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Abstract

For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system,
we show that a gadget-composed version of F is hard to refute in any proof system whose
lines are computed by efficient communication protocols—or, equivalently, that a monotone
function associated with F has large monotone circuit complexity. Our result extends to
monotone real circuits, which yields new lower bounds for the Cutting Planes proof system.
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1 Appetizer

Dag-like communication protocols [Raz95, Pud10, Sok17], generalizing the usual notion of tree-like
communication protocols [KN97, Juk12, RY17], provide a useful abstraction to study two kinds of
objects in complexity theory:

• Monotone circuits. Let f be a monotone boolean function. The monotone circuit complexity
of f can be characterized in the language of dag-like protocols. Namely, it equals the least size
of a dag-like protocol that solves the monotone Karchmer–Wigderson (mKW) search problem
associated with f .

• Propositional proofs. Let F be a CNF contradiction (an unsatisfiable CNF formula).
Lower bounds for the Resolution refutation length complexity of F—or indeed lower bounds
for any propositional proof system whose lines are computed by efficient communication
protocols—can be proved via dag-like protocols. Namely, a lower bound is given by the least
size of a dag-like protocol that solves a certain CNF search problem associated with F .

In this paper, we prove a query-to-communication lifting theorem that escalates lower bounds
for a dag-like query model (essentially Resolution) to lower bounds for dag-like communication
protocols. In particular, this yields a new technique to prove size lower bounds for monotone circuits
and several types of proof systems (including Cutting Planes).

The result can be interpreted as a converse to monotone feasible interpolation [BPR97, Kra97],
which is a popular method to prove refutation size lower bounds for proof systems (such as Resolution
and Cutting Planes) by reductions to monotone circuit lower bounds. A theorem of this type
was conjectured by Beame, Huynh, and Pitassi [BHP10, §6]. We also note that lifting theory for
deterministic tree-like protocols—with applications to monotone formula size, tree-like refutation size,
and size–space tradeoffs—has been developed in quite some detail [RM99, HN12, GP14, GPW15,
dRNV16, WYY17, CKLM17]. We import techniques from this line of work into the dag-like setting.

A follow-up work [GKRS19] has obtained several concrete applications using our technique:
an exponential monotone circuit lower bound for Xor-Sat, and a separation showing that the
Nullstellensatz proof system can be exponentially more powerful than Cutting Planes.

We formalize our result in Section 3 after we have defined our dag-like models in Section 2.

2 Dag-like models

We define all computational models as solving search problems, defined by a relation S ⊆ I × O
for some finite input and output sets I and O. On input x ∈ I the search problem is to find some
output in S(x) := {o ∈ O : (x, o) ∈ S}. We always assume S is total so that S(x) 6= ∅ for all x ∈ I.
We also define S−1(o) := {x ∈ I : (x, o) ∈ S}. For applications, the two most important examples
of search problems, one associated with a monotone function f : {0, 1}n → {0, 1}, another with an
n-variable CNF contradiction F =

∧
iDi (where Di are disjunctions of literals), are as follows.

mKW search problem Sf = input: a pair (x, y) ∈ f−1(1)× f−1(0)
output: a coordinate i ∈ [n] such that xi > yi

CNF search problem SF = input: an n-variable truth assignment z ∈ {0, 1}n
output: clause D of F unsatisfied by z, i.e., D(z) = 0
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2.1 Abstract dags

We work with a top-down definition of dag-like models. A version of the following definition (with a
specialized F) was introduced by [Raz95] and subsequently simplified in [Pud10, Sok17].

Top-down definition. Let F be a family of functions I → {0, 1}. An F-dag solving S ⊆ I ×O is
a directed acyclic graph of fan-out ≤ 2 where each node v is associated with a function fv ∈ F (we
call f−1

v (1) the feasible set for v) satisfying the following:

1. Root: There is a distinguished root node r (fan-in 0), and fr ≡ 1 is the constant 1 function.
2. Non-leaves: For each non-leaf node v with children u,u′, we have f−1

v (1) ⊆ f−1
u (1) ∪ f−1

u′ (1).
3. Leaves: Each leaf node v is labeled with an output ov ∈ O such that f−1

v (1) ⊆ S−1(ov).

The size of an F -dag is its number of nodes. If we specialize S to be a CNF search problem SF ,
the above specializes to the familiar definition of refutations in a proof system whose lines are
negations of functions in F . Here is that dual definition, specialized to S = SF .

Bottom-up definition. Let G be a family of functions {0, 1}n → {0, 1}. (To match up with the
top-down definition, one should take G := {¬f : f ∈ F}.) A (semantic) G-refutation of an n-variable
CNF contradiction F is a directed acyclic graph of fan-out ≤ 2 where each node (or line) v is
associated with a function gv ∈ G satisfying the following:

1. Root: There is a distinguished root node r (fan-in 0), and gr ≡ 0 is the constant 0 function.
2. Non-leaves: For each non-leaf node v with children u,u′, we have g−1

v (1) ⊇ g−1
u (1) ∩ g−1

u′ (1).
3. Leaves: Each leaf node v is labeled with a clause D of F such that g−1

v (1) ⊇ D−1(1).

2.2 Concrete dags

We now instantiate the abstract model for the purposes of communication and query complexity.

Rectangle-dags (dag-like protocols). Consider a bipartite input domain I := X × Y so that
Alice holds x ∈ X , Bob holds y ∈ Y , and let F be the set of all indicator functions of (combinatorial)
rectangles over X × Y (sets of the form X × Y with X ⊆ X , Y ⊆ Y). Call such F-dags simply
rectangle-dags. For a search problem S ⊆ X × Y ×O we define its rectangle-dag complexity by

rect-dag(S) := least size of a rectangle-dag that solves S.

In circuit complexity, a straightforward generalization of the Karchmer–Wigderson depth charac-
terization [KW88] shows that the monotone circuit complexity of any monotone function f equals
rect-dag(Sf ); see [Pud10, Sok17].

In proof complexity, a useful-to-study semantic proof system is captured by Fc-dags solving CNF
search problems SF where Fc is the family of all functions X × Y → {0, 1} (where X × Y = {0, 1}n
corresponds to a bipartition of the n input variables of SF ) that can be computed by tree-like
protocols of communication cost c, say for c = polylog(n). Such a proof system can simulate other
systems (such as Resolution and Cutting Planes with bounded coefficients), and hence lower bounds
against Fc-dags imply lower bounds for other concrete proof systems. Moreover, any Fc-dag can be
simulated by a rectangle-dag with at most a factor 2c blow-up in size, and hence we do not lose
much generality by studying only rectangle-dags.
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Figure 1: Two equivalent ways to view a Resolution refutation, illustrated in the tree-like case
(see [Juk12, §18.2] for more discussion of the tree-like case).

Conjunction-dags (essentially Resolution). Consider the n-bit input domain I := {0, 1}n
and let F be the set of all conjunctions of literals over the n input variables. Call such F-dags
simply conjunction-dags. We define the width of a conjunction-dag Π as the maximum width of a
conjunction associated with a node of Π. For a search problem S ⊆ {0, 1}n ×O we define

conj-dag(S) := least size of a conjunction-dag that solves S,

w(S) := least width of a conjunction-dag that solves S.

In the context of CNF search problems S = SF , conjunction-dags are equivalent to Resolution
refutations; see also Figure 1. Indeed, conj-dag(SF ) is just the Resolution refutation length complexity
of F , and w(SF ) is the Resolution width complexity of F [BW01].

The complexity measures introduced so far are related as follows; here S′ is any two-party version
of S obtained by choosing some bipartition X × Y = {0, 1}n of the input domain of S:

rect-dag(S′) ≤ conj-dag(S) ≤ nO(w(S)). (1)

The first inequality holds because each conjunction can be simulated by a rectangle. The second
inequality holds since there are at most nO(w) many distinct width-w conjunctions, and we may
assume w.l.o.g. that any f ∈ F is associated with at most one node in an F-dag (any incoming
edge to a node v can be rewired to the lowest node u, in topological order, such that fv = fu).

3 Our results

Our first theorem is a characterization of the rectangle-dag complexity for composed search problems
of the form S ◦gn. Here S ⊆ {0, 1}n×O is an arbitrary n-bit search problem, and g : X ×Y → {0, 1}
is some carefully chosen two-party gadget that helps to distribute each input variable of S between
the two parties. More precisely, S◦gn ⊆ X n×Yn×O is the search problem where Alice holds x ∈ X n,
Bob holds y ∈ Yn, and their goal is to find some o ∈ S(z) for z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)).

Our concrete choice for a gadget is the usual m-bit index function Indm : [m]×{0, 1}m → {0, 1}
mapping (x, y) 7→ yx. For large enough m, we show that the bounds (1) are tight.

Theorem 1. Let m = m(n) := n∆ for a large enough constant ∆. For any S ⊆ {0, 1}n ×O,

rect-dag(S ◦ Indnm) = nΘ(w(S)).
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We note that the conjunction-dag width complexity of S ◦ Indnm depends on how Alice’s gadget
inputs xi ∈ [m] are encoded as binary variables. For example, we can have w(S ◦ Indnm) = Θ(w(S))
when using a “unary” encoding; see Section 8 for a discussion.

Implications. The primary advantage of such a lifting theorem is that we obtain, in a generic
fashion, a large class of hard (explicit) monotone functions and CNF contradictions. Let us outline
how to apply our theorem. We can start with any n-variable k-CNF contradiction F of Resolution
width w, and conclude from Theorem 1 that the composed problem S′ := SF ◦ Indnm has rectangle-
dag complexity nΘ(w). Then we can use reductions (either new or known; see Section 8 for known
ones) to translate S′ back to a mKW/CNF search problem. The upshot will be that:

− S′ reduces to Sf ′ where f ′ is some N -bit monotone function with N := nO(k).
− S′ reduces to SF ′ where F ′ is some nO(1)-variable 2k-CNF contradiction.

A follow-up work [GKRS19] has provided concrete applications using a novel reduction framework
based on the above template. For example, they consider a monotone function 3Xor-Satn : {0, 1}N →
{0, 1} over N := 2n3 input bits defined as follows. An input x ∈ {0, 1}N is interpreted as (the
indicator vector of) a set of 3Xor constraints over n boolean variables v1, . . . , vn (there are N
possible constraints). We define 3Xor-Satn(x) := 1 iff the set x is unsatisfiable, that is, no boolean
assignment to the vi exists that satisfies all constraints in x. They proceed to show that if F is
an n-variable “Tseitin” contradiction (which is hard for Resolution [Urq87]), then S′ = SF ◦ Indnm
reduces to S3Xor-Satmn . Combining this with Theorem 1, one obtains the following.

Corollary 2 ([GKRS19, Thm. 1]). 3Xor-Satn requires monotone circuits of size 2n
Ω(1)

.

Since 3Xor-Satn is in NC2 [Mul87], this improves on the exponential monotone vs. non-mono-
tone separation due to Tardos [Tar88]; her function is in P and not known to be in NC.

Limitations. A disadvantage, stemming from the large gadget size m = n∆, is that we get at best
(using w = Θ(n)) a monotone circuit lower bound of exp(N ε) for a small constant ε ≥ 1/(∆+1). Such
lower bounds fall short of the current best record of exp(N1/3−o(1)) due to Harnik and Raz [HR00].
We inherit the need for large gadgets from prior work [GLM+16, GPW17]; see Section 4. For this
reason (and others), it is an important open problem to develop a lifting theory for gadgets of
size m = O(1). In particular, an optimal 2Ω(N) lower bound would follow from an appropriate
constant-size-gadget version of Theorem 1; see Section 8 for details.

Techniques. We use tools developed in the context of tree-like lifting theorems, specifically
from [GLM+16, GPW17]. These tools allow us to relate large rectangles in the input domain of
S ◦ Indnm with large subcubes in the input domain of S; see Section 4. Given these tools, the proof
of Theorem 1 is relatively short (two pages). The proof is extremely direct: from any rectangle-dag
of size nd solving S ◦ Indnm we extract a width-O(d) conjunction-dag solving S.

Classical works on monotone circuit lower bounds have typically focused on specific monotone
functions [Raz85, And85, AB87, Hak95, Ros14] and more generally on studying the power of
the underlying proof methods [Raz89, Wig93, Raz97, ST97, BU99, AM04]. A notable exception
is Jukna’s criterion [Juk97], recently applied in [HP17b, FPPR17], which is a general sufficient
condition for a monotone function to require large monotone circuit complexity. Our perspective is
seemingly even more abstract, as our result is phrased for arbitrary search problems (not just of
mKW/CNF type). However, it remains unclear exactly how the power of our methods compare
with the classical techniques; for example, can our result be rephrased in the language of Razborov’s
method of approximations? (An anonymous reviewer thinks this is possible, but not instructive.)
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(a) (b) (c) (d)

Figure 2: We show lifting theorems for dags whose feasible sets are (a) rectangles or (b) triangles.
It remains open (see Section 9) to prove any lower bounds for explicit mKW/CNF search problems
when the feasible sets are (c) block-diagonal, which a special case of (d) intersections of 2 triangles.

3.1 Extension: Monotone real circuits

Triangle-dags. Consider a bipartite input domain I := X ×Y and let F be the set of all indicator
functions of (combinatorial) triangles over X × Y; here a triangle T ⊆ X × Y is a set that can be
written as T = {(x, y) ∈ X × Y : aT (x) < bT (y)} for some labeling of the rows aT : X → R and
columns bT : Y → R by real numbers; see Figure 2b. In particular, every rectangle is a triangle.
Call such F-dags simply triangle-dags. For a search problem S ⊆ X × Y ×O we define

tri-dag(S) := least size of a triangle-dag that solves S.

Hrubeš and Pudlák [HP17a] showed recently that the monotone real circuit complexity of an f
equals tri-dag(Sf ). Monotone real circuits [HC99, Pud97] generalize monotone circuits by allowing
the wires to carry arbitrary real numbers and the binary gates to compute arbitrary monotone
functions R× R→ R. The original motivation to study such circuits, and what interests us here,
is that lower bounds for monotone real circuits imply lower bounds for the Cutting Planes proof
system [CCT87]. In our language, semantic Cutting Planes refutations are equivalent to L-dags
solving CNF search problems, where L is the family of linear threshold functions (each f ∈ L is
defined by some (n+ 1)-tuple a ∈ Rn+1 so that f(x) = 1 iff

∑
i∈[n] aixi > an+1).

Our second theorem states that Theorem 1 holds more generally with rectangle-dags replaced with
triangle-dags. The proof is however more involved than the proof for Theorem 1.

Theorem 3. Let m = m(n) := n∆ for a large enough constant ∆. For any S ⊆ {0, 1}n ×O,

tri-dag(S ◦ Indnm) = nΘ(w(S)).

A pithy corollary is that if we start with any k-CNF contradiction F that is hard for Resolution
and compose F with a gadget (as described in Section 8), the formula becomes hard for Cutting
Planes. In particular, the composed formula can itself be written as a 2k-CNF.

Corollary 4. For any unsatisfiable k-CNF F on n variables, there is a related unsatisfiable 2k-CNF
F ′ on nO(1) variables, such that any Cutting Planes refutation for F ′ has length at least nΩ(w(SF )).

The follow-up work [GKRS19] observed a near-immediate corollary: the Nullstellensatz proof
system (over any field) can be exponentially more powerful than Cutting Planes.

5



Corollary 5 ([GKRS19, §4.2]). There exists an n-variable, nO(1)-clause CNF contradiction F that
can be refuted by Nullstellensatz (over any field) in degree O(log n), but that requires Cutting Planes

refutations of length 2n
Ω(1)

.

Previously, only few examples of hard contradictions were known for Cutting Planes, all proved
via feasible interpolation [Pud97, HC99, HP17b, FPPR17]. A widely-asked question has been to
improve this state-of-the-art by developing alternative lower bound methods; see the surveys [BP01,
§4] and [Raz16b, §5]. In particular, Jukna [Juk12, Research Problem 19.17] asked to find a more
intuitive “combinatorial” proof method “explicitly showing what properties of [contradictions] force
long derivations.” While our method does implicitly use feasible interpolation for Cutting Planes,
at least it does afford a simple combinatorial intuition: the hardness is simply borrowed from the
realm of Resolution (where we understand very well what makes formulas hard).

4 Subcubes from rectangles

In this section, as preparation, we recall some technical notions from [GLM+16, GPW17] concerning
the index gadget g := Indm. Namely, writing G := gn : [m]n × {0, 1}mn → {0, 1}n for n copies of g,
we explain how large rectangles in G’s domain are related with large subcubes in G’s codomain. In
what follows, we will always assume that m ≥ n∆ for a sufficiently large constant ∆.

4.1 Structured rectangles

For a partial assignment ρ ∈ {0, 1, ∗}n we let free ρ := ρ−1(∗) denote its free coordinates, and
fix ρ := [n] r free ρ denote its fixed coordinates. The number of fixed coordinates |fix ρ| is the width
of ρ. Width-d partial assignments are naturally in 1-to-1 correspondence with width-d conjunctions:
for any ρ we define Cρ : {0, 1}n → {0, 1} as the width-|fix ρ| conjunction that accepts an x ∈ {0, 1}n
iff x is consistent with ρ. Thus C−1

ρ (1) = {x ∈ {0, 1}n : xi = ρi for all i ∈ fix ρ} is a subcube. We
say that R ⊆ [m]n × {0, 1}mn is ρ-like if the image of R under G is precisely the subcube of n-bit
strings consistent with ρ, that is, in short,

R is ρ-like ⇐⇒ G(R) = C−1
ρ (1).

For a random variable x we let H∞(x) := minx log(1/Pr[x = x]) denote the usual min-entropy
of x. When x ∈ [m]J for some index set J , we write xI ∈ [m]I for the marginal distribution of x
on a subset I ⊆ J of coordinates. For a set X we use the boldface X to denote a random variable
uniformly distributed over X.

Definition 1 ([GLM+16]). A random variable x ∈ [m]J is δ-dense if for every nonempty I ⊆ J ,
xI has min-entropy rate ≥ δ, that is, H∞(xI) ≥ δ · |I| logm.

Definition 2 ([GKPW17, GPW17]). A rectangle R := X × Y ⊆ [m]n × {0, 1}mn is ρ-structured if

1. Xfix ρ is fixed, and every z ∈ G(R) is consistent with ρ, that is, G(R) ⊆ C−1
ρ (1).

2. Xfree ρ is 0.9-dense.
3. Y is large enough: H∞(Y ) ≥ mn− n3.

Lemma 6 ([GKPW17, GPW17]). For m ≥ n∆, every ρ-structured rectangle is ρ-like.

In this work we need a slight strengthening of Lemma 6: for a ρ-structured R, there is a single
row of R that is already ρ-like. The proof is given in Appendix A.

Lemma 7. Let X × Y be ρ-structured. For m ≥ n∆, there exists x ∈ X such that {x}× Y is ρ-like.

The only reason why our proofs require m ≥ n∆ is due to the above lemma.
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Figure 3: (a) Rectangle Scheme partitions R = X × Y first along rows, then along columns.
(b) Rectangle Lemma illustrated: most subrectangles are ρ-structured for low-width ρ, except some
error parts (highlighted in figure) that are contained in few error rows/columns Xerr, Yerr.

4.2 Rectangle partition scheme

We claim that, given any rectangle R := X × Y ⊆ [m]n × {0, 1}mn, we can partition most of X × Y
into ρ-structured subrectangles with |fix ρ| bounded in terms of the size of X × Y . Indeed, we
describe a simple 2-round partitioning scheme from [GPW17] below; see also Figure 3. In the 1st
round of the algorithm, we partition the rows as X =

⊔
iX

i where each Xi will be fixed on some
blocks Ii ⊆ [n] and 0.95-dense on the remaining blocks [n] r Ii. In the 2nd round, each Xi × Y is
further partitioned along columns so as to fix the outputs of the gadgets on coordinates Ii.

Rectangle Scheme

Input: R = X × Y ⊆ [m]n × {0, 1}mn.
Output: A partition of R into subrectangles.

1: 1st round: Iterate the following for i = 1, 2, . . . , until X becomes empty:

(i) Let Ii ⊆ [n] be a maximal subset (possibly Ii = ∅) such that XIi has min-entropy rate
< 0.95, and let αi ∈ [m]Ii be an outcome witnessing this: Pr[XIi = αi] > m−0.95|Ii|

(ii) Define Xi := {x ∈ X : xIi = αi}
(iii) Update X ← X rXi

2: 2nd round: For each part Xi and γ ∈ {0, 1}Ii , define Y i,γ := {y ∈ Y : gIi(αi, yIi) = γ}

3: return
{
Ri,γ := Xi × Y i,γ : Y i,γ 6= ∅

}
All the properties of Rectangle Scheme that we will subsequently need are formalized below; see

also Figure 3. For terminology, given a subset A′ ⊆ A we define its density (inside A) as |A′|/|A|.
The proof of the following lemma is postponed to Section 7.

Rectangle Lemma. Fix any parameter k ≤ n log n. Given a rectangle R ⊆ [m]n × {0, 1}mn, let
R =

⊔
iR

i be the output of Rectangle Scheme. Then there exist “error” sets Xerr ⊆ [m]n and
Yerr ⊆ {0, 1}mn, both of density ≤ 2−k, such that for each i, one of the following holds:

• Structured case: Ri is ρi-structured for some ρi of width at most O(k/ log n).

• Error case: Ri is covered by error rows/columns, i.e., Ri ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr.

Finally, a query alignment property holds: for every x ∈ [m]nrXerr, there exists a subset Ix ⊆ [n]
with |Ix| ≤ O(k/ log n) such that every “structured” Ri intersecting {x} × {0, 1}mn has fix ρi ⊆ Ix.

7



5 Lifting for rectangle-dags

In this section we prove the nontrivial direction of Theorem 1: Let Π be a rectangle-dag solving
S ◦G of size nd for some d. Our goal is to show that w(S) ≤ O(d).

5.1 Game semantics for dags

For convenience (and fun), we use the language of two-player competitive games, introduced
in [Pud00, AD08], which provide an alternative way of thinking about conjunction-dags solving
S ⊆ {0, 1}n ×O. The game involves two competing players, Explorer and Adversary, and proceeds
in rounds. The state of the game in each round is modeled as a partial assignment ρ ∈ {0, 1, ∗}n.
At the start of the game, ρ := ∗n. In each round, Explorer makes one of two moves:

− Query a variable: Explorer specifies an i ∈ free ρ, and Adversary responds with a bit b ∈ {0, 1}.
The state ρ is updated by ρi ← b.

− Forget a variable: Explorer specifies an i ∈ fix ρ, and the state is updated by ρi ← ∗.

An important detail is that Adversary is allowed to choose b ∈ {0, 1} afresh even if the i-th variable
was queried and subsequently forgotten during past play. The game ends when a solution to S can
be inferred from ρ, that is, when C−1

ρ (1) ⊆ S−1(o) for some o ∈ O.
Explorer’s goal is to end the game while keeping the width of the game state ρ as small as possible.

Indeed, Atserias and Dalmau [AD08] prove that w(S) is characterized (up to an additive ±1) as
the least w such that the Explorer has a strategy for ending the game that keeps the width of the
game state at most w throughout the game. (A similar characterization exists for dag size [Pud00].)
Hence our goal becomes to describe an Explorer-strategy for S such that the width of the game
state never exceeds O(d) regardless of how the Adversary plays.

5.2 Simplified proof

To explain the basic idea, we first give a simplified version of the proof: We assume that all
rectangles R involved in Π—call them the original rectangles—can be partitioned errorlessly into
ρ-structured subrectangles for ρ of width O(d). That is, invoking Rectangle Scheme for each
original R, we assume that

(∗) Assumption: All subrectangles in the partition R =
⊔
iR

i output by Rectangle Scheme satisfy
the “structured” case of Rectangle Lemma for k := 2d log n.

In Section 5.3 we remove this assumption by explaining how the proof can be modified to work in
the presence of some error rows/columns.

Overview. We extract a width-O(d) Explorer-strategy for S by walking down the rectangle-dag Π,
starting at the root. For each original rectangle R that is reached in the walk, we maintain a
ρ-structured subrectangle R′ ⊆ R chosen from the partition of R. Note that ρ will have width O(d)
by our choice of k. The intention is that ρ will record the current state of the game. There are three
issues to address: (1) Why is the starting condition of the game met? (2) How do we take a step
from a node of Π to one of its children? (3) Why are we done once we reach a leaf?

(1) Root case. At start, the root of Π is associated with the original rectangle R = [m]n×{0, 1}mn
comprising the whole domain. The partition of R computed by Rectangle Scheme is trivial: it
contains a single part, the ∗n-structured R itself. Hence we simply maintain the ∗n-structured
R ⊆ R, which meets the starting condition for the game.
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(2) Internal step. This is the crux of the argument: Supposing the game has reached state ρR′

and we are maintaining some ρR′-structured subrectangle R′ ⊆ R where R is associated with an
internal node v, we want to move to some ρL′-structured subrectangle L′ ⊆ L where L is associated
with a child of v. We must keep the width of the game state at most O(d) during this move.

R′

L1
L0 Y ′

X ′
x∗

(x∗, y∗)

Since R′ =: X ′ × Y ′ is ρR′-structured, we have from Lemma 7 that there exists some x∗ ∈ X ′
such that {x∗} × Y ′ is ρR′-like. Let the two original rectangles associated with the children of v be
L0 and L1. Let

⊔
i L

i
b be the partition of Lb output by Rectangle Scheme. By query alignment in

Rectangle Lemma, there is some I∗b ⊆ [n], |I∗b | ≤ O(d), such that all Lib that intersect the x∗-th row
are ρi-structured with fix ρi ⊆ I∗b . As Explorer, we now query the input variables in coordinates
J := (I∗0 ∪I∗1 )rfix ρR′ (in any order) obtaining some response string zJ ∈ {0, 1}J from the Adversary.
As a result, the state of the game becomes the extension of ρR′ by zJ , call it ρ∗, which has width
|fix ρ∗| = |fix ρR′ ∪ J | ≤ O(d).

Note that there is some y∗ ∈ Y ′ (and hence (x∗, y∗) ∈ R′ ⊆ L0 ∪ L1) such that G(x∗, y∗)
is consistent with ρ∗; indeed, the whole row {x∗} × Y ′ is ρR′-like and ρ∗ extends ρR′ . Suppose
(x∗, y∗) ∈ L0; the case of L1 is analogous. In the partition of L0, let L′ be the unique part such that
(x∗, y∗) ∈ L′. Note that L′ is ρL′-like for some ρL′ that is consistent with G(x∗, y∗) and fix ρL′ ⊆ I∗0
(by query alignment). Hence ρ∗ extends ρL′ . As Explorer, we now forget all queried variables in ρ∗

except those queried in ρL′ .
We have recovered our invariant: the game state is ρL′ and we maintain a ρL′-structured

subrectangle L′ of an original rectangle L0. Moreover, the width of the game state remained O(d).

(3) Leaf case. Suppose the game state is ρ and we are maintaining an associated ρ-structured
subrectangle R′ ⊆ R corresponding to a leaf node. The leaf node is labeled with some solution
o ∈ O satisfying R′ ⊆ (S ◦G)−1(o), that is, G(R′) ⊆ S−1(o). But G(R′) = C−1

ρ (1) by Lemma 6 so
that C−1

ρ (1) ⊆ S−1(o). Therefore the game ends. This concludes the (simplified) proof.

5.3 Accounting for error

Next, we explain how to get rid of the assumption (∗) by accounting for the rows and columns
that are classified as error in Rectangle Lemma for k := 2d log n. The partitioning of Π’s rectangles
is done more carefully: We sort all original rectangles in reverse topological order R1, R2, . . . , Rnd
from leaves to root, that is, if Ri is a descendant of Rj then Ri comes before Rj in the order. Then
we process the rectangles in this order:

Initialize cumulative error sets X∗err = Y ∗err := ∅. Iterate for i = 1, 2, . . . , nd rounds:

1. Remove from Ri the rows/columns X∗err, Y
∗

err. That is, update

Ri ← Ri r
(
X∗err × {0, 1}mn ∪ [m]n × Y ∗err

)
.
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Li T ∩Ri

Ri

Figure 4: Structured case of Triangle Lemma: The subtriangle T ∩Ri is sandwiched between two
ρi-structured rectangles Li and Ri.

2. Apply the Rectangle Scheme for Ri. Output all resulting subrectangles that satisfy the
“structured” case of Rectangle Lemma for k := 2d log n. (All non-structured subrectangles are
omitted). Call the resulting error rows/columns Xerr and Yerr.

3. Update X∗err ← X∗err ∪Xerr and Y ∗err ← Y ∗err ∪ Yerr.

In words, an original rectangle Ri is processed only after all of its descendants are partitioned. Each
descendant may contribute some error rows/columns, accumulated into sets X∗err, Y

∗
err, which are

deleted from Ri before it is partitioned. The partitioning of Ri will in turn contribute its error
rows/columns to its ancestors.

We may now repeat the proof of Section 5.2 verbatim using only the structured subrectangles
output by the above process. That is, we still maintain the same invariant: when the game state is ρ,
we maintain a ρ-structured R′ (output by the above process) of an original R. We highlight only
the key points below.

(1) Root case. The cumulative error at the end of the process is tiny: X∗err, Y
∗

err have density
at most nd · n−2d ≤ 1% by a union bound over all rounds. In particular, the root rectangle Rnd
(with errors removed) still has density 98% inside [m]n × {0, 1}mn, and so the partition output by
Rectangle Scheme is trivial, containing only the ∗n-structured Rnd itself. This meets the starting
condition for the game.

(2) Internal step. By construction, the cumulative error sets shrink when we take a step from a
node to one of its children. This means that our error handling does not interfere with the internal
step: each structured subrectangle R′ of an original rectangle R is wholly covered by the structured
subrectangles of R’s children.

(3) Leaf case. This case is unchanged.

6 Lifting for triangle-dags

In this section we prove the nontrivial direction of Theorem 3: Let Π be a triangle-dag solving S ◦G
of size nd for some d. Our goal is to show that w(S) ≤ O(d).

The proof is conceptually the same as for rectangle-dags. The only difference is that we need to
replace Rectangle Scheme (and the associated Rectangle Lemma) with an algorithm that partitions
a given triangle T ⊆ [m]n × {0, 1}mn into subtriangles that behave like conjunctions.
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6.1 Triangle partition scheme

We introduce a triangle partitioning algorithm, Triangle Scheme. Its precise definition is postponed
to Section 7.2. For now, we only need its high-level description: On input a triangle T , Triangle
Scheme outputs a disjoint cover

⊔
iR

i ⊇ T where Ri are rectangles. This induces a partition of
T into subtriangles T ∩Ri. Each (non-error) rectangle Ri is ρi-structured (for low-width ρi) and
is associated with a ρi-structured “inner” subrectangle Li ⊆ Ri satisfying Li ⊆ T ∩ Ri ⊆ Ri; see
Figure 4. Hence T ∩Ri is ρi-like, as it is sandwiched between two ρi-like rectangles.

More formally, all the properties of Triangle Scheme that we will subsequently need are formalized
below (note the similarity with Rectangle Lemma); see Section 7.4 for the proof.

Triangle Lemma. Fix any parameter k ≤ n log n. Given a triangle T ⊆ [m]n × {0, 1}mn, let⊔
iR

i ⊇ T be the output of Triangle Scheme. Then there exist “error” sets Xerr ⊆ [m]n and
Yerr ⊆ {0, 1}mn, both of density ≤ 2−k, such that for each i, one of the following holds:

• Structured case: Ri is ρi-structured for some ρi of width at most O(k/ log n). Moreover,
there exists an “inner” rectangle Li ⊆ T ∩Ri such that Li is also ρi-structured.

• Error case: Ri is covered by error rows/columns, i.e., Ri ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr.

Finally, a query alignment property holds: for every x ∈ [m]nrXerr, there exists a subset Ix ⊆ [n]
with |Ix| ≤ O(k/ log n) such that every “structured” Ri intersecting {x} × {0, 1}mn has fix ρi ⊆ Ix.

6.2 Simplified proof

As in the rectangle case, we give a simplified proof assuming no errors. That is, invoking Triangle
Scheme for each triangle T involved in Π, we assume that

(†) Assumption: All rectangles in the cover
⊔
iR

i ⊇ T output by Triangle Scheme satisfy the
“structured” case of Triangle Lemma for k := 2d log n.

The argument for getting rid of the assumption (†) is the same as in the rectangle case, and hence
we omit that step—one only needs to observe that removing cumulative error rows/columns from a
triangle still leaves us with a triangle.

Overview. As before, we extract a width-O(d) Explorer-strategy for S by walking down the
triangle-dag Π, starting at the root. For each triangle T of Π that is reached in the walk, we
maintain a ρ-structured inner rectangle L ⊆ T . Here ρ (of width O(d) by the choice of k) will record
the current state of the game. There are the three steps (1)–(3) to address, of which (1) and (3)
remain exactly the same as in the rectangle case. So we only explain step (2), which requires us to
replace the use of Rectangle Lemma with the new Triangle Lemma.

(2) Internal step. Supposing the game has reached state ρL and we are maintaining some
ρL-structured inner rectangle L ⊆ T associated with an internal node v, we want to move to some
ρ
L̃

-structured inner rectangle L̃ ⊆ T̃ associated with a child of v. Moreover, we must keep the width
of the game state at most O(d) during this move.

Since L =: X ′×Y ′ is ρL-structured, we have from Lemma 7 that there exists some x∗ ∈ X ′ such
that {x∗} × Y ′ is ρL-like. Let the two triangles associated with the children of v be T0 and T1, so
that L ⊆ T0 ∪ T1.

Let
⊔
iR

i
b be the rectangle cover of Tb output by Triangle Scheme. By query alignment in

Triangle Lemma, there is some I∗b ⊆ [n], |I∗b | ≤ O(d), such that all Rib that intersect the x∗-th row
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are ρi-structured with fix ρi ⊆ I∗b . As Explorer, we now query the input variables in coordinates
J := (I∗0 ∪ I∗1 )rfix ρL (in any order) obtaining some response string zJ ∈ {0, 1}J from the Adversary.
As a result, the state of the game becomes the extension of ρL by zJ , call it ρ∗, which has width
|fix ρ∗| = |fix ρL ∪ J | ≤ O(d).

Note that there is some y∗ ∈ Y ′ (and hence (x∗, y∗) ∈ L ⊆ T0 ∪ T1) such that G(x∗, y∗)
is consistent with ρ∗; indeed, the whole row {x∗} × Y ′ is ρL-like and ρ∗ extends ρL. Suppose
(x∗, y∗) ∈ T0; the case of T1 is analogous. In the rectangle covering of T0, let R be the unique part
such that (x∗, y∗) ∈ R. Note that R is ρR-like for some ρR that is consistent with G(x∗, y∗) and
fix ρR ⊆ I∗0 (by query alignment). Hence ρ∗ extends ρR. As Explorer, we now forget all queried

variables in ρ∗ except those queried in ρR. Also we move to the inner rectangle L̃ ⊆ R promised by
Triangle Lemma that satisfies L̃ ⊆ T0 and is ρ

L̃
= ρR structured.

We have recovered our invariant: the game state is ρ
L̃

and we maintain a ρ
L̃

-structured

subrectangle L̃ of a triangle T0. Moreover, the width of the game state remained O(d).

7 Partitioning rectangles and triangles

In this section, we prove Rectangle Lemma, define Triangle Scheme, and prove Triangle Lemma.
We use repeatedly the following simple fact about min-entropy.

Fact 8. Let X be a random variable and E an event. Then H∞(X | E) ≥ H∞(X)− log 1/Pr[E].

7.1 Proof of Rectangle Lemma

The proof is more-or-less implicit in [GLM+16, GPW17]. We start by recording a key property of
the 1st round of Rectangle Scheme.

Claim 9. Each part Xi obtained in 1st round of Rectangle Scheme satisfies:

− Blockwise-density: Xi
[n]rIi is 0.95-dense.

− Relative size: |X>i| ≤ mn−0.05|Ii| where X>i :=
⋃
j≥iX

j.

Proof. By definition, Xi = (X>i |X>i
Ii

= αi). Suppose for contradiction that Xi
[n]rIi is not 0.95-

dense. Then there is some nonempty subset K ⊆ [n] r Ii and an outcome β ∈ [m]K violating the
min-entropy condition, namely Pr[Xi

K = β] > m−0.95|K|. But this contradicts the maximality of Ii
since the larger set Ii ∪K now violates the min-entropy condition for X>i:

Pr[X>i
Ii∪K = αiβ] = Pr[X>i

Ii
= αi] ·Pr[Xi

K = β] > m−0.95|Ii| ·m−0.95|K| = m−0.95(|Ii∪K|) .

This shows the first property. For the second property, apply Fact 8 for Xi = (X>i |X>i
Ii

= αi) to

find that H∞(Xi) ≥ H∞(X>i)− 0.95|Ii| logm. On the other hand, since Xi is fixed on Ii, we have
H∞(Xi) ≤ (n−|Ii|) logm. Combining these two inequalities we get H∞(X>i) ≤ (n−0.05|Ii|) logm,
which yields the second property.

Proof of Rectangle Lemma. Identifying Yerr, Xerr. We define Yerr :=
⋃
i,γ Y

i,γ subject to

|Y i,γ | < 2mn−n
2
. To bound the size of Yerr, we claim that there are at most (4m)n possible choices

of i, γ. Indeed, each Xi is associated with a unique pair (Ii ⊆ [n], αi ∈ [m]Ii), and there are at most
2n choices of Ii and at most mn choices of corresponding αi. Also, for each Xi, there are at most 2n

possible assignments to γ ∈ {0, 1}Ii . For each i, γ, we add at most 2mn−n
2

columns to Yerr. Thus,
Yerr has density at most (4m)n · 2−n2

< 2−k inside {0, 1}mn.
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Triangle Scheme

Input: Triangle T ⊆ [m]n × {0, 1}mn with labeling functions (aT , bT )
Output: A disjoint rectangle cover

⊔
iR

i ⊇ T

1: Yerr ← Column Cleanup on T
2: Initialize R0

alive := {[m]n × ({0, 1}mn r Yerr)}; Rralive := ∅ for all r ≥ 1; Rfinal := ∅

3: loop for r = 0, 1, 2, . . . , rounds until Rralive is empty:
4: for all R ∈ Rralive do
5:

⊔
iR

i ← Rectangle Scheme on R relative to free coordinates
6: for all parts Ri do
7: if |XT∩Ri | ≥ |XRi |/2 then
8: Add Ri to Rfinal

9: else
10: Ri,top := top half of Ri according to aT (in particular T ∩Ri ⊆ Ri,top)
11: Add Ri,top to Rr+1

alive subject to T ∩Ri,top 6= ∅

12: return Rfinal ∪ {[m]n × Yerr}

We define Xerr :=
⊔
iX

i subject to |Ii| > 20k/ logm. Let i be the least index with |Ii| >
20k/ logm so that Xerr ⊆ X>i. By Claim 9, |X>i| ≤ mn−0.05|Ii| < mn · 2−k since |Ii| > 20k/ logm.
In other words, X>i, and hence Xerr, has density at most 2−k inside [m]n.

Structured vs. error. Let Ri,γ := Xi × Y i,γ , where Xi is associated with (Ii, αi), be a rectangle not
contained in the error rows/columns. By definition of Xerr, Yerr, this means |Y i,γ | ≥ 2mn−n

2
(so

that H∞(Y i,γ) ≥ mn− n2) and |Ii| ≤ 20k/ logm. We have from Claim 9 that Xi
[n]rIi is 0.95-dense.

Hence, Ri,γ is ρi-structured where ρi equals γ on Ii and consists of stars otherwise.

Query alignment. For each x ∈ [m]n rXerr, we define Ix = Ii where Xi is the unique part that
contains x. It follows that any ρ-structured rectangle that intersects the x-th row is of the form
Xi × Y i,γ and hence has fix ρ = Ii. Since Xi 6⊆ Xerr, we have |Ii| ≤ O(k/ log n).

7.2 Definition of Triangle Scheme

In the description of Triangle Scheme, we denote projections of a set S ⊆ [m]n × {0, 1}mn by

XS := {x ∈ [m]n : ∃y ∈ {0, 1}mn such that (x, y) ∈ S} ,
Y S := {y ∈ {0, 1}mn : ∃x ∈ [m]n such that (x, y) ∈ S} .

Overview. Triangle Scheme computes a disjoint rectangle cover
⊔
iR

i of T . Starting with a trivial
cover of the whole communication domain by a single part, the algorithm progressively refines this
cover over several rounds as guided by the input triangle T . As outlined in Section 6.1, the goal is
to end up with ρ-structured rectangles Ri that contain a large enough portion of T so that we may
sandwich Li ⊆ T ∩Ri ⊆ Ri where Li is a ρ-structured “inner” rectangle.

The main idea is as follows. The algorithm maintains a pool of alive rectangles. In a single round,
for each alive rectangle R, we first invoke Rectangle Scheme in order to restore ρ-structuredness
for the resulting subrectangles Ri. Then for each Ri we check if the subtriangle T ∩Ri occupies at
least half the rows of Ri. If yes, we add it to the final pool, which will eventually form the output
of the algorithm. If no, we discard the “lower” half of Ri as determined by the labeling aT , that is,
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Column Clean-up

Input: Triangle T ⊆ [m]n × {0, 1}mn with labeling functions (aT , bT )
Output: Error columns Yerr ⊆ {0, 1}mn

1: Yerr ← ∅
2: For I ⊆ [n], α ∈ [m]I , γ ∈ {0, 1}I , define YI,α,γ :=

{
y ∈ {0, 1}mn : gI(α, yI) = γ

}
3: while there exists I, α, γ, x such that 0 < |T ∩ ({x} × (YI,α,γ r Yerr))| < 2mn−n

2
do

4: Yerr ← Yerr ∪ Y T∩({x}×YI,α,γ)

5: return Yerr

the half that does not intersect T . The “top” half (containing T ∩Ri) will enter the alive pool for
next round.

Column Cleanup. An important detail is the subroutine Column Cleanup, run at the start of
Triangle Scheme, which computes a small set of columns that will eventually be declared as Yerr.
By discarding the columns Yerr, we ensure that whatever subrectangle Ri is output by Rectangle
Scheme, the rows of T ∩ Ri will satisfy an empty-or-heavy dichotomy : for every x ∈ XRi , the
x-th row of T ∩ Ri is either empty, or “heavy”, that is, of size at least 2mn−n

2
. For intuition, an

extreme bad example we want to avoid is a triangle T that is just a single column; such T would
be completely declared as “error” by Column Cleanup. Having many heavy rows helps towards
satisfying the 3rd item in Definition 2 of ρ-stucturedness, and hence in finding the inner rectangle Li.
This property of Column Cleanup is formalized in Claim 10 below.

Free coordinates. Another detail to explain is the underlined phrase relative to free coordinates.
For each alive rectangle R we tacitly associate a subset of free coordinates JR ⊆ [n] and fixed
coordinates [n] r JR. At start, the single alive rectangle has JR := [n], and whenever we invoke
Rectangle Scheme for a rectangle R relative to free coordinates, the understanding is that in line (i)
of Rectangle Scheme, the choice of Ii is made among subsets of JR alone. The resulting subrectangle
Ri = Xi×Y i, obtained by fixing the coordinates Ii in Xi, will have its free coordinates JRi := JRrIi.
(Restricting a rectangle to its top half on line 10 does not modify the free coordinates.)

7.3 Properties of Triangle Scheme

Claim 10. For a triangle T ⊆ [m]n × {0, 1}mn, let Yerr be the output of Column Cleanup. Then:

− Empty-or-heavy: For every triple (I ⊆ [n], α ∈ [m]I , γ ∈ {0, 1}I), and every x ∈ [m]n, it
holds that T ∩ ({x} × (YI,α,γ r Yerr)) is either empty or has size at least 2mn−n

2
.

− Size bound: |Yerr| ≤ 2mn−Ω(n2).

Proof. The first property is immediate by definition of Column Cleanup. For the second property,
in each while-iteration, at most 2mn−n

2
columns get added to Yerr. Moreover, there are no more

than 2n ·mn · 2n ·mn = (2m)2n choices of I ⊆ [n], α ∈ [m]I , γ ∈ {0, 1}I and x ∈ [m]n, and the loop
executes at most once for each choice of I, α, γ, x. Thus, |Yerr| ≤ (2m)2n · 2mn−n2 ≤ 2mn−Ω(n2).

Next, we list some key invariants that hold for Triangle Scheme.

Lemma 11. For every r ≥ 0, there exists a partition X r :=
{
Xi
}
i

of [m]n satisfying the following.

(P1) For every R ∈ Rralive we have XR ∈ X r.
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(P2) Each Xi ∈ X r is labeled by a pair (Ii ⊆ [n], αi ∈ [m]Ii) such that Xi
Ii

= αi is fixed.

(P3) The partition X r+1 is a refinement of X r. The labels respect this: if Xj ∈ X r+1 is a subset
of Xi ∈ X r, then Ij ⊇ Ii and αj agrees with αi on coordinates Ii.

Moreover, let X := X r∗ be the final partition assuming Triangle Scheme completes in r∗ rounds.

(P4) For every R ∈ Rfinal the row set XR is a union of parts of X . If Xi ∈ X , labeled (Ii, αi), is
such that XR ⊇ Xi, then the fixed coordinates of R are a subset of Ii.

(P5) For every r ≥ 0, X r and X agree on a fraction ≥ 1−2−r of rows, that is, there is a subset of
“final” parts X rfinal ⊆ X r such that

⋃
X rfinal has density ≥ 1−2−r inside [m]n, and X rfinal ⊆ X .

Proof. Let us define the row partitions X r. The partition X 1 contains only a single part, [m]n,
labeled by I1 := ∅. Supposing X r has been defined, the next partition X r+1 is obtained by refining
each old part Xi ∈ X r. Consider one such old part Xi ∈ X r with label (Ii, αi). If there is no
rectangle R ∈ Rralive with XR = Xi then we need not partition Xi any further; we simply include Xi

in X r+1 as a whole. Otherwise, let R ∈ Rralive be any rectangle such that XR = Xi; we emphasize
that there can be many such choices for R, but the upcoming refinement of Xi will not depend on
that choice. The r-th round of the algorithm first computes R =

⊔
iR

i using Rectangle Scheme, and
then each Ri might be horizontally split in half. We interpret this as a refinement of Xi according to
the 1st round of Rectangle Scheme on R (which only depends on XR = Xi), with each part adding
more fixed coordinates to the label (Ii, αi). Letting Xi =

⊔
j X

i,j denote the resulting row partition,

we then split each Xi,j into two halves Xi,j,top and Xi,j,bot. This completes the definition of X r+1.
The properties (P1)–(P5) are straightforward to verify. For (P5), we only note that when the

algorithm horizontally splits a rectangle (inducing Xi,j = Xi,j,top ∪Xi,j,bot), the bottom halves are
discarded, and never again touched in future rounds. That is, Xi,j,bot ∈ X r′ for all r′ > r. This
cuts the number of “alive” rows

⋃
R∈Rralive

XR in half each round.

Lemma 12 (Error rows). Let X = {Xi}i be the final row partition in Lemma 11. Fix any parameter
k < n log n. There is a density-2−k subset Xerr ⊆ [m]n (which is a union of parts of X ) such that
for any part Xi 6⊆ Xerr, we have |Ii| ≤ O(k/ log n).

Proof. Our strategy is as follows (cf. [GPW17, Lemma 7]). For x ∈ [m]n, let i(x) be the unique
index such that x ∈ Xi(x) ∈ X ; recall that Xi(x) is labeled by some (Ii(x), αi(x)). We will study a
uniform random x ∼ [m]n and show that the distribution of the number of fixed coordinates |Ii(x)|
has an exponentially decaying tail. This allows us to define Xerr as the set of outcomes of x for
which |Ii(x)| is exceptionally large. More quantitatively, it suffices to show for a large constant C,

Pr
[
|Ii(x)| > C · k/ log n

]
≤ 2−k. (2)

Recall that X and X `, where ` := k+ 1, agree on all but a fraction 2−k/2 of rows by (P5). Hence
by a union bound, it suffices to show a version of (2) truncated at level `:

Pr
[
|Ii′(x)| > C ′ · `/ log n

]
≤ 2−` (= 2−k/2), (3)

where i′(x) is defined as the unique index with x ∈ Xi′(x) ∈ X `.
Partitions as a tree. The sequence X 0, . . . ,X `, of row partitions can be visualized as a depth-`

tree where the nodes at depth r corresponds to parts of X r, and there is an edge from X ∈ X r to
X ′ ∈ X r+1 iff X ′ ⊆ X. A way to generate a uniform random x ∼ [m]n is to take a random walk
down this tree, starting at the root:

− At a non-leaf node X ∈ X r we take a tree edge (X,X ′) with probability |X ′|/|X|.
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− Once at a leaf node X ∈ X `, we output a uniform random x ∼ X.

Potential function. We define a nonnegative potential function on the nodes of the tree. For
each part X ∈ X r, labeled (I ⊆ [n], α ∈ {0, 1}I), we define

D(X) := (n− |I|) logm− log |X| ≥ 0.

How does the potential change as we take a step starting at node X ∈ X r labeled (J, α)? If X has
one child, the value of D remains unchanged. Otherwise, we move to a child of X in two substeps.

− Substep 1: Recall that we partition X =
⊔
iX

i according to the 1st round of Rectangle
Scheme relative to free coordinates. That is, Xi is further restricted on Ii ⊆ [n] r J to some
value αi ∈ [m]Ii . For a child Xi labeled (J t Ii, α t αi) the potential change is

D(Xi)−D(X) = (n− |J ∪ Ii|) logm− log |Xi| − (n− |J |) logm+ log |X|
= log |X| − log |Xi| − |Ii| logm

= log(|X|/|X>i|)− log(|Xi|/|X>i|)− |Ii| logm

= log(|X|/|X>i|)− log Pr[X>i
Ii

= αi]− |Ii| logm

≤ log(|X|/|X>i|) + 0.95|Ii| logm− |Ii| logm

= δ(i)− 0.05|Ii| logm. (where δ(i) := log(|X|/|X>i|))

− Substep 2: Each Xi gets split into two halves, Xi,top and Xi,bot. Moving to either child
makes the potential increase by exactly 1 bit.

In summary, when we take a step to a random child in our random walk, the overall change in
potential is itself a random variable, which is at most

δ − 0.05|I| logm+ 1, (4)

where (I, · ) is the label of the random child, and δ := δ(i) is the random variable generated by
choosing i with Pr[i = i] = |Xi|/|X|. Summing (4) over ` many rounds, we see that ` steps of the
random walk takes us to a node Xj ∈ X ` with random index j, which is labeled (Ij , αj), and which
satisfies D(Xj) ≤

∑
r∈[`](δr + 1)− 0.05|Ij | logm where δr is the “δ” variable corresponding to the

r-th step. Since the potential is nonnegative, we get that

|Ij | ≤
20

logm
·
∑
r∈[`]

(δr + 1). (5)

Bounding this quantity is awkward since, in general, the variables δr are not mutually independent.
However, a standard trick to overcome this is to define mutually independent and identically
distributed random variables dr and couple them with δr so that δr ≤ dr with probability 1.

− Definition of dr: Sample a uniform real pr ∈ [0, 1) and define dr := log(1/(1− pr)) and let
δr := δ(i) where i is such that pr falls in the i-th interval, assuming we have partitioned [0, 1)
into half-open intervals with lengths |Xi|/|X| (where X1, X2, . . . are the sets from Substep 1) in
the natural left-to-right order. Now δr is correctly distributed and δr ≤ dr with probability 1.
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Note that E[2dr/2] =
∫ 1

0 1/(1− p)1/2dp = 1. For a large enough constant C > 0, we calculate

Pr
[ ∑

r∈[`] dr > C`
]

= Pr[2
∑
r∈[`](dr/2) > 2C`/2]

≤ E[2
∑
r∈[`](dr/2)]/2C`/2

=
(∏

r∈[`] E[2dr/2]
)
/2C`/2

= 2−C`/2

Plugging this estimate in (5) (using δr ≤ dr) we get that Pr[|Ij | > C ′ · `/ log n] < 2−` for a
sufficiently large C ′. This proves (3) and concludes the proof of the lemma.

7.4 Proof of Triangle Lemma

Identifying Yerr, Xerr. The column error set Yerr is already defined by Triangle Scheme. Note that
only one rectangle, [m]n × Yerr, is covered by the error columns. Claim 10 ensures that Yerr has
density at most 2−Ω(n2) < 2−k. The row error set Xerr is defined by Lemma 12 (for the given k).

Structured vs. error. Let
⊔
iR

i be the output of Triangle Scheme, and consider an Ri = Xi × Y i

which is not covered by error rows/columns; in particular Ri ∈ Rfinal. Let Ii ⊆ [n] denote the
fixed coordinates of Ri such that Xi

Ii
= αi for some αi ∈ {0, 1}Ii . From Claim 9 we have that

Xi
[n]rIi is 0.95-dense. From (P4) and Lemma 12 we have |Ii| ≤ O(k/ log n). Moreover, we observe

that Y i = YIi,αi,γi r Yerr for some γi ∈ {0, 1}Ii (notation from Column Cleanup) since Rectangle
Scheme, and hence Triangle Scheme by extension, only partitions columns by fixing individual
gadget outputs. We have |YIi,αi,γi | ≥ 2mn−n by definition, and so |Y i| ≥ 2mn−2n is large enough:
we conclude that Ri is ρi-structured for ρi that equals γi on Ii and consists of stars otherwise.

Next, we locate the associated inner rectangle Li ⊆ Ri. All final rectangles output by Triangle
Scheme are such that |X(T∩Ri)| ≥ |Xi|/2. That is, every top row in Ri,top has a nonempty
intersection with T . Hence the empty-vs-heavy property of Claim 10 says that for all x ∈ Xi,top,
we have |T ∩ ({x} × Y i)| ≥ 2mn−n

2
. Moreover, note that Xi,top is 0.9-dense on its free coordinates

[n] r Ii (we lose at most 1 bit of min-entropy compared to Xi by Fact 8). We can now define
Li := Xi,top × Y ′ ⊆ T ∩Ri where Y ′ is the set of the first (according to bT ) 2mn−n

2
columns of Y i;

see Figure 4. This Li meets all the conditions for being ρi-structured.

Query alignment. For x ∈ [m]n rXerr, we define (Ix, αx) as the label of the unique part i(x) such
that x ∈ Xi(x) ∈ X . By Lemma 12, |Ix| ≤ O(k/ log n). Every ρ-structured rectangle Rj := Xj × Y j

with Xj ⊇ Xi(x) is, by (P4), such that fix ρ ⊆ Ix.

8 Translating between mKW/CNF

In this section, for exposition, we recall some known reductions between mKW and CNF search
problems (as outlined in Section 3). These reductions are generic in that they are not adapted to the
special properties of the search problem S ⊆ {0, 1}n ×O one starts with. For concrete applications
to natural problems, one often needs more fine-grained reductions; for example, as mentioned in
Section 3, the follow-up work [GKRS19] has introduced a more specific framework.

In an effort to add some new perspective to the old reductions expounded here, we continue to
use the somewhat abstract search problem–centric “top-down” language. We encourage the readers
who prefer the CNF-centric “bottom-up” language to refer to the original cited papers.
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Certificates. The key property of an n-variable search problem S ⊆ {0, 1}n×O that facilitates an
efficient reduction to a mKW/CNF search problem is having a low certificate (a.k.a. nondeterministic)
complexity. A certificate for (x, o) ∈ S is a partial assignment ρ ∈ {0, 1, ∗}n such that x is consistent
with ρ and o is a valid output for every input consistent with ρ; in short, x ∈ C−1

ρ (1) ⊆ S−1(o).
A certificate for x is a certificate for (x, o) ∈ S for some o ∈ S(x). The certificate complexity of x
is the least width of a certificate for x. The certificate complexity of S is the maximum over all
x ∈ {0, 1}n of the certificate complexity of x.

For any search problem S one can associate a “certification” search problem Scert: on input x
to S, output a certificate for x in S. Algorithmically speaking, such an Scert is clearly at least as
hard as S: if we solve Scert by finding a certificate for (x, o) ∈ S, we can solve S by outputting o.

CNF search ⇔ low certificate complexity. For any k-CNF contradiction F , the associated
CNF search problem SF has certificate complexity at most k. Conversely [LNNW95], for any
total search problem S ⊆ {0, 1}n ×O, we can construct a k-CNF contradiction F , where k is the
certificate complexity of S, such that SF is a type of certification problem for S (and hence at least
as hard as S). Namely, we can pick a collection C of width-k certificates, one for each x ∈ {0, 1}n.
The k-CNF formula F is then defined as

∧
ρ∈C ¬Cρ.

Gadget composition. For the purposes of query complexity, there are two ways to represent the
first argument x ∈ [m] to the index function Indm : [m]× {0, 1}m → {0, 1} as a binary string. The
simplest is to write x as a logm-bit string. Under this convention, Indm has certificate complexity
logm + 1. If S ⊆ {0, 1}n × O has certificate complexity k, the composed problem S ◦ Indnm has
certificate complexity k(logm+ 1) (by composing certificates). This means that if we start with a
k-CNF contradiction F , we may reduce SF ◦ Indnm to solving SF ′ where F ′ is a k(logm+ 1)-CNF
contradiction over O(mn) variables.

A better representation [BHP10, dRNV16], which does not blow up the certificate complexity
(or CNF width), is to write x as an m-bit string of Hamming weight 1 (the index of the unique
1-entry encodes x ∈ [m]). Under this convention, Indnm : {0, 1}m × {0, 1}m → {0, 1} becomes a
partial function of certificate complexity 2. Hence, if S has certificate complexity k, the partial
composed problem S′ := S ◦ Indnm has certificate complexity 2k.

Moreover, the partial problem S′ can be extended into a total problem Stot without making it
any easier to solve for rectangle-dags. Indeed, we introduce new variables/certificates allowing us to
say that an input (x, y) to S′ is trivially solved with output ⊥ /∈ O, if for some i ∈ [n], xi ∈ {0, 1}m
is not of Hamming weight 1. Specifically, Alice will receive new input bits x′ ∈ ({0, 1}m)n (in
addition to the original x ∈ ({0, 1}m)n) and we say that an Alice input xx′ is good if for each i ∈ [n],
the string x′i ∈ {0, 1}m describes a non-decreasing sequence

0 = x′i,1 ≤ x′i,2 ≤ · · · ≤ x′i,m ≤ x′i,m+1 := 1

(the last value being hardcoded by convention), and moreover xi,j = 1 iff x′i,j < x′i,j+1. Note
that if xx′ is not good, there is a width-3 certificate witnessing this. Our total search problem
Stot ⊆ {0, 1}2mn × {0, 1}mn × (O ∪ {⊥}) is defined by all these width-3 certificates (for output ⊥)
together with all the original certificates of S′. To see that Stot is at least as hard as S′ for
rectangle-dags, we note that for any input (x, y) to S′, Alice can compute a unique x′ so that xx′ is
good. Now any output o ∈ Stot(xx

′, y) is also such that o ∈ S′(x, y).
In summary, we can reduce (in the context of rectangle-dags) SF ◦ Indnm to solving SF ′ where

F ′ is a 2k-CNF contradiction over O(mn) variables.
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mKW problems. A rectangle R ⊆ X ×Y is monochromatic for a search problem S ⊆ X ×Y ×O
if R ⊆ S−1(o) for some o ∈ O. The nondeterministic communication complexity of S is the logarithm
of the least number of monochromatic rectangles that cover the whole input domain X × Y. If S
has nondeterministic communication complexity logN , then by a standard reduction (e.g., [Gál01,
Lemma 2.3]) S reduces to Sf for some monotone f : {0, 1}N → {0, 1}.

Consider a composed search problem SF ◦gn obtained from a k-CNF contradiction with ` clauses.
Its nondeterministic communication complexity is at most log `+ k · (logm+ 1); intuitively, it takes
log ` bits to specify an unsatisfied clause C, and logm + 1 bits to verify the output of a single
gadget, and there are k gadgets relevant to C. Suppose for a moment that a version of Theorem 1,
proving a 2Ω(w) lower bound, held for a gadget of constant size m = O(1). Then we could lift
any of the known CNF contradictions with parameters k = O(1), ` = O(n), w = Ω(n), to obtain
an explicit monotone function on N = Θ(n) variables, with essentially maximal monotone circuit
complexity 2Ω(N). This gives some motivation to further develop lifting tools for small gadgets.

9 Open problems

If the long line of work on tree-like lifting theory is of any indication, there should be much to
explore also in the dag-like setting. We propose a few concrete directions.

Can our methods be extended to prove lower bounds for dags whose feasible sets are intersections
of k triangles for k ≥ 2? See Figure 2. This would imply lower bounds for proofs systems such as
width-k Resolution over Cutting Planes [Kra98] and Resolution over linear equations [RT08, IS14].

Question 1. Prove a lifting theorem for F-dags where F := {intersections of k triangles}.

One of the most important open problems (e.g., [Raz16b, §5]) regarding semi-algebraic proof
systems that manipulate low-degree polynomials—where F is, say, degree-d polynomial threshold
functions—is to prove lower bounds on their dag-like refutation length (tree-like lower bounds are
known [BPS07, GP14]). Since degree-d polynomials can be efficiently evaluated by (d+ 1)-party
number-on-forehead (NOF) protocols, one might hope to prove a dag-like NOF lifting theorem.
However, we currently lack a good understanding of NOF lifting even in the tree-like case. We
believe the first necessary step should be to settle the following (a two-party analogue of which was
proved in [GLM+16]).

Question 2. Prove a nondeterministic lifting theorem for NOF protocols.

The proof of Theorem 1, which extracts a width-O(d) conjunction-dag from a size-nd rectangle-
dag, has the additional property of preserving the dag depth (up to an O(d) factor). This raises the
question of whether one could investigate size–depth tradeoffs for monotone circuits via lifting.

Question 3. Does there exist, for any d ≥ 1, an f : {0, 1}n → {0, 1} computable with monotone
circuits of size nd such that any subexponential-size monotone circuit computing f has depth nΩ(d)?

Razborov [Raz16a] has recently obtained related results for Resolution, but the parameters in
his construction seem not to be good enough for a direct application of Theorem 1.
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A Appendix: Proof of Lemma 7

Define χ(z) := (−1)
∑
i zi . To prove Lemma 7, we recall two claims from [GPW17] (which were used

to prove Lemma 6). We need the first claim in a slightly strengthened form.

Claim 13 (Strengthening [GPW17, Lemma 8]). For any ρ-structured X × Y with free ρ =: J ⊆ [n],

∀I ⊆ J, I 6= ∅ : EX

∣∣EY [χ(gI(XI ,YI))]
∣∣ ≤ 2−5|I| logn.

Proof. Fix any I ⊆ J , I 6= ∅. Define subsets

X+ :=
{
x ∈ X : EY [χ(gI(xI ,YI))] > 0

}
and X- :=

{
x ∈ X : EY [χ(gI(xI ,YI))] < 0

}
so that

EX

∣∣EY [χ(gI(xI ,YI))]
∣∣ =

|X+|
|X|

·EX+ EY [χ(gI(X+
I ,YI))] +

|X-|
|X|

·EX- EY [−χ(gI(X-
I ,YI))] .

It suffices to show that each of the two terms is at most 0.5 · 2−5|I| logn. Let us focus only on the first
term (a similar argument takes care of the second term). If |X+| ≤ 0.5 · 2−5|I| logn · |X|, then we are
already done, so assume the contrary so that H∞(X+

I ) ≥ H∞(XI)− 5|I| log n− 1 ≥ 0.8|I| logm;
here recall that H∞(XI) ≥ 0.9|I| logm and we may assume m ≥ n60. To complete the proof, we
rely on a calculation from [GPW17, Lem. 8]. There, the following is proved for constant 0.9 in place
of 0.8, but this is inconsequential, as one can always increase the exponent in m = n∆ if necessary.

Calculation from [GPW17, Lem. 8, Eq. 4]: If H∞(X+
I ) ≥ 0.8|I| logm and H∞(Y ) ≥ mn− n3 then

|EX+ EY [χ(gI(X+
I ,YI))]| ≤ 0.5 · 2−5|I| logn.

Claim 14 ([GPW17, Lem. 9]). If a random variable zJ over {0, 1}J satisfies∗ |E[χ(zI)]| ≤ 2−3|I| logn

for every nonempty I ⊆ J , then zJ has full support over {0, 1}J .

Say that x ∈ X is good if |EY [χ(gI(xI ,YI))]| ≤ 2−3|I| logn for all ∅ 6= I ⊆ J . By applying
Markov’s inequality to Claim 13, we have for a uniform random x ∼ X and any ∅ 6= I ⊆ J that

Prx∼X

[∣∣EY [χ(gI(xI ,YI))]
∣∣ > 2−3|I| logn

]
≤ 2−2|I| logn.

Taking a union bound over all ∅ 6= I ⊆ J , we get

Prx∼X [x is not good ] ≤
∑
∅6=I⊆J Prx∼X

[
|EY [χ(gI(xI ,YI))]| > 2−3|I| logn

]
≤
∑
∅6=I⊆J 2−2|I| logn =

∑|J |
d=1

(|J |
d

)
· 2−2d logn

≤
∑|J |

d=1 2−d logn ≤ 2/n.

Hence most x ∈ X are good. Finally, observe that for any good x, the random variable zJ defined
as gJ(x,y) for a random y ∼ Y , satisfies the Fourier condition in Claim 14. Therefore, such a zJ
has full support over {0, 1}J , which means that {x} × Y is ρ-like.

∗In [GPW17, §4.6], the claim is proved for the condition |E[χ(zI)]| ≤ 2−5|I| logn. However, the proof still works
with the weaker 2−3|I| logn condition, as we only require that zJ has full support as compared to the stronger condition
of being pointwise-close to uniform.
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[GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting
for BPP. In Proceedings of the 58th Symposium on Foundations of Computer Science
(FOCS), pages 132–143, 2017. doi:10.1109/FOCS.2017.21.

[Hak95] Armin Haken. Counting bottlenecks to show monotone P 6= NP. In Proceedings of
the 36th Symposium on Foundations of Computer Science (FOCS), pages 36–40, 1995.
doi:10.1109/SFCS.1995.492460.

[HC99] Armin Haken and Stephen Cook. An exponential lower bound for the size of monotone
real circuits. Journal of Computer and System Sciences, 58(2):326–335, 1999. doi:

10.1006/jcss.1998.1617.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time–space trade-offs in proof complexity. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 233–248.
ACM, 2012. doi:10.1145/2213977.2214000.
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