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Abstract

We develop a technique for proving lower bounds in the setting of asymmetric communication,
a model that was introduced in the famous works of Miltersen (STOC’94) and Miltersen, Nisan,
Safra and Wigderson (STOC’95). At the core of our technique is a novel simulation theorem:
Alice gets a p × n matrix x over F2 and Bob gets a vector y ∈ Fn

2 . Alice and Bob need to
evaluate f(x · y) for a Boolean function f : {0, 1}p → {0, 1}. Our simulation theorems show that
a deterministic/randomized communication protocol exists for this problem, with cost C · n for
Alice and C for Bob, if and only if there exists a deterministic/randomized parity decision tree
of cost Θ(C) for evaluating f .

As applications of this technique, we obtain the following results:

1. The first strong lower-bounds against randomized data-structure schemes for the Vector-
Matrix-Vector product problem over F2. Moreover, our method yields strong lower bounds
even when the data-structure scheme has tiny advantage over random guessing.

2. The first lower bounds against randomized data-structures schemes for two natural Boolean
variants of Orthogonal Vector Counting.

3. We construct an asymmetric communication problem and obtain a deterministic lower-
bound for it which is provably better than any lower-bound that may be obtained by the
classical Richness Method of Miltersen et al. [MNSW98]. This seems to be the first known
limitation of the Richness Method in the context of proving deterministic lower bounds.
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1 Introduction

A central question in theoretical computer science is proving lower bounds on the time needed to
solve various algorithmic problems. For general computation this is extremely difficult; indeed, over
the past many decades there has been only limited progress in this area despite great effort. One of
the main available techniques to prove such lower bounds is the analysis of the flow of information
during computation. The area of communication complexity is devoted entirely to the analysis of
this information flow.

Data structure problems are computational problems having a well structured form, where
information bottlenecks can often be found. Communication complexity is the key technique to
prove them. In a static data structure problem we have a domain D of possible data, a domain Q
of possible queries and a function f : D×Q → A where f(x; y) represents the answer to query y on
data x. The goal is to store the data x in memory, using space as efficiently as possible, so that
given a query y we can evaluate f(x; y) quickly.1 A major theme of research is to understand the
space-query tradeoffs inherent to natural problems.

This paper explores this theme in data structures with problems related to matrix-vector
multiplication. In the vector-matrix-vector problem VMVn×n, the data are matrices x ∈ Fn2

over some field F, queries are pairs of vectors (q, y) ∈ Fn × Fn, and the solicited answers are
f(x; (q, y)) = q · x · y. In the orthogonal vector counting problem OVCn×n, the data is also a matrix
x ∈ Fn2

, the query is a single vector y ∈ Fn and f(x; y) counts the number of zeros in x · y, i.e.,
the number of rows of x which are orthogonal to y; we will actually consider two different variants
of OVC which have a 1-bit output. The mod-3 orthogonal vector counting OVC3

n×n is a variant of
OVCn×n where f(x; y) = 1 if the number of rows of x which are orthogonal to y is a multiple of 3,
and f(x; y) = 0 otherwise. The orthogonal gap-majority problem OGMajn×n is a promise variant of
OVCn×n, where we have f(x; y) = 1 if at least n

2 +
√
n of the rows of x are orthogonal to y, and

f(x; y) = 0 if no more than n
2 −
√
n of the rows of x are orthogonal to y, with the promise that we

are in one of the two cases.
We are interested in the complexity of these data-structure problems in Yao’s cell-probe model

[Yao79]. In this model the data is represented in a memory consisting of s cells, each cell storing w
bits. We do not charge for the preprocessing time to create the data structure in memory for given
x, but we charge for the time to answer a query y. The cost of the query is the number of memory
cells we have to read (probe) in order to answer the query. This model is one of the most general
data structure models; in particular, any lower bound on the number of probes to answer a query
immediately translates into a lower bound on the time to answer a query in models such as the
word-RAM.

The problems we study are closely related to previous work on matrix-vector product. Henzinger et
al. [HKNS15], and Larsen and Williams [LW17] study the matrix-vector product and the vector-
matrix-vector product over the Boolean semiring, in its relation to fine-grained complexity and
conditional lower bounds. In particular, Henzinger et al. conjecture that there are no truly subcubic
algorithms to solve the online version of matrix-vector multiplication (OMV). Assuming this
conjecture, they are able to establish tight lower bounds for over a dozen different dynamic problems,
establishing the central importance that OMV enjoys in this area. Indeed, unconditional lower
bounds for some versions of matrix-vector multiplication have been recently established. Frandsen
et al. [FHM01] study the matrix-vector multiplication over finite fields, and give a lower bound

Ω(min{n log |F|
log s , n2}) on the number of cell-probes for deterministic data structures, where |F| is

the field size. Clifford, Grønlund and Larsen [CGL15] improved this to Ω(min{ n log |F|
log(s/n) , n

2}) in

1In dynamic data structures we also allow certain updates to the data x.
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the randomized setting even with error 1− |F|n/4 for fields of size |F| = nΩ(1) and w = Θ(log |F|).
Interestingly, while there exist several hardness results for different versions of matrix-vector
multiplication problem, there are no strong randomized hardness result for the VMV problem. The
difficulty might be in the fact that the output of VMV is merely 1 bit. This obstacle of proving
lower bounds for decision problems is not isolated to static data-structure problems. In the setting
of dynamic data-structure problems, a breakthrough result of Larsen [Lar12] established the first
super-logarithmic dynamic lower bounds for a non-Boolean problem more than five years ago,
but the analogous bound for a Boolean valued decision problem had to wait until a very recent
breakthrough of Larsen, Weinstein and Yu [LWY17].

Indeed it is not clear that the hardness of matrix-vector product (MVP) carries over to VMV
unabated. For instance, while Larsen and Williams [LW17] give a surprising data structure for
VMV over the Boolean semiring which uses only O(n3/2/

√
w) cell probes to answer a query, their

upper-bounds for MVP in the same setting require a larger number O(n7/4/
√
w) of cell probes.

The problem of counting orthogonal vectors has been widely studied in the context of fine-grained
complexity [CW16, WY14, DL17], although in that setting the dimension of the input vectors is
much smaller than the number of vectors, and these two are comparable in our setting.

1.1 Data-structure lower-bounds

We study the VMV, OVC and OGMaj problems over the field F2 = GF[2]. We establish the following
new lower-bounds against randomized data-structure schemes:

Theorem I. There exists a real constant ε > 0 such that:

(a) Any randomized data-structure scheme for VMVn×n that uses s cells, each storing w ≤ n bits,
must either make t ≥ εn

log sw
n

probes, or have success probability ρ ≤ 1
2 + 2−εn.

(b) Any randomized data-structure scheme for OVC3
n×n that uses s cells, each storing w ≤ n bits,

must either make t ≥ εn
log sw

n
probes, or have success probability ρ ≤ 2

3 + 2−εn. 2

(c) Any randomized data-structure scheme for OGMajn×n that uses s cells, each storing w ≤ n
bits, must either make t ≥ εn

log sw
n

probes, or have success probability ρ ≤ 1− ε.

The above lower bounds are optimal when the cell size w = n, as each problem above has a
deterministic solution using O( n2

w log s) queries [ADKF70, Wil07]. Such a large word size naturally
occurs in settings such as external memory models.

Intuitively, one would guess that the true complexity of the VMV problem is actually n2

w log s .
However, it is a major open problem in the field of data structures to prove a lower-bound for any
static data structure problem where the number of queries is shown to be ω(log |Q|). We do not
solve that open problem in this paper. Indeed, it is well known that any purely communication
complexity based approach, such as ours and most past techniques, is doomed to give bounds at
best Θ(log |Q|). What we do develop is a novel general technique for establishing strong lower
bounds, that are also the best possible using communication complexity method alone, for natural
1-bit output problems based on matrix-vector multiplication. Previous techniques do not seem to
yield such bounds for this important class of problems.

In their seminal paper, Miltersen et al. [MNSW98] study the span problem, where we need to store
a vector space V and decide, given a query y, whether y ∈ V . This is equivalent to determining
whether x · y = 0 if the matrix x is chosen so that V = kerx; i.e. we want to know if the number

2Note that the success probability of 2
3

is achievable by random guessing.
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of rows of x orthogonal to y is n, or not. For this problem, [MNSW98] show lower bound on the
number of queries, similar to our own, but in the randomized setting with just one-sided constant
error — the data-structure scheme is allowed to err only when x · y = 0.

When first thinking about the VMV problem, one soon realizes that there is a one-sided error
randomized reduction from the span problem to the VMV problem, and that this might be enough
to give us a one-sided error lower-bound to the VMV problem.3 But, it turns out, the error of the
reduction is on the wrong side, and this does not allow us to derive any lower-bound for VMV from
the [MNSW98] lower-bound for the span problem. To our knowledge, our randomized lower-bound
for VMV is also the first deterministic lower-bound for VMV.

Note that this one-sided error lower-bound of Miltersen et al. for the span problem immediately
implies the same lower-bound for the OVC problem (although not for the OGMaj problem); however,
it can be shown that there is a two-sided error randomized data-structure scheme for the span
problem where the number of queries is O( nw ), and this implies that our randomized lower-bounds
for OVC cannot possibly work for the span problem.

� Rather remarkably, this difference between the span problem and counting orthogonal vectors
may be explained by the fact that the randomized parity decision-tree complexity of the (negated)
Boolean OR function is O(1), but is Ω(n) for the mod-3 function. To understand why this is
relevant, we need to make a detour into asymmetric communication complexity, and explain how
Theorem I is proven.

1.2 Our tool: an asymmetric simulation theorem

To prove our data-structure lower bounds of Theorem I, we develop a technique of independent
interest for proving lower bounds on asymmetric communication complexity. The asymmetric setting
is distinguished from the usual setting of two-party communication complexity by the following:

• One player’s input is much larger than the other player’s.

• The two players have different communication budgets, so we may talk about [a, b]-protocols
where Alice communicates ≤ a bits and Bob communicates ≤ b bits. Typically the player
with the large input has a higher budget.

• Only one of the players needs to learn the output, typically the player with the smaller input.
This makes a difference, for example, when the task is to compute a function with an output
which is larger than the communication budget.

Asymmetric communication complexity was introduced explicitly by Miltersen [Mil94],4 and later
studied more systematically in the work of Miltersen et al. [MNSW98]. In both these works, it
was also shown that a lower-bound for a communication problem in this setting implies a similar
lower-bound for the corresponding data-structure problem. All our lower-bounds are based on
this relationship. While asymmetric communication complexity was primarily motivated by its
application to proving lower bounds for data-structures [PT06, PT09, JKKR04, Pat11] and streaming
algorithms [BIPW10, Woo14], it is indeed a communication model of independent interest (see for
example [RR15]). Despite the significant interest, there were very few general techniques developed
for proving lower bounds in this model. Two such techniques appeared in the original work of

3The reduction is simple and works in the communication setting: in order to know if x · y = 0, Alice and Bob use
a protocol for VMV to compute q · x · y for a shared random vector q; if x · y = 0, then also q · x · y = 0, but if x · y 6= 0,
then q · x · y = 1 with probability exactly 1

2
over the choice of q. Alas, the reduction may err precisely in the case

when x · y = 1, so the lower-bound of [MNSW98] does not apply.
4However the notion appears implicitly in earlier work [Ajt88, Xia92].
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Miltersen et al. The first is the Richness Method for primarily proving deterministic and randomized,
one-sided-error lower-bounds. The second is the round-elimination technique for two-sided error
protocols, that gives strong bounds only when the number of rounds involved is quite limited. Other
techniques developed are more ingenious and problem specific, like the tour de force of Patrascu
[Pat11] for proving strong bounds on lopsided Disjointness. In this work, we develop a novel and
reasonably widely applicable technique that yields strong lower bounds for randomized complexity
even with unrestricted number of rounds of communication. Moreover, we exhibit a function for
which our technique provides strong deterministic lower bounds that the Richness Method provably
cannot yield.

Our technique is based on a recent trend seen in symmetric communication complexity, of
proving lifting theorems, sometimes known as simulation theorems. Such theorems show, for some
carefully chosen two-player function g(x; y), called the gadget, that the communication complexity
of a composed function f ◦ g = f(g(x1; y1), . . . , g(xp; yp)), under some setting, is proportional to a
corresponding measure of complexity on f multiplied by the communication complexity of g.

For example, in the paper [GPW15], building on the work of [RM99], the authors have shown that
— taking the gadget g to be the indexing function — the deterministic communication-complexity
of f ◦ g equals, up to constant factors, to the deterministic query-complexity of f times log n,
and used this to show a separation between the deterministic communication complexity and the
partition number, which was a longstanding open problem at the time. This result was improved
in a recent work of the authors [CKLM17], and independently by [WYY17]. Lifting theorems, by
now, have numerous other applications, such as monotone-circuit lower-bounds [KW90, RM99,
Joh01, GP14, RPRC16, Sok17], small-depth circuit lower-bounds [She09, Cha07], proof-complexity
lower-bounds [BHP10, HN12], and separations of complexity classes in communication complexity
[DPV09, GPW15, GLM+15, GPW17]. Many of these developments have happened recently and
indeed, in FOCS 2017, a workshop [MP17] was devoted entirely to such results and their applications.

In this work, we prove two simulation theorems — a deterministic simulation theorem and a
randomized simulation theorem. Our gadget is the matrix-vector product (MVPp×n), so Alice
gets a p × n matrix x, and Bob gets a single n-bit vector y, and we ask them to compute
F (x; y) = f ◦MVPp×n(x, y) = f(x · y), where f is a function of p bits.5

It is easy to see that this can be done with O(d · n) bits of communication from Alice, and O(d)
bits from Bob, where d is the smallest depth of a parity decision-tree (PDT) for f . If the PDT
is randomized, we get a randomized protocol, if the PDT is deterministic, we get a deterministic
protocol. To simulate a parity query q · (x · y), Alice sends q · x ∈ {0, 1}n to Bob, and Bob then
replies with (q · x) · y ∈ {0, 1}.
Our simulation theorems show that this relatively naive protocol is, indeed, optimal up to constant
factors.

Theorem II (Main Tool). Let n, p ≤ m = n
1000 and C < m

100 be natural numbers and let
f : {0, 1}p → Z be an arbitrary (possibly partial) function. Consider communication protocols where
Alice gets an input x ∈ {0, 1}p×n and Bob gets an input y ∈ {0, 1}n.

(a) If there exists a deterministic two-player [C · n,C]-protocol for computing f ◦MVPp×n(x, y),
then there exists a deterministic parity decision-tree which on input z outputs f(z), and makes
≤ 40 · C parity queries to z.

5Lifting theorems are generally proven for a symmetrically composed function f ◦ gp which is defined as f ◦
gp(x1, . . . , xp; y1, . . . , yp) = f(g(x1, y1), . . . , g(xp, yp)). The matrix-vector product can bee seen as an asymmetric
composition, i.e. f ◦ gp×1, defined as f ◦ gp×1(x1, . . . , xp; y) = f(g(x1, y), . . . , g(xp, y)), where g is the inner-product
function. This is more subtle because in the asymmetric composition case, all the x’s participate with the same y.
Although previous lifting theorems have been proven with asymmetric budgets [e.g. Joh01], ours is the first lifting
theorem to work with an asymmetric composition.
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(b) If there exists a randomized two-player [C ·n,C]-protocol for computing f ◦MVPp×n(x, y) with
success probability ρ, then there exists a randomized parity decision-tree which on input z
outputs f(z) with success probability ≥ ρ− 2−m, and makes ≤ 200 · C parity queries to z.

A few remarks are in order. First, Theorem II is also the first instance of any simulation theorem
extracting a randomized PDT from a randomized communication protocol. Second, for deterministic
protocols in the symmetric two party and multiparty settings for XOR functions, Hatami et
al. [HHL16] and Yao [Yao15] do prove theorems lifting parity decision-tree complexity. But both
results incur polynomial loss in the process of lifting. To the best of our knowledge, Theorem II
is the first lifting theorem that characterizes parity decision-tree complexity so tightly — up to
constant factors. On the other hand, the gadget size in [HHL16, Yao15] are constant whereas our
gadgets are polynomially large w.r.t to the arity of the outer function f . Obtaining such tight
simulation theorems, w.r.t. decision tree complexity measures in general as in Theorem II, with
constant gadget size is a fundamental open problem in communication complexity.

� We will then prove the data-structure lower-bounds (b) and (c) of Theorem I by showing
lower-bounds against randomized parity decision-trees. We will show that the randomized parity
decision-tree complexity of the mod-3 function is high, and it easily follows from the work of
[CR12, Vid12, She12] that the randomized parity decision-tree complexity of gap-majority is high
as well. However, the randomized PDT complexity of (negated) OR is O(1), which is what prevents
our lower-bound from applying to the span problem mentioned above.

The lower-bound for the VMV problem — Theorem I (a) — does not directly follow from the
above simulation theorems. Instead, it is proven by a simulation-type argument: one shows that a
short protocol for the VMV problem would give us a parity decision-tree for solving a certain task,
and then show that this task cannot be solved efficiently.

The proof of our simulation theorems is inspired by several previous works, most notably the recent
work of Göös, Pitasi and Watson [GPW17]. However the peculiarities of the asymmetric setting
call for substantial development of more ideas. In particular, we make use of a novel notion, which
we call linear min-entropy, and of a variant thereof, which we call smooth linear min-entropy. We
believe these two notions are interesting in their own right, and should find other uses. Implementing
the simulation theorems using these notions requires delicate technical work. These are the main
technical contributions of this submission.

1.3 Beating the Richness Method

The Miltersen et al. [MNSW98] paper presented two techniques for proving lower-bounds in the
asymmetric settings — the richness technique [see also PT09], and the round-elimination technique
[later improved by SV08].

The round-elimination technique method only works in situations where the number of rounds is
small — typically sub-logarithmic. To the authors’ knowledge, the Richness technique is essentially
the only general method known for proving deterministic unbounded-round lower-bounds in the
asymmetric setting. Even those lower-bounds which are proven in the two-sided error randomized
asymmetric setting — lower-bounds such as [Pat11], which cannot be shown by the richness technique
because it is limited to proving one-sided error lower-bounds — the same lower-bound (up to constant
factors) can be shown in the deterministic setting using the richness technique.

Given this state of affairs, it would be tempting to think, for example, that a deterministic (or
one-sided error) lower-bound for the VMV problem might exist which completely circumvents our
approach based on simulation theorems. However, this might actually not be the case: we show
that, at least in some situations, our simulation theorem proves a deterministic lower-bound which
cannot be proven by the richness technique of Bro Miltersen et al.:
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Theorem III. There exists a promise problem F : {0, 1}p×n × {0, 1}n → {0, 1} such that:

• Theorem II (a) implies that any deterministic [a, b]-protocol for F has a = Ω(n2) or b = Ω(n);

• However, F has a randomized zero-error [O(n), O(1)]-protocol.

Since any lower-bound proven by the richness technique also gives a lower-bound against
randomized protocols with one-sided error (and thus zero-error), it follows that the above lower-
bound cannot be proven via the richness method — it is the first known lower-bound in deterministic
(unbounded-round) asymmetric communication complexity for which this is the case.

2 Overview of our techniques

All our lower-bounds follow from the well-known connection between data structures and com-
munication complexity, which first explicitly appeared in [Mil94]: if we have a data-structure
scheme for f(x; y), then we obtain a protocol for the communication problem where Alice gets
the data x, Bob gets the query y, and they must communicate to compute f(x; y). Hence we will
prove the lower-bounds for data structures of Theorem I, by proving lower-bounds for asymmetric
communication problems.

In turn, our communication complexity lower-bounds are all shown by first proving a lower-bound
against parity decision-trees, and then lifting these lower-bounds to communication complexity, by
use of Theorem II, which is the main technical contribution of this paper. We will thus begin by
sketching the proof of Theorem II in Section 2.1; we then sketch the proofs of the data-structure
lower-bounds in Section 2.2. We made an effort to include the full proof of at least one theorem
within the 10-page limit. We opted for Theorem III, whose full proof appears in Section 5.2.

2.1 Proving Theorem II

To explain how we prove our simulation theorems, it is worthwhile to give a general overview of
how previous simulation theorems have been proven — the discussion broadly applies to all of
[RM99, GPW15, GLM+15, CKLM17, WYY17, Wat17, GKPW17, AGJ+17] and [GPW17].

We are given a protocol for a composed function f ◦ g — g takes a pair (x, y) of inputs and produces
a p-bit string, which is then fed to f . We wish to construct a decision-tree for computing f(z)
when given query access to z. The general strategy is to find a leaf in the protocol tree where z is
represented, meaning that the rectangle A×B associated with said leaf is such that z ∈ g(A×B);
this way, we may output the label which the protocol assigns to that rectangle, and it should equal
f(z). In the randomized case we will actually want a specific distribution on such rectangles, but
let’s set that aside for now.

So we go down the protocol tree, keeping in mind a rectangle A × B. As long as we haven’t
queried z, we need to make sure that every z is represented in g(A×B); once we have made some
queries to z, then every z′ which is consistent with those queries must be represented in g(A×B).

If the gadget g is well-chosen, it becomes feasible to enforce this invariant. For example, if
g = (IPn)p is the p-fold inner-product of n-bit strings,6 there are two known properties which, if
true of A and B both, ensure that every z is represented in g(A×B) — one such property is called
thickness and is used in [RM99, GPW15, CKLM17, AGJ+17], and another is called density, and is
used in [GLM+15, GPW17, Wat17, GKPW17]. It is worthwhile to briefly review these notions.

For δ ∈ [0, 1], a set A ⊆ {0, 1}p×n is called δ-thick, if for every a = (a1, . . . , ap) ∈ A and every i ∈ [p],
there exist ≥ 2δn-many different a′i such that (a1, . . . , ai−1, a

′
i, ai+1, . . . , ap) ∈ A; A is called δ-dense,

6Note that, g here is a function which outputs a p-bit string. We maintain this convention through out the paper.

6



if for every I ⊆ [p] of size |I| = k ≥ 1, the distribution (x)I , obtained by picking a uniformly-random
x ∈ A and projecting onto the coordinates in I, has min-entropy ≥ δ kn.

The thickness of A is then the largest δ for which it is δ-thick, and the density of A is the largest
δ for which it is δ-dense. We may also say that A is δ-thick or δ-dense with respect to a set S ⊆ [p]
of coordinates, if we replace [p] with S in the above definitions.

In order to find the desired leaf in the protocol tree, and thus prove the simulation theorem, the
decision tree goes down the protocol tree while being careful to preserve one such property (density
or thickness) as an invariant. As the rectangle becomes smaller, and we are at risk of loosing our
invariant, we must have a means of restoring it by querying some coordinates of z. We then focus
only on those inputs (x, y) such that g(x, y) is consistent with the outcome of these queries, and it is
important that our property (e.g. thickness or density) still holds with respect to those coordinates
which we did not query yet.

All of the simulation theorems just mentioned follow this general pattern, and so do the
simulation theorems proven in this paper. But, even after having a good understanding of this
general framework, it is not apriori clear how to proceed when the inner gadget is the matrix-vector
product, nor how to connect such results to the vector-matrix-vector problem which is not itself a
composed function.

Let g be the matrix-vector product over F2, so that g(x, y) = x · y where x is a p × n matrix
and y is an n-bit vector. The first thing to observe, when using g as a gadget, is that if Alice has
a matrix x ∈ {0, 1}p×n and Bob a vector y ∈ {0, 1}n, then they are able to make a “parity query”
to g(x, y) = x · y ∈ {0, 1}p by having Alice send only n bits and Bob send only 1 bit: to compute
q · x · y, Alice sends over q · x ∈ {0, 1}n, and then Bob computes and returns (q · x) · y ∈ {0, 1}. So it
follows that the communication complexity of f(x · y) is upper-bounded by the randomized parity
decision-tree complexity of f .

This seems to make the properties of density and thickness unsuitable for carrying out the above
strategy. Indeed, it is easy to construct, for example, a dense set A such that g(A × {0, 1}n) is
missing some vectors — indeed, if A is the set of matrices such that the bitwise XOR of all the
rows is the zero vector, then every g(A× {0, 1}n) is missing all vectors with odd Hamming weight.
On the other hand, thickness is a property which is difficult to preserve, and it would seem that
if we were able to preserve this property as an invariant in our construction, we would obtain a
simulation theorem for normal decision trees, not parity decision trees. However, we cannot obtain
such a simulation from the above protocol for making a “parity query” to x · y. So we had to devise
a different property for our invariant. We call it linear min-entropy.

Definition. The linear min-entropy of a set A of p× n matrices is the maximum η ∈ [0, 1] such
that, for every k′ × p matrix Q′, the distribution Q′ · x — obtained by picking a uniformly random
x in A, and then outputting the product Q′ · x ∈ {0, 1}k′×n — has min-entropy ≥ η k′n.

So, in some sense, we require a certain min-entropy from the linear combinations of the rows of
a random matrix from A. We will also need to look at a variant of this notion, called smooth linear
min-entropy, which is the maximum linear min-entropy among all subsets A′ ⊆ A which preserve all
but an exponentially-small fraction of A.

As one may see, it is a property stronger than density, as one demands a lower-bound on the
min-entropy of any linear combination of coordinates, and not just of the coordinates themselves.

It will then happen that if A has linear min-entropy at least 4
5 , say, and |B| ≥ 2

9
10
n, then every

z ∈ {0, 1}p is represented in g(A×B). We will show something even stronger, a result which we call
pruning lemma: for any such A and B, we may remove an exponentially-small fraction of A and B,
to obtain a subrectangle A′ ×B′ ⊆ A×B, such that every z appears in every row and column of
the g(A′ ×B′) communication matrix7 in roughly equal proportion. Meaning every row and every

7I.e., the matrix with rows indexed by A′, columns indexed by B′, and with the (x, y) entry equal to x · y.
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column of the g(A′ ×B′) communication matrix will be (roughly) equally split among the different
z ∈ {0, 1}p.

The pruning lemma is then used to show a result called entropy-restoring partition. It can
be considered the heart of the proof of the simulation theorems in this paper. This result shows
how one may take a set A ⊆ {0, 1}p×n, such that the smooth linear min-entropy of A is not too
high (≤ 9

10), but where the linear min-entropy of A is still somewhat high (≥ 4
5), and partition

A into subsets A†, A1, A2, . . ., with A† very small, such that in each Ai we have fixed some linear
combination of rows (of the matrices in Ai), and where each Ai has large linear min-entropy (≥ 9

10)
on the remaining (linearly-independent) linear combinations of the rows. Furthermore, if we have a

large set B ⊆ {0, 1}n of vectors (|B| ≥ 2
9
10
n), we may do this in a way that for each x ∈ Ai, the

values of x · y, for y ∈ B are equidistributed among the various possible z ∈ {0, 1}p — this means
that when the linear decision-tree queries the k coordinates of z corresponding to the rows which
were fixed, B will be cutoff by no more than 2−k. The full statement appears in Section 4.4. This is
the main technical device which allows us to maintain a rectangle A×B where A has large linear
min-entropy, and B is large, as we go down the protocol tree in our simulation theorem. On its
own, the entropy-restoring partition suffices for proving our deterministic simulation theorem —
Theorem II (a); in fact, the existence of a single part A1 of the entropy-restoring partition is enough
for the deterministic simulation theorem, whereas the randomized simulation theorem needs the full
entropy-restoring partition.

To prove the randomized simulation theorem, Theorem II (b), we will use a crucial insight from
[GPW17]. Suppose π̄ is a randomized protocol for f ◦ g which is the convex combination of several
deterministic protocols π. Then a good approach to proving a randomized simulation theorem is
the following: in order to obtain a decision-tree for f , it suffices to be able to approximate, for
each deterministic protocol π, the distribution π−1(z) obtained by running π on a random input
(x, y) such that g(x, y) = z. We want to do this by making few queries to z, and for this purpose
[GPW17] proves a result called the inverse-marginals lemma. Our version of this lemma states that
if A has large linear min-entropy and B is large, then for any z ∈ {0, 1}p, if we choose a uniformly
random (x, y) ∈ A × B among those such that x · y = z, then the x-marginal will be close to a
uniform distribution on A and the y-marginal will be close to a uniform distribution on B.

To illustrate how this is used, suppose that we are simulating π on a rectangle A × B, and
it was Alice’s turn to communicate, and she would send bit b when x ∈ Ab — for the partition
A = A0 ∪ A1; then if one were to pick a uniformly-random input in g−1(z) ∩ A × B, then Alice

would send b = 0 with probability roughly |A0|
|A| and send b = 1 with probability roughly |A1|

|A| . This
heuristic allows us to construct a randomized parity decision-tree which will produce, on input
z ∈ {0, 1}p, a transcript of the protocol which is exponentially close, in statistical distance, to the
transcript which we would obtain if we had run the protocol on a uniformly-random input from
g−1(z) — which is enough to prove Theorem II (b).

2.2 The data-structure lower-bounds

The data-structure lower-bounds (b) and (c) of Theorem I follow from lower-bounds against
randomized parity decision-trees, by using Theorem II (b) and the connection between data
structures and asymmetric communication complexity.

It is intuitive that counting mod-3 should be hard for parity decision-trees. This is shown in
Lemma 5.17 of the paper, by making use of the polynomial discrepancy lemma of [Cha07]. The
polynomial discrepancy lemma says that the Mod3 function (roughly) equally splits the zero set of
any linear form over F2.8 This will imply that any randomized parity decision-tree for Mod3 will

8Indeed, the lemma holds for any low-degree polynomial over F2, not just linear forms, hence the name polynomial
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succeed with probability ≤ 1
3 + 2−Ω(n). If counting mod-3 is hard, then so is counting in general,

which gives us the lower-bound for OVC — Theorem I (b).
By way of binary search we can use a single majority log n times to count exactly. This would

easily give us I (c), but with a log n·log logn factor loss. However it follows from [CR12, Vid12, She12]
that the randomized parity decision-tree complexity of

√
n-gap-majority is Ω(n), and this implies

Theorem I (c).

The data-structure lower-bound of Theorem I (a) does not seem to follow directly from a lower-bound
on randomized PDTs for some function. The VMV problem is quite different to a composed problem

— in a composed problem both players know the outer function f and the lower-bound depends on f
having large PDT complexity; we may think of the VMV problem as if only Bob knew the outer
function — q is a parity which is given as Bob’s input. But we can still prove the lower-bound by
an interesting analogy: instead of proving a lower-bound for randomized PDTs trying to compute a
certain function, we instead prove (in Lemma 6.1 of the paper) a lower-bound for randomized PDTs
trying to succeed at the following task:

Lemma (Impossible task). Suppose we have a randomized parity decision-tree running in time t
which, on every input z ∈ {0, 1}p, outputs a pair (q, b) ∈ {0, 1}p × {0, 1} such that both:

• q is (always) linearly-independent of the set Q of parity queries made, and

• with probability ρ over the choice of q, we have q · z = b.

Then either t ≥ p or ρ = 1/2.

Then, analogously to the simulation theorem — Theorem II (b) — we prove (in Theorem 6.2
of the paper) that any randomized communication protocol for VMV, succeeding with probability
ρ, would give us a randomized parity decision-tree for the above task, succeeding with probability
≥ ρ − 2−Ω(n). This establishes a lower-bound on the asymmetric randomized communication
complexity of VMV, which then gives us Theorem I (a).

2.3 Beating the richness method

Theorem III is also obtained by lifting a randomized parity decision-tree lower-bound to a communi-
cation lower-bound, using Theorem II (a). The problem being lifted is a canonical promise problem
having small zero-error randomized query complexity, but large deterministic query complexity.

Let Z−1(0) ⊆ {0, 1}2n be the set of binary strings which have zi = 0 whenever i is odd, and
zi = 1 for at least n

10 -many even coordinates i. Let Z−1(1) ⊆ {0, 1}2n have instead zi = 0 whenever
i is even, and zi = 1 for at least n

10 -many odd coordinates i; let Z : {0, 1}2n → {0, 1} be the
corresponding promise problem.

It is very easy to see that Z has an O(1)-query zero-error randomized decision-tree, and that its
deterministic query-complexity is Ω(n). As it turns out, it also has deterministic pdt complexity
Ω(n). This is proven in Lemma 5.5 of the paper, using an argument analogous to the Hamming
bound of coding theory.

Our promise problem F is then Z ◦ g where g(x; y) = x · y is the matrix-vector product gadget.
On one hand, our deterministic simulation theorem shows that F has no deterministic protocol
where Alice sends o(n2) bits and Bob sends o(n) bits; on the other hand, F will have a randomized
zero-error protocol where Alice sends O(n) and Bob sends O(1) bits — hence any lower-bound for
F using the richness method will fail to show that Alice must send ω(n) bits.

discrepancy lemma.
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2.4 Outline

We work on various preliminaries in Section 3, building up to the definition of smooth linear min-
entropy in Section 3.4. In Section 4.3, we prove the pruning lemma, the entropy-restoring partition,
and the inverse-marginals lemma. The deterministic and randomized simulation theorems are proven
in Section 5. As direct application of these theorems, we show lower-bounds on data-structures
for counting orthogonal vectors (Section 5.4), and we show a lower-bound beating the richness
method (Section 5.2). Finally, in Section 6 we show how a variant of the technique for proving the
randomized simulation theorem gives us randomized lower-bounds against data-structures for the
vector-matrix-vector problem.

3 Notation and preliminaries

Notation Throughout the paper, we will usually use capital letters to denote sets, Greek letters to
denote real numbersuse, and bold-face letters to denote random variables. We will use λ to denote
the empty string, and ∅ to denote the empty set.

We assume the reader is comfortable with communication complexity [KN97].

3.1 Functions of interest

The inner-product function on n-bits, denoted IPn in defined on {0, 1}n × {0, 1}n to be:

IPn(x, y) =
∑
i∈[n]

xi · yi mod 2.

The p× n matrix-vector product function MVPp×n : {0, 1}p×n × {0, 1}n → {0, 1}p is:

MVPp×n(x, y) = x · y =

 n∑
j=1

xijyj


i∈[p]

The vector-matrix-vector product function VMVp×n : {0, 1}p×n × ({0, 1}p × {0, 1}n) → {0, 1} is
given by:

VMVp×n(x; q, y) = q · x · y =

p∑
i=1

n∑
j=1

qixijyj

The mod-3 function Mod3n : {0, 1}n → {0, 1, 2} is given by

Mod3n(x1, . . . , xn) =

n∑
i=1

xi mod 3

For each a ∈ {0, 1, 2}, define also the function Mod3an : {0, 1}n → {0, 1}:

Mod3n(x1, . . . , xn) = [Mod3(x) = a] =

{
1 if

∑n
i=1 xi = a mod 3

0 otherwise.

The gap-majority partial function GMajn : {0, 1}n → {0, 1} is given by

GMajn(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≥

n
2 +
√
n,

0 if
∑n

i=1 xi ≤
n
2 −
√
n.
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3.2 Interval algebra

We will use the following notation to denote closed intervals of the real line:

• If δ is a non-negative real, 1± δ denotes the interval [1− δ, 1 + δ].

• For two intervals I = [a, b] and J = [c, d], IJ = {xy | x ∈ I, y ∈ J}, I +J = {x+ y | x ∈ I, y ∈
J}, and if 0 6∈ J , then I

J = {xy | x ∈ I, y ∈ J}.

• For an interval J = [a, b] and x ∈ R, xJ = {xy | y ∈ J}, x+ J = {x+ y | y ∈ J} and (if 0 6∈ J)
x
J = {xy | y ∈ J}.

The following is easy to verify:

Proposition 3.1. Let 0 ≤ δ < 1/2 and x, y be reals.

• (Weak inverse) 1
1±δ ⊆ 1± 2δ.

• (Weak symmetry) If x ∈ (1± δ) · y then y ∈ (1± 2δ) · x.

3.3 Affine product

By linear independence of two k-bit strings, we mean linear independence over Fk2:

Definition 3.2 (Sets of linearly-independent vectors). Let p, k, k′ be positive integers. Let Q ∈
{0, 1}k×p be a matrix with k rows q1, . . . , qk ∈ {0, 1}p. The rows of Q are said to be linearly
independent if there is no subset S ⊆ [k] such that the bitwise XOR

⊕
i∈S qi equals the all-zero

vector.

If Q′ ∈ {0, 1}k′×p is a matrix with k′ rows q′1, . . . , q
′
k′ , then Q∪Q′ is the matrix with k+ k′ rows

formed by the rows of Q and Q′.

Then Q′ is said to be independent of Q if the rows of Q ∪ Q′ are linearly-independent. This
implies, in particular, that the rows of Q′ are linearly independent.

For the next set of definitions, we view x ∈ {0, 1}p×n as a p× n Boolean matrix.

Definition 3.3 (Affine product). Let Q ∈ {0, 1}k×p be a matrix with k linearly-independent rows
q1, . . . , qk ∈ {0, 1}p, and let u ∈ {0, 1}k×n be a k × n matrix. For any p× n matrix x ∈ {0, 1}p×n,
let qi · x ∈ {0, 1}n be the matrix multiplication of qi and x, i.e., bitwise-XOR of the rows xj such
that qij = 1. Let Q · x denote the matrix obtained by matrix-multiplication of Q with x, i.e. the
k × n matrix {0, 1}n×k has rows (q1 · x, . . . , qk · x).

Then for any u ∈ {0, 1}k×n and Q ∈ {0, 1}k×p, we call n-dimensional affine product of Q and u to
be the set

Affinen(Q, u) = {x ∈ {0, 1}p×n | Q · x = u}.

For a given Q and u as above, and for a set A ⊆ Affinen(Q, u), we define the (Q, u)-density of A to

be the real value |A|
|Affinen(Q,u)| ∈ [0, 1].

Observation 3.4. Consider Q ∈ {0, 1}k×p and Q′′ ∈ {0, 1}k′′×p be two sets of linearly independent
vectors, with Q′′ independent of Q, and let Q′ = Q∪Q′′, k′ = k+k′′, u ∈ {0, 1}k×n, u′′ ∈ {0, 1}k′′×n
and u′ = uu′′ ∈ {0, 1}k′×n. Then

|Affinen(Q′, u′)|
|Affinen(Q, u)|

=
1

2k′′n
.
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3.4 Linear min-entropy

In this subsection we define the two notions of linear min-entropy and smooth linear min-entropy,
which are the crucial new concepts underlying the proofs below.

Definition 3.5. The min-entropy of a distribution µ, denoted H∞(µ), is:

H∞(µ) = min
x

log
1

µ(x)
.

The min-entropy of a random variable x is the min-entropy of its underlying distribution.

The notion of min-entropy is not very flexible. A certain distribution could have small min-entropy
simply because of a few outliers. This can be solved by allowing such outliers to be thrown away,
thus obtaining a so-called smooth version of min-entropy: the ε-smooth min-entropy of µ is the
largest min-entropy of any distribution µ′ which is ε-close to µ in statistical distance. Such smooth
notions have seen various applications in information theory [see RW04].

For our results, we will need a smooth version of a certain kind of min-entropy, which we call linear
min-entropy. It is a linear variant of the notion of density, appearing in [GLM+15, GPW17, Wat17,
GKPW17]: a set A ⊆ {0, 1}p×n is δ-dense if by taking a uniform x ∈ A, and projecting x onto any k
coordinates, the resulting distribution has ≥ δkn min-entropy. This requirement is strengthened in
the definition of linear min-entropy, which allows the projection, instead of being just k coordinates,
to be any choice of k linear combinations.

Definition 3.6 (Smooth linear min-entropy). Let Q ∈ {0, 1}k×p be a matrix with k linearly-
independent rows q1, . . . , qk ∈ {0, 1}p, let A ⊆ {0, 1}p×n, and let ε ∈ [0, 1) be a real number.

The ε-smooth linear min-entropy of A with respect to Q, denoted LHε
∞(A,Q), is the largest value

η ∈ [0, 1] for which there there exists a subset A′ ⊆ A of size |A′| ≥ (1 − ε)|A|, such that every
Q′ ∈ {0, 1}k′×p which is independent of Q has

H∞(Q′ · x′) ≥ η k′n,

where x′ is the random variable distributed uniformly over A′. We call linear min-entropy of A to
the case when ε = 0, and denote LH∞(A,Q) = LH0

∞(A,Q).

Remark 3.7. For quick reference, we will also make a note of the following cases, which follow
from Definition 3.6.

• If LHε
∞(A,Q) < η, then for all A′ ⊂ A containing at least a 1− ε fraction of A, there exists

Q′ ∈ {0, 1}k′×n linearly independent of Q for which H∞(Q′,x′) < η k′n.

• If LHε
∞(A,Q) ≥ η, then there exists an A′ ⊂ A containing at least a 1− ε fraction of A, such

that every Q′ ∈ {0, 1}k′×n linearly independent of Q gives H∞(Q′,x′) ≥ η k′n.

Observe that any large subset of a set with high linear min-entropy also has somewhat high linear
min-entropy:

Lemma 3.8. Let Q ∈ {0, 1}k×p be a matrix with k linearly-independent rows q1, . . . , qk ∈ {0, 1}p,
and let A ⊆ {0, 1}p×n, such that LH∞(A,Q) ≥ η. Then for all subset A′ ⊆ A with |A′|

|A| ≥ δ,

LH∞(A′, Q) ≥ η + log δ
n .
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Proof. Consider any Q′ ∈ {0, 1}k′×p that is independent of Q, and let x be uniformly distributed
over A. From the premise, we have H∞(Q′ · x) ≥ η k′n, i.e., for any w ∈ {0, 1}nk′ ,

Pr
x∈A

[Q′ · x = w] ≤ 2−η k
′n.

Let A′(w) = {x ∈ A′ | Q′ · x = w}. Then the previous equation implies that |A
′(w)|
|A| ≤ 2−η k

′n. But if

A′ ⊆ A has |A
′|
|A| ≥ δ, then

|A′(w)|
|A′|

≤ |A
′(w)|
δ|A|

≤ 2−η k
′n−log δ

We will repeatedly make use of the following notation in the statement and proofs of various lemmas
throughout the paper: Suppose B ⊆ {0, 1}n, u ∈ {0, 1}k×n and w ∈ {0, 1}k. Then we use B(u,w)
as notation for the subset:

B(u,w) = {y ∈ B | u · y = w}.

3.5 Asymmetric communication and data structures

We may define an asymmetric communication problem as a function F : X × Y → Z. Alice gets
x ∈ X and Bob gets y ∈ Y, and they must communicate to compute F (x, y):

Definition 3.9. An [a, b]-protocol is any two-player protocol where Alice communicates ≤ a bits
and Bob is communicates ≤ b bits. A randomized [a, b, ρ]-protocol for an asymmetric communication
problem F : X ×Y → Z is a randomized [a, b]-protocol, where Alice gets x ∈ X and Bob gets y ∈ Y ,
and with probability ≥ ρ after the communication Bob has succeeded in learning F (x, y).

We may also define a static data-structure problem as a function F : X × Y → Z, where X is the
set of data, Y is the set of queries, and Z the set of outputs. A scheme is then a way of encoding
elements x ∈ X so that it is possible to quickly find F (x, y) for any y ∈ Y.

Definition 3.10. A randomized [s, w, t, ρ]-scheme for the static data-structure problem F : X×Y →
Z is a pair (E, τ), where E : X → ({0, 1}w)s is the encoding function, and for each y ∈ Y, τy is a
randomized decision-tree over s-long words in the {0, 1}w alphabet, with Z-labeled leaves9, such
that, for every x ∈ X , y ∈ Y, Pr[τy(E(x)) = F (x, y)] ≥ ρ.

A deterministic [s, w, t]-scheme is a randomized [s, w, t, 1]-scheme.

The following well-known lemma relates the communication complexity of F to the existence of
data structures for F , and its converse translates lower-bounds for the former into lower-bounds for
the latter.

Lemma 3.11. If F has an [s, w, t, ρ]-scheme, then F has a [tw, t log s, ρ]-protocol.

From the above lemma we may derive the following:

Corollary 3.12. If there is no [C · n,C, ρ]-protocol for F , then any randomized data-structure
scheme for F that uses s cells, each storing w ≤ n bits, must either make t ≥ Ω( C

log sw
n

) probes, or

have success probability < ρ.

Proof. Any [s, w, t, ρ]-scheme with w ≤ n would also give us an [ swn , n, t, ρ]-scheme; applying Lemma
3.11 to the latter would then result in a [tn, ]-protocol, which we assumed not to exist.

9I.e., each non-leaf node in τy is labeled by an index i ∈ [s] — meaning “query position i when arriving at this
node” — and has 2w-many children — one for each possible value in {0, 1}w; each leaf node is labeled by a possible
output z ∈ Z — meaning “output z when reaching this node”.
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3.6 Tossing biased coins

Suppose we have a collection of (possibly biased) coins, and we carry out a random process where
we repeatedly choose a coin from our collection and then toss it; then we choose a second coin and
toss that one, and so on, in total tossing C-many coins. Each toss of the coins is an independent
event, but the choice of the coins themselves isn’t necessarily so, e.g. we might start by choosing a
uniformly random coin from our collection, but then for our second coin we will only choose Coin
X if we started by choosing coin Y and it turned up heads, and if either of these things failed to
happen, we choose Coin Z instead.

Then we may model the above random process by a sequence of random variables β1,ρ1,k1, . . .,
βC ,ρC ,kC , such that βi is the probability of the i-th chosen coin turning up 0, ρi is a uniform real
number from the [0, 1] interval, and ki ∈ {0, 1} is the outcome of the i-th coin toss, which is 0 iff
ρi ≤ βi.

If β̄ = (β1, . . . , βC) is a sequence of coins which we may possibly obtain by our process, and
k̄ = (k1, . . . , kc) is an outcome (possible or otherwise), let us denote by P (β̄, k̄) the probability
Pr[k̄ = k̄ | β̄ = β̄] that we obtain outcome k̄ conditioned on having chosen coins β̄. Then if we let
αi = βi if ki = 0 and αi = 1− βi if ki = 1, it is clear that

P (β̄, k̄) = Pr[k̄ = k̄ | β̄ = β̄] =

C∏
i=1

αi.

Then let us say that k̄ is γ-unlikely with respect to β̄ if P (β̄, k̄) ≤ γ. Let us say that k̄ is γ-unlikely
if k̄ is γ-unlikely with respect to the chosen coins β̄.

What is the probability we get a γ-unlikely output? It can certainly be greater than γ, since
there might be, e.g., two different outputs which are γ-unlikely for every possible choice of coins.
We may show the following general upper bound:

Lemma 3.13. In any coin-tossing process like the one above, Pr[k̄ is γ-unlikely] ≤ γ · 26C .

The proof of this lemma uses the same trick as in Lemma 7 of [GPW17].

Proof. Define the random variable αi to equal βi if ki = 0 and to equal 1− βi if ki = 1. We wish
to upper-bound Pr[

∏C
i=1αi ≤ γ].

Let us define δi = ρi(1− ρi), then we always have δi ≤ αi: if ρi ≤ βi then αi = βi ≥ ρi ≥ δi,
and if ρi > βi then (1− ρi) < (1− βi) and again αi = 1− βi > 1− ρi ≥ δi.

It then follows that Pr[
∏C
i=1αi ≤ γ] ≤ Pr[

∏C
i=1 δi ≤ γ], and so we will upper-bound the latter,

instead. This is a much easier task: crucially and unlike αi, each δi is independent and identically
distributed. If we let xi = − log δi, then the mean is

E[xi] =

∫ 1

0

(
log

1

ρ
+ log

1

1− ρ

)
dρ =

2

ln 2
.

Since the xi are i.i.d., we may apply the following form of Hoefding’s concentration bound:

Pr

[
C∑
i=1

xi ≥
2C

ln 2
+ C · t

]
≤ e−2Ct2
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Assume that γ ≤ 2−6C , otherwise the lemma is trivial; applying the above:

Pr

[
C∏
i=1

δi ≤ γ

]
= Pr

[
C∑
i=1

xi ≥ log
1

γ

]

= Pr

[
C∑
i=1

xi ≥
2C

ln 2
+ C

(
1

C
log

1

γ
− 2

ln 2

)]

≤ exp

(
−2C

(
1

C
log

1

γ
− 2

ln 2

)2
)

= exp

(
−2C

(
(log 1

γ )2

C2
− 4

C ln 2
log

1

γ
+

4

(ln 2)2

))

= exp

(
−

2(log 1
γ )2

C
+

8

ln 2
log

1

γ
− 8C

(ln 2)2

)

= γ
2 log 1

γ
C
− 8

ln 2 · e−
8C

(ln 2)2

≤ γ
2 log 1

γ
C
− 8

ln 2 ≤ γ12− 8
ln 2 ≤ γ

4 How to prune an imbalanced rectangle

Suppose we have a rectangle A × B associated with a node in the communication protocol of
f ◦MVPp×n. Let’s assume that A is such that A ⊆ Affinen(Q, u) and LH∞(A,Q) ≥ 4

5 , that u · y = w

for all y ∈ B and that |B| ≥ 2
9
10
n. We argue that we can prune A × B to obtain a very large

sub-rectangle A′ × B′ such that the MVPp×n-communication matrix of A × B has the following
equi-distribution properties:

(a) Column equidistribution: Let Q′ ∈ {0, 1}k′×p be linearly independent of Q. For any

y ∈ B′ and any w′, the number of x ∈ A′ such that Q′ · x · y = w′ is approximately |A
′|

2k′
.

(b) Row equidistribution: Let Q′ ∈ {0, 1}k′×p be linearly independent of Q and consider any
u′ ∈ {0, 1}k′×n of the form Q′ · x for some x ∈ A′.10 Then for any w′′ ∈ {0, 1}k′ , the number

of y ∈ B′ such that u′ · y = w′′ is approximately |B
′|

2k′
.

We demonstrate an explicit algorithm to do such pruning on A × B, and more generally how to
do so for several sets B simultaneously. In the Section 4.1 we prove a variant of Lindsey’s lemma,
and use it in Section 4.2 to show two equidistribution properties of MVPp×n. We use these two
properties in Section 4 to prove the correctness of our pruning algorithm. This algorithm, in turn,
is used to prove the entropy-boosting partition lemma in Section 4.4, and the inverse-marginals
lemma in Section 4.5.

4.1 Lindsey’s Lemma

We first note a simple variant of Lindsey’s well-known lemma.

Lemma 4.1 (Lindsey’s Lemma). Suppose µ is a distribution over {0, 1}n having H∞(µ) ≥ 3
4n+ 1.

Then, for any w ∈ {0, 1}, there are fewer than 2
3n
4 strings x ∈ {0, 1}n with

Pr
y∼µ

[IPn(x, y) = w] /∈
(

1± 2−
n
4

)
· 1

2
.

10Note that different x can generate the same u′.
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Proof. Let X be any large set of strings, so that |X| ≥ 2
3n
4
−1. Let η denote the uniform distribution

on X. Represent η and µ as vectors in [0, 1]2
n
, in the usual way, and let x,y be random variables

distributed according to η and µ, respectively. Let M denote the sign matrix of IPn, i.e., Mxy =
(−1)IPn(x,y). Then:

|Pr[IPn(x,y) = 0]− Pr[IPn(x,y) = 1]| = |〈η,Mµ〉| ≤ ‖η‖2 · ‖M‖2 · ‖µ‖2.

Where 〈·, ·〉 is the usual inner-product (over R), ‖η‖2 and ‖µ‖2 are the L2-norms of η and µ, and

‖M‖2 is M ’s operator norm. We now find that ‖η‖2 = |X|−
1
2 ≤ 2−

3n
8
− 1

2 and

‖µ‖2 =

√∑
y

µ(y)2 ≤
√

max
y
µ(y) = 2−

1
2

H∞(µ) ≤ 2−
3n
8

+ 1
2 .

It is well-known and easy to show that ‖M‖2 ≤ 2
n
2 .11 Hence |Pr[IPn(x,y) = 0]− Pr[IPn(x,y) =

1]| ≤ 2−
n
4 , and so Pr[IPn(x,y) = w] ∈ (1± 2−

n
4 ) · 1

2 . It then follows that the set of strings x such

that Pry∼µ[IPn(x, y) = w] >
(

1 + 2−
n
4

)
· 1

2 has size at most 2
3n
4
−1, and likewise for the set of strings

x such that Pry∼µ[IPn(x, y) = w] <
(

1− 2−
n
4

)
· 1

2 .

4.2 The equidistribution property

The following lemma shows that a distribution on bit-strings is equidistributed if and only if every
parity query on these strings is equidistributed. More precisely, it shows the non-trivial direction
of this property. This property is well known and widely used [e.g. Vaz86, CG88, AGM03, Cha08,
Bra11]. Below we provide a self-contained proof from first principles.

Lemma 4.2. Suppose µ is a distribution over {0, 1}m, that v ∈ {0, 1}k×m is a matrix with k
linearly-independent (over Fn2 ) rows v1, . . . , vk, and that some w ∈ {0, 1}k and ε ∈ (0, 1) are such
that

Pr
x∼µ

[v · x = w] /∈ (1± ε) · 1

2k
.

Then there exists some non-empty set S ⊆ [k] such that:

Pr
x∼µ

[vS · x = wS ] /∈
(

1± ε

2k

)
· 1

2
,

where vS = ⊕i∈Svi is the bitwise-XOR and wS = ⊕i∈Swi is the XOR, of the coordinates in S.

Proof. We can write the mass µ({x | v · x = w}) as follows:

µ({x | v · x = w}) =
∑

x∈{0,1}m
µ(x) ·

∏
i∈[k]

1 + (−1)vi·x+wi

2
/∈ (1± ε) · 1

2k

where the last inequality is the premise of the lemma. Expanding this, we find:∑
x

µ(x)
∏
i

1 + (−1)vi·x+wi

2
=

1

2k

∑
x

µ(x) · (1 +
∑

∅6=S⊆[k]

(−1)vS ·x+wS ) /∈ (1± ε) · 1

2k
,

11Indeed,

(M⊥M)y,y′ =
∑
x

(−1)IPn(x,y)+IPn(x,y′) =

{
2np if y = y′

0 if y 6= y′.

(to see the latter equality, notice that if the i-th yi 6= y′i, then by flipping xi we can flip the summand, thus the entire
sum cancels out). Then M⊥M = 2nI, and so ‖Mv‖2 ≤

√
2n‖v‖2 for any v ∈ R2n .
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i.e.,
1

2k
+

1

2k

∑
S

(−1)wS
∑
x

µ(x) · (−1)vS ·x /∈ (1± ε) · 1

2k
,

Simplifying we get ∑
S

(−1)wS
∑
x

µ(x) · (−1)vS ·x /∈ ±ε.

Since there are 2k − 1 < 2k different sets S 6= ∅, for at least one such S we must have∑
x

µ(x) · (−1)vS ·x+wS /∈ ± ε

2k
,

which is to say

µ({x ∈ A | vS · x = wS}) /∈
(

1± ε

2k

)
· 1

2
.

Corollary 4.3. Suppose B ⊆ {0, 1}n and u ⊆ {0, 1}kn is a matrix with k linearly-independent (over
Fn2 ) rows u1, . . . , uk, and that some w ∈ {0, 1}k and ε ∈ (0, 1) are such that

Pr
y∈B

[u · y = w] /∈ (1± ε) · 2−k.

Then there exists some ũ ∈ span(u1, . . . , uk), ũ 6= 0̄ and a bit b ∈ {0, 1} such that:

Pr
y∈B

[ũ · y = b] /∈
(

1± ε

2k

)
· 1

2
.

Proof. Apply Lemma 4.2 with m = n, v = u and µ uniform on B.

Remark 4.4. Note that we cannot always hope that u = ui for some i. For example, suppose
ui = 0i−110p−i, w = 0k, and that B is the set of size 2n−1:

B = {y ∈ {0, 1}n | y1 ⊕ . . .⊕ yk = 1}.

Then first probability (in the statement of Lemma 4.3) is 0, but the second probability is 1
2 for any

u′ = ui (indeed for any linear combination of the ui other than u1 ⊕ . . .⊕ uk).

Corollary 4.5. Suppose A ⊆ {0, 1}p×n and Q ∈ {0, 1}k×p is a matrix with k linearly-independent
rows q1, . . . , qk, and that some y ∈ {0, 1}n, some w ∈ {0, 1}k and some ε ∈ (0, 1) are such that

Pr
x∼A

[
Q · x · y = w

]
/∈ (1± ε) · 1

2k

Then there exists some q ∈ span(q1, . . . , qk) and a bit b ∈ {0, 1} such that:

Pr
x∼A

[
q · x · y = b

]
/∈
(

1± ε

2k

)
· 1

2
.

Proof. Apply Lemma 4.2 with m = p, v = Q, and µ being the distribution obtained by picking a
uniformly random x from A, and outputting x · y.
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4.3 Pruning Lemma

The following lemma is stated in the most general form which we will use. It may be simpler to
read the entire lemma at first assuming N = 1 — this case suffices for the proof of the simulation
theorems, and the case for larger N is only used in the lower-bounds for the VMV problem. Recall
that the notation B(u,w) has been defined in Section 3.4.

Lemma 4.6 (Pruning Lemma). Let k < p ≤ m = n
1000 and 1 ≤ N ≤ 2p be natural numbers, let

Q ∈ {0, 1}k×p be a matrix with k linearly-independent rows q1, . . . , qk ∈ {0, 1}p, let w ∈ {0, 1}k and
let u ∈ {0, 1}k×n be a matrix with k linearly-independent rows u1, . . . , uk ∈ {0, 1}n.

Let A ⊆ {0, 1}p×n, and let B1, . . . , BN be subsets of {0, 1}n. Suppose that

(a1) A ⊆ Affinen(Q, u) and LH∞(A,Q) ≥ 4
5 ;

(a2) ∀j ∈ [N ], Bj = Bj(u,w), and |Bj | ≥ 2
9
10
n.

Then there exists a subset A′ ⊆ A, and for each j ∈ [N ] a subset B′j ⊆ Bj, with the following
properties being true for all j ∈ [N ]:

(b1) |A′| ≥ (1− 2−10m) · |A| and |B′j | ≥ (1− 2−10m) · |Bj |

(b2) For all Q′′ ∈ {0, 1}k′′×p linearly independent of Q, all u′′ ∈ Q′′ ·A′ 12, and all w′′ ∈ {0, 1}k′′,

|Bj(u′′, w′′)| = |Bj(uu′′, ww′′)| ∈ (1± 2−10m) · |Bj |
2k′′

.

(b3) For all Q′′ ∈ {0, 1}k′′×p linearly independent of Q, all y ∈ B′j, and all w′′ ∈ {0, 1}k′′,

|{x ∈ A′ | Q′′ · x · y = w′′}| ∈ (1± 2−10m) · |A
′|

2k′′

It may help to think of the properties (b2) and (b3) in the following way: take any Q′′ ∈ {0, 1}k′′×p
— a set of parity queries linearly independent of Q. Now think of a matrix with rows indexed by
u ∈ Q′′ ·A′ and columns indexed by y ∈ B′j , whose uy-entry is the product u · y ∈ {0, 1}k′′ . Then

(b2) says every row is roughly equidistributed among all possible values in {0, 1}k′′ , and (b3) says
every column is also roughly equidistributed.

The following corollary is almost immediate.

Corollary 4.7. Consider similar premise as in Lemma 4.6. Then for all z ∈ {0, 1}p such that
Q · z = w, in each A×Bj there is a pair (x, y) such that x · y = z.

To see how this corollary follows from Lemma 4.6, let us consider any such z, and a pair (Q′, w′)
such that (Q ∪Q′, ww′) completely determines z — Q′ ∈ {0, 1}(p−|Q|)×p is linearly independent of
Q and Q′ · z = w′. Then, after pruning A and Bj according to Lemma 4.6, the existence of such
(x, y) follows from property (b3).

12The set Q′′ ·A′ is the set {Q′′ · x′ | x′ ∈ A′}
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Proof of Lemma 4.6. A′ and the various B′j are obtained by the following pruning algorithm:

Algorithm 1 Pruning Algorithm
1: input A and B
2: Set A′ := A and B′j := Bj for all j ∈ [N ].
3: while there exists a vector q ∈ {0, 1}p independent of Q such that 0n ∈ q ·A′ do
4: remove from A′ every x ∈ A′ such that q · x = 0n.

5: while there exists j ∈ [N ], a vector q independent of Q, a string ũ ∈ q ·A′ ∈ {0, 1}n,
and a bit b ∈ {0, 1}, such that Pry∈B′

j
[ũ · y = b] /∈ (1± 2−12m) · 12 do

6: remove from A′ every x ∈ A′ such that q̃ · x = ũ.

7: while there exists a j ∈ [N ], a vector q independent of Q, a string y ∈ B′j , and a

bit b ∈ {0, 1}, such that Prx∈A′ [q · x · y = b] /∈ (1± 2−11m) · 12 do
8: remove y from B′j .

9: output A′ and every B′j .

This is proven as follows:

• First notice that, at every point in the algorithm after the first while loop, every matrix x ∈ A′
has linearly-independent rows. This is because removing every q such that 0n ∈ a ·A′ means
removing every matrix for which a linear combination of rows would result in the zero vector.

• Now let us show that (b1) holds at the end of the algorithm, i.e. that only a small fraction of
the elements of A and B were pruned. Notice that as long as, say, at least 1/2 of A and B are
preserved throughout the execution of the pruning algorithm, properties (a1) and (a2) will

give us that LH∞(A′, Q) ≥ 3.9
5 (see Lemma 3.8) and |B′| ≥ 2

9n
10
−1, i.e. A′ still has large linear

min-entropy and B is still large. Throughout, x′ will denote a random element from A′ and
y′ a random element from B′ (note these sets change at each loop, and hence so do x′, y′).

– The total number of cycles carried out in the first while loop above is less than 2p; this
is because the total number of q satisfying the condition is less than 2p, and once the
loop applies for a given q, this q will not appear again. For each such q, we remove a
single projection from q · A′ (i.e., all x ∈ A′ such that q · x = 0n, but no other); since

H∞(q ·x′) ≥ 3.9
5 n in each iteration, each q results in removing at most a fraction of 2−

3.9
5
n

of the elements of A′, for a total 2−
3.9
5
n+p ≤ 2−

77n
100 � 2−10m.

– The total number of times we cycle the second while loop is less than N · 2p · 2
3n
4 ;

indeed, a triple (j, q̃, ũ) satisfying the condition (for some w̃) only appears once, and by

Lemma 4.1 (taking µ to be uniform over B′j) there are at most 2
3n
4 -many ũ satisfying the

condition. Again we conclude that the total fraction of elements of A that were removed
must then be ≤ 2( 3

4
− 3.9

5
)n+2p = 2−

0.6
20
n+2p � 2−10m. So, combining both the first two

loops, we find that we removed (much) less than a 2−10m fraction of the elements of A.

– Here the calculation is similar. As before, the total number of cycles executed in the
second while loop is at most N · 2p · 2

3n
4 . Indeed, for each j ∈ [N ], and each q ∈ {0, 1}p

independent of Q, apply Lemma 4.1 with µ being to the distribution q · x′ — this
distribution has H∞(q · x′) ≥ 4

5n since LH∞(A,Q) ≥ 4
5 . So let β be the total fraction of

Bj that we prune; then β ≤ 2
3n
4

+p− 9n
10 � 2−12m. We only needed β ≤ 2−10m to satisfy

property (b1) of the lemma, but we will use this tighter β � 2−12m bound below.

• Let us now show that property (b2), with 2−10m replaced by 2−11m, holds between the second
and third while loops, i.e. the first time that the algorithm reaches line 7.
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Suppose by contradiction that this property failed at that point. The first while loop removed
all x ∈ A′ whose rows are not independent. We may then apply Lemma 4.3, with the ui in
that lemma being equal to our u′′i , and ε = 2−11m — the ui are independent since the rows of
x ∈ A′ are independent, and so are the rows of Q′′. We can then find a non-zero ũ in the span
of (the rows of) u′′ and a b ∈ {0, 1} such that (since k′′ ≤ p ≤ m)

Pr
y∈B′j

[ũ · y = b] /∈ (1± 2−11m−k′′) · 1

2
=⇒ Pr

y∈B′j
[ũ · y = b] /∈ (1± 2−12m) · 1

2
.

But if ũ is in the span of u′′, then ũ is in q ·A for some nonzero q in the span of Q′′ — hence q is
independent of Q. But in the second while loop of the pruning algorithm, we have eliminated
all pairs of ũ and q such that Pry∈Bj [ũ · y = b] /∈ (1± 2−12m) · 1

2 .

• Now we find that property (b2) also holds at the end of the pruning algorithm. The third
while loop may remove some y’s from each B′j , but we have seen that it only removes a small

β � 2−11m fraction. So let B(2) be B′j before the third while loop, and B(3) be B′j after the

third while loop. Then |B(2)| ∈ (1± 2β)|B(3)|. But as we have just seen, for all Q′′, u′′ and

w′′, |B(2)(u′′, w′′)| ∈ (1± 2−11m) · |B
(2)|

2k′′
. So we now have instead

|B(3)(u′′, w′′)| ∈ (1± 2−11m) · |B
(2)|

2k′′
± β|B(2)|

⊆ (1± 2−11m) · (1± 2β)|B(3)|
2k′′

± 2β|B(3)|

⊆ (1± 2−10m)
|B(3)|
2k′′

(since β ≤ 2−12m)

So we continue to maintain (b2).

• To finish, we show that (b3) holds at the end of the pruning algorithm. Suppose this was
not so. Then apply Lemma 4.5, with Q in that lemma equal to our Q′′ and ε = 2−10m. We
can then find a non-zero q in the span of (the rows of) Q′′ and a b ∈ {0, 1} such that (since
k′′ ≤ p ≤ m)

Pr
x∈A′

[q · x · y = b] /∈ (1± 2−10m−k′′) · 1

2
=⇒ Pr

x∈A′
[q · x · y = b] /∈ (1± 2−11m) · 1

2
.

But the third while loop has eliminated all such pairs of q and b.

4.4 Entropy-restoring partition

As we mentioned in the introduction, the entropy-restoring partition is the main technical device
behind our simulation theorem. It is what allows us to maintain high linear min-entropy of Alice’s
set A.

Lemma 4.8 (Entropy-restoring partition). Let k < p ≤ m = n
1000 , 1 ≤ N ≤ 2p be natural numbers,

and ε = 2−5m. Let Q ∈ {0, 1}k×p be a matrix with k linearly-independent rows q1, . . . , qk, let
w ∈ {0, 1}k and let u ∈ {0, 1}k×n. Let A ⊆ {0, 1}p×n, let B1, . . . , BN be subsets of {0, 1}n, and
suppose that

(a1) A ⊆ Affinen(Q, u),

(a2) For all j ∈ [N ], Bj = Bj(u,w) and |Bj | ≥ 2
9
10
n,
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(a3) LHε
∞(A,Q) < 9

10 but LH∞(A,Q) ≥ 4
5 .

Then there exist partitions Bj = B†j ∪B′j and A = A† ∪A1 ∪A2 ∪ . . ., and for every i ≥ 1:

(b1) integers ki = k + k′i > k and sets

Qi = Q ∪Q′i, where Q′i ∈ {0, 1}k
′
i×p is independent of Q; and

(b2) a vector ui = uu′i ∈ {0, 1}kin,

such that, for every i ≥ 1 and every j ∈ [N ], the following properties will hold:

(c1) |A†| ≤ ε|A|;

(c2) Ai ⊆ Affinen(Qi, ui) and

|Ai|
|Affinen(Qi, ui)|

≥ 2
1
20
k′in

|A|
|Affinen(Q, u)|

;

(c3) It holds for all wi = ww′i ∈ {0, 1}ki that

|B′j(ui, wi)| ≥ (1− ε) |Bj |
2k
′
i

;

(c4) LH∞(Ai, Qi) ≥ 9
10 .

Proof. We apply the following algorithm on the sets A and Bj , to obtain the sets A†, A1, · · · and
B′j . This is similar to the density-restoring partition of [GPW17]13.

Algorithm 2 Entropy-restoring Partition
1: input A, B1, . . . , BN

2: Let A′ and B′j be obtained from A and Bj by pruning (Algorithm 1).

3: output B′j and B†j = Bj \B′j for every j ∈ [N ].

4: Set A† = A \A′ and i = 1.
5: while A′ is such that LH∞(A′, Q) < 9

10 and |A′| ≥ 2−
n
20 |A| do

6: Let Q′i ∈ {0, 1}k
′
i×p be a k′i × p matrix, whose set of rows is maximal among

those sets of rows which are independent of Q and such that

H∞(Q′i · x′) <
9

10

(where x′ is a random variable distributed uniformly over A′).
7: Let u′i witness of this fact, so that

Pr[Q′i · x′ = u′i] > 2−
9
10k

′
in

8: Output Ai = {x ∈ A′ | Q′i · x = u′i}.
9: Update A′ = A′ \Ai and increment i.

10: if LH∞(A′, Q) ≥ 9
10 then

11: Output Ai+1 = A′.
12: else
13: Update A† = A† ∪A′.
14: output A†

13If you are familiar with that paper, the following should be made clear: in [GPW17], they call “density” to a

notion similar to our LH∞ (but without the smoothness or linearity), and the analogous concept to our |A|
|Affinen(Q,u)| is

what they call “randomness deficiency” — though again, in their paper randomness deficiency is not measured with
respect to an affine subspace, but rather with respect to a product-set of binary strings.
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We will have |A†| ≤ 2−10m|A|+ 2−
n
20 |A| � ε|A|, giving us property (c1). By the guarantee of the

Pruning Lemma 4.6, the sets B′j satisfy property (c3) for all ui and all wi that we may choose.
Property (c2) is given by our choice for u′i, as follows: at line 7 of the algorithm,

Pr[Q′i · x′ = u′i] =
|A′ ∩ Affine(Q′i, u

′
i)|

|A′|
> 2−

9
10
k′in;

since furthermore A′ ⊆ Affinen(Q, u), |Affinen(Q,u)|
|Affinen(Qi,ui)| = 2k

′
in (Observation 3.4), and |A′| ≥ 2−

n
20 |A|,

|Ai|
|Affinen(Qi, ui)|

=
|A′ ∩ Affinen(Q′i, u

′
i)|

|Affinen(Qi, ui)|
> 2

1
10
kin · |A′|

|Affinen(Q, u)|
≥ 2

1
20
kin · |A|

|Affinen(Q, u)|
.

Property (c4) holds because of the maximality of Q′i. Indeed, if there was Q′′i , independent of Q∪Q′i,
such that H∞(Q′′i · x) < 9

10 |Q
′′
i |n where x is uniform over Ai, then the matrix Q̃i = Q′i ∪Q′′i would

still be independent of Q, and would have H∞(Q̃i · x′) < 9
10(k′i + k′′i )n, contradicting the maximality

of Q′i among all such matrices.

4.5 The inverse-marginals lemma

The crucial contribution of [GPW17] is the discovery and application of the so-called inverse-
marginals lemma. This lemma says that if A × B has A “dense” and B large, then, for any
z ∈ {0, 1}p, the uniform distribution over the set g−1(z) ∩ A × B has both its marginal close to
uniform on A and B, where g is the p-fold indexing function. We show an analogous theorem where
their notion of density is replaced by our notion of linear min-entropy, and the gadget g is the
matrix-vector product. As in the pruning lemma above, the case N = 1 suffices for the simulation
theorem, and the case for larger N is only needed for the VMV lower-bound.

Lemma 4.9 (Inverse-marginals lemma). Let k < p ≤ m = n
1000 and 1 ≤ N ≤ 2p be natural numbers,

let Q ∈ {0, 1}k×p be a matrix with k linearly-independent rows q1, . . . , qk, let w ∈ {0, 1}k and let
u ∈ {0, 1}k×n. Let A ⊆ {0, 1}p×n, let B1, . . . , BN be subsets of {0, 1}n, and suppose that

• A ⊆ Affinen(Q, u) and LH∞(A,Q) ≥ 4
5 ;

• ∀j ∈ [N ], Bj = Bj(u,w), and |Bj | ≥ 2
9
10
n.

Suppose further that z ∈ {0, 1}p is any string such that Q · z = w, and let (x,y) be random variables
obtained by choosing a uniformly-random pair from the set

{(x, y) ∈ A×Bj | x · y = z}. (for any fixed j ∈ [N ])

Then the marginal distribution of x is 2−8m-close to the uniform distribution on A, and the marginal
distribution of y is 2−8m-close to uniform on Bj.

Proof. Let A,B1, . . . , BN be as given, and apply the Pruning Lemma (4.6) to obtain A′ and B′j
(for each j ∈ [N ]). Consider the following four distributions: α is uniform on A, α′ is uniform on
A′, α̂ is the distribution of x above, and α̂′ is the distribution of the x′-marginal where (x′,y′) are
uniformly chosen from the set {(x′, y′) ∈ A′ ×B′j | x′ · y′ = z}. Then:

• ∆(α, α′)� 2−9m since A′ ⊆ A and |A′| ≥ (1− 2−10m)|A| by property (b1) of Lemma 4.6.
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• ∆(α′, α̂′) � 2−9m because α̂′(x) ∈ (1 ± 3 · 2−10m) 1
|A′| for every x ∈ A′. To see this, notice

that (b2) of Lemma 4.6 gives us that α̂′(x) ∈ (1± 2−10m) 1
v for the same value v; but since∑

x∈A′ α̂
′(x) = 1, it follows that v ∈ (1±2−10m)|A′|, and so α̂′(x) ∈ (1±2−10m) 1

(1±2−10m)|A′| ⊆
(1± 3 · 2−10m) · 1

|A′| .

• ∆(α̂′, α̂) ≤ 2 · 2−9m; this is argued as follows:

– Let B = Bj , B
′ = B′j ;

– If x ∈ A, let Bx,z = {y ∈ Bj | x · y = z};
– Let B′x,z = {y ∈ B′j | x · y = z} if x ∈ A′, but set B′x,z = ∅ if x ∈ A \A′.
– Let also Mz =

∑
x∈A |Bx,z| and M ′z =

∑
x∈A |B′x,z|.

– We have α̂(x) =
|Bx,z |
Mz

and α̂(x)′ =
|B′x,z |
M ′z

;

– By property (b1), only |B|
210m

columns were removed from B; hence, for all x ∈ A′,

|B′x,z| ≤ |Bx,z| ≤ |B′x,z|+
|B|

210m

By (b2) and (b1) of Lemma 4.6, we also have

|B′x,z| ∈ (1± 2−10m)
|B′|
2p−k

⊆ (1± 3 · 2−10m)
|B|

2p−k
,

and so (since 2p−k ≤ 2m)

|Bx,z| ∈ |B′x,z| ±
|B|

210m
⊆
(

1± |B|
|B′x,z| · 210m

)
· |B′x,z| ⊆ (1± 2 · 2−9m)|B′x,z|.

– We have |M ′x,z| ∈ (1± 2−10m) |B
′|

2p−k
· |A′|, by (b2) of Lemma 4.6; since (by b1) only |A|

210m

rows were removed from A, and only |B|
210m

columns were removed from B,

M ′z ≤Mz ≤ (1± 2−10m)
|A′|
2p−k

|B′|+ |A′| |B|
210m

+
|A|

210m
|B|,

and thus Mz ∈ (1± 4 · 2−9m) |A
′||B′|

2p−k
.

– It follows that for x ∈ A′,

α̂(x) =
|Bx,z|
Mz

∈ (1± 8 · 2−9m)
|B′x,z|
M ′z

= (1± 8 · 2−9m) · α̂′(x),

and that ∑
x∈A\A′

α̂(x) ≤ |A \A
′||B|

Mz
≤ 2−10m |A||B| · 2p−k

(1± 2−10p)|B′||A′|
≤ 2 · 2−9m.

Hence ∆(α̂, α̂′) = O(2−9m).

It then follows by the triangle inequality that ∆(α, α̂) ≤ 2−8m, which shows that the x-marginal is
close to uniform on A. A similar reasoning using property (b3) instead of (b2) will show that the y
marginal is close to uniform on Bj .
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5 Simulation theorems

The layout of this section is the following. In Section 5.1 we prove our deterministic simulation
theorem, and in Section 5.3 we prove our randomized simulation theorem. In Section 5.2 we construct
a certain promise problem, and use our deterministic simulation theorem to show a deterministic
communication complexity lower-bound, which we also show cannot be proven via the richness
method of [MNSW98].

5.1 Deterministic simulation

The following is a restatement of Theorem II (a):

Theorem 5.1 (Deterministic simulation theorem). Let n, p ≤ n
1000 and C < p

100 be natural numbers.
Suppose that there exists a deterministic two-player [C · n,C]-protocol π, where Alice gets an input
from {0, 1}p×n and Bob gets an input from {0, 1}n, which solves f ◦MVPn.

Then there exists a deterministic parity decision-tree which on input z outputs f(z); and makes
≤ 40 · C parity queries to z.

Proof of Theorem 5.1. Abbreviate g = MVPp×n. Suppose we are given a deterministic protocol π
which solves f ◦ g. On input z ∈ {0, 1}p, our decision-tree procedure τ will simulate the protocol π,
in an attempt at finding a leaf of the protocol tree such that x · y = z for some (x, y) appearing in
that leaf. If it succeeds in doing so, it then outputs the label of that leaf, which must then equal
f(z) by the correctness of π.

The decision-tree procedure τ appears in Algorithm 3, but before seeing it in detail let us here
outline the main idea. In order to ensure that x · y = z for some (x, y) on the leaf that is eventually
found, the decision-tree procedure of Algorithm 3 will traverse the protocol tree while keeping in
mind a rectangle A×B. As we are traversing node v of the protocol-tree, A×B will always be a
sub-rectangle of the rectangle which π associates with v (i.e. the rectangle of inputs leading to node
v), but we will have the promise that B is large, that A has high linear min-entropy with respect to
the set Q of queries we already made, and that every pair (x, y) ∈ A×B will have Q · x · y = Q · z.
More precisely, the following will be enforced:

Claim 5.2. At line 5 of Algorithm 3, the following invariants always hold:

(i) A ⊆ Affinen(Q, u), B = B(u,w) and Q · z = w;

(ii) LH∞(A,Q) ≥ 4
5 ;

(iii) |B| ≥ 2n−C−2|Q|; and

(iv) |Q| ≥ 40 · C

The idea of the algorithm is the following. Instead of trying to preserve large linear min-entropy
of A (invariant i) — LH∞(A,Q) ≥ 4

5 — we try to preserve that the smooth linear min-entropy of

A is LH
2/3
∞ (A,Q) ≥ 9

10 . I.e. we give ourselves a safety margin. As we will see, as long as we have
this safety margin, when Alice communicates there is a way of choosing this communicated bit
(which will remove some elements from A) in such a way that invariant (i) will still hold. However,
communicating this bit might cause us to loose our safety margin, i.e., we might get into a situation

where LH
2/3
∞ (A,Q) < 9

10 . In this case, we make use of the entropy-restoring partition (Lemma 4.8)
to obtain a subset A1 ⊆ A and a set of queries Q′1 such that Q′1 ·x = u1 for all x ∈ A1, but where we

again have our safety margin with respect to the remaining dimensions — LH
2/3
∞ (A1, Q ∪Q′1) ≥ 9

10 .
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Algorithm 3 Deterministic decision-tree procedure τ(z)

1: input z ∈ {0, 1}p.
2: Initialize A = {0, 1}p×n, B = {0, 1}n.
3: Initialize ε = 1

3 , Q = ∅, w = ∅, u = ∅.
4: Let v be the root of π.
5: while v is not a leaf do

Invariants (i-iv) hold here.

6: if LHε
∞(A,Q) ≥ 9

10 then
7: Let v0 and v1 be the children of v.
8: if Alice communicates at v then
9: Let A′ ⊆ A have LH∞(A′, Q) ≥ 9

10 and |A′| ≥ (1− ε)|A|.
10: Choose i ∈ {0, 1} such that

|A′∩Avi |
|A′| ≥ 1

2 .

11: Update A = A′ ∩Avi and v = vi.
12: else if Bob communicates at v then
13: Choose i ∈ {0, 1} such that

|B∩Bvi |
|B| ≥ 1

2 .
14: Update B = B ∩Bvi and v = vi.

15: else if LHε
∞(A,Q) < 9

10 then
16: Apply Lemma 4.8 with N = 1 and B1 = B, to obtain

• Partitions A = A† ∪A1 ∪A2 · · · and B = B† ∪B′;
• For each i ≥ 1, the values of k′i, Q

′
i, and u′i.

17: Query z to discover w′1 = u′1 · z.
18: Update A = A1, B = B′(u′1, w

′
1);

19: Update Q = Q ∪Q′1, u = uu′1 and w = ww′1.

20: Output the label of the leaf v.

The decision tree then makes the parity queries Q′1 · z, and sets B = B′(u1, Q
′
1 · z), which will cut

down Bob’s set by roughly 2−|Q
′
1|.

Now please inspect Algorithm 3. We will show that invariants (i-iv) are actually preserved. Since
invariants (i-iv) hold when we reach a leaf, this leaf will have some (x, y) such that x · y = z (see
Corollary 4.7), and so the output equals f(z) as intended. On the other hand, exactly |Q| ≤ 20 · C
queries will be made, and so the theorem follows.

Invariant (i) is preserved by subsets in lines 11 and 14, and given by Lemma 4.6 in lines 18 and 19.

A is updated in lines 9 to 11. If A is any set such that LHδ
∞(A,Q) ≥ 9

10 , then there exists a subset
A′ of A for which LH∞(A′, Q) ≥ 9

10 and |A′| ≥ 2
3 |A|. The algorithm considers the bipartition of this

set by Alice’s communication, and goes to the bigger side — this side is denoted by A′ ∩Avi . By
Lemma 3.8, we are still assured that LH∞(A′ ∩Avi , Q) ≥ 9/10− 1/n ≥ 4/5 — thus invariant (ii) is
maintained.

A is also updated in line 18; in that line we set A = A1, and in the following line we update
Q = Q∪Q′1, and we are ensured by property b3 of Theorem 4.6 that LH∞(A1, Q∪Q′1) ≥ 9

10 at that
point, so invariant (ii) is also preserved in this update of A.

B is updated in lines 14 and 18. If it is Bob’s turn to communicate, then the algorithm again
zooms into the bigger side induced by Bob’s bipartition of B. Throughout the entire algorithm,
this might result in cutting down |B| by a total factor never smaller than 2−C . By property b3 of
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Theorem 4.6, this update of B at line 18 causes B to be cut down by a factor which is never smaller
than 22|Q′1|, and later Q is updated to Q ∪Q′1. Hence invariant (iii) is preserved.

We now show that |Q| ≤ 20 · C throughout. For this we control the linear density |A|
|Affinen(Q,u)|

In the first part of the while loop, the density of A drops by a factor no smaller than 1
4 in each

iteration (line 11). There are at most C such iterations, hence this density can drop by a factor of
at most 2−2Cn. In the second part of the while loop, where parity queries are made on z and |Q|
increases by k′ (line 16), the linear density is multiplied by 2

1
20
k′n by property (b3) of Lemma 4.6.

Since the density can be at most 1, we get |Q| ≤ 40 · C.

5.2 A lower-bound beating the Richness Method

The Richness-Method of Bro Miltersen et al [MNSW98], is a method for proving lower-bounds for
the communication complexity of asymmetric problems. It relies on the following definition:

Definition 5.3 (Richness). A two-player problem F : X × Y → {0, 1} is said to be (u, v)-rich with
respect to z ∈ {0, 1}, if there exists X ⊆ X with |X| ≥ u, such that for every x ∈ X there exists
Yx ⊆ Y with |Y | ≥ v, such that F (x, y) = z for every y ∈ Yx.

The Richness Method then consists of two steps: (a) Show that F is (u, v)-rich with respect to
some z ∈ {0, 1}. (b) Show that F does not have any z-monochromatic rectangles of size u′ × v′,
where both u′ ≥ u/2a+b+2 and v′ ≥ v/2b+2. i.e., any such large rectangle must intersect F−1(1− z).

It will then follow that F does not have any deterministic [a, b]-protocols. But something stronger
will then also follow: that F does not have any randomized [a, b]-protocols, which are allowed to err
whenever F (x, y) = z (for the same z for which the two properties above were shown), but not when
F (x, y) 6= z. I.e., any lower-bound proven using the richness method will give a one-sided-error
lower-bound. This follows from the cellebrated Richness Lemma:

Lemma 5.4 (Richness Lemma [MNSW98]). Let F be a (u, v)-rich problem with respect to z. If F
has a randomized one-sided error [a, b]-protocol, erring only on inputs (x, y) ∈ F−1(z), then there is
a z-monochromatic rectangle of F of dimensions at least u/2a+b+2 × v/2b+2.

In particular, any lower-bound proven using the richness method also shows a lower-bound for
zero-error (“ZPP”) protocols. Then our goal is to construct a problem with short zero-error protocols,
but for which we can prove a large deterministic lower-bound. We start by showing the following:

Theorem 5.5. There exists a promise problem Z, having zero-error randomized query complexity
O(1), but deterministic parity decision-tree complexity Ω(n).

We may now use Theorem II (a) to lift the deterministic PDT lower-bound to the setting of
asymmetric communication complexity:

Corollary 5.6. Any deterministic [a, b]-protocol for Z ◦MVPn×n has a = Ω(n2) or b = Ω(n), but
there is a randomized, zero-error [a, b]-protocol for Z ◦MVPn×n with a = O(n), b = O(1).

Since the promise problem F = Z ◦MVPn×n has zero-error [O(n), O(1)]-protocol, it then follows
that the richness method cannot give a lower-bound against [a, b]-protocols computing F , that
achieves a = ω(n). We thus established Theorem III.

Proof of Theorem 5.5. Let Z−1(0) ⊆ {0, 1}2n be the set of binary strings which have zi = 0 whenever
i is odd, and zi = 1 for at least n

10 -many even coordinates i. Let Z−1(1) ⊆ {0, 1}2n have instead
zi = 0 whenever i is even, and zi = 1 for at least n

10 -many odd coordinates i; let Z : {0, 1}2n → {0, 1}
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be the corresponding promise problem. Also, let ∆ ⊆ {0, 1}n be a binary linear code with distance

≥ n
10 and constant rate ρ = log |∆|

n > 0. E.g. a Justesen code [Jus72].

The upper-bound is trivial: the zero-error algorithm queries a pair x2ix2i+1; if it equals 00, the
algorithm answers “I don’t know”, which happens with only constant probability, and otherwise the
algorithm knows the answer.

The lower-bound rests on the following:

Claim 5.7. Any vector space V ⊆ F2n
2 disjoint from Z−1(0) or disjoint from Z−1(1) must have

codimension ≥ ρ · n.

The proof of this claim is akin to the Hamming bound for codes. Let us prove the codimension
lower-bound assuming V is disjoint from Z−1(0); the other case is proven in the same way.

Define the set ∆0 ⊆ {0, 1}2n by placing the bits of the ∆-codewords at the even positions, and
setting the odd positions to zero. For c ∈ {0, 1}2n, let B(0)(c) = c+ ∆0 be the set of words obtained
from c by bitwise-XORing a word from ∆0.

Suppose we had B(0)(v′) ∩B(0)(v′′) 6= ∅ for distinct v′, v′′ ∈ V , say v′ + δ′ = v′′ + δ′′. Then it

would follow that v
def
= v′ − v′′ = δ′′ − δ′ is both in V , since v′ − v′′ is in V , and in ∆0, since δ′′ − δ′

is in ∆0. But ∆0 ⊆ Z−1(0), since the distance of the code ∆ is at least n
10 . Hence, by contradiction,

we must conclude that B(0)(v′) and B(0)(v′′) are disjoint for every distinct v′, v′′ ∈ V .
It then holds that |V | ≤ 22n/|∆0| which is ≤ 22n−ρn since the code ∆ has rate ρ. So V has

co-dimension ≥ ρn. This proves the claim.

Now take any deterministic parity decision-tree of depth t < ρ · n. Consider what happens when
every query q1, . . . , qt is answered 0. Suppose without loss of generality that the parity-decision-tree
answers 1. Let V ⊆ {0, 1}2n be the subspace defined by the linear equations qi · x = 0. Then V has
co-dimension < ρn, and so V ∩ Z−1(0) 6= ∅; but this means that the given tree does not correctly
compute Z.

5.3 Randomized simulation

The following is a restatement of Theorem II (b):

Theorem 5.8 (Randomized simulation theorem). Let n, p ≤ m = n
1000 and C < m

100 be natural
numbers, and let π be any randomized two-player [Cn,C]-protocol — where Alice gets an input from
{0, 1}p×n and Bob gets an input from {0, 1}n — computing f ◦MVPp×n with success probability ρ.

Then there exists a randomized parity decision-tree which on input z computes f(z) with success
probability ≥ ρ− 2−Ω(n), after making ≤ 200 · C parity queries.

Theorem 5.8 is a corollary of the following:

Theorem 5.9. Let n, p ≤ m = n
1000 and C < p

100 be natural numbers, and abbreviate g = MVPp×n.
Let π be any randomized two-player [Cn,C]-protocol where Alice gets an input from {0, 1}p×n and
Bob gets an input from {0, 1}n. For a given z ∈ {0, 1}p, let π−1(z) denote the distribution on
transcripts of π obtained by choosing a random input (x, y) ∈ {0, 1}p×n × {0, 1}n uniformly from the
inverse image g−1(z), and then running π on (x, y).

Then there exists a randomized parity decision-tree which on input z outputs a string τ(z) whose
distribution is 2−5m-close to π−1(z) in statistical distance; this tree makes ≤ 200 · C parity queries
to z.
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To see the implication, compute the probability that the label associated τ(z) is not f(z):

Pr
τ∼τ(z)

[Label of leaf τ is f(z)] ≥ Pr
t∼π−1(z)

[Label of leaf t is f(z)]− 2−5m

= Pr
(x,y)∼g−1(z)

[π(x, y) = f ◦ g(x, y)]− 2−5m

≥ ρ− 2−5m

Proof of Theorem 5.9. For the task at hand, we may assume without loss of generality that π is
deterministic.14 Here is an outline of the proof, which is similar to [GPW17]: the randomized
decision-tree τ appears in Algorithm 5 below; on input z, this decision tree outputs some transcript
τ(z) of a protocol π̄ which is a refinement of π. The protocol π̄ is a refinement in that π̄ sends
the same bits as π does, plus some extra bits, so that the transcript π(x, y) always appears as a
substring of the transcript π̄(x, y). Having defined π̄ helps us to bound the statistical distance
between π̄−1(z) and τ(z) — and since π̄ is a refinement of π, removing the extra bits from τ(z) will
give an equally-good approximation of π−1(z).

The refined protocol π̄ is given in Algorithm 4. The algorithm is written with some lines marked as
‘extra bits’ and it may be seen that the output of the algorithm without the extra bits is exactly the
same as that of π. If we have a transcript π̄(x, y) of π̄, the following claim is easy to verify:

Claim 5.10. If we remove the extra bits from the transcript π̄(x, y), we obtain exactly the transcript
π(x, y).

Let π̄−1(z) denote the distribution on transcripts of π̄ obtained by first choosing a random input
(x,y) uniformly from the inverse image g−1(z), and then running π̄(x,y). Then Claim 5.10 implies
that if we sample a transcript according to the distribution π̄−1(z) and remove the extra bits, the
resulting string is a transcript of π distributed according to π−1(z).

The randomized decision-tree for simulating π̄−1(z) appears in Algorithm 5. One may observe that
it is similar to the deterministic simulation of Theorem 5.1.

More precisely, one may see by inspecting Algorithms 4 and 5 that there is an outer while loop
which goes down through each node v of the protocol-tree of π. This is similar to the deterministic
proof, however now τ(z) must find not just one leaf where z is represented, but rather it should
produce a distribution over such leaves which is close to π̄−1(z). We still want to ensure that the
rectangles A×B associated with each node of the protocol tree obey certain properties — namely
A should have high linear min-entropy and B should remain large.

For this purpose we associate — with each v of the outer while loop:

• a rectangle A × B ⊆ {0, 1}p×n × {0, 1}n which is a subrectangle of the rectangle which π
associates with v;

• a set Q ⊂ {0, 1}p of linearly independent vectors;

• a (possibly empty) string w ∈ {0, 1}|Q|; and

• a (possibly empty) matrix u ∈ {0, 1}|Q|n.

Then the following will be enforced:

14Because any randomized protocol is the convex combination of deterministic protocols, and if we can approximate
the transcript of each deterministic protocol in this convex combination, when the input is drawn uniformly from
g−1(z), then we can take the same convex combination of these approximations to obtain an approximation of the
transcript of the randomized protocol.
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Claim 5.11. At line 5 of Algorithms 4 and 5, the following invariants always hold:

(i) A ⊆ Affinen(Q, u), B = B(u,w), and Q · z = w;;

(ii) LH∞(A,Q) ≥ 4
5 ;

(iii) |B| ≥ 2
9
10
n; and

(iv) |Q| ≤ 200C.

Invariant (i) follows by properties (c2) and (c3) of Lemma 4.8. Our setting A = A′ in line 14
preserves invariant (ii), because of Lemma 3.8. Setting A = Ai in line 28 also preserves invariant
(ii), because of property (c4) of Lemma 4.8. Finally, invariants (iii) and (iv) are enforced at the end
of each cycle, in lines 30-35.

Sometimes the refined protocol π̄ will fail to enforce invariants (i-iv). This can happen in lines 11,
21, 25, 31, or 34, and when it does happen, one of the players will send the abort symbol ⊥ to the
other player, and from then onward both players run protocol π starting from node v in π’s protocol
tree. Let us say that π̄−1(z) aborts when this does happen, i.e. a transcript sampled according to
π̄−1(z) aborts if it contains the abort symbol ⊥.

We now show that the procedure correctly approximates π̄−1(z) on input z:

Claim 5.12. For every z ∈ {0, 1}p, the two distributions π̄−1(z) and τ(z) are 2−5m-close in
statistical distance.

We will show this in three steps. Let π̃−1(z) equal π̄−1(z) conditioned on not aborting, and let
τ̃(z) equal τ(z) conditioned on non-aborting. We first show π̄−1(z) is statistically close to π̃−1(z),
which in turn is close to τ̃(z), which in turn is close to τ(z).

To show the first, we upper-bound the probability that π̄ aborts. Invariants (i-iii) hold at each
line where the algorithm may abort (lines 11, 21, 25, 31, or 34). Let (x,y) be chosen uniformly at
random from the set A×B∩g−1(z), at any of these lines. It then follows, from the inverse-marginals
lemma (Lemma 4.9) that the marginal distribution of x is 2−8m-close to uniform on A, and the
marginal distribution of y is 2−8m-close to uniform on B. With this in mind and noting that we
have initialized ε = 2−10m, we may now bound the probability of aborting:

At line 11 we have Pr[x ∈ A \A′] ≤ ε+ 2−8m � 2−5m;

At line 21 we have Pr[x ∈ A†] ≤ ε+ 2−8m � 2−5m;

At line 25 we have Pr[y ∈ B†] ≤ ε+ 2−8m � 2−5m.

At line 31 we must notice that B decreases in size at two places in the algorithm: lines 17 and 28.
By property (c3) of the entropy-restoring partition (Lemma 4.8), in line 28 B will be cutoff by
a total fraction which is no smaller than (1− ε)2−|Q| ≥ 2−20` � 2−

n
20 . On the other hand, the

probability that |B| is reduced by a factor γ in line 17 is no greater than γ26C + C2−8m —
since it would be no greater than γ26C if y would be uniform on B (by Lemma 3.13), y is
2−8m-close to uniform, and line 17 is executed C times (once for each bit Bob communicates
in π). Hence γ < 2−

n
20 with probability at most 2−

n
20

+6C + C2−8m � 2−5m, and otherwise
|B| will remain at least 2−

n
10 2n.

At line 34 we must notice the following: whenever Q gains k new elements — which only happens
in line 29 — property (c4) of Lemma 4.8 says that the affine-density |A|

|Affinen(Q,u)| will increase

by 2
1
20
kn. Now, this affine density can only decrease in line 14, and as above the probability
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that this affine density is reduced by a factor γ is no greater than γ · 26Cn + Cn · 2−8m. (The
reason is similar to that in the previous paragraph — Alice’s communication is Cn, and hence
the first term comes form Lemma 3.13 assuming x is uniform on A, and the second term
is from the fact that x is 2−8m close to uniform.) For γ ≤ 2−10Cn, the probability that the
affine-density of A decreases by a factor smaller than 2−10Cn is ≤ γ · 26Cn +Cn · 2−8m � 2−5m.
And so, since the affine density is never greater than 1, it follows that |Q| will remain bounded
by 200 · C with that much probability.

It then follows that π̄−1(z) aborts with probability � 2−5m, and hence the statistical distance
between π̃−1(z) and π̄−1(z) is � 2−5m. It is easy to see that the statistical distance between π̃−1(z)
and τ̃(z) is also small. The two processes behave the same, except in the way that A and B are
updated; for example in line 13 of Algorithm 4, in order to choose i ∈ {0, 1}, π̃−1(z) will choose
uniformly-random pair (x,y) in g−1(z)∩A′ ×B, and then set i = 0 if x ∈ A′ ∩Av0 , and set i = 1 if
x ∈ A′ ∩ Av1 ; τ̃(z) will do the same in line 11 of Algorithm 5, except x is uniformly chosen from
A′ instead. But by the inverse-marginals lemma (Lemma 4.9), the two resulting distributions on
i are 2−8m-close. The same happens at every other point when the transcript is updated in both
Algorithms 4 and 5. Since the length of the transcript is O(Cn) � 2p, it follows that the total
statistical distance between π̃−1(z) and τ̃(z) is � 2−5m. The proof that τ̃(z) and τ(z) are close is
almost identical to the proof that τ̃−1(z) and τ−1(z) are close, except that it no longer requires the
use of the inverse-marginals lemma.

This concludes the proof of Claim 5.12. We are left only to observe that the set Q contains the
parity queries made to z, and |Q| is forcefully bounded in lines 28–29 of Algorithm 5. So when we
bounded the probability of the corresponding abort condition we also bounded the number of parity
queries made by Algorithm 5.
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Algorithm 4 Refined deterministic communication protocol π̄

1: input x ∈ {0, 1}p×n (to Alice) and y ∈ {0, 1}n (to Bob).
2: Both players initialize A = {0, 1}p×n, B = {0, 1}n.
3: Both players initialize ε = 2−n/100, Q = ∅, w = ∅, u = ∅.
4: Let v be the root of π.
5: while v is not a leaf do

Invariants which are true here are discussed in page 29.

6: if LHε
∞(A,Q) ≥ 9

10 then
7: Let v0 and v1 be the children of v.
8: if Alice communicates at v then
9: Let A′ ⊆ A have LH∞(A′, Q) ≥ 9

10 and |A′| ≥ (1− ε)|A|.a
10: if x ∈ A \A′ then
11: Alice sends ⊥, . Extra bits
12: Both players run πv(x, y) and exit.

13: Alice sends i such that x ∈ Avi .
14: Both players update A = A′ ∩Avi and v = vi.
15: else if Bob communicates at v then
16: Bob sends i such that y ∈ Bvi .
17: Both players update B = Bvi and v = vi.

18: else if LHε
∞(A,Q) < 9

10 then
19: Apply Lemma 4.8 with N = 1 and B1 = B, to obtain

• Partitions A = A† ∪A1 ∪A2 · · · and B = B† ∪B′;
• For each i ≥ 1, the values of k′i, Q

′
i, and u′i.

20: if x ∈ A† then
21: Alice sends ⊥, . Extra bits
22: Both players run πv(x, y) and exit.

23: Alice sends i to Bob such that x ∈ Ai.
24: if y ∈ B† then
25: Bob sends ⊥, . Extra bits
26: Both players run πv(x, y) and exit.

27: Bob sends w′i = u′i · y to Alice.
28: Both players update A = Ai, B = B′(u′i, w

′
i);

29: Both players update Q = Q ∪Q′i, u = uu′i and w = ww′i.

30: if |B| < 2
9
10
n then

31: Bob sends ⊥, . Extra bits
32: Both players run πv(x, y) and exit.

33: if |Q| > 200C then
34: Alice sends ⊥, . Extra bits
35: Both players run πv(x, y) and exit.

36: Output the label of the leaf v.

aSuch A′ exists since A has large smooth linear min-entropy; more than one such A′ may
exist, any choice is valid.
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Algorithm 5 Randomized decision-tree procedure τ(z) simulating π̄−1(z)

1: input z ∈ {0, 1}p.
2: Initialize A = {0, 1}p×n, B = {0, 1}n.
3: Initialize ε = 2−n/100, Q = ∅, w = ∅, u = ∅.
4: Let v be the root of π and τ = ∅.
5: while v is not a leaf do

Invariants (i-iv) also hold here.

6: if LHε
∞(A,Q) ≥ 9

10 then
7: Let v0 and v1 be the children of v.
8: if Alice communicates at v then
9: Let A′ ⊆ A have LH∞(A′, Q) ≥ 9

10 and |A′| ≥ (1− ε)|A|.
10: With probability |A\A

′|
|A| , output τ and abort.

11: Choose i ∈ {0, 1} with probability
|A′∩Avi |
|A′| and set τ = τi.

12: Update A = A′ ∩Avi and v = vi.
13: else if Bob communicates at v then
14: Choose i ∈ {0, 1} with probability

|B∩Bvi |
|B| and set τ = τi.

15: Update B = Bvi and v = vi.

16: else if LHε
∞(A,Q) < 9

10 then
17: Apply Lemma 4.8 with N = 1 and B1 = B, to obtain

• Partitions A = A† ∪A1 ∪A2 · · · and B = B† ∪B′;
• For each i ≥ 1, the values of k′i, Q

′
i, and u′i.

18: With probability |A
†|
|A| , output τ and abort.

19: Choose i ≥ 1 with probability |Ai|
|A\A†|

20: Set τ = τ i.
21: With probability |B

†|
|B| , output τ and abort.

22: Query z to discover w′i = u′i · z.
23: Set τ = τ w′i.
24: Update A = Ai, B = B(u′i, w

′
i);

25: Update Q = Q ∪Q′i, u = uu′i and w = ww′i.

26: if |B| < 2
9
10
n then

27: Output τ and abort.

28: if |Q| > 200C then
29: Output τ and abort.

30: Output τ .
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5.4 Counting orthogonal vectors

Definition 5.13. The problem of counting orthogonal vectors, OVCn : {0, 1}n×n × {0, 1}n →
{0, . . . , n}, is the static data-structure problem of encoding a set x ⊆ {0, 1}n of n-many n-bit vectors,
so that we may know, for any given query y ∈ {0, 1}n, how many xi are orthogonal to y:

OVCn(x, y) = |{i ∈ [n] | IPn(xi, y) = 0}|.

The problem of counting orthogonal vectors mod-3, OVC3
n : {0, 1}n×n×{0, 1}n → {0, 1}, is the static

data-structure problem of encoding a set x ⊆ {0, 1}n of n-many n-bit vectors, so that we may know,
for any given query y ∈ {0, 1}n, if the number of xi orthogonal to y is a multiple of 3:

OVCn(x, y) =

{
1 if OVCn(x, y) = 0 mod 3,

0 otherwise.

The span problem, Spann : {0, 1}n×n × {0, 1}n → {0, 1} is the static data-structure problem of
encoding a set x ⊆ {0, 1}n of n-many n-bit vectors, so that we may know, for any given query
y ∈ {0, 1}n, whether all xi are orthogonal to y:

Spann(x, y) =

{
1 if OVCn(x, y) = n,

0 otherwise.

The orthogonal majority problem, OGMajn : {0, 1}n×n×{0, 1}n → {0, 1} is the static data-structure
problem of encoding a set x ⊆ {0, 1}n of n-many n-bit vectors, so that we may know, for any given
query y ∈ {0, 1}n, whether most xi are orthogonal to y:

OGMajn(x, y) =

{
1 if OVCn(x, y) ≥ n

2 ,

0 otherwise.

The following theorem has been shown in [MNSW98]:15

Theorem 5.14 ([MNSW98]). There exists a real constant ε > 0 such that there are no deterministic
[S,w, t]-schemes for Spann with w ≤ n, unless when t ≥ εn

log Sw
n

.

By simple reductions, the above lower-bound also holds against OVCn and OGMajn. On the
other hand, it is easy to show the following upper-bound for randomized schemes:

Theorem 5.15. There is a randomized [O(n2), n,O(1),Ω(1)]-scheme for Spann.

Proof. Our encoding will contain S vectors q1 · x, . . . , qS · x, where each qi ∈ {0, 1}n. I.e., each qi · x
is the bitwise XOR of some rows of x.

Suppose we pick a vector q ∈ {0, 1}n uniformly at random. Then any such choice will always
have q · x · y = 0 if x · y = 0; but if x · y 6= 0, then Prq[q · x · y = 0] = 1

2 . So if we pick S = O(n)
vectors q1, . . . , qs, it is overwhelmingly likely (by, e.g., a Chernoff bound) that for every y ∈ {0, 1}n
with x · y 6= 0, roughly half of the qi will have qi · x · y = 1. Our encoding E(x) is q1 · x, . . . , qS · x for
one of these overwhelmingly likely choices for q1, . . . , qS . The query algorithm will now pick O(1)
random i ∈ S and obtain the vectors qi ·x. If all qi ·x · y equal 0, then the algorithm concludes, with
only constant error probability, that Spann(x, y) = 1; if some qi · x · y equals 1, then the algorithm
concludes, correctly, that Spann(x, y) = 0.

15The proof is via their richness technique, which we briefly overview in the next section.

33



The same idea as above will give us a randomized [n,O(1),Ω(1)]-protocol for Spann. Hence
there is no hope to show a randomized lower-bound for Spann. We are, however, able to show the
following theorem, which is a restatement of Theorem I (b) and (c):

Theorem 5.16. There exists a real constant ε > 0 such that:

• In any randomized [s, w, t, ρ]-scheme for OVC3
n with w ≤ n, either t ≥ εn

log sw
n

or ρ ≤ 2
3 + 2−εn.

• In any randomized [s, w, t, ρ]-scheme for OGMajn with w ≤ n, either t ≥ εn
log sw

n
or ρ ≤ 1− ε.

Remarkably, the contrast between these two situations can be explained by the fact that the negated
OR function has small randomized PDT complexity, whereas the counting and majority functions
have large randomized PDT complexity. We will now prove these PDT lower-bounds, and Theorem
5.16 will then follow directly from our randomized simulation theorem (Theorem 5.8) and from the
known connection between communication complexity and data structures (Corollary 3.12).

Theorem 5.17. Any randomized parity decision tree complexity needs Ω(n) queries to compute
Mod30

n with success probability > 2
3 + 2−Ω(n).

Proof. We show that any deterministic parity decision tree which solves Mod3n on the uniform
distribution over {0, 1}n must make Ω(n) queries in order for the error probability to be bounded
away from 1

2 . Consider any such deterministic parity decision tree, and let us assume that the
number of queries it makes in the worst case is ` = o(n). Let us also denote these queries as
Q = (q1, · · · , q`), and their respective answers as b = (b1, · · · , b`). The tuple (Q, b) specify an affine
subspace V (Q, b) of codimension ` in a natural way. Next we show that in any affine subspace V of
codimension o(n), and for any a ∈ {0, 1, 2}, the fraction of x ∈ V such that

∑n
i=1 xi = a mod 3, is

in the range 1
3 ± o(1).

Consider the single affine constraint q · x = b, given by q ∈ {0, 1}n and b ∈ {0, 1}. Note that q · x is
an n variate multi-linear degree 1 polynomial over Z2. If f : {0, 1}n → Z3, then let by PDiscq,b(f)
be given by

PDiscq,b(f) = max
a∈Z3

∣∣∣∣Pr
x

[f(x) ∧ q · x = b]− 1

3
Pr
x

[q · x = b]

∣∣∣∣
We use the following special case of the polynomial discrepancy lemma, appearing in [Cha07]:

Lemma 5.18 (Polynomial discrepancy lemma [Cha07]). There exists a constant β such that, for
any q ∈ {0, 1}n and any b ∈ {0, 1}:

PDiscq,b(Mod3n) ≤ exp (−βn) .

Let V = {x ∈ Fn2 | ∀i ∈ [`]qi · x = bi} be an arbitrary affine subspace of codimension `, given by the
linear constraints qi ∈ {0, 1}n, and bi ∈ {0, 1}`; let Ex denote expectation over a uniformly random
x ∈ {0, 1}n; if ∅ 6= S ⊆ [`], let qS =

⊕
i∈S qi (the bitwise-XOR of qi with i ∈ S) and bS =

⊕
i∈S bi
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(the XOR of the bi with i ∈ S). We may then write

Pr
x∈{0,1}n

[Mod3an(x) ∧ x ∈ V ] = Ex

Mod3an(x)
∏
j∈[`]

(
1 + (−1)qj ·x−bj

2

)
= 2−` ·Ex

Mod3an(x)

1 +
∑

∅6=S⊆[`]

(−1)qS ·x−bS

 (expanding the product)

∈ 2−`
(

1

3
± e−βn

)
+ 2−`

∑
∅6=S⊆[`]

Ex

[
Mod3an(x) · (−1)qS ·x−bS

]
(Lemma 5.18)

= 2−`
(

1

3
± e−βn

)
+ 2−`

∑
∅6=S⊆[`]

σS ,

where

σS = Ex

[
Mod3an(x) · (−1)qS ·x−bS

]
=

1

2n

∑
x≡a mod 3

(−1)qS ·x−bS

=
1

2n

( ∑
x≡a mod 3

[qS · x = bS ]−
∑

x≡a mod 3

[qS · x = 1− bS ]

)

∈ 1

2n

(
2n−1

(
1

3
± e−βn

)
− 2n−1

(
1

3
± e−βn

))
(Lemma 5.18)

⊆ ±e−βn

This then implies that

Pr
x

[Mod3n(x) = a ∧Q · x = b] ∈ 2−`
(

1

3
± 2 · e−βn

)
= Pr

x
[Q · x = b]

(
1

3
± 2 · e−βn

)
,

i.e., in an affine subspace of codimention `, the fraction of elements x such that Mod3n(x) = a
for any a ∈ {0, 1, 2} is 1

3 ± 2−cn for some constant c. This, in turn, means that in each leaf of a

parity decision-tree for Mod30
n, the decision tree makes an error of at least 1/3 − 2−Ω(n) for any

` = o(n).

By a binary-search reduction to majority, we may easily see that the randomized parity decision

tree complexity of GMajn is Ω
(

n
logn log logn

)
. However the following stronger result is known:

Theorem 5.19 ([CR12, Vid12, She12]). The randomized pdt complexity of GMaj is Ω(n).

6 Lower-bounds for the VMV problem

Consider the communication problem where Alice gets a p × n-bit matrix x, Bob gets a p-bit
vector q and an n-bit vector y, and they wish to compute the vector-matrix-vector product
VMVp×n(x; q, y) = q · x · y.

This problem intuitively feels similar to the f ◦ MVPp×n problem treated in the simulation
theorems of Section 5. However, instead of computing an outer function f of the matrix-vector
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product x · y, Bob has a certain parity-query q and they wish to know q · (x · y).16 So let us
suppose we have a communication protocol for the VMVp×n problem. . . does that correspond, via a
simulation-type argument, to a decision-tree of some kind?

We show that this is exactly the case, that an efficient protocol for the VMV problem would give us
an efficient decision tree for a certain impossible task :

Lemma 6.1 (Impossible task). Suppose we have a randomized parity decision-tree running in time
t which, on every input z ∈ {0, 1}p, outputs a pair (q, b) ∈ {0, 1}p × {0, 1} such that both:

• q is (always) linearly-independent of the set Q of parity queries that were made, and

• with probability ρ over the choice of q, we have q · z = b.

Then either t ≥ p or ρ = 1/2.

Proof. Suppose without loss of generality that the given parity decision-tree is a convex combination
of deterministic parity decision-trees which do exactly t linearly-independent queries at each path.
This can be ensured by padding the set of queries if they are fewer than t, and by removing redundant
linearly-dependent queries.

Suppose τ is a deterministic parity decision-tree in this convex combination, and suppose that
t < p. We know that:

(a) on every input z ∈ {0, 1}p, τ makes exactly t linearly-independent parity-queries Q = Q(z)
and outputs a pair (q, b) ∈ {0, 1}p × {0, 1} where q is linearly independent of Q; and

(b) for some ρ-fraction of the possible inputs, the output pair (q, b) is such that q · z = b.

We may now look at a arbitrary leaf of the tree τ , and consider the set Z ⊆ {0, 1}p of inputs
which end up in this leaf. Notice that |Z| = 2p−t ≥ 2, and hence, no matter which pair (q, b) is

chosen as the output for the given leaf, b = q · z will hold for exactly |Z|2 many z ∈ Z. Since this
happens for every leaf of τ , it follows that ρ = 1

2 exactly. As τ was an arbitrary decision-tree in the
convex combination of the given randomized decision-tree, it will follow that the probability ρ = 1

2
for this convex combination, also.

6.1 Statement of the communication-complexity lower-bound

We now present an analogue of Theorem 5.8. The proof is very similar, and will be sketched in
Section 6.3.

Theorem 6.2. Let n, p ≤ m = n
1000 and C < p

4×105
be natural numbers, and abbreviate g = MVPp×n.

Let π be any randomized two-player [Cn,C]-protocol where Alice gets an input x ∈ {0, 1}p×n and
Bob gets an input (q, y) ∈ {0, 1}p × {0, 1}n, and which outputs q · x · y with probability ρ0.

Then there exists a randomized parity decision-tree for solving the impossible task of Lemma 6.1,
with success probability ρ ∈ ρ0 ± 2−Ω(p)

It then follows from Lemma 6.1 that either C = Ω(p), or ρ = 1
2 , and so we get:

Corollary 6.3. There exists some constant ε > 0 for which the following holds: In any randomized
[a, b]-protocol for solving the VMVn×n problem with success probability ρ, we must have a ≥ ε · n2,
or b ≥ ε · n, or ρ < 1

2 + 2−ε·n.
16Interestingly, if Alice knew what q is, she could just send q · x ∈ {0, 1}n to Bob and then Bob would immediately

know the answer. Any lower-bound we purport to prove must then use the fact that Bob’s communication budget is
too small for Bob to send q to Alice.
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6.2 The data-structure lower-bound

Now consider the VMV static data-structure problem: We wish to encode an n × n matrix x ∈
{0, 1}n×n and be able to compute q · x · y, for any given query (q, y) ∈ {0, 1}n × {0, 1}n. Then
Corollary 3.12 and Corollary 6.3 give us the following restatement of Theorem I (a):

Theorem 6.4. There exists some constant ε > 0 such that any [s, w, t, ρ]-scheme for the VMVn×n
problem, with w ≤ n, has either t ≥ εn

log sw
n

or ρ ≤ 1
2 + 2−εn.

The four-Russians algorithm [ADKF70, Wil07] shows that the above lower-bound is optimal for
large w:

Theorem 6.5. There exists an [ n2

logn , n,
n

logn , 1]-scheme for the VMV problem.

Proof. To encode x, partition the rows of x into t = n
logn blocks x1, . . . , xt, each having log n rows;

then store, for each block xi of rows and for each q′ ∈ {0, 1}logn, the single row q′ · xi in a single cell

of size w = n. This uses S = n2

logn cells.
Given a query q, y, the deterministic query algorithm breaks q into t blocks q1, . . . , qt, and

obtains qi · xi for each i ∈ [t], thus making exactly t queries; then the output is the XOR:
q · x · y = ⊕i∈[t]qi · xi · y.

6.3 Proof of the communication complexity lower-bound

Proof of Theorem 6.2. Suppose for the time being that π is deterministic. For a given z ∈ {0, 1}p×
{0, 1}p, let π−1(z) denote the distribution on pairs (q, t), where q is a uniformly random q ∈ {0, 1}p,
and t is a transcript of of π obtained by choosing a random input (x, y) ∈ {0, 1}p×n × {0, 1}n
uniformly from the inverse image g−1(z), and then running π on (x; q, y).

We will construct a randomized parity decision-tree τ which on input z outputs a pair τ(z) = (q, t)
whose distribution is 2−Ω(p)-close to π−1(z) in statistical distance, and such that q is always
independent of the queries made by τ(z); this tree will make ≤ 200 · C parity queries to z.

The conclusion of the theorem will then follow: if we run τ(z) = (q, t) and output the pair (q, b),
where q is the label of the transcript t (or abort if τ aborts), then q will be independent of the
queries made with probability 1− 2−Ω(p) (since ≤ 200C � p queries were made), and b will equal
q ·x · y = q · z with probability ρ0± 2−Ω(n), so we will succeed at the impossible task with probability
ρ = ρ0 − 2−Ω(p); then either C ≥ p

200 or ρ = 1
2 .

If we assume that π is not deterministic, i.e., that it is a convex combination of deterministic
protocols, then taking the same convex combination of the corresponding τ will give us the same
conclusion.

The construction of τ is very similar to the one appearing in the proof of Theorem 5.9. The one
difference is the following: instead of keeping track of a single set B ⊆ {0, 1}n, now Bob’s set B is a
subset of {0, 1}p×{0, 1}n, which we think of as a collection of sets B1, . . . , BN ; each Bi corresponds
to some string q, so that Bi is the set of extensions y ∈ {0, 1}n such that (q, y) ∈ B. So instead of
preserving the invariant that B is large, we now wish to preserve the invariant that all of the Bi
sets are large.

We need to spell out these invariants carefully. For this purpose, let us use the following notation,
for a given set B ⊆ {0, 1}p × {0, 1}n:

• B(0) = {q ∈ {0, 1}p | (q, y) ∈ B for some y} is the projection of B onto the first coordinate.

• For each q ∈ B(0), Bq = {b | (q, b) ∈ B} ⊆ {0, 1}n.
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• If u ∈ {0, 1}k×n and w ∈ {0, 1}k, then B(u,w) = {(q, y) ∈ B | u · y = w}.

One may see by inspecting Algorithms 6 and 7 that τ has an outer while-loop which goes down
through each node v of the protocol-tree of π. With each v of this outer loop, we associate:

• a rectangle A×B ⊆ {0, 1}p×n × ({0, 1}p × {0, 1}n) which is a subrectangle of the rectangle
which π associates with v;

• a (possibly empty) set Q ⊂ {0, 1}p of linearly independent vectors;

• a (possibly empty) string w ∈ {0, 1}|Q|; and

• a (possibly empty) matrix u ∈ {0, 1}|Q|n.

Then we will enforce:

Claim 6.6. At line 5 of Algorithms 6 and 7, the following invariants always hold:

(i) A ⊆ Affinen(Q, u), B = B(u,w), and Q · z = w;;

(ii) LH∞(A,Q) ≥ 4
5 ;

(iii) |B(0)| ≥ 2
9
10
p and for every q ∈ B(0), |Bq| ≥ 2

9
10
n; and

(iv) |Q| ≤ 200 · C.

Algorithms 6 and 7 are similar to Algorithms 4 and 5, respectively, and the proof that π̄−1(z) is
close to τ(z) is almost identical. With completeness in mind, we will still write down the whole
proof, but let us here pinpoint the crucial difference: when upper-bounding the probability of
aborting at lines 30-36, here instead of bounding the probability that a single B should not become
too small, we must bound the probability that this happens for many Bq. For this purpose, we
may argue as in item “At line 31” (of page 29), using the coin-tossing lemma (Lemma 3.13), that
|B| ≥ 2−

p
10

+1 · 2p+n except with abort probability � 2−5p (since Bob only communicates C ≤ p
100

bits), and so there must be at least 2
9
10
p-many q such that |Bq| ≥ 2

9
10
n throughout.

Let us start by showing Claim 6.6 for Algorithm 6. Invariant (i) follows by properties (c2)
and (c3) of Lemma 4.8. Our setting A = A′ in line 14 preserves invariant (ii), because of Lemma
3.8. Setting A = Ai in line 28 also preserves invariant (ii), because of property (c4) of Lemma 4.8.
Finally, invariants (iii) and (iv) are enforced at the end of each cycle, in lines 30-36. The proof is
identical for Algorithm 7.

If we have a transcript π̄(x, y) of π̄, the following claim is easy to verify:

Claim 6.7. Removing the extra bits from the transcript π̄(x, y) gives us exactly π(x, y).

Let π̄−1(z) denote the distribution on pairs (q, t) obtained by first choosing a random triple
(x; q, y), where q is uniformly chosen from {0, 1}p, (x, y) is uniformly chosen from the inverse image
g−1(z), and t = π̄(x; q, y). Then Claim 6.7 implies that if we sample a pair (q, t) according to the
distribution π̄−1(z) and remove the extra bits from t, the resulting pair will be distributed according
to π−1(z).

Sometimes the refined protocol π̄ will fail to enforce invariants (i-iv). This can happen in lines 11,
21, 25, 32, or 35, and when it does happen, one of the players will send the abort symbol ⊥ to the
other player, and from then onward both players run protocol π starting from node v in π’s protocol
tree. Let us say that π̄−1(z) aborts when this does happen, i.e. a transcript sampled according to
π̄−1(z) aborts if it contains the abort symbol ⊥.
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Now that we have explained the refined protocol π̄, we are ready to present the parity decision-tree
procedure which simulates it. It appears as Algorithm 7 below.

We now establish that τ(z) correctly approximates π̄−1(z):

Claim 6.8. For every z ∈ {0, 1}p, the two distributions π̄−1(z) and τ(z) are 2−
p

100 -close in statistical
distance.

We will show this in three steps. Let π̃−1(z) equal π̄−1(z) conditioned on not aborting, and let
τ̃(z) equal τ(z) conditioned on non-aborting. We first show π̄−1(z) is statistically close to π̃−1(z),
which in turn is close to τ̃(z), which in turn is close to τ(z).

To show the first, we upper-bound the probability that π̄ aborts. Invariants (i-iii) hold at
each line where the algorithm may abort (lines 11, 21, 25, 32, or 35). Let (xq,yq) be chosen
uniformly at random from the set A×Bq ∩ g−1(z), at any of these lines. It then follows, from the
inverse-marginals lemma (Lemma 4.9) that the marginal distribution of xq is 2−8m-close to uniform
on A, and the marginal distribution of yq is 2−8m-close to uniform on Bq. Hence if we let (x,y)
be chosen uniformly from the set {(x, y) ∈ A × Bq | q ∈ Q(0), x · y = z}, it will then hold that x
is 2−8m-close to uniform on A, and y is 2−8m-close to uniform on (the entire set) B. With this in
mind and noting that we have initialized ε = 2−10m, we may now bound the probability of aborting:

At line 11 we have Pr[x ∈ A \A′] ≤ ε+ 2−8m � 2−5m;

At line 21 we have Pr[x ∈ A†] ≤ ε+ 2−8m � 2−5m;

At line 25 we have Pr[y ∈
⋃
q∈B(0) B

†
q ] ≤ ε+ 2−8m � 2−5m.

At line 32 we must notice that B decreases in size at three places in the algorithm: lines 17, 28
and 30. By property (c3) of the entropy-restoring partition (Lemma 4.8), in line 28 B will be
cutoff by a total fraction which is no smaller than (1− ε)2−|Q| ≥ 2−2Q ≥ 2−2000C ≥ 2−

p
20

+1

(more precisely, the prunning lemma says that this holds for each Bj , and hence it holds for
the entire B). On the other hand, the probability that |B| is reduced by a factor γ in line
17 is no greater than γ26C + C2−8m — since it would be no greater than γ26C if y would
be uniform on B (by Lemma 3.13), y is 2−8m-close to uniform, and line 17 is executed C
times (once for each bit Bob communicates in π). Hence γ < 2−

p
20 with probability at most

2−
p
20

+6C +C2−8m � 2−
p

100 ; otherwise |B| will be cuttoff by a fraction no smaller than 2−
p
10

+1,
throughout the construction, in lines 17 and 28; In line 30, no more than 2−

n
10 � 2−

p
10

+1

fraction is lost, and hence this implies that, with probability � 2−
p

100 -close to 1, there must
be at least 2

9
10
p-many q such that |Bq| ≥ 2

9
10
n throughout the entire run of the protocol. This

is the only point where the statistical distance can become greater than 2−5m.

At line 35 we must notice the following: whenever Q gains k new elements — which only happens
in line 29 — property (c4) of Lemma 4.8 says that the affine-density |A|

|Affinen(Q,u)| will increase

by 2
1
20
kn. Now, this affine density can only decrease in line 14, and as above the probability

that this affine density is reduced by a factor γ is no greater than γ · 26Cn + Cn · 2−8m. (The
reason is similar to that in the previous paragraph — Alice’s communication is Cn, and hence
the first term comes form Lemma 3.13 assuming x is uniform on A, and the second term
is from the fact that x is 2−8m close to uniform.) For γ ≤ 2−10Cn, the probability that the
affine-density of A decreases by a factor smaller than 2−10Cn is ≤ γ · 26Cn +Cn · 2−8m � 2−5m.
And so, since the affine density is never greater than 1, it follows that |Q| will remain bounded
by 200 · C with that much probability.
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It then follows that π̄−1(z) aborts with probability � 2−5m, and hence the statistical distance
between π̃−1(z) and π̄−1(z) is � 2−5m. It is easy to see that the statistical distance between π̃−1(z)
and τ̃(z) is also small. The two processes behave the same, except in the way that A and B are
updated; for example in line 13 of Algorithm 6, in order to choose i ∈ {0, 1}, π̃−1(z) will choose
uniformly-random tripple (x; q,y) ∈ A×B such that x · y = z, and then set i = 0 if x ∈ A′ ∩Av0 ,
and set i = 1 if x ∈ A′ ∩Av1 ; τ̃(z) will do the same in line 11 of Algorithm 5, except x is uniformly
chosen from A′ instead. But by the inverse-marginals lemma (Lemma 4.9), the two resulting
distributions on i are 2−8m-close; more precisely, the lemma says that x as chosen π−1 is close to
uniform conditioned on any fixed value for q; but then it is also close to uniform overall. The same
happens at every other point when the transcript is updated in both Algorithms 6 and 7. Since the
length of the transcript is O(Cn)� 2p, it follows that the total statistical distance between π̃−1(z)
and τ̃(z) is � 2−5m. The proof that τ̃(z) and τ(z) are close is almost identical to the proof that
τ̃−1(z) and τ−1(z) are close.

This concludes the proof of Claim 6.8. We are left only to observe that the set Q contains the
parity queries made to z, and |Q| is forcefully bounded in lines 29–30 of Algorithm 7. So when we
bounded the probability of the corresponding abort condition we also bounded the number of parity
queries made by Algorithm 7.
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Algorithm 6 Refined deterministic communication protocol π̄ for VMV

1: input x ∈ {0, 1}p×n (to Alice) and (q, y) ∈ {0, 1}p × {0, 1}n (to Bob).
2: Both players initialize A = {0, 1}p×n, B = {0, 1}p × {0, 1}n.
3: Both players initialize ε = 2−5p, Q = ∅, w = ∅, u = ∅.
4: Let v be the root of π.
5: while v is not a leaf do

Invariants which are true here are discussed in page 38.

6: if LHε
∞(A,Q) ≥ 9

10 then
7: Let v0 and v1 be the children of v.
8: if Alice communicates at v then
9: Let A′ ⊆ A have LH∞(A′, Q) ≥ 9

10 and |A′| ≥ (1− ε)|A|.
10: if x ∈ A \A′ then
11: Alice sends ⊥. . Extra bits
12: Both players run πv(x, y) and exit.

13: Alice sends i such that x ∈ Avi .
14: Both players update A = A′ ∩Avi and v = vi.
15: else if Bob communicates at v then
16: Bob sends i such that y ∈ Bvi .
17: Both players update B = Bvi and v = vi.

18: else if LHε
∞(A,Q) < 9

10 then

19: Apply Lemma 4.8 with N = |B(0)| and the various Bq, to obtain

• A partition A = A† ∪A1 ∪A2 · · · ;
• Partitions Bq = B†q ∪B′q for each q ∈ B(0);

• For each i ≥ 1, the values of k′i, Q
′
i, and u′i.

20: if x ∈ A† then
21: Alice sends ⊥. . Extra bits
22: Both players run πv(x, y) and exit.

23: Alice sends i to Bob such that x ∈ Ai. . Extra bits
24: if y ∈ B†q for any q ∈ B(0) then
25: Bob sends ⊥. . Extra bits
26: Both players run πv(x, y) and exit.

27: Bob sends w′i = u′i · y to Alice. . Extra bits
28: Both players update A = Ai, B = B′(u′i, w

′
i), where B′ =

⋃
q∈B(0) B′q;

29: Both players update Q = Q ∪Q′i, u = uu′i and w = ww′i.

30: Remove from B every pair (q, y) such that |Bq| < 2
9
10
n

31: if |B(0)| ≤ 2
9
10
p then

32: Bob sends ⊥. . Extra bits
33: Both players run πv(x, y) and exit.

34: if |Q| > 200C then
35: Alice sends ⊥. . Extra bits
36: Both players run πv(x, y) and exit.

37: Output the label of the leaf v.
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Algorithm 7 Randomized decision-tree procedure τ(z) for the impossible task

1: input z ∈ {0, 1}p.
2: Initialize A = {0, 1}p×n, B = {0, 1}p × {0, 1}n.
3: Initialize ε = 2−5p, Q = ∅, w = ∅, u = ∅.
4: Let v be the root of π and t = ∅.
5: while v is not a leaf do

Invariants (i-iv) of page 38 hold here.

6: if LHε
∞(A,Q) ≥ 9

10 then
7: Let v0 and v1 be the children of v.
8: if Alice communicates at v then
9: Let A′ ⊆ A have LH∞(A′, Q) ≥ 9

10 and |A′| ≥ (1− ε)|A|.
10: With probability |A\A

′|
|A| , abort.

11: Choose i ∈ {0, 1} with probability
|A′∩Avi |
|A′| and set t = ti.

12: Update A = A′vi and v = vi.
13: else if Bob communicates at v then
14: Choose i ∈ {0, 1} with probability

|B∩Bvi |
|B| and set t = ti.

15: Update B = Bvi and v = vi.

16: else if LHε
∞(A,Q) < 9

10 then

17: Apply Lemma 4.8 with N = |B(0)| and the various Bq, to obtain

• A partition A = A† ∪A1 ∪A2 · · · ;
• Partitions Bq = B†q ∪B′q for each q ∈ B(0);

• For each i ≥ 1, the values of k′i, Q
′
i, and u′i.

18: With probability |A
†|
|A| , abort.

19: Choose i ≥ 1 with probability |Ai|
|A\A†|

20: Set t = t i.

21: With probability
|∪qB†q |
|B| , abort.

22: Query z to discover w′i = u′i · z.
23: Set t = t w′i.
24: Update A = Ai, B = B′(u′i, w

′
i), where B′ =

⋃
q∈B(0) B′q;

25: Update Q = Q ∪Q′i, u = uu′i and w = ww′i.

26: Remove from B every pair (q, y) such that |Bq| < 2
9
10
n

27: if |B(0)| ≤ 2
9
10
p then

28: Abort.
29: if |Q| > 200C then
30: Abort.
31: Choose a uniformly-random (q, y) ∈ B;
32: if q is not linearly-independent of Q then
33: Abort
34: else
35: Output (q, t).
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[GLM+15] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman.
Rectangles are nonnegative juntas. In Proceedings of the 47th STOC, pages 257–266,
2015.
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