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Abstract

Since its inception, public-key encryption (PKE) has been one of the main cornerstones of
cryptography. A central goal in cryptographic research is to understand the foundations of
public-key encryption and in particular, base its existence on a natural and generic complexity-
theoretic assumption. An intriguing candidate for such an assumption is the existence of a
cryptographically hard language L ∈ NP ∩ SZK.

In this work we prove that public-key encryption can be based on the foregoing assumption,
as long as the (honest) prover in the zero-knowledge protocol is efficient and laconic. That is,
messages that the prover sends should be efficiently computable (given the NP witness) and short
(i.e., of sufficiently sub-logarithmic length). Actually, our result is stronger and only requires
the protocol to be zero-knowledge for an honest-verifier and sound against computationally
bounded cheating provers.

Languages in NP with such laconic zero-knowledge protocols are known from a variety of
computational assumptions (e.g., Quadratic Residuocity, Decisional Diffie-Hellman, Learning
with Errors, etc.). Thus, our main result can also be viewed as giving a unifying framework
for constructing PKE which, in particular, captures many of the assumptions that were already
known to yield PKE.

We also show several extensions of our result. First, that a certain weakening of our as-
sumption on laconic zero-knowledge is actually equivalent to PKE, thereby giving a complexity-
theoretic characterization of PKE. Second, a mild strengthening of our assumption also yields
a (2-message) oblivious transfer protocol.
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1 Introduction

Underlying symmetric key encryption is a centuries-old idea: shared secrets enable secure commu-
nication. This idea takes many forms: the Caeser cipher, the unconditionally secure one-time pads,
fast heuristic constructions like AES, and a multitude of candidates based on the hardness of a
variety of problems. The discovery of public-key encryption, by Diffie and Hellman [DH76] and
Rivest, Shamir and Adleman [RSA78], was revolutionary as it gave us the ability to communicate
securely without any shared secrets. Needless to say, this capability is one of the cornerstones of
secure communication in today’s online world.

As is typically the case in cryptography, we are currently very far from establishing the secu-
rity of public-key cryptography unconditionally. Rather, to establish security, we rely on certain
computational intractability assumptions. Despite four decades of extensive research, we currently
only know constructions of public-key encryption from a handful of assumptions, most notably
assumptions related to the hardness of factoring, finding discrete logarithms and computational
problems related to lattices (as well as a few more exotic assumptions).

One of the central open problems in cryptography is to place public-key encryption on firmer
complexity-theoretic grounding, ideally by constructing public-key encryption from the minimal
assumption that one-way functions exist. Such a result seems well beyond current techniques, and
by the celebrated result of Impagliazzo and Rudich [IR89] requires a non-blackbox approach. Given
that, a basic question that we would like to resolve is the following:

From what general complexity-theoretic assumptions can we construct public-key cryptography?

Our motivation for asking this question is twofold. First, we seek to understand: Why is it the
case that so few assumptions give us public-key encryption? What kind of “structured hardness”
is required? Secondly, we hope that this understanding can guide the search for new concrete
problems that yield public-key encryption.

1.1 Our Results

Our main result is a construction of a public-key encryption scheme from a general complexity-
theoretic assumption: namely, the existence of a cryptographically hard language L ∈ NP that has
a laconic (honest-verifier) statistical zero-knowledge argument-system. We first discuss the notions
mentioned above, and then proceed to state the main result more precisely (yet still informally).

By a cryptographically hard language we mean an NP language that is average-case hard with a
solved instance generator.1 A proof-system is laconic [GH98, GVW02] if the number of bits sent
from the prover to the verifier is very small.2 An argument-system is similar to an interactive proof,
except that soundness is only required to hold against computationally bounded (i.e., polynomial
time) cheating provers. Honest verifier zero-knowledge means that the honest verifier learns no more
in the interaction than the fact that x ∈ L (i.e., the verifier can simulate the honest interaction by
itself). Thus, our main result can be stated as follows:

1Loosely speaking, a solved-instance generator for an average-case hard language L ∈ NP is an algorithm that
generates samples (x,w) ∈ RL (where RL is the NP relation) and where x is distributed according to the average-case
hard distribution restricted to YES instances.

2Laconic proof-systems with constant soundness and very short communication (e.g., just a single bit) are indeed
known. As a matter of fact, many of the known hard problems that are known to yield public-key encryption schemes
have such laconic SZK proof-systems (see Section 1.1.1 and Appendix A).
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Theorem 1 (Informally Stated, see Theorem 3.6). Assume that there exists a cryptographically
hard language L ∈ NP with an r-round statistical honest-verifier zero-knowledge argument-system,
with constant soundness, that satisfies the following two requirements:

• Efficient Prover: The honest prover strategy can be implemented in polynomial-time, given
the NP witness.3

• Laconic Prover: The prover sends at most q bits in each of the r rounds, such that r2 · q3 =
O(log n), where n is the input length.

Then, there exists a public-key encryption (PKE) scheme.

We emphasize that requiring only honest-verifier zero-knowledge (rather than full-fledged zero-
knowledge) and computational soundness (i.e., an argument-system) weakens our assumption, and
therefore only strengthens our main result. We also comment that we can handle provers that are
less laconic (i.e., send longer messages) by assuming that the language L is sub-exponentially hard.
Lastly, we remark the assumption in Theorem 1 may be viewed as a generalization of the notion
of hash proof systems [CS02].4 We discuss this point in more detail in Section 1.2.

1.1.1 Instantiations

Many concrete assumptions (which are already known to yield public-key encryption schemes) imply
the conditions of Theorem 1. First, number-theoretic assumptions such as Quadratic Residuosity
(QR) and Decisional Diffie-Hellman (DDH) can be shown to imply the existence of a cryptograph-
ically hard NP language with a laconic and efficient SZK argument-system and therefore satisfy
the conditions of Theorem 1 (these and the other implications mentioned below are proven in
Appendix A).

We can also capture assumptions related to lattices and random linear codes by slightly relaxing
the conditions of Theorem 1. Specifically, Theorem 1 holds even if we relax the completeness,
soundness and zero-knowledge conditions of the argument-system to hold only for most (but not
necessarily all) of the instances (chosen from the average-case hard distribution). We call arguments
with these weaker properties average-case SZK arguments.

It is not hard to see that lossy encryption [PVW08, BHY09] yields such an average-case laconic
and efficient zero-knowledge argument-system. Recall that a PKE scheme is lossy if its public-
keys are indistinguishable from so-called “lossy keys” such that a ciphertext generated using such
a lossy key does not contain information about the underlying plaintext. Consider the following
proof-system for the language consisting of all valid public-keys: given an allegedly valid public-
key, the verifier sends to the prover an encryption of a random bit b and expects to get in response
the value b. It is not hard to see that this protocol is a laconic and efficient average-case SZK
argument-system.

Many concrete assumptions yield cryptographically hard languages with average-case laconic
and efficient SZK arguments (whether via lossy encryption or directly). Most notably, Learning

3In the context of argument-systems (in contrast to general interactive proofs), the assumption that the honest
prover is efficient goes without saying. Nevertheless, we wish to emphasize this point here.

4As a matter of fact, hash proof systems can be viewed as a special case of our assumption in which the (honest)
prover is deterministic or, equivalently, sends only a single bit. In contrast, we handle arbitrary randomized provers
(that are sufficiently laconic) and indeed most of the technical difficulty arises from handling this more general setting.
See additional details in Section 1.2.
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Our Assumption:
Laconic SZK Argument-System for

Cryptographically Hard NP Language
LWE

DDH

QR

LPN

[ABW10]*

Public-Key
Encryption

Theorem 1

Figure 1: Instantiations of our assumption. Dashed arrows means that we only obtain average-
case completeness, soundness and zero-knowledge. The (*) sign means that most, but not all,
assumptions from [ABW10] imply our assumption.

With Errors (LWE) [Reg05], Learning Parity with Noise (LPN) with small errors [Ale03] and most
of the assumptions used by Applebaum et al. [ABW10] to construct PKE, all imply the existence
of such languages.

Thus, Theorem 1 gives a common framework for constructing public-key encryption based on a
variety of different intractability assumptions (all of which were already known to yield public-key
encryption via a variety of somewhat ad hoc techniques), see also Fig. 1.

One notable hardness assumption that we do not know to imply our assumption (even the
average-case variant) is integer factorization (and the related RSA assumption). We consider a
further weakening of our assumption that captures also the factoring and RSA assumptions. As a
matter of fact, we show that this further relaxed assumption is actually equivalent to the existence
of a public-key encryption scheme. We discuss this in more detail in Section 1.1.3.

1.1.2 Perspective — From SZK-Hardness to Public-Key Encryption

As noted above, one of the central goals in cryptography is to base public-key encryption on a
general notion of structured hardness. A natural candidate for such structure is the class SZK of
statistical zero-knowledge proofs, since many of the assumptions that are known to yield public-key
encryption have SZK proof-systems. Indeed, it is enticing to believe that the following conjecture
holds:

Conjecture 2. Assume that there exists a cryptographically-hard language L ∈ NP ∩ SZK. Then,
there exists a public-key encryption scheme.

(Here by SZK we refer to the class of languages having statistical zero-knowledge proof-systems
rather than argument-systems as in Theorem 1. Assuming this additional structure only makes
Conjecture 2 weaker and therefore easier to prove.)

Proving Conjecture 2 would be an outstanding breakthrough in cryptography. For instance,
it would allow us to base public-key cryptography on the intractability of the discrete logarithm
(DLOG) problem,5 since (a decision problem equivalent to) DLOG has a perfect zero-knowledge

5Public-key schemes based on assumptions related to discrete log such as the decisional (or even computational)
Diffie Hellman assumption are known to exist. Nevertheless, basing public-key encryption solely on the hardness of
discrete log has been open since the original work of Diffie and Hellman [DH76].
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proof-system6 [GK93], or under the plausible quasi-polynomial average-case7 hardness of the graph
isomorphism problem (via the perfect zero-knowledge protocol of [GMW87]).

We view Theorem 1 as an initial step toward proving Conjecture 2. At first glance, it seems that
Theorem 1 must be strengthened in two ways in order to establish Conjecture 2. Namely, we need
to get rid of the requirements that the (honest) prover is (1) efficient and (2) laconic. However, it
turns out that it suffices to remove only one of these restrictions, no matter which one, in order to
obtain Conjecture 2. We discuss this next.

Handling Inefficient Provers. Sahai and Vadhan [SV03] showed a problem, called statistical
distance, which is both (1) complete for SZK, and (2) has an extremely laconic honest-verifier
statistical zero-knowledge proof in which the prover only sends a single bit (with constant soundness
error). The immediate implication is that any SZK protocol can be compressed to one in which the
prover sends only a single bit.

Unfortunately, the foregoing transformation does not seem to maintain the computational effi-
ciency of the prover. Thus, removing the requirement that the prover is efficient from Theorem 1
(while maintaining the laconism requirement) would establish Conjecture 2.

Handling Non-Laconic Provers. Suppose that we managed to remove the laconism require-
ment from Theorem 1 and only required the prover to be efficient. It turns out that the latter
would actually imply an even stronger result than Conjecture 2. Specifically, assuming only the
existence of one-way functions, Haitner et al. [HNO+09] construct (non-laconic) statistical zero-
knowledge arguments for any NP language, with an efficient prover. Thus, removing the laconism
requirement from Theorem 1 would yield public-key encryption based merely on the existence of
one-way functions.

In fact, even a weaker result would yield Conjecture 2. Suppose we could remove the laconism
requirement from Theorem 1 while insisting that the proof-system has statistical soundness (rather
than computational). Such a result would yield Conjecture 2 since Nguyen and Vadhan [NV06]
showed that every language in NP∩SZK has an SZK protocol in which the prover is efficient (given
the NP witness).

To summarize, removing the laconism requirement from Theorem 1, while still considering an
argument-system, would yield public-key encryption from one-way functions (via [HNO+09]). On
the other hand, removing the laconism requirement while insisting on statistical soundness would
yield Conjecture 2 (via [NV06]). (Note that neither the [NV06] nor [HNO+09] proof-systems are
laconic, so they too cannot be used directly together with Theorem 1 to prove Conjecture 2.)

1.1.3 Extensions

We also explore the effect of strengthening and weakening our assumption. A natural strength-
ening gives us oblivious transfer, and as mentioned above, a certain weakening yields a complete
complexity-theoretic characterization of public-key encryption.

6That proof-system is actually laconic but it is unclear how to implement the prover efficiently.
7Graph isomorphism is in fact known to be solvable in polynomial-time for many natural distributions, and

the recent breakthrough result of Babai [Bab16] gives a quasi-polynomial worst-case algorithm. Nevertheless, it
is still plausible that Graph Isomorphism is average-case quasi-polynomially hard (for some efficiently samplable
distribution).
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A Complexity-Theoretic Characterization. The assumption from which we construct public-
key encryption (see Theorem 1) requires some underlying hard decision problem. In many cryp-
tographic settings, however, it seems more natural to consider hardness of search problems (e.g.,
integer factorization). Thus, we wish to explore the setting of laconic SZK arguments when only
assuming the hardness of computing a witness for an instance sampled from a solved instance gener-
ator. Namely, an NP relation for which it is hard, given a random instance, to find a corresponding
witness.

We introduce a notion of (computationally sound) proof-systems for such NP search problems,
which we call arguments of weak knowledge (AoWK). Loosely speaking, this argument-system
convinces the verifier that the prover with which it is interacting has at least some partial knowledge
of some witness. Or in other words, no efficient cheating prover can convince the verifier to accept
given only the input. We further say that an AoWK is zero-knowledge if the verifier learns nothing
beyond the fact that the prover has the witness.

We show that Theorem 1 still holds under the weaker assumption that there is an efficient
and laconic SZK-AoWK (with respect to some hard solved instance generator). Namely, the latter
assumption implies the existence of PKE. Furthermore, we also show that the same assumption is
also implied by any PKE scheme, thus establishing an equivalence between the two notions which
also yields a certain complexity-theoretic characterization of public-key encryption.

Oblivious Transfer. Oblivious Transfer (OT) is a fundamental cryptographic primitive, which is
complete for the construction of general secure multiparty computation (MPC) protocols [GMW87,
Kil88]. We show that by making a slightly stronger assumption, Theorem 1 can extended to yield
a (two-message) semi-honest OT protocol.

For our OT protocol, in addition to the conditions of Theorem 1, we need to further assume
that there is a way to sample instances x such that it is hard to tell whether x ∈ L or x 6∈ L even
given the coins of the sampling algorithm.8 We refer to this property as enhanced cryptographic
hardness in analogy to the notion of enhanced trapdoor permutations (see further discussion in
Section 6.3).

1.2 Related Works

Cryptography and Hardness of SZK. Ostrovsky [Ost91] showed that the existence of a lan-
guage in SZK with average-case hardness implies the existence of one-way functions. Our result
can be interpreted as an extension of Ostrovsky’s result: By assuming additional structure on the
underlying SZK protocol, we construct a public-key encryption scheme. In fact, some of the ideas
underlying our construction are inspired by Ostrovsky’s one-way function.

Average-case SZK hardness also implies constant-round statistically hiding commitments [OV08],
a primitive not implied by one-way functions in a black-box way [HHRS15]. Assuming the existence
of an average-case hard language in a subclass of SZK (i.e., of languages having perfect randomized
encodings), Applebaum and Raykov [AR16] construct Collision Resistant Hash functions.

In the other direction, some cryptographic primitives like homomorphic encryption [BL13], lossy
encryption and PIR (computational private information retrieval) [LV16] imply the existence of

8In particular, the sampling algorithm that tosses a coin b ∈ {0, 1} and outputs x ∈ L if b = 0 and x 6∈ L otherwise
does not satisfy the requirement (since the value of b reveals whether x ∈ L).
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average-case hard problems in SZK.9 We also mention that many other primitives, such as one-way
functions, public-key encryption and oblivious transfer do not imply the existence of average-case
hard problems in SZK (under black-box reductions) [BDV16].

Hash Proof-Systems. Hash Proof-Systems, introduced by Cramer and Shoup [CS02], are a
cryptographic primitive which, in a nutshell, can be described as a cryptographically hard language
in NP with a one-round SZK protocol in which the honest prover is efficient given the NP witness
and deterministic (and without loss of generality sends only a single bit). This is precisely what
we assume for our main result except that we can handle randomized provers that send more bits
of information (and the protocol can be multi-round). This special case of deterministic provers is
significantly simpler to handle (and will serve as a warmup when describing our techniques). Our
main technical contribution is handling arbitrary randomized provers.

Public-key encryption schemes have been shown to imply the existence of certain weak hash
proof-systems [HLWW16]. Hash proof-systems were also shown in [GOVW12] to yield resettable
statistical zero-knowledge proof-systems.

Laconic Provers. A study of interactive proofs in which the prover is laconic (i.e., transmits
few bits to the verifier) was initiated by Goldreich and H̊astad [GH98] and was further explored
by Goldreich, Vadhan and Wigderson [GVW02]. These works focus on general interactive proofs
(that are not necessarily zero-knowledge) and their main results are that laconic interactive proofs
are much weaker than general (i.e., non-laconic) interactive proofs.

1.3 Techniques

To illustrate the techniques used, we sketch the proof of a slightly simplified version of Theorem 1.
Specifically, we construct a PKE given a cryptographically hard language L with a single-round
efficient-prover and laconic SZK argument-system (we shall briefly mention the effect of more rounds
where it is most relevant). For simplicity, we also assume that the SZK protocol has perfect
completeness and zero-knowledge. In the actual construction, given in the technical sections, we
handle constant completeness error, negligible simulation error, and more rounds of interaction.
Lastly, since we find the presentation more appealing, rather than presenting a public-key scheme,
we construct a single-round key-agreement protocol.10 Any such protocol can be easily transformed
into a public-key encryption scheme.

Let L ∈ NP be a cryptographically hard language with an SZK argument-system with prover
P, verifier V and simulator S. We assume that the argument-system has perfect completeness, no
simulation error and soundness error s, for some s > 0. Let YL be a solved-instance generator for
L producing samples of the form (x,w), where x ∈ L and w is a valid witness for x. The fact that
L is cryptographically hard means that there exists a sampler NL that generates NO instances for
L that are computationally indistinguishable from the YES instances generated by YL.

9On a somewhat related note, we mention that combining [BL13] with our result gives a construction of public-key
encryption from symmetric-key additively homomorphic encryption. This was already shown in [Rot11] via a direct
construction.

10Loosely speaking, a key agreement protocol allows Alice and Bob to agree on a common key that is unpredictable
to an external observer that has wire tapped their communication lines.
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Deterministic Prover. As a warmup, we assume first that the honest prover in the SZK
argument-system is deterministic. As will be shown below, this case is significantly easier to handle
than the general case, but it is a useful step toward our eventual protocol.

We construct a key-agreement protocol between Alice and Bob as follows. First Alice generates
a solved instance-witness pair (x,w) ← YL. Alice then sends x across to Bob. Bob runs the
simulator S(x) to generate a transcript (a′, b′, r′), where a′ corresponds to the verifier’s message,
b′ corresponds to the prover’s message and r′ correspond to the simulated random string for the
verifier.11 Bob sends the first message a′ across to Alice. Bob then outputs the simulated second
message b′. Alice uses the witness w to generate the prover’s response b (i.e., the prover P’s actual
response given the message a′ from the verifier) and outputs b. The protocol is also depicted in
Fig. 2.

Alice Bob

(x,w)← YL
x (a′, b′, r′)← S(x)

Output b = P(x,w, a′) a′ Output b′

Figure 2: Key Agreement from Deterministic Provers

To argue that Fig. 2 constitutes a key-agreement protocol, we need to show that Alice and Bob
output the same value, and that no efficient eavesdropper Eve (who only sees their messages) can
predict this output with good probability.

That they agree on the same value follows from the fact that the prover is deterministic and
the simulation is perfect. More specifically, since the simulation is perfect, the distribution of the
simulated verifier’s message a′ is the same as that of the actual verifier’s message; and now since
the prover is deterministic, given (x,w, a′), the prover’s response b, which is also Alice’s output, is
fixed. Since the simulation is perfect and x ∈ L, if the simulator outputs (a′, b′, r′), then b′, which
is Bob’s output, is necessarily equal to b.

Next, we show that any eavesdropper Eve who is able to guess Bob’s output in the protocol can
be used to break the cryptographic hardness of L. Suppose Eve is able to guess Bob’s output in
the protocol with probability p. This means that given only x and a′, where (a′, b′, r′) is produced
by the simulator S(x), Eve is able to find the message b′:

Pr
(x,·)←YL

(a′,b′,r′)←S(x)

[
b′ = b′′ where b′′ ← Eve(x, a′)

]
= p.

As the SZK argument has perfect completeness, and the simulation is also perfect, the transcripts
produced by the simulator (on YES instances) are always accepted by the verifier. As Eve is able
to produce the same prover messages as the simulator, her messages will also be accepted by the
verifier. Namely,

Pr
(x,·)←YL

(a′,b′,r′)←S(x)

[
V(x, a′, b′′; r′) = 1 where b′′ ← Eve(x, a′)

]
≥ p.

11Throughout this paper, we use the convention that primed symbols are for objects associated with a simulated
(rather than real) execution of the protocol.
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Again using the fact that the simulation is perfect, we can replace the simulated message a′ and
simulated coin tosses r′ with a verifier message a and coins r generated by a real execution of the
protocol:

Pr
(x,·)←YL
a←V(x;r)

[
V(x, a, b′′; r) = 1 where b′′ ← Eve(x, a)

]
≥ p.

Recall that NL samples no-instances that are computationally indistinguishable from the YES
instances generated by YL. If x had been a NO instance sampled using NL, then the (computational)
soundness of the SZK argument implies that the verifier would reject with probability 1− s:

Pr
x←NL

a←V(x;r)

[
V(x, a, b′′; r) = 1 where b′′ ← Eve(x, a)

]
< s,

where s is the soundness error. If p is larger than s by a non-negligible amount, then we have
a distinguisher, contradicting the cryptographic hardness of L. So, no efficient eavesdropper can
recover the agreed output value with probability noticeably more than s, the soundness error of
the SZK argument.

Notice that so far we have only guaranteed that the probability of success of the eavesdropper
is s, which may be as large as a constant (rather than negligible).12 Nevertheless, using standard
amplification techniques (specifically those of Holenstein and Renner [HR05]) we can compile the
latter to a full-fledged key-agreement protocol.

Randomized Prover. So far we have handled deterministic provers. But what happens if the
prover were randomized? Agreement is now in jeopardy as the prover’s message b is no longer
completely determined by the instance x and the verifier’s message a. Specifically, after Alice
receives the simulated verifier message a′ from Bob, she still does not know the value of b′ that Bob
obtained from the simulator – if she ran P(x,w, a′), she could get one of several possible b’s, any
of which could be the correct b′. Roughly speaking, Alice only has access to the distribution from
which b′ was sampled (but not to the specific value that was sampled).

Eve, however, has even less to work with than Alice; we can show, by an approach similar
to (but more complex than) the one we used to show that no polynomial-time eavesdropper can
guess b′ in the deterministic prover case, that no polynomial-time algorithm can sample from any
distribution that is close to the true distribution of b′ for most x’s and a′’s.

We make use of this asymmetry between Alice and Eve in the knowledge of the distribution
of b′ (given x and a) to perform key agreement. We do so by going through an intermediate
useful technical abstraction, which we call a Trapdoor Pseudoentropy Generator, that captures this
asymmetry. We first construct such a generator, and then show how to use any such generator to
do key agreement.

Trapdoor Pseudoentropy Generator. A distribution is said to possess pseudoentropy [HILL99]
if it is computationally indistinguishable from another distribution that has higher entropy13. We

12This error can be made negligible by parallel repetition [BIN97] (recall that parallel repetition preserves honest-
verifier zero-knowledge). Doing so however makes the prover’s messages longer. While this is not an issue when
dealing with deterministic provers, it will prove to be problematic in the general case of a randomized prover.

13By default, the measure of entropy employed is that of Shannon entropy. The Shannon entropy of a variable X
given Y is defined as: H(X|Y ) = Ey

[
−
∑
x Pr[X = x|y] · log(Pr[X = x|y])

]
.
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will later claim that in the protocol in Fig. 2 (when used with a randomized prover), the distribu-
tion of b′ has some pseudoentropy for the eavesdropper who sees only x and a′. In contrast, Alice,
who knows the witness w, can sample from the distribution that b′ was drawn from. This set of
properties is what is captured by our notion of a trapdoor pseudoentropy generator.

A trapdoor pseudoentropy generator consists of three algorithms. The key generation algorithm
KeyGen outputs a public and secret key pair (pk, sk). The encoding, given a public key pk, outputs
a pair of strings (u, v), where we call u the public message and v the private message.14 The
decoding algorithm Dec, given as input the corresponding secret key and the public message u,
outputs a value v′. These algorithms are required to satisfy the following properties (simplified
here for convenience):

• Correctness: The distributions of v and v′ are identical, given pk, sk, and u.

• Pseudoentropy: The distribution of v has some pseudoentropy given pk and u.

Correctness here only means that the secret key can be used to sample from the distribution of
the private message v corresponding to the given public message u. This captures the weaker notion
of agreement observed in the protocol earlier when Alice had sampling access to the distribution
of Bob’s output.

The pseudoentropy requirement says that without knowledge of the secret key, the private
message v seems to have more entropy – it looks “more random” than it actually is. This is meant
to capture the asymmetry of knowledge between Alice and Eve mentioned earlier.

Constructing a Trapdoor Pseudoentropy Generator. Our construction of a trapdoor pseu-
doentropy generator is described in Fig. 3. It is an adaptation of the earlier key exchange protocol
for deterministic provers (from Fig. 2). The public key is an instance x in the language L and
the corresponding secret key is a witness w for x – these are sampled using the solved-instance
generator. To encode with public key x, the simulator from the SZK argument for L is run on x
and the simulated verifier message a′ is set to be the public message, while the simulated prover
message b′ is the private message. To decode given x, w and a′, the actual prover is run with this
instance, witness and verifier message, and the response it generates is output.

KeyGen

1. Sample (x,w)← YL
2. Output (pk = x, sk = w)

Enc(pk = x)

1. Sample (a′, b′, r)← S(x)
2. Output (u = a′, v = b′)

Dec(pk = x, sk = w, u = a′)

1. Sample v′ ← P(x,w, a′)
2. Output v′

Figure 3: Trapdoor Pseudoentropy Generator

Now we argue that this is a valid pseudoentropy generator. Since we will need to be somewhat
precise, for the rest of this section, we introduce the jointly-distributed random variables X, A and
B, where X represents the instance (sampled from YL), A represents the verifier’s message (with
respect to X), and B represents the prover’s response (with respect to X and A). Note that since
the simulation in the SZK argument is perfect, A and B represent the distributions of the messages
output by the simulator as well.

14We refer to this procedure as an encoding algorithm because we think of the public message as an encoding of
the private message.
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The correctness of our construction follows from the perfect zero knowledge of the underlying
SZK argument – the private message v produced by Enc here is the simulated prover’s message
b′, while the output of Dec is the actual prover’s response b with the same instance and verifier’s
message. Both of these have the same distribution, which corresponds to that of B conditioned on
X = x and A = a′.

In order to satisfy the pseudoentropy condition, the variable B needs to have some pseudoen-
tropy given X and A. What we know, as mentioned earlier, is that B is unpredictable given X and
A – that no polynomial-time algorithm, given x and a′, can sample from a distribution close to
that of the corresponding prover’s message b. Towards this end, we will use a result of Vadhan and
Zheng [VZ12], who give a tight equivalence between unpredictability and pseudoentropy. Applied
to our case, their results say what we want – that the variable B has additional pseudoentropy
log(1/s) given X and A, where s is the soundness error from the SZK argument. More precisely,
there exists a variable C such that:

(X,A,B) ≈c (X,A,C) and H(C|X,A) > H(B|X,A) + log(1/s), (1)

where the above expressions refer to Shannon entropy. The result of Vadhan and Zheng applies
only when the variable B has a polynomial-sized domain, which holds since the proof-system is
laconic (this is the first out of several places in which we use the laconism of the proof-system).
The above shows that the construction in Fig. 3 is indeed a trapdoor pseudoentropy generator.
Finally, and this will be crucial ahead, note that the private message produced by Enc is short (i.e.,
the same length as the prover’s message in the SZK argument we started with).

In the case of an SZK protocol with r rounds, the above construction would be modified as
follows. The encoder Enc samples a transcript from S(x), picks i ∈ [r] at random, sets the public
message u to be all the messages in the transcript upto the verifier’s message in the ith round,
and the private message v to be the prover’s message in the ith of the transcript. The decoder Dec
samples v′ by running the prover on the partial transcript u to get the actual prover’s response in the
ith round.15 Zero knowledge ensures that v′ and v are distributed identically, and unpredictability
arguments similar to the ones above tell us that v′ has pseudoentropy at least log(1/s)/r.

From Laconic Trapdoor Pseudoentropy Generator to Key Agreement. Next, given a
trapdoor pseudoentropy generator, such as the one in Fig. 3, we show how to construct a single-
round key agreement protocol. We start with a pseudoentropy generator in which the public key
is pk, the private key is sk, the public message is u, the private message is v, and the output of
Dec is v′. The random variables corresponding to these are the same symbols in upper case. v
and v′ come from the distribution Vpk,u (V conditioned on PK = pk and U = u), and V has
additional pseudo-Shannon-entropy η given PK and U , where η can be thought of as a constant
(η was log(1/s) in the foregoing construction).

In the key agreement protocol, first Alice samples a key pair (pk, sk) for the pseudoentropy
generator and sends the public key pk to Bob. Bob runs (u, v) ← Enc(pk), keeps the private
message v and sends the public message u to Alice. We would like for Alice and Bob to agree on
the string v. In order for this to be possible, Bob needs to send more information to Alice so as to
specify the specific v that was sampled from Vpk,u. A natural idea is for Bob to send, along with

15For simplicity, assume that the prover is stateless so it can be run on a partial transcript. In the actual proof
we handle stateful provers as well.
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the message u, a hash h(v) of v, where h is a sampled from a pairwise independent hash function
family H.

Alice, on receiving the hash function h and the hash value h(v), uses rejection sampling to find
v. She can sample freely from the distribution Vpk,u by running Dec(sk, u) because she knows the
secret key sk of the pseudoentropy generator and the public message u. She keeps drawing samples
v′ from Vpk,u, until she finds one that hashes to h(v). Note that this brute force search is only
feasible if the number of strings in the support of V is small, which is the case if the number of bits
in v is small – considering the big picture, this is one of the reasons we want the the prover from
the SZK argument to be laconic.

The main question now is how to set the length of the hash function. On the one hand, having
a long hash helps agreement, as more information is revealed to Alice about v. On the other hand,
security demands a short hash that does not leak “too much” information about v.

For agreement, roughly speaking, if the hash length were more than the max-entropy16 of V
given PK and U , which we denote by Hmax(V |PK,U), then the set of possible prover responses is
being hashed to a set of comparable size, so with good probability, the hash value h(v) will have a
unique pre-image, which Alice can identify.

For security we would like to argue, using the Leftover Hash Lemma, that to any eavesdropper
h(v) looks uniformly random given (pk, u, h). This would be true if the hash length were less than
the min-entropy17 of V given PK and U , which we denote by Hmin(V |PK,U). Unfortunately, both
of the above conditions cannot hold simultaneously because the min-entropy is upper-bounded by
the max-entropy.

The crucial observation at this point is that Eve is computationally bounded. Hence, a com-
putational analogue of high min-entropy, which we will call pseudo-min-entropy, would suffice for
security. Concretely, consider a random variable C such that (PK,U,C) is computationally indis-
tinguishable from (PK,U, V ). Furthermore, suppose that the min-entropy of C given PK and U
is considerably larger than the hash length. We can then use the Leftover Hash Lemma to argue
that h(V ) looks uniform to efficient eavesdroppers:

(PK,U, h, h(V )) ≈c (PK,U, h, h(C)) ≈s (PK,U, h,R)

where R is the uniform distribution over the range of h.
The benefit of this observation is that, since C is only required to be computationally close and

not statistically close to V , the min-entropy of C given PK and U could be much larger than that
of V given PK and U . And if we can find a C such that Hmin(C|PK,U) is sufficiently larger than
Hmax(V |PK,U), then we will indeed be able to choose a hash length that is both large enough for
agreement and small enough for security.

Also notice that for the agreement to work, it is not necessary for the hash length to be larger
than the max-entropy of V (given PK and U) itself – instead, if there was another variable D such
that (PK,U,D) is statistically close to (PK,U, V ), and also Alice is somehow able to sample from
D given PK = pk and U = u, then it is sufficient for the hash to be longer than Hmax(D|PK,U).
Given such a variable, Bob will operate as he did earlier, but Alice can assume that he is actually
sampling from Dpk,u instead of Vpk,u, and since these two distributions are close most of the time,
the probability of Alice’s subsequent computation going wrong is small. This helps us because now

16The max entropy corresponds to the logarithm of the support size. The conditional max entropy of a random
variable X given Y is defined as: Hmax(X|Y ) = maxy log(| Supp(X|Y = y)|).

17The min-entropy of a variable X given Y is defined as: Hmin(X|Y ) = − log(maxx,y Pr[X = x|Y = y]).
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we might be able to find such a D that has lower max-entropy given PK and U than V , and then
Hmin(C|PK,U) would only have to be larger than this.

Following these observations, we set ourselves the following objective: find variables C and D
such that:

(PK,U,D) ≈s (PK,U, V ) ≈c (PK,U,C) and Hmax(D|PK,U) < Hmin(C|PK,U) (2)

What we do know about V is that it has some pseudo-Shannon-entropy given PK and U . That is,
there is a variable C such that:

(PK,U, V ) ≈c (PK,U,C) and H(C|PK,U) > H(V |PK,U) + η (3)

The rest of our construction deals with using this pseudo-Shannon-entropy to achieve the ob-
jectives above. This we do using a technique from Information Theory dating back to Shan-
non [Sha48] which is often referred to in the cryptography literature as flattening of distribu-
tions, which we describe next. We note that this technique has found use in cryptography be-
fore [HILL99, GV99, SV03].

Flattening and Typical Sets. The central idea here is that if we start with a distribution that
has Shannon entropy ξ and repeat it k times, then the new distribution is close to being uniform
on a set whose size is roughly 2kξ. This set is called the typical set ; it consists of all elements whose
probability is close to 2−kξ.

In our case, consider the distribution (PKk, Uk, V k), which is the k-fold product repetition of
(PK,U, V ). Roughly speaking, we define the typical set of V k conditioned on any (pk,u) in the
support18 of (PKk, Uk) as follows19:

TV k|pk,u =
{

v : Pr
[
V k = v

∣∣∣(PKk, Uk) = (pk,u)
]
≈ 2−kH(V |PK,U)

}
Considering the typical set is useful for several reasons. On the one hand, the typical set is

quite small (roughly 2kH(V |PK,U)) in size, which means that any distribution supported within it
has somewhat low max-entropy. On the other hand, there is an upper bound on the probability of
any element that occurs in it, which could be useful in lower bounding min-entropy, which is what
we want to do.

The most important property of the typical set it that it contains most of the probability mass
of the conditional repeated distribution. That is, for most (pk,u,v) sampled from (PKk, Uk, V k),
it holds that v lies in the typical set conditioned on (pk,u); quantitatively, Holenstein and Ren-
ner [HR11] show the following:

Pr
(pk,u,v)←(PKk,Uk,V k)

[
v 6∈ TV k|pk,u

]
< 2−Ω(k/q2) (4)

where q is the number of bits in each sample from V . Recall that in our earlier construction of
the trapdoor pseudoentropy generator, this corresponds to the length of the prover’s message in
the SZK argument we started with. We want the above quantity to be quite small, which requires
that k � q2. This is one of the considerations in our ultimate choice of parameters, and is another
reason we want the prover’s messages to not be too long.

18The support of (PKk, Uk) consists of vectors with k elements. We represent vectors by bold symbols, e.g., v.
19The actual definition quantifies how different from 2−kH the probability is allowed to be.
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Back to PKE Construction. We shall use the above facts to now show that V k has pseudo-
min-entropy given PKk and Uk. Let C be the random variable from the expression (3) above that
we used to show that V has pseudo-Shannon-entropy. After repetition, we have that:

(PKk, Uk, V k) ≈c (PKk, Uk, Ck) and H(Ck|PKk, Uk) = k ·H(C|PK,U) > k · (H(V |PK,U) + η).

Next, consider the variable C ′ that is obtained by restricting, for each pk and u, the variable Ck

to its typical set conditioned on (pk,u). By applying the bound of Holenstein and Renner (4) with
an appropriate choice of k, we infer that:

(PKk, Uk, Ck) ≈s (PKk, Uk, C ′).

Further, the upper bound on the probabilities of elements in the typical set tells us that C ′ has
high min-entropy20 given PKk and Uk:

Hmin(C ′|PKk, Uk) ≈ H(Ck|PKk, Uk) ≥ k · (H(V |PK,U) + η).

Putting the above few expressions together tells us that V k has some pseudo-min-entropy given
PKk and Uk, which is in fact somewhat more than its Shannon entropy:

(PKk, Uk, V k) ≈c (PKk, Uk, C ′) and Hmin(C ′|PKk, Uk) & H(V k|PKk, Uk) + k · η. (5)

This satisfies our objective of getting a variable – V k here – that has high pseudo-min-entropy
(given PKk and Uk). Our goal is now to find another variable that is statistically close to V k

given PKk and Uk, and also has small max-entropy given PKk and Uk. We do this using the same
approach as above. Consider the variable V ′ that is constructed from V k in the same way C ′ was
from Ck – for each (pk,u), restrict V k to its typical set conditioned on (pk,u). Again, bound (4)
tells us that the new distribution is close to the old one. And also, because of the upper bound on
the size of the typical set, we have an upper bound on the max-entropy21 of V ′ given PKk and Uk.

(PKk, Uk, V k) ≈s (PKk, Uk, V ′) and Hmax(V ′|PKk, Uk) . H(V k|PKk, Uk). (6)

Putting together expressions (5) and (6), we find that the relationship we want between these
entropies of C ′ and V ′ is indeed satisfied:

Hmin(C ′|PKk, Uk) & Hmax(V ′|PKk, Uk) + k · η.

To summarize, we manage to meet the conditions of expression (2) with respect to (PKk, Uk, V k)
(instead of (PK,U, V )) with C ′ taking the role of C and V ′ taking the role of D. We can now finally
fix the length of our hash – call it ` – to be between Hmax(V ′|PKk, Uk) and Hmin(C ′|PKk, Uk),
which can be done by setting it to a value between H(V k|PKk, Uk) and H(V k|PKk, Uk)+kη for an
appropriate k, and emulate the earlier protocol. We will be able to use the Leftover Hash Lemma
as desired to argue security and use the low max-entropy of V ′ to argue agreement.

The final key agreement protocol from a trapdoor pseudoentropy generator is presented in
Fig. 4.

20Hmin(C′|PKk, Uk) could actually be slightly less than the approximate lower bound presented here because there
is some slack allowed in the definition of the typical set – it can contain elements whose probabilities are slightly
larger than 2−kH(C|PK,U). We need to pick this slack carefully – if it is too large, C′ loses its min-entropy, and if it is
too small the typical set also becomes too small and the bound in (4), which actually depends on this slack, becomes
meaningless. This is another constraint on our choice of parameters.

21The same caveats as in Footnote 20 regarding the min-entropy of C′ apply here as well.
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Alice Bob

{(pki, ski)← KeyGen}i∈[k]
pk = (pk1, pk2 . . . pkk) {(ui, vi)← Enc(pki)}i∈[k]

Use the samplers {Dec(pki, ski, ui)} to recover

the distribution of V k conditioned on (pk,u).

Find v′ such that:

1. v′ is in the typical set of this distribution

2. h(v′) = h(v)

u, h, h(v) h← H`

Output v′ Output v

Figure 4: Key Agreement from Trapdoor Pseudoentropy Generator

How Laconic? To examine how long the prover’s message can be, lets recall the restrictions of
our construction. First, we need both parties to be efficient. While Bob is clearly efficient, Alice
performs an exhaustive search over the domain of possible prover messages. The size of this domain
is 2q·k because the parties repeat the underlying protocol k times and the length of each prover’s
message is q bits. For Alice to be efficient, this domain has to be polynomial-sized, requiring that
q ·k = O(log n), where n is the input length. Second, we need that the concentration bound for the
typical set (Eq. (4)) to be meaningful; that is, we need k/q2 to be at least a constant. Together,
these imply that q3 needs to be O(log n). Lastly, this setting of parameters also suffices for the
[VZ12] result that we used in Eq. (1).

1.4 Organization

In Section 2 we describe notions from cryptography and information theory that we need. In
Section 3 we formally describe and state our assumption and our main theorem. In Section 4 we
define and construct a trapdoor pseudoentropy generator. In Section 5 we use the latter to construct
a public-key encryption. In Section 6 we describe various extensions: that certain relaxations of our
assumption also yield public-key encryption, that a mild strengthening of our assumptions yields
a single-round oblivious transfer protocol, and that many concrete assumptions used to construct
public-key encryption in the past also imply our assumptions.

2 Preliminaries

In this section we recall notions from cryptography and information theory that will be used
throughout this work.

Notation and Conventions. We use lowercase letters for values, uppercase for random vari-
ables, uppercase calligraphic letters (e.g., U) to denote sets, boldface for vectors (e.g., x), and
uppercase sans-serif (e.g., A) for algorithms (i.e., Turing Machines). All logarithms considered here
are in base two. Given a probabilistic polynomial-time algorithm A, we let A(x; r) be an execu-
tion of A on input x given randomness r. We let poly denote the set all polynomials. A function
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ν : N → [0, 1] is negligible, denoted ν(n) = negl(n), if ν(n) < 1/p(n) for every p ∈ poly and large
enough n.

Given a random variable X, we write x ← X to indicate that x is selected according to X.
Similarly, given a finite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. We adopt the convention that when the same random variable occurs several
times in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X] is
defined to be the probability that when x ← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n. The support of a distribution D over a finite
set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}. The statistical distance of two distri-
butions P and Q over a finite set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| =
1
2

∑
u∈U |P (u)−Q(u)|. The data-processing inequality for statistical distance states that for any

randomized procedure F , it holds that SD(F (P ), F (Q)) ≤ SD(P,Q).
The k-fold product repetition of a random variable X is the random variable Xk such that

for every x = (x1, . . . , xk), it holds that Pr[Xk = x] =
∏k
i=1 Pr[X = xi]. For sake of notational

convenience, for jointly distributed random variables (X1, . . . , X`), we use (Xk
1 , . . . , X

k
` ) to denote

the k-fold product repetition (X1, . . . , X`)
k.

2.1 Public Key Encryption

In this section, we recall the definition of semantic-security [GM84] for public-key encryption (PKE).
We shall restrict our attention to bit-encryption schemes (i.e., schemes in which only single bit
messages are encrypted) and note that the latter implies full-fledged public-key encryption (c.f.,
[Gol09]).

Our definition includes parameters α and β which correspond, respectively, to the correctness
and security errors.

Definition 2.1 (Public Key Encryption). An α-correct β-secure public key encryption scheme is
a tuple of probabilistic polynomial-time algorithms (Gen,Enc,Dec) where Gen(1λ) outputs a pair of
keys (pk, sk), the encryption algorithm Enc(1λ, pk, σ) outputs a ciphertext ct (given the message
σ ∈ {0, 1} and the public key pk) and the decryption algorithm Dec(1λ, sk, ct) returns a decrypted
message (given the secret key sk and the ciphertext ct). The scheme satisfies the following properties:

• Correctness: For all sufficiently large λ ∈ N:

Pr
[
Dec

(
1λ, sk,Enc(1λ, pk, σ)

)
= σ

]
>

1 + α(λ)

2
,

where the probability is over σ ← {0, 1}, (pk, sk) ← Gen(1λ) and the randomness of Enc and
Dec.

• Semantic Security: For every probabilistic polynomial-time adversary A and sufficiently
large λ ∈ N, it holds that

Pr
[
A
(
1λ, pk,Enc(1λ, pk, σ)

)
= σ

]
<

1 + β(λ)

2
,

where the above probability is over σ ← {0, 1}, (pk, sk)← Gen(1λ) and the randomness of Enc
and A.
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If a scheme is α-correct β-secure for some constants α > β > 0, then we say the scheme is a
weak public-key encryption scheme. If such a scheme is (1 − 1/λc)-correct (1/λc)-secure for every
c > 0, we say that it is a semantically secure public-key encryption scheme.

For some parameters of α and β, weak public-key encryption schemes can be amplified to
semantically secure public-key encryption schemes

Theorem 2.2 ([HR05, Theorem 6]). Let α and β be constants such that α2 > β. If there exists an
α-correct β-secure public-key encryption scheme, then there exists a semantically secure public-key
encryption scheme.

2.2 Universal Hashing

Universal hash functions are used extensively in complexity theory and cryptography.

Definition 2.3 (Universal Hash Function). A family of functions H = {h : [N ]→ [M ]} is Universal
if for every distinct x1, x2 ∈ [N ], it holds that

Pr
h←H

[
h(x1) = h(x2)

]
=

1

M
.

Fact 2.4 (c.f. [Vad12, Theorem 3.26]). For every n,m ∈ N, there exists a family of universal hash
functions Hn,m = {h : {0, 1}n → {0, 1}m} where a random function from Hn,m can be selected using
max(m,n) + m bits, and given a description of h ∈ Hn.m and x ∈ {0, 1}n, the value h(x) can be
evaluated in time poly(n,m).

2.3 Entropy and Divergence

Concepts from information theory, including various notions of entropy, play a pivotal role in this
paper.

Definition 2.5 (Shannon, Conditional, and Min Entropies). Let X be a random variable taking
values in a discrete alphabet X . The entropy of X is defined as

H(X) =
∑

x∈Supp(X)

Pr[X = x] · log

(
1

Pr[X = x]

)
= E

x←X

[
log

(
1

Pr[X = x]

)]
.

Let Y be a random variable taking values in a discrete alphabet Y, which is jointly distributed with
X. The conditional entropy of X given Y is defined as

H(X|Y ) = E
y←Y

[H(X|Y = y)] = E
(x,y)←(X,Y )

[
log

(
1

Pr[X = x | Y = y]

)]
.

Finally, the min-entropy of X is defined as

H∞(X) = min
x∈X

log

(
1

Pr[X = x]

)
We recall some basic facts about entropy.

16



Fact 2.6 (Chain Rule for Entropy). For any jointly distributed random variables X and Y it holds
that H(X,Y ) = H(X) + H(Y |X).

Fact 2.7 (Conditioning does not Increase Entropy). For any jointly distributed random variables
X and Y it holds that H(X|Y ) ≤ H(X).

Fact 2.8 ([Vad99, Fact 3.3.9]). For any two random variables X and Y , taking values in U , it
holds that

|H(X)−H(Y )| ≤ log(|U|) · γ + h(γ),

where γ = SD(X,Y ) and h(p) = p · log(1/p) + (1−p) · log(1/(1−p)) is the binary entropy function.

Fact 2.9. For any three jointly distributed random variables X, Y and Z, such that X and Y take
values in U , it holds that

|H(X|Z)−H(Y |Z)| ≤ log(|U|) · γ + h(γ),

where γ = SD((X,Z), (Y,Z)).

Proof. Let γz = SD((X|Z = z), (Y |Z = z)). It holds that

H(X|Z)−H(Y |Z) = E
z←Z

[H(X|Z = z)−H(Y |Z = z)]

≤ E
z←Z

[log(|U |) · γz + h(γz)]

= log(|U |) · E
z←Z

[γz] + E
z←Z

[h(γz)]

≤ log(|U |) · E
z←Z

[γz] + h

(
E

z←Z
[γz]

)
= log(|U |) · γ + h(γ),

where the first inequality follows from Fact 2.8, the second inequality follows from Jensen’s inequal-
ity on the concave function h(·) (i.e., the binary entropy function), and the last equality follows from
the fact that Ez←Z [γz] = γ. We can bound H(Y |Z)−H(X|Z) similarly and Fact 2.9 follows.

We use Divergence to measure “distance” between distributions (or random variables).

Definition 2.10 (Divergence (aka Kullback-Leibler divergence, aka relative entropy)). Let X and
Y be random variables taking values in a discrete alphabet X . The divergence from X to Y is
defined as

KL(X||Y ) =
∑
x∈X

Pr[X = x] · log

(
Pr[X = x]

Pr[Y = x]

)
,

or ∞ if Pr[X = x] > 0 = Pr[Y = x] for some x ∈ X , with the convention that 0 log p
0 = 0.

For p, q ∈ [0, 1], the binary divergence from p to q is defined as KL(p||q) = KL(X||Y ), for
X ∼ Bernoulli(p) and Y ∼ Bernoulli(q).

The following facts are well-known:
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Fact 2.11 (Chain Rule for Divergence, see [PW16, Theorem 2.2(4)]). It holds that

KL(X1, X2, . . . , Xk||Y1, Y2, . . . , Yk) =
k∑
i=1

E
x←Xi−1

[KL(Xi|Xi−1=x||Yi|Y i−1=x)]

=

k∑
i=1

E
Xi−1

[KL(Xi|Xi−1 ||Yi|Xi−1)],

where Xi = (X1, . . . , Xi) and Y i = (Y1, . . . , Yi).

Fact 2.12 (Data-Processing for Divergence, see [PW16, Theorem 2.2(6)]). For any (possibly ran-
domized) process P, it holds that

KL(P(X)||P(Y )) ≤ KL(X||Y ).

The following two facts relate to the binary divergence function as defined above. Using the
fact that the mapping (p, q) 7→ KL(p||q) is convex (see [PW16, Theorem 4.1]) and its minimum is
attained at the line p = q it follows that:

Fact 2.13. For every 1 ≥ p ≥ p′ ≥ q′ ≥ q ≥ 0, it holds that

KL
(
p′
∣∣∣∣q′) ≤ KL(p||q),

and equality holds iff p = p′ and q = q′.

Finally, we note that slightly increasing the second argument for the binary divergence function
does not change its value by much.

Fact 2.14. For every p, q ∈ (0, 1) and γ ∈ [0, 1− q), it holds that

KL(p||q)−KL(p||q + γ) ≤ 2 · p
q
· γ.

Proof. Straightforward calculations show that

KL(p||q)−KL(p||q + γ) = p · log

(
p

q

)
+ (1− p) · log

(
1− p
1− q

)
− p · log

(
p

q + γ

)
− (1− p) · log

(
1− p

1− (q + γ)

)
= p · log

(
q + γ

q

)
+ (1− p) · log

(
1− q − γ

1− q

)
≤ p · log

(
1 +

γ

q

)
≤ 2 · p

q
· γ,

where the first inequality follows by removing negative terms and the second since log(1 + x) ≤ 2x
for any x ≥ 0.
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2.4 Pseudoentropy

Intuitively, a distribution Y has pseudoentropy if there exists a high-entropy distribution Z that is
indistinguishable from Y . We are interested in conditional pseudoentropy, which refers to a joint
distribution (X,Y ), and stipulates the existence of a distribution Z, jointly distributed with (X,Y ),
such that (1) Z|X has high (conditional) entropy, and (2) (X,Y ) is computationally indistinguish-
able from (X,Z). When considering non-uniform adversaries, the intuition translates directly into
a definition. In the uniform case, however, the definition is slightly more complicated. Since,
we prefer to show uniform reductions, we present that definition, and discuss why the additional
complications immediately after the definition.

Definition 2.15 (Conditional Pseudoentropy (c.f. [VZ12, Definition 2.12])). Let t = t(λ) ∈ N,
ε = ε(λ) ∈ [0, 1] and m = m(λ) ≥ 0. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of
random variables such that Xλ and Yλ are jointly distributed over Xλ × Yλ. We say that Y has
(t, ε) conditional pseudoentropy at least m given X if for every oracle-aided probabilistic algorithm
A that on input (1λ, x, y) runs in time t(λ), there is a sequence of random variables Z = {Zλ}λ∈N
over Yλ, jointly distributed with X,Y , such that the following hold for large enough λ ∈ N:

1. H(Zλ|Xλ) ≥ m(λ);

2. Let OX′λ,Y
′
λ,Z
′
λ

denote an oracle that returns random independent samples from (X ′λ, Y
′
λ, Z

′
λ)

when queried, where (X ′λ, Y
′
λ, Z

′
λ) are identically distributed as (Xλ, Yλ, Zλ). Then, it holds

that ∣∣∣Pr
[
A
OX′

λ
,Y ′
λ
,Z′
λ (1λ, Xλ, Yλ) = 1

]
− Pr

[
A
OX′

λ
,Y ′
λ
,Z′
λ (1λ, Xλ, Zλ) = 1

]∣∣∣ ≤ ε(λ),

where the above probabilities are over Xλ, Yλ, Zλ, the random coins of A and the samples
generated by OX′λ,Y

′
λ,Z
′
λ
.

We say that Y has conditional pseudoentropy at least m given X if for every constant c > 0, Y has
(λc, 1/λc) conditional pseudoentropy at least m− 1/λc given X.

The reason that the oracle samples from (X ′, Y ′, Z ′) (and not (X,Y, Z)) is to emphasize its
samples are independent from the inputs given to the distinguisher A (namely (X,Y, Z)). The
reason to give the distinguisher oracle access to samples from the distributions is to ensure that
repetition preserves pseudoentropy. Intuitively, assume that X is indistinguishable from Y and
H(Y ) ≥ m, namely X has pseudoentropy at least m. We would like that if (X1, X2) are independent
copies of X, they would have pseudoentropy at least 2m. Namely we would like that (X1, X2) are
indistinguishable from (Y1, Y2). However, to prove this one must have the ability to sample from
X and Y . See [VZ12] for additional discussion. Lastly, following [VZ12], Definition 2.15 allows the
distribution Z to depend on the adversary A.

We will use the fact that if (X,Y ) are statistically close to (X̃, Ỹ ) and Y has high conditional
pseudoentropy given X, then also Ỹ has high conditional pseudoentropy given X̃.

Proposition 2.16. Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N, X̃ = {X̃λ}λ∈N, Ỹ = {Ỹλ}λ∈N be sequences

of random variables such that Xλ and Yλ are jointly distributed over Xλ×Yλ and the same for X̃λ

and Ỹλ.

Assume log(|Xλ| · |Yλ|) = poly(λ), SD
(

(Xλ, Yλ), (X̃λ, Ỹλ)
)
≤ negl(λ) and Y has conditional

pseudoentropy at least m = m(λ) given X. Then also Ỹ has conditional pseudoentropy at least
m = m(λ) given X̃.
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Since the proof of this statement is not completely straightforward, we give it in full here.

Proof. Assume toward a contradiction that Ỹ does not have conditional pseudoentropy at least
m = m(λ) given X̃. Namely that there exists c̃ > 0 and an algorithm A running in time λc̃ such
that for every sequence of random variables Z̃ = {Z̃λ}λ∈N there exists an infinite index-set Λ ⊆ N
such that for every λ ∈ Λ, if H(Z̃λ|X̃λ) ≥ m(λ)− 1/λc̃ then∣∣∣Pr

[
A
OX̃′

λ
,Ỹ ′
λ
,Z̃′
λ (1λ, X̃λ, Ỹλ) = 1

]
− Pr

[
A
OX̃′

λ
,Ỹ ′
λ
,Z̃′
λ (1λ, X̃λ, Z̃λ) = 1

]∣∣∣ > 1

λc̃
. (7)

We use A to break the conditional pseudoentropy of Y given X.
Fix c > c̃ to be determined by the analysis and let Z = {Zλ}λ∈N be a sequence of random

variables jointly distibuted with X,Y such that H(Zλ|Xλ) ≥ m(λ)− 1/λc, for large enough λ ∈ N.
Let Fλ(x, y) be the random process that samples from Zλ conditioned on Xλ = x and Yλ = y.
Namely (Xλ, Yλ, Zλ) ≡ (Xλ, Yλ, Fλ(Xλ, Yλ)). Let Z̃ = {Z̃λ}λ∈N be a sequence of random variables
jointly distributed with X̃, Ỹ such that Z̃λ ≡ Fλ(X̃λ, Ỹλ). Fix large enough λ ∈ N (which we omit
from the notation). It holds that

SD
(

(X,Y, Z), (X̃, Ỹ , Z̃)
)
≤ SD

(
(X,Y ), (X̃, Ỹ )

)
= negl(λ),

where the inequality follows from data-processing inequality for statistical distance (on the random
process that takes (x, y) and outputs (x, y, F (x, y))).

Using the above, we argue that the entropy of Z̃|X̃ is high. Using Facts 2.6 and 2.8 it holds
that ∣∣∣H(Z̃|X̃)−H(Z|X)

∣∣∣ ≤ ∣∣∣H(X̃, Z̃)−H(X,Z)
∣∣∣+
∣∣∣H(X̃)−H(X)

∣∣∣
≤ log(|X | · |Y|) · negl(λ) + negl(λ) + log(|X |) · negl(λ) + negl(λ)

= negl(λ),

where the second inequality follows since h(p) ≤ 2
√
p for every p ∈ [0, 1] and the equality follows

from the assumption on the sizes of X and Y. It follows that

H(Z̃|X̃) ≥ m− 1/λc − negl(λ) ≥ m− 1/λc̃.

Hence, Eq. (7) holds with respect to Z̃.

Using again that SD
(

(X,Y, Z), (X̃, Ỹ , Z̃)
)

= negl(λ), and since A runs in polynomial time (and

thus can make at most polynomially many queries to its oracle), it holds that∣∣∣Pr
[
A
OX′

λ
,Y ′
λ
,Z′
λ (1λ, Xλ, Yλ) = 1

]
− Pr

[
A
OX′

λ
,Y ′
λ
,Z′
λ (1λ, Xλ, Zλ) = 1

]∣∣∣
≥
∣∣∣Pr
[
A
OX̃′

λ
,Ỹ ′
λ
,Z̃′
λ (1λ, X̃λ, Ỹλ) = 1

]
− Pr

[
A
OX̃′

λ
,Ỹ ′
λ
,Z̃′
λ (1λ, X̃λ, Z̃λ) = 1

]∣∣∣− poly(λ) · negl(λ)

≥ 1

λc̃
− negl(λ)

≥ 1

λc
.

Setting c to be large enough so that A runs in λc time, we conclude that Y does not have
(λc, 1/λc) conditional pseudoentropy at least m−1/λc given X, a contradiction to the assumption.
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3 The Assumption and Main Theorem

In this section, we specify our assumption on the existence of laconic zero-knowledge proof-systems
(which we will later show to imply public-key encryption). To do so, we first introduce some
necessary definitions and notations.

Throughout this section (and beyond), we use L to denote an NP language with witness relation
RL. We use YL and NL to denote probabilistic polynomial-time algorithms that are to be seen
as sampling algorithms for YES and NO instances of L. More specifically, the sampler YL(1λ)
outputs samples of the form (x,w) such that with all but negligible probability (in λ), it holds that
(x,w) ∈ RL. We call YL a solved instance generator. On the other hand, NL(1λ) outputs samples
x such that with all but negligible probability, x /∈ L. We shall not rely on the fact that the NO
sampler NL is an efficient algorithm. Still we find it easier to present it as such for symmetry with
YL (which must be efficient).

We shall be concerned with properties of the tuple (L,YL,NL) – the language L equipped with
(efficiently sampleable) distributions over its YES and NO instances (where YES instances come
with corresponding witnesses). Since the choice of YES and NO distributions is always clear from
the context, we often simply refer to the above tuple as the language (although we actually mean
the language L with these specific distributions over its instances). We start by defining what we
mean when we say that such a language is cryptographically hard.

Definition 3.1 (Cryptographic Hardness). Let t = t(λ) ∈ N and ε = ε(λ) ∈ [0, 1]. The language
(L,YL,NL) is (t, ε)-cryptographically hard if YL is a solved instance generator, and for every prob-
abilistic algorithm A that on input (1λ, x) runs in time t(λ) and for all sufficiently large λ ∈ N it
holds that: ∣∣∣∣ Pr

(x,·)←YL(1λ)

[
A(1λ, x) = 1

]
− Pr
x←NL(1λ)

[
A(1λ, x) = 1

]∣∣∣∣ ≤ ε(λ).

We say that (L,YL,NL) is cryptographically hard if it is (λc, 1/λc)-hard for every constant c > 0.

Being cryptographically hard is a stronger requirement than the usual notion of average-case
hardness (the latter means that it is hard to distinguish a random YES instance from a random NO
instance). Specifically, cryptographic hardness requires both (1) average-case hardness and (2) the
existence of a solved instance generator (wrt the average-case hard distribution). In particular, the
existence of a cryptographically hard language is equivalent to the existence of one-way functions.22

As noted above, when we say that the language L is cryptographically hard we are actually implicitly
referring to the sampling algorithms YL and NL.

Next we define honest-verifier statistical zero-knowledge (SZK) arguments, which are similar
to statistical honest-verifier zero-knowledge proofs but the soundness condition is only required
to hold against malicious provers that run in polynomial-time. We remark that since we will be
using the existence of SZK arguments to construct other objects, both the relaxations that we

22That YES instances are indistinguishable from NO instances implies that it is hard to compute a witness for
a YES instance. Given this, a function that takes coins for YL and outputs the instance (but not the witness)
generated by YL is one-way (c.f., [Gol08, Proposition 7.2]). For the other direction, assuming that one-way functions
exist implies the existence of a linear-stretch pseudorandom generators (PRG) G [HILL99]. The language that is
cryptographically hard contains those strings that are in the range of G. The solved instance generator samples a
random string r and outputs G(r) as the input and r as the witness. The corresponding NO distribution is that of a
random string in the range of the PRG.
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employ (namely requiring only computational soundness and honest verifier zero knowledge) only
strengthen our results.

Below, we use (P,V)(1λ, x) to refer to the transcript of an execution of an interactive protocol
with prover P and verifier V on input (1λ, x). We also use (P(w),V)(1λ, x) to denote a similar
execution where the prover is additionally given a witness w as an auxiliary input. In both cases,
we sometimes also use the same notation to refer to the result (i.e., verifier’s output) of such an
execution – the appropriate interpretation will be clear from context.

Definition 3.2 (SZK Arguments). Let c = c(λ) ∈ [0, 1] and s = s(λ) ∈ [0, 1]. An interactive
protocol (P,V) is an Honest Verifier SZK Argument with completeness error c and soundness error s
for a language L ∈ NP, with witness relation RL, if the following properties hold:

• Efficiency: Both P and V are probabilistic polynomial-time algorithms.

• Completeness: For any (x,w) ∈ RL, and all large enough λ:

Pr
[
(P(w),V)(1λ, x) accepts

]
≥ 1− c(λ),

where the parameter c is called the completeness error.

• Soundness: For any probabilistic polynomial-time cheating prover P?, any x /∈ L, and large
enough λ:

Pr
[
(P∗,V)(1λ, x) accepts

]
≤ s(λ),

where the parameter s is called the soundness error.

• Honest Verifier Statistical Zero Knowledge: There is a probabilistic polynomial-time
algorithm S (called the simulator) that when given any x ∈ L simulates the transcript of the
interactive proof on input x. That is, for any (x,w) ∈ RL and for all sufficiently large λ:

SD
(

(P(w),V)(1λ, x),S(1λ, x)
)
≤ negl(λ).

Note that our definition only deals with NP languages and requires that the prover is efficient.
Typically, when defining an SZK proof (rather than argument) this is not done, and the honest
prover is allowed to be computationally unbounded. However, this is the natural choice since we
focus on argument systems (where the soundness requirement is only against malicious provers that
are also efficient).

Remark 3.3 (Restricted-view Simulation). For our main result, it suffices that the simulator only
simulates the transcript of the interactive proof and not the random-coins of the verifier. The
standard definition of simulation is stronger – it also requires that the simulator output random-
coins for the verifier that are consistent with the transcript. Ostrovsky [Ost91] called the weaker
notion restricted-view simulation, and showed that average-case hard languages with honest-verifier
SZK proofs with restricted-view simulation (without efficient provers) imply the existence of one-way
functions.

We will be dealing with SZK arguments that have additional properties captured by the next
definition. Recall that a round in an interactive proof is a pair of messages, the first one (possibly
empty) from V to P, and the next the other way.
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Definition 3.4 (Laconism). Let q = q(λ) ∈ N and r = r(λ) ∈ N. An interactive protocol (P,V) is
said to be r-round and q-laconic if it has at most r(λ) rounds, and each message from P to V is
at most q(λ) bits long when run on any input (1λ, x), for large enough λ.

We can now state our main assumption as follows.

Assumption 3.5. There exists a cryptographically hard language (L,YL,NL) for which there is an
r-round and q-laconic honest-verifier SZK argument with completeness error c and soundness error
s such that:

• There is a constant β > 0 such that 1− c(λ) > s(λ) + β, for large enough λ ∈ N.

• q and r are such that r2 · q3 = O(log(λ)).

Our main result is given in the next theorem.

Theorem 3.6 (PKE from Laconic SZK). If Assumption 3.5 holds, then there exists a public-key
encryption scheme.

In Sections 4 and 5 we show how to use Assumption 3.5 to construct a public-key encryption
scheme. The formal proof of Theorem 3.6 is given in the beginning of Section 5. In Section 6, we
consider two relaxations of Assumption 3.5 – namely, Assumptions 6.2 and 6.6 – each of which still
suffices for our construction of PKE; we then compare other concrete assumptions that have been
used in the past to construct public-key encryption to these weaker assumptions.

4 From Laconic SZK to Trapdoor Pseudoentropy Generator

In this section we show that if Assumption 3.5 is true — that is, there exists a cryptographically
hard NP language with a laconic (honest-verifier) statistical zero-knowledge argument-system —
then there exists a “trapdoor pseudoentropy generator”, which we define next. This notion turns
out to be a useful technical abstraction and will be used later, in Section 5, to construct a public-key
encryption scheme.

Classic pseudoentropy generators, first introduced in the work of [HILL99], are algorithms whose
output distribution has pseudoentropy. That is, the output distribution of the algorithm (given a
uniformly random seed) is statistically close to a distribution that had high entropy. Pseudoentropy
generators play a central role in the construction of pseudorandom generators from (general) one-
way functions [HILL99, HRV13, VZ12].

Trapdoor pseudoentropy generators extend the classic notion of pseudoentropy generators to the
“public-key settings”. Such generators consist of three algorithms. The first algorithm generates a
pair of keys, one public and one secret. The second algorithm, which we think of as an encoder,
gets the public key as input and generates a distribution which has high pseudoentropy, even to an
observer who has the public key but not to one that has the secret-key. Indeed, to a party holding
the secret key the output distribution of the encoder “looks” less random. This is captured by the
third algorithm, the decoder, that samples elements from a distribution close to that of the encoder
- given the secret key. We proceed to the actual definition, that realize the above discussion but
for conditional distributions.
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Definition 4.1 (Trapdoor Pseudoentropy Generator). Let λ be a security parameter, ε = ε(λ) ∈
[0, 1] and n = n(λ) > 0. An n-entropic, trapdoor pseudoentropy generator scheme with correctness er-
ror ε is a tuple of probabilistic polynomial-time algorithms (KeyGen,Enc,Dec) where KeyGen(1λ) out-
puts a pair of keys (pk, sk), the encoding algorithm Enc(1λ, pk) outputs a pair of messages (u, v) and
the decoding algorithm Dec(1λ, sk, u) outputs a message v′. The scheme satisfies the following prop-
erties with respect to the jointly distributed sequences of random variable PK = {PKλ}λ∈N, SK =
{SKλ}λ∈N, U = {Uλ}λ∈N, V = {Vλ}λ∈N and V ′ = {V ′λ}λ∈N, where (PKλ, SKλ) ← KeyGen(1λ),
(Uλ, Vλ)← Enc(1λ, PKλ) and V ′λ ← Dec(1λ, PKλ, SKλ, Uλ):

• Correctness (of Decoding): For all sufficiently large λ ∈ N:

SD
(
(PKλ, SKλ, Uλ, Vλ),

(
PKλ, SKλ, Uλ, V

′
λ

))
≤ ε(λ).

• Pseudoentropy: V has conditional pseudoentropy23 at least H(V |PK,U) + n given PK,U .

An n-entropic trapdoor pseudoentropy generator scheme is q-laconic, for q = q(λ) ∈ N with
q ≥ n, if the output of the decoding algorithm (i.e., v′) and the private message of the encoding
algorithm are at most q(λ)-bit long strings.24

We refer to the first message of the encoding algorithm (i.e., u) as its public message and to the
second message (i.e., v) as its private message.

Remark 4.2 (Accessible Entropy). Another possible way to define the correctness property of a
trapdoor pseudoentropy generator is in terms of accessible entropy [HRVW09]. Roughly, such a
definition would require that for the decoder (who has the secret-key), the entropy of V is much
less than for an efficient external eavesdropper (with only the public key). That is, that V has low
accessible entropy to the decoder with the secret-key and high pseudoentropy to an efficient external
eavesdropper. Such a definition, however, will (slightly) complicate our proof, so we chose to define
the correctness in terms of statistical distance.

The main result of this section is to show that Assumption 3.5 implies the existence of a trapdoor
pseudoentropy generator.

Lemma 4.3. Assume that Assumption 3.5 holds for a language L with an r-round q-laconic SZK
argument-system with completeness error c and soundness error s, such that c, s > 0 are con-
stants. Then for every p = poly(λ) that is computable in poly(λ) time, there exists a q-laconic,
(KL(1− c||s)/r)-entropic trapdoor pseudoentropy generator scheme with correctness error (1/p).

In Section 5 we show a generic transformation from trapdoor pseudoentropy generators to
public-key encryption. Together with Lemma 4.3, this establishes the proof of our main result
that laconic SZK argument-system for cryptographically hard NP language implies the existence of
public-key encryption (Theorem 3.6).

Section Outline. The rest of this section is devoted to the proof of Lemma 4.3. In Section 4.1,
we give the construction of our trapdoor pseudoentropy generator scheme. We also state two
lemmas showing, respectively, the correctness and pseudoentropy of the construction. We prove
the correctness lemma in Section 4.2 and the pseudoentropy lemma in Section 4.3.

23Roughly speaking, a random variable B has pseudoentropy at least m if for every efficient algorithm A there
exists a random variable Z with H(Z) ≥ m and A cannot distinguish between B and Z. See Definition 2.15 and the
discussion that follows.

24The restriction to q ≥ n is simply because the entropy is bounded by the length of the string.

24



4.1 Construction of Trapdoor Pseudoentropy Generator

In this section, we describe our trapdoor pseudoentropy generator. Since the security parameter λ
will always be clear from the context, in the following we usually omit it from the notation (e.g.,
we will refer to the random variable X even though we actually mean Xλ).

Recall that Assumption 3.5 stipulates that there exists an cryptographically hard language
L ∈ NP with an r-round q-laconic SZK argument system (P,V,S), with completeness error c and
soundness error s. We use (YL,NL) to denote the sampling algorithms for which the language
is cryptographically hard, where YL is a solved instance generator and NL samples NO instances
(with all but negligible probability).

Construction. In addition to the above parameters, our construction also depends on a poly-
nomial p = poly(λ) such that p(λ) is computable in poly(λ) time. This parameter will control the
correctness error of the scheme.

We begin with an overview of the construction (a formal description follows).

Key Generation: The public key is a yes-instance x. The secret key is w, the corresponding
witness for x.

Encoding (x): First, sample a full transcript of interaction using the simulator S(x). Second,
choose a random round i ← [r] and set b′i to be the i-th message the prover sent in the
transcript and c′− to be the transcript up to b′i (including the verifier’s message in the i-
th round and precluding b′i). Output (i, c′−) as the public message and b′i as the private
message.25

Decoding (w, (i, c′−)): To decode, we use the prover to generate its next message in an interaction
consistent with the partial transcript c′−. The decoder generates fresh coin tosses ρ for P
that are consistent with c′−. This is done via rejection sampling. Namely, Dec repeatedly
chooses a random string ρ and checks whether given ρ and the verifier’s messages in c′−, the
prover P would have sent the prover’s messages in c′−. Once it finds such a random string ρ,
it computes the next message function of P given random coins ρ and the transcript c′−. To
avoid running for too long, the decoder only runs 2r·q ·p iterations of the rejection sampling. If
it fails to find consistent coins, the decoder outputs an arbitrary q-bit string (e.g., the all-zero
string).

The formal description of the trapdoor pseudoentropy generator scheme is given in Fig. 5.
Throughout this section we fix all the above parameters and denote

(KeyGen,Enc,Dec) = (KeyGen,Enc,Dec)p,YL,P,V,S,r,q.

We next state two lemmas which establish the correctness and pseudoentropy properties of the
scheme, respectively. To do so, we first introduce random variables corresponding to a random
execution of the argument-system for L. As usual, the following sequences of random variables are
indexed by λ ∈ N, but for brevity we omit λ from the notations, and also from the arguments that
Enc and Dec take. Let (X,W ) be an input-witness pair chosen according to the solved instance
generator YL. Let Ai (resp., Bi) be the i-th message sent by V (resp., P) in a random execution

25Here and below we use the prime symbol (e.g., b′) to hint that a value was generated by the simulator rather
than an actual execution.
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(KeyGen,Enc,Dec)p,YL,P,V,S,r,q

Parameters: p = poly(λ).
Algorithms:
• YL: Solved instance generator for L ∈ NP.
• (P,V,S): r(λ)-round q(λ)-laconic SZK argument system for L

KeyGen(1λ)

1. Sample (x,w)← YL(1λ)
2. Set pk = x and sk = w
3. Output (pk, sk)

Enc(1λ, pk)
1. Interpret pk = x
2. Sample (a′1, b

′
1, . . . , a

′
r, b
′
r)← S(1λ, x)

3. Sample i← [r]
4. Set c′− = (a′1, b

′
1, . . . , b

′
i−1, a

′
i)

5. Set u = (i, c′−) and v = b′i
6. Output (u, v)

Dec(1λ, pk, sk, u)

1. Interpret pk = x, sk = w and u = (i, c′−), where c′− = (a′1, b
′
1, . . . , a

′
i−1, b

′
i−1, a

′
i)

2. Repeat for 2 · 2r(λ)·q(λ) · p(λ) times
(a) Sample ρ, coins for P, at random
(b) For every j ∈ [i], set bj = P

(
1λ, x, w, (a′1, b1, . . . , a

′
j−1, bj−1, a

′
j) ; ρ

)
(c) If (b1, . . . , bi−1) = (b′1, . . . , b

′
i−1), then set v′ = bi and abort the loop

3. If v′ was not set until now, set it to ⊥
4. Output v′

Figure 5: Trapdoor Pseudoentropy Generator from Laconic Zero-Knowledge

of the protocol on input X (where P also gets access to W ). We denote the transcript of the
protocol (P,V) by (P(W ),V)(X) = (A1, B1, A2, B2 . . . Ar, Br), and the transcript generated by
the simulator as S(X) = (A′1, B

′
1, . . . , A

′
r, B

′
r).

For a round i ∈ [r], we denote the partial transcript up to (and including) round i by Ci =
(A1, B1, . . . , Ai, Bi). We use C−i to denote a random variable that is identical to Ci, except it
is missing the i-th message of the prover (but includes the i’s message of the verifier), namely
C−i = (A1, B1, . . . , Bi−1, Ai). The partial transcripts C ′i and C ′−i are similarly defined with respect
to the simulated transcript (A′1, B

′
1, . . . , A

′
r, B

′
r). We also let I ← [r] be a uniformly distributed

integer in [r], which corresponds to a random round. Finally, we denote by B̃′I the output of
Dec(X,W, I, C ′−).
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Lemma 4.4 (correctness). For large enough λ ∈ N, it holds that

SD
(

(X,W, I, C ′−I , B
′
I), (X,W, I, C

′−
I , B̃

′
I)
)
≤ 1

p(λ)
.

Lemma 4.5 (pseudoentropy). The random variable B′I has conditional pseudoentropy at least
H(B′I |X, I, C

′−
I ) + 1

r ·KL(1− c||s) given (X, I, C ′−I ).

Lemmas 4.4 and 4.5 are proven in Sections 4.2 and 4.3, respectively. Together, they immediately
yield Lemma 4.3.

Proof of Lemma 4.3 (given Lemmas 4.4 and 4.5). By Lemmas 4.4 and 4.5, the correctness error
of the trapdoor pseudoentropy generator scheme (KeyGen,Enc,Dec) is (1/p) and the scheme is(

1
r ·KL(1− c||s)

)
-entropic. Moreover, it is easy to verify that the running times of KeyGen, Enc

and Dec are all polynomials in λ (since the prover is efficient given the witness) and that the scheme
is q-laconic.

4.2 Correctness — Proving Lemma 4.4

The proof of Lemma 4.4 follows from the statistical zero-knowledge property of the argument-
system and from the following analysis which shows that the distribution generated by Dec is close
to that generated by the prover’s next message.

Let B̃I be the output of Dec(X,W, I, C−I ); that is, B̃I is similar to B̃′I , except that Dec gets as
input a partial transcript sampled from the original protocol rather than a simulated one

Claim 4.5.1. It holds that:

SD
(

(X,W, I, C−I , BI), (X,W, I, C
−
I , B̃I)

)
≤ 1

2p(λ)
.

Before proving Claim 4.5.1, let us use it to prove Lemma 4.4.

Proof of Lemma 4.4 (given Claim 4.5.1). The following holds for large enough λ ∈ N. By the
zero-knowledge property of the argument system it holds that,26

SD
(
(X,W, I, C ′−I , B

′
I), (X,W, I, C

−
I , BI)

)
= SD

(
(X,W, I, C ′I), (X,W, I, CI)

)
(8)

≤ SD
(
(X,W,C ′r), (X,W,Cr)

)
= SD((X,W, (P(W ),V)(X)), (X,W,S(X)))

= E
(x,w)←YL

[SD((P(w),V)(x),S(x))]

= negl(λ),

where the inequality follows from the data-processing inequality for statistical distance on the
randomized procedure that takes (x,w, cr) (i.e., an instance, witness and a complete transcript),
chooses i← [r] at random and outputs (x,w, i, ci) (i.e., the partial transcript of cr up to round i).
Moreover, note that B̃I and B̃′I can be viewed as being generated by applying the same randomized

26Note that we only need the zero-knowledge to hold on average for a random instance-witness pair; see Section 6.1
for more details.
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function on (X,W, I, C−I ) and (X,W, I, C ′−I ), respectively. Hence, the data-processing inequality
for statistical distance yields that

SD
(

(X,W, I, C−I , B̃I), (X,W, I, C
′−
I , B̃

′
I)
)
≤ SD

(
(X,W, I, C−I ), (X,W, I, C ′−I )

)
.

Using once again the zero-knowledge property of the argument-system and similar calculations to
Eq. (8), it holds that

SD
(

(X,W, I, C−I , B̃I), (X,W, I, C
′−
I , B̃

′
I)
)
≤ negl(λ). (9)

Putting Eqs. (8) and (9) together with Claim 4.5.1 and using the triangle inequality for statistical
distance, we have that

SD
(

(X,W, I, C ′−I , B
′
I), (X,W, I, C

′−
I , B̃

′
I)
)
≤ 1

2p(λ)
+ negl(λ) ≤ 1

p(λ)
,

as required.

Remark 4.6 (On the need for statistical zero-knowledge). The proof of Lemma 4.4 is in fact
the only place we use that the argument-system is statistical zero-knowledge (rather than merely
computational zero-knowledge). Specifically, we need that the simulator’s output is indistinguishable
from the protocol’s transcript even to an eavesdropper who knows a witness for the input. This is
not necessarily the case for computational zero-knowledge proof systems, but holds for statistical
ones.

It is left to prove Claim 4.5.1.

Proof of Claim 4.5.1. We say that Dec fails if it sets v′ to be ⊥ in Step 3. Assume, for sake
of the analysis, that Dec never fails but merely keep running the loop again and again. That is,
Dec keeps entering the loop in Step 2 until it finds random coins ρ that are consistent with the
partial transcript it was given. In such case, by the principle of deferred decision, it holds that
(X,W, I, C−I , B̃I) is identically distributed as (X,W, I, C−I , BI). Hence, when considering the actual
algorithm Dec, it holds that

SD
(

(X,W, I, C−I , BI), (X,W, I, C
−
I , B̃I)

)
≤ Pr

[
Dec(X,W, I, C−I ) fails

]
.

In the rest of the proof we bound the probability that Dec fails.
Fix an instance-witness pair (x,w) and a round i ∈ [r]. We bound the failure probability with

respect to these fixed values, and the claim follows. Let c be the partial transcript of the interaction
thus far, including the i-th message sent by the verifier but not that sent by the prover (in this
claim we only care about such transcripts, so for ease of notation, we omit the “−” symbol from
the superscript of c−). Let cV be the part of the transcript corresponding to messages sent by the
verifier and let cP be the part of the transcript corresponding to messages sent by the prover. Since
the proof-system is q-laconic, it holds that cP ∈ {0, 1}(i−1)·q.

Let S(cP, cV) be a random variable counting the number of iterations of the loop until find-
ing these random coins. Let C = (CP, CV) be a partial transcript of a random execution of
(P(w),V)(x). Our goal is to show that

E[S(CP, CV)] ≤ 2r·q. (10)
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Having shown the above equation, the claim follows by Markov’s inequality and since Dec only fails
if the number of iterations is larger than 2p · 2r·q times.

Fix a transcript cV of messages from the verifier to the prover up to round i and let QcP =
Pr[CP = cP | CV = cV], for every cP. That is, (QcP)

cP∈{0,1}(i−1)·q is the distribution of CP|(CV =

cV), a random variable corresponding to the transcript of messages sent by the prover in a random
execution of the protocol in which the verifier’s transcript is fixed to cV.

Claim 4.6.1. In each iteration of the Dec algorithm (i.e., Step 2 of Dec), given a partial transcript
c = (cP, cV) as input, the algorithm succeeds in finding consistent random coins with probability
QcP.

Proof. The proof follows from the fact that conditioned on an execution of the protocol generating
a given transcript, the two parties’ coins are a product distribution. Details follow.

Let c = (cP, cV) be a partial transcript up to round i and consider the following set

Rc = {(ρP, ρV) : (P(w; ρP),V(ρV))(x)1,...,i = c}.

Namely, Rc is the set of coins for the parties that are consistent with the partial transcript c. Note
that if (ρ1, ρ2) ∈ Rc and (ρ′1, ρ

′
2) ∈ Rc, then it must be that (ρ1, ρ

′
2) ∈ Rc. Thus, it holds that

Rc = Rc,P ×Rc,V, where Rc,P is a subset of RP — all possible coins for P, and Rc,V is a subset
of RV — all possible coins for V. It follows that

QcP = Pr[CP = cP | CV = cV] = Pr
ρ←RP

[ρ ∈ Rc,P].

Finally, by construction, Dec samples ρ← RP and checks if P(x,w; ρ) generates the messages
cP, when given cV as V’s messages. Such randomness ρ satisfies the latter condition if and only if
ρ ∈ Rc,P. Hence, the probability of success in each iteration is exactly Prρ←RP

[ρ ∈ Rc,P].

Claim 4.6.1 implies that S(cP, cV) is a geometric random variable with parameter QcP . The
expected value of such a random variable is 1/QcP . It follows that

E[S(CP, CV) | CV = cV] =
∑

cP∈Supp(CP|CV=cV)

QcP · E[S(cP, cV)]

=
∑

cP∈Supp(CP|CV=cV)

QcP ·
1

QcP

= |Supp(CP | CV = cV)|
≤ 2r·q.

Finally, it holds that

E[S(CP, CV)] = E
cV←CV

[E[S(CP, CV) | CV = cV]] ≤ E
cV←CV

[2r·q] = 2r·q.

The claim follows.

29



4.3 Pseudoentropy — Proving Lemma 4.5

We will establish the pseudoentropy of the scheme in two steps. First, we will show that the prover’s
next message function in the argument-system is unpredictable. This follows from the fact that
if were predictable in the case that x ∈ L, then either it is similarly predictable in the case that
x 6∈ L (in which case we break soundness) or we get a distinguisher between the case that x ∈ L or
x 6∈ L (thereby breaking the cryptographic hardness of L).

Our second step is to show that unpredictability of the prover’s messages implies pseudoentropy.
We show this using the framework of Vadhan and Zheng [VZ12], which we review next. After this
review, we go back, in Section 4.3.2, to proving Lemma 4.5.

4.3.1 Unpredictablility and Pseudoentropy

In order to show the pseudoentropy of our construction, we will leverage certain known connections
between unpredictability and pseudorandomness. To that end, we use the framework of Vadhan
and Zheng [VZ12] who consider a joint distribution (Z,B) and define the unpredictability of B
given Z as the inability of any efficient algorithm to generate a sample from a distribution that is
close to B|Z in the KL-divergence measure.

Definition 4.7 (KL-hard for sampling [VZ12, Definition 3.5]). Let t = t(λ) ∈ N and ε = ε(λ) ∈
[0, 1]. Let Z = {Zλ}λ∈N and B = {Bλ}λ∈N be sequences of random variables such that Zλ and Bλ
are jointly distributed for every λ ∈ N. We say that B is (t, ε)-KL-hard for sampling given Z if for
every oracle-aided probabilistic sampling algorithm D that on input (1λ, ·) runs in time t(λ), for
large enough λ ∈ N, it holds that

KL
(

(Zλ, Bλ)
∣∣∣∣∣∣(Zλ,DOZ′

λ
,B′
λ (1λ, Zλ)

))
> ε(λ),

where OZ′λ,B
′
λ

denotes an oracle that gives a random sample from (Z ′λ, B
′
λ) when queried, where

(Z ′λ, B
′
λ) are identically distributed as (Zλ, Bλ).

For the necessity of the sampling oracle (and its notation) see the discussion following Defini-
tion 2.15. The work of Vadhan and Zheng [VZ12] shows a tight characterization of pseudoentropy
in terms of the foregoing notion of unpredictability (i.e., KL-hard for sampling). We only need one
of the directions of their theorem, which we state below.

Theorem 4.8 (KL-hardness implies conditional pseudoentropy [VZ12, Lemma 3.7 and Theorem
3.11]). Let t = t(λ) ∈ N, ε = ε(λ) ∈ (0, 1], γ = γ(λ) ∈ (0, 1], Q = Q(λ) ∈ N and p = p(λ) ∈ N
such that p = poly(λ), and such that all the above parameters are computable in time poly(λ). Let

(Zλ, Bλ) be jointly distributed {0, 1}p(λ) × [Q(λ)]-valued random variables and let Z = {Zλ}λ∈N
and B = {Bλ}λ∈N. If B is (t, γ)-KL hard for sampling given Z, then B has (t′, ε) conditional

pseudoentropy at least H(B|Z) + γ − ε, for t′ = tΩ(1)/poly(λ,Q, 1/ε).

Note that this theorem is applicable when Q, the support size of B is rather small. In particular,
we will only use this theorem for Q which is polynomially bounded. Vadhan and Zheng [VZ12]
used Theorem 4.8 to show that if f : {0, 1}n → {0, 1}n is one-way, then Un has O(log n) bits of
pseudoentropy given f(Un). We will use Theorem 4.8 to show that the prover’s messages in a
laconic SZK argument, with soundness s, has roughly O(log(1/s)) bits of pseudoentropy.27

27The above holds when the argument-system has perfect completeness. In case completeness is imperfect the
amount of pseudoentropy will be slightly different.
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4.3.2 Back to the Proof of Lemma 4.5

We need to show that the simulated prover’s next message has high pseudoentropy given a random
partial simulated transcript. The proof takes the following steps:

1. In Lemma 4.9 we show that for a random round, the prover’s message in the argument-system
is “KL-unpredictable”, given the instance and the transcript thus far. Namely, that BI is
KL-hard for sampling given X, I, C−I (according to Definition 4.7);

2. In Lemma 4.10 we use Vadhan and Zheng’s [VZ12] framework (via Theorem 4.8) to show
that BI has high pseudo entropy given X, I, C−I ;

3. Finally, using the zero-knowledge property of the argument-system, we argue that B′I (i.e.,
the next message produced by the simulator) has high pseudo entropy given X, I, C ′−I .

The proofs of the first two steps are inspired by [VZ12, Section 4], where — as we mentioned
above — it is shown that even given a random output of a one-way function, a random input (that
the function maps to the given output) still has (relatively) high pseudoentropy. Interestingly,
these steps can be interpretated as an application of [VZ12]’s result to Ostrovsky’s [Ost91] one-way
function.28

We proceed to accomplish the first step in the above outline. (In order to be more precise, in
the next lemma we assume specific parameters for the cryptographic hardness of the language L.)

Lemma 4.9. Let c = c(λ) ∈ [0, 1], s = s(λ) ∈ (0, 1] and γ = γ(λ) ∈ [0, 1]. Let r = r(λ) ∈ N, and
let t = t(λ) ∈ N be polynomially bounded. Assume that

1. L is a (t, γ)-cryptographically hard language;

2. (P,V) is an r-round interactive argument system for L with completeness error c, soundness
error s; and

3. 1− c ≥ s+ γ, for all sufficiently large values of the security parameter λ ∈ N.

Then, there is a polynomial p such that for the function t′(λ) = t(λ)/p(λ), the distribution BI
is (t′, 1

r ·KL(1− c||s+ γ))-KL-hard for sampling given (X, I, C−I ).

Proof. Assume toward a contradiction that for any polynomial p and t′(λ) = t(λ)/p(λ), the distri-
bution BI is not (t′,KL(1− c||s+ γ)/r)-KL-hard for sampling given (I,X,C−I ).29 Recall that we
use OI′,X′,C′I to denote an oracle that generates a random round I ′ ∈ [r], a random yes instance

X ′ ← YL(1λ) and a random transcript C ′I′ of the argument system up to round I ′ with respect to
the instance X ′ (namely, (I ′, X ′, C ′I′) are identically distributed as (I,X,CI)).

Fix some polynomial p, which will be specified below. Our assumption implies that there exists
an infinite set of indices Λ ⊆ N and an oracle-aided algorithm D that on input (1λ, i, x, c) runs in
time t′(λ) = t(λ)/p(λ) such that for every λ ∈ Λ, it holds that:

KL
(

(I,X,C−I ), BI

∣∣∣∣∣∣(I,X,C−I ),D
OI′,X′,C′

I′ (1λ, I,X,C−I )
)
≤ 1

r
·KL(1− c(λ)||s(λ) + γ(λ)). (11)

28Recall that Ostrovsky [Ost91]’s one-way function maps an instance x, randomness ρ for the simulator and a
round i to the transcript up to round i generated by S(x; ρ).

29Observe that we have switched the order of X and I. This minor change in notation is clearly equivalent but
slightly more convenient for the current proof.
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We use D to construct a distinguisher D′ that breaks the cryptographic hardness of L. Roughly
speaking, D′ executes the interactive argument between the honest-verifier and a prover based on D.
The distinguisher D′ accepts if and only if the verifier accepts. On YES-instances, Eq. (11) yields
that D’s outputs are close to the prover’s actual responses, and so the verifier accepts with high
probability. On the other hand, on NO-instances, D can be viewed as a cheating prover strategy and
so, by the soundness of the argument system, the verifier will reject with high probability. Thus, D′

distinguishes between YES-instances and NO-instances efficiently. The actual proof below follows
this intuition, while taking into account that Eq. (11) only guarantees that D’s generates messages
that are “close” to the prover’s messages for a random round I.

Fix a sufficiently large λ ∈ Λ. To avoid cluttering the notation, in the sequel we omit λ.
Consider the following distinguisher for breaking the cryptographic hardness of L.

D′ on input x:
1. Sample uniformly random coins for V, denoted by ρ
2. Set c0 to be the empty string (corresponding to an empty transcript)
3. Repeat for i = 1 to r:

(a) Set ai ← V(x, ci−1; ρ). That is, generate the i-th message ai of V given the partial
transcript ci−1 for rounds 1, . . . , i− 1 and random coins ρ

(b) Set zi ← D
OI′,X′,C′

I′ (i, x, ci−1, ai)
(c) Set ci = (ci−1, ai, zi)

4. Output 1 if V(x, cr; ρ) accepts, and 0 otherwise
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, observe that the oracleOI′,X′,C′
I′

can be implemented in poly(λ) time — sample (X ′,W ′)←
YL and I ′ ← [r], and return X ′ and the first I ′ rounds of (P(W ′),V)(X ′). It follows that there
exists a polynomial u, independent of D′, such that D′ can be implemented in t′(λ) · u(λ) time. Set
p = u. Hence, D′ runs in time t(λ). Next, we show that D′ can distinguish between instances that
belong to L from ones that do not with gap at least γ. We first consider NO-instances.

Claim 4.9.1 (D′ on NO-instances). It holds that

Pr
[
D′
(
X̃
)

= 1
]
≤ s, (12)

where X̃ ← NL and the probability is also over the randomness of D′.

Proof. Observe that D′
(
X̃
)

emulates an interaction between the honest-verifier of the argument

system and a “cheating prover” (as specified by D) on a random NO-instance. Recall that the
running time of D′ is t(λ) which was assumed to be polynomial. The claim follows from the
computational soundness of V.30

Next we consider YES-instances.

Claim 4.9.2 (D′ on YES-instances). It holds that

Pr
[
D′(X) = 1

]
≥ s+ γ,

30In fact, the very same proof also shows that this claim holds even if the soundness guarantee was only average-
case. See further discussion in Section 6.1.
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where X ← YL and the probability is also over the randomness of D′.

Proof. Denote by Zi the message chosen by D in the i’th execution of Step 3b of D′(X). Analogously
to the definitions of Ci and C−i , we define C̃i = (A1, Z1, . . . , Ai, Zi) and C̃−i = (A1, Z1, . . . , Zi−1, Ai).

We begin by showing that real transcripts (i.e., Cr) look “close” to those generated by D′ (i.e.,
C̃r). By the chain rule for divergence (Fact 2.11) it holds that

KL
(
X,Cr

∣∣∣∣∣∣X, C̃r) = KL(X,A1, B1, . . . , Ar, Br||X,A1, Z1, . . . , Ar, Zr)

=

r∑
i=1

E
(x,ci)←(X,C−i )

[
KL
(
Bi|X=x,C−i =ci

∣∣∣∣∣∣Zi|X=x,C̃−i =ci

)]
=

r∑
i=1

KL
(
X,C−i , Bi

∣∣∣∣X,C−i , Zi),
where we use the chain rule in both of the last two equalities. Another application of the chain
rule yields that

r∑
i=1

KL
(
X,C−i , Bi

∣∣∣∣X,C−i , Zi) = r ·KL
(
I,X,C−I , BI

∣∣∣∣I,X,C−I , ZI)
= r ·KL

(
I,X,C−I , BI

∣∣∣∣∣∣I,X,C−I ,DOI′,X′,C′
I′ (I,X,C−I )

)
≤ KL(1− c||s+ γ),

where the inequality follows from Eq. (11). It follows that

KL
(
X,Cr

∣∣∣∣∣∣X, C̃r) ≤ KL(1− c||s+ γ). (13)

Eq. (13) shows that a transcript simulated by D′(X) is close (in the KL divergence sense)
to a transcript of an honest execution of the protocol on X. In the rest of the proof we use the
completeness guarantee of the argument system to show that D′(X) outputs 1 with high probability.

Consider the following (inefficient) random process F:

F on input (x, c = (a1, b1, . . . , ar, br)):
1. Sample random coins for V, denoted by ρ, conditioned on ai = V(x, ci−1; ρ) for every i ∈ [r],

where ci = (a1, b1, . . . , ai, bi) (abort if no such ρ exist)
2. Output 1 if V(x, c; ρ) accepts, and 0 otherwise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We emphasize that F is an inefficient process which will only be used for the analysis. By the
data-processing inequality for divergence (Fact 2.12) it holds that:

KL
(
X,Cr

∣∣∣∣∣∣X, C̃r) ≥ KL
(

F(X,Cr)
∣∣∣∣∣∣F(X, C̃r)). (14)

Define δ := Pr[F(X,Cr) = 1] and δ′ := Pr
[
F
(
X, C̃r

)
= 1
]
. Combining Eqs. (13) and (14) we obtain

that

KL
(
δ
∣∣∣∣δ′) ≤ KL(1− c||s+ γ).
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By assumption, 1− c ≥ s+ γ, and it is easy to verify that

δ = Pr[F(X,Cr) = 1]

= Pr[out((P(W ),V)(X)) = accept]

= E
(x,w)←YL

[
Pr[out((P(w),V)(x)) = accept]

]
≥ 1− c,

where the inequality follows from the completeness condition of (P,V).31 Thus, by an application
of Fact 2.13 we obtain that δ′ ≥ s+ γ.

Finally, by definition of F and the principle of deferred decisions,

Pr
[
D′(X) = 1

]
= Pr

[
F(X, C̃r) = 1

]
= δ′ ≥ s+ γ, (15)

which concludes the proof of the claim.

Claims 4.9.1 and 4.9.2 show that D′ distinguishes between NO-instances and YES-instances with
gap γ. Since D′ runs in time t(λ), we obtain a contradiction to the (t, γ)-cryptographic hardness
of L. This completes the proof of Lemma 4.9.

Lemma 4.9 shows that BI is KL-hard to sample given X, I, C−I . As our next step, we derive
the implication that BI has additional KL(1− c||s)/r bits of pseudoentropy given X, I, C−I .

Lemma 4.10. BI has conditional pseudoentropy at least H(BI |X, I, C−I ) + KL(1− c||s)/r given
(X, I, C−I ).

Proof. To prove the lemma, we need to show that BI has (λd, 1/λd) conditional pseudoentropy at
least

H(BI |X, I, C−I ) + KL(1− c||s)/r − 1/λd

given X, I, C−I , for every constant d > 0.
Fix a constant d > 0, let γ = 1/λc1 for some sufficiently large constant c1 > 0 such that the

following two equations hold: 1 − c ≥ s + γ, and 1/λd ≥ 2(1 − c) · γ/(s · r). Since by assumption
c, s > 0 are constants and r = poly(λ), such c1 exists.

Since L is cryptographically hard, in particular, it is also (λc1 , 1/λc1)-cryptographically hard.
Thus, Lemma 4.9 yields that BI is (λc1−c2 ,KL(1− c||s+ γ)/r)-KL-hard for sampling givenX, I, CI ,
for some constant c2 > 0. Furthermore, since the argument system for L is O(log λ)-laconic, it
follows that BI is [λc3 ]-valued random variable (i.e., it has a support of size λc3) for some constant
c3 > 0. Theorem 4.8 now yields that BI has (t′, 1/λd− 2(1− c) · γ/s) conditional pseudoentropy at
least

H(BI |X, I, CI) +
KL(1− c||s+ γ)

r
−
(

1/λd − 2(1− c) · γ/(s · r)
)

given X, I, CI , for t′(λ) = λ(c1−c2)/c4−c5 and some constants c4, c5 > 0.

31Similarly to the case in Claim 4.9.1, this holds even if the completeness guarantee was only average-case. See
Section 6.1.
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Note that c2, c4 and c5 are independent of c1. Thus, we can set c1 such that c1 ≥ (d+c5) ·c4 +c2.
It follows that t′(λ) ≥ λd, for every λ ∈ N. Finally, Fact 2.14 yields that KL(1− c||s+ γ) + 2(1−
c) · γ/s ≥ KL(1− c||s). We conclude that BI has (λd, 1/λd) conditional pseudoentropy at least
H(BI |X, I, CI) + KL(1− c||s)/r − 1/λd given X, I, CI , as required.

We are now ready to formally prove Lemma 4.5.

Proof of Lemma 4.5. Immediately follows from Lemma 4.10, Proposition 2.16 and from the
zero-knowledge property of the argument-system.

5 From Trapdoor Pseudoentropy Generator to Public-Key En-
cryption

In this section we show a general transformation from laconic trapdoor pseudoentropy generator
to public-key encryption. Combined with the results of Section 4 we obtain our main result.

Lemma 5.1. Let λ ∈ N be a security parameter and let γ = γ(λ) ∈ [0, 1], q = q(λ) ∈ N and
n = n(λ) > 0 with n(λ) ∈ (0, q(λ)]. Assume that there exists a q-laconic n-entropic trapdoor
pseudoentropy generator scheme with correctness error γ such that, q3/n2 = O(log(λ)) and γ =
o(n2/q2). Then, there exists a public-key encryption scheme.

Lemma 5.1 together with the main result of Section 4 (Lemma 4.3) immediately yield our main
theorem.

Proof of Theorem 3.6 (given Lemma 5.1). Assume Assumption 3.5 holds for a language L with
an r-round q-laconic SZK argument-system with completeness error c, soundness error s such that
r2·q3 = O(log(λ)). Further assume, without loss of generality, that c, s > 0 are constants (otherwise,
c or s are vanishing, and we can set them to be any small constant we like).

Set p(λ) = λ. By Lemma 4.3, there exists a q-laconic n-entropic trapdoor pseudoentropy
generator scheme with correctness error 1/λ, for n = (KL(1− c||s)/r). Since we assumed that
r2 · q3 = O(log(λ)) and that c and s are constants, it holds that

q3

n2
=

q3 · r2

KL(1− c||s)2 = O(log(λ)) and
n2

q2
=

KL(1− c||s)2

q2 · r2
= ω(1/λ).

Thus, Lemma 5.1 yields the existence of public-key encryption.

The rest of the section is dedicated to proving Lemma 5.1. We first only establish the existence of
a weak public-key encryption scheme — an encryption scheme whose correctness and security errors
are constants rather than negligible. To obtain a full-fledged (i.e., semantically-secure) scheme we
rely on a general amplification result due to Holenstein and Renner [HR05] (given in Theorem 2.2).

Section Outline. In Section 5.1 we present the technical tools used in our construction. In
particular, we define the notion of typical set and that of smooth min-entropy. In Section 5.2, we
give the construction of our weak public-key encryption scheme. We also state two lemmas showing,
respectively, the security and correctness of the construction. We prove the correctness lemma in
Section 5.3 and the security lemma in Section 5.4. Actually, the construction in Section 5.2 assumes
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we have access to (an approximation of) some statistical property of the underlying hard language.
In Section 5.5 we get rid of this assumption by showing an algorithm to estimate the required
statistical property. Finally, in Section 5.6, we formally prove Lemma 5.1.

5.1 Technical Tools

In this section we present the technical tools used to prove Lemma 5.1.

5.1.1 Typical Sets and Flattening Distributions

At the heart of our construction lies the notion of a typical set for repeated samples of a random
variable. Loosely speaking, for a k-fold product repetition of a random variable B, the typical set
contains the values whose probability mass is close to 2−k·H(B).

Definition 5.2 (Typical Set). Let B be a random variable over B, let k ∈ N and δ ∈ [0, log(|B|)].
The δ-typical set of Bk is defined as

T δBk =
{

b ∈ Bk : Pr[Bk = b] ∈
[
2−k·(H(B)+δ), 2−k·(H(B)−δ)

]}
.

We will care about the typical set of the k-fold product repetition of a random variable B,
jointly distributed with an additional random variable Z.

Definition 5.3 (Conditional Typical Set). Let (Z,B) be a joint distribution over Z × B and let
(Zk, Bk) be its k-fold product distribution (for some k ∈ N). For a fixed z ∈ Supp(Zk) and δ > 0,
the δ-typical set of Bk|z is defined as

T δBk|z =
{

b ∈ Supp(Bk) : Pr[Bk = b|Zk = z] ∈
[
2−k·(H(B|Z)+δ), 2−k·(H(B|Z)−δ)

]}
We emphasize that the range of values that Pr[Bk = b|Zk = z] is allowed to have (to be in the
typical set) depends on H(B|Z) (rather than H(B|Z = z)).

By definition, the typical set is close to “uniform” — the probability mass of each element is
close to 2−k·H(B|Z). In addition, since Pr[Bk = b|Zk = z] ≥ 2−k·(H(B|Z)+δ) for every b ∈ T δ

Bk|z, it

holds that the typical set is relatively small:
∣∣∣T δBk|z∣∣∣ ≤ 2k·(H(B|Z)+δ).

An extremely useful property of the typical set of a k-fold product repetition is that most of
the probability mass actually lies inside the typical set, as shown by the following lemma:

Lemma 5.4 ([HR11, Theorem 2]). Let (Z,B) be a joint distribution over Z × B and let (Zk, Bk)
be its k-fold product distribution (for some k ∈ N). For any δ ∈ [0, log(|B|)] it holds that

Pr
(z,b)←(Zk,Bk)

[
b 6∈ T δBk|z

]
< 2 · 2−

k·δ2
2 log2(|B|+3) .

Loosely speaking, this means that for sufficiently large k, the k-fold product repetition of a
random variable B looks like a uniform distribution over a set of size 2k·H(B). This result is
commonly referred to in the literature on SZK as the “flattening” of a distribution (e.g., [GV99]),
and in the literature of information theory as the “Asymptotic Equipartition Property”.
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5.1.2 Smooth Min-Entropy

We next introduce the notion of smooth conditional min entropy. Loosely speaking this notion
means that the conditional distribution is statistically close to a distribution with high min-entropy.
We formalize this notion below.

Definition 5.5 (ε-Smooth Conditional Min-Entropy [RW05]). Let X and Y be (jointly) distributed
random variables over X × Y and let ε > 0. The ε-smooth min-entropy of X given Y is defined as

Hε
∞(X|Y ) = max

E
min

y∈Supp(Y )
min
x∈X

log

(
1

Pr[X = x ∧ E|Y = y]

)
,

where the maximum ranges over all events E with Pr[E] ≥ 1− ε.

The distribution close to X with a high min-entropy is the distribution X conditioned on the
event E. Next, we state a result due to Holenstein and Renner [HR11] which shows that the k-fold
repetition of a distribution (X,Y ) has smooth conditional min-entropy close to the conditional
Shannon entropy (and not conditional min-entropy).

Theorem 5.6 ([HR11, Theorem 1]). Let (Xk, Y k) be the k-fold product repetition of (X,Y ) over
X k × Yk. Then, for any δ ≥ 0

Hε
∞(Xk|Y k) ≥ k ·

(
H(X|Y )− δ

)
,

where ε = 2
− kδ2

2 log2(|X|+3) .

(Theorem 5.6 is proven via the notion of typical sets and is in fact a corollary of Lemma 5.4.)
In our security proof, we shall use the leftover hash lemma [HILL99]. Below, we state a variant

that only needs high ε-smooth min-entropy (rather than standard min-entropy).

Lemma 5.7 (Leftover Hash Lemma for ε-Smooth Min-Entropy (c.f., [RW05, Theorem 1])). Let
H = {h : {0, 1}n → {0, 1}m} be a family of universal hash functions. Then, for any jointly dis-
tributed random variables X and Y , such that X is distributed over {0, 1}n, it holds that

SD
((
H(X), H, Y

)
,
(
Um, H, Y

))
≤ ε+

1

2
·
√

2−Hε∞(X|Y ) · 2m ,

where H ← H and Um is distributed uniformly over {0, 1}m.

For sake of completeness, and since the actual statement of [RW05, Theorem 1] does not directly
refer to universal hash functions, we give a full proof of Lemma 5.7 in Appendix B.1.

We also need the computational variant of ε-smooth min-entropy, which is a natural extension
of conditional pseudoentropy (Definition 2.15).

Definition 5.8 (Pseudo ε-smooth min-entropy). Let t = t(λ) ∈ N, γ = γ(λ) ∈ [0, 1], ε = ε(λ) ∈
[0, 1] and m = m(λ) ∈ R≥0. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of random variables
such that Xλ and Yλ are jointly distributed over Xλ × Yλ, for every λ ∈ N. We say that X has
(t, γ) conditional pseudo ε-smooth min-entropy at least m given Y if for every probabilistic algorithm
A that on input (1λ, x, y) runs in time t(λ), there are sequences of random variables {Zλ}λ∈N over
Xλ, jointly distributed with Xλ, Yλ, such that the following hold for large enough λ ∈ N:
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1. Hε
∞(Zλ|Yλ) ≥ m(λ);

2. It holds that ∣∣∣Pr
[
A
(

1λ, Xλ, Yλ

)
= 1
]
− Pr

[
A
(

1λ, Zλ, Yλ

)
= 1
]∣∣∣ ≤ γ(λ),

where the above probabilities are over Xλ, Yλ, Zλ and the random coins of A.

We say that X has conditional pseudo ε-smooth min-entropy at least m given Y if for every constant
c > 0, the random variable X has (λc, 1/λc) conditional pseudo ε-smooth min-entropy at least
m− 1/λc given Y .

The next lemma shows how conditional pseudo-entropy can be transformed into conditional
pseudo ε-smooth min-entropy by repetition. This is a fairly standard technique in the literature of
constructing pseudorandom generators from any one-way functions (e.g, [HILL99, HRV13, VZ12]),
and enables the use of the Leftover Hash Lemma in our application.

Lemma 5.9. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of random variables such that Xλ

and Yλ are jointly distributed over Xλ × Yλ, for every λ ∈ N. Assume X has conditional pseudo
entropy at least H(X|Y ) + n given Y , for n = n(λ) ≥ 0.

Then, for any δ = δ(λ) ∈ [0, log(|Xλ|)] and every polynomial k = k(λ), the sequence Xk

has conditional pseudo ε-smooth min-entropy at least k · (H(X|Y ) + n− δ) given Y k, for ε =

2
− k·δ2

2 log2(|X|+3) , where (Xk, Y k) are the k-fold product repetition of (X,Y ).

Since previous statements transforming pseudo-entropy into a computational notion of min-
entropy did not explicitly refer to the notion of ε-smooth min-entropy, we give a full proof of
Lemma 5.9 in Appendix B.2.

5.2 Construction of Weak PKE

In this section, we describe our weak public-key encryption scheme. As usual, since the security
parameter λ will always be clear from the context, in the following we omit it from the notation.

Assume that there exists a q-laconic n-entropic trapdoor pseudoentropy generator scheme
(KeyGen′,Enc′,Dec′) with correctness error γ.

We first introduce (jointly distributed) random variables corresponding to a random execution of
the trapdoor pseudoentropy generator scheme. Let (PK,SK) be a public-key secret-key pair chosen
by a random execution of KeyGen′(1λ). Let (U, V ) be the messages returned by a random execution
of Enc′(PK). Finally, let V ′ be the message returned by a random execution of Dec′(PK,SK,U).

As we previously mentioned, our weak public-key encryption scheme requires some access to
some statistical property of the pseudoentropy generator scheme. We will later show how to effi-
ciently estimate this property (in Section 5.5). Specifically, we require access to (an approximation
of) the entropy of the decoder’s message given the public key, secret key and the encoder’s public
message.

Definition 5.10. Let ξ = ξ(λ) ≥ 0 and let Ent(1λ) be an algorithm whose output is always in
[0, q(λ)]. We say that Ent ξ-approximates the entropy of Dec′’s message if∣∣∣Ent(1λ)−H

(
V ′
∣∣PK,SK,U)∣∣∣ ≤ ξ(λ),

for large enough λ ∈ N.
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For now we will simply assume such an estimator Ent exists. Later, in Section 5.5, we will show
how to efficiently implement Ent (by strongly relying on the laconism of the scheme).

Construction of Weak PKE. Our construction of a weak PKE depends on two parameters,
k = k(λ) ∈ N and δ = δ(λ) ∈ [0, q]. The parameter δ, which corresponds to the slackness in the
definition of the typical set, will depend on the amount of pseudoentropy the encoder’s private
message has (i.e., n bits). The parameter k, which corresponds to the number of repetitions that
we need of the underlying trapdoor pseudoentropy generator scheme, will depend on δ and q. Let
Ent be an estimation algorithm defined above (see Definition 5.10), where the approximation factor
is ξ = δ/4. We begin with an overview of the construction (a formal description follows).

Keys: The public key is a vector of public keys of the underlying pseudoentropy generator scheme
pk = (pk1, . . . , pkk) and a number ` = Ent(1λ). The secret key is a vector sk = (sk1, . . . , skk)
of the corresponding secret-keys of the underlying pseudoentropy generator scheme.

Encryption of bit σ: For every j ∈ [k] sample (uj , vj) ← Enc′(pkj). Set u = (u1, . . . , uk) and

v = (v1, . . . , vk). Next, sample a universal hash function h : {0, 1}k·q → {0, 1}k·(`+δ). The
ciphertext consists of u, h, h(v), a random bit-vector s and a mask of the bit σ with 〈s,v〉
(the latter is the inner product of v with s), which we denote by σ′ = σ ⊕ 〈s,v〉.

Decryption of (u, h, h(v), s, σ′): Repeatedly sample v′ = (v′1, . . . , v
′
k), where v′i ← Dec′(pki, ski, ui),

until h(v′) = h(v) (namely, do rejection sampling to find the first vector v′ that matches the
hash value given). If no such v′ is found, abort. Otherwise, output σ′ ⊕ 〈s,v′〉.

The formal description of the weak public-key encryption scheme is given in Fig. 6. Throughout
this section we fix all the parameters as discussed above and denote

(KeyGen,Enc,Dec) = (KeyGen,Enc,Dec)δ,k,q,KeyGen′,Enc′,Dec′,Ent.

Below we state the correctness and security lemmas, establishing these properties for our en-
cryption scheme. The proofs of these lemmas are given in Sections 5.3 and 5.4, respectively. It
is not yet clear that the current construction is efficient since it requires access to the entropy
approximator algorithm (which we have not yet implemented). In Section 5.5 we show how to
efficiently implement this approximator and in Section 5.6 we use this implementation with the
following lemmas to argue that our construction is a public-key encryption scheme.

Lemma 5.11 (weak correctness). If k · δ2 ≥ 21000 · q2 and k · γ ≤ 2−6, then for sufficiently large
λ ∈ N it holds that

Pr
[
Dec

(
1λ, sk,Enc(1λ, pk, σ)

)
= σ

]
> 1− 2−5,

where the probability is over σ ← {0, 1}, (pk, sk) ← KeyGen(1λ), and the randomness of Dec and
Enc.

At a (very) high level, to prove the above lemma we show that the decryption algorithm manages
to find v, the value the encryption algorithm used to mask the encrypted bit, with (constant) high
probability. To do so we rely on the correctness property of the underlying trapdoor pseudoentropy
generator.
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Lemma 5.12 (weak security). If k · (n− 3δ) ≥ 14, k · δ2 ≥ 140q2 and 16(q+ 2)2 · γ ≤ 9δ2, then for
every polynomial time adversary A and sufficiently large λ ∈ N it holds that

Pr
[
A
(

1λ, pk,Enc(1λ, pk, σ)
)

= σ
]
≤ 1

2
+ 2−5,

where the probability is over σ ← {0, 1}, (pk, ·)← KeyGen(1λ) and the randomness of Enc and A.

At a high level, to prove the above lemma we use the pseudoentropy of the underlying trap-
door pseudoentropy generator scheme to argue (together with the Leftover Hash Lemma) that the
encrypted bit looks random to an adversary that does not have the secret key.

By these two lemmas, a decryptor who has the secret-key can decrypt with probability that is
close to 1, whereas an adversary, that only has the public key, can only decrypt with probability
that is close to 1/2.

5.3 Correctness — Proving Lemma 5.11

We need to show that with high probability over the randomness of KeyGen, Enc and Dec, the
decryption algorithm Dec returns the same value that was encrypted.

Fix large enough λ ∈ N and σ ∈ {0, 1} and let δ = δ(λ), k = k(λ), q = q(λ) and γ = γ(λ). Let
L ← Ent(1λ), M = bk · (L+ δ)c, H ← Hk·q,M and S ← {0, 1}k·q. By construction, our goal is to
show that

Pr
[
Dec

(
PKk, L, SKk, Uk, H,H(V k),S, σ ⊕ 〈S, V k〉

)
= σ

]
≥ 1− 2−5, (16)

where recall that (PKk, SKk, Uk, V k) are the k-fold product repetition of (PK,SK)← KeyGen′(1λ)
and (U, V ) ← Enc′(PK). Also recall that V ′ ← Dec′(PK,SK,U) is a jointly distributed random
variable. Finally, recall that the public-key for our encryption scheme is the pair (PKk, L) (and
thus L appear next to PKk in the above expression).

Our first step is to replace V k with V ′k in the above equation. Since the correctness error of
the underlying trapdoor pseudoentropy generator is at most γ and by the triangle inequality for
statistical distance, it holds that

SD
((
PKk, SKk, Uk, V k

)
,
(
PKk, SKk, Uk, V ′k

))
≤ k · SD

(
(PK,SK,U, V ),

(
PK,SK,U, V ′

))
≤ k · γ
≤ 2−6,

where the last inequality follows from the assumption of the lemma. Combined with Eq. (16) we
obtain that

Pr
[
Dec

(
PKk, L, SKk, Uk, H,H(V k),S, σ ⊕ 〈S, V k〉

)
= σ

]
(17)

≥ Pr
[
Dec

(
PKk, L, SKk, Uk, H,H(V ′k),S, σ ⊕ 〈S, V ′k〉

)
= σ

]
− 2−6.

Eq. (17) allows us to think, for sake of the analysis, that the encryption algorithm Enc, rather
than sampling using Enc′ alone, samples the public message using Enc′— namely (u, ·)← Enc′(pk),
and then the private message using Dec′ and the secret-key (which it does not have) — namely
v′ ← Dec′(pk, sk, u).
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(KeyGen,Enc,Dec)δ,k,q,KeyGen′,Enc′,Dec′,Ent,Hist

Parameters: δ = δ(λ) ∈ [0, q(λ)], k = k(λ) ∈ N with k = poly(λ), with k(λ) · δ(λ) ≥ 32.
Algorithms:
• (KeyGen′,Enc′,Dec′): q(λ)-laconic n(λ)-entropic trapdoor pseudoentropy generator

scheme with correctness error γ(λ)
• Ent: (δ/4)-approximatora for the entropy of V ′ given PK,SK,U

KeyGen(1λ)

1. For j ∈ [k], sample (pkj , skj)← KeyGen′(1λ)

2. Set ` = Ent(1λ)
3. Set pk = ((pk1, . . . , pkk), `) and sk = (sk1, . . . , skk)
4. Output (pk, sk)

Enc(1λ, pk, σ)
1. Compute δ = δ(λ), k = k(λ) and q = q(λ)
2. Interpret pk = ((pk1, . . . , pkk), `)
3. For j ∈ [k], sample (uj , vj)← Enc′(1λ, pkj)
4. Set u = (u1, . . . , uk) and v = (v1, . . . , vk)
5. Sample h← Hk·q,m and s← {0, 1}k·q, for m = bk · (`+ δ)c
6. Output ct =

(
u, h, h(v), s, σ ⊕ 〈s,v〉

)
Dec(1λ, pk, sk, ct)

1. Compute δ = δ(λ), k = k(λ) and q = q(λ)
2. Interpret pk = ((pk1, . . . , pkk), `), sk = (sk1, . . . , skk) and ct =

(
(u1, . . . , uk), h, z, s, σ

′)
3. Repeat 210·k·(`+δ/2) many times:

(a) Compute v = (v1, . . . , vk) ∈ {0, 1}k·q where vi ← Dec′(pki, ski, ui) for all i.
(b) If h(v) = z, then set v′ = v and exit the loop.

4. If v′ was not set, output ⊥. Otherwise, Output σ′ ⊕ 〈s,v′〉.
aSee Definition 5.10. Recall that (PK,SK) are a pair of random keys chosen by KeyGen′, U is a random

public message chosen by Enc′(PK) and V ′ is a random output of Dec′(PK,SK,U).

Figure 6: Public-Key Encryption from Trapdoor Pseudoentropy Generator
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The rest of the proof proceeds as follows: First, we show that the message v′ sampled by the
encryption algorithm (according to our new understanding of the encryption algorithm) is “typical”,
namely its probability mass is not too small. Put differently, v′ belongs to the typical set. Second,
we show that h is injective over the typical set. This holds by our choice for the output length of h
and since the typical set cannot be too large. Third, we show that the rejection sampling done in
Step 3 of Dec – if successful (that is, exits the loop via Step 3b) – returns v′ with high probability.
Indeed, since h is injective over the typical set, every v′′ with h(v′′) = h(v′) cannot belong to the
typical set, namely, must be sampled with only low probability. Finally, we argue that since there
exists a typical element that hashes to h(v′) – namely v′ itself – the rejection sampling succeeds
with high probability.

Our first step is to show that with high probability v′ belongs to the typical set. This is
established in the following claim:

Claim 5.12.1 (w.h.p. v′ belongs to the typical set).

Pr
(pk,sk,u,v′)←(PKk,SKk,Uk,V ′k)

[
v′ /∈ T δ/4

V ′k|pk,sk,u

]
≤ 2

− k·δ2
200q2

Proof. Applying Lemma 5.4 with Z = (PK,SK,U), B = V ′, k and δ/4 yields that

Pr
(pk,sk,u,v′)←(PKk,SKk,Uk,V ′k)

[
v′ /∈ T δ/4

V ′k|pk,sk,u

]
≤ 2 · 2−

k(δ/4)2

2 log2(2q+3) .

The claim follows since log2(2q + 3) ≤ 10 · q2 for q ≥ 1 and since we assumed (in the statement
of Lemma 5.11) that 1 ≤ k · δ2/(3000q2).

Next we show that with high probability there is a unique value inside the typical set that
hashes to a given value.

Claim 5.12.2 (only v′ hashes to h(v′)). Assume v′ ∈ Supp(V ′k), ` ∈ Supp(L) and let m =
bk · (`+ δ)c. Then, it holds that

Pr
h←Hk·q,m

[
∃ v ∈ T δ/4

V ′k|pk,sk,u such that v 6= v′ and h(v) = h(v′)
]
< 2−k·δ/4.

Proof. Note that the size of the typical set is small. Specifically, it holds that∣∣∣T δ/4V ′k|pk,sk,u

∣∣∣ ≤ 2k·(H(V ′|PK,SK,U)+δ/4) (18)

≤ 2k·(`+δ/2),

where the first inequality follows since every element in the typical set has probability mass at
least 2−k·(H(V ′|PK,SK,U)+δ/4) and the second follows from the assumption that the Ent algorithm
(δ/4)-approximates the entropy H(V ′|PK,SK,U).

Next, we use the properties of universal hashing to derive the claim. Intuitively, since our hash
output is k · (` + δ) bits long, the size of the output domain is larger than that of the typical set
by a factor of at least 2k·(δ/2). We can now apply a union bound to prove an upper bound on the

collision probability. Formally, let v 6= v′ with v ∈ T δ/4
V ′k|pk,sk,u. Since h is chosen from a family of
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universal hash functions, it holds that Prh←Hk·q,m [h(v) = h(v′)] = 1
2bk·(`+δ)c

. Applying the union
bound over the typical set yields that:

Pr
h←Hk·q,m

[
∃ v ∈ T δ/4

V ′k|pk,sk,u such that v 6= v′ and h(v) = h(v′)
]
≤

∣∣∣T δ/4V ′k|pk,sk,u

∣∣∣
2bk·(`+δ)c

≤ 2k·(`+δ/2)

2k·(`+δ)−1

≤ 2−k·δ/2+1.

The claim now follows since by assumption 1 ≤ k · δ/4.

The next claim shows that if the rejection sampling succeeds, it returns an element in the typical
set with high probability. It does so by showing that the output distribution of the rejection
sampling is identical to that of Dec. Let W be the random variable, jointly distributed with
PKk, SKk, Uk, V ′k, L,H and S, distributed as the value of v′ at the end of the loop in Step 3 in
a random execution of Dec

(
PKk, L, SKk, Uk, H,H(V ′k),S, σ ⊕ 〈S, V ′k〉

)
. Let RejSampFail be the

event that the rejection sampling in Step 3 fails in the same random execution of Dec, i.e., no v
that hashes to the given hash value is found in all the iterations.

Claim 5.12.3 (v′ and v are identically distributed when rejection sampling succeeds). Let (pk, sk,u) ∈
Supp(PKk, SKk, Uk). Then,(

V ′k|PKk=pk,SKk=sk,Uk=u

)
≡
(
W|PKk=pk,SKk=sk,Uk=u,¬RejSampFail

)
.

Proof. The proof of this claim follows from the fact that for any random variable A and any function
f taking values in Supp(A), sampling from A can be done by first sampling b ← f(A) and then
A|f(A)=b.

Fix h ∈ Supp(H) and let z ← h(V ′k). Since we conditioned on ¬RejSampFail, the principle of
deferred decision and the definition of Dec imply that(

W|PKk=pk,SKk=sk,Uk=u,H=h,¬RejSampFail

)
≡
(
V ′k|PKk=pk,SKk=sk,Uk=u,H=h,h(V ′k)=z

)
.

Since the above holds for any fixing of h, the claim follows.

The final claim before proving Lemma 5.11 show that if v′ belongs to the typical set, then the
rejection sampling succeeds.

Claim 5.12.4. It holds that,

Pr
[
RejSampFail

∣∣∣V ′k ∈ T δ/4V ′k|PKk,SKk,Uk

]
≤ 2−10.

(A note about notation: in the term “V ′k ∈ T δ/4
V ′k|PKk,SKk,Uk

” the first V ′k that appears to the

left of the “∈” symbol and PKk, SKk, Uk are all random variables part of the joint distribution
over which the probability is taken. However, the second V ′k that appear in the subscript of the
typical set is not a random variable, but rather a part of our notation of the typical set of the
random variable V ′k. Until now we managed to avoid this notation overload by restricting the
probability space to only be over the random variables (PKk, SKk, Uk, V ′k), for example as we did
in Claim 5.12.1. Here and below, it will be more convenient not to restrict the probability space.)
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Proof. Fix any (pk, sk,u,v′) ∈ Supp(PKk, SKk, Uk, V ′k) such that v′ ∈ T δ/4
V ′k|pk,sk,u and any (`, h, s) ∈

Supp(L,H,S). Consider a random execution of Dec with these fixed values. By construction, the
probability of a single iteration of the loop in Step 3 succeeding is given by,

Pr
v←V ′k|pk,sk,u

[
h(v) = h(v′)

]
.

It holds that,

Pr
v←V ′k|pk,sk,u

[
h(v) = h(v′)

]
≥ Pr

v←V ′k|pk,sk,u

[
v = v′

]
≥ 2−k(H(V ′|PK,SK,U)+δ/4)

≥ 2−k(`+δ/2).

where the second inequality follows since v′ ∈ T δ/4
V ′k|pk,sk,u and from the definition of the typical

set (Definition 5.3), and the third inequality follows from the assumption that the Ent algorithm
(δ/4)-approximates the entropy H(V ′|PK,SK,U).

So, the failure probability of each loop iteration is at most 1−2−k(`+δ/2). Hence, the probability
that all 210·k·(`+δ/2) independent iterations fail is at most(

1− 2−k(`+δ/2)
)(210·k·(`+δ/2))

≤ 2−10,

where we used that (1− 1
x)x < e−1 < 2−1.

The claim now follows since the above failure probability holds for any fixing of (pk, sk,u,v′)

such that v′ ∈ T δ/4
V ′k|pk,sk,u and (`, h, s).

Equipped with Claims 5.12.1 to 5.12.4 we can now complete the proof of Lemma 5.11. We say
that the event Coll occurs when H(V ′k) has at least two pre-images inside the typical set; that is,∣∣∣T δ/4V ′k|PKk,SKk,Uk

∩H−1(H(V ′k))
∣∣∣ ≥ 2. (Here and below we again overload the notation of “V ′k”;

see the text following Claim 5.12.4 for a discussion.) By construction it holds that,

Pr

[
Dec

(
PKk, L, SKk, Uk, H,H(V ′k),S, σ ⊕ 〈S, V ′k〉

)
= σ

∣∣∣∣∣ V ′k ∈ T
δ/4

V ′k|PKk,SKk,Uk
∧ ¬RejSampFail

∧W ∈ T δ/4
V ′k|PKk,SKk,Uk

∧ ¬Coll

]
= 1.

Indeed, ¬Coll implies that there is only one element in the typical set that hashes to the given value,
while ¬RejSampFail implies that both V ′k and W hash to that value. Since we also condition on
both V ′k and W being in the typical set, they must be equal. Finally, by construction, that V ′k

and W are equal implies that the decryption algorithm will succeed in decrypting the message
correctly.
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Hence,

Pr
[
Dec

(
PKk, L, SKk, Uk, H,H(V ′k),S, σ ⊕ 〈S, V ′k〉

)
= σ

]
(19)

≥ Pr
[
V ′k ∈ T δ/4

V ′k|PKk,SKk,Uk
∧W ∈ T δ/4

V ′k|PKk,SKk,Uk
∧ ¬Coll ∧ ¬RejSampFail

]
≥ 1− Pr

[
W /∈ T δ/4

V ′k|PKk,SKk,Uk

]
− Pr[Coll]− Pr

[
V ′

k
/∈ T δ/4

V ′k|PKk,SKk,Uk
∨ RejSampFail

]
≥ 1− Pr

[
W /∈ T δ/4

V ′k|PKk,SKk,Uk

]
− Pr[Coll]− Pr

[
V ′

k
/∈ T δ/4

V ′k|PKk,SKk,Uk

]
− Pr

[
RejSampFail

∣∣∣V ′k ∈ T δ/4V ′k|PKk,SKk,Uk

]
(∗)
≥ 1− 2 · Pr

(pk,sk,u,v′)←(PKk,SKk,Uk,V ′k)

[
v′ /∈ T δ/4

V ′k|pk,sk,u

]
− 2−k·δ/4 − 2−10

(∗∗)
≥ 1− 2

− k·δ2
200q2

+1 − 2−8 − 2−10

≥ 1− 2−15+1 − 2−8 − 2−10

≥ 1− 2−6,

where (∗) follows from Claims 5.12.2 to 5.12.4 and (∗∗) follows by the assumptions that 7 ≤
k · δ2/3000q2 and k · δ ≥ 32.

Combining Eq. (19) with Eq. (17) implies that Eq. (16) holds. That is,

Pr
[
Dec

(
PKk, L, SKk, Uk, H,H(V k),S, σ ⊕ 〈S, V k〉

)
= σ

]
≥ 1− 2−5.

This concludes the proof of Lemma 5.11.

5.4 Security — Proving Lemma 5.12

The proof relies on the fact that by assumption, V , a random private message of the encoder of
the underlying trapdoor pseudoentropy generator, has pseudoentropy given PK and U , a random
public key and public message of the encoder of the underlying trapdoor pseudoentropy generator,
respectively. By repetition, we can convert this pseudoentropy into pseudo min-entropy.

Claim 5.12.5. The conditional pseudo ε-smooth min-entropy of V k, given PKk, Uk is at least

k ·
(

H(V |PK,U) + n− δ
)

where ε = 2
− kδ2

20q2 .

Proof. By assumption, V has conditional pseudoentropy at least H(V |PK,U) + n given PK,U .
Lemma 5.9 yields that V k has conditional pseudo ε′-smooth min-entropy at least k·(H(V |PK,U) + n− δ)

given PKk, Uk, for ε′ = 2
− kδ2

2 log2(2q+3) . Since 2 log2(2q + 3) ≤ 20q2 for q ≥ 1, it holds that ε ≥ ε′.
The claim follows since the ε-smooth min-entropy increases with ε (i.e., Hε

∞(Z) ≥ Hε′
∞(Z)).

Using the above claim we turn to prove Lemma 5.12 which shows that our encryption scheme
is weakly secure. The proof follows from the leftover hash lemma and the pseudo min-entropy of
V k|PKk, Uk.

Proof of Lemma 5.12. The proof is by a reduction. Given an algorithm A that can decrypt with
good probability, we construct a distinguisher Â that distinguishes between V k and any random
variable with high conditional ε-smooth min-entropy. This contradicts Claim 5.12.5.
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Fix large enough λ ∈ N and32 σ ∈ {0, 1} and let δ = δ(λ), k = k(λ), q = q(λ), γ = γ(λ) and
n = n(λ). Let L ← Ent(1λ), M = bk · (L+ δ)c, H ← Hk·q,M and V ← {0, 1}k·q. Assume toward
a contradiction that the statement does not hold. Namely that there exists a polynomial time
algorithm A, an infinite index set Λ ⊆ N such that for every λ ∈ Λ, it holds that

Pr[A(pk,Enc(pk, σ)) = σ] = Pr
[
A
(
PKk, L, Uk, H,H(V k),S, σ ⊕ 〈S, V k〉

)
= σ

]
(20)

≥ 1

2
+ 2−5.

Moreover, by the assumptions of the lemma it holds that k · (n/2− 1.5δ) ≥ 7 and k·δ2

20q2 ≥ 7. Thus

2−5 ≥ 2−7 + 2−7 +
1

λc
≥ 2−k·(n/2−1.5δ) + 2

− k·δ2
20q2 +

1

λc
,

for large enough λ ∈ N and some c > 0. Thus, for for large enough λ ∈ Λ, it also holds that

Pr
[
A
(
PKk, L, Uk, H,H(V k),S, σ ⊕

〈
S, V k

〉)
= σ

]
≥ 1

2
+ 2−k·(n/2−1.5δ) + 2

− k·δ2
20q2 +

1

λc
. (21)

Let ε = 2
− k·δ2

20q2 . We use A to break the conditional pseudo ε-smooth min-entropy of V k. Or,
in other words, to distinguish between V k and any random variable with ε-smooth min-entropy at
least k · (H(V |PK,U) + n− δ). Intuitively, Eq. (21) yields that A can recover the encrypted bit
σ with “high” probability when it is masked by V k (namely, recovering σ from σ ⊕

〈
S, V k

〉
and

S). In contrast, we next show that when σ is encrypted using a random variable whose ε-smooth
min-entropy at least k · (H(V |PK,U) + n− δ), the algorithm A can only recover σ with “small”
probability. Thus A breaks the conditional pseudo ε-smooth min-entropy of V k.

Formally, let Z = {Zλ}λ∈N be an sequence of random variables over {0, 1}k·q such that

Hε
∞

(
Z
∣∣∣PKk, Uk

)
≥ k · (H(U |PK,U) + n− δ)− 1

λc′
(22)

≥ k · (H(U |PK,U) + n− δ)− 1,

for large enough λ ∈ N and for some c′ > 0 to be determined by the analysis. Fix ` ∈ Supp(L) and
let m = bk · (`+ δ)c. By the (generalized) leftover hash lemma (Lemma 5.7), Eq. (22) and since
concatenating the inner product to a universal hash function is also a universal hash function33 it
holds that

Pr
[
A
(
PKk, `, Uk, H,S, H(Z), σ ⊕ 〈S,Z〉

)
= σ

]
(23)

≤ Pr
[
A
(
PKk, `, Uk, H,S, Rm, σ ⊕R1

)
= σ

]
+ ε+

1

2
·
√

2−k·(H(V |PK,U)+n−δ)+1 · 2m+1 ,

where Rm ← {0, 1}m and R1 ← {0, 1}.
32As in the correctness proof, we prove (the stronger statement) that the correctness of the decryption holds for

any enceypted bit σ ∈ {0, 1}, rather than a randomly chosen one.
33Namely, the function h′(x) = (h(x), 〈r, x〉), where h ∈ Hqk,m and r ∈ {0, 1}qk, is a universal hash function.
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Recall that by the assumption on Ent, it holds that ` ≤ H(V ′|PK,SK,U) + δ/4. Moreover,
since by assumption SD((PK,SK,U, V ), (PK,SK,U, V ′)) ≤ γ and the pseudoentropy generator
scheme is q-laconic, Fact 2.9 yields that

H(V ′|PK,SK,U) ≤ H(V |PK,SK,U) + q · γ + h(γ)

≤ H(V |PK,SK,U) + q · γ + 2
√
γ

≤ H(V |PK,SK,U) + 3δ/4,

where the second inequality follows since h(γ) ≤ 2
√
γ for every γ ∈ [0, 1] and the third inequality

follows from the assumption of the lemma that imply q · γ + 2
√
γ ≤ (q + 2)

√
γ ≤ 3δ/4. It follows

that for large enough λ,

m ≤ k · (`+ δ) ≤ k · (H(V ′|PK,SK,U) + δ/4 + δ) ≤ k · (H(U |PK,SK,U) + 2δ). (24)

Furthermore, observe that

Pr
[
A
(
PKk, `, Uk, H,S, Rm, σ ⊕R1

)
= σ

]
= Pr

[
A
(
PKk, `, Uk, H,S, Rm, R1

)
= σ

]
=

1

2
. (25)

Plugging Eqs. (24) and (25) into Eq. (23) yields that

Pr
[
A
(
PKk, `, Uk, H,S, H(Z), σ ⊕ 〈S,Z〉

)
= σ

]
≤ 1

2
+ 2−k·(n/2−1.5δ) + ε. (26)

Consider the distinguisher Â that on input (1λ, pk,u,v) sets ` = Ent(1λ) and m = bk · (`+ δ)c,
samples h← Hk·q,m, s← {0, 1}k·q and σ ← {0, 1}, and outputs 1 iff A(pk, `,u, h, s, h(v), σ ⊕ 〈s,v〉) =
σ. By construction, Eqs. (21) and (26) it holds that∣∣∣Pr

[
Â
(
PKk, Uk, V k

)
= 1
]
− Pr

[
Â
(
PKk, Uk,Z

)
= 1
]∣∣∣ ≥ 1

λc
, (27)

for large enough λ ∈ Λ.
Finally, since the running times of A and Ent are polynomials, there exists d > 0 such that Â’s

running time is at most λd. Set c′ = max{c, d}. We conclude that V k does not have (λc
′
, 1/λc

′
)

conditional pseudo ε-smooth min-entropy at least k · (H(V |PK,U) + n− δ) given PKk, Uk, a con-
tradiction to Claim 5.12.5.

Thus, there cannot exist an adversary A as above for the encryption scheme. This concludes
the proof of Lemma 5.12.

5.5 Implementing the Approximation Algorithm Ent

In Sections 5.2 to 5.4 we constructed and proved the correctness and security of a weak PKE
scheme, assuming the existence of an algorithm approximating a statistical property of the trap-
door pseudoentropy generator. In this section, we show how to efficiently implement the needed
approximation algorithm.

Recall that the required algorithm (see Definition 5.10) is meant to approximate the entropy
of the decoder’s message in the underlying pseudoentropy generator scheme, given the public key,
the secret key and the encoder’s public message. We show how to implement such an entropy
approximator for general random variables, assuming they can be sampled in a way that satisfy
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some efficiency requirements and have sufficiently small support. Naturally, the keys and the
messages of the underlying pseudoentropy generator scheme satisfy these requirements.

To describe the algorithm for estimating entropy, first we describe an algorithm that approx-
imates the probability mass function — which we call the histogram, of an efficiently samplable
distribution. The algorithm will approximate the histogram by repeatedly sampling from the dis-
tribution and returning the empirical distribution constructed from these samples. Indeed, the key
fact that we will use is that the support size of the distribution is small (namely, polynomial in
the security parameter). Note that such an algorithm can be used also to approximate the entropy
of the distribution as well. In fact, this is how we implement the algorithm for approximating the
entropy.

Lemma 5.13. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of random variables such that
Xλ and Yλ are jointly distributed over Xλ×Yλ. Assume that for every y ∈ Supp(Yλ), it is possible
to sample from the distribution (Xλ|(Yλ = y)) in poly(λ) time. Finally, let ε, δ : N→ [0, 1] be such
that ε = ε(λ) and δ(λ) = δ are computable in poly(λ) time.

Then, there exists a randomized algorithm Hist = Hist(X,Y,ε,δ) that when given input of the
form (1λ, y), for y ∈ Supp(Yλ), runs in time poly(λ, |Xλ|, 1/ε(λ), log(1/δ(λ))) and returns a vector
representing a distribution over Xλ such that for all sufficiently large λ it holds that

Pr
Q←Hist(1λ,y)

[SD(Q, (Xλ|(Yλ = y))) > ε(λ)] ≤ δ(λ).

Proof. The algorithm Hist simply returns the empirical distribution of Xλ|(Yλ = y).

Hist(X,Y,ε,δ) on input (1λ, y):
1. Set ε = ε(λ), δ = δ(λ) and let X = Xλ, X = Xλ and Y = Yλ
2. For every x ∈ X , set Px = 0

3. Repeat N =
⌈
|X |+log(1/δ)

2ε2

⌉
times:

(a) Sample x← (X|Y = y).
(b) Set Px = Px + 1.

4. Return the vector (Px/N)x∈X .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is easy to verify that the running time of Hist(X,Y,ε) is poly(λ, |Xλ|, 1/ε(λ), log(1/δ(λ))). In-
deed, computing ε = ε(λ) and δ(λ), and sampling from (X|Y = y) can be done in poly(λ) time and

the loop has O
(
|X |+log(1/δ)

ε2

)
iterations.

The correctness of the algorithm follows immediately from the following fact, showing that com-
puting the empirical distribution from large enough number of samples approximates the original
distribution well.

Fact 5.14 (Folklore (see, e.g., [Gol17, Exercise 11.4])). Let P be a distribution over n elements
and let P̂ be the empirical distribution obtained from taking N samples P1, . . . , PN from P , namely,

P̂ (i) = |{j : Pj = i}|/N . Then, if N ≥
⌈
n+log(1/δ)

2ε2

⌉
, it holds that

Pr
[
SD
(
P, P̂

)
≥ ε
]
≤ δ.

The following proof was communicating to us by John Wright [Wri17].
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Proof. Assume without loss of generality that the distribution P is over the elements [n] =

{1, 2, . . . , n}. By definition, SD
(
P, P̂

)
≥ ε if and only if ∃S ⊆ [n] such that P̂ (S)− P (S) ≥ ε.

Fix S ⊆ [n]. Since P̂ is the empirical distribution obtained from taking N samples from P , it
easy to see that P̂ (S) is identically distributed as (Z1 + · · ·+ZN )/N , where each Zi is independent
Bernoulli random variable which is 1 with probability P (S) and 0 otherwise. Hence,

Pr
[
P̂ (S)− P (S) ≥ ε

]
= Pr

[
1

N

N∑
i=1

Zi ≥ P (S) + ε

]
≤ e−2Nε2 ≤ 2−2Nε2 ,

where the first inequality follows from the Chernoff bound.
Applying the union bound we have that

Pr
[
SD
(
P, P̂

)
≥ ε
]

= Pr
[
∃S ⊆ [n] : P̂ (S)− P (S) ≥ ε

]
≤
∑
S⊆[n]

Pr
[
P̂ (S)− P (S) ≥ ε

]
≤ 2n · 2−2Nε2

≤ δ,

where the last inequality follows since N ≥
⌈
(n+ log(1/δ))/(2ε2)

⌉
.

Applying Fact 5.14 with n = |X |, ε and δ completes the proof of Lemma 5.13.

We now turn to the main task of estimating the entropy of a random variable X, given another
random variable Y ; that is, approximating H(X|Y ). Our algorithm will repeatedly call the previous
algorithm (Hist) to get approximations for the distribution X|(Y = y), for randomly sampled
y’s, and compute the entropy with respect to each such y based on these approximations. Since
the entropy with respect to each y is bounded by the logarithm of the support size, Hoeffding’s
inequality tells us that the average of these entropies is concentrated around H(X|Y ). Hence, the
average of the above entropies approximates the original entropy well.

Lemma 5.15. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of random variables such that
Xλ and Yλ are jointly distributed over Xλ × Yλ. Assume that it is possible to sample from Yλ in
poly(λ) time, and that for every y ∈ Supp(Yλ), it is also possible to sample from the distribution
(Xλ|(Yλ = y)) in poly(λ) time. Finally, let ε = ε(λ) > 0 and δ = δ(λ) ∈ (0, 1] be computable in
poly(λ) time.

Then, there exists a randomized algorithm Ent = Ent(X,Y,ε,δ) that on input 1λ runs in time
poly(λ, |Xλ|, 1/ε(λ), 1/δ(λ)) and outputs a number in [0, log(|Xλ|)] such that the following holds for
large enough λ ∈ N.

Pr
[∣∣∣Ent(1λ)−H(Xλ|Yλ)

∣∣∣ > ε
]
≤ δ.

Proof. Consider the following algorithm.

Ent(X,Y,ε,δ) on input (1λ):
1. Set ε = ε(λ), δ = δ(λ) and let X = Xλ, X = Xλ and Y = Yλ
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2. Set ε′ =
⌊

ε2

4(log(|X |)+2)2

⌋
, T =

⌈
log(4/δ)·log2(|X |)

(ε/2)2

⌉
and δ′ = min

{
δ

2T , ε
′}

3. For i = 1 to T :
(a) Sample yi ← Y
(b) Sample P̂i ← Hist(X,Y,δ′,δ′)(1λ, yi)
(c) Set Zi = H(P̂ ) =

∑
x∈X P̂i(x) · log(1/P̂i(x))

4. Return 1
T ·
∑T

i=1 Zi
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We first argue correctness and then analyze the running time. Fix a sufficiently large λ ∈ N. In
the sequel we omit λ from the notation. We think of Zi as a random variable over the probability
space of choosing yi ← Y and the randomness of Hist used to generate P̂i. Let Wi be a random
variable coupled with Zi as follows: Wi takes the value of H(X|Y = yi) for yi being the value
sampled at step 3a in the i’th iteration of the loop. It holds that E[Wi] = H(X|Y ) for every i ∈ [T ].
Hence, our goal is to bound

Pr
[∣∣∣Ent(X,Y,ε,δ)(1λ)−H(X|Y )

∣∣∣ > ε
]

= Pr

[∣∣∣∣∣ 1

T

T∑
i=1

Zi −
1

T

T∑
i=1

E[Wi]

∣∣∣∣∣ > ε

]
= Pr

[∣∣Z̄ − E
[
W̄
]∣∣ > ε

]
,

where Z̄ = 1
T

∑T
i=1 Zi, and W̄ = 1

T

∑T
i=1Wi.

Let Pi the distribution of the random variable (X|Y = yi), where yi is again the value sampled
at step 3a in the i’th iteration of the loop. It holds that

Pr
(y1,...,yT )←Y T

P̂1,...,P̂T

[∣∣Z̄ − E
[
W̄
]∣∣ > ε

]
≤ Pr

(y1,...,yT )←Y T
P̂1,...,P̂T

[∣∣Z̄ − E
[
W̄
]∣∣ > ε

∣∣∣ ∀i : SD
(
Pi, P̂i

)
≤ δ′

]
(28)

+ Pr
P̂1,...,P̂T

[
∃i : SD

(
Pi, P̂i

)
> δ′

]
.

By Lemma 5.13 and the union bound it holds that

Pr
P̂1,...,P̂T

[
∃i : SD

(
Pi, P̂i

)
> δ′

]
≤ T · δ′

In order to bound the first term in the right-hand side of Eq. (28), we need to show that if P̂i
and Pi are close, then so are Zi and Wi. We abuse notation and let Pi and P̂i denote also random
variables chosen according to the distributions Pi and P̂i, respectively. It holds that Zi = H(P̂i)

and Wi = H(Pi). Assume for now that ∀i : SD
(
Pi, P̂i

)
≤ δ′. Using the fact that small statistical

distance implies small entropy difference (Fact 2.8), it holds that∣∣Z̄ − E
[
W̄
]∣∣ =

∣∣Z̄ − E
[
W̄
]

+ W̄ − W̄
∣∣

≤
∣∣W̄ − E

[
W̄
]∣∣+

1

T

T∑
i=1

|Zi −Wi|

≤
∣∣W̄ − E

[
W̄
]∣∣+

1

T

T∑
i=1

log(|X |) · δ′ + h(δ′)

≤
∣∣W̄ − E

[
W̄
]∣∣+ log(|X |) · δ′ + h(δ′),
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where the second inequality follows from Fact 2.8 (recall that h(p) = p log(1/p)+(1−p) log(1/(1−p))
is the binary entropy function). Since h(p) ≤ 2

√
p for any p ∈ [0, 1], we have

log(|X |) · δ′ + h(δ′) ≤ log(|X |) · δ′ + 2
√
δ′ ≤ log(|X |) ·

√
δ′ + 2

√
δ′ =

√
δ′(log(|X |) + 2)2 ≤ ε/2,

where the last inequality follows since δ′ ≤ ε′ and from the choice of ε′. Thus, it holds that

Pr
[∣∣Z̄ − E

[
W̄
]∣∣ > ε

∣∣∣ ∀i : SD
(
Pi, P̂i

)
≤ δ′

]
≤ Pr

[∣∣W̄ − E
[
W̄
]∣∣ > ε− log(|X |) · δ′ − h(δ′)

]
≤ Pr

[∣∣W̄ − E
[
W̄
]∣∣ > ε/2

]
,

where the first inequality follows from the coupling of Zi and Wi and from Fact 2.8. To bound the
last term we use Hoeffding’s inequality:

Fact 5.16 (Hoeffding’s inequality). Let W1, . . . ,Wn be independent random variables bounded in
the interval [ai, bi]. Let W̄ = 1

n

∑n
i=1Wi. Then, for any ε > 0 it holds that

Pr
[∣∣W̄ − E

[
W̄
]
> ε
∣∣] ≤ 2 · 2

− 2n2ε2∑n
i=1

(bi−ai)2 .

All in all, we get that

Pr
[∣∣∣Ent(1λ)−H(X|Y )

∣∣∣ > ε
]
≤ 2 · 2−

T (ε/2)2

log2(|X|) + T · δ′

≤ δ/2 + δ/2

= δ,

where the second inequality follows from the choice of T and δ′.
As for the running time, computing δ = δ(λ) and sampling from Y are done in poly(λ). Com-

puting Zi can be done in poly(|X |) time. By construction T = polylog(|X |, 1/δ) ·poly(1/ε) and ε′ =
1/poly(log(|X |), 1/ε), and thus δ′ = 1/poly(|X |, 1/ε, 1/δ). Finally, every call to Hist(X,Y,δ′,δ′) takes
poly(λ, |X |, 1/δ′) = poly(λ, |X |, 1/ε, 1/δ) time. All in all, the running time is thus poly(λ, |X |, 1/ε, 1/δ),
as required.

5.6 Proving Lemma 5.1

Equipped with the results of Sections 5.3 to 5.5, we are now ready to prove Lemma 5.1. Namely,
constructing a public-key encryption scheme based on the existence of a suitable trapdoor pseu-
doentropy generator.

We begin with a brief overview of the proof. Our first step is to show that the scheme outlined
in Fig. 6 is a weak PKE scheme. Recall that our construction is parameterized by k and δ, where
the former determines the number of repetitions and the latter determines the output length of
the hash function. The construction also require access to an approximation algorithm. The proof
sets k and δ and instantiates a weak version of the approximation algorithm such that: (1) the
conditions in the weak correctness lemma (Lemma 5.11) and the weak security lemma (Lemma 5.12)
are satisfied; (2) the loss from only implementing the weak version of the approximating algorithm
is small; and (3) the running time of all the algorithms is polynomial in the security parameter λ.
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We set δ = O(n) and k = Ω(q2/δ2). This setting indeed satisfies the conditions of the
weak correctness and security lemmas. As for the approximation algorithms, we require O(δ)-
approximation for the entropy of the decoder’s message in the pseudoentropy generator scheme.
Since k · q = O(q3/n2) = O(log(λ)) and δ = O(n) = 1/ log(λ), we can implement such approxi-
mation algorithms whose running times is poly(λ) (Section 5.5). As for the running times of the
algorithms of the PKE scheme, it is easy to see that the key-generation algorithm KeyGen and the
encryption algorithm Enc run in polynomial time. As for the decryption algorithm Dec, its running
time is exponential in k · q. Since k · q = O(log(λ)), Dec’s running time is also poly(λ).

After establishing the existence of a weak public-key encryption scheme we use the amplification
result of Holenstein and Renner [HR05] to obtain a full-fledged semantically-secure public-key
encryption scheme.

We now proceed to the formal proof.

Proof of Lemma 5.1. Let γ = γ(λ) ∈ [0, 1], q = q(λ) ∈ N and n = n(λ) > 0 such that n ≤ q,
q3/n2 = O(log(λ)) and γ = o(n2/q2). Let (KeyGen′,Enc′,Dec′) be a q-laconic n-entropic trapdoor
pseudoentropy generator scheme with correctness error γ. Let PK = {PKλ}λ∈N, SK = {SKλ}λ∈N,
U = {Uλ}λ∈N and V ′ = {V ′λ}λ∈N be sequences of jointly distributed random varialbes defined as

(PKλ, SKλ)← KeyGen′(1λ), (Uλ, ·)← Enc(1λ, PKλ) and V ′λ ← Dec(1λ, PKλ, SKλ).

Set δ = n/6 and k =
⌈

21000·q2

δ2

⌉
. Note that δ ∈ [0, q], k ·q = O(q3/n2) = O(log(λ)) and k ·δ ≥ 32.

Let Ẽnt = Ent(V ′,(PK,SK,U),δ/4,1/λ), be the algorithm from Lemma 5.15. Finally, let

(KeyGen,Enc,Dec) = (KeyGen,Enc,Dec)
δ,k,q,KeyGen′,Enc′,Dec′,Ẽnt

.

We show that (KeyGen,Enc,Dec) is a (7/8)-correct (1/15)-secure public-key encryption scheme;
that is, the decryption succeeds with probability 0.5+0.5 ·(7/8), any adversary can decrypt without
the secret-key with probability at most 0.5 + 0.5 · (1/15) and the algorithms (KeyGen,Enc,Dec) all
run in poly(λ) time. (See Definition 2.1.)

Correctness. Clearly, the setting of k and δ satisfies that k · δ2 ≥ 21000 · q2. Furthermore,

k · γ = O
(
q2

n2 · γ
)

= o(1). At this point we would like to use Lemma 5.11. However, recall that in

proving Lemma 5.11 we assumed that the approximation algorithm always satisfied Definition 5.10.
However, Lemma 5.15 guarantees this to hold for Ẽnt only with high probability. To overcome this
issue we use the fact that the scheme makes only a single oracle call to Ẽnt.

Formally, let E1 be the event that Ẽnt returns a value that satisfies Definition 5.10. By the
setting of parameters above, it holds that Pr[¬E] ≤ 1/λ. Then, for large enough λ, Lemma 5.11
yields that

Pr
[
Dec

(
1λ, sk,Enc(1λ, sk, pk, σ)

)
= σ

]
≥ Pr

[
Dec

(
1λ, sk,Enc(1λ, sk, pk, σ)

)
= σ

∣∣∣E1

]
− Pr[¬E1]

≥ 1− 2−5 −
(

1

λ

)
=

1

2
+

1

2
· 15

16
−
(

1

λ

)
>

1

2
+

1

2
· 7

8
,
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as required.

Security. We start by showing that the setting of k and δ satisfies the conditions of Lemma 5.12.
Clearly, the setting of k and δ satisfy that k · δ2 ≥ 120 · q2 and k · (n − 3δ) ≥ 14. To see that
16(q + 2)2 · γ ≤ 9δ2 for large enough λ, note that 16(q + 2)2 · γ = o(n2) while δ2 = Ω(n2).

Similar to the correctness case, let E1 be the event that Ẽnt returns a value that satisfy Def-
inition 5.10. Lemma 5.12 now yields that for every polynomial-time algorithm A and sufficiently
large λ, it holds that

Pr
[
A
(

1λ, pk,Enc(1λ, pk, σ)
)

= σ
]
≤ Pr

[
A
(

1λ, pk,Enc(1λ, pk, σ)
)

= σ
∣∣∣E1

]
+ Pr[¬E1]

≤ 1

2
+ 2−5 +

1

λ

=
1

2
+

1

2
· 1

16
+

1

λ

<
1

2
+

1

2
· 1

15
,

as required.

Running Times. We begin by showing that the running time of Ẽnt is polynomial. Indeed,
since the trapdoor pseudoentropy generator is q-laconic, and since q = O(log(λ)), it holds that
Supp(V ′) = poly(λ). Moreover, since by assumption KeyGen′ and Enc′ run in poly(λ) time, sampling
from (PK,SK,U) can be done in poly(λ) time: simply call (pk, sk) ← KeyGen′(1λ) and (u, ·) ←
Enc′(pk), and output (pk, sk, u). Finally, using that by assumption Dec also run in poly(λ) time,
we can also sample from V ′|(PK = pk, SK = sk, U = u) for every (pk, sk, u) ∈ Supp(PK,SK,U):

simply output Dec′(pk, sk, u). Hence, Ẽnt runs in poly(λ) time.
We can now show that the algorithms of the encryption scheme are also polynomial-time.

• KeyGen makes k calls to KeyGen′ and a single oracle call to Ẽnt and thus run in poly(λ) time.

• Enc makes k calls to Enc′ and samples and evaluates a universal hash function from Hk·q,m,
where m = dk · (`+ δ)e, for ` ≤ q. By Fact 2.4 sampling and evaluating such hash function
can be done in polylog(λ), and thus the running time of Enc is poly(λ).

• Dec makes k ·210·k(`+δ) calls to Dec′ and evaluates the hash function 210·k(`+δ) times. As both
` and δ are less than q and k · q = O(log λ), the running time of Dec is poly(λ).

We have shown that (KeyGen,Enc,Dec) is (7/8)-correct (1/15)-secure public-key encryption
scheme. Since (7/8)2 > 1/15, the amplification result of Holenstein and Renner [HR05] (given in
Theorem 2.2) yields that there exists public-key encryption scheme.

6 Extensions

In this section, we exhibit two relaxations of Assumption 3.5 that are suffice for our construction
of PKE. The first relaxation, discussed in Section 6.1, is implied by several concrete assumptions
that have been used in the past to construct PKE, and the other, discussed in Section 6.2, turns out
to be equivalent to the existence of PKE itself, leading to a complexity-theoretic characterization
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of the same. Lastly, in Section 6.3, also show how Assumption 3.5 can be strengthened to yield a
(two-message) oblivious transfer protocol.

6.1 A Weaker Assumption

Recall that L is a language in NP with witness relation RL, and YL and NL are sampling algorithms
that output, with all but negligible probability, samples of the form (x,w) ∈ RL and x /∈ L
respectively.

Towards weakening Assumption 3.5, which we used earlier to construct PKE, we define a more
general variant of SZK arguments by relaxing the requirements in its definition to only hold on
average. For instance, we earlier required that for any x ∈ L and witness w for it, the prover P
that knows w can make the verifier V accept with high probability. Instead, we will now require
this to hold only with high probability over the (x,w) pairs produced by YL. (In particular, there
may exist some rare (x,w) ∈ RL for which P is unable to make V accept.)

Similarly, the soundness condition is relaxed to only require that security against cheating
provers hold with high probability over the x’s produced by NL – there may be some x /∈ L where
a malicious prover P? is able to make V accept, but these are rare. Zero-knowledge is also relaxed
and is required to hold only with high probability over the x’s produced by YL. We refer to this
notion as average-case SZK (ASZK).

Definition 6.1 (ASZK Arguments). Let c, s : N→ [0, 1]. An interactive proof system (P,V) is an
Average-case Statistical Zero Knowledge (ASZK) argument (against honest verifiers) for (L,YL,NL)
with completeness error c and soundness error s if the following properties hold:

• Efficiency: Both P and V are probabilistic polynomial-time algorithms.

• Completeness: For all large enough λ:

Pr
(x,w)←YL(1λ)

[
(P(w),V)(1λ, x) accepts

]
≥ 1− c(λ).

• Soundness: For any, possibly malicious, polynomial-time P? and all large enough λ:

Pr
x←NL(1λ)

[
(P∗,V)(1λ, x) accepts

]
≤ s(λ).

• Honest Verifier Statistical Zero Knowledge: There is a polynomial-time algorithm S,
called the simulator, such that for random (x,w) ← YL(1λ), the simulator S simulates the
transcript of the interactive proof given x. That is, the following holds for all large enough λ:

E
(x,w)←YL

[
SD
(

(P(w),V)(1λ, x),S(1λ, x)
)]
≤ negl(λ).

Note that since YL and NL are concentrated on instances in and not in L respectively, any pro-
tocol that is an SZK argument for L is also an ASZK argument for (L,YL,NL) with the correctness,
soundness and simulation errors degraded by a negligible additive factor.

We will still require our arguments to be laconic – that the number of rounds and the size of
the prover’s messages be small. We state our next assumption as follows.
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Assumption 6.2. There exists a language L ∈ NP with associated distributions over instances
(YL,NL), and a constant α < 1/2 such that:

1. (L,YL,NL) is (poly, α)-cryptographically hard.

2. There is an r-round q-laconic honest-verifier ASZK argument for (L,YL,NL) with complete-
ness error c and soundness error s such that:

• There is a constant β > 0 such that for large enough λ: 1− c(λ) > s(λ) + α+ β.

• q and r are such that r2 · q3 = O(log(λ)).

Notice that we have weakened Assumption 3.5 in two ways. First, where we earlier required SZK
arguments, now we only require ASZK arguments. As noted earlier, SZK arguments are themselves
also ASZK arguments with almost the same correctness, soundness and simulation errors.

Second, we relax requirements of the cryptographic hardness of L. In Assumption 3.5 we
required that (L,YL,NL) be cryptographically hard – that no polynomial-time algorithm be able
to distinguish between YL and NL with non-negligible advantage. In Assumption 6.2, however, we
only require that this advantage be less than a fixed constant α that satisfies certain properties in
relation to the completeness and soundness errors.

Despite being weaker, Assumption 6.2 suffices, with very few changes to the proofs in Sections 4
and 5, for our construction of a PKE.

Theorem 6.3. If Assumption 6.2 holds, then there exists a PKE scheme.

Proof Sketch. We show how to modify the statement and proof of Lemma 4.3 and the proof of
Theorem 3.6 so they can be applied with Assumption 6.2 (instead of Assumption 3.5). The proof
of Lemma 5.1 remains unchanged.

In the statements and proof of Lemma 4.3, KL(1− c||s) is replaced with KL(1− c||s+ α),
where α is the cryptographic hardness parameter from Assumption 6.2. The construction proving
Lemma 4.3 is the same as in Fig. 5. The proof is almost the same as in Section 4, except for the
following changes:

1. The proof of Lemma 4.4 remains the same. It uses the zero-knowledge of the argument-system,
but only assumes it to be average-case; see Footnote 26.

2. In Lemma 4.9, the hypothesis would only require an interactive argument system whose
completeness and soundness hold on average. The proof of this lemma would then work as
is, except the guarantees of the algorithm F defined there now only hold on average.

3. In the statements of Lemma 4.10, KL(1− c||s) is replaced with KL(1− c||s+ α), where α is
the cryptographic hardness parameter from Assumption 6.2. In the proof of that lemma
we make the following changes (all variables are in the context of that proof): We set

γ = 1/poly such that 1 − c > s + α + γ and 1/λd > 2(1−c)·γ
(s+α)·r . Using that L is (poly, α)-

cryptographically hard, and applying Lemma 4.9 with soundness error s+ α, we get that BI

has
(

poly, 1/λd − 2(1−c)·γ
(s+α)·r

)
conditional pseudoentropy at least H(BI |X, I, CI)+KL(1− c||s+ α+ γ)/r−(

1/λd − 2(1−c)·γ
(s+α)·r

)
. The last step of “getting rid” of the dependency in γ is done as in the

proof of Lemma 4.10.

4. In the proof of Lemma 4.3, KL(1− c||s) is replaced with KL(1− c||s+ α).
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Finally, as for the proof of Theorem 3.6 (given in the beginning of Section 5), KL(1− c||s) is
again replaced with KL(1− c||s+ α). That proof only used that KL(1− c||s) is a constant (or
chose it to be a constant with out loss of generality), and the same holds for KL(1− c||s+ α).

We next argue that Assumption 6.2 implies most of the assumptions that are already known
to imply PKE. Specifically, Assumption 6.2 is implied by each of the following assumptions (with
whatever respective parameters are known to imply public-key encryption):

• Quadratic Residuosity

• Decisional Diffie-Hellman

• Learning Parity with Noise

• Learning With Errors

• Combinations of the LIN, DUE, and DSF assumptions from [ABW10]

The definition of the above assumptions, requisite references, and explanations of how they im-
ply our assumption are given in Appendix A. There are some important assumptions, however, that
give public-key encryption but which we do not know to imply Assumption 6.2, such as the hardness
of factoring and the computational Diffie-Hellman assumption. Another is the 3LIN assumption
from [ABW10]. It would be interesting to understand what distinguishes these assumptions from
the ones in the list above.

6.2 A Complexity-Theoretic Characterization of PKE

In this section we present a complexity-theoretic characterization of public key encryption; that
is, a complexity-theoretic assumption that is equivalent to the existence of public-key encryption
schemes. We also show that a relaxed version of this assumption (which we get by removing a
laconism condition) is equivalent to the existence of one-way functions.

Up to this point we showed the existence of public-key encryption from assumptions that require
some underlying hard decision problem (Assumptions 3.5 and 6.2). Specifically, an NP language
for which it was hard to distinguish between instances that are in the language to those that are
not in the language.

In many cryptographic settings, however, it seems more natural to consider hardness of search
problems. For example, the hardness of computing a secret-key corresponding to a known public-
key or the hardness of finding a the pre-image of random element for a one-way function.

To get our complexity-theoretic characterization we will focus on search problems. Instead of
assuming the existence of two sampling algorithms Y and N that sample YES and NO instances,
respectively, we assume the existence of a single solved instance generator G (we use G to denote the
solved instance generator instead of Y to emphasize that we are no longer considering a language
membership problem). We would like to fit this generator into the framework of statistical zero-
knowledge arguments we used thus far. Specifically, we need to define what does a statistical
zero-knowledge argument-system wrt search problems.

The completeness property of argument-systems carries over smoothly to our current setting.
It holds with respect to a random instance-witness pair sampled from G (in the same way that this
property is defined with respect to Y in Assumption 6.2).
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The main challenge lies in defining soundness. Standard argument-systems require the verifier
to reject inputs that are not in the language. But now we do no longer have a notion of NO inputs.34

To define soundness, we take an approach related to Proofs of Knowledge (PoK) [GMR85, BG92].
In a PoK, not only is the verifier convinced that the instance is in the language, but also that
the prover knows a witness to this affect. This “knowledge” is captured in a form of an efficient
extractor that can retrieve the witness given black-box access to the prover’s strategy.

In our definition, the soundness property is replaced by what we refer to as an Argument of
Weak Knowledge (AoWK) property, which requires that an efficient prover without access to a
witness, cannot convince the verifier to accept, even though the input was generated by the solved
instance generator. This is a weakening of the notion of Argument of Knowledge (AoK, where, in
contrast to PoK, the extractor is only required to work with respect to efficient provers). Indeed,
we do not require the ability to extract a witness from the prover, but only the inability to convince
the verifier without one. Observe that no guarantee is given against provers who have partial access
to the witness.

Lastly, we want to define the zero-knowledge property. In the standard setting, satisfying this
property roughly translates into ensuring that the verifier learns nothing beyond the fact that the
input is in the language. Again we face the issue that we no longer have a language. In this case,
however, the solution is simple. In our definition, satisfying the zero-knowledge property roughly
translates into ensuring that the verifier learns nothing beyond the fact that the prover knows a
witness. The formal definition naturally follows the simulation paradigm, and is in fact identical
to way that this property is defined in Assumption 6.2.

Definition 6.4 (ASZK Arguments of Weak Knowledge). Let c, s : N→ [0, 1]. An interactive proof
system (P,V) is an Average-case Statistical Zero Knowledge (ASZK) Argument of Weak Knowledge
(AoWK) (against honest verifiers) for G with completeness error c and soundness error s if the
following properties hold:

• Efficiency: Both P and V are probabilistic polynomial-time algorithms.

• Completeness: For all large enough λ:

Pr
(x,w)←G(1λ)

[
(P(w),V)(1λ, x) accepts

]
≥ 1− c(λ)

• Argument of Weak Knowledge: For any, possibly malicious, polynomial-time P? and all
large enough λ:

Pr
(x,·)←G(1λ)

[
(P∗,V)(1λ, x) accepts

]
≤ s(λ)

• Honest Verifier Statistical Zero Knowledge: There is a polynomial-time algorithm S,
called the simulator, such that for (x,w) ← G(1λ), the simulator S simulates the transcript
of the interactive proof given just x. That is, the following holds for all large enough λ:

E
(x,w)←G(1λ)

[
SD
(

(P(w),V)(1λ, x),S(1λ, x)
)]
≤ negl(λ).

34Moreover, it may be that every string x is in the support of G. Consider, e.g., the task of inverting a one-way
permutation over {0, 1}λ.
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Remark 6.5 (Worst-case AoWK). The above definition considers average-case notions of com-
pleteness, weak knowledge and zero knowledge. This fact does not seem inherent to the notion of
arguments of weak knowledge and in fact, we find the worst-case variant to be more natural. How-
ever, for our results it is important that we focus on the average-case variant. We leave the study
of the worst-case variant to future research.

The existence of an ASZK argument of weak knowledge for G immediately implies that it is
hard to compute a witness for a random instance. Indeed, if this would not be the case, then a
cheating prover can find such a witness and run the honest prover with this witness to convince
the verifier, breaking the argument of weak knowledge property.

We are now ready to state our assumption and show its equivalence to public-key encryption.

Assumption 6.6. There is an r-round q-laconic honest-verifier ASZK argument of weak knowledge
for a solved instance generator G with completeness error c and soundness error s such that:

• There is a constant β > 0 such that for large enough λ: 1− c(λ) > s(λ) + β; and

• q and r are such that r2 · q3 = O(log(λ)).

Theorem 6.7. Assumption 6.6 is equivalent to the existence of public-key encryption schemes.

Proof Sketch. A key observation is that in the proof of Theorem 6.3 we never really used the
existence of an underlying language L. Instead, we used the sampling algorithms Y and N. Hence,
given a solved instance generator G we can define Y ≡ G, and N to output x such that (x,w)← G.
Note that Y and N actually produce the same distribution over the instances (and thus cannot
describe a language). It follows that (Y,N) satisfy the conditions of Assumption 6.2 (with α = 0),
and thus one direction of Theorem 6.7 follows from Theorem 6.3. It is left to show that PKE implies
Assumption 6.6.

Suppose there exists a PKE scheme (KeyGen,Enc,Dec). We define the solved instance generator
G to be the same as KeyGen, outputting pk as the instance and sk as the witness. An ASZK-AoWK
for G is presented in Figure 7.

P(pk, sk) V(pk)

b← {0, 1}
c c← Enc(1λ, pk, b)

b′ ← Dec(1λ, sk, c) b′ Accept if b = b′

Figure 7: ASZK argument of weak knowledge for G

The completeness of this protocol follows from the correctness of the encryption scheme, and
argument of weak knowledge follows from semantic security. These imply that the completeness
error is negligible and the soundness error is only negligibly more than 1/2.

The simulator, on input pk, runs the verifier V that generates b and c. It then sets the prover’s
message to be b itself and outputs (b, c, b) as the transcript. The distance of this distribution from
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the actual transcript is now exactly the probability that P does not guess b correctly. Thus the
simulation error is the same as the completeness error, which is negligible.

The laconism follows immediately from the structure of the protocol. This complete the proof
of the second direction and Theorem 6.7 follows.

Interestingly, when we remove the laconism requirement from Assumption 6.6, then the resulting
primitive is equivalent to the existence of one-way functions.

Proposition 6.8. The following two statements are equivalent:

• There is an r-round q-laconic honest-verifier ASZK argument of weak knowledge for a solved
instance generator G with completeness error c and soundness error s such that 1 − c(λ) >
s(λ) + β for some constant β > 0 and large enough λ.

• One-way functions exist.

Theorem 6.7 and Proposition 6.8 illustrate again (and perhaps more clearly) what we argued
in Section 1.1.2 — that removing the laconism requirement from our assumption would prove that
the existence of one-way functions implies that of public-key encryptions.

Proof Sketch. As we argued above, the existence of an ASZK-AoWK for G implies that it is hard to
find a witness for a random instance. Specifically, consider the function f(r) = G(r)1, where r are
coins for G and G(r)1 denotes the instance generated by G when it is run with r set to its random
coins.

We claim that f is a distributional one-way function.35 Indeed, suppose there exists an efficient
inverter that given a random instance x can find a pre-image of f that is β-close to a random
pre-image. Namely. it finds almost random coins for G that generate x (together with an almost
random witness w). We can construct a prover strategy that, given x, runs this inverter to find a
β-close-to-random witness w and then runs the honest prover strategy with respect to (x,w).

By completeness, we know that the foregoing prover strategy will convince the verifier with
probability 1 − c − β > s, a contradiction to the argument of weak knowledge property of the
protocol. Hence, f is a distributional one-way function. A distributional one-way function can
be transformed into full-fledged one-way function (see [IL89, Lemma 1]). Thus, the existence of
ASZK-AoWK implies the existence of a one-way function.

As for the other direction, consider the relation (f(x), x), such that f is a one-way function.
Clearly this relation is an NP relation. It follows from [HNO+09] that any NP relation has a
statistical zero-knowledge argument of knowledge with an efficient prover, assuming the existence
of one-way functions. Hence, we can define G to output the pair (f(x), x) for a random x. The
argument-system for the relation (f(x), x) is in fact ASZK-AoWK for G. Indeed, it is immediate
that the argument-system satisfies the correctness and zero-knowledge conditions. To show that it
is also an argument of weak knowledge assume the contrary. Namely, that there exists an efficient
cheating prover that convince the verifier to accept with high probability without knowing the
witness. Since the argument-system is an argument of knowledge, we can efficiently extract the
witness from such a cheating prover. This witness is a pre-image of a random output of f , a
contradiction to f being one-way.

35A polynomial-time computable function f : {0, 1}n → {0, 1}`(n) is distributional one-way if for some polynomial

p and every efficient algorithm A it holds that SD
((
X, f(X)

)
,
(
A(f(X)), f(X)

))
> 1/p(n) for sufficiently large n,

where X is uniform in {0, 1}n.
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6.3 Oblivious Transfer

In this section, we show how (a mild strengthening of) Assumption 3.5 yields a 2-message semi-
honest oblivious transfer (OT) protocol. Using the classical protocol of Goldreich, Micali and
Wigderson [GMW87], this yields general purpose secure multiparty computation from the same
assumption.

In order to construct an OT scheme, we need to strengthen the notion of cryptographic hardness,
which we used in our construction of PKE. The reason is that we would like one of the parties to
sample a random instance x in a way that does not reveal whether x belongs to L or not. Note
that, even in the semi-honest case that we consider here, the party that samples x has access not
only to x but also to the random coins that sampled x. In particular, if we used the naive sampler
that samples x ← YL with probability 1/2 and x ← NL with probability 1/2, the choice of which
of the two distributions was sampled reveals whether x ∈ L. Thus, we need a stronger definition of
cryptographic hardness in which the adversary trying to determine whether x ∈ L, sees not only
the instance but also the random coins that sampled it.

A closely related issue comes in the classical construction of OT from trapdoor permutations
[EGL85]. It was resolved in that context by requiring a form of “enhanced” sampling, in which
elements can be sampled from the domain of the permutation so that the coins of the sampling
algorithm do not reveal the inverse (see [Gol09, Appendix C.1] or [GR13] for further discussion). In
direct analogy, our strengthening of cryptographic hardness also introduces an enhanced sampling
condition. Namely, that there is a way to sample an instance x such that no efficient adversary,
even given the random coins of the sampler, can distinguish whether x ∈ L or x 6∈ L (except with
negligible advantage).

Analogous to our PKE construction, we only construct weak semi-honest 1-round OT proto-
col. Weak OT means that the correctness and security errors are small constants, rather than
being negligible. To get a a full-fledged OT protocol, we use known amplification techniques (e.g.,
[Wul07]).

First we formalize the notion of weak oblivious transfer that we need. The definition is adapted
from [Wul07].

Definition 6.9 (Weak OT). An (ε1, ε2, ε3)-Weak Oblivious Transfer is a two-party protocol, between
a sender S and a receiver R. The sender is given as input a security parameter 1λ as well as two
inputs σ0, σ1 ∈ {0, 1} and the receiver gets as input 1λ and a bit β ∈ {0, 1}. An (ε1, ε2, ε3)-WOT
has the following properties:

1. Correctness: The receiver learns σβ with probability at least 1− ε1, where the probability is
over the randomness of both the sender and the receiver.

2. Sender’s Privacy: For any probabilistic polynomial time algorithm R?, for any choices of
σ0, σ1, β ∈ {0, 1} and sufficiently large λ ∈ N,

Pr
[
R?
(

viewR(1λ, σ0, σ1, β)
)

= σ1−β

]
<

1 + ε2

2

where viewR corresponds to the honest receiver’s view. Namely, the index β, his private
randomness, and the transcript.
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3. Receiver’s Privacy: For any probabilistic polynomial time algorithm S?, for any choices of
σ0, σ1, β ∈ {0, 1} and sufficiently large λ ∈ N,

Pr
[
S?
(

viewS(1λ, σ0, σ1, β)
)

= β
]
<

1 + ε3

2

where viewS corresponds to the honest sender’s view. Namely, σ0, σ1, his private randomness,
and the transcript.

We now turn to defining our notion of enhanced cryptographic hardness.

Definition 6.10 (Enhanced Cryptographic Hardness). Let t = t(λ) ∈ N and ε = ε(λ) ∈ [0, 1]. The
tuple (L,YL,NL,OL) is (t, ε)-enhanced cryptographically hard if the following properties hold.

1. Cryptographic Hardness: (L,YL,NL) is (t, ε)-cryptographically hard.

2. Correctness: The sampler OL is a probabilistic polynomial-time algorithm such that

SD
(

OL(1λ), xβ

)
< negl(λ)

where xβ is generated by first sampling (x0, w0)← Y(1λ) and x1 ← N(1λ) and outputting xβ
for randomly chosen β ← {0, 1}.

3. Enhanced Indistinguishability: For every probabilistic polynomial-time adversary A that
on input (1λ, s) runs in time t(λ) and all sufficiently large λ ∈ N:

Pr
[
A(1λ, s) = L(OL(1λ; s))

]
<

1

2
+ ε(λ)

where s is a uniformly random string and OL(1λ; s) indicates that the oblivious sampler OL
is run with randomness s; and L(x) = 1 if and only if x ∈ L and the probability is also over
the random coins of A.

We say that the (L,YL,NL) is enhanced cryptographically hard if it is (λc, 1/λc)-hard for every
constant c > 0.

Remark 6.11 (Doubly Enhanced Cryptographic Hardness). It is natural to also consider a “doubly
enhanced” variant of cryptographic hardness, in analogy to doubly-enhanced trapdoor permutations
(see [GR13]). However, since we do not require this notion for our construction, we avoid doing
so in this work.

Using the foregoing notion of enhanced cryptographic hardness, we are ready to state our result
on the existence of weak OT (which we shall later amplify to full fledged OT).

Lemma 6.12 (Weak Oblivious Transfer). Assuming that there exists a language L that satisfies
Assumption 3.5 and, moreover, is enhanced cryptographically hard (as in Definition 6.10), then
there exists a 1-round (2−4, 2−4, negl(λ))-weak oblivious transfer protocol.

61



OblGen(1λ; s = (s1, s2, . . . , sk))

1. For j ∈ [k], sample x̃j ← OL(1λ; sj)
2. Set x̃ = (x̃1, . . . , x̃k)
3. Output (x̃)

1-Round Oblivious Transfer Protocol

S(1λ, σ0, σ1) R(1λ, β)

(pk0, pk1)

pk = (x, `), sk← KeyGen(1λ)

Sample s = (s1, s2, . . . , sk) at random.

x̃← OblGen(1λ; s), p̃k = (x̃, `)

Set pkβ = pk, pk1−β = p̃k.

cti = Enc(pki, σi)
ct0, ct1 Output Dec(sk, ctβ)

Figure 8: A Weak Oblivious Transfer Protocol

Proof sketch. This proof builds on the construction of the weak public key encryption scheme in
Theorem 3.6. Let (KeyGen,Enc,Dec) be the the weak public-key encryption scheme from Fig. 6.
Our OT protocol is reminiscent of the construction of Oblivious Transfer from Lossy encryption.
The receiver samples two public keys — one real public key along with its secret key and a fake
public key whose ciphertexts it cannot decrypt. The real public key is generated by KeyGen. It
consists of a tuple of yes-instances sampled by YL along with `, an estimate on the entropy of
the distribution (see discussion in Section 5). The fake public key on the other hand consists of
obliviously sampled instances using OL. The receiver sends the real public key as pkβ for the
receiver’s input β and the fake public key as pk1−β. The sender now encrypts his inputs σ0, σ1

with the corresponding public keys and sends the ciphertexts (ct0, ct1) across. The receiver can
then decrypt ctβ using the secret key. In lossy encryption, the fake public key is a lossy key. In
that case, the ciphertext ct1−β reveals no information about senders second input σ1−β. In our
case, the fake public key is a tuple of instances x̃ sampled using the sampler OL. We show that
an efficient sender cannot decrypt messages encrypted with such fake public keys. The oblivious
transfer protocol is described in Fig. 8.

We need to prove that our protocol satisfies the three properties of weak OT. These are
summarized in the following three claims.

Claim 6.12.1 (Correctness). The receiver learns the value σβ with probability at least 1− 2−5

Proof Sketch. This follows from the correctness of the encryption scheme (see Lemma 5.11).

Claim 6.12.2 (Receiver’s Privacy). For any probabilistic polynomial time algorithm S?, for any
choices of σ0, σ1, β ∈ {0, 1} and sufficiently large λ ∈ N,

Pr
[
S?
(

viewS(1λ, σ0, σ1, β)
)

= β
]
<

1

2
+ negl(λ)
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Proof Sketch. To recover β, the honest-but-curious sender has to determine which instance was
sampled using the enhanced sampler OL and which instance was sampled using the YL sampler.
From the correctness property of the enhanced sampling (Definition 6.10), the distribution on yes-
instances generated by OL is statistically close to those generated by YL. So, to distinguish between
the two, the adversary has to distinguish between the no-instances sampled by OL and YL. This is
equivalent to distinguishing between outputs of YL and NL. No efficient adversary can distinguish
between the two due to the (standard) cryptographic hardness of L.

Lemma 6.13 (Sender’s Privacy). For any probabilistic polynomial-time algorithm R?, for any
choices of σ0, σ1, β ∈ {0, 1} and sufficiently large λ ∈ N,

Pr
[
R?
(

viewR(1λ, σ0, σ1, β)
)

= σ1−β

]
<

1

2
+ 2−5.

Proof Sketch. We need to show that the receiver, even given the random coins for sampling the
fake public key x̃, cannot decrypt (with high probability). Namely, prove the following.

Claim 6.13.1 (Weak security for OT). For every polynomial time adversary R?, it holds

Pr
[
R?
(

1λ, p̃k,Enc(1λ, p̃k, σ), s
)

= σ
]
≤ 1

2
+ 2−5,

where the above probability is over σ ← {0, 1}, s and p̃k sampled according to the real receiver R’s
distribution, the randomness of Enc and R?.

Note that the honest-but-curious receiver R? also gets access to s, the randomness the real
receiver R used to sample p̃k.

The proof of Claim 6.13.1 is similar to the proof of the security of the encryption scheme
(Lemma 5.12). Specifically, the latter proof relies on the pseudoentropy of the encoder’s public
message in the public-key pseudoentropy generator, which in turn relies on the KL-unpredictability
of a random prefix in the argument-system for the language L. Finally, this unpredictability
was based on the cryptographic hardness of the language and the soundness of the argument-
system (Lemma 4.5). To prove Claim 6.13.1 we require a stronger statement than Lemma 4.5,
and to achieve this we use the enhanced cryptographic hardness of L (rather than the standard
cryptographic hardness).

Specifically, we have the following lemma, analogous to Lemma 4.9, which is the core of the
proof of Lemma 4.5 (see the text next to Lemma 4.9 for more explanations about the notations).

Claim 6.13.2. Let c = c(λ) ∈ [0, 1], s = s(λ) ∈ (0, 1] and γ = γ(λ) ∈ [0, 1]. Let r = r(λ) ∈ N, and
let t = t(λ) ∈ N be polynomially bounded. Assume that

1. L is a (t, γ)-enhanced cryptographically hard language;

2. (P,V) is an r-round interactive argument system for L with completeness error c soundness
error s; and

3. 1− c ≥ s+ γ, for all sufficiently large values of the security parameter λ ∈ N.

Then, there is a polynomial p such that for the function t′(λ) = t(λ)/p(λ), the distribution
BI is (t′, 1

r · KL(1− c||s+ γ))-KL-hard for sampling given (X,S, I, C−I ) where S represents the
randomness used for sampling X.
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The proof of Claim 6.13.2 is identical to the proof of Lemma 4.9 except that we invoke the
enhanced cryptographic hardness to show that the prover’s message is hard to predict even given
the random coins of the oblivious sampler. If the adversary could predict the prover’s next message,
we can use this adversary as a cheating prover along with the verifier V to distinguish between the
Yes and No instances sampled by the oblivious sampler OL.

Given Claim 6.13.2, the proof of Claim 6.13.1 follows similar lines to those of the proof of
Lemma 5.12, where we also include the randomness used to sample the instances where needed.

This concludes the proof of Lemma 6.12.

As a corollary, we get a 1-round OT protocol by generic amplification technique of [Wul07].

Corollary 6.14. Assuming that there exists a language L that satisfies Assumption 3.5 (i.e. cryp-
tographically hard language with a laconic SZK argument) and, moreover, L is enhanced crypto-
graphically hard. Then, there exists a 1-round oblivious transfer protocol.
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A Comparing Assumptions

In this section, we compare various concrete assumptions used in the past to construct public-key
encryption to the generic complexity-theoretic assumptions we use. We will mostly be concerned
with Assumption 6.2, which is stated again below for convenience, and which we show to be implied
by a number of these concrete assumptions. We also briefly discuss other concrete assumptions
that are known to imply public-key encryption but for which we do not know whether they imply
Assumption 6.2.

Assumption 6.2. There exists a language L ∈ NP with associated distributions over instances
(YL,NL), and a constant α < 1/2 such that:

1. (L,YL,NL) is (poly, α)-cryptographically hard.

2. There is an r-round q-laconic honest-verifier ASZK argument for (L,YL,NL) with complete-
ness error c and soundness error s such that:

• There is a constant β > 0 such that for large enough λ: 1− c(λ) > s(λ) + α+ β.

• q and r are such that r2 · q3 = O(log(λ)).

In each case, we first state the assumption, define the relevant language L and distributions
YL and NL, and prove that the assumption implies that (L,YL,NL) is cryptographically hard. We
then present a laconic ASZK argument for (L,YL,NL) and prove its completeness, soundness and
zero-knowledge, again using the assumption.

In all of the SZK argument systems we construct the verifier chooses at random a bit b, encrypts
it and sends the ciphertext to the prover. The prover decrypts the ciphertext to a bit b′ and sends
it to the verifier, which accepts if b′ = b. This is not surprising since all the concrete assumptions
here imply public-key encryption schemes, and we already saw in Section 6.2 that any such scheme
implies an argument system with this structure.

Section Organization. In Appendix A.1 we show that Lossy encryption schemes imply As-
sumption 6.2 (in fact, they imply the even stronger version, Assumption 3.5). In Appendix A.2 we
show that Learning Parity with Noise (LPN) implies Assumption 6.2. Finally, in Appendix A.3 we
show that two assumptions made in [ABW10] also imply Assumption 6.2.

A.1 Lossy Encryption

Lossy Encryption [PVW08, BHY09] schemes have two modes of operation: the real and the lossy
mode. In the real mode, it behaves like a semantically secure public key encryption scheme while
in the lossy mode, the ciphertexts contain no information about the message encoded.

Definition A.1 (Lossy Encryption). A Lossy Encryption scheme is a tuple of probabilistic polynomial-
time algorithms (Gen,Enc,Dec) where the Gen(1λ,mode) has two modes. A real mode where it be-
haves like a semantically secure encryption scheme and a lossy mode that produces fake public keys.
In the real mode, it outputs a pair of keys (pk, sk). In the lossy mode, it outputs a lossy public key

p̃k. The encryption algorithm Enc(pk, σ) outputs ciphertexts ct given the message and the public
key and the decryption algorithm Dec(sk, ct) returns a decrypted message given the secret key and
the ciphertext.

The encryption scheme satisfies the following two additional properties:
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• Key Indistinguishability: Real public keys are indistinguishable from lossy public keys.
That is, {

pk where (pk, sk)← Gen(1λ, real)
}
λ
≈c
{

p̃k where p̃k← Gen(1λ, lossy)
}
λ
.

• Lossy Encryption: Encryption using the lossy key completely loses information about the
message encrypted. That is, output distributions of encryptions of 0 and 1, under lossy keys,
are statistically indistinguishable. For every p̃k← Gen(1λ, lossy),

Enc(p̃k, 0) ≈s Enc(p̃k, 1)

where the randomness is over the coins of the Enc algorithm.

Lossy encryption schemes can be constructed from various number theoretic assumptions like
Quadratic Residuosity36 [GM82], Decisional Diffie Hellman [NP01, PVW08, BHY09] and standard
lattice assumptions (e.g. LWE) [Reg05, PVW08].

Assume that (Gen,Enc,Dec) is a lossy encryption scheme. We show that Assumption 6.2 holds.
In fact, lossy encryption scheme implies the stronger Assumption 3.5.37 The language L and its
associated distributions are defined as follows:

– L consists of all possible public-keys that can be generated by Gen in the real mode, i.e.,
L =

{
pk : ∃sk, (pk, sk) ∈ Supp(Gen(1λ, real))

}
.

– YL(1λ) runs Gen in the real mode, i.e., Gen(1λ, real).

– NL(1λ) runs Gen in the lossy mode, i.e., Gen(1λ, lossy).

It immediately follows that L is cryptographically hard. An SZK proof for (L,YL,NL) is presented
in Fig. 9.

P(pk, sk) V(pk)

a = Enc(pk, b) b← {0, 1}

b′ = Dec(sk, a) b′ Accept if b = b′

Figure 9: Laconic Proofs from Lossy Encryption

It is again easy to verify that the proof system has perfect completeness (assuming the underlying
encryption scheme has no decryption errors), soundness error 1/2 + negl(λ), and is honest-verifier
zero-knowledge.

36A variant of the Goldwasser-Micali scheme can be shown to be lossy. Let the public key be (N, x0, x1) where
x0 is a random quadratic residue and x1 is a random non-residue with Jacobi symbol +1. To encrypt σ, output
xσ · r2 where r ← ZN . The corresponding lossy key would be (N, x̃0, x̃1) where both x̃0 and x̃1 are random quadratic
residues.

37As a matter of fact, it implies an SZK proof, rather than just an argument.
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A.2 Learning Parities with Noise

The problem of learning parities with noise (LPN) (or, equivalently, of decoding random linear
codes) has found extensive use in cryptography [Pie12]. The hardness of a variant of this problem
was used by Alekhnovich [Ale03] to construct a public-key encryption scheme. This hardness
assumption is paraphrased below. Let m = 2n and for any δ ∈ [0, 1], let χm,δ represents the
uniform distribution over vectors in {0, 1}m of Hamming weight mδ.

Recall that two distributions are (poly, ε)-hard to distinguish if no polynomial-time algorithm
has advantage more than ε in distinguishing between them.

Assumption A.2 (LPN). There is a constant δ < 1/2 such that the following two distributions

are
(

poly, 1
nΩ(1)

)
-hard to distinguish:

• (A,As + e), where A← {0, 1}m×n, s← {0, 1}n, and e← χm,δ.

• (A,u), where A← {0, 1}m×n and u← {0, 1}m.

Let δ be the constant that is promised by the above assumption. The language L and its
associated distributions are defined as follows:

– L consists of all pairs (A,As + e) where e has Hamming weight nδ. Notice that L is in NP
because the vector e serves as a witness that there is an s such that (A,As + e) is contained
in L.

– YL(1n) picks random A ← {0, 1}m×n, s ← {0, 1}n, and e ← χm,δ, and outputs (A,As + e)
as the instance and e as the corresponding witness.

– NL(1n) picks random A← {0, 1}m×n, u← {0, 1}m and outputs the instance (A,u).

Our choice of the language and distributions above is such that the LPN assumption immediately

implies that (L,YL,NL) is
(

poly, 1
nΩ(1)

)
-hard. An ASZK argument for (L,YL,NL) is presented in

Figure 10.

P(A,v, e) V(A,v)

y← Ker(A|v), e′ ← χm,δ

b← {0, 1}
If b = 0, z = y + e′

Else, z← {0, 1}m

z

b′ = 〈e, z〉

b′ Accept if b = b′

Figure 10: ASZK argument for LPN

The various properties required of this protocol are shown as follows:
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– Completeness: If v = As + e for some s and e of Hamming weight nδ, then y ∈ Ker(A|v)
implies that 〈y, e〉 = 0. So, in the case b = 0, it holds that 〈e, z〉 = 〈e,y〉+〈e, e′〉 = 〈e, e′〉. As
both e and e′ have Hamming weight nδ = o(m1/2) and are chosen at random, the probability
that 〈e, e′〉 = 1 is o(1). On the other hand, when b = 1, 〈e, z〉 is unbiased. So P can guess b
with constant advantage.

– Soundness: If v is a uniformly random vector, then the matrix (A|v) is completely random.
The kernel of this matrix, in turn, can be written as the span of (m−n−1) uniformly random
vectors in {0, 1}m. That is, in the case b = 1, it holds that z = y+e′ = Bs′+e′ for a uniformly

random matrix B ∈ {0, 1}m×(m−n−1). And in the case b = 0, z is a uniformly random vector.
These are the two distributions that the LPN assumption says are indistinguishable. So any
malicious prover has advantage at most 1/nΩ(1) in guessing b correctly.

– Honest Verifier Statistical Zero-Knowledge: The simulator S, on input (A,v), first runs V,
which selects b and z. It then sets the prover’s message to also be b, and outputs (b, z, b) as
the transcript. The distance of this distribution from the actual transcript is now exactly the
probability that P does not guess b correctly. Thus the simulation error is the same as the
completeness error, which is a constant less than 1/2.

The simulation error being as large as a constant is insufficient for our constructions, but the
error in this case can be made negligible by modifying the protocol as follows. V picks the bit b
and generates, say log2 n different z’s for this b, with independently chosen y’s and e′’s if necessary.
It sends them all over and asks P to guess b. P runs as it did in the above protocol for each z,
takes the majority of the results and sends that as its guess. This makes the completeness error
(and hence simulation error) negligible, while still keeping the soundness error below 1/2+1/nΩ(1).

A.3 Assumptions from [ABW10]

Applebaum et. al. [ABW10] construct three public-key encryption schemes based on the average-
case hardness of various combinatorial problems. They formulate three assumptions and use dif-
ferent combinations and instantiations of these in their constructions. We show that in two out of
these three cases the set of assumptions used implies Assumption 6.2.

We shall state the assumptions from [ABW10] with some admissible simplifications for ease of
illustration.38

The first assumption, called LLIN, concerns solving a noisy system of linear equations. Given
integers m, n and d, let Mm,n,d denote the distribution over matrices in {0, 1}m×n sampled by
picking each row to be a random vector in {0, 1}n of Hamming weight d. For ε ∈ [0, 1], denote by
Bermε the distribution over vectors in {0, 1}m where each bit is set to 1 with probability ε. The
assumption LLIN, parametrised by m, d, and ε, which we will later instantiate as functions of n
(the security parameter), is as below.

Assumption A.3 (LLIN(m, d, ε)). Consider the m×n matrix A←Mm,n,d, vectors s,v← {0, 1}n,
e ← Bermε , and bit b ← {0, 1}. There is a constant µ < 1/2 such that the following distributions
are (poly, µ)-hard to distinguish:

38For Assumption A.3, stated below, Applebaum et al. actually assume the hardness of a related search problem
and show, by means of a non-trivial reduction, that the assumption stated here is implied by it, and proceed to use
this simpler assumption in their constructions.
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• (A,As + e,v, 〈v, s〉)

• (A,As + e,v, b)

Typically, a matrix from Mm,n,d will be such that any small set of rows is linearly independent.
In order to state the next assumption, we will consider picking a matrix from Mm,n,d and planting
a small linear dependency among its rows. Let M q

m,n,d be the distribution over {0, 1}m×n×{0, 1}m
that is sampled as follows:

1. Sample matrices A from Mm,n,d, and B from Mq,q/3,d.

2. Pick a random q × n sub-matrix of A that contains its last row. Call this sub-matrix S.

3. Embed the columns of B as a randomly chosen subset of q/3 columns in S, and set all other
entries in S to 0. Call the matrix thus obtained Â.

4. Notice that because of the dimensions of B, there is a vector tÂ such that tT
Â

Â = 0, that has
Hamming weight at most q/3, and its last coordinate is 1. This is the tÂ expresses the last
row of the embedded B as a linear combination of its other rows.

5. Output (Â, tÂ).

The next assumption, called DUE, states that this planting of a small linear dependence cannot
be detected by polynomial-time algorithms.

Assumption A.4 (DUE(m, d, q)). There is a small constant α � 1/2 such that the following
distributions are are (poly, α)-hard to distinguish:

• A←Mm,n,d

• Â, where (Â, tÂ)←M q
m,n,d

The first combination of assumptions we will consider that was used in [ABW10] is that there
exists a constant d and functions m(n) = O(n), q(n) = o(n), and ε(n) = o(1/q(n)) such that both
LLIN(m, d, ε) and DUE(m, d, q) are true. In order to relate this to Assumption 6.2, we formulate
the following language and distributions:

– L consists of A such that there is a set of at most q rows that are linearly dependent. L is in
NP because such a set of rows acts as a witness.

– YL(1n) is M q
m,n,d, with Â as the instance and tÂ as the witness.

– NL(1n) is Mm,n,d.

By our choice of the distributions, DUE(m, d, q) immediately implies that (L,YL,NL) is (poly, α)-
hard. An ASZK argument for (L,YL,NL) is presented in Figure 11.

The various properties required of this protocol are shown as follows:

– Completeness: If the instance A happens to be drawn from YL then, using the fact that
tTAA = 0, and that the last bit of tA is 1, we have the following relations:

〈tA, z〉 = 〈tA,As + e〉+ b = 〈tA, e〉+ b

As each entry in e is 1 with probability ε, with all but negligible probability, the Hamming
weight of e is at most 100 ·m · ε = o(m/q). As the Hamming weight of tA is at most q, the
probability that 〈tA, e〉 = 1 is o(1). Thus, with all but o(1) probability, P guesses b correctly.
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P(A, tA) V(A)

s← {0, 1}n, e← Bermε

z = As + e

b← {0, 1}
If b = 1:

flip the last bit of z

z

b′ = 〈tA, z〉

b′ Accept if b = b′

Figure 11: ASZK argument for LLIN+DUE

– Soundness: The assumption LLIN(m−1, d, ε), when applied with the last row of the instance A
as the vector v there, immediately implies that the last bit of z is (poly, µ)-hard to distinguish
from random. Thus, a malicious prover cannot guess b correctly with advantage more than
this µ promised by the assumption.

– Statistical Zero-Knowledge: The simulator S, on input A, first runs V, which selects s, e,
b, and z. It then sets the prover’s message to also be b, and outputs (s, e, b, z, b) as the
transcript. The distance of this distribution from the actual transcript is now exactly the
probability that P does not guess b correctly. Thus the simulation error is the same as the
completeness error, which is o(1).

Having shown that Assumption 6.2 is implied by the above combination of LLIN and DUE, we
next introduce the other assumption used in [ABW10], called DSF.

Given any function f : {0, 1}d → {0, 1} and a matrix A ∈ {0, 1}m×n, each of whose rows has
Hamming weight d, we define the composite function fA : {0, 1}n → {0, 1}m where the ith output
bit of fA(x) is obtained by evaluating f on the bits of x corresponding to the positions in the ith

row of A that are 1.

Assumption A.5 (DSF(m, d, ε)). There exists a function f : {0, 1}d → {0, 1} such that the fol-
lowing distributions are (poly, ε)-hard to distinguish:

• (A,u), where A←Mm,n,d, u← {0, 1}m.

• (A, fA(u)), where A←Mm,n,d, u← {0, 1}n.

The next combination of assumptions used in [ABW10] is that there is a constant d, and
functions m(n) = ω(n), q(n) = Θ(log n) and ε(n) ≤ 1/10 such that DUE(m, d, q) and DSF(m, d, ε)
are true. Let f be the function that is promised by DSF.

We use the same language L and distributions YL and NL that we did earlier, only with the
values of m, d and q that come up here and that in YL, instead of tA, we use the set S of rows
where the matrix B was embedded when sampling M q

m,n,d as witness. DUE(m, d, q) again implies
that (L,YL,NL) is (poly, α)-hard. An ASZK argument for (L,YL,NL) is presented in Figure 12.
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P(A, S) V(A)

x← {0, 1}n

r← {0, 1}m, b← {0, 1}
z = fA(x) + b · r

z

(see completeness

argument)

b′ Accept if b = b′

Figure 12: ASZK argument for DSF+DUE

The various properties required of this protocol are shown as follows:

– Completeness: The prover P, since it knows S, knows a set of q bits of the output of fA that
depend on less than q/3 = Θ(log n) bits of its input. It goes through all possible settings of
these bits and checks whether the respective values of all these output bits of fA agree with
the corresponding bits in z. If it finds a setting where they do agree, it sets b′ = 0, else b′ = 1.

When b = 0, P will always find that b′ = 0. When b = 1, for any value of x, there are at
most 2q/3 · 2m−q values of r that will make P guess b′ = 0. Thus, except with probability at
most 2−2q/3 = o(1), P will guess b′ = 0.

– Soundness: The assumption DSF(m, d, ε) immediately implies that a malicious prover cannot
guess b correctly except with advantage ε.

– Statistical Zero-Knowledge: The simulator S, on input A, first runs V, which selects x, r,
b, and z. It then sets the prover’s message to also be b, and outputs (x, r, b, z, b) as the
transcript. The distance of this distribution from the actual transcript is now exactly the
probability that P does not guess b correctly. Thus the simulation error is the same as the
completeness error, which is o(1).

B Missing Proofs

B.1 Proving Lemma 5.7

In this section we prove Lemma 5.7, restated below for convenience.

Lemma 5.7 (Leftover Hash Lemma for ε-Smooth Min-Entropy (c.f., [RW05, Theorem 1])). Let
H = {h : {0, 1}n → {0, 1}m} be a family of universal hash functions. Then, for any jointly dis-
tributed random variables X and Y , such that X is distributed over {0, 1}n, it holds that

SD
((
H(X), H, Y

)
,
(
Um, H, Y

))
≤ ε+

1

2
·
√

2−Hε∞(X|Y ) · 2m ,

where H ← H and Um is distributed uniformly over {0, 1}m.
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The proof of Lemma 5.7 is similar to that of [DORS08, Lemma 2.4] which considers a different
notion of pseudo min-entropy which they call “Average Min-Entropy”.

Proof. Fix ε > 0 and let E be the event such that Pr[E] ≥ 1− ε and

Hε
∞(X|Y ) = min

y∈Supp(Y )
min
x∈X

log
1

Pr[(X = x) ∧ E | Y = y]
.

Let IE be an indicator random variable for whether the event E occurred and let Xy,b = (X|Y =
y, IE = b). Then,

SD
((
H(X), H, Y

)
,
(
Um, H, Y

))
≤ SD

((
H(X), H, Y, IE

)
,
(
Um, H, Y, IE

))
(29)

= E
(y,b)←(Y,IE)

[
SD
((
H(Xy,b), H

)
,
(
Um, H

))]
≤ Pr[E] · E

y←Y |E

[
SD
((
H(Xy,1), H

)
,
(
Um, H

))]
+ Pr[¬E],

where the first inequality follows from data-processing for statistical distance. At this point we
would like to use the original leftover-hash lemma, stated next.

Lemma B.1 ([HILL99, Lemma 4.8]). Let H = {h : {0, 1}n → {0, 1}m} be a family of universal
hash functions. Then, for any random variable X distributed over {0, 1}n, and the random variable
H ← H, it holds that

SD
((
H(X), H

)
,
(
Um, H

))
≤ 1

2
·
√

2−H∞(X) · 2m ,

where Um is distributed uniformly over {0, 1}m.

Plugging Lemma B.1 into Eq. (29) yields that

SD
((
H(X), H, Y

)
,
(
Um, H, Y

))
≤ Pr[E] · E

y←Y |E

[
1

2
·
√

2−H∞(Xy,1) · 2m
]

+ ε (30)

≤ 1

2
·
√

2m · Pr[E] · E
y←Y |E

[
2−H∞(Xy,1)

]
+ ε,

where the last inequality follows from Jensen’s inequality and since square-root is concave.
Let y ∈ Supp(Y |E). Then,

H∞(Xy,1) = H∞(X|Y = y,E) (31)

= min
x∈X

log
1

Pr[X = x|Y = y,E]

= min
x∈X

log
Pr[E|Y = y]

Pr[X = x,E|Y = y]

= log Pr[E|Y = y] + min
x∈X

log
1

Pr[X = x,E|Y = y]

≥ log Pr[E|Y = y] + min
y∈Supp(Y )

min
x∈X

log
1

Pr[X = x,E|Y = y]

= log Pr[E|Y = y] + Hε
∞(X|Y ).
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Plugging Eq. (31) into Eq. (30) yields that

SD
((
H(X), H, Y

)
,
(
Um, H, Y

))
≤ 1

2
·

√
2m · Pr[E] · E

y←Y |E

[
1

Pr[E|Y = y]
· 2−Hε∞(X|Y )

]
+ ε (32)

=
1

2
·

√
2−Hε∞(X|Y ) · 2m · E

y←Y |E

[
Pr[E]

Pr[E|Y = y]

]
+ ε.

Finally, noting that

E
y←Y |E

[
Pr[E]

Pr[E|Y = y]

]
=

∑
y∈Supp(Y |E)

Pr[Y = y|E] · Pr[E]

Pr[E|Y = y]

=
∑

y∈Supp(Y |E)

Pr[Y = y,E]

Pr[Y = y,E]/Pr[Y = y]

=
∑

y∈Supp(Y |E)

Pr[Y = y]

≤ 1

completes the proof.

B.2 Proving Lemma 5.9

In this section we prove Lemma 5.9, restated below for convenience.

Lemma 5.9. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be sequences of random variables such that Xλ

and Yλ are jointly distributed over Xλ × Yλ, for every λ ∈ N. Assume X has conditional pseudo
entropy at least H(X|Y ) + n given Y , for n = n(λ) ≥ 0.

Then, for any δ = δ(λ) ∈ [0, log(|Xλ|)] and every polynomial k = k(λ), the sequence Xk

has conditional pseudo ε-smooth min-entropy at least k · (H(X|Y ) + n− δ) given Y k, for ε =

2
− k·δ2

2 log2(|X|+3) , where (Xk, Y k) are the k-fold product repetition of (X,Y ).

Proof. Assume toward a contradiction that there exist δ and k such that Xk does not have con-
ditional pseudo ε-smooth min-entropy at least k · (H(Y |X) + n− δ) given Y k. Namely, there

exists c > 0 and an λc-time algorithm D such that for every {Zλ}λ∈N over
{
Yk(λ)
λ

}
λ∈N

with

Hε
∞

(
Zλ|Y

k(λ)
λ

)
≥ k(λ) ·

(
H(Xλ|Yλ) + n(λ)− δ(λ)

)
− 1/λc for large enough λ ∈ N, there exists an

infinite index set I ⊆ N such that for every λ ∈ I it holds that∣∣∣Pr
[
D
(

1λ, X
k(λ)
λ , Y

k(λ)
λ

)
= 1
]
− Pr

[
D
(

1λ, Zλ, Y
k(λ)
λ

)
= 1
]∣∣∣ > 1

λc
. (33)

We use D to show that X does not have high pseudoentropy given Y , in contradiction to our
assumption. Consider the following algorithm for the latter task, and recall that such algorithm
also has access to an oracle that outputs three samples (one from X, one from Y and one from a
distribution that has high ε-smooth min-entropy; see ahead).

D̂ on input
(
1λ, x, y

)
:

Oracle: O outputs 3 values
Operation:
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1. Set k = k(λ).
2. Make k calls to the oracle O and let (xj , yj , zj) be the oracle’s output for the j’th call.
3. Sample i← [k], and set y = (y1, . . . , yi−1, y, yi+1, . . . , yk) and h = (x1, . . . , xi−1, x, zi+1, . . . , zk).
4. Output D(1λ,h,y).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We show that D̂ distinguishes between (X,Y ) and (Z, Y ), for any Z that has sufficiently high
pseudoentropy given Y .

Let c′ > 0 be a constant to be determined by the analysis and let Z = {Zλ}λ∈N be a sequence
of random variables over {Xλ}λ∈N jointly distributed with X,Y such that H(Zλ|Yλ) ≥ H(Xλ|Yλ) +

n(λ) − 1/λc
′

for large enough λ ∈ N. Fix a sufficiently large value λ ∈ I. To avoid cluttering, we
omit λ from the notation.

By a standard hybrid argument, it holds that39∣∣∣Pr
[
D̂
OX′,Y ′,Z′ (X,Y ) = 1

]
− Pr

[
D̂
OX′,Y ′,Z′ (Z, Y ) = 1

]∣∣∣ ≥ (34)

1

k
·
∣∣∣Pr
[
D
(
Xk, Y k

)
= 1
]
− Pr

[
D
(
Zk, Y k

)
= 1
]∣∣∣.

By Theorem 5.6, it holds that

Hε
∞(Zk|Y k) ≥ k ·

(
H(X|Y ) + n− 1/λc

′ − δ
)

= k ·
(

H(X|Y ) + n− δ
)
− k/λc′ ,

where ε = 2
− k·δ2

2 log2(|X|+3) .
Let c′′ > 0 be the minimal integer such that k/λc

′′ ≤ 1/λc. Eqs. (33) and (34) now yield that∣∣∣Pr
[
D̂
OX′,Y ′,Z′ (X,Y ) = 1

]
− Pr

[
D̂
OX′,Y ′,Z′ (Z, Y ) = 1

]∣∣∣ > 1

k · λc
≥ 1

λc′′
.

Finally, since k = poly(λ), there exists ĉ > 0 such that D̂’s running time is at most λĉ. Set
c′ = max{c′′, ĉ}. We have that X does not have (λc

′
, 1/λc

′
)-conditional pseudoentropy at least

H(X|Y ) + n− 1/λc
′

given Y , a contradiction to pseudoentropy of X given Y .

39Recall that the oracle OX′,Y ′,Z′ returns random samples (jointly) distributed according to (X,Y, Z). See Defi-
nition 2.15.
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