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Abstract

This work introduces a model of distributed learning in the spirit of Yao’s communication
complexity model. We consider a two-party setting, where each of the players gets a list of
labelled examples and they communicate in order to jointly perform some learning task. To
naturally fit into the framework of learning theory, we allow the players to send each other
labelled examples, where each example costs one unit of communication. This model can
also be thought of as a distributed version of sample compression schemes.

We study several fundamental questions in this model. For example, we define the ana-
logues of the complexity classes P, NP and coNP, and show that in this model P = NP∩coNP.
The proof does not seem to follow from the analogous statement in classical communication
complexity; in particular, our proof uses different techniques, including boosting and metric
properties of VC classes.

This framework allows to prove, in the context of distributed learning, unconditional
separations between various learning contexts, like realizable versus agnostic learning, and
proper versus improper learning. The proofs here are based on standard ideas from com-
munication complexity as well as learning theory and geometric constructions in Euclidean
space. As a corollary, we also obtain lower bounds that match the performance of algorithms
from previous works on distributed classification.
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1 Introduction

Communication complexity provides a basic and convenient framework for analyzing the
information flow in computational systems [Yao79]. As such, it has found applications
in various areas ranging from distributed systems, where communication is obviously a
fundamental resource, to seemingly disparate areas like data structures, game theory, linear
programming, extension complexity of polytopes, and many others (see e.g. [KN97] and
references within).

We introduce a distributed learning variant of this model, where two learners in separate
locations wish to jointly solve some learning problem. We consider communication protocols
in which each of the two parties, Alice and Bob, receives a sequence of labelled examples as
input, and their goal is to perform some learning task; for example, to agree on a function
with a small misclassification rate, or even to decide whether such a function exists in some
pre-specified class. Since we want our model to be applicable in general learning settings,
where the inputs do not necessarily have finite descriptions, we consider a transmission
of a single input example as an atomic unit of communication (we also allow “standard”
transmission of bits). The ability to send examples empowers the protocols, and makes
proving lower bounds more challenging.

The setting considered in this work can be thought of as an interactive/distributed variant
of sample compression schemes. Sample compression schemes are a well studied notion in
learning theory that was introduced in [LW86]. Within our framework, they correspond to
protocols in which only one party (say Alice) gets an input sample that is consistent with
some known-in-advanced hypothesis class, and her goal is to transmit as few examples as
possible to Bob in order for him to be able to reconstruct a target function that is consistent
with all of Alice’s input (including the examples she did not send him).

The study of our proposed model naturally leads to a combination of ideas from machine
learning and from communication complexity. In a nutshell, our lower bounds rely on
tools from communication complexity and our upper bounds rely on tools from machine
learning. Combined together, we get (unconditional) separations between different settings
of distributed learning, like realizable-case versus agnostic-case learning, and proper versus
non-proper learning (see Theorem 2 and Theorem 3).

This model also hosts communication problems that may be interesting in their own
right. For example, consider the following geometric variant of the set disjointness problem:
each of Alice and Bob gets as input n points in the plane, and their goal is to decide whether
the convex hull of Alice’s input is disjoint from the convex hull of Bob’s input. This problem
is one instance of a type of problems we term realizability problems, where the parties need
to decide whether their input examples are realizable by a given hypothesis class H. Unlike
the classical set disjointness problem, this variant can be efficiently solved, using geometry
and boosting methods. In fact, we give almost matching upper and lower bound1 of Θ̃(log n)
transmitted points for solving this planar convex set disjointness problem (we also consider
this problem in Rd for general d, but our bounds are not tight in terms of d). We note that
a variant of this problem in which the inputs are taken from a fixed finite set X, and the
goal is to decide whether the convex hulls intersect in a point from X was studied by [LS93].
This variant turns to be much harder; for example, if X is a set of n points on the unit circle
then it is equivalent to the standard set disjointness problem.

Algorithmic study of distributed learning has seen vast amount of research (a partial
list includes [AD12, DGSX12, AS15, SSZ14, SS14]). The model we introduce implicitly
appeared in these works, and some works even explicitly analyzed the number of trans-
mitted examples [IPSV12a, IPSV12b, BBFM12, CBC16]. For example, the distributed
boosting algorithm by [BBFM12] transmits O

(
d log(1/ε)

)
examples and learns any class

with VC dimension d in the realizable case. One of the results in the current work provides
a complementary lower bound of Ω̃

(
d + log(1/ε)

)
for the specific case of halfspaces in Rd

(see Theorem 1).

1In this work, we write Õ, Ω̃, Θ̃ to hide logarithmic factors; for example, f(n) ≤ Õ(g(n)) if there are constants
α, β > 0 so that f(n) ≤ αg(n) log(g(n)) + β for all n.
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2 Model and Main Results

2.1 Communication Model

We follow standard notation from machine learning (see e.g. the book [SSBD14]). Let X be
a domain, and let Z = X × {±1} be the examples domain. We denote by Z∗ =

⋃
nZn the

set of all samples. For a sample S ∈ Zn, we call n the size of S, and denote it by |S|.
We study communication protocols between two parties called Alice and Bob. Each

party receives a sample as an input. Alice’s input is denoted by Sa and Bob’s input by Sb.
Let S = 〈Sa;Sb〉 denote the joint sample that is obtained by concatenating Alice’s and Bob’s
samples. Similarly to other works in distributed learning we do not assume an underlying
distribution on samples (see [IPSV12b] and references within). Specifically, the sample S
can be adversarially distributed between Alice and Bob.

Communication Protocols. We focus on deterministic protocols which we define next.
Following [Yao79], we model a protocol Π by a rooted directed tree. Each internal node
v is owned by exactly one of the parties and each outgoing edge from v corresponds to an
example in Z in a one-to-one and onto fashion (so each internal node has out-degree |Z|).
Each internal node v is further associated with a function fv : Z∗ → Z with the restriction
that fv(S

′) ∈ S′ for every S′ ∈ Z∗. The value fv(S
′) is interpreted as the value that is

communicated on input S′ when the protocol reached state v. This restriction amounts to
that during the protocol each party may only send examples from her input sample.

Execution: Every pair of inputs Sa, Sb induces a selection of a unique outgoing edge for
every internal node: if v is owned by Alice then select the edge labelled by fv(Sa), and
similarly for Bob. This in turn defines a unique path from the root to a leaf.

Output: The leafs of the protocol are labelled by its outputs. Thus, the output of the
protocol on input Sa, Sb is the label of the leaf on the path corresponding to Sa, Sb.

Complexity: Let T : N→ N, we say that Π has sample complexity at most T if the length
of the path corresponding to an input sample S = 〈Sa;Sb〉 is at most T

(
|S|
)
.

Transmission of bits. We will often use hybrid protocols in which the parties also send bits
to each other. While we did not explicitly include this possibility in the above definition,
it can still be simulated within the defined framework: at the beginning of the protocol,
each of Alice and Bob publishes two examples, say za, z

′
a of Alice and zb, z

′
b of Bob. Then,

Alice encodes the 4 messages za, z
′
a, 0, 1 using a prefix free code of length 2 on the letters

za, z
′
a, and similarly Bob. Now, they can simulate any protocol that also uses bits with only

a constant blow-up in the sample complexity.
The problems we study can be naturally partitioned into search problems, and decision

problems. We next describe our main results, following this partition.

2.2 Search Problems

Search problem are natural in the context of learning theory and are concerned with finding
an optimal (or near optimal) hypothesis with respect to a given hypothesis class. In this
work, the output of a protocol solving a search problem is an hypothesis h. The objective
will generally be to minimize the number of mistakes h performs on the input samples
S = 〈Sa;Sb〉; that is, to minimize

LS(h) =
1

|S|
∑

(x,y)∈S

1[h(x) 6= y]. (1)

In this model, Alice can easily find a hypothesis ha ∈ H that minimizes LSa
(ha), and

similarly for Bob. The difficultly in solving the problem stems from that none of the players
knows all of S, and their goal is to find h with minimum LS(h) with least communication.

Let H be a hypothesis class and ε > 0 be the error parameter. The class H is said to
be learnable with sample complexity T = T (ε, n) if there is a protocol that for every input
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sample S = 〈Sa;Sb〉 of size n transmits at most T (ε, n) examples and outputs an hypothesis
h with

LS(h) ≤ min
f∈H

LS(f) + ε.

We distinguish between the realizable and the agnostic cases, and between proper and
improper protocols. We refer to the case when there exists h ∈ H with LS(h) = 0 as the
realizable case (in contrast to the agnostic case), and to the case when the output h always
belongs to H as the proper case (in contrast to the improper case).

Search Problems Main Results

We begin with lower bounds for the realizable case, which we first compare to known upper
bounds in the literature. It has been shown by several authors [BBFM12, IPSV12a] that
a distributed variant of Adaboost learns any class H in the realizable case with sample
complexity O(d log 1/ε), where d is its VC dimension of H.

Our first main result shows tightness of the aforementioned upper bound in terms of d
and ε separately.

Theorem 1 (Realizable case - lower bound). Let H be the class of halfspaces in Rd, d ≥ 2,
and ε ≤ 1/3. Then, any protocol that learns H in the realizable case has sample complexity
at least Ω̃(d+ log(1/ε)).

The lower bound in terms of d holds for every class H (not necessarily halfspaces), and
follows from standard generalization bounds derived from sample compression schemes. The
dependence in ε though, may be significantly smaller for different classes H. Indeed, one
can show that some simple classes such as the class of thresholds over R have protocols that
output a consistent hypothesis (namely ε = 0) with sample complexity O(1).

Deriving the lower bound in terms of ε relies on presenting a trade-off between the
number of rounds and the sample complexity. A more detailed examination of our proof
yields the following round-communication tradeoff: every protocol that learns the class of
halfplanes with ε error using at most r rounds must have sample complexity at least

Ω̃
( (1/ε)1/r

log(1/ε)
+ r
)
.

This matches an upper bound given by Theorem 10 in [BBFM12].
The proof of Theorem 1, which appears in Section 6.1, follows from a lower bound on

the realizability decision problem for halfplanes (i.e. Alice and Bob need to decide whether
there is a line separating the positive from the negative examples). The main challenge is
in dealing with protocols that learn the class of halfplanes in an improper manner; i.e. their
output is not necessarily a halfplane (the general boosting-based protocols of [BBFM12,
IPSV12a] are improper). The idea, in a nutshell, is to consider a promise variant of the
realizability problem in which Alice and Bob just need to distinguish between a realizable
sample S = 〈Sa;Sb〉, from a noisy one; that is, a sample so that there is x ∈ R2 such that
both (x, 1), (x,−1) are in S. In Section 3.3 we outline these arguments in more detail.

In the realizable and proper case, an exponentially larger lower bound holds (namely the
input sample is still realizable, but the protocol must output a hypothesis in the class):

Theorem 2 (Realizable & proper case - lower bound). There exists a class H with VC
dimension 1 such that every protocol that learns H properly has sample complexity of at
least Ω̃(1/ε). Moreover, this holds even if the input sample is realizable.

The proof, which appears in Section 6.2, implies an exponential separation between
proper and improper sample complexities for learning in the realizable case. The proof of
Theorem 2 follows from exhibiting a VC dimension 1 class for which Alice and Bob cannot
even decide whether their input is realizable, unless Ω̃(|S|) examples are transmitted. This
shows that in some cases improper learning is strictly easier than proper learning (the
boosting-based protocol of [BBFM12, IPSV12a] gives an upper bound of Õ(log 1/ε)).

We now move to the agnostic case. Namely, the input sample is no longer assumed
to be realizable, and the protocol (which is not assumed to be proper) needs to output a
hypothesis with error that is larger by at most ε than the error of the best f ∈ H.
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Theorem 3 (Agnostic case - lower bound). There exists a hypothesis class of VC dimen-
sion 1 such that every protocol that learns H in the agnostic case has sample complexity of
at least Ω̃ (1/ε).

The proof appears in Section 6.3. This theorem, together with the upper bounds in
[BBFM12, IPSV12a], implies an exponential separation (in terms of ε) between sample
complexities in the realizable case and the agnostic case. In fact, the class of VC dimension
1 used in the proof is the class of singleton over N. This particular class can be learned in the
realizable case using just O(1) examples (which is much faster than the general O(log 1/ε)
bound); if any of the parties get a 1-labelled example then she publishes it, and they output
the corresponding singleton; and otherwise they output the function which is constantly −1.

We also observe that in the agnostic case there is a non-trivial upper bound:

Theorem 4 (Agnostic case - upper bound). Every class H is learnable in the agnostic case

with sample complexity Õd
(
(1/ε)2− 2

d+1 +log n
)

where d is the VC dimension of H, and Õd(·)
hides a constant that depends on d.

The proof, which is given in Section 6.4, is based on the notion of ε-approximation and
uses a result due to [MWW93]. The above bound beats the standard O(d/ε2 + log n) upper
bound which follows from the statistical agnostic sample complexity, and can be derived as
follows: Alice and Bob sample O(d/ε2) examples from S = 〈Sa;Sb〉 and output h ∈ H with
minimal error on the published examples. The extra log n bits come from exchanging the
sizes |Sa|, |Sb|, in order to sample uniformly from S.

A relevant remark is that if one relaxes the learning requirement by allowing the output
hypothesis h a slack of the form

LS(h) ≤ c ·min
f∈H

LS(f) + ε,

where c is a universal constant then the logarithmic dependence on 1/ε from the realizable
case can be restored; The work of [CBC16] implies that for every c > 4 such a protocol exists

with sample complexity O(d log(1/ε)
c−4 ). We do not know what is the general correct tradeoff

between c, ε, d in this case (see discussion in Section 4.3).

Proper learning with sub-linear sample complexity. Given the Ω̃(1/ε) lower bound for
proper learning in the realizable setting, it is natural to ask which classes H can be properly
learnt with sublinear sample complexity o(1/ε). We address this question in the next section
where we characterize the classes for which one can efficiently decide the corresponding
realizability problem (see Theorem 10). It turns out that (under mild assumptions) every
class H is properly learnable with sublinear sample complexity if and only if there is an
efficient protocol for the corresponding realizability problem.

2.3 Decision Problems

A natural decision problem in the context of distributed learning is the realizability problem.
In this problem, Alice and Bob are given input samples Sa, Sb and they need to decide
whether there exists h ∈ H such that LS(h) = 0 where S = 〈Sa;Sb〉.

As a benchmark example, consider the case where H is the class of halfspaces. If we
further assume that Alice receives positively labelled points and Bob receives negatively
labelled points, then the problem becomes the convex set disjointness problem where Alice
and Bob need to decide if the convex hulls of their inputs intersect.

Complexity Classes. With analogy to communication complexity theory in Yao’s model,
we define the complexity classes P,NP, and coNP for realizability problems. Roughly speak-
ing, the class H is in P if there is an efficient protocol (in terms of sample complexity) for the
realizability problem over H, it is in NP if there is a short proof that certifies realizability,
and it is in coNP if there is a short proof that certifies non realizability.

Let T denote an N→ N function. We say that H has sample complexity at most T , and
write DH(n) ≤ T (n), if there exists a protocol with sample complexity at most T (n) that
decides the realizability problem for H, where n is the size of the input samples.

4



Definition 1 (The class P). The class H is in P if DH(n) ≤ poly(log n).

We say the H has non-deterministic sample complexity at most T , and write Nnp
H (n) ≤

T (n), if there exist predicates A,B : Z∗ ×Z∗ → {True,False} such that:

1. For every realizable sample S = 〈Sa;Sb〉 ∈ Zn there exists a proof P ∈ ST (n) such
that A(Sa, P ) = B(Sb, P ) = True.

2. For every non realizable sample S = 〈Sa;Sb〉 ∈ Zn and for every proof P ∈ ZT (n)

either A(Sa, P ) = False or B(Sb, P ) = False.

Intuitively, this means that if S is realizable then there is a subsample of it of length T (n)
that proves it, but if it is not then no sample of size T (n) can prove it.

Definition 2 (The class NP). The class H is in NP if Nnp
H (n) ≤ poly(log n).

The co-non-deterministic sample complexity N conp
H of H is defined similarly, interchang-

ing the roles of realizable and non-realizable samples. Unlike the typical relation between NP
and coNP, where the co-non-deterministic complexity of a function f is the non-deterministic
complexity of another function, namely ¬f , in this setting N conp

H is not Nnp
H′ of another class

H′.

Definition 3 (The class coNP). The class H is in coNP if N conp
H (n) ≤ poly(log n).

VC and coVC Dimensions. We next define combinatorial notions that (almost) charac-
terize the complexity classes defined above.

Recall that the VC dimension of H is the size of the largest set R ⊆ X that is shattered
by H; namely every sample S with sample points in R is realizable by H. As we will later
see, every class that is in NP has a bounded VC dimension.

We next introduce a complementary notion, which will turn out to fully character-
ize coNP.

Definition 4 (coVC dimension). The coVC dimension of H is the smallest integer k such
that every non realizable sample has a non realizable subsample of size at most k.

A non realizable subsample serves as a proof for non realizability. Thus small coVC
dimension implies small coNP sample complexity. It turns out that the converse also holds
(see Theorem 7).

The VC and coVC dimensions are, in general, uncomparable. Indeed, there are classes
with VC dimension 1 and arbitrarily large coVC dimension and vice versa. An example of
the first type is the class of singletons over [n] = {1, . . . , n}; its VC dimension is 1 and its
coVC dimension is n as witnessed by the sample that is constantly −1. An example of the
second type is the class {h : [n] → {±1} : ∀i ≥ n/2 h(i) = −1} that has VC dimension
n/2 and coVC dimension 1; any non realizable sample must contain an example (i, 1) with
i ≥ n/2, which is already not realizable.

For the class of halfspaces in Rd, both dimensions are roughly the same (up to constant
factors). It is a known fact that its VC dimension is d+ 1, and for the coVC dimension we
have:

Example 1. The coVC dimension of the class of halfspaces in Rd is at most 2d+ 2.

This follows directly from Carathéodory’s theorem. Indeed, let S be a non realizable
sample and denote by S+ the positively labelled set and S− the negatively labelled set.
Since S is not realizable, the convex hulls of S+, S− intersect. Let x be a point in the
intersection. By Carathéodory’s theorem, x lies in the convex hull of some d + 1 positive
points and in the convex hull of some d + 1 negative points. Joining these points together
gives a non realizable sample of size 2d+ 2.

Decision Problems Main Results

Our first main result characterizes the class P in terms of the VC and coVC dimensions,
and shows that P = NP ∩ coNP in this context.

Theorem 5 (A Characterization of P). The following statements are equivalent for a hy-
pothesis class H:

5



(i) H is in P.

(ii) H is in NP ∩ coNP.

(iii) H has a finite VC dimension and a finite coVC dimension.

(iv) There exists a protocol for the realizability problem for H with sample complexity
Õ(dk2 log |S|) where d = VC-dim(H) and k = coVC-dim(H).

The proof and the protocol in Item iv appear in Section 7.3. The proof of the theorem
reveals an interesting dichotomy: for every classH, the sample complexity of the realizability
problem over H is either O(log n) or at least Ω̃(n); there are no problems of “intermediate”
complexity.

The theorem specifically implies that halfspaces in Rd are in P since both the VC and
coVC dimensions are O(d). It also implies as a corollary that the convex set disjointness
problem can be decided by sending at most Õ(d3 log n) points.

The proof of Theorem 5 is divided to two parts. One part shows that if the VC and coVC
dimensions are large then the NP and coNP complexities are high as well (see Theorem 6
and Theorem 7 below). The other part shows that if both the VC and coVC dimensions
are small then the realizability problem can be decided efficiently. This involves a carefully
tailored variant of boosting, which we outline in Section 3.1.

The equivalence between the first two items shows that P = NP ∩ coNP. This means
that whenever there are short certificates for the realizability and non realizability then
there is also an efficient protocol that decides it. An analogous equivalence in Yao’s model
was established by [AUY83]. We compare these results in more detail in Section 4.1.

The following two theorems give lower bounds on the sample complexity in terms of
VC-dim and coVC-dim.

Theorem 6 (“VC-dim ≤ NP”). For every class H with VC dimension d ∈ N ∪ {∞},

Nnp
H (n) = Ω̃(min(d, n)).

Theorem 7 (“coVC-dim = coNP”). For every class H with coVC dimension k ∈ N ∪ {∞},

N conp
H (n) = Θ̃(min(k, n)).

The proofs of the theorems appear in Section 7.1 and Section 7.2. Theorem 7 gives
a characterization of coNP in terms of coVC-dim, while Theorem 6 only gives one of the
directions. It remains open whether the other direction also holds for NP.

The next theorem shows that also the log |S| dependence in Theorem 5 is necessary.
Specifically, it is necessary for the class of halfplanes. We note that both the NP and the
coNP sample complexities of this class are constants (at most 4).

Theorem 8 (Realizability problem – lower bound). Any protocol that decides the realizabil-
ity problem for the class of halfplanes in R2 must have sample complexity at least Ω̃(log n)
for samples of size n.

Theorem 8 is implied by Theorem 15, which is a stronger result that we discuss in
Section 7.4. Theorem 15 concerns a promise variant of the realizability problem and also
plays a crucial role in the derivation of Theorem 1. In Section 3.3 we overview the arguments
used in the derivation of these results.

We next state a compactness result that enables transforming bounds from Yao’s model
to our model and vice versa. A natural approach of studying the realizability problem in
Yao’s model is by “discretizing” the domain; more specifically, fix a finite set R ⊆ X , and
consider the realizability problem with respect to restricted class H|R = {h|R : h ∈ H}. This
restricted problem is well defined in Yao’s model, since every example (x, y) can be encoded
using at most 2 + log |R| bits. Using this approach, one can study the realizability problem
with respect to the bigger class H, in a non-uniform way, by taking into consideration
the dependence on |R|. As the next result shows, the class P does not change under this
alternative approach:

Theorem 9 (Compactness for P). Let H be a hypothesis class over a domain X . Then, the
following statements are equivalent.
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(i) H is in P.

(ii) For every finite R ⊆ X there is a protocol that decides the realizability problem for H|R
with sample complexity at most c · log(n) for inputs of size n, where c is a constant
depending only on H.

(iii) For every finite R ⊆ X there is an efficient protocol that decides the realizability
problem for H|R in Yao’s model with bit complexity at most c · logm|R|, where c and
m are constants depending only on H.

The proof of Theorem 9 appears in Section 7.5. A similar result holds for coNP — this
follows from Theorem 7. We do not know whether such a result holds for NP.

Proper learning. We next address the connection between the realizability problem —
the task of deciding whether the input is consistent with H, and proper learning in the
realizable case — the task of finding a consistent h ∈ H. For this we introduce the following
definition. A class H is closed2 if for every h /∈ H there is a finite sample S that is consistent
with h and is not realizable by H. Note that every class H can be extended to a class H̄
that is closed and has the same VC and coVC dimensions (by adding to H̄ all h /∈ H that
do not satisfy the requirement). The classes H̄ and H are indistinguishable with respect to
any finite sample. That is, a finite sample S is realizable by H if and only if it is realizable
by H̄.

Theorem 10 (Proper learning – characterization). Let H be a closed class with d =
VC-dim(H) and k = coVC-dim(H). If H ∈ P then it is properly learnable in the realizable
case with sample complexity Õ(dk2 log(1/ε)). If H is not in P, then the sample complexity
for properly learning H in the realizable setting is at least Ω̃(1/ε).

We do not know whether Theorem 10 can be extended to non-closed classes. However, it
does extend under other natural restrictions. For example, it applies when X is countable,
even when H is not closed. For a more detailed discussion see Section 7.3.

3 Proof Techniques Overview

In this section we give a high level overview of the main proof techniques.
In Section 3.1 we give a simplified version of the protocol for the realizability problem,

which is a main ingredient in the proof of Theorem 5. This simplified version solves the
special instance of convex set disjointness, and highlights the ideas used in the general case.

In Section 3.2 we briefly overview the set disjointness problem from Yao’s model, which
serves as a tool for deriving lower bounds. For example, it is used in the bound for agnostic
learning in Theorem 3 and the bound for proper learning in Theorem 2. Set disjointness also
plays a central role in relating the non-deterministic complexities with the VC and coVC
dimensions (Theorem 6 and Theorem 7).

In Section 3.3 we overview the construction of the hard instances for the convex set
disjointness problem, which is used in the lower bounds for the realizability problem and
in Theorem 8. We also discuss the implication of the construction for the lower bound for
learning in the realizable case (Theorem 1).

3.1 A Protocol for the Realizability Problem

To get a flavor of the arguments used in the proof of Theorem 5, we exhibit a protocol for
convex set disjointness, which is a special instance of the NP ∩ coNP ⊆ P direction. Recall
that in the convex set disjointness problem, Alice and Bob get as inputs two sets X,Y ⊆ Rd
of size n, and they need to decide whether the convex hulls of X,Y intersect.

We can think of the protocol as simulating a boosting algorithm (see Figure 1). It
proceeds in T rounds, where at round t, Alice maintains a probability distribution pt on X,
and requests a weak hypothesis for it. Bob serves as a weak learner and provides Alice a
weak hypothesis ht for pt.

2This is consistent with the topological notion of a closed set: if one endows {±1}X with the product topology
then this definition agrees with H ⊆ {±1}X being closed in the topological sense.
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Protocol for convex set disjointness

Input: Let X,Y ⊂ Rd denote Alice’s and Bob’s inputs.

Protocol:

• Let ε = 1
100d and n = |X|+ |Y |.

• Alice sets W0(x) = 1 for each x ∈ X.

• For t = 1, . . . , T = 2(d+ 1) log n

1. Alice sends Bob an ε-net Ni ⊆ X with respect to the distribution pt(x) =
Wt−1(x)∑
x Wt−1(x)

.

2. Bob checks whether the convex hulls of Y and Nt have a common point.

3. If they do, Bob reports it and outputs INTERSECTION.

4. Else, Bob sends Alice the d + 1 support vectors from Nt ∪ Y that encode a
hyperplane ht that separates Y from Nt.

5. Alice sets Wt(x) = Wt−1(x)/2 if x is separated from Y by ht and Wt(x) =
Wt−1(x) otherwise.

• Output DISJOINT.

Figure 1: A Õ(d3 log n) sample complexity protocol for convex set disjointness

The first obstacle is that to naively simulate this protocol, Alice would need to transmit
pt, which is a probability distribution, and Bob would need to transmit ht, which is an
hypothesis, and it is not clear how to achieve this with efficient communication complexity.

Our solution is as follows. At each round t, Alice draws an 1
100d–net with respect to

pt and transmits it to Bob. Here, an ε-net is a subset Nt of Alice’s points satisfying that
every halfspace that contains an ε fraction of Alice’s points with respect to pt must contain
a point in Nt. Bob in turn checks whether the convex hulls of Nt and Y intersect. If they do
then clearly the convex hulls of X,Y intersect and we are done. Otherwise, Bob sends Alice
a hyperplane ht that separates Y from Nt. One way of sending ht is by the d + 1 support
vectors3. The crucial point is that, by the ε-net property, this hyperplane separates Y from
a 1− 1

100d fraction of X with respect to pt.
Why does this protocol succeeds? The interesting case is when the protocol continues

successfully for all of the T iterations. The challenge is to show that in this case the convex
hulls must be disjoint. The main observation that allows us to argue that is the following
corollary of Carathéodory’s theorem:

Observation 1. If every point from X is separated from Y by more than
(
1− 1

d+1

)
-fraction

of the ht’s then the convex hulls of X and Y are disjoint.

Proof. First, we claim that every d + 1 points from X are separated from Y by one of the
ht’s. Indeed, every point in X is not separated by less than 1

d+1 -fraction of the ht’s. Now,
a union bound yields that indeed any d+ 1 points from X are separated from Y by one of
the ht’s.

Now, this implies that conv(X) ∩ conv(Y ) = ∅: by contraposition, if ω ∈ conv(X) ∩
conv(Y ) then by Carathéodory’s theorem ω is in the convex hull of d + 1 points from X.
Hence these d+ 1 points can not be separated from Y .

3This is a subset of Nt ∪ Y that encodes a separator of Nt and Y with maximal margin. Note that formally,
Bob cannot send points from Nt however, since Alice already sent Nt and so this can be handled using additional
bits of communication.
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It remains to explain why the property holds when the protocol continues for T iterations.
It relies on the so-called margin effect of boosting algorithms [SFBL97]: the basic result for
the Adaboost algorithm states, in the language of this problem, that after enough iterations,
every x ∈ X will be separated from Y by a majority of the ht’s. The margin effect refers to
a stronger fact that this fraction of ht’s increases when the number of iterations increases.
Our choice of T guarantees that every x ∈ X is separated by more than a 1− 1

d+1 fraction
of the ht’s (see Lemma 2), as needed. To conclude, if T iterations have passed without Bob
reporting an intersection, then the convex hulls are disjoint.

Finally, we would also like to show how, given the output, we can calculate a separating
hyperplane. Here for simplicity of the exposition we show how Alice can calculate the
hyperplane, then she may transmit it by sending appropriate support vectors.

Since each hyperplane ht was chosen so that Y is contained in one of its sides, it follows
that Bob’s set is contained in the intersection of all of these halfspaces. We denote this
intersection by K+. The same argument we used above shows that K+ is disjoint from
Alice’s convex hull (because every point of Alice is separated from K+ by more than a
1− 1

d+1 fraction of the ht’s). Therefore, Alice, who knows both K+ and X, can calculate a
separating hyperplane.

The protocol that is used in the proof of Theorem 10 goes along similar lines. Roughly
speaking, the coVC dimension replaces the role of Carathéodory’s theorem, and the VC
dimension enables the existence of the ε-nets. Because in general we cannot rely on support
vectors, the general protocol we run is symmetrical, where both Alice and Bob transmit
points to decide on a joint weak hypothesis for both samples.

3.2 Set Disjointness

A common theme for deriving lower bounds in Yao’s communication model and related
models is via reductions to the set disjointness problem. In the set disjointness problem,
we consider the boolean function DISJn(x, y), which is defined on inputs x, y ∈ {0, 1}n
and equals 1 if and only if the sets indicated by x, y are disjoint (namely, either xi = 0 or
yi = 0 for all i). A classical result in communication complexity gives a lower bound for the
communication complexity of DISJn.

Theorem 11 ([KS92, Raz92, KN97]).

1. The deterministic and non-deterministic communication complexities of DISJn are at
least Ω(n).

2. The randomized communication complexity of DISJn is Ω(n).

3. The co-non-deterministic communication complexity of DISJn is at most O(log n).

Though our model allows more expressive communication protocols, the set disjointness
problem remains a powerful tool for deriving limitations in decision as well as search prob-
lems. In particular, we use it in deriving the separation between agnostic and realizable
learning (Theorem 3), and the lower bounds on the NP and coNP sample complexities in
terms of the VC and coVC dimensions (Theorem 6 and Theorem 7).

To get the flavor of how these reductions work, we illustrate how membership of a
class in NP implies that it has a finite VC dimension through set disjointness. The crucial
observation is that given a shattered set R of size d, a sample S with points from R is
realizable if and only if it does not contain the same point with different labelings. We
use this to show that a “short proof” of realizability of such samples imply a short NP
proof for DISJd. The argument proceeds by identifying x, y ∈ {0, 1}d with samples SX , SY
negatively and positively labelled respectively. With this identification, x, y are disjoint if
and only the joint sample 〈SX ;SY 〉 is realizable. Now, since all the examples are from R,
a proof with k examples that 〈SX ;SY 〉 is realizable can be encoded using k log d bits and
can serve as a proof that x, y are disjoint in Yao’s model. Theorem 11 now implies that the
non-determinstic sample complexity is k ≥ Ω(d/ log d).

3.3 Convex Set Disjointness

Here we outline our construction that is used in Theorem 1 and Theorem 8. The underlying
hardness stems from the convex set disjointness problem, where each of Alice and Bob gets a
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subset of n points in the plane and they need to determine whether the two convex hulls are
disjoint. In what follows we state our main result for the convex set disjointness problem,
and briefly overview the proof. However, we first discuss how it is used to derive the lower
bound in Theorem 1 for learning in the realizable setting.

From Decision Problems to Search problems. A natural approach to derive lower
bounds for search problems is via lower bounds for corresponding decision problems. For
example, in order to show that no proper learning protocol of sample complexity T (1/ε) for a
class H exists, it suffices to show that the realizability problem for H can not be decided with
sample complexity O(T (n)). Indeed, one can decide the realizability problem by plugging
ε < 1/n in the proper learning protocol, simulating it on an input sample S = 〈Sa;Sb〉, and
observing that the output hypothesis h satisfies LS(h) = 0 if and only if S is realizable.
Checking whether LS(h) = 0 can be done with just two bits of communication.

The picture is more complicated if we want to prove lower bounds against improper
protocols, which may output h /∈ H (like in Theorem 1). To achieve this, we consider a
promise-variant of the realizability problem. Specifically, we show that it is hard to decide
realizability, even under the promise that the input sample is either (i) realizable or (ii)
contains a point with two opposite labeling. The crucial observation is that any (possibly
improper) learner with ε < 1

n can be used to distinguish between case (i), for which the
learner outputs h with LS(h) = 0, and case (ii), for which any h has Ls(h) ≥ 1/n, where n
is the input sample size.

Main Lemma and Proof Outline. The above promise problem is stated as follows in
the language of convex set disjointness.

Lemma 1 (Convex set disjointness lower bound). Consider the convex set disjointness
problem in R2, where Alice’s input is denoted by A, Bob’s input is denoted by B, and both
|A|, |B| are at most n. Then any communication protocol with the following properties must
have sample complexity at least Ω̃(log n).

(i) Whenever conv(A) ∩ conv(B) = ∅ it outputs 1.

(ii) Whenever A ∩B 6= ∅ it outputs 0.

(iii) It may output anything in the remaining cases.

We next try to sketch the high level idea of the proof (so we try to focus on the main
ideas rather than on delicate calculations). The complete proof is somewhat involved and
appears in Section 8.

Like in our other lower bounds, we reduce the proof to a corresponding problem in Yao’s
model. A challenge that guides the proof is that the lower bound should apply against
protocols that may send examples, which contain a large number of bits (in Yao’s model).
Note that in contrast with previous lower bounds, we aim at showing an Ω(log n) bound,
which roughly corresponds to the bit capacity of each example in a set of size n. Thus, a
trivial lower bound showing log n bits are necessary may not suffice to bound the sample
complexity. This is handled by deriving a round-communication tradeoff, which says that
every r-rounds protocol for this problem has complexity of at least Ω̃(r+n1/r). This means
that any efficient protocol must have many rounds, and thus yields Lemma 1.

The derivation of this tradeoff involves embedding a variant of “pointer chasing” in
the Euclidean plane (see [PS84, NW93] for the original variant of pointer chasing). The
hard input-instances are built via a recursive construction (that allows to encode tree-like
structures in the plane).

For integers m, r > 0 we produce a distribution over inputs Im,r = (Am,r, Bm,r) of size
n ≈ mr. We then show that a random input from Im,r cannot be solved in fewer than r
rounds, each with sample complexity less than m (the exact bounds are not quite as good).

For m = r = 1, we set Am,r = {(0, 0)} and Bm,r randomly either {(0, 0)} or ∅. If there is
only one round in which Alice speaks, then she cannot determine whether or not their sets
intersect and therefore must err with probability 1/2. For r > 1, we take m points spaced
around a semicircle (an example with m = 3 is shown in Figure 2). Around each point we
have a dilated, transposed and player swapped copy of Im,r−1. Alice’s set is the union of
the copies of points of the form Bm,r−1 in all of the m copies, while Bob’s set are points of
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Figure 2: Examples of separable instances I3,1, I3,2, I3,3. In each instance, Alice’s
points are red and Bob’s points are blue. In I3,1 Alice has a single point, and Bob
an empty set. In I3,2, Alice receives three instances of a Bob’s points in I3,1 (the
first and last instances are a point and the middle instance is an empty set), and
Bob receives a single instance (a single point). These are then embedded around
3 points on the sphere. This construction continues to I3,3 where again roles are
reversed. To maintain separability, the instances are rotated in the plane.

the form Am,r−1 in a single copy i chosen at random. We rotate and squish the points so
that any separator of the Bob’s points from the i’th copy of Bm,r−1 that Alice holds, will
also separate Bob’s points from the rest of Alice’s points. This guarantees that all of Alice’s
copies except the i’th one will not affect whether or not the convex hulls intersect, which
means that to solve Im,r they must solve a single random copy of Im,r−1.

The proof now proceeds via a round elimination argument. We can think of Alice’s set
as consisting of m instances of a small problem (with parameter r − 1) and Bob’s set as
consisting of a single instance of Alice’s, chosen uniformly and independently of other choices
(represented by i). Alice’s and Bob’s convex hulls overlap if and only if the convex hulls of
the copies that correspond to the single instance that Bob holds overlap. Thus, assuming
Alice speaks first, since she does not know i, her message will provide negligible information
on the i’th copy, unless her message is long. This is formalized using information theory in
a rather standard way.

4 Discussion and Future Research

4.1 P = NP ∩ coNP for Realizability Problems

Theorem 5 states that P = NP∩coNP in the context of realizability problems. An analogous
result is known to hold in standard communication complexity as well [AUY83]; this result
is more general than ours in the sense that it applies to arbitrary decision problems, while
Theorem 5 only concerns realizability problems.

It is natural to ask how these two results are related, and whether there is some underlying
principle that explains them both. While we do not have a full answer, we wish to highlight
some differences between the two theorems.

First, the proofs are quite different. The proof by [AUY83] is purely combinatorial and
relies on analyzing coverings of the input space by monochromatic rectangles. Our proof of
Theorem 5 uses fractional combinatorics; in particular it is based on linear programming
duality and multiplicative weights update regret bounds.

Second, the theorem from [AUY83] gives a protocol with bit-complexity O(N0 · N1),
where N0, N1 are the non–deterministic complexities. Theorem 5 however gives a protocol
with sample complexity Õ(S2

0S1 log n), where S0, S1 are the non–deterministic sample com-
plexities, and n is the input size. The former bound is also symmetric in N0, N1 while the
latter bound is not symmetric in S0, S1. This difference may be related to that while the
negation of a decision problem is a decision problem, there is a no clear symmetry between
a realizability problem and its negation (i.e. the negation is not a realizability problem with
respect to another class).
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4.2 Sample Compression Schemes as One-Sided Protocols

Sample compression schemes were introduced by [LW86] as a convenient framework for
proving generalization bounds for classification problems, and were studied by many works
(a partial list includes [FW95, BL98, LS13, GKN14, BDM+14, MSWY15, WE15, BU16,
KSW17, ABM17]) In our model, they correspond to one-sided protocols where only one
party receives a realizable input sample S (the other party’s input is empty), and the goal is
to transmit as few example as possible so that the receiving party can output a hypothesis
that is consistent with all the input sample. The size of a sample compression scheme is the
number of transmitted examples.

Thus, a possible way to view our model is as distributed sample compression schemes
(i.e. the input sample is distributed between the two parties). With this point of view,
Theorem 1 implies that every distributed sample compression scheme for halfplanes must
have size Ω̃(log n); in particular, the size must depend on the input sample size. This exhibits
a difference with (standard, one-sided) sample compression schemes for which it is known
that every class has a compression scheme of size depending only on the VC dimension of the
class [MY16]; specifically, halfplanes have compression schemes of size 3 (using the support
vectors), but Theorem 1 implies that every distributed sample compression scheme for them
must have size Ω̃(log n).

4.3 Open Questions

The complexity of convex set disjointness. There is a gap between our upper bound
and lower bound on the sample complexity of the convex set disjointness problem; Õ(d3 log n)
versus Ω̃(d + logn) by Theorem 5 and Theorem 1. More generally, it would be interesting
to obtain tight bounds for proper learning of classes with finite VC and coVC dimensions.

Combinatorial characterizations of NP. Theorems 5 and 7 give a combinatorial char-
acterization of P and coNP. Indeed, Theorem 5 shows that H is in P if and only if it has
finite VC and coVC dimensions, and Theorem 7 shows that H is in coNP if and only if it
has a finite coVC dimension.

It would be interesting to find such a characterization for the class NP as well. Theorem 6
implies that every class in NP has a finite VC dimension — the converse remains open.

A related open problem is the existence of proper sample compression schemes. Indeed,
the existence of proper compression scheme of polylogarithmic sample size will entail that
every VC class is in NP.

Agnostic learning. Theorem 4 shows that every VC class can be learned in the agnostic
case with sample complexity o(1/ε2). However, this is still far from the lower bound given
in Theorem 3 of Ω̃(1/ε). It would be interesting to find the correct dependency.

The protocol from Theorem 4 reveals much more information than required. Indeed, the
subsample published by the parties forms an ε-approximation, and therefore reveals, up to
±ε the losses of all hypotheses in H, rather than just the minimizer. Also, the protocol uses
just one round of communication. Therefore, it is plausible that the bound in Theorem 4
can be improved.

Another interesting direction concerns relaxing the definition of agnostic learning by
allowing a multiplicative slack. Let c ≥ 1 be a constant. We say that a protocol c-
agnostically learns H if for every input sample S = 〈Sa;Sb〉 it outputs h such that LS(h) ≤
c · minf∈H LS(f) + ε. What is the sample complexity of c-agnostically learning a class of
VC dimension d? As mentioned above, for c > 4 the sample complexity is O(d log(1/ε)) by
[CBC16], and for c = 1 it is Ω̃(1/ε) by Theorem 3.

Learning (noiseless) concepts. Our lower bounds rely on hard input samples that are
noisy in the sense that they contain a point with opposite labels. It would be interesting to
study the case where the input sample is guaranteed to be consistent with some hypothesis h
(not necessarily in H). As a simple example let Hd be the class of all concepts with at most
d many 1’s. Since the VC dimension of H is d, it follows that deciding the realizability
problem for H has Ω̃(d) sample complexity. However, if the input sample is promised to
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be noiseless then there is an O(log d) protocol for deciding realizability problem. Indeed,
the parties just need to check whether the total number of 1’s in both input samples is at
most d or not.

Similarly, our lower bound in the agnostic case uses noisy samples, and it could be that
agnostic learning is easier for noiseless input. Let H be a class with a finite VC dimension.
Consider the problem of agnostically learning under the promise that the input sample is
consistent with some target function. Is there a learning protocol in this case with sample
complexity o(1/ε)?

Multiclass categorization. The model presented here naturally extends to multiclass
categorization, which concerns hypotheses h : X → Y for large Y . Some of the arguments
in this paper naturally generalize, while others less so. For example it is no longer clear
whether P = NP ∩ coNP when the range Y is very large (say Y = N).
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5 Technical Background

5.1 Boosting and Multiplicative Weights

Our communication protocols in the realizable setting are based on the seminal Adaboost
algorithm [FS97], which we briefly outline next. The simplified version of Adaboost we
apply here may be found in [SF12].

Adaboost gets as an input a sample S and outputs a classifier. It has an oracle access to
an α-weak learner. This oracle gets as input a distribution p over S and returns a hypothesis
h = h(p) that has an advantage of at least α over a random guess, namely:

E(x,y)∼p [1[h(x) 6= y]] ≤ 1

2
− α.

Adaboost proceeds in rounds t = 1, 2, . . . , T . In each round it calls the weak learner with
a distribution pt and receives back a hypothesis ht. Its output hypothesis is the point-
wise majority vote of all the ht’s. To complete the description of Adaboost, it remains to
describe how the pt’s are defined: p1 is the uniform distribution over S, and for every t > 1
and z = (x, y) ∈ S we define by induction:

pt+1(z) ∝ pt(z)e−η·1[ht(x)=y]

where η is a parameter of choice.
Thus, pt+1 is derived from pt by decreasing the probabilities of examples on which ht is

correct and increasing the probabilities of examples where ht is incorrect.
The standard regret bound analysis of boosting yields

Theorem 12 ([FS97]). Set the parameter η in Adaboost to be α. Let ε > 0 and let T ≥
2 ln(1/ε)
α2 . Let h1, . . . , hT denote the weak hypotheses returned by an arbitrary α–weak learner

during the execution of Adaboost. Then, there is S′ ⊆ S of size |S′| ≥ (1 − ε)|S| such that
for every (x, y) ∈ S′:

1

T

T∑
t=1

1[ht(x) 6= y] < 1/2.

In other words, after O
(
log(1/ε)/α2

)
rounds LS(h) ≤ ε, where h denotes the majority

vote of the ht’s. In particular, LS(h) = 0 after T = O
(
log(|S|)/α2

)
rounds.

By a simple extension to the standard boosting analysis, it is well known that adding
sufficiently many rounds, even after the error rate is zero, leads to a super-majority of the
hypotheses to become correct on every point in the sample. Using a more refined analysis,
one can improve the convergence rate for sufficiently strong learners and, for completeness,
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we perform this in the next lemma (see also [SF12] and the analysis of α-boost for similar
bounds).

Lemma 2. Set the parameter η in Adaboost to be ln 2. Let T ≥ 2k log |S| for k > 0, and
have h1, . . . , hT denote the weak hypotheses returned by an arbitrary α-weak learner with
α = 1

2 −
1
5k during the execution of Adaboost. Then, for every z = (x, y) ∈ S:

1

T

T∑
t=1

1[ht(x) 6= y] ≤ 1

k
.

Proof. For each z ∈ S set W1(z) = 1 and, for each t > 1, set

Wt+1(z) = Wt(z)2
−1[ht(x)=y].

By choice of η and the update rule we have that pt(z) = Wt(z)
Φt

, where Φt =
∑
z∈SWt(z).

Next, since ht is α–weak with respect to pt we have that
∑
ht(x)6=y pt(z) ≤

1
5k . Thus:

Φt+1 =
∑

{z∈S:ht(x)=y}

Wt+1(z) +
∑

{z∈S:ht(x) 6=y}

Wt+1(z)

=
∑

{z∈S:ht(x)=y}

1

2
Wt(z) +

∑
{z∈S:ht(x) 6=y}

Wt(z)

= Φt ·

 ∑
{ht(x)=y}

1

2

Wt(z)∑
z∈SWt(z)

+
∑

{ht(x) 6=y}

Wt(z)∑
z∈SWt(z)

 (
Φt =

∑
z∈S

Wt(z)

)

= Φt ·

 ∑
{z∈S:ht(x)=y}

1

2
pt(z) +

∑
{z∈S:ht(x)6=y}

pt(z)

 (
pt(z) =

Wt(z)∑
z∈SWt(z)

)

= Φt ·

∑
z∈S

1

2
pt(z) +

∑
{z∈S:ht(x)6=y}

1

2
pt(z)


≤ Φt

2
·
(

1 +
1

5k

)  ∑
{ht(x)6=y}

pt(z) ≤ 1/(5k)


≤ Φt · 2−1+1/(2k).

(
1 + 1/(5k) ≤ 21/(2k)

)
By recursion, we then obtain ΦT ≤ |S|2−T (1−1/(2k)). Thus, for every z = (x, y) ∈ S,

|S|2−T (1−1/(2k)) ≥ ΦT > WT (z) = 2−
∑

t 1[ht(x)=y].

Taking log and dividing by T we obtain

log |S|
T

+
1

2k
− 1 > − 1

T

T∑
t=1

1[ht(x) = y]

= −(1− 1

T

T∑
t=1

1[ht(x) 6= y])

Rearranging the above and setting T = 2k log |S| we obtain the desired result.

5.2 ε-nets and ε-approximations

We use standard results from VC theory and discrepancy theory. Throughout this section
if p is a distribution over a sample S, then we let Lp(h) := Ez∼p 1[h(x) 6= y] denote the
expected error of a hypothesis h w.r.t distribution p. In the realizable setting we use the
following ε-net Theorem.
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Theorem 13 ([HW87]). Let H be a class of VC dimension d and let S be a realizable

sample. For every distribution p over S there exists a subsample S′ of S of size O
(d log(1/ε)

ε

)
such that

∀h ∈ H : LS′(h) = 0 =⇒ Lp(h) ≤ ε.

In the agnostic setting we use the stronger notion of ε-approximation. The seminal uni-
form convergence bound due to Vapnik and Chervonenkis [VC71] states that for every class
H with VC-dim(H) = d, and for every distribution p over examples, a typical sample S
of O(d/ε2) indepenent examples from p satisfies that ∀h ∈ H : |LS(h) − Lp(h)| ≤ ε. This
result is tight when S is random, however, it can be improved if S is constructed systemat-
ically:

Theorem 14 ([MWW93]). Let H be a class of VC dimension d and let S be a sample. For

every distribution p over S there exists a subsample S′ of size Od
(
(1/ε)2− 2

d+1 (log(1/ε))2− 1
d+1
)

such that
∀h ∈ H : |LS(h)− Lp(h)| ≤ ε,

where Od(·) hides a constant that depends on d.

6 Search Problems: Proofs

6.1 Proof of Theorem 1

Theorem 1 (Realizable case - lower bound). Let H be the class of halfspaces in Rd, d ≥ 2,
and ε ≤ 1/3. Then, any protocol that learns H in the realizable case has sample complexity
at least Ω̃(d+ log(1/ε)).

Proof. We begin by showing that Ω̃(d) examples are required, even for ε = 1/3. The
argument relies on the relation between VC dimension and compression schemes. In the
language of this paper, a compression scheme is a one-sided protocol in the sense that only
Alice gets the input sample (i.e. Sa = S, Sb = ∅). An ε-approximate sample compression
scheme is a sample compression scheme with LS(h) ≤ ε where h is the output hypothesis.
A basic fact about ε-sample compression schemes is that for any fixed ε, say ε = 1/3, their
sample complexity is Ω̃(d), where d is the VC dimension (see, for example, [DMY16]). Now,
assume Π is a protocol with sample complexity C and error ≤ 1/3. In particular, Π induces
an ε = 1/3-compression scheme and so C = Ω̃(d).

We next set out to prove that Ω̃(log 1/ε) samples are necessary. The proof follows directly
from Theorem 15. Indeed setting ε = 1

n , let Π be a protocol that learns H to error ε, using

Õ(T (n)) samples. Then we construct a protocol Π′ whose sample complexity is Õ(T (n))
that satisfies the premises in Theorem 15 as follows: Π′ simulate Π over the sample and
considers if the output h∗ satisfies LS(h∗) > 0, which can be verified by transmitting two
additional bits. The protocol Π′ indeed satisfies the premises in Theorem 15 — if the sample
S contains two points (x,−1), (x, 1) ∈ S then clearly  LS(h∗) > 0, and otherwise if the sample
is realizable then LS(h∗) = 0 by choice of ε.

6.2 Proof of Theorem 2

Theorem 2 (Realizable & proper case - lower bound). There exists a class H with VC
dimension 1 such that every protocol that learns H properly has sample complexity of at
least Ω̃(1/ε). Moreover, this holds even if the input sample is realizable.

Proof. To prove Theorem 2 we use the following construction of a class with infinite coVC
dimension and VC dimension 1: set X = {(m,n) : m ≤ n,m, n ∈ N}, and define a hypothesis
class H = {ha,b : a ≤ b}, where

ha,b((m,n)) =


1 n 6= b

1 n = b,m = a

−1 else
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Roughly speaking, the class H consists of infinitely many copies of singletons over a finite
universe. The VC dimension of H is 1. To see that the coVC dimension is unbounded, take

Sk =
((

(1, k),−1
)
,
(
(2, k),−1

)
, . . . ,

(
(k, k),−1

))
.

The sample Sk is not realizable. However, every subsample of size k − 1 does not include
some point of the form (j, k), so it realizable by hj,k.

Therefore, by Theorem 7 it follows that the coNP sample complexity of this class is Ω̃(n)
for inputs of size n. Thus, deciding the realizability problem for this class requires sample
complexity Ω̃(n). This concludes the proof, because any protocol that properly learn this
class yields a protocol for the realizability problem by simulating the proper learning protocol
with ε = 1/(2n) and testing whether its output is consistent.

6.3 Proof of Theorem 3

Theorem 3 (Agnostic case - lower bound). There exists a hypothesis class of VC dimen-
sion 1 such that every protocol that learns H in the agnostic case has sample complexity of
at least Ω̃ (1/ε).

The VC dimension 1 class is the class of singletons over N; it is defined as H = {hn : n ∈
N} where

hn(x) =

{
1 x = n

−1 x 6= n.

The proof relies on the following reduction to the set disjointness problem in Yao’s model;
we defer its proof to the end of this section.

Lemma 3. There are two maps Fa, Fb : {0, 1}n → ([n]× {±1})n, from n bit-strings to sam-
ples of size n, for which the following holds: Let x, y ∈ {0, 1}n, and set S = 〈Fa(x);Fb(y)〉.
Then

1. If x ∩ y = ∅ then LS(f) ≥ |x|+|y|2n for every f : [n]→ {±1}.

2. If x ∩ y 6= ∅ then LS(f) ≤ |x|+|y|−2
2n for some h ∈ Hn.

With this lemma in hand, we prove Theorem 3.

Proof of Theorem 3. Assume that the class of singletons on N can be learned in the agnostic
setting by a protocol with error ε and sample complexity T (1/ε). We derive a protocol for
deciding DISJn in Yao’s model using O(T (n) log n) bits.

Let Π be a protocol that learns H up to error ε = 1/(4n) by sending T (4n) bits. The first
observation is that by restricting the input sample to contain only examples from [n]×{±1},
we can simulate Π by a protocol in Yao’s model that sends O(T (4n) log n) bits. Next, define
a protocol Π′ for DISJn as follows.

• Alice is given x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n.

• The player transmit the sizes |x| and |y| using O(log n) bits.

• The two parties simulate the learning protocol Π with Sa = Fa(x) and Sb = Fb(y).

• Let h denote the output of Π. The players transmit the number of mistakes of h over
the sample Fa(x) and Fb(x) using O(log n) bits.

• Alice and Bob output DISJOINT if and only if LS(h) ≥ |x|+|y|−1
2n .

Since LS(h) ≤ minf∈H LS(f) + 1
4n , by Lemma 3, the protocol Π′ outputs DISJOINT if and

only if

min
f∈H

LS(f) >
|x|+ |y| − 2

2n
.

In addition, the optimal hypothesis in H has error at most |x|+|y|−2
2n if and only if the two

sets are not disjoint. So Π′ indeed solves DISJn. Theorem 11 now implies that T (1/ε) =
Ω̃( 1

ε ).
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An od(1/ε2) agnostic learning protocol

Input: A joint input sample S = (Sa, Sb) that is realizable by H, and ε > 0.

Protocol:

• Alice and Bob transmit the sizes |Sa| and |Sb|.

• Each of Alice Alice and Bob finds subsamples S′a, S
′
b like in Theorem 14 with pa-

rameter ε and transmit it.

• Alice and Bob agree (according to a predetermined ERM rule) on h ∈ H that

minimizes |Sa|
|S| LS′a(h) + |Sb|

|S| LS′b
(h), and output it.

Figure 3: A learning protocol in the agnostic case

Proof of Lemma 3. Given two bit-strings x, y ∈ {0, 1}n, let Fa(x) be the sample

((1, a1), (2, a2), . . . , (n, an))

where ai = (−1)1−xi for all i. Similarly define Fb(y). Let h : N→ {±1} be any hypothesis.
For any i ∈ x∆y, where ∆ is the symmetric difference, we have that ai 6= bi and so h is

inconsistent either with (i, ai) or with (i, bi). Thus, if x∩y = ∅, then LS(h) ≥ |x|+|y|2n for any
hypothesis h. On the other hand, if x ∩ y is non empty, then any singleton hi for i ∈ x ∩ y
has error LS(hi) = |x∪y|−2

2n ≤ |x|+|y|−2
2n .

6.4 Proof of Theorem 4

Theorem 4 (Agnostic case - upper bound). Every class H is learnable in the agnostic case

with sample complexity Õd
(
(1/ε)2− 2

d+1 +log n
)

where d is the VC dimension of H, and Õd(·)
hides a constant that depends on d.

Proof. Theorem 14 implies a one round proper agnostic learning protocol that we describe
in Figure 3. To see that h, the output of this protocol satisfies LS(h) ≤ minf∈H LS(f) + ε,

use Theorem 14 and the fact that LS = |Sa|
|S| LS′

a
(h) + |Sb|

|S| LS′
b
(h).

7 Decision Problems: Proofs

7.1 Proof of Theorem 6

Theorem 6 (“VC-dim ≤ NP”). For every class H with VC dimension d ∈ N ∪ {∞},

Nnp
H (n) = Ω̃(min(d, n)).

We use the following simple lemma.

Lemma 4. Let H be a hypothesis class and let R ⊆ X be a subset of size n that is shattered
by H. There exists two functions Fa, Fb that map n bit-strings to labelled examples from R
such that for every x, y ∈ {0, 1}n, it holds that x ∩ y = ∅ if and only if the joint sample
S = 〈Fa(x);Fb(y)〉 is realizable by H|R.

Proof of Lemma 4. Since R is shattered by H, it follows that a sample S with examples
from R is realizable by H if and only if it contains no point with two opposite labels. Now,
identify [n] with R. Set Fa(x) = {(i, 1) : xi = 1} and set Fb in the opposite manner:
namely, Fb(y) = {(i,−1) : yi = 1}.

17



If i ∈ x ∩ y then having (i, 1) ∈ Fa(x) and (i,−1) ∈ Fb(y) implies that the joint sample
S is not realizable. On the other hand, since R is shattered, we have that if x∩ y = ∅, then
S is realizable.

Proof of Theorem 6. Let R be a shattered set of size d. Since every example x ∈ R can
be encoded by O(log d) bits, it follows that every NP-proof of sample complexity T for the
realizability problem for H|R implies an NP-proof for DISJd with bit-complexity O(T log(d))
in Yao’s model. This concludes the proof since the non-deterministic communication com-
plexity of DISJd is Ω(d), by Theorem 11.

7.2 Proof of Theorem 7

Theorem 7 (“coVC-dim = coNP”). For every class H with coVC dimension k ∈ N ∪ {∞},

N conp
H (n) = Θ̃(min(k, n)).

Proof. For the direction N conp
H (n) ≤ k, assume that the coVC dimension is k < ∞. If

S = 〈Sa;Sb〉 is not realizable then it contains a non realizable sample S of size at most
coVC-dim(H) = k that serves as a proof that S is not realizable. If k = ∞ then the whole
sample S serves as a proof of size n that it is not realizable.

The other direction follows by a reduction from the set disjointness problem in Yao’s
model (similarly to the proof of Theorem 6 from the previous section). We use the following
lemma.

Lemma 5. Let H be a hypothesis class, and let S be a non realizable sample of size n > 1
such that every subsample of S is realizable. Then, there exist two functions Fa, Fb that
map n bit-strings x, y ∈ {0, 1}n to subsamples of S such that x ∩ y = ∅ if and only if the
joint sample 〈Fb(x);Fb(y)〉 is not realizable by H.

Proof of Lemma 5. Identify the domain of S with [n], and write S as
(
(i, bi)

)
i∈[n]

. Since

n > 1, for every i there is a unique b so that (i, b) is in S. For every i so that xi = 0 put the
example (i, bi) in Fa. For every i so that yi = 0 put the example (i, bi) in Fb. If i ∈ x∩y then
none of (i, 1), (i,−1) appear in (Fa, Fb). If i 6∈ x∩ y then (i, bi) appear in 〈Fa(x);Fb(y)〉. In
other words, 〈Fa;Fb〉 = S if and only if x ∩ y = ∅.

We can now complete the proof of the theorem. if k = 0 there is nothing to prove, since
k = 0 if and only if all samples are realizable. Let S be a non realizable sample of size k so
that every subsample of S is realizable;st Let Fa, Fb be as given by Lemma 5 for S. The maps
Fa, Fb imply that if N conp

H (H) ≤ C then there is an NP-proof in Yao’s model for solving
DISJk with bit-complexity O(C log k). This concludes the proof since the non-deterministic
communication complexity of DISJk is Ω(k) (by Theorem 11).

7.3 Proof of Theorem 5 and Theorem 10

Theorem 5 (A Characterization of P). The following statements are equivalent for a hy-
pothesis class H:

(i) H is in P.

(ii) H is in NP ∩ coNP.

(iii) H has a finite VC dimension and a finite coVC dimension.

(iv) There exists a protocol for the realizability problem for H with sample complexity
Õ(dk2 log |S|) where d = VC-dim(H) and k = coVC-dim(H).

The crux of the proof is the following lemma, which yields protocol that decides the
realizability problem for H with sample complexity that efficiently depends on the VC and
coVC dimensions of H.

Lemma 6. For every class H with VC-dim(H) = d and coVC-dim(H) = k there exists a
protocol for the realizability problem over H with sample complexity O(dk2log k log |S|).
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A protocol for the realizability problem over H

Input: Samples Sa, Sb from H.

Protocol:

• The player transmit |S| = |Sa|+ |Sb|.

• Let pa1 and pb1 to be uniform distributions over Sa and Sb.

• If Sa is not realizable then Alice returns NON-REALIZABLE, and similarly if Sb
is not realizable then Bob returns NON-REALIZABLE.

• For t = 1, . . . , T = 4(k + 1) log|S|

1. Alice sends a subsample S′a ⊆ Sa of size O(dklog k) such that every h ∈ H
that is consistent with S′a has∑

z∈Sa

pat (z)1[h(x) 6= y] ≤ 1

5k
.

Bob sends Alice a subsample S′b ⊆ S of size O(dklog k) with the analogous
property.

2. Alice and Bob check if there is h ∈ H that is consistent with both S′a and
S′b. If the answer is “no” then they return NON-REALIZABLE, and else they
pick ht to be such an hypothesis.

3. Bob and Alice both update their respective distributions as in boosting: Alice
sets

pat+1(z) ∝ pat 2−1[h(x)=y] ∀z ∈ Sa.

Bob acts similarly.

• If the protocol did not stop, then output REALIZABLE.

Figure 4: A protocol for the realizability problem

Before giving a full detailed proof, we give a rough overview of the protocol, depicted
in Figure 4. In this protocol the players jointly run boosting over their samples. All com-
munication between parties is intended so that at iteration t, Alice and Bob agree upon a
hypothesis ht which is simultaneously an α-weak hypothesis with α = 1

2 −
1
5k for Alice’s

distribution pat on Sa and for Bob’s distribution pbt on Sb. The ε-net theorem (Theorem 13)
implies that to agree on such a hypothesis Alice and Bob can each publish a subsample
of size O(dklog k); every hypothesis that agrees with the published subsamples has error
at most 1

5k over both pat and pbt . In particular, if no consistent hypothesis exists then the
protocol terminates with the output “non-realizable”. If the protocol has not terminated
after T = O(k log |S|) rounds then Alice and Bob output “realizable”.

The main challenge in the proof is showing that if the algorithm did not find a non
realizable subsample then the input is indeed realizable. We begin by proving the following
Lemma:

Claim 6.1. Let H be a class with coVC dimension k > 0. For any unrealizable sample S
and for any h1, . . . , hT ∈ H, there is (x, y) ∈ S so that

1

T

T∑
t=1

1[ht(x) 6= y] ≥ 1

k
.
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Proof of Claim 6.1. Let S be an unrealizable sample. There exists a non realizable sub-
sample S′ of S of size at most k. Since |S′| ≤ k, for every hypothesis h ∈ H we have
LS′(h) ≥ 1/k. In particular, for a sequence h1, . . . , hT ⊆ H,

max
(x,y)∈S′

1

T

T∑
t=1

1[ht(x) 6= y] ≥ 1

|S′|
∑

(x,y)∈S′

1

T

T∑
t=1

1[ht(x) 6= y]

≥ 1

T

T∑
t=1

1

|S′|
∑

(x,y)∈S′

1[ht(x) 6= y] ≥ 1

k
.

We are now ready to prove Lemma 6.

Proof of Lemma 6. It is clear that if Alice or Bob declare NON-REALIZABLE, then indeed
the sample is not realizable. It remains to show that (i) they can always find the subsamples
S′a and S′b with the desired property, (ii) if the protocol has not terminated after T steps
then the sample is indeed realizable.

Item (i) follows by plugging ε = 1/(5k) in Theorem 13.
To prove (ii), note that ht is α-weak for α = 1

2 −
1
5k with respect to both distributions

pat and pbt . Therefore, Lemma 2 implies that if T ≥ 4(k + 1) log|S| then

∀(x, y) ∈ 〈Sa;Sb〉 :
1

T

T∑
t=1

1[ht(x) 6= y] <
1

2(k + 1)
, (2)

which by Claim 6.1 implies that 〈Sa;Sb〉 is realizable by H.

Finally, we can prove the theorem.

Proof of Theorem 5.
i =⇒ ii. This implication is easy since the NP and coNP sample complexities lower bound
the deterministic sample complexity.
ii =⇒ iii. This implication is the content of Theorem 6 and 7. For example, if VC-dim(H) =
∞ then Nnp

H (n) ≥ Ω̃(n) for every n.
iii =⇒ iv. This implication is the content of Lemma 6.
iv =⇒ i. By definition of P.

Proof of Theorem 10

Theorem 10 (Proper learning – characterization). Let H be a closed class with d =
VC-dim(H) and k = coVC-dim(H). If H ∈ P then it is properly learnable in the realizable
case with sample complexity Õ(dk2 log(1/ε)). If H is not in P, then the sample complexity
for properly learning H in the realizable setting is at least Ω̃(1/ε).

Proof. We start with the second part of the theorem. Any proper learner can be used
to decide the realizability problem, by setting ε = 1

2n and checking whether the output
hypothesis is consistent with the sample (this costs two more bits of communication). Now, if
H is not in P then one of VC-dim(H) or coVC-dim(H) is infinite. Theorem 6 and Theorem 7
imply that at least Ω̃(n) examples are needed to decide if a sample of size n is realizable. So,
at least Ω̃(1/ε) examples are required in order to properly learn H in the realizable setting.

It remains to prove the first part of the theorem. Let H ∈ P. Consider the following
modification of the protocol in Section 7.3:

• Each of Alice and Bob picks an ε–net of their sample. Set S′a ⊆ S to be Alice’s ε-net
and similarly Bob sets S′b ⊆ S. Theorem 13 implies that |S′a| and |S′b| are at most

s = O
(d log(1/ε)

ε

)
.
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• Alice and Bob run the protocol in Section 7.3 with inputs S′a, S
′
b. Since the input is

realizable, the protocol will complete all T = Θ(k log s) iterations. In each iteration,
Õ(dk) samples are communicated. The sample complexity is hence as claimed.

• Set

K =

{
x ∈ X : all but a fraction of <

1

2(k + 1)
of the ht’s agree on x

}
.

Alice and Bob output h∗ ∈ H that agrees on K with the majority of the ht’s.

We next argue that this protocol succeeds. First, observe that K depends only on
h1, . . . , hT and not on the sample points. Hence both Alice and Bob have the necessary
information to compute K. Next, note that by Equation (2) for every (x, y) ∈ 〈S′a;S′b〉, we
have that x ∈ K and that y is the majority vote of the ht’s on x. Thus, assuming that
h∗ exists (which is established next), we have that LS′

a
(h∗) = LS′

b
(h∗) = 0. As a corollary,

its error on S is at most ε; indeed, LSa
(h∗) ≤ ε since S′a is an ε-net for Sa. Similarly

LSb
(h∗) ≤ ε. Overall it follows that

LS(h∗) ≤ max {LSa
(h∗), LSb

(h∗)} ≤ ε.

It remains to show that h∗ exists. We use Tychonoff’s theorem from topology [Tyc30]
to prove the following claim.

Claim. Let H be a closed hypothesis class. Let S be a (possibly infinite) set of labelled
examples so that for every finite subsample S′ of S there is hS′ ∈ H that is consistent with
S′, then there is hS ∈ H that is consistent with S.

Proof. Recall that we call a class H closed if for every g 6∈ H there exists a finite sample
Sg that is consistent with g yet not realizable by H. Our notion is consistent with the
topological notion of a closed set if we identify H as a subset in {±1}X equipped with the
product topology. To see that indeed H is (topologically) closed, note that for every g 6∈ H
there is a finite sample Sg that is consistent with g yet not realizable by H. Denote by Ug
the open subset of {±1}X of all functions that are consistent with Sg. Thus for all g 6∈ H
we have H ∩Ug = ∅. So H is the complement of

⋃
g Ug, which is open and thus closed in the

topological sense. One can also verify that the converse holds, namely every topologically
closed set H in {±1}X induces a closed hypothesis class.

Next, we employ Tychonoff’s theorem that states that {±1}X is compact under the
product topology; as a corollary we obtain that H is also compact.

Now, assume toward contradiction that there is no h ∈ H that is consistent with S. For
every finite subsample S′ of S, consider the closed subset CS′ of {±1}X of all function that
are consistent with S′. Thus

⋂
S′ CS′ = ∅. Since H is compact, this implies that there is a

finite list (S`)` of subsamples of S so that
⋂
` CS`

= ∅. This is a contradiction since we may
unite (S`)` to a single finite subsample of S, which is realizable by assumption.

The existence of h∗ is now derived as follows. Assume towards contradiction h∗ does not
exist. By the above claim, there is a finite sample SK of examples from K labelled according
to the majority of the ht’s that is not realizable. Now, by Claim 6.1 there is (x, y) ∈ SK
such that 1

T

∑T
t=1 1[ht(x) 6= y] ≥ 1

k . This implies that (x, y) /∈ SK , a contradiction.

Extensions of Theorem 10 to non-closed classes. We do not know whether every (not
necessarily closed) class H can be learnt properly in the realizable case with logarithmic
communication complexity. However, the closeness assumption can be replaced by other
natural restrictions. For example, consider the case where the domain X is countable, and
consider a class H that is in P (not necessarily closed). We claim that in this case H can
be properly learned with Õ(log 1/ε) sample complexity: The closure of H, denoted by H̄
is obtained from H by adding to H all hypotheses h such that every finite subsample of
h is realizable by H. Such a h is called a limit-hypothesis4 of H. Thus, by running the

4This name is chosen to maintain consistency with the topological notion of a limit-point.
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protocol from the above proof on H̄ (which has the same VC and coVC dimensions as H),
Alice and Bob agree on a limit-hypothesis h∗ ∈ H̄ with ε error. The observation is that
they can “project” h∗ back to H if they could both agree on a finite sample S′ that contains
both input sample Sa, Sb. Indeed, since h∗ is a limit-hypothesis of H then there is some
h ∈ H that agrees with h∗ on S′. Therefore, from the knowledge of h∗ and S′ Alice and
Bob can output such an h without further communication. Thus, once having a limit-
hypothesis h∗, the problem of proper learning is reduced to finding a finite sample S′ that
is consistent with h∗ and contains both input samples. If X is countable, say X = N, then
Alice and Bob can simply transmit to each other their two maximal examples to determine
xmax = max

{
x : (x, y) ∈ Sa ∪ Sb)

}
, and set S′ = {

(
x, h∗(x)

)
: x ≤ xmax}.

A result from [BDHM+] shows how to extend this scheme for any X such that |X | < ℵω;
more specifically, if |X | = ℵk then Alice and Bob can agree on S′ with an additional cost of
O(k) examples. To conclude, if |X | < ℵω then H is in P if and only if it can be properly
learned in the realizable setting with sample complexity Õ(log 1/ε).

7.4 Proof of Theorem 8

The statement clearly follows as a corollary of the following, stronger, statement which is a
direct corollary of Lemma 1.

Theorem 15 (Realizability problems – lower bound (strong version)). Let H be the class
of halfplanes in R2. Any communication protocol with the following properties must have
sample complexity at least Ω̃(log n) for samples of size n:

i Whenever the sample is realizable by H it outputs 1.

ii Whenever for some x ∈ R2, we have {(x, 1), (x,−1)} ⊆ S it outputs 0.

(iii) It may output anything in the remaining case.

7.5 Proof of Theorem 9

Theorem 9 (Compactness for P). Let H be a hypothesis class over a domain X . Then, the
following statements are equivalent.

(i) H is in P.

(ii) For every finite R ⊆ X there is a protocol that decides the realizability problem for H|R
with sample complexity at most c · log(n) for inputs of size n, where c is a constant
depending only on H.

(iii) For every finite R ⊆ X there is an efficient protocol that decides the realizability
problem for H|R in Yao’s model with bit complexity at most c · logm|R|, where c and
m are constants depending only on H.

Proof.
i =⇒ ii. By Theorem 5, every H ∈ P has a protocol of sample complexity at most c · log n
for samples of size n with c = O(dk2 log k) where d = VC-dim(H) and k = coVC-dim(H).

ii =⇒ iii. Since the examples domain is restricted to R, every protocol with sample
complexity T can be simulated by a protocol with bit complexity O(T log(|R|)). The input
sample size n can be assumed to be at most 2|R| (by removing repeated examples).

iii =⇒ i. By Theorem 5 it suffices to show that both the VC and the coVC dimensions
of H are finite. Indeed, let m and c be such that for any R there exists a protocol in Yao’s
model for the realizability problem with complexity c · logm(|R|). If there is a shattered set
R of size N then by Theorem 6:

c logm(N) ≥ Nnp
H|R(N) ≥ Ω̃(N),

which shows that N is bounded in terms of c and k (the left inequality holds since the
deterministic sample complexity in Yao’s model upper bounds the NP sample complexity in
our model). A similar bound on the coVC dimension follows by Theorem 7.
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8 Lower Bound for Convex Set Disjointness

We begin by stating a round elimination lemma in Yao’s model. The proof of the round
elimination lemma is given in Section 8.1). We require the following additional notation: for
a function D : X×Y → {0, 1}, and m ∈ N, define a new function Dm : (Xm)×(Y × [m]))→
{0, 1} by

Dm((x1, . . . , xm); (y, i)) = D(xi, y).

Also, for a distribution P on X × Y , let Pm be the distribution on (Xm)× (Y × [m])) that
is defined by the following sampling procedure:

• Sample m independent copies (xj , yj) from P.

• Sample i ∼ [m] uniformly and independently of previous choice.

• Output
(
(x1, . . . , xm); (yi, i)

)
.

Lemma 7 (Round Elimination Lemma). Let D : X × Y → {0, 1} be a function, let m ∈ N,
and let P be a distribution on X × Y . Assume there is a protocol in Yao’s model for Dm,
where Alice’s input is x = (x1, . . . , xm) and Bob’s is (y, i), on inputs from Pm with error
probability at most δ such that:

• Alice sends the first message.

• It has at most r rounds.

• In each round at most c bits are transmitted.

Then there is a protocol for D, where Alice’s input is x and Bob’s is y, on inputs from P
with error probability at most δ +O

(
(c/m)1/3

)
such that:

• Bob sends the first message.

• It has at most r − 1 rounds.

• In each round at most c bits are transmitted.

The rest of the proof for the convex set disjointness lower bound is organized as follows.
We define the distribution over inputs to the convex set disjointness problem, denoted by
I{m,r} = (Am,r, Bm,r). Roughly, the key idea in the construction is that solving convex
set disjointness with inputs (Am,r, Bm,r), where Alice’s input is Am,r and Bob’s input is
Bm,r, requires solving a function of the form Dm, where each xj is an independent instance
of Bm,r−1 and each yj is an independent instance of Am,r−1. This enables an inductive
argument, using round elimination. We will then conclude that Alice and Bob are unable to
achieve probability error of less than 1/10, unless a specified amount of bits is transmitted
at each round.

Construction of I{m,r}

Let m ∈ N. For the base case, r = 1, we set I{m,1} = (Am,0, Bm,0), where Am,1 = {(0, 0)}
and Bm,1 is uniform on {(0, 0), ∅}. Define I{m,r} for r > 1 inductively as follows:

• Let p1, . . . , pm be m evenly spaced points on the positive part of the unit circle (i.e.
the intersection of the unit circle with the positive cone {(x, y), x > 0, y > 0});

• Pick ε > 0 to be sufficiently small, as a function of m, r (to be determined later).

• For 1 ≤ i ≤ m let Ui : R2 → R2 be the rotation matrix that transforms the y-axis to
pi and the x-axis to p⊥i . Define Ti as the following affine transformation:

Ti(v) = Ui

[
−ε 0
0 −ε2

]
v + pi.

From a geometric perspective Ti acts on v by rescaling x-distances by ε and y-distances
by ε2, reflecting through the origin, rotating by Ui and then translating by pi.
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Define

Am,r =

m⋃
j=1

Tj(B
(j)
m,r−1)

and
Bm,r = Ti(A

(i)
m,r−1),

where
(A

(1)
m,r−1, B

(1)
m,r−1), (A

(2)
m,r−1, B

(2)
m,r−1), . . . , (A

(m)
m,r−1, B

(m)
m,r−1)

are drawn i.i.d. from I{m,r−1}, and i is uniform in [m] and independent of previous choices.
Notice the compatibility with Pm.

Properties of I{m,r}

Two crucial properties (which we prove below) of the distribution I{m,r} are given by the
following two lemmas.

Lemma 8. There is a set Rm,r ⊆ R2 of size |Rm,r| ≤ mr−1 such that each pair of sets in
the support of I{m,r} is contained in Rm,r ×Rm,r.

Lemma 9. The following are equivalent (almost surely):

1. conv(Am,r) ∩ conv(Bm,r) = ∅.

2. A
(i)
m,r−1 ∩B

(i)
m,r−1 = ∅.

3. Am,r ∩Bm,r = ∅.

The first property implies that transmitting point from Am,r or Bm,r in Yao’s model
requires r logm bits. This allows us to translate lower bounds from Yao’s to our model. The
second property is needed to apply the round elimination argument.

Lemma 8 follows by a simple induction on r. The proof of the second lemma is more
elaborate.

Proof of Lemma 9.

1 =⇒ 2 holds because A
(i)
m,r−1 ⊆ Am,r and B

(i)
m,r−1 ⊆ Bm,r.

2 =⇒ 3 follows from the definition of Am,r and Bm,r by setting ε sufficiently small so that
the m instantiations from I{m,r−1} are mutually disjoint.

3 =⇒ 1 is the challenging direction, which we prove by induction on r. In order for the
induction to carry, we slightly strengthen the statement and show that if Am,r ∩ Bm,r = ∅
then they are separated by a vector u ∈ R2

+ with positive entries:

∀a ∈ Am,r : u · a < 1,

∀b ∈ Bm,r : u · b > 1,

where · is the standard inner product in R2.
The case of r = 1 is trivial. Let r > 1, and assume that Am,r ∩ Bm,r = ∅. By the

induction hypothesis, there is a vector u = (α, β) ∈ R2 with α, β > 0 separating A
(i)
m,r−1

from B
(i)
m,r−1. We claim that the vector

u∗ =
1

β − ε2
ũ

achieves the goal, where

ũ = Ui

[
ε 0
0 1

]
u = Ui

(
εα
β

)
.

First, we claim that ũ can be written as

ũ = βpi + vε, (3)

where
‖vε‖2 = αε.
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Indeed, recall that Uie2 = pi, and so ũ = βpi + εαUie1, and ‖εαUie1‖2 = εα. Since pi has
positive entries, if ε is small enough we get that ũ and u∗ have positive entries.

Next, we prove that

∀a ∈ Am,r : ũ · a < ũ · pi − ε2,
∀b ∈ Bm,r : ũ · b > ũ · pi − ε2

The above completes the proof since ũ · pi − ε2 = β − ε2 and by choice of u∗.

Let b ∈ Bm,r and a ∈ A(i)
m,r−1 be so that b = Ti(a). Thus,

ũ · b− ũ · pi = ũ · Ti(a)− ũ · pi

= ũ ·
(
Ui

[
−ε 0
0 −ε2

]
a
)

(by definition of Ti)

=
(
Ui

[
ε 0
0 1

]
u
)
·
(
Ui

[
−ε 0
0 −ε2

]
a
)

(by the definition of ũ)

=
([ −ε 0

0 −ε2
] [

ε 0
0 1

]
u
)
· a (Ui is orthogonal)

= −ε2u · a > −ε2. (by induction u · a < 1)

A similar calculation shows that ũ>b− ũ>pi < −ε2 for b ∈ Ti
(
A

(i)
m,r−1

)
.

It remains to consider a ∈ Am,r and b ∈ B(j)
m,r−1 so that a = Tj(b) for j 6= i:

ũ · a− ũ · pi = ũ · (pj − pi) + ũ ·
(
Uj

[
−ε 0
0 −ε2

]
b
)

= βpi · (pj − pi) + e,

where

e = vε · (pj − pi) + ũ ·
(
Uj

[
−ε 0
0 −ε2

]
b
)
.

Since βpi · (pj − pi) < 0, and ‖e‖2 → 0 when ε → 0, picking a sufficiently small ε finishes
the proof.

8.1 Proof of Round Elimination Lemma

Here we prove Lemma 7 using standard tools from information theory.

Proof. Let Πm be the assumed protocol for Dm

(
x; (y, i)

)
. We use the following protocol

for D(x, y):

• Alice gets x and Bob gets y.

• Alice and Bob draw, using shared randomness, an index i and independently Alice’s
first message M in Πm (without any conditioning).

• Alice draws inputs x1, . . . , xi−1, xi+1, . . . , xm conditioned on the value of M and on
xi = x.

• Alice and Bob then run the remaining r − 1 rounds of Πm, following the message M ,
on inputs

x = (x1, . . . xi−1, xi = x, xi+1, . . . , xm)

and (y, i).

The crucial observation is that if for the chosen M, i, the variables x, y are distributed like
Pm(xi, yi|M, i), then the above protocol errs with probability at most δ, since Dm(x, (y, i)) =
D(x, y) and since δ is the error probability of Πm.

It thus suffices to show that with probability at least 1 − (c/m)1/3 over the choice of
(M, i), the distributions Pm(xi, yi|M, i) and P(x, y) are O((c/m)1/3) close in total variation
distance.
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To prove this, we show that the mutual information between (M, i) and (xi, yi) is small,
and then use Pinsker’s inequality to move to total variation distance. Since x1, . . . , xm are
independent and i is uniform,

I(xi;M |i) =
1

m

m∑
j=1

I(xj ;M) ≤ 1

m
I(x1, . . . , xm;M) ≤ c

m
.

Thus,

I((xi, yi); (M, i)) = I(xi; i) + I(yi;M, i|xi) + I(xi;M |i) ≤ 0 + 0 +
c

m
.

Write the mutual information in terms of KL-divergence,
since (x, y) and (xi, yi) have the same distribution,

EM,i[DKL(pxi,yi|M,i||px,y)] = I(xi, yi;M, i).

By Markov’s inequality, the probability over M, i that

DKL(pxi,yi|M,i||px,y) > (c/m)2/3

is less than (c/m)1/3. Pinsker’s inequality completes the proof.

8.2 Proof of Lemma 1

Lemma 1 (Convex set disjointness lower bound). Consider the convex set disjointness
problem in R2, where Alice’s input is denoted by A, Bob’s input is denoted by B, and both
|A|, |B| are at most n. Then any communication protocol with the following properties must
have sample complexity at least Ω̃(log n).

(i) Whenever conv(A) ∩ conv(B) = ∅ it outputs 1.

(ii) Whenever A ∩B 6= ∅ it outputs 0.

(iii) It may output anything in the remaining cases.

Proof. Choose m = n1/r (assume that n is such that m is an integer). Consider the dis-
tribution I{m,r} on inputs for the convex set disjointness. We reduce this problem to Yao’s
model. By Lemma 8 and choice of m, any point can be transmitted in Yao’s model using
at most O(log(n)) bits.

We will show that every protocol in Yao’s model with r rounds and error probability at
most 0.1 must transmit Ω̃(n1/r) bits. To do that, we would like to apply the round elimina-

tion lemma. Recall that Alice’s input Am,r is equivalent to being told B
(1)
m,r−1, . . . , B

(m)
m,r−1.

Similarly Bob’s input amounts to A
(i)
m,r−1 and i. By Lemma 9, conv(Am,r)∩ conv(Bm,r) = ∅

if and only if A
(i)
m,r−1∩B

(i)
m,r−1 = ∅. Therefore, for r > 1, deciding if Am,r and Bm,r intersect

or their convex hulls are disjoint is equivalent to solving the same problem with respect to
I{m,r−1} when the roles of the players are switched.

Next, iterating Lemma 7, we have that if there is a protocol to solve I{m,r} in r rounds
with Alice speaking first, c is the maximum number of bits of communication per round,
and 0.1 probability of error, then there is a protocol for I{m,1} with Alice speaking first and

one round of communication and probability 0.1+O(r(c/m)1/3) of error. However, the error
probability of every such protocol is at least 0.5. That is, 0.1 + O(r(c/m)1/3) ≥ 0.5, which
implies

c ≥ Ω
(n1/r

r3

)
.

Going back to allowing the protocol to send points rather than bits. If k is the maximum

number of points sent per round then k ≥ Ω
(

n1/r

r3 logn

)
. Now, since in each round at least

one point is being sent, we get a lower bound of

Ω
( n1/r

r3 log n
+ r
)

(4)
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on the sample complexity of r-round protocols that achieve error at most 0.1. One can verify

that n1/r

r3 logn + r = Ω̃(log n), as required.

Discussion. Equation (4) yields a round-error tradeoff for learning halfplanes. Indeed, if
Π is an r-round protocol that learns halfplanes in the realizable case with error ε. Then, by
picking n < 1/ε, it implies a protocol for convex set disjointness with similar sample com-
plexity (up to additive constants). In particular, the sample complexity of such a protocol
is bounded from below by

Ω
( (1/ε)1/r

r3 log(1/ε)
+ r
)
.

This matches a complementary upper bound given by [BBFM12] (Theorem 10 in their
paper).
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