[Xi]|2]

≤ E[|Xi − E[Xi]|2] (X̃i = rdi(Xi))

= Var[Xi].

Therefore, Var[Z̃i] = Var[X̃i]/|E[X̃i]|2 ≤ 4 Var[Xi]v
−1/3 and thus

∑
i Var[Z̃i] ≤ 4σ(X)2v−1/3.

4.2.4 The general case

Proof of Lemma 12. We will again assume σ(X)2/d is less than a sufficiently small constant
and ε ≤ (k2n)−Cd for a sufficiently large constant C. We first assume Var[Xj] ≤ σ(X)2/d for
all j and prove the lemma when the Yi’s are (ε, 15d)-close to the Xi’s. Later we will handle
the general case.

Let m be the number of i such that |E[Xi]| ≤ v1/6.
If m ≤ 6d, let J be the set of indices for which |E[Xi]| ≤ v1/6. We can write

∏
i

Xi −
∏
i

Yi =

(∏
j∈J

Xj −
∏
j∈J

Yj

)∏
j 6∈J

Xj +
∏
j∈J

Yj

(∏
j 6∈J

Xj −
∏
j 6∈J

Yj

)
.
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It suffices to show that∣∣∣∣∣E
[(∏

j∈J

Xj −
∏
j∈J

Yj

)∏
j 6∈J

Xj

]∣∣∣∣∣ ≤ ε (12)∣∣∣∣∣E
[∏
j∈J

Yj

(∏
j 6∈J

Xj −
∏
j 6∈J

Yj

)]∣∣∣∣∣ ≤ 2O(d)vd + (k2n)O(d)ε. (13)

We first show Inequality (12). Since the Xi’s are independent, the L.H.S. of (12) is∣∣∣∣∣
(
E
[∏
j∈J

Xj

]
− E

[∏
j∈J

Yj

])
E
[∏
j 6∈J

Xj

]∣∣∣∣∣ ≤
∣∣∣∣∣E [∏

j∈J

Xj

]
− E

[∏
j∈J

Yj

]∣∣∣∣∣
≤ ε.

To prove Inequality (13), note that conditioned on the values of the Yi’s for which i ∈ J ,
by Claim 24, the rest of the Yi’s are still (2O(dn)ε, 9d)-close to the corresponding Xi’s with
|E[Xi]| ≥ v1/6. (Recall that we can assume ε = (k2n)−Cd for a sufficiently large C.) So the
bound follows from Lemma 30.

If m ≥ 6d, then note that∣∣∣∣∣E [
k∏
i=1

Xi

]∣∣∣∣∣ =
k∏
i=1

|E[Xi]| ≤ vm/6 ≤ vd.

So it suffices to show that ∣∣∣∣∣E [
k∏
i=1

Yi

]∣∣∣∣∣ ≤ 2O(d)vd + kO(d)ε.

Consider the event E that at least 3d of the Yi for i ∈ J have absolute value less than 2v1/6.
Then we know that ∣∣∣ k∏

i=1

Yi

∣∣∣ ≤ 23d · vd/2.

We will show that E happens except with probability at most v2d + k3dε. Let N ∈
{0, 1, 2, . . . ,m} be the number of i ∈ J such that |Yi| ≥ 2v1/6. Note that

Pr[N ≥ 3d] ≤
∑

S⊆J :|S|=3d

Pr

[∧
i∈S

(
|Yi| ≥ 2v1/6

)]
≤

∑
S⊆J :|S|=3d

∏
i∈S

Pr
[
|Xi| ≥ 2v1/6

]
+ k3dε.

By Chebyshev’s inequality,

Pr[|Xi| ≥ 2v1/6] ≤ Pr[|Xi − E[Xi]| ≥ v1/6] ≤ Var[Xi]v
−1/3.
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Hence, by Maclaurin’s inequality,

∑
S⊆J :|S|=3d

∏
i∈S

Pr
[
|Xi| ≥ 2v1/6

]
≤
(
e
∑m

i=1 Pr[|Xi| ≥ 2v1/6]

3d

)3d

≤
(
e
∑m

i=1 Var[Xi]v
−1/3

3d

)3d

≤
(
eσ(X)2v−1/3

3d

)3d

≤ v2d.

So,
Pr[N ≥ 3d] ≤ v2d + k3dε.

Therefore, ∣∣∣E [∏
i

Yi

]∣∣∣ ≤ 23dvd/2 + v2d + k3dε

≤ 2O(d)vd/2 + kO(d)ε.

5 Improved bound for bounded independence plus noise

fools products

In this section we prove Theorem 10, which improves the error bound in Theorem 8 from
2−Ω(d) to n−Ω(d). Its proof requires developing a few additional technical tools. We first
outline the high-level idea on how to obtain the improvement.

For simplicity, we will assume d = O(1) and show how to obtain an error bound of n−Ω(1).
Recall in the proof of Theorem 8 (see also Table 1) that we used a win-win argument on the
total-variance: we applied two different arguments depending on whether the total-variance
of a product test f is above or below a certain threshold. Suppose now the total-variance of
f is guaranteed to lie outside the interval [n−0.1, n0.1]. Then applying the same arguments as
before would already give us an error of n−Ω(1). So it suffices to handle the additional case,
where the total-variance is in the range of [n−0.1, n0.1]. Our goal is to use noise to reduce the
total-variance down to n−0.1, which can then be handled by the low total-variance argument.
To achieve this, as a first step we will handle the functions fi with variances above and below
n−0.6 separately, and show that O(n)-wise independence plus noise fools the product of the
fi in each case.

For the former, note that since the total-variance is ≤ n0.1, there can be at most n0.7

functions with variances above n−0.6. In this case we can simply apply the result in [HLV17]
(Theorem 7). To prove the latter case, we use noise to reduce the variance of each function.
Specifically, we use the hypercontractivity theorem to show that applying the noise oper-
ator to a function reduces its variance from σ2 to (σ2)(4/3). This is proved in Section 5.1
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below. Hence, on average over the noise, the variance σ2
i of each fi is reduced to at most

(n−0.6)1/3σ2
i , and so the total-variance of the fi is at most (n−0.6)1/3 · n0.1 = n−0.1 and we

can argue as before. To combine the two cases, we prove a new XOR Lemma for bounded
independent distributions, inspired by a similar lemma for small-bias distributions which is
proved in [GMR+12], and the theorem follows.

5.1 Noise reduces variance of bounded complex-valued functions

In this section, we show that on average, noise reduces the variance of bounded complex-
valued functions. We will use the hypercontractivity theorem for complex-valued functions
(cf. [Hat14, Theorem 6.1.8]).

Let f : {0, 1}n → C be any function. For every ρ ∈ [0, 1], define the noise operator Tρ to
be Tρf(x) := EN [f(x+N)], where N sets each bit to uniform independently with probability
1− ρ and 0 otherwise.

Theorem 37 (Hypercontractivity Theorem). Let q ∈ [2,∞). Then for any ρ ∈ [0,
√

1/(q − 1)],

E
[
|Tρf(x)|q

]1/q ≤ |E[f(x)2]|1/2.

We will use the following well-known corollary.

Corollary 38. Let f : {0, 1}n → C. Then

E
[
|Tρf(x)|2

]
≤ E

[
|f(x)|1+ρ2] 2

1+ρ2 .

Proof.

E
[
|Tρf(x)|2

]
= E

x

[
E

N,N ′
[f(x+N)f(x+N ′)]

]
= E

x

[
E

N,N ′
[f(x)f(x+N +N ′)]

]
= E

x

[
f(x) E

N,N ′
[f(x+N +N ′)]

]
= E

x

[
f(x)TρTρf(x)

]
≤ E

[
|f(x)|1+ρ2] 1

1+ρ2 E
[
|TρTρf(x)|1+ 1

ρ2
] 1

1+1/ρ2

≤ E[|f(x)|1+ρ2 ]
1

1+ρ2 E[|Tρf(x)|2]1/2.

The first inequality follows from Hölder’s inequality because 1
1+ρ2

+ 1
1+1/ρ2

= 1, and the

second inequality follows from Theorem 37 with q = 1 + 1/ρ2.

Let T be a distribution over {0, 1}m that sets each bit independently to 1 with probability
1− ρ and 0 otherwise.

Claim 39. ET,U
[
|EU ′ [U + T ∧ U ′]|2

]
= E

[
|T√ρf(x)|2

]
.
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Proof.

E
T,U

[
|E
U ′

[U + T ∧ U ′]|2
]

= E
T

[∑
α,α′

f̂αf̂α′ E
U

[χα+α′(U)] E
U ′

[χα(T ∧ U ′)] E
U ′′

[χα′(T ∧ U ′′)]
]

=
∑
α

|f̂α|2 E
T,U ′,U ′′

[
χα
(
T ∧ (U ′ + U ′′)

)]
=
∑
α

|f̂α|2ρ|α| = E
[
|T√ρf(x)|2

]
,

where the last inequality follows from Parseval’s identity because the Fourier expansion of
Tρf(x) is

∑
α f̂αρ

|α|χα(x).

We are now ready to prove that noise reduces the variance of a function. The main idea
is to translate the function to a point close to its mean so that its variance is close to its
second moment, and then apply Corollary 38 to it.

Lemma 40. Let f : {0, 1}n → C≤1 be any function. Let δ := min{|f(x) − f(x′)| : f(x) 6=
f(x′)}. Then

E
T

[
Var
x

[
E
U

[f(x+ T ∧ U)]
]]
≤ 4

(
2 Var[f ]

δ2

) 2
1+ρ

.

Proof. We can assume Var[f ] ≤ δ2/2; otherwise the conclusion is trivial. Let S be the
support of f . For every y ∈ S, let py := Pr[f(x) = y]. Let µ = E[f ] and σ2 = Var[f ]. Since
σ2 = E[|f(x)− µ|2], there is a point z ∈ S such that |z − µ|2 ≤ σ2. We have

σ2 =
∑
y∈S

py|y − µ|2 ≥
∑

y∈S:y 6=z

py|y − µ|2 ≥ min
y∈S:y 6=z

|y − µ|2
( ∑
y∈S:y 6=z

py

)
.

Define g(x) := f(x)−z
2

. We have for every t,

Var
x

[
E
U

[f(x+ t ∧ U)]
]

= 4 Var
x

[
E
U

[g(x+ t ∧ U)]
]
≤ 4E

x

[∣∣E
U

[g(x+ t ∧ U)]
∣∣2].

By Corollary 38,

E
[
|Tρg|2

]
≤ E

[
|g|1+ρ2] 2

1+ρ2 =

( ∑
y∈S:y 6=z

py

∣∣∣∣y − z2

∣∣∣∣1+ρ2
) 2

1+ρ2

≤
( ∑
y∈S:y 6=z

py

) 2
1+ρ2

because |y − y′| ≤ 2 for every y, y′ ∈ C≤1. So by Claim 39, we have

E
T,x

[∣∣E
U

[g(x+ T ∧ U)]
∣∣2] = E

[
|Tg|2

]
≤
( ∑
y∈S:y 6=z

py

) 2
1+ρ
.

It follows from above that

E
T

[
Var
x

[
E
U

[f(x+T∧U)]
]]
≤ 4 E

T,x

[∣∣E
U

[g(x+T∧U)]
∣∣2] ≤ 4

( ∑
y∈S:y 6=z

py

) 2
1+ρ ≤ 4

(
Var[f ]

miny∈S:y 6=z|y − µ|2

) 2
1+ρ

.
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Now we bound below miny∈S:y 6=z|y − µ|2. For every y 6= z,

δ2 ≤ |y − z|2 ≤ |y − µ|2 + |µ− z|2 ≤ |y − µ|2 + σ2.

Because σ2 ≤ δ2/2, we have

E
T

[
Var
x

[
E
U

[f(x+ T ∧ U)]
]]
≤ 4

(
Var[f ]

δ2 − σ2

) 2
1+ρ

≤ 4

(
2 Var[f ]

δ2

) 2
1+ρ

.

Remark 41. The dependence on δ is necessary. Consider a function f with support {0, ε}.
Then f = εg, where g has support {0, 1}. We have Var[f ] = ε2 Var[g]. Applying noise to f
is the same as applying noise to g, but g has no dependence on ε.

5.2 XOR Lemma for bounded independence

We now prove a version of XOR lemma for bounded independence that is similar to the one
in [GMR+12], which proves the lemma for small-bias distributions.

Lemma 42. Let f1, . . . , fk : {0, 1}m → [0, 1] be k functions on disjoint inputs. Let H : [0, 1]k →
[0, 1] be a multilinear function in its input. If each fi is fooled by any di-wise indepen-
dent distribution with error ε, then the function h : {0, 1}m → [0, 1] defined by h(x) :=
H(f1(x), f2(x), . . . , fk(x)) is fooled by any (

∑
i≤k di)-wise independent distribution with er-

ror 16kε.

We will use the following dual equivalence between bounded independence and sandwich-
ing polynomials that was introduced by Bazzi [Baz07].

Fact 43 ([Baz07]). A function f : {0, 1}m → [0, 1] is fooled by every d-wise independent
distribution if and only if there exist two multivariate polynomials p` and pu of degree d such
that

1. For every x ∈ {0, 1}m, we have p`(x) ≤ f(x) ≤ pu(x), and

2. E[pu(U)− f(U)] ≤ ε and E[f(U)− p`(U)] ≤ ε.

Proof of Lemma 42. By Fact 43, for each i ∈ {1, . . . , k}, there exist two degree-di polyno-
mials fui and f `i for fi which satisfy the conditions in Fact 43. Hence, we have

fui (x) ≥ fi(x) ≥ 0 and 1− f `i (x) ≥ 1− fi(x) ≥ 0.

For every α ∈ {0, 1}k, define

Mu
α(x) :=

∏
i:αi=1

fui (x)
∏

j:αj=0

(
1− f `j (x)

)
and Mα(x) :=

∏
i:αi=1

fi(x)
∏

j:αj=0

(
1− fj(x)

)
.

Clearly, Mu
α(x) ≥ Mα(x), and Mu

α(x) has degree
∑

i≤k di. We claim that for every α ∈
{0, 1}k,

E[Mu
α(x)−Mα(x)] ≤ 2kε.
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Fix a string α ∈ {0, 1}k. Define the hybrids M0 = Mu
α(x),M1, . . . ,Mk = Mα(x), where

Mi(x) := M
(1)
i (x) ·M (2)

i (x),

where
M

(1)
i (x) :=

∏
j≤i,αj=1

fj(x)
∏

j≤i:αj=0

(
1− fj(x)

)
,

and
M

(2)
i (x) :=

∏
j>i:αj=1

fuj (x)
∏

j>i:αj=0

(
1− f `j (x)

)
.

Note that

E[M
(2)
i (x)] =

∏
j>i:αj=1

E
[
fuj (x)

] ∏
j>i:αj=0

E
[(

1− f `j (x)
)]
≤ (1 + ε)k−i,

and M
(1)
i (x) ≤ 1. So, if αi = 1, then

E
[
Mi−1(x)−Mi(x)

]
= E

[(
fui (x)− fi(x)

)
·M (1)

i−1(x) ·M (2)
i (x)

]
≤ ε · (1 + ε)k−i.

Likewise, if αi = 0, we have

E[Mi−1(x)−Mi(x)] = E
[(

(1− f `i (x))− (1− fi(x))
)
·M (1)

i−1(x) ·M (2)
i (x)

]
≤ ε · (1 + ε)k−i.

Hence,

E[Mu
α(x)−Mα(x)] ≤

∑
1≤i≤k

E[Mi−1(x)−Mi(x)] ≤ ε
∑

0≤i≤k−1

(1 + ε)i ≤ 2kε.

Now we define M `
α(x) := 1−

∑
β:β 6=αM

u
β (x). Note that M `

α(x) also has degree
∑

i≤k di. Since∑
α∈{0,1}k

Mα(x) =
∏
i≤k

(
fi(x) + (1− fi(x))

)
= 1,

we have
M `

α(x) = 1−
∑
β:β 6=α

Mu
β (x) ≤ 1−

∑
β:β 6=α

Mβ(x) = Mα(x).

Hence,

E[Mα(x)−M `
α(x)] =

∑
β:β 6=α

(
Mu

β (x)−Mβ(x)
)
≤
∑
β:β 6=α

2kε ≤ 2k2kε = 4kε.

As H is multilinear, we can write H as

H(y1, . . . , yk) =
∑

α∈{0,1}k
H(α)

∏
i:αi=1

yi
∏
i:αi=0

(1− yi),
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where H(α) ∈ [0, 1] for every α. So

h(x) =
∑

α∈{0,1}k
H(α)

∏
i:αi=1

fi(x)
∏
i:αi=0

(1− fi(x)) =
∑

α∈{0,1}k
H(α)Mα(x).

Now if we define

hu(x) :=
∑

α∈{0,1}k
H(α)Mu

α(x) and h`(x) :=
∑

α∈{0,1}k
H(α)M `

α(x).

Clearly hu and h` both have degree
∑

i≤k di. We also have hu(x) ≥ h(x) ≥ h`(x), and

E[hu(x)− h`(x)] ≤
∑

α∈{0,1}k
H(α)E[Mu

α(x)−M `
α(x)] ≤

∑
α∈{0,1}k

(2k + 4k)ε ≤ 16kε.

Therefore, since hu and h` are two polynomials that satisfy the conditions in Fact 43, the
lemma follows.

5.3 Proof of Theorem 10

Armed with Lemma 40 and Lemma 42, we are now ready to prove Theorem 10. We first
need the following useful fact to handle the case when S is the M -th roots of unity.

Fact 44. Let X and Y be two random variables on {0, 1}m. Suppose for every product
test g : {0, 1}m → S, where S is the set of all M-th roots of unity, we have

∣∣E[g(X)] −
E[g(Y )]

∣∣ ≤ ε. Then for every product test g : {0, 1}m → S and every z ∈ S, we have∣∣Pr[g(X) = z]− Pr[g(Y ) = z]
∣∣ ≤ ε.

Proof. Note that for every integer j, the function gj is also a product test with the same
range. So for every j, k ∈ {0, . . . ,m},∣∣E[(ω−kg(X))j]− E[(ω−kg(Y ))j]

∣∣ ≤ ∣∣ω−kj∣∣ · ∣∣E[g(X)j]− E[g(Y )j]
∣∣ ≤ ε.

Using the identity

1

M

M−1∑
i=0

ω(i−k)j =

{
1 if i = k

0 otherwise,

we have for every k ∈ {0, . . . ,m− 1},

∣∣Pr[g(D + T ∧ U) = ωk]− Pr[g(U) = ωk]
∣∣ ≤ 1

M

M∑
i=0

∣∣∣E[(ω−kg(D + T ∧ U))j
]
− E

[
(ω−kg(U))j

]∣∣∣
≤ ε.
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Proof of Theorem 10. Write f =
∏k

i=1 fi, where fi : {0, 1}Ii → C≤1. Let σ denote (
∑

i≤k Var[fi])
1/2.

We will consider two cases: σ2 ≥ dn0.1 and σ2 ≤ dn0.1.
If σ2 ≥ dn0.1, then the expectation of f under the uniform distribution is small. Specifi-

cally, we have∣∣∣∏
i≤k

E
U

[fi(U)]
∣∣∣ =

∏
i≤k

(1− Var[fi])
1/2 ≤ e−

1
2
σ2 ≤ 2−Ω(dn0.1) ≤ n−Ω(d). (14)

Thus, it suffices to show that its expectation under D + T ∧ U is at most n−Ω(d). We now
use Claim 13 to show that ∣∣∣ E

D,T,U

[ k∏
i=1

fi(D + T ∧ U)
]∣∣∣ ≤ n−Ω(d).

For each t, x ∈ {0, 1}m, and each i ∈ {1, 2, . . . , k}, let σ2
t,x,i denote VarU ′ [fi(x + t ∧ U ′)].

Let T ′ be the uniform distribution over {0, 1}m. By Claim 13 with η = 1/2, we have
ET ′,U [σ2

T ′,U,i] ≥ Var[fi]/2. So by linearity of expectation,

E
T ′,U

[∑
i≤k

σ2
T ′,U,i

]
≥ σ2/2 ≥ dn0.1/2.

Since T and D are both dn-wise independent, the random variables σ2
T,D,1, . . . , σ

2
T,D,k are

(0, dn)-close to σ2
T ′,U,1, . . . , σ

2
T ′,U,k. Let µ = ET ′,U

[∑
i≤k σ

2
T ′,U,i

]
≥ dn0.1/2. By Lemma 48,

Pr
T,D

[∑
i≤k

σ2
T,D,i ≤ µ/2

]
≤ 2d

(√
µd+ d

µ/2

)d
= n−Ω(d).

Hence, except with probability n−Ω(d) over t ∈ T and x ∈ D, we have∑
i≤k

σ2
t,x,i =

∑
i≤k

Var
U ′

[fi(x+ t ∧ U ′)] ≥ dn0.1/4.

By a similar calculation to (14), for every such t and x,∣∣∣∏
i≤k

E
U

[fi(x+ t ∧ U)]
∣∣∣ ≤∏

i≤k

∣∣∣E
U

[fi(x+ t ∧ U)]
∣∣∣

=
∏
i≤k

(1− σ2
t,x,i)

1/2

≤ e−
1
2

∑
i≤k σ

2
t,x,i ≤ 2−Ω(dn0.1) ≤ n−Ω(d).

In addition, we always have |f | ≤ 1. Hence,∣∣∣ E
D,T,U

[∏
i≤k

fi(D + T ∧ U)
]∣∣∣ ≤ E

D,T

[∣∣∣∏
i≤k

E
U

[fi(D + T ∧ U)]
∣∣∣] ≤ n−Ω(d).
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Suppose σ2 ≤ dn0.1. Let σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
k be the variances of f1, f2, . . . , fk respectively.

Let k′ = dn0.7. We have σ2
k′ ≤ dn0.1/k′ = n−0.6; for otherwise σ2 ≥

∑k′

i=1 σ
2
i ≥ k′σ2

k′ > dn0.1,
a contradiction. Let T ′ be the uniform distribution over {0, 1}m. Let σ̃2

i denote

Var
T ′,U

[
E
U ′

[f(U + T ′ ∧ U ′)]
]
.

We now show that σ̃2
i ≤ O(σ2

i )
4/3. For every i ∈ {1, . . . , k}, define gi : {0, 1}m → C≤1 to be

gi(x) = (fi(x)−E[fi])/2 so that E[gi] = 0 and Var[gi] = Var[fi]/4. We apply Lemma 40 with
ρ = 1/2. Notice that since M is fixed, we have |g(x)− g(x′)| = Ω(1) whenever g(x) 6= g(x′).
Hence,

σ̃2
i = Var

T ′,U

[
E
U ′

[gi(U + T ′ ∧ U ′)]
]

= E
T ′

[
Var
U

[
E
U ′

[gi(U + T ′ ∧ U ′)]
]]

= O(σ2
i )

4/3.

It follows that∑
i>k′

σ̃2
i = O

(∑
i>k′

(σ2
i )

4/3
)
≤ O

(
(σ2

k′)
1/3
)∑
i>k′

σ2
i ≤ O(n−0.2) · dn0.1 = dn−Ω(1).

Now, if we let F2 :=
∏

i>k′ fi, then by Lemma 12,∣∣∣ E
D,T,U

[F2(D + T ∧ U)]− E
U

[F2(U)]
∣∣∣ ≤ n−Ω(d). (15)

On the other hand, if we define F1 to be
∏k′

i=1 fi, then it follows from Theorem 7 that∣∣∣ E
D,T,U

[F1(D + T ∧ U)]− E
U

[F1(U)]
∣∣∣ ≤ k′2−Ω(d2n/k′) = 2−Ω(dn0.3). (16)

We now combine (15) and (16) using Lemma 42. To begin, define g1(x) := ET,U [F1(x +
T ∧ U)] and g2(x) := ET,U [F2(x+ T ∧ U)].

If S = [0, 1], then the theorem follows immediately by applying Lemma 42 to g1 and g2.
However, if S is the set of M -th roots of unity, then we cannot apply Lemma 42 directly
because it only applies to functions with range [0, 1]. Nevertheless we can use Fact 44 to
reduce from S to [0, 1].

We now reduce S to [0, 1] and apply Lemma 42. For every z ∈ S, we define the point
function 1z : S → {0, 1} by 1z(x) = 1 if and only if x = z. Then for every random variable
Z on S,

E[Z] =
∑
z∈S

z Pr[Z = z] =
∑
z∈S

z E[1z(Z)].
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Hence,

E[g1(X)g2(X)] =
∑
z∈S

z E
[
1z
(
g1(X)g2(X)

)]
=
∑
z∈S

z E
[ ∑
u,v∈S:uv=z

1u
(
g1(X)

)
1v
(
g2(X)

)]
=
∑
z∈S

z
∑

u,v∈S:uv=z

E
[
1u
(
g1(X)

)
1v
(
g2(X)

)]
.

Hence, by Fact 44, for every u, v ∈ S, the functions 1u ◦ g1 and 1v ◦ g2 are fooled by d-wise
independence with error n−Ω(d). So by Lemma 42, (1u ◦ f)(1v ◦ g) are fooled by 2d-wise
independence with error n−Ω(d). Hence,∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣
=
∣∣E[(g1g2)(D)]− E[(g1g2)(U)]

∣∣
≤
∑
z∈S

|z|
∑

u,v∈S:uv=z

∣∣∣E[(1u ◦ g1)(1v ◦ g2)
(
D
)]
− E

[
(1u ◦ g1)(1v ◦ g2)

(
U
)]∣∣∣

≤M2 · n−Ω(d) = n−Ω(d)

because M is fixed, proving the theorem.

Comparison on the amount of independence and noise with other works. We
end this section with a comparison of the amount of independence and noise rate used in
our work with others which also use the Ajtai–Wigderson framework.

[GMR+12] implicitly show that Õ(log(m/ε))-wise independence plus noise with constant-
rate fools read-once CNFs with error ε. For read-once polynomials, monomials of degree
Ω(log(m/ε)) do not change the expectation by much, and so we can replace n in Theo-
rem 8 with log(m/ε), showing that O(log(m/ε) log(1/ε))-wise independence plus constant-
rate noise fools read-once polynomials with error ε. We can improve the amount of indepen-
dence to Õ(log(m/ε)) like [GMR+12], by combining its proof with Claim 14. However, we
omit the proof here as we do not know how to exploit this improvement to obtain a better
seed length for our PRG. For a simple concrete example, consider a degree-2 polynomial. As-
suming in the ideal scenario that each recursion uses a seed of length O(log(1/ε)) = O(logm).
Since our progress measure is its degree, as discussed before, we need to recurse O(logm)
steps to halve the degree. So in total the seed length is O(log2m). We note that same
problem already appears when the polynomial has degree O(log logm), which is too large to
apply the PRG for low-degree polynomials [Vio09] if one wants seed length Õ(logm).

We point out that the noise rate in [GMR+12] and this work is subtly different from
the ones used in the results for unordered branching programs [RSV13, SVW14, CHRT18,
CHHL18].

The latter results rely on bounding the Fourier spectrum of branching programs, which
implicitly show thatO(logm)-wise independence plus noise with rates 1−1/Ω(log n)w and 1−
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1/Ω(w2) fool width-w general and regular branching programs with error n−Ω(1), respectively.
Noise with such rates alone are known to be sufficient to fool these models with constant
error [Ste13, BRRY10]. In fact, Cohen, Ganor and Raz [CGR14] showed that a weaker
notion of noise with a similar rate suffices.

On the other hand, without bounded independence, by considering the Tribes function,
we can see that fooling CNFs, read-once polynomials and product tests all requires 1 −
1/Ω(log n)-rate noise. While these work use slightly greater amount of independence than
the latter, a smaller noise rate allows fewer recursions in the construction of PRGs, and
therefore gives PRGs with shorter seeds for these models.

6 Small-bias plus noise fools degree-2 polynomials

In this section we show that small-bias distributions plus noise fool non-read-once F2-
polynomials of degree 2. We first state a structural theorem about degree-2 polynomials
over F2 which will be used in our proof.

Theorem 45 (Theorem 6.30 in [LN97]). For every F2-polynomial p : {0, 1}m → {0, 1} of
degree 2, there exists an invertible matrix A ∈ Fm×m2 , an integer k ≤ bm/2c, and a subset
L ⊆ [m] such that p(Ax) :=

∑k
i=1 x2i−1x2i +

∑
i∈L xi.

Proof of Claim 11. Let p be a degree-2 polynomial. It suffices to fool q(x) := (−1)p(x).
By Theorem 45, there exists an invertible matrix such that q(Ax) = r(x) · χL(x), where

r(x) := (−1)
∑k
i=1 x2i−1x2i , and χL(x) = (−1)

∑
i∈L xi . By writing r(x) in its Fourier expansion,

q(x) has the Fourier expansion

q(x) =
(∑
S⊆[k]

r̂SχS(x)
)
χL(x),

where |r̂S| = 2−k/2. Note that L is a subset of [m]. Viewing the sets S and L as vectors in
{0, 1}m, we have∣∣E[q(D + T ∧ U)]− E[q(U)]

∣∣ ≤ ∑
∅6=S⊆[k]

2−k/2
∣∣E[χS+L(A−1(D))]

∣∣ · ∣∣E[χS+L(A−1(T ∧ U))]
∣∣

≤ 2−k/2δ
∑
∅6=S⊆[k]

∣∣E[χS+L(A−1(T ∧ U))]
∣∣

= 2−k/2δ
∑
∅6=S⊆[k]

∣∣E[χA(S+L)(T ∧ U)]
∣∣

= 2−k/2δ
∑
∅6=S⊆[k]

(1/3)|A(S+L)|,

where the second inequality follows because small-bias distributions are closed under linear
transformations. We now bound above the summation. We claim that∑

S⊆[k]

(1/3)|A(S+L)| ≤
∑
S⊆[k]

(1/3)|S| = (4/3)k.
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The equality is clear. To see the inequality, notice that since S ⊆ [k], when viewed as a
vector in {0, 1}m its last m−k positions must be 0. So we will instead think of S as a vector
in {0, 1}k, and rewrite A(S+L) as A′S+AL, where A′ is the first k columns of the full rank
matrix A. In particular, A′ is a full rank m× k matrix. As we are only concerned with the
Hamming weight of A′S + AL, we can permute its coordinates and rewrite A′ as [Ik|A′′]T
for some k × (m − k) matrix A′′. (Readers who are familiar with linear codes should think
of the standard form of a generator matrix.) Moreover, for a lower bound on the Hamming
weight, we can restrict our attention to the first k bits of A′S +AL. Hence, we can think of
first k bits of A′S +AL as S shifted by the first k bits of the fixed vector AL. Since we are
summing over all S in {0, 1}k, the shift does not affect the sum, and the inequality follows.
Therefore, we have∣∣E[q(D + T ∧ U)]− E[q(U)]

∣∣ = 2−k/2δ · (4/3)k ≤ (8/9)k/2δ,

and proving the claim.

7 Proof of Claim 9

In this section, we more generally exhibit a distributionD that is (d2/10k, d)-close to uniform.
One can obtain Claim 9 by setting d = k1/3. To simplify notation we will switch from {0, 1}
to {−1, 1}, and replace k with 2k.

We define D to be the uniform distribution over strings in {−1, 1}2k with equal number
of −1’s and 1’s.

Claim 46. D is (10d2/k, d)-close to uniform for every integer d.

Proof. We can assume d2 ≤ k/10, for otherwise the conclusion is trivial. Let I ⊆ [k] be a
subset of size d. For every x ∈ {−1, 1}d, we have

Pr[DI = x] =

(
2k−d

k−wt(x)

)(
2k
k

) ,

where wt(x) is the number of −1’s in x. We bound below the R.H.S. by(
2k−d
k−d

)(
2k
k

) =
k(k − 1) · · · (k − d+ 1)

2k(2k − 1) · · · (2k − d+ 1)

≥
(
k − d+ 1

2k

)d
= 2−d

(
1− d− 1

k

)d
≥ 2−d

(
1− d(d− 1)

k

)
≥ 2−d · (1− d2/k),
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and bound it above by (
2k−d
k−d/2

)(
2k
k

) =
(k(k − 1) · · · (k − d/2 + 1))2

2k(2k − 1) · · · (2k − d+ 1)

≤
(

k

2k − d+ 1

)d
= 2−d

(
1 +

d− 1

2k − d+ 1

)d
≤ 2−d

(
1 +

d∑
i=1

(
d(d− 1)

2k − d+ 1

)i)

≤ 2−d
(

1 + 2 · d(d− 1)

2k − d+ 1

)
≤ 2−d · (1 + 2d2/k).

The third inequality is because the geometric sum has ratio ≤ 1/2 as d2 ≤ k/10, and so
is bounded by twice the first term. Hence, we have |Pr[DI = x] − 2−d| ≤ 2−d · 2d2/k
for every x ∈ {−1, 1}d. The claim then follows from summing the inequality over every
x ∈ {−1, 1}d.

We now define our product test f . For each j ∈ {1, . . . , 2k}, define fj : {−1, 1}2k → C≤1

to be fj(x) = ωxj , where ω := e−i/
√

2k. Let f =
∏

j≤2k fj. We now show that for every large
enough k we have ∣∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣∣ ≥ 1/10.

We now bound above and below the expectation of f under both distributions. We will use
the fact that 1− θ2/2 ≤ cos θ ≤ 1− 2θ2/5 for θ ∈ [−1, 1]. First, we have

E[f(U)] =
∏
j≤2k

E
x∼{−1,1}

[ωx] =
∏
j≤2k

(ω + ω−1)/2 =
(

cos(1/
√

2k)
)2k

≤ (1− 1/5k)2k.

Next for every j ∈ {1, 2, . . . , 2k}, we have

E
T,U

[fj(x+ T ∧ U)] =
3

4
ωxj +

1

4
ω−xj .

Define β : {−1, 1} → C≤1 to be β(x) := 3
4
ωx + 1

4
ω−x. Since D has the same number of −1’s

and 1’s,

E
D

[ ∏
j≤2k

βj(D)
]

= β(1)kβ(−1)k

= (10/16 + 3/16 · (ω2 + ω−2))k

= (5/8 + 3/8 · cos(2/
√

2k))k

≥ (5/8 + 3/8 · (1− 1/k))k

= (1− 3/8k)k,
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Therefore |E[f(D+T∧U ]−E[f(U)]| ≥ (1−3/8k)k−(1−1/5k)2k ≥ 1/10, for every sufficiently
large k, concluding the proof.

The fi in this proof have variance Θ(1/k). So this counterexample gives a product test
with total-variance O(1), and is relevant also to Lemma 12. Specifically it shows that for
n = 1 and say d = O(1), the error term (k2n)O(d)ε in Lemma 12 cannot be replaced with kcε
for a certain constant c. Moreover, it cannot be replaced even if any kΩ(1) of the Yi are close
to the Xi (as opposed to just O(1)).

Acknowledgments. We thank Daniel Kane for answering some questions about [GKM15].
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A Moment bounds for sum of almost d-wise indepen-

dent variables

In this section we prove some moment bounds and tail bounds for sum of almost d-wise
independent complex variables.

Lemma 47. Let Z1, Z2, . . . , Zk ∈ C be independent random variables with E[Zi] = 0, |Zi| <
B. Let d be an even positive integer. Let W1,W2, . . . ,Wk ∈ C be random variables that are
(ε, d)-close to Z1, . . . , Zk. Then,

E

[∣∣∣ k∑
i=1

Wi

∣∣∣d] ≤ 2d
((∑

i

Var[Zi] · d
)1/2

+ dB
)d

+ (2kB)dε.

Proof of Lemma 47. Note that for any random variable W ∈ C we have

E
[
|W |d

]
= E

[(
|<(W )|2 + |=(W )|2

)d/2]
≤ E

[(
2 max{|<(W )|2, |=(W )|2}

)d/2]
≤ 2d/2 · E

[
|<(W )|d + |=(W )|d

]
,

and Var[W ] = Var[<(W )]+Var[=(W )]. We will first prove the lemma when W is real-valued.
Since W1, . . . ,Wk are (ε, d)-close to Z1, . . . , Zk, and d is even, we have

E

[∣∣∣ k∑
i=1

Wi

∣∣∣d] = E

[(∑
i

Wi

)d]

≤
∑
i1,...,id

E

[
d∏
j=1

Zij

]
+ kdBdε,

because there are kd products in the sum, each product is bounded by Bd and Claim 22. We

now estimate the quantity
∑

i1,...,id
E
[∏d

j=1 Zij

]
. We have

∑
i1,...,id

E

[
d∏
j=1

Zij

]
=

d∑
m=1

∑
|S|=m

∑
i1,...,id∈S:
{ij}j=S

E

[
d∏
j=1

Zij

]
.
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The expectation is zero whenever Zij appears only once for some ij ∈ S. So each Zij must
appear at least twice. So the expectation is 0 whenever m > d/2. As each Zi is bounded by
B, each product is bounded by Bd−2m

∏
j∈S E[Z2

j ] = Bd−2m
∏

j∈S Var[Zj]. For each S ⊆ [k]

of size m, there are at most md such terms. Let σ denote (
∑k

i=1 Var[Zi])
1/2. Then,

∑
i1,...,id

E

[
d∏
j=1

Zij

]
≤

d/2∑
m=1

Bd−2mmd
∑
|S|=m

∏
j∈S

Var[Zj]

≤
d/2∑
m=1

Bd−2mmd−memσ2m (Maclaurin’s inequality, see Claim 23)

≤ ed/2
d/2∑
m=1

Bd−2m(d/2)d−mσ2m

≤ ed/2(d/2)dBd

d/2∑
m=0

( σ2

(d/2)B2

)m
≤ ed/2(d/2)dBd ·

(
d
(

1 +
σd

(d/2)d/2Bd

))
(
d−1∑
m=0

αm ≤ d(α0 + αd−1),∀α > 0)

≤ ded/2
(

(d/2)dBd + (d/2)d/2σd
)

≤ 2d/2(dB + σ
√
d)d.

Putting everything together, we have

E

[∣∣∣ k∑
i=1

Wi

∣∣∣d] ≤ 2d/2
(

2d/2(σ
√
d+ dB)d + (kB)dε

)
≤ 2d(σ

√
d+ dB)d + (2kB)dε.

Lemma 48. Let X1, X2, . . . , Xk ∈ [0, 1] be independent random variables. Let d be an
even positive integer. Let Y1, Y2, . . . , Yk ∈ [0, 1] be random variables that are (ε, d)-close to
X1, . . . , Xk. Let Y =

∑
i≤k Yi and µ = E[

∑
iXi]. Then,

Pr[|Y − µ| ≥ δµ] ≤ 2d
(√

µd+ d

δµ

)d
+

(
2k

δµ

)d
ε.

In particular, if µ ≥ 25d and δ = 1/2, we have Pr[|Y − µ| ≥ µ/2] ≤ 2−Ω(d) + kdε.

Proof. Let X ′i = Xi − E[Xi], Y
′
i = Yi − E[Xi] and Y ′ =

∑
i Y
′
i . Note that X ′i ∈ [−1, 1] and

E[X ′i] = 0. Since Xi ∈ [0, 1], we have

E[Xi] ≥ E[X2
i ] ≥ Var[Xi] = Var[Xi − E[Xi]] = Var[X ′i].
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By Lemma 47 and Markov’s inequality,

Pr[|Y − µ| ≥ δµ] = Pr[|Y ′|d ≥ (δµ)d]

≤ 2d
(

(
∑

i Var[X ′i] · d)1/2 + d

δµ

)d
+

(
2k

δµ

)d
ε

≤ 2d
(√

µd+ d

δµ

)d
+

(
2k

δµ

)d
ε,

where in the last inequality we used µ ≥
∑

i Var[X ′i].
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