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Abstract

We give a three-player game whose non-signaling value is constant (2/3) under any number of parallel
repetitions. This is the first known setting where parallel repetition completely fails to reduce the
maximum winning probability of computationally unbounded players.

We also show that the best known results on non-signaling parallel repetition apply to a relatively
limited class of games. In particular, these games cannot yield log-prover MIPs for languages beyond
PSPACE.

1 Introduction

A multi-player game G consists of an interaction between a referee and k players Pi,..., P;. The referee
samples k questions q1, ..., g from some joint distribution 7 and sends ¢; to P;. The players respond with
answers ai, . . ., ax, and are judged to win or lose the game according to a predicate W(qy, ..., qx,a1,. .., ax)-

The value of the game, denoted v(G), is the maximum probability with which players can win. The study
of multi-player games is a rich and active research topic in diverse areas of theoretical computer science,
with foundational applications to complexity theory, hardness of approximation, and cryptography (see e.g.,
[BGKWS88, BFL91, BFLS91, Kil92, FGL1T96, ALM*98, Has01].

In a classical game, the players are restricted to local strategies: each answer a; is a (without loss of
generality, deterministic) function of ¢;. While natural, the assumption that players act locally is in some
cases overly optimistic. One example is in quantum information theory, where shared entanglement can
allow provers to implement certain non-local strategies [Bel64]. A similar phenomenon arises in cryptogra-
phy [BMW98, DLN*T01, KRR14, DHRW16] when considering mappings from independently-keyed cipher-
texts (Encg, (q1),---,Enck, (¢x)) to (Enck, (a1),...,Enck, (ar)) which are computable in polynomial-time.
In both settings, the precise set of attainable strategies is difficult to characterize, but is bounded by the set
of non-signaling! strategies where (ai,...,ay) can jointly depend on all of (q1,...,qx), but for any subset
S C [k], the distribution of as must depend only on gg.

Parallel repetition is a natural idea for reducing the soundness error of proof systems (i.e., the players’
maximum winning probability on false statements) by having the k players simultaneously play A independent

copies of the game. The referee now samples A independent sets of questions {(q%i), . ,q,(:)) A, from 7, and

sends all \ queries {q§i) 2, to the j'" player at once. The players are then required to win all A copies of
the game; that is, the 4t player must produce {ag.i)}f‘zl so that W(qg{", ..., qg), al a,(j))
i.

=1 for every

Parallel repetition was first studied in the context of classical games where provers are allowed to use local
strategies. It was initially conjectured that v(G*) = v(G)* [FRS88]. This was quickly disproved, however,
by Fortnow [For89] and Feige [Fei91], who constructed a two-player game G satisfying v(G?) = v(G) < 1. On
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the other hand, Raz’s celebrated parallel repetition theorem establishes that for two-player games, the value
of G* is small for large A. In particular, if v(G) < 1, then v(G*) < #* for some ¥ < 1 which depends on G
(but may be significantly larger than v(G)).

This result was simplified and extended to non-signaling two-player games by Holenstein [Hol09]. But such
games are relatively uninteresting: in a proof system, two non-signaling provers can only prove statements in
PSPACE [IKMO09, Ito10] which is the same as a single prover given many rounds of interaction. In contrast,
polynomially many non-signaling provers can prove statements in EXP [KRR14]. Even so, the question of
parallel repetition for multi-player non-signaling games remained wide open, with a few positive results for
special cases [BFS14, FRV16, LW16]. To the best of our knowledge, most researchers believed that a general
analogue of Raz’s result should also hold in this setting.

We show this is not true. Our main contribution is to exhibit a three-player game G such that the value
of G* with respect to non-signaling strategies is 2/3 for all \. Our result is contrasted with known parallel
repetition results in Table 1.

‘ Two-player games Multi-player games

: A 1
Classical | exp (—Q (W)) [Raz98, Hol09] SAderman=T) [Ver96]

Non-Signaling exp (— (¢2X)) [Hol09] > 2 [This Work]

Table 1: Known bounds on the worst-case (slowest) decay for v(G*) or vps(G*) for a game G with v(G) = 1—¢
or vns(G) = 1 — € respectively. A denotes the set of possible player answers in G. Ackermann™! denotes the
inverse Ackermann function.

Although our counterexample precludes a parallel repetition theorem for all non-signaling games, one
may ask whether known parallel repetition results (which hold only for a restricted set of games) suffice for
applications (e.g., constructing MIPs). In Section 4, we argue that this is not the case.

1.1 Related Work

The question of how parallel repetition of a k-player game G (for k > 2) affects its non-signaling value
was first studied by Buhrman, Fehr, and Schaffner [BFS14]. They considered games (Q, A, 7, W) with
complete support, where w(q) > 0 for all ¢ € Q (this is not without loss of generality because Q has the form
Q1 x --- x Qp). For such games, they show that the non-signaling value of G* is exponentially small in A,
with a rate of exponential decay that depends on G (in particular, on mingeg 7(q)).

Arnon-Friedman, Renner, and Vidick give an alternative proof of this fact, and observe that one can
always add uniformly distributed dummy queries to any game G to obtain a closely related game G with
complete support, so that the non-signaling value of G* is exponentially small in A\. We note that the
bound obtained in this way can be as large as e /12l where Q is the query alphabet for G; in particular,
polylog(|Q|) repetitions may not even achieve constant soundness error. Therefore, this result is not generally
applicable towards reducing the soundness error of a MIP, which may associate an n-bit input to a game
with a query alphabet of size 2PV (")

2 Preliminaries

2.1 Notation

For any finite set ¥ = X1 x ... x X and subset S C [k], we denote the restriction of ¥ to the coordinates
in S by ¥s = [[,cg 2. For any string o € X, we denote the restriction of o to the coordinates in S by
os = (04)ies-

For a probability mass function P : 3 x --- X ¥ — R and any subset S C [k], the marginal probability
mass functions Ps : ([];cq Xi) — R is defined by Ps(o) =3 P(d").

o'E€Xioy=0



We will denote the total variational distance between two random variables X and Y by dtv(X,Y),
which is defined as half of the ¢;-distance || - ||; between their probability laws (i.e. if Supp(X) and Supp(Y)
are the supports of X and Y, then dtv(X,Y) = %ZzeSupp(X)USupp(Y) |Pr[X = z] — Pr[Y = £]|). We write
X~ Yif dTv(X,Y) <e.

2.2 Multi-player Games

Definition 2.1 (Multi-player Games). A k-player game is a tuple (Q, A, m, W), where Q = Q1 X -+ X Qy
and A= Ay X -+ x Ay, are finite sets, m : Q — R>q is a probability mass function, and W : Q@ x A — [0, 1]
is a “winning probability” function.

Remark 2.2. In this work, when we represent a game as a string (particularly in Section 4), we explicitly
list

e FEuvery element of Q; and A; for each i € [k],
e 7(q) for each q € Q,
e Wi(q,a) for each ¢ € Q and each a € A.

Definition 2.3 (Repeated Games). Given a game G = (Q, A, m,W) where Q = Q1 X -+ X Qi and
A=Ay x -+ X Ay, its A-fold parallel repetition is defined as G* = (Q', A, 7', W') where Q' = QY x---x O3,
A =AY x - x A, 7'(q) = H:‘\:1 7(q¢™), and W'(q,a) = H;‘Zl W(g®,a®).

In the above we write elements g € Q' as ({qgi)}iem, ceey {q,(‘,i)},;e[)\]), we write ¢; to denote (qj(»l), ceey qﬁ)‘)),
and we write ¢9 to denote (qgi), ceey q,(j)). Our notation for components of elements of A’ is analogous.

Definition 2.4 (Strategies). A strategy for a game G = (Q, A, m, W) is a collection of distributions {P(q)}4c0
over A.

Definition 2.5 (Local Strategies). A strategy P for a k-player game G = (Q, A, 7w, W) is local if there are
functions Py, ..., Py such that P(q) = (Pi(q1), ..., Px(qr))-

Definition 2.6 (Non-signaling Strategies). A strategy P for a k-player game G = (Q, A, m,W) is non-
signaling if for every subset S C [k|, there is a (possibly inefficient) probabilistic algorithm Simg such that
for all ¢ € Q, it holds that P(q)s = Simg(qs). If instead there exists € > 0 such that for all ¢ € Q, it holds
that P(q)s ~. Simg(qs), then P is e-non-signaling.

Definition 2.7. The value of a game G with respect to a strategy P for G, denoted by v[P)(G), is the expected
value of W(Q, A) where Q is distributed according to m and A is distributed according to P(q) conditioned
on Q = q. The classical value of G, denoted by v(G) is the mazimum value of G with respect to any local
strategy. The non-signaling value of G, denoted by vns(G), is the maximum value of G with respect to any
non-signaling strategy.

2.3 Multi-prover Interactive Proofs

Definition 2.8. A k(-)-prover multi-prover interactive proof system (MIP) is a p.p.t. interactive Turing
machine? V with the following syntazx:

1. On input x € {0,1}", V sends a message ¢ = (q1, ..., Qr(n))-
2. Upon receiving a response a = (aq, . .. ,ak(n)), V' outputs either 0 or 1.

Definition 2.9. For a MIP V, we define for every m-bit string x its associated game G, = (Q, A, 7w, W),
where

2A formal definition of an interactive Turing machine is given in [Gol01]



e Q and A are both ({0, 1}T("))k(n), i.e. the set of all k(n)-tuples of T'(n)-bit strings, where T(-) is a
bound on the running time of V.

e 7(q) is the probability that V' sends the message q on input x.

o W(q,a) is the probability that V' outputs 1, conditioned on sending q and receiving a.
Fact 2.10. For any MIP V, the mapping from x to G, is computable in polynomial space.
Definition 2.11. A MIP is said to recognize a language L with

e Completeness c(-) if whenever x € L, v(Gy) > c(|x]).

e Soundness error s(-) if whenever x ¢ L, v(G,) < s(|z|).

e Non-signaling soundness error s(-) if whenever x ¢ L, vas(Gz) < s(|z]).

Unless otherwise specified, we consider MIPs with completeness 1 and (non-signaling) soundness error
1 —1/poly(|z]).

3 The Counterexample

Theorem 3.1. There is a 3-player game G such that vas(G*) = 2/3 for all A > 1.

The game is G = ({0,1}3,{0,1}, 7, W), where 7 is the uniform distribution on strings of Hamming
weight 2, namely {011,101,110}. If {i : ¢; = 1} = {4, k}, then

W(g,a) def 1 ifa; #ag
’ 0 otherwise.

This is called the anti-correlation game [LW16, FRV16] because informally, it asks a random pair of players
to output distinct values. These previous works identified this as an example of a game whose non-signaling
value is 2/3, but whose sub-non-signaling value (a value which is known to decrease under parallel repetition)
is 1.

3.1 Upper Bounding v,(G)

We first upper-bound the non-signaling value vns(G) (and hence also vns(G*) for all A > 1). This upper
bound is folklore, but we include it for completeness.

Claim 3.2. vns(G) < 2.

Proof. Let P be any non-signaling strategy for G. We have
1
o[PI(G) = 5 - (PrlAs # A2|Q = 110] + Pr[A; # A3]Q = 101] + Pr[A; # A3|Q = 011))

in the probability space where @ is uniformly distributed on {110,101,011}, and the distribution of A =
(A1, A, A3) conditioned on @ = ¢ is P(q). Because P is non-signaling, this is equal to

é . (PI‘[Al 7£ A2] + PI'[A1 7& A3] + PI‘[AQ 7é Ag])

in the probability space where A is distributed as P(111). But in any probability space where Ay, As, and
Ajz are binary-valued random variables, we have

PI‘[Al 7é AQ} + PI‘[Al 7& A3] + PI‘[AQ 7& Ag] S 2,

because the pigeonhole principle rules out all three events occurring simultaneously in any outcome. O



3.2 Lower Bounding v,s(G")
Claim 3.3. For all A > 1, v,s(G?) > %
Proof. We give a non-signaling strategy P for G* and show that v[P](G*) = 2/3.

Construction 3.4. Given ¢ = (¢V,...,q™), P samples answers a = (aV, ..., a™) as follows.
o If no ¢ is equal to 111, then:
1. Sample b < Ber(1/3), i.e. b =1 with probability 2/3 and b = 0 otherwise.

2. Sample each a® independently and uniformly at random, subject to the constraint that if qj(-i) =
ql(ci) =1 for some j # k, then ay) &) a,(j) =b.

o If some q\9 is equal to 111, then:

1. Sample t + {1,2,3} uniformly at random.

2. Sample each o) independently and uniformly at random, subject to the constraint that if qj(-i) =
q,(j) =1 for some j # k, then:

— Ifj=tork=t, then a§-i) #* ag).
— Otheruwise, ay) = ag).

Loosely speaking, in the first case, P randomly decides with probability 1/3 to lose all instances of G. In
the second case, P randomly chooses a designated player ¢ to disagree with all other players receiving 1. It
may seem strange that in the first case, P artificially chooses to lose all the games. However, this is necessary
for the existence of a consistent answer distribution when all players receive 1 queries. The requirement that
consistent answer distributions exist for queries which are never asked is a strange but integral® part of the
definition of non-signaling strategies.

We claim that the value of G* with respect to P is 2/3. This is solely determined by P’s behavior in
the first case, because for honestly generated queries, no ¢ is ever equal to 111. In the first case, with
probability 2/3 (whenever b = 1), the answers ay) and ag)
satisfy a;l) #* a,(;) for every i, so P wins G* with probability 2/3.

It remains to verify that P is non-signaling, i.e. that for all sets S C {1,2, 3}, the distribution P(q)s
depends only on gg. This is trivially true when |S| = 0 or |S| = 3. The remaining cases are |S| = 1 and
|S| = 2.

These cases are easier to verify when keeping in mind the structure of P: based on ¢, P probabilistically
chooses a set of constraints on a(V), ..., a». Each constraint specifies the equality or inequality of different
components of each a(”. P then independently chooses a(?) satisfying the constraints. Thus, to demonstrate
that the distribution of ag depends only on gg, it suffices to show that the distribution of the constraints on

ag depends only on gg.

corresponding to the “1” queries in the i*"* game

Case 1: |S| = 1. For any ¢, we claim that the distribution P(q)s is uniformly random on {0,1}*, and
thus depends only on gg (in fact, on nothing) as required.
This holds because all constraints chosen by P satisfy

e Symmetry: The constraints only enforce equality or inequality of specific bits of a. Thus, when a is
chosen uniformly at random to satisfy these constraints, each individual bit of a is equally likely to be
0or 1.

e Independence: Each constraint only relates the bits of a single a(¥.  Thus, ag)7 . ,ag‘) are indepen-
dent as random variables.

3If a player could refuse to answer on queries which are never asked, then this itself would signal information about the other
players’ queries. Thus, the players must be able to answer on all queries.



Case 2: |S| =2. For any ¢, we claim that (ag), e ,agA)) = P(q)s is distributed as follows. For concrete-

ness say that S = {j, k}. For any ¢, we have:

e With probability 2/3, the constraints generated by P on ag) are that ag) € {01, 10} for all i for which
q(SZ) = 11. In particular, P generates these constraints if b = 1 (when no ¢ is 111), and when t € S

(when some ¢ is 111).

e Otherwise the constraints generated by P on ag) are that ag) € {00,11} for all ¢ for which q(Si) =11.

We note that P may also generate constraints on a(* beyond those explicitly mentioned above, specifically
when qjm = 1 for some j ¢ S. However, inspection of P reveals that these constraints do not affect the

distribution of ag). For example, suppose that S = {1,2}, ¢W = 111, and t = 2. Then the constraints

generated by P require not only that agi) # aéi)7 but also that agi) = ai(;) and aéi) # aéi). In this case, the

latter two constraints are redundant: whenever agi) =+ agi), they are satisfiable for a unique choice of a:(,f).

Thus, the redundant constraints do not affect the distribution of a(Si). O]

4 Multi-player Games with Known Parallel Repetition Bounds

Despite our specific counterexample in Section 3, there are classes of multi-player games (most notably, two-
player games [Hol09] and games with complete support [BFS14, FRV16]) whose values decrease exponentially
under parallel repetition. These results are generalized and subsumed by [LW16], who define a “proxy
value” vgns(G) for every k-player game G such that (i) vas(G) < vens(G) and (ii) if vens(G) = 1 — §, then

NG
Vens (G) < (1 — %) . Whenever vg,s(G) < 1, one thus obtains vns(G*) < vsns(G1) < exp(—2(N)).

Specifically, [LW16] studies the following family of strategies.

Definition 4.1 (Sub-non-signaling Strategies [LW16]). A sub-non-signaling strategy P for a k-player game
G =(Q, A m, W) is a collection of non-negative densities {P(q)}qeq over A such that for every S C [k],
there exists a (possibly inefficient) probabilistic algorithm Simg such that for every q € Q and as € Ag,
P(q)s(as) < Sims(gs)(as)-

Definition 4.2. The sub-non-signaling value vsys(G) is the mazimum of > .o 7(q) > qc4 P(q)(a)W (g, a)
with respect to any sub-non-signaling strategy P.

Are these existing positive results sufficient for applications? In particular, do they help us build k-prover
MIPs for hard languages with small non-signaling soundness error?

We give a partial negative answer in Theorem 4.3. We give a relatively efficient algorithm that distin-
guishes for any k-player game G whether v(G) =1 or vsns(G) < 1 — 4.

Theorem 4.3. There is an algorithm that given a k-player game G and § > 0, distinguishes in space
poly(log |G|, 2% /8) whether v(G) =1 or vems(G) <1 — 6.

The following corollary is an immediate application. Informally, this states that any log-prover MIP
obtaining non-signaling soundness error lower than 1 — 1/poly(n) via the parallel repetition result of [LW16]
is limited to languages in PSPACE.

Corollary 4.4. If a language L has a log-prover MIP with completeness 1 and sub-non-signaling soundness
error 1 — 1/poly(n), then £ € PSPACE.

Proof. This follows directly from combining Fact 2.10 and Theorem 4.3. O

On the other hand, as far as we know even three-prover MIPs with constant non-signaling soundness
error may exist for all of EXP. This contrast may be interpreted as evidence that known parallel repetition
results apply to a relatively limited class of games.



Towards proving Theorem 4.3, we first prove an analogous statement Lemma 4.7 for the value vhy_e.ns(G)
against honest-verifier e-non-signaling strategies. Then we show in Lemma 4.10 that with an appropriate
choice of €, Vhyens(G) is not much larger than vens(G).

Definition 4.5 (Honest-verifier e-non-signaling Strategies). For any ¢ > 0, a honest-verifier e-non-signaling

strategy P for a k-player game G = (Q, A, m,W) is a strategy where for every S C [k], there exists a

(possibly inefficient) probabilistic algorithm Simg such that (Q,P(Q)s) ~. (Q,Simg(Qs)) or equivalently

Yo (@) - drv(P(g)s,Sims(gs)) < e.

Remark 4.6. For alle > 0, every e-non-signaling strateqy is also an honest-verifier e-non-signaling strategy.
By constructing two-player simulations of k-player games, we show the following.

Lemma 4.7. There is an algorithm that given a k-player game G and €,5 > 0, distinguishes in space
poly(log |G|, 2% /§¢) whether v(G) = 1 o Vpy-cns(G) < 1 — 4.

Proof. For a k-player game G = (Q, A, m, W), consider the two-player game G= (Q, A, #, W) where
e Q={(¢.(5,¢)): € QS C[k],q € Qs},
o A= {(a,a’) :a € A,a’ € Ag for some S C [k]},

) 27%-7(q) if ¢ =gs
e 7(q,(S,q')) = {0 otherwise

e W((q,(5,4)), (a,a")) = W(g,a) A (a = as).
Intuitively, in G the first player is given all k queries from G, and the second player is given a random

subset of these queries. The second player is used to check that the first player’s answer distribution is a
honest-verifier e-non-signaling strategy.

Claim 4.8. Ifv(G) =1, then v(G) = 1.

Proof. Let P = (Py,..., Px) be alocal strategy for G such that v[P](G) = 1. Then define a local
strategy P = (P1, Py) for G as follows: Pi(q1,...,qx) = (Pi(q1),.-., Px(qx)) and Px(S,q¢") =
(Pi(gi))ies- [

Claim 4.9. vps(G) < max(vhycns(G), 1 — ¢/2%).

Proof. For any non-signaling strategy P = {P(q, (S, q'))}qe,5Ck],q7c0s for G, there exist dis-
tributions {P;(q)}4eq and {Py(S, q')}scir],¢reos such that

vq € Qap((b (Sa q/)){l} = pl(q)
VS C [k] and q/ € QSvp(qv (Sv ql)){Q} = PZ(Sa q/)

If {151 () }qe o is a honest-verifier e-non-signaling strategy for G, then the probability that P
wins G is at most Vhy-e-ns(G)-

Otherwise for some S* C [k], we have qugW(q)dTV(Pl(q)S*,pQ(S*,qs*)) > €. Then let
€q = dTV(Pl(q)S*,pQ(S*7 gs+)). Note that for any jointly distributed random variables (X,Y),
the probability that X =Y is at most 1 —dty(X,Y). Therefore, the probability that Ag- = A,
when (A, 4’) is distributed according to P(Q, (S*,Qs-~)) and Q is distributed according to T,
is at most > .o 7m(q)(1 —¢;) <1— e Therefore, the probability that P wins G is at most

N N N 1 1 €
Pr[S # S*] + Pr[S = S*| Pr[Ag- =A’\S:S]§1—2—k+2—k(1—e)=1—2—k.
Combining these two cases, we obtain vns(G) < max(vhy-cns(G), 1 — €/2%). O



Finally, we use an algorithm of Ito [Ito10, Theorem 2] which additively ¢’-approximates the non-signaling
value of any two-player game G in space poly(log |G|, 1/€'). This algorithms decides whether v(G) = 1 or
Uns(G) < max(1 — 6,1 — €/2%)) in space poly(log |G|, 2 /3¢), hence deciding whether v(G) = 1 or vpy_c.ns(G) <
1-94. O

To finish the proof of Theorem 4.3, we relate vhy-c-ns(G) t0 vens(G).
Lemma 4.10. vpy-cns(G) < vens(G) + 2¢ - 2F.

Proof. We show that for any honest-verifier e-non-signaling strategy P = {P(q)}qecq for G = (Q, A, m, W),
there is a sub-non-signaling strategy P’ = {P'(q)}qeo with v[P'](G) > v[P](G) — 2¢ - 2¥. Let {Simg}scy
be the simulators for P as in Definition 4.5. For any ¢, we view P(q) and Simg(qs) as probability mass
functions P(q) : A — R>¢ and Simg(gs) : As — R>o.

We define P’ for each ¢ € Q,a € A as follows: if there exists S C [k] such that P(q)s(as)—Sims(gs)(as) >

0, then
Pl = P@)(0) - mas (2l (Pla)sas) - Sims(as)(as)) )

Otherwise, P'(¢)(a) = P(q)(a). Note that P'(q)(a) >0 for all ¢ € Q,a € A.
We verify that {P’(q)}4co satisfies the sub-non-signaling constraints. Note that for any S C [k],¢q € Q,
and a € A,

P@)@) < P)(0) - ( et (Pla)stas) - Sims(as)(as) ) = pooo(sSims(as)(as)

Thus for any S C [k],q € Q, and ag € Ag, we have

Plistas) = 3 Plae) < gt 55 pig)a) = Sims(as) os).

a’€A:aly=as a’€Aia’y=as

Note that for any q € Q,

: P |
> 1P@)@ - Plao)l < 3 (| p(g)s(as) - Sims(as)(as)|
P(q)(a) .
e m\”q)s(as) = Sims(as) (o)
P> [Pla)s(a’) = Sims(gs) ()
GEAS
=2 Z drv(P(q)s,Sims(gs))-
SCIk]

is at most

Therefore, the difference ‘U[P}(g) —v[P')(G)

)Y |P@)@) - P@)@)] <23 wla) 3 drv(Pla)s, Sims(as)).

q€Q a€A qeQ SClk]

which is bounded by 2 - 2% - € because {P(g)},co is honest-verifier e-non-signaling. O

Proof of Theorem 4.3. If vens(G) < 1 — 6, then for e = &, Vhveens(G) < 1— (6 —2-2F.¢) =1 - §/2.
Then by Lemma 4.7, there is an algorithm that decides in space poly(log |G|, 2% /§) whether vn(G) = 1 or
Usns(g) <1-9. O



Let MIP.s(k) and MIPg,s(k) denote the classes of languages with k-prover non-signaling MIPs and k-
prover sub-non-signaling MIPs, respectively. In Table 2, we summarize what is known about MIP.s(k) and
MIPgns(k). Note that MIPg,s(k) C MIP (k) since the set of sub-non-signaling strategies strictly contains the
set of non-signaling strategies. It is known that MIP,s(2) = PSPACE [IKMO09, Ito10] and MIPs(poly) = EXP
[KRR14]. If MIP.s(log) strictly contains PSPACE, then Corollary 4.4 shows that non-signaling MIPs using
only games with known parallel repetition bounds are strictly weaker than non-signaling MIPs in general.
We note that it even remains open to resolve whether MIP(3) strictly contains PSPACE.

Number of Provers k MIP,s(k) MIPgns(k)
2 | = PSPACE [IKMO09, Tto10] = PSPACE
log C EXP C PSPACE [This Work]
poly = EXP [KRR14] C EXP

Table 2: Known results on MIP (k) and MIPg(k).
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