
Improved Pseudorandomness for Unordered Branching
Programs through Local Monotonicity

Eshan Chattopadhyay∗

Cornell University and IAS

Pooya Hatami†

University of Texas at Austin

Omer Reingold‡

Stanford University

Avishay Tal§

Stanford University

November 8, 2017

Abstract

We present an explicit pseudorandom generator with seed length Õ((log n)w+1) for
read-once, oblivious, width w branching programs that can read their input bits in any
order. This improves upon the work of Impaggliazzo, Meka and Zuckerman (FOCS’12)
where they required seed length n1/2+o(1).

A central ingredient in our work is the following bound that we prove on the Fourier
spectrum of branching programs. For any width w read-once, oblivious branching
program B : {0, 1}n → {0, 1}, any k ∈ {1, . . . , n},∑

S⊆[n]:|S|=k

|B̂(S)| ≤ O(log n)wk.

This settles a conjecture posed by Reingold, Steinke, and Vadhan (RANDOM’13).
Our analysis crucially uses a notion of local monotonicity on the edge labeling of

the branching program. We carry critical parts of our proof under the assumption
of local monotonicity and show how to deduce our results for unrestricted branching
programs.

∗eshanc@ias.edu. Supported by NSF grant CCF-1412958 and the Simons Foundation.
†pooyahat@gmail.com. Supported by a Simons Investigator Award (#409864, David Zuckerman)
‡reingold@stanford.edu. Supported in part by NSF grant CCF-1749750.
§avishay.tal@gmail.com. Supported by a Motwani Postdoctoral Fellowship and by NSF grant CCF-

1749750.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 171 (2017)

1 Introduction

1.1 Pseudorandom Generators for Branching Programs

A central goal in the area of pseudorandomness is to show that randomized algorithms are not
much more powerful than deterministic algorithms. More precisely, the two main challenges
are to show that randomness cannot save time and cannot save memory. It is known that
showing that every polynomial time randomized algorithm can be made deterministic with
only polynomial slowdown, and thus proving BPP = P, requires proving circuit lower
bounds that seem much beyond the reach of current techniques. However, there are no known
fundamental barriers known for proving that every randomized algorithm using space s can
be made deterministic using space O(s). This, by standard padding arguments, is equivalent
to proving that RL = L.

The main tool in derandomizing RL is a pseudorandom generator (PRG) that takes a seed
of length d and stretches it to n bits such that no logarithmic-space algorithm can distinguish
it from a uniform distribution on n bits with significant advantage. More concretely, to prove
that RL = L, it is enough to construct a pseudorandom generator G : {0, 1}d → {0, 1}n
that is computable in space O(log n) and satisfies: (a) the seed length d is O(log n), and
(b) G(Ud) is indistinguishable from Un for randomized algorithms that use O(log n) space.
Apart from its direct derandomization implication, such a generator G would also have a
variety of other applications [Ind06, CRSW13, EIO02, Siv02, HVV06, HHR11].

An ordered branching program1 B of width w is a non-uniform model of computation,
and captures randomized algorithms with space blogwc. Thus, it is enough to construct
optimal PRGs for ordered branching programs with width poly(n) to derandomize RL. A
branching program B maintains a state in the set {1, . . . , w} and reads the input bits in a
known fixed order. At time step i = 1, . . . , n, B reads a bit and uses a transition function
Γi : [w] × {0, 1} → [w] to move to a new state. Thus, B can be thought of as a layered
directed graph, with w nodes in each layer, and two edges going out of each node to the
immediately next layer, one labelled with a 0 and the other labelled with a 1.

A well known PRG construction of Nisan [Nis92] achieves seed length d = O(log2 n) for
polynomial width ordered branching programs, and was used by Saks and Zhou [SZ99]
in their proof that RL ⊆ L3/2. However, despite a lot of effort it is still open to
improve the seed length of Nisan’s generator even when we restrict the distinguishers to
have less than 2 bits of space (i.e., ordered width 3 branching programs). There have
been improvements to Nisan’s generator for various special classes of branching programs
[SZ95, BRRY10, BV10, KNP11, De11, RSV13, SVW14]. Most of these works are based on a
more refined analysis of [Nis92] or of closely related constructions [INW94, NZ96]. The basic
idea of this framework is that if T1 and T2 are two consecutive time intervals, and width
w branching program B uses ` random bits in the interval T1, then it remembers at most
logw bits of the information about the randomness used in T1. Thus, we can use a seeded
extractor to extract out and re-use (`− logw) bits in T2. A major bottleneck with all known
analysis done in this framework is that it is heavily dependent on the ordering of the bits
(T1 and T2 cannot be interleaved).

1in this work, by a “branching program”, we refer to an “oblivious read-once branching program”

1

A natural question to ask is the construction of a PRG that is not sensitive to the
ordering of the bits in which the input is read, i.e., fooling the class of (read-once oblivious)
branching programs that read its input in an unknown (but fixed) order. Such a PRG would
need completely new ideas since it is not clear if the above mentioned framework works in
this setting (in fact, Tzur [Tzu09] proved that Nisan’s PRG can in fact be distinguished from
uniform by an unordered constant width branching program). The hope is that PRGs that
are not sensitive to the ordering would help make progress on the original problem of fooling
ordered branching programs using seed length o(log2 n).

Developing PRGs for unordered branching programs have attracted attention recently.
Bogdanov, Papakonstantinou, and Wan [BPW11] gave an explicit construction of a PRG for
width w = 2Ω(n) with seed length (1−Ω(1))n . Impagliazzo, Meka, and Zuckerman [IMZ12]
gave a PRG with the seed length to (nw)1/2+o(1) (they actually achieve stronger results, and
show how to fool arbitrary branching programs of size s that may read their input bits more
than once, using seed length s1/2+o(1)). Reingold, Steinke and Vadhan [RSV13] achieve a seed-
length of O(w2 log2 n) for the restricted class of permutation branching programs. Finally,
Steinke, Vadhan and Wan [SVW14] constructed a PRG for width 3 unordered branching

programs with seed-length Õ(log3 n).
Our approach to constructing PRGs for unordered branching programs is based on a

construction proposed by Ajtai and Wigderson [AW85] for fooling constant depth circuits,
and was used more recently by Gopalan et al. [GMR+12]. Informally, the construction is
the following: Pseudorandomly partition the coordinates {1, . . . , n}, and use an independent
copy of an ε-biased generator [NN93] for each part. Based on this, [GMR+12] constructed
PRGs for combinatorial rectangles, read-once CNFs and hitting set generators for width 3
branching programs with seed length Õ(log n) and polynomially small error.

A crucial insight in the work of Gopalan et al. is the following: Let S be a block in the
partition and let S = [n] \ S. Further, let f : {0, 1}n → {0, 1} be the function we are trying
to fool. Let f(x, y) denote f evaluated on an n bit string with coordinates in S set to x and

coordinates in S set to y (where x ∈ {0, 1}S, and y ∈ {0, 1}S). Then, it is enough to show
that the function g(x) = Ey∼US

[f(x, y)] can be fooled by an ε-biased generator2. The hope
is that the function f is much easier to fool on ‘average’.

The works mentioned above of Reingold, Steinke, and Vadhan [RSV13] and Steinke,
Vadhan and Wan [SVW14] in fact show that the generator of Gopalan et al. fools the
respective class of unordered branching programs, and the main tool they use to prove this
is Fourier analysis of branching programs.

We obtain our result on PRGs for unordered branching programs by further extending
the approaches of [RSV13, SVW14], and a central component of our work is an affirmative
answer to a conjecture on the Fourier spectrum of branching programs posed in [RSV13].

The following is our main result on PRGs for unordered branching programs.

Theorem 1. For all n > 0 and w ≤ log n, there exists an explicit pseudorandom generator
for the class of unordered, read-once, oblivious branching programs of length n and width w
with seed length O((logw+1 n) log log n) and error 1/nO(1).

2this is not entirely accurate, and one requires more structure on f . We refer the reader to Section 6 for
more details.

2

1.2 On the Fourier Spectrum of Branching Programs

For any Boolean function f : {0, 1}n → {0, 1}, and any set S ⊆ [n], define the Fourier

coefficient f̂(S) := Ex∈{0,1}n [f(x) · (−1)
∑

i∈S xi] (see Section 3.2 for more details on Fourier
analysis of Boolean functions). A central complexity measure of f is given by the spectral

norm: L1(f) =
∑

S 6=∅ |f̂(S)|. It is well known that a δ-biased generator with δ = ε/L1(f)
will ε-fool f . Further, bounds on L1(f) for specific classes of functions have been extensively
studied in the literature with applications to learning theory, communication complexity
and circuit complexity. It is known that the spectral norm of width 2 branching programs is
bounded by O(n) [SZ95, BDVY13], and thus can be fooled by ε-biased generators. However,
the Mod 3 function (that equals 1 iff the Hamming weight of the input is divisible by 3)
which is computable by a width 3 branching program has exponential spectral norm.

It turns out that in the context of analyzing the generator of Gopalan et al. [GMR+12],

the more relevant quantity to look at is L1,k(f) =
∑

S:|S|=k |f̂(S)|, for k ∈ [n]. Reingold et

al. [RSV13] proved the following result: Let C be any class of branching program that are
closed under restrictions and decompositions. Further suppose that for f ∈ C, and we have
L1,k(f) ≤ poly(n) · tk for all k ∈ [n]. Then the generator of Gopalan et al. can be used to

achieve seed length Õ(t log2 n). Moreover, [RSV13] proved that when f is a regular branching
program of width w, then L1,k(f) ≤ (2w2)k. Based on these estimates, they obtained PRGs

for permutation branching programs with seed length Õ(w2 log2 n).
Further, [RSV13] conjectured that for any width w branching program L1,k(f) ≤

poly(n)(log n)Ow(k) for all k ∈ [n]. This was confirmed for w = 3 by Steinke et al. [SVW14],
and they obtained a PRG for width 3 unordered branching programs with seed length
Õ(log3 n). The case k = 1 was settled for all widths w by Steinke et al. [SVW14] extending
the techniques introduced in [Ste13].

Our main contribution here is the following theorem that settles the conjecture posed by
Steinke, Reingold and Vadhan ([RSV13, Conjecture 8.1]).

Theorem 2. Let B be an ordered read-once, oblivious branching program of length n and
width w. Then, ∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)wk ,

for all k ∈ [n].

A direct application of Theorem 2 and invoking the work of [RSV13] would imply a PRG

with seed length Õ(logw+2 n) for unordered branching programs with width w. We improve

the seed length to Õ(logw+1 n) by sharpening the estimates in Theorem 2 assuming that every
node in the branching program is reachable by a random walk (from the start node) on the
branching program with probability more than 1/nO(1). We show that indeed in order to fool
general branching program, it is sufficient to fool this restricted class of branching programs.
While this class of branching programs is not closed under restrictions and sub-programs,
we prove that the generator of Gopalan et al. [GMR+12] still works.

3

2 Proof Techniques

In this section, we present that main ideas in the proof of Theorem 2, bounding L1,k(B) =∑
s:|s|=k |B̂(s)| for all branching programs of width-w and length-n. We first mention the case

k = 1, that was proved by Steinke et al. [SVW14] following Steinberger’s approach [Ste13].

In this case
∑

s:|s|=1 |B̂(s)| is just the total effect of the function, as defined next.

Effects and Influences. The effect of bit i on a Boolean function B : {0, 1}n → {0, 1} is

Effi(B) := |Pr[B(x) = 1 | xi = 1]−Pr[B(x) = 1 | xi = 0]| .

It is worth-while to compare the effect of a variable to the (well-known) influence of a variable:

Infi(B) := Pr
x∈{0,1}n

[B(x) 6= B(x⊕ ei)],

where ei is the i-th standard unit vector. It is easy to observe that Effi(B) ≤ Infi(B) for any
Boolean function B, as explained by the following interpretation of effects and influences
when we view B as a voting scheme. The effect of voter i is its probability to affect the
decision (the value of B(x)) if he casts his vote first, and all the other voters vote after him
uniformly at random; the influence is its probability to affect the decision if he casts his vote
last and can vote adaptively after seeing all the other votes. For example, if B is the parity
function, then every voter has influence 1 and effect 0. The total effect (total influence, resp.)
of B is defined as

∑n
i=1 Effi(B) (

∑n
i=1 Infi(B), resp.).

Both effects and influences have nice expressions in terms of the Fourier transform of B:
Effi(B) = 2 · |B̂({i})| and Infi(B) =

∑
s3i B̂(s)2.

The Coin-Problem. Before explaining our results, we take a detour to the works of Brody
and Verbin [BV10] and Steinberger [Ste13], who studied the coin-problem for bounded-
width branching programs. In the coin problem, the branching program tries to distinguish
a sequence of n independent unbiased coins from a sequence of n independent coins with
probabilities (1/2− ε, 1/2 + ε). This line of work showed that oblivious read-once branching
programs (ROBPs in short) of width-w and length-n can distinguish a uniformly random
string from a (1/2−ε, 1/2+ε)-biased random string only if ε ≥ 1/O(log n)w−2. Furthermore,
this result is tight up to the constant hidden in the big-Oh notation.

Brody and Verbin [BV10] observed that without loss of generality the branching-program
can be assumed to be “locally monotone” (or “weakly monotone”), to be defined shortly.
Moreover, Brody and Verbin [BV10] showed that locally monotone branching-programs have
a very nice structural dichotomy that allows one to reduce width with high probability after
applying a random restriction. To introduce local monotonicity and the structural dichotomy,
let us set some general notations for branching programs first.

Branching Programs. A branching program B of length n and width w is a directed
layered graph with n+1 layers of vertices denoted V1, . . . , Vn+1. Each Vi (except V1) consists
of w vertices {vi,1, . . . , vi,w}, and between every two consecutive layers Vi and Vi+1 there
exists a set of directed edges (from Vi to Vi+1), denoted Ei, such that any vertex in Vi has

4

precisely two out-going edges in Ei, one marked by 1 and one marked by 0. V1 consists of a
single vertex, denoted v1,1. Vn+1 vertices are marked with either ‘accept’ and ‘reject’.

A branching program B and an input x ∈ {0, 1}n naturally describes a computation
path in the layered graph: we start at node v1 = v1,1 in V1. For i = 1, . . . , n, we traverse
according to the edge touching vi in Ei marked by xi to get to a node vi+1 ∈ Vi+1. The
resulting computational path is v1 → v2 → . . . → vn+1. We say that B accepts x iff the
computational path defined by B and x reaches an accepting node. Naturally B describes a
Boolean function B : {0, 1}n → {0, 1} whose value is 1 on input x iff B accepts x.

In Section 6, we may assume that the bits of x are permuted by a permutation
π ∈ Sn. In such a case, the bits of x are read according to π, i.e., in the i-th layer of
the programs we follow the edge marked by xπi . We denote the resulting Boolean function
by Bπ(x) := B(xπ1 , . . . , xπn). For the Fourier bounds part, we may ignore the permutation,
as L1,k(B) = L1,k(B

π) for any permutation π.
For a vertex v ∈ Vi in the branching program we denote by B→v the sub-branching

program ending in the i-th layer and having v the only accepting state. We denote by
Bv→ the sub-branching program starting at v and ending at Vn+1. Observe that we may
express the function computed by the branching program B as a sum of products of these
sub-programs, namely

∀i ∈ [n] : ∀x ∈ {0, 1}n : B(x) =
∑
v∈Vi

B→v(x) ·Bv→(x). (1)

This decomposition will be very useful in our inductive argument. We denote by pv :=
Pr[B→v(x) = 1] the probability that a random walk in B would reach v, and by βv :=
Pr[Bv→(x) = 1] the probability that a random walk starting from v would reach an accepting
node.

2.1 Locally Monotone Branching Programs

Next, we define locally monotone branching programs. Let B be a width-w length-n ROBP.
Since renaming the vertices in each layer does not affect the functionality of B, we may
assume without loss of generality that the vertices in Vi are ordered according to βv. That
is, for every i ∈ [n+ 1] and j ∈ [w− 1] we have βvi,j ≤ βvi,j+1

. In the case that βvi,j = βvi,j+1

we break ties arbitrarily but commit to a strict ordering of the nodes in each layer. B is
called locally monotone if for any vertex v in B the vertex reached from v using the 0-edge
has lower or equal index than the vertex reached from v using the 1-edge.

Local monotonicity concerns only the labeling of the edges and not the structure of
the graph. Thus, we believe that it is very different and arguably less restrictive than
other previously studied notions such as permutation and regular branching programs
[BRRY10, BV10, De11, RSV13].

There are many beautiful observations regarding this notion:

Programs can be locally monotonized. Any branching program can be locally mono-
tonized by relabeling the edges. If some vertex v violates the local monotonicity we
simply swap the labels of the two edges coming out of it. One may wonder in which
order such a relabeling should be performed to ensure local monotonicity in the end

5

(it is natural to go from the last layer back to the first), however surprisingly the order
does not matter. This is due to the fact that any relabeling of edges does not change
βv since x is sampled from the uniform distribution and the probabilities only depend
on the number of paths from v to the accepting nodes in Vn+1 and not on the labeling
of the edges. Thus, when deciding whether or not to relabel the edges touching v ∈ Vi,
any relabeling that occurred in E1, . . . , Ei−1, Ei+1, . . . , En does not affect the decision.

Optimal for the coin-problem. As observed by [BV10], any distinguisher for the coin-
problem can be assumed to be without loss of generality locally monotone. That
is, if B is a distinguisher that distinguishes between n independent fair coins and n
independent biased coins with advantage α, then the locally monotonized version of B
distinguishes between the two distributions with advantage at least α.

Extremal for total effect. The total effect of any branching program B is at most the
total effect of the locally monotonized version of B. Thus, bounding the total effect
of locally monotone branching programs of width-w implies the same bound for all
branching programs of width-w. (For total influence this is not the case, by considering
the parity function.)

Colliding or identity layers. For i ∈ [n], denote by E0
i the set of edges in Ei marked by

0 and similarly define E1
i . We say that Ei is an identity layer if both E0

i and E1
i form

the same matching between Vi and Vi+1 (in which case xi does not affect the output of
of B). We say that Ei is a colliding layer if either E0

i or E1
i does not form a matching

between Vi and Vi+1 (i.e., there exists b ∈ {0, 1} and two edges in Eb
i that touches the

same vertex in Vi+1). The following is a key-point in the works of [BV10, Ste13]:

Lemma 2.1 ([BV10]). In a locally monotone branching program, each layer of edges
is either an identity layer or a colliding layer.

To see it, note that if we think of the vertices in each layer {vi,1, . . . , vi,w} as written
from top to bottom according to βv, then in a locally monotone program for any vertex
v the 1-edge leads to the same vertex or to a vertex below the one that follows the
0-edge. Thus, assuming both E1

i and E0
i form a matching, the only way this could

happen is if they both form the same matching.

Lemma 2.1 allows to show that under random restriction, with high probability, the
width decreases from w to w − 1 in most of the layers.

We seek to construct pseudorandom generators fooling unordered constant-width branching
programs. Unlike the coin-problem, given a candidate for a pseudorandom generator, i.e.,
given some distribution D on {0, 1}n, it is not necessarily true that the best distinguisher
between D and the uniform distribution is a locally monotone branching program. Thus, it is
not clear that local-monotonicity would be helpful in the most general setting. Nonetheless,
it does not rule out its usefulness to analyze specific candidate distributions, nor to
bound complexity measures that arise in such an analysis. In particular, we will bound
L1,k(B) :=

∑
s:|s|=k |B̂(s)| by using bounds on locally monotone branching programs. Unlike

the case k = 1, it is not necessarily the case that L1,k(B) increases when performing local

6

monotonization. (For example, if B is the width-2 branching program computing the parity
of the first 2-bits, then local monotonization reduces L1,2(B) from 1 to 0). We will use
the structure of the branching program (namely Eq. (1)) to bound L1,k(B) by the sum of
products of Fourier coefficients of smaller sets in sub-programs of B. This idea was considered
in the works of [RSV13] and [SVW14], however the natural calculation incurs a multiplicative
factor of nw going from L1,k to L1,k+1, which results in trivial bounds already for k = 2.3 In
the following section, we describe how to avoid incurring such a large multiplicative factor.

2.2 Proof Overview.

We focus on the case k = 2, since it captures all the ideas in the proof. For any i ∈ [n], using
Eq. (1) we express B as a sum of products of sub-branching programs of length i−1 and sub-
branching programs of length n−(i−1), namely B(x) =

∑
v∈Vi B→v(x)·Bv→(x). This means

that the Fourier coefficient of a set s ⊆ [n] equals B̂(s) =
∑

v∈Vi B̂→v(s∩[i−1])·B̂v→(s∩[i, n]) .
In particular, if s = {j, i} where j < i, then

B̂({j, i}) =
∑
v∈Vi

B̂→v({j}) · B̂v→({i}) ,

Thus, we can write

L1,2(B) =
∑
i,j:j<i

|B̂({j, i})| =
∑
i,j:j<i

∣∣∣∣∣∑
v∈Vi

B̂→v({j}) · B̂v→({i})

∣∣∣∣∣ ≤
n∑
i=1

∑
v∈Vi

L1,1(B→v) ·
∣∣∣B̂v→({i})

∣∣∣ .
We may use the universal upper bound given by [Ste13, SVW14] on L1,1(·) for all branching
programs of length at most n and width at most w: L1,1(B→v) ≤ O(log n)w−2. Then, we
would get

L1,2(B) ≤ O(log n)w−2 ·
n∑
i=1

∑
v∈Vi

∣∣∣B̂v→({i})
∣∣∣ ,

and all is left is to bound the quantity
∑n

i=1

∑
v∈Vi

∣∣∣B̂v→({i})
∣∣∣ =: S. Trivially, S ≤ n · w,

since every Fourier coefficient is at most 1 in absolute value. One might hope to get a better
bound on S, perhaps poly-logarithmic in n, however for the branching program of width-3
computing the Tribes function, we have S = Θ(n/ log n). Thus, this calculation cannot
guarantee something better than L1,2(B) ≤ O(log n)w−2 ·Θ(n/ log n), which is trivial.4

To avoid this, when bounding L1,1(B→v) we take into account the probability that
B→v(x) = 1 (i.e., the probability of reaching v). Suppose there exists a t = t(n,w) such that

n∑
i=1

|M̂({i})| ≤ t ·Pr[M(x) = 1] (2)

3a different recurrence (suggested in [RSV13], that we use in Sections 6 and 7) shows that L1,2k ≤
(L1,k)2 · n, making it sufficient to prove a bound of the form L1,k ≤ O(t)k only for k ≤ log n in order to
deduce a similar bound for all k ∈ [n].

4since for any Boolean function f , we have L1,2(f) ≤
√(

n
2

)
·
∑
|s|=2 f̂(s)2 ≤

√(
n
2

)
< n, by Cauchy-

Schwarz Inequality and Parseval Identity.

7

for all branching programs M of width at most w and length at most n. Then, using our
assumption on B→v we would get

L1,2(B) =
n∑
i=1

∑
v∈Vi

L1,1(B→v) ·
∣∣∣B̂v→({i})

∣∣∣ ≤ n∑
i=1

∑
v∈Vi

t ·Pr[B→v(x) = 1] ·
∣∣∣B̂v→({i})

∣∣∣ .
To bound

∑n
i=1

∑
v∈Vi Pr[B→v(x) = 1] ·

∣∣∣B̂v→({i})
∣∣∣ we use local monotonization. Let B′

be the local monotonization of B. We observed that this transformation does not change
the probabilities of reaching any specific vertex in the program. Moreover, in the resulting

program B̂′v→({i}) =
∣∣∣B̂v→({i})

∣∣∣ for any v ∈ V . Thus, we get

n∑
i=1

∑
v∈Vi

Pr[B→v(x) = 1] · |B̂v→({i})| =
n∑
i=1

∑
v∈Vi

Pr[B′→v(x) = 1] · B̂′v→({i}) =
n∑
i=1

B̂′({i})

where we use the decomposition given in Eq. (1) for B′ in the last equality. Using the bound

on
∑

i |B̂′({i})| ≤ t ·Pr[B′(x) = 1] (Eq. (2)) and using Pr[B(x) = 1] = Pr[B′(x) = 1] we get

L1,2(B) ≤ t · t ·Pr[B′(x) = 1] = t2 ·Pr[B(x) = 1] .

Overall, from a bound of the form L1,1(B) ≤ t ·Pr[B(x) = 1] for all branching programs of
length at most n and width at most w, we deduce the bound L1,2(B) ≤ t2 · Pr[B(x) = 1]
for all such programs. A simple induction shows that we can prove for any k ∈ [n] that
L1,k(B) ≤ tk ·Pr[B(x) = 1].

This is all nice and elegant, however we still need to prove that there exists a small t
(hopefully poly-logarithmic) for which Eq. (2) holds. The problematic examples for deriving
such a bound with small t are programs for which Pr[B(x) = 1] is extremely small. For
example, when B is the AND of n variables we have p = Pr[B(x) = 1] = 2−n and∑

i B̂({i}) = p · n showing that in general t cannot be smaller than n.
It turns out that if we do not insist on a bound of the form t · Pr[B(x) = 1] but rather

t · Pr[B(x) = 1] · log(1/Pr[B(x) = 1]), then we can indeed prove such a result with poly-
logarithmic t. More precisely, following Steinberger’s techniques [Ste13] we show∑

i

|B̂({i})| ≤ O(log n)w−2 ·Pr[B(x) = 1] ·O(log(1/Pr[B(x) = 1])) .

To avoid incurring a large multiplicative factor of log(1/Pr[B→v(x) = 1]) with each iteration
of our inductive argument, we restrict our attention to programs where all nodes have
pv ≥ 1/poly(n). We call such programs as programs with no negligible vertices. For such

programs, we have the bound
∑

i |B̂({i})| ≤ t · Pr[B(x) = 1] with t = O(log n)w−1 and the
aforementioned proof strategy works.

In section 5, we show that any pseudorandom generator fooling branching programs
with no negligible vertices also fools general branching programs of the same width and
length (with only a slight increase in the error). This, together with a careful analysis of
the argument suggested by Reingold et al. [RSV13] and Steinke et al. [SVW14] (the careful
analysis is needed since this subclass is not closed under restrictions and sub-programs, which
is required if one wants to apply their analysis in a black-box fashion) gives a construction
of our pseudorandom generator with seed-length O(log n)w+1 · log log n.

8

2.3 Proving the Conjecture of Reingold, Steinke and Vadhan

Although we only need the Fourier bounds estimates for ROBPs with no negligible vertices
for the analysis of the PRG, we prove a bound on the Fourier spectrum of all ROBPs
regardless of whether or not they have negligible vertices. These bounds are slightly worse
than the bounds we have in Lemma 4.5 and would result in a larger seed-length (by a
multiplicative factor of O(log n)) in the analysis of the PRG. Nevertheless, we find the fact
that all ROBPs have such bounds on their Fourier spectrum to be very interesting in its
own right. In particular, Theorem 2 (whose proof is given in Section 7) proves the main
conjecture in the work of Reingold, Steinke and Vadhan ([RSV13, Conjecture 8.1]), namely

that
∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)wk for every branching program B with length-n and width-w

and every k ∈ [n].

3 Preliminaries

Denote by Un the uniform distribution over {0, 1}n, and by US for S ⊆ [n] to be the uniform
distribution over {0, 1}S. Denote by log and ln the logarithms in bases 2 and e, respectively.

3.1 Restrictions

Definition 3.1 (Restriction). Let f : {0, 1}n → R be a function. A restriction is a pair (J, z)

where J ⊆ [n] and z ∈ {0, 1}J . We denote by fJ |z : {0, 1}n → R the function f restricted
according to (J, z), defined by

fJ |z(x) = f(y), where yi =

{
xi, i ∈ J
zi, otherwise

.

Definition 3.2 (Random Valued Restriction). Let n ∈ N. A random variable (J, z),
distributed over restrictions of {0, 1}n is called random-valued if conditioned on J , the variable

z is uniformly distributed over {0, 1}J .

3.2 Fourier Analysis of Boolean Functions

Any function f : {0, 1}n → R has a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) · (−1)
∑

i∈S xi ,

where the coefficients f̂(S) ∈ R are given by f̂(S) = Ex[f(x)·(−1)
∑

i∈S xi]. Parseval’s identity
states that ∑

S

f̂(S)2 = E
x

[f(x)2].

In addition, it is easy to see by the formula of f̂(S) that

|f̂(S)| ≤ E
x

[|f(x)|]. (3)

9

(where the latter equals Pr[f(x) = 1] in the case when f is Boolean, i.e., f : {0, 1}n →
{0, 1}.) For i ∈ [n], we write f̂(i) := f̂({i}) for shorthand.

The following fact relates the Fourier coefficients of a Boolean function and its restriction.

Fact 3.3 (Proposition 4.17, [O’D14]). Let f : {0, 1}n → R, let S ⊆ [n], and let D be a
distribution of random valued restrictions. Then,

E
(J,z)∼D

[
f̂J |z(S)

]
= f̂(S) · Pr

(J,z)∼D
[S ⊆ J]

We include the proof of this simple fact for completeness.

Proof. Let (J, z) ∼ D. Then, by definition of random valued restriction, given J we have

that z is a random string in {0, 1}J . Fix J , and rewrite f ’s Fourier expansion by splitting
the variables to (J, J).

f(x) =
∑
S⊆[n]

f̂(S) · (−1)
∑

i∈S xi =
∑
T⊆J

(−1)
∑

i∈T xi ·
∑
T ′⊆J

f̂(T ∪ T ′) · (−1)
∑

j∈T ′ xj

Hence,

fJ,z(x) =
∑
T⊆J

(−1)
∑

i∈T xi ·
∑
T ′⊆J

f̂(T ∪ T ′) · (−1)
∑

j∈T ′ zj .

So the S-Fourier coefficient of fJ,z is 0 if S * J and it is
∑

T ′⊆J f̂(S ∪ T ′) · (−1)
∑

j∈T ′ zj

otherwise. In other words,

f̂J,z(S) = 1{S⊆J} ·
∑
T ′⊆J

f̂(S ∪ T ′) · (−1)
∑

j∈T ′ zj ,

and its expectation conditioned on the event (S ⊆ J) is f̂(S).

4 Fourier Growth of Bounded-Width Branching Pro-

grams

Lemma 4.1. Let B : {0, 1}n → {0, 1} be a length-n ROBP. Then,

B̂(i) =
∑
v∈Vi

B̂v→(i) · pv .

Proof. Using Eq. (1) we have

B̂(i) = E
x∼Un

[∑
v∈Vi

B→v(x) ·Bv→(x)(−1)xi
]

=
∑
v∈Vi

E
x∼Un

[B→v(x) ·Bv→(x)(−1)xi]

=
∑
v∈Vi

E
x∼Un

[Bv→(x)(−1)xi |B→v(x) = 1] · pv =
∑
v∈Vi

E
x∼Un

[Bv→(x)(−1)xi] · pv,

where the last equality follows from the fact that for uniformly drawn x, B→v(x) is
independent of Bv→(x)(−1)xi .

10

The following two lemmas are similar to two lemmas given in the work of Steinberger
[Ste13]. They bound the total effect of bounded-width ROBPs. The first lemma bounds the
total effect of width-2 programs, while the second lemma bounds the total effect of programs
with any width w ≤ log n/ log log n. The main difference between these lemmas and the ones
in the work of Steinberger [Ste13] is that we get bounds that are relative to the probability of
acceptance. This plays later a crucial role as it allows induction on k when proving bounds
on the sum of Fourier coefficients of size k of ROBPs.

Lemma 4.2 (The total effect of width-2 programs). Let B : {0, 1}n → {0, 1} be a length-n,
width-2 ROBP. Let p := Pr[B(x) = 1]. Then,∑

i∈[n]

|B̂(i)| ≤ p · dlog(2/p)e .

The lemma is essentially tight for the AND of k variables, denoted Bk, for any k ≤ n.
Indeed, Bk can be computed by a width-2 ROBP and has

∑
i∈[n] |B̂k(i)| = k·2−k = p·log(1/p)

for p := Pr[Bk(x) = 1].

Proof. We assume without loss of generality that the program is locally monotone since
making an ROBP locally monotone may only increase the sum

∑
i∈[n] |B̂(i)|.

We assume without loss of generality that B has no identity layers. Then, by Lemma 2.1
each layer in B has a collision. This means that for every i ∈ [n], under a random assignment
to x1, . . . , xi−1, xi+1, . . . , xn the probability that xi is sensitive in B is at most 2−(n−i). We
get that Infi(B) ≤ 2−(n−i), hence

|B̂(i)| = 1
2
· Effi(B) ≤ 1

2
· Infi(B) ≤ 1

2
· 2−(n−i). (4)

We break the sum
∑n

i=1 |B̂(i)| into the first n−dlog(1/p)e layers and the last dlog(1/p)e
layers. For the first n− dlog(1/p)e layers we use Eq. (4):

n−dlog(1/p)e∑
i=1

|B̂(i)| ≤
n−dlog(1/p)e∑

i=1

1
2
· 2−(n−i) ≤ p

For the last dlog(1/p)e layers, we use Eq. (3) to get |B̂(i)| ≤ Pr[B(x) = 1], thus

n∑
i=n−dlog(1/p)e+1

|B̂(i)| ≤ dlog(1/p)e ·Pr[B(x) = 1] = dlog(1/p)e · p

Overall, we get
∑

i∈[n] B̂(i) ≤ p+ p · dlog(1/p)e = p · dlog(2/p)e.

Next, we prove that the total-influence of a width-w ROBP B with p = Pr[B(x) = 1]
is at most O(log n)w−2 · p · log(4/p). Our upper bound is tight for w = 3 as demonstrated
by the negation of a tribe-like function with ln(1/p) · 2w tribes of width w each, such that
n = w · 2w · ln(1/p). Such a function can be computed by a width-3 ROBP B for which

Pr[B(x) = 1] = Θ(p) and
∑

i |B̂(i)| = Θ(p · log(1/p) · log(n)).

11

Lemma 4.3 (The total effect of width-w programs). There exists a universal constant C > 0
such that the following holds. Let B : {0, 1}n → {0, 1} be a length-n, width-w ROBP. Let
p = Pr[B(x) = 1]. Then, ∑

i∈[n]

|B̂(i)| ≤ (C · log n)w−2 · p · log(4/p) .

Proof. We prove the lemma by an induction on w. The base case with w = 2 follows from
Lemma 4.2. For the inductive step, we assume that the lemma holds for width w, and prove
it for any branching program B of width w + 1.

Let B be a branching program of width w + 1. We assume without loss of generality
that B has no identity layers. We also assume without loss of generality that the program
is locally monotone, since making an ROBP locally monotone may only increase the sum∑

i∈[n] |B̂(i)|. For a locally monotone program, all B̂(i) are non-negative so it is enough to

bound
∑

i∈[n] B̂(i).

Let a := dlog(2n2)e. We apply Steinberger’s argument [Ste13]. We hit the function with
a random restriction that keeps exactly one out of every a layers alive. The restriction may
depend on the function itself, as it depends on the order that the bits are read. This is a
non-standard random restriction procedure that takes into account the structure of the BP
it is applied to. Nevertheless, we shall see that it still behaves well with respect to the total
effect of the program.

We pick j ∈R {0, . . . , a−1} uniformly at random, and keep alive every layer whose index
is j modulo a. That is, the set J = {i ∈ [n] : i ≡ j mod a} is the set of alive variables (see
Definition 3.1). We randomly assign all other layers with uniform random bits.

Denote by B′ the random variable describing the residual branching program after the
random restriction. The analysis is based on two ideas:

1. The expected
∑n

i=1 B̂
′(i) equals 1

a
·
∑n

i=1 B̂(i).

2. For all b ∈ N, with probability at least 1− nb (over the random restriction), all but at
most b alive layers in B′ have at most w reachable nodes in them.

We begin with the first item. By Fact 3.3, the expected value of B̂′(i) is exactly the

probability that xi remains alive times B̂(i). The marginal probability that each xi remains
alive is 1/a, so we get

E

[∑
i

B̂′(i)

]
=
∑
i

B̂(i) ·Pr[xi remains alive] =
1

a
·
∑
i

B̂(i).

Next, we show the second item. By our assumption that B has no identity layers, and
using Lemma 2.1, every layer in B is colliding – meaning that either the 0-edges or the 1-edges
have a collision. When picking values to a block of a−1 consecutive layers of edges uniformly
at random, the probability that a collision would not happen is at most 1/2a−1. When such
a collision occurs, in the layer of vertices that follow this block (of a − 1 layers of edges),
at most w out of the w + 1 vertices are reachable in the restricted branching program. In
the layer of vertices that follow the first block of fixed layers, which has potentially less than

12

a − 1 layers of edges, only one vertex is reachable. If a collision occured in all blocks, then
the restricted branching program is equivalent to a width-w branching program. Consider
the n/a events corresponding to whether or not a collision occurred in the different blocks.
Once j is fixed, these n/a events are independent. Let b ∈ N. By union bound over all
subsets of blocks of size b, the probability that there are at least b “bad blocks” is at most(
n/a
b

)
· (1/2(a−1))b ≤ nb · n−2b = n−b. This completes the proof of the second item.

We turn to prove the bound on
∑n

i=1 B̂(i). By the first item, we have

n∑
i=1

B̂(i) ≤ a · E

[
n∑
i=1

B̂′(i)

]
.

Let b := d2 + log(1/p)e. We use the second item to bound the expected total effect of B′.
The case where B′ has more than b bad blocks has probability at most n−b ≤ p/n2. In such a
case the total effect of B′ is at most n so overall, this case contributes at most a ·p/n2 ·n ≤ p
to the total effect of B.

In the case where B′ has at most b bad blocks we have the following upper bound on∑
i B̂
′(i). First denote by I ⊆ [n] the set of alive variables who correspond to alive layers of

edge that immediately precede a bad block. Fix the variables with indices in I to uniformly
random values. We get a new (random variable) branching program, B′′, that is equivalent
to a branching program with width at most w. Thus, by the induction hypothesis, the total
effect of B′′ is at most∑

i

|B̂′′(i)| ≤ (C · log n)w−2 ·Pr[B′′(x) = 1] · log(4/Pr[B′′(x) = 1]).

Using the fact that every Fourier coefficient of B′ is at most Pr[B′(x) = 1] (see Eq. (3)),
and Fact 3.3, we get that B′ has∑

i

B̂′(i) =
∑
i∈I

B̂′(i) + E
B′′

[∑
i/∈I

B̂′′(i)

]
≤ b ·Pr[B′(x) = 1] + (C · log n)w−2 · E

B′′
[Pr[B′′(x) = 1] · log(4/Pr[B′′(x) = 1])]

We use the facts that x · log(4/x) is concave for x ∈ [0, 1] and that EB′′ [Pr[B′′(x) = 1]] =
Pr[B′(x) = 1] to get

E
B′′

[Pr[B′′(x) = 1] · log(4/Pr[B′′(x) = 1])] ≤ E
B′′

[Pr[B′′(x) = 1]] · log(4/ E
B′′

[Pr[B′′(x) = 1]])

= Pr[B′(x) = 1]] · log(4/Pr[B′(x) = 1]]) .

This gives the bound∑
i

B̂′(i) ≤ b ·Pr[B′(x) = 1] + (C · log n)w−2 ·Pr[B′(x) = 1] · log(4/Pr[B′(x) = 1]) .

We return to bound the total effect of B.∑
i

B̂(i) = a · E
B′

[∑
i

B̂′(i)

]
≤ p+ a · E

B′

[∑
i

B̂′(i) · 1{B′ has at most b bad layers}

]

13

≤ p+ a · E
B′

[b ·Pr[B′(x) = 1]] + a · E
B′

[
(C · log n)w−2 ·Pr[B′(x) = 1] · log(4/Pr[B′(x) = 1])

]
.

Using the concavity of x · log(4/x) again and using EB′ [Pr[B′(x) = 1]] = Pr[B(x) = 1] gives∑
i

B̂(i) ≤ p+ a · b · p+ a · (C · log n)w−2 · p log(4/p) ≤ (C · log n)w−1 · p log(4/p) ,

where the last inequality holds by the choices of a = dlog(2n2)e, b = d2 + log(1/p)e and for
a large enough constant C > 0. This completes the induction, hence the lemma follows.

Combining Lemma 4.1 and Lemma 4.3 we get:

Corollary 4.4. There exists a universal constant C > 0 such that the following holds. Let
B be a length-n, width-w ROBP. Denote by p = Pr[B(x) = 1]. Then,∑

i∈[n],v∈Vi

|B̂v→(i)| · pv ≤ (C · log n)w−2 · p · log(4/p) .

Proof. We wish to upper bound
∑

i∈[n],v∈Vi |B̂v→(i)| · pv. First, we locally monotonize the
program. By relabeling the edges we generate the program B′ with

B̂′v→(i) =
∣∣∣B̂v→(i)

∣∣∣
for all i. Denote by p = Pr[B(x) = 1], by p′ = Pr[B′(x) = 1], by pv = Pr[B→v(x) = 1] and
by p′v = Pr[B′→v(x) = 1]. Since the probability of reaching any state remains the same under
the relabeling we get p′ = p and p′v = pv for any vertex v. Using Lemma 4.3 and Lemma 4.1,
we conclude that∑

i∈[n],v∈Vi

|B̂v→(i)| · pv =
∑

i∈[n],v∈Vi

B̂′v→(i) · p′v =
∑
i∈[n]

B̂′(i) (Lemma 4.1)

≤ (C · log n)w−2 · p′ · log(4/p′) (Lemma 4.3)

= (C · log n)w−2 · p · log(4/p) .

Lemma 4.5. Let B be a length-n, width-w ROBP with w ≤ n. Suppose for every vertex v
in B it holds that pv ≥ δ > 0. Then∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ (O(log n)w−2 · log(4/δ)

)k ·Pr[B(x) = 1]

for all k ∈ [n].

This proves [RSV13, Conjecture 8.1] in the case where all vertices in the branching
programs have pv ≥ 1/poly(nw). In Section 5, we show that it is enough to fool such
programs, since any PRG that fools branching programs with pv ≥ 1/poly(nw) also fools
general branching programs with comparable error. Then, in Section 6 we show that the
iterated random restriction generator suggested by Gopalan et al. [GMR+12], with seed-
length O(log n)w+1, 1/poly(n)-fools general length-n width-w ROBPs. The latter argument
is more complicated than we thought initially, because the subclass of programs with
no negligible vertices is not closed under restrictions and sub-programs (and the black-
box reduction stated in [SVW14] requires such a property from the subclass of BPs).
Nevertheless, we manage to bypass this difficulty in Section 6.

14

Proof. Denote by t = (C · log n)w−2 · log(4/δ) for the constant C > 0 from the statement of
Corollary 4.4. We prove, by induction on k ∈ N, that for all ROBP B of length at most n
width at most w such that pv ≥ δ for all vertices v in the BP, it holds that∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ tk ·Pr[B(x) = 1].

The base case is already given by Lemma 4.3. Assuming the claim holds for k, we show that
it holds for k + 1. Recall the definitions of B→v, Bv→ and pv. Using Equation (1) we have∑

s:|s|=k+1

∣∣∣B̂(s)
∣∣∣ ≤∑

i∈[n]

∑
|s′|=k,
v∈Vi

∣∣∣B̂→v(s′)∣∣∣ · ∣∣∣B̂v→(i)
∣∣∣

≤
∑
i∈[n]

∑
v∈Vi

|B̂v→(i)| ·
∑
|s′|=k

∣∣∣B̂→v(s′)∣∣∣
≤
∑
i∈[n]

∑
v∈Vi

|B̂v→(i)| ·
(
tk ·Pr[B→v(x) = 1]

)
(induction on B→v and sets of size k)

≤ tk ·
∑
i∈[n]

∑
v∈Vi

|B̂v→(i)| · pv (since pv = Pr[B→v(x) = 1])

≤ tk · (C · log n)w−2 ·Pr[B(x) = 1] · log(4
Pr[B(x)=1]

) (Corollary 4.4)

≤ tk · (C · log n)w−2 ·Pr[B(x) = 1] · log(4/δ) (since Pr[B(x) = 1] ≥ δ)

≤ tk+1 ·Pr[B(x) = 1] .

5 PRGs for branching programs with no negligible

vertices is enough

Notation. We call a read-once branching program B an (n,w, δ)-ROBP if B is of length-n,
width-w and for all reachable vertices v in B we have pv(B) ≥ δ where

pv(B) := Pr
x∼Un

[reaching v on the walk on B defined by x].

Theorem 5.1. Let D be a distribution on {0, 1}n that ε-fools all (n,w, δ)-ROBPs. Then, D
also O((ε+ δ)nw)-fools any (n,w, 0)-ROBPs.

Proof. Let D be a distribution on {0, 1}n that ε-fools all (n,w, δ)-ROBPs. We show that D
also O((ε + δ)nw)-fools any (n,w, 0)-ROBPs. The first observation is that any distribution
D that fools all (n,w, δ)-ROBPs also fools prefixes of these programs. The reason is simple
because to simulate the prefix of length-k of a (n,w, δ)-program B, one can simply reroute
the last n− k layers of edges in B so that they would “do nothing”, i.e. that they would be
the identity transformation regardless of the values of xk+1, . . . , xn.

Let B be a length n width-w ROBP. Next, we introduce B′, an (n,w, δ)-ROBP, that
would help bound the difference between

B(Un) := Pr
x∼Un

[B(x) = 1] and B(D) := Pr
x∼D

[B(x) = 1] ,

15

where Un is the uniform distribution over {0, 1}n. Let B′ be the the following modified version
of B. To construct B′ we consider a sequence of n+ 1 branching programs B0, . . . , Bn where
B0 = B and B′ = Bn. We initiate B0 with B. For i = 1, . . . , n we take Bi to be Bi−1 except
we may reroute some of the edges in the i-th layer (of edges). We explain the rerouting
procedure. For i = 1, . . . , n we calculate the probability to reach vertices in layer Vi of Bi−1.
If some vertex v in the i-th layer has probability less than 2δ, then we reroute the two edges
going from the vertex v to go to the same vertex in the (i + 1)-th layer (the choice of this
vertex may be arbitrary, so we pick the first vertex according to some canonical order). We
denote by Vsmall the set of vertices for which we rerouted the outgoing edges from them.

First, we claim that any reachable vertex v in Bn has pv ≥ δ. We apply induction and
show that for i = 0, . . . , n any vertex reachable by Bi in layers 1, . . . , i+ 1 has pv ≥ δ. This
obviously hold for the starting vertex in B0 which has pv = 1. To apply induction assume
the claim holds for Bi−1 and show that it holds for Bi. The claim obviously holds for all
vertices in layers 0, 1, . . . , i in Bi since we didn’t change any edge in those layers going from
Bi−1 to Bi. Let v be a reachable vertex in the (i + 1)-th layer of Bi. It means that there
is a vertex in v′ in the i-th layer of Bi (and also in Bi−1) that has an outgoing edge to v.
By induction, pv′(Bi−1) ≥ δ. In addition, if pv′(Bi−1) < 2δ then both edges from v′ should
go to v and hence pv(Bi) ≥ pv′(Bi−1) ≥ δ. In the other case pv′(Bi−1) ≥ 2δ and there’s at
least one edge going from v′ to v, thus pv(Bi) ≥ 1

2
· pv′(Bi−1) ≥ δ. (Of course, there can be

unreachable vertices in Bi, that were reachable in Bi−1 but we do not account for them.)
To bound |B(Un)−B(D)| we use the triangle inequality:

|B(Un)−B(D)| ≤ |B(Un)−B′(Un)|+ |B′(Un)−B′(D)|+ |B′(D)−B(D)|,

and bound each of the three terms separately:

1. The first term is bounded by the probability of reaching one of the nodes in Vsmall in
B′ when taking a uniform random walk. This follows since if the path defined by x
didn’t pass through Vsmall then we would end up with the same node in both B and
B′ (since no rerouting effected the path). By union bound, the probability to pass
through Vsmall is at most |Vsmall| · 2δ.

2. The second term is at most ε since the program B′ has all pv ≥ δ.

3. Similarly to the first term, the third term is bounded by the probability of reaching
one of the nodes in Vsmall in B′ when taking a walk sampled by D.

|B′(D)−B(D)| ≤ Pr
x∼D

[reaching Vsmall on the walk on B′ defined by x]

≤
∑

v∈Vsmall

Pr
x∼D

[reaching v on the walk on B′ defined by x]

However since D is pseudorandom for prefixes of B′, for each v ∈ Vsmall the probability
of reaching v when walking according to D is ε-close to the probability of reaching v
when walking according to Un.

|B′(D)−B(D)| ≤
∑

v∈Vsmall

Pr
x∼Un

[reaching v on the walk on B′ defined by x] + ε

16

=
∑

v∈Vsmall

(pv(B
′) + ε) ≤ |Vsmall| · (ε+ 2δ)

Summing the upper bound on the three terms gives:

|B(Un)−B(D)| ≤ |Vsmall| · (ε+ 4δ) + ε ≤ O(nw(ε+ δ)).

6 The Pseudorandom Generator

In this section, we will present our pseudorandom generator and its proof of correctness,
proving Theorem 1. We use a pseudorandom generator that was suggested by Gopalan et
al. [GMR+12] in the context of fooling read-once CNF’s and combinatorial rectangles.

Our analysis is inspired by that of Reingold et al. [RSV13] and Steinke et al. [SVW14],
however we need a few extra ideas as the class of branching programs without negligible
vertices is not closed under restrictions and subprograms. Before stating the lemma, we will
define the kind of pseudorandom restrictions that we will utilize.

Definition 6.1 (Almost (p, k)-wise independence). A random variable X ∈ {0, 1}n is said
to be δ-almost (p, k)-wise independent, for δ, p ∈ [0, 1] and k ∈ N, if for any subset I ⊆ [n]
of size at most k, and any assignment z ∈ {0, 1}I with n0 := |{i ∈ I : zi = 0}| zeros and
n1 := |{i ∈ I : zi = 1}| ones, it holds that∣∣∣Pr

X
[X|I = z]− pn1 · (1− p)n0

∣∣∣ ≤ δ .

We say that a random S ⊆ [n] is δ-almost (p, k)-wise independent, if its Boolean
representation 1S ∈ {0, 1}n is δ-almost (p, k)-wise independent.

6.1 One step of the Pseudorandom Generator

In this section we show the analysis of one step of our generator.

Theorem 6.2. Given n, 3 ≤ w ≤ logn
log logn

and ε > 0, there is a choice of k = O(log(n/ε)),

p = 1/(O(log n)w−2 · log(n/ε)) , δ = p2k and σ = O(poly(ε/n)) such that the following holds.
Let π be a permutation in Sn. Let Bπ be an unordered ROBP of length n and width

at most w that reads its input in order xπ1 , . . . , xπn. Let T ⊆ [n] be chosen according to a
δ-almost (p, 2k)-wise independent distribution D. Moreover, let Dx be a σ-biased distribution
over {0, 1}n. Then ∣∣∣∣ E

u∼Un

[Bπ(u)]− E
T∼D,

u∼UT ,x∼Dx

[Bπ
T |u(x))]

∣∣∣∣ ≤ ε

n
.

Proof. We observe that applying π to the distributions D and Dx does not affect their δ-
almost (p, 2k)-independence and σ-biasedness respectively. Hence, it suffices to prove the
theorem for the ordered case, namely when π is the identity.

17

By Theorem 5.1, it is sufficient to prove for ROBPs with all nodes satisfying pv ≥ ε
O((nw)·n)

that ∣∣∣∣ E
u∼Un

[B(u)]− E
T∼D,

u∼UT ,x∼Dx

[BT |u(x))]

∣∣∣∣ ≤ ε

O(n · (nw))
.

Thus assume pv ≥ ρ, where ρ := ε
O((nw)·n)

≥ ε
O(n3)

. We will prove that in absence of

negligible vertices, L1(Eu∼UT
[BT |u]) ≤ poly(n/ε) with probability greater than 1 − ε

n3 , and
thus Eu∼UT

[BT |u] is fooled by a σ-biased distribution. This follows from the next lemma and
our choice of k.

Lemma 6.3.

Pr
T

[
L1(E

u∼UT

[BT |u]) ≥ Ω(poly(n/ε))
]
≤ poly(n)

2k
. (5)

We postpone the proof of this lemma for now and see how it immediately implies
Theorem 6.2. Note that there is a choice of k = O(log n + log 1

ε
) for which poly(n)

2k
≤ ε

n3 .
Let E be the event that the set T satisfies the condition of Lemma 6.3. We have∣∣∣∣ E

u∼Un

[B(u)]− E
T,u∼UT ,
x∼Dx

[BT |u(x))]

∣∣∣∣ ≤ ∣∣∣∣ E
u∼Un

[B(u)]− E
T,u∼UT ,
x∼Dx

[BT |u(x)) | E]

∣∣∣∣ ·Pr
T

[E] + Pr
T

[E]

≤ σ · poly(n/ε) +O
(ε
n3

)
≤ O

(ε
n3

)
.

where the last inequality follows from Lemma 6.3 and the choices of k and σ.

Before presenting the proof of Lemma 6.3, let us introduce some more notation. Given
two nodes v1 ∈ Vi and v2 ∈ Vj, for 1 ≤ i ≤ j ≤ n + 1, denote by Bv1→v2 the sub-branching
program of B that starts at the node v and ends on layer j with v2 as the accepting node.

Proof of Lemma 6.3: We will prove that with high probability a class of branching
programs deduced from different single-layer relabelings of B→v’s have small L1 Fourier
weight on layers up to 2k, and use this along with the structure of branching programs to
bound the higher layer Fourier weights using these lower layers in an inductive manner.

Let us define what we mean by a single-layer relabelling. Let M be a branching program
of length n and width w. For i ∈ [n] and a = (a1, ..., aw) ∈ {0, 1}w, define M (i,a) to be the
branching program deduced from M by relabelling all the edges with a starting node at layer
i according to a: We will think of aj telling us whether to switch the labels of the edges
going out from the j-th node in the i-th layer (i.e., vi,j).

We store a simple but useful fact about relabelings of a branching program.

Claim 6.4. Let M be any branching program of length m and width w with layers
V1, ..., Vm+1. For any set s ⊆ [m], and i = min{j : j ∈ s}, there exists a ∈ {0, 1}w

such that for each v ∈ Vi, |M̂v→(s)| = M̂
(i,a)
v→ (s).

Proof. Let v ∈ Vi be the r-th node in Vi. We show how to set the rth bit of the string a.
Suppose the 0-labelled edge out of v is to v0 and the 1-labelled edge out of v is to v1 (where
v0, v1 are nodes in Vi+1). We have

M̂v→(s) = E[Mv→(x)(−1)xi+
∑

j∈s\{i} xj]

18

=
1

2
·
(

E[Mv→(x)(−1)
∑

j∈s\{i} xj |xi = 1]− E[Mv→(x)(−1)
∑

j∈s\{i} xj |xi = 1]
)

=
1

2
·
(

E[Mv0→(x)(−1)
∑

j∈s\{i} xj]− E[Mv1→(x)(−1)
∑

j∈s\{i} xj]]
)

Thus, depending on the sign of M̂v→(s), we can either flip the edge (which as evident from

the above calculation, just flips the sign of M̂v→(s)) or retain the labelling such that the

modified branching program M ′ is such that M̂ ′(s) = |M̂(s)|. This fixes the rth bit of the
string a. We can fix the other bits of a similarly. This completes the proof.

We are now ready to prove that the layers up to 2k of the Fourier expansion have a small
L1 norm under the restriction.

Claim 6.5. For all β > 0, the following holds with probability at least 1 − 2w·w·n3

β
over T ,

for all ` ∈ [n+ 1], i ≤ `, a ∈ {0, 1}w, v ∈ V` and 1 ≤ j ≤ min{2k, n}:

L1,j(E
u∼uT

[(B(i,a)
→v)T |u]) ≤

β

2j
.

Proof. We note that if B has no negligible vertices, then same is true for B
(i,a)
→v for all choices

of v, i, and a. This is true because the probability of reaching a vertex v′ in B
(i,a)
→v is the

same as it was in B. Fix v, i and a. Letting M denote the branching program B
(i,a)
→v and

MT := Eu∼uT [MT |u], by Lemma 4.5 we get∑
s:|s|=j

∣∣∣M̂(s)
∣∣∣ ≤ (O(log n)w−2 ·O(log(n/ε)))j.

Now using Fact 3.3 we get

E
T

[L1,j (MT)] =
∑
s:|s|=j

|M̂(s)| ·Pr
T

[s ⊆ T] ≤ (O(log n)w−2 ·O(log(n/ε)))j · (pj + δ) ≤ 1

2j
.

Finally, we conclude by applying the Markov inequality and a union bound, as there is a
total of at most w · n2 · 2w branching programs B

(i,a)
→v and at most n choices for j.

Lemma 6.3 follows from the next claim which uses Claim 6.5 with β = O(poly(n/ε)) and
k = O(log(n/ε)) that ensure 2w·w·n3

β
≤ ε

poly(n)
and β

2k
≤ ρ

n·2w (recalling that w ≤ log n).

Claim 6.6. Suppose that T is such that the events in Claim 6.5 hold for β = O(poly(n/ε)).
Denote by B := Eu∼UT

[BT |u]. Then for every k ≤ j ≤ n,∑
s:|s|=j

|B̂(s)| ≤ ρ

n · 2w
. (6)

Proof. Using Fact 3.3, for any s ⊆ [n] we have |B̂(s)| = |B̂(s)| · 1{s⊆T}, thus Eq. (6) is
equivalent to ∑

s⊆T,|s|=j

|B̂(s)| ≤ ρ

n · 2w
. (7)

19

We will prove by induction on j that Eq. (7) holds for all B→v, for any ` ∈ [n + 1] and
v ∈ V`. Note that B itself is of the form B→v for v being the accept node in the final layer
(w.l.o.g. there exists only one such node). The case k ≤ j ≤ 2k is handled by Claim 6.5,

since
∑

s⊆T :|s|=j |B̂→v(s)| = L1,j(Eu∼UT
[(B→v)T |u]) ≤ β

2j
≤ β

2k
≤ ρ

n·2w . For j > 2k we have:∑
s⊆T :|s|=j

|B̂→v(s)| =
∑

i∈T∩[`]

∑
v0∈Vi

∑
s0⊆T∩{1,...,i−1}:
|s0|=j−k

∑
s1⊆T∩{i,...,`}:
|s1|=k,i∈s1

|B̂→v0(s0) · B̂v0→v(s1)|

(by Eq. (1))

≤ 1

ρ

∑
i∈T∩[`]

∑
v0∈Vi

(∑
s0⊆T∩{1,...,i−1}:
|s0|=j−k

|B̂→v0(s0)|
)
·
(∑
s1⊆T∩{i,...,`}:
|s1|=k,i∈s1

pv0|B̂v0→v(s1)|
)

(using pv0 ≥ ρ)

≤ ρ

n · 2w · ρ
∑

i∈T∩[`]

∑
s1⊆T∩{i,...,`}:
|s1|=k,i∈s1

(∑
v0∈Vi

pv0|B̂v0→v(s1)|
)

(by the induction hypothesis)

≤ 1

n · 2w
∑

i∈T∩[`]

∑
s1⊆T∩{i,...,`}:
|s1|=k,i∈s1

(∑
v0∈Vi

pv0B̂
(i,as1)
v0→v (s1)

)
(by Claim 6.4, there is always such an as1)

=
1

n · 2w
∑

i∈T∩[`]

∑
s1⊆T :

|s1|=k,i∈s1

B̂
(i,as1)
→v (s1)

(Since pv0 = Pr[B reaches v0] = Pr[B
(i,as1)
→v reaches v0])

≤ 1

n · 2w
∑

i∈T∩[`]

∑
s1⊆T :

|s1|=k,i∈s1

∣∣∣B̂(i,as1)
→v (s1)

∣∣∣
≤ 1

n · 2w
∑

a∈{0,1}w

∑
i∈T∩[`]

∑
s1⊆T :|s1|=k

∣∣∣B̂(i,a)
→v (s1)

∣∣∣
≤ n · 2w · β/2k

n · 2w
(using Claim 6.5 and Fact 3.3)

≤ ρ

n · 2w
(by our choice of β)

This completes the induction, and hence the claim follows.

6.2 The Final Generator

We are now ready to prove our main theorem which we restate here.

20

Theorem (Theorem 1, restated). For all n > 0 and w ≤ log n, there exists an explicit
pseudorandom generator for the class of unordered, read-once, oblivious branching programs
of length n and width w with seed length O((logw+1 n) log log n) and error 1/nO(1).

Theorem 6.2 combined with a hybrid argument implies that the following distribution
ε-fools any unordered ROBP of length n and width w:

Choose p, δ, k and σ so that they satisfy Theorem 6.2. Let m = min{n, 2(lnn)/p} ≤
O(log n)w−1 · log(n/ε) be the number of iterations of the pseudorandom generator.

• Choose disjoint sets T1, ..., Tm ⊆ [n] where Ti ⊆ [n] \ ∪i−1
j=1Tj is selected according to a

δ-almost 2k-wise independent distribution

• Choose X1, ..., Xm, where Xi ∈ {0, 1}Ti , each independently at random according to a
σ-biased distribution

• Let Y ∈ {0, 1}[n]\∪iTi be chosen using a σ-biased distribution.

• Output X ∈ {0, 1}m such that X|Ti = Xi and X|T\∪Ti = Y .

First, we show that by the choice of m, with probability at least 1− ε/4, the size of the
remaining set of variables [n] \

⋃
i |Ti| is at most O(log(1/ε)). This is true because for any

fixed set I ⊆ [n] of variables, the probability that all xi for i ∈ I are not chosen for any of
T1, . . . , Tm is at most

((1−p)|I|+ δ)m ≤ (e−p|I|+ δ)m ≤ (e−p|I|(1 + 2δ))m ≤ (e−p|I|+2δ)m ≤ e−p|I|m+2δm ≤ O(1/n2|I|).

Thus, by union bounding over all sets I of size log(1/ε) with probability at most
(

n
log(1/ε)

)
·

n−2 log(1/ε) ≤ ε/4 there exists such a set which is not covered by T1, . . . , Tm. Assuming that
Y is defined over at most log(1/ε) variables, it is ε/4-fooled by a σ-biased distribution (by
the choice of σ = poly(ε/n)). Applying Theorem 6.2 for m steps in a hybrid argument, with
each step incurring at most ε/(2n) ≤ ε/(2m) error, proves the correctness of the generator.

It remains to argue that we can achieve the above distribution with a short seed-length.
Using an explicit construction of [AGHP92], a δ-almost (k, p)-wise distribution can be
generated using O(k · log(1/p) + log(logn

δ
)) = O(w log(n/ε) log log(n/ε)) random bits. Naor

and Naor [NN93] gave an explicit construction of a σ-biased distribution over n bits that
uses O(log(n/σ)) = O(log(n/ε)) random bits.

Putting things together, our generator can be explicitly constructed with seed-length

O(log n)w−1 · log2(n/ε) · log log(n/ε)

and seed-length (O(log n)w+1 · log log n) for ε = 1/poly(n).

7 Fourier Bounds for General Branching Programs

Lemma 7.1. Let B be a length-n, width-w ROBP with w ≤ n. Then∑
s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)(w−2)k · logk

(
4 · (nw)k/Pr[B(x) = 1]

)
·Pr[B(x) = 1].

for all k ∈ [n].

21

Proof. Let t = 2 · (C · log n)w−2 where C is the constant from Lemma 4.3. We prove, by
induction on k ∈ N, that for all ROBP B of length at most n width at most w, it holds that∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ tk · logk

(
4 · (nw)k/Pr[B(x) = 1]

)
·Pr[B(x) = 1].

The base case is given by Lemma 4.3. Assuming the claim holds for k, we show that it holds
for k + 1. Recall the definitions of B→v, Bv→ and pv. Using Equation (1) we have∑
s:|s|=k+1

∣∣∣B̂(s)
∣∣∣ ≤∑

i∈[n]

∑
|s′|=k,
v∈Vi

∣∣∣B̂→v(s′)∣∣∣ · ∣∣∣B̂v→(i)
∣∣∣

≤
∑
i∈[n]

∑
v∈Vi

|B̂v→(i)| ·
∑
|s′|=k

∣∣∣B̂→v(s′)∣∣∣
≤
∑
i∈[n]

∑
v∈Vi

|B̂v→(i)| ·
(
tk · log(4(nw)k/Pr[B→v(x) = 1]) ·Pr[B→v(x) = 1]

)
(induction on B→v and sets of size k)

≤ tk ·
∑
i∈[n]

∑
v∈Vi

|B̂v→(i)| · log(4(nw)k/pv)
k · pv . (since pv = Pr[B→v(x) = 1])

We break the sum of the right hand side according to whether or not pv ≤ p/(nw). The
partial sum over vertices with pv > p/nw is at most∑

i∈[n],v∈Vi,pv>p/nw

|B̂v→(i)| · log(4(nw)k/pv)
k · pv

≤
∑

i∈[n],v∈Vi,pv>p/nw

|B̂v→(i)| · log(4(nw)k+1/p)k · pv

= log(4(nw)k+1/p)k ·
∑

i∈[n],v∈Vi,pv>p/nw

|B̂v→(i)| · pv

≤ log(4(nw)k+1/p)k · p · (C · log n)w−2 · log(1/p) (Corollary 4.4)

≤ log(4(nw)k+1/p)k+1 · p · (C · log n)w−2 .

The partial sum over vertices with pv ≤ p/(nw) is at most∑
i∈[n],v∈Vi,pv≤p/nw

|B̂v→(i)| · log(4(nw)k/pv)
k · pv

≤
∑

i∈[n],v∈Vi,pv≤p/nw

|B̂v→(i)| · log(4(nw)k+1/p)k · p
nw
≤ log(4(nw)k+1/p)k · p,

where the first inequality follows since log(4(nw)k/x)k ·x is monotone increasing for x ∈ [0, 1],

and the second inequality follows since |B̂v→(i)| ≤ 1 and there are at most nw terms in the
sum. Thus the total sum is at most∑

s:|s|=k+1

∣∣∣B̂(s)
∣∣∣ ≤ tk · log(4(nw)k+1/p)k+1 · p · ((C · log n)w−2 + 1)

22

≤ tk · log(4(nw)k+1/p)k+1 · p · (2 · (C · log n)w−2)

= tk+1 · log(4(nw)k+1/p)k+1 · p (Choice of t)

Corollary 7.2. Let B be a length-n, width-w ROBP with w ≤ n. Then∑
s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)(w−1)k · kk,

for all k ∈ [n].

Proof. Note that the bound from Lemma 7.1 is monotone increasing in p, thus∑
s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)(w−2)k · logk

(
4 · (nw)k

)
= O(log n)(w−2)k ·O(k log n)k.

Theorem (Theorem 2, restated). Let B be a length-n, width-w ROBP with w ≤ n. Then∑
s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)wk ,

for all k ∈ [n].

This proves Conjecture 8.1 from [RSV13]. We believe that the right bound should be∑
s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)(w−2)k

for all k ∈ [n]. For w = 3, Steinke et al. [SVW14] proved L1,k(B) ≤ O(log n)k·n2. As for lower
bounds, for w = 3, Mansour [Man95, Appendix A] and Steinke et al. [SVW14, Appendix C]

analyzed the Tribes function and showed that ∀k ∈ [n] :
∑
|s|=k |B̂(s)| ≥ Ω(log n/ log k)k.

Proof. For k ≤ 2·log(nw) the theorem follows from the bound in Corollary 7.2. Furthermore,
for k ∈ [log(nw), 2 log(nw)] we have∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)wk ≤ O(log n)wk · 2k

nw
.

We prove by induction on k ≥ log(nw) that
∑

s:|s|=k

∣∣∣B̂(s)
∣∣∣ ≤ O(log n)wk · 2k

nw
. For

k ≥ 2 · log(nw), denote by k′ = k− log(nw) and k′′ = log(nw). As done in [RSV13, SVW14],
we split the sum over sets of size k to the sum over sets of size k′ in the prefix of B times the
sum over sets of size k′′ in the suffix of B, for all n possible partitions of B into two parts.∑

|s|=k

|B̂(s)| ≤
n∑
i=1

∑
v∈Vi

∑
s′⊆{1,...,i−1},
|s′|=k′

∑
s′′⊆{i,...,n},
|s′′|=k′′

|B̂→v(s′) · B̂v→(s′′)|

≤
n∑
i=1

∑
v∈Vi

O(log n)wk
′ · 2k

′

nw
·O(log n)wk

′′ · 2k
′′

nw

= 2k ·O(log n)wk ·
∑
i

∑
v∈Vi

1

nw
· 1

nw
= O(log n)wk · 2k

nw
.

23

Acknowledgements

We would like to thank Michael P. Kim, Shachar Lovett, Raghu Meka, Ran Raz, Salil Vadhan
and David Zuckerman for very helpful conversations.

References

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple construction of
almost k-wise independent random variables. Random Structures and Algorithms,
3(3):289–304, 1992.

[AW85] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant
depth circuits. In FOCS, pages 11–19, 1985.

[BDVY13] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff. Pseudorandomness for
width-2 branching programs. Theory of Computing, 9:283–293, 2013.

[BPW11] A. Bogdanov, P. A. Papakonstantinou, and A. Wan. Pseudorandomness for
read-once formulas. In R. Ostrovsky, editor, FOCS, pages 240–246. IEEE, 2011.

[BRRY10] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff. Pseudorandom generators
for regular branching programs. In Proceedings of the 51st annual FOCS, pages
40–47, 2010.

[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branching
programs. In Proceedings of the 51st annual FOCS, pages 30–39, 2010.

[CRSW13] L. E. Celis, O. Reingold, G. Segev, and U. Wieder. Balls and bins: Smaller hash
families and faster evaluation. SIAM Journal on Computing, 42(3):1030–1050,
2013.

[De11] A. De. Pseudorandomness for permutation and regular branching programs. In
IEEE Conference on Computational Complexity, pages 221–231, 2011.

[EIO02] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality
reduction with applications. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 705–712, 2002.

[GMR+12] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. P. Vadhan. Better
pseudorandom generators from milder pseudorandom restrictions. In FOCS,
pages 120–129, 2012.

[HHR11] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate.
SIAM J. Comput., 40(6):1486–1528, December 2011.

[HVV06] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify hardness.
SIAM Journal on Computing, 35(4):903–931, 2006.

24

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage.
In Proceedings of the 53rd annual FOCS, pages 111–119, 2012.

[Ind06] P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006.

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th annual STOC, pages 356–364, 1994.

[KNP11] M. Koucký, P. Nimbhorkar, and P. Pudlák. Pseudorandom generators for group
products: extended abstract. In STOC, pages 263–272, 2011.

[Man95] Y. Mansour. An O(nlog logn) learning algorithm for DNF under the uniform
distribution. J. Comput. Syst. Sci., 50(3):543–550, 1995.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. on Computing, 22(4):838–856, 1993.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. J. of Computer and
System Sciences, 52(1):43–52, 1996.

[O’D14] R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[RSV13] O. Reingold, T. Steinke, and S. Vadhan. Pseudorandomness for regular
branching programs via Fourier analysis. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 655–670.
Springer, 2013.

[Siv02] D. Sivakumar. Algorithmic derandomization via complexity theory. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 619–626, 2002.

[Ste13] J. P. Steinberger. The distinguishability of product distributions by read-once
branching programs. In Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, pages 248–254, 2013.

[SVW14] T. Steinke, S. Vadhan, and A. Wan. Pseudorandomness and fourier growth
bounds for width-3 branching programs. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, page 885, 2014.

[SZ95] M. Saks and D. Zuckerman. Personal Communication, 1995.

[SZ99] M. E. Saks and S. Zhou. BPH Space(S) ⊆ DSPACE(S3/2). J. Comput. Syst.
Sci., 58(2):376–403, 1999.

[Tzu09] Y. Tzur. Notions of weak pseudorandomness and GF(2n)-polynomials. Master’s
thesis, Master’s thesis, Weizmann Institute of Science, Rehovot, Israel, 2009.

25
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

