
IPS-like Proof Systems Based on Binary Decision Diagrams

Alexander Knop

aknop@ucsd.edu

Department of Mathematics

University of California, San Diego

La Jolla, CA, USA

Abstract

It is well-known that there is equivalence between ordered resolution and ordered binary decision
diagrams (OBDD) [25]; i.e., for any unsatisfiable formula φ, the size of the smallest ordered resolution
refutation of φ equal to the size of the smallest OBDD for the canonical search problem corresponding
to φ. But there is no such equivalence between resolution and branching programs (BP).

In this paper, we study different proof systems equivalent to classes of branching programs between
BP and OBDD. These proof systems are similar to roABP-IPS, an algebraic proof system defined by
Forbes et al. [14] and based on the ideal proof system introduced by Grochow and Pitassi [17].

In the paper, we show that proof systems equivalent to k-OBDD are not comparable with resolution
and cutting planes. We also prove exponential lower bounds for these proof systems on Tseitin formulas.
Additionally, we show that proof systems equivalent to (1,+k)-BP are strictly stronger than regular
resolution.

1 Introduction

In 1991 Lovász et al. [25] defined a search problem Searchφ associated with an unsatisfiable CNF φ: given
a substitution to all the variables of φ, find a falsified clause of φ. In the paper, they also mentioned
an unpublished result of Chvátal and Szemerédi that says that the minimal size of a read-once branching
program for Searchφ is equal to the minimal size of a regular resolution proof of φ. It is easy to see that
the same equivalence holds for decision trees and tree-like resolution proofs and for ordered binary decision
diagrams and ordered resolution proofs.

Later the complexity of this relation was extensively studied in applications of communication complexity
to proof complexity [4, 11,16,19], and in interpolation techniques in proof complexity [13,33].

However, the study of a relationship between the proof complexity of formulas and the complexity of
branching programs for corresponding search problems was stuck and nothing is known for bigger classes of
diagrams.

In this paper, we try to revitalize this research in the light of IPS-like proof systems. The IPS proof
system is an algebraic proof system defined recently by Grochow and Pitassi [17].

Let f1, . . . , fm ∈ F[x1, . . . , xn] be a system of polynomials. An IPS proof, showing that the poly-
nomials f1, . . . , fm do not have a common solution in {0, 1}n, is an algebraic circuit C(x̄, ȳ, z̄) ∈
F[x1, . . . , xn, y1, . . . , ym, z1, . . . , zn]

1, such that

1. C(x1, . . . , xn, 0, . . . , 0) = 0 and

2. C(x1, . . . , xn, f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), x
2
1 − x1, . . . , x

2
n − xn) = 1.

If the circuit C comes from a restricted class of circuits C we call such a refutation C-IPS refutation.

1In the following we denote by x̄ the vector of the variables x1, . . . , xn and we use the same notation for ȳ and z̄.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 179 (2017)

This proof system is in the spotlight because superpolynomial lower bounds for this proof system imply
VP 6= VNP. Unfortunately, IPS is a very strong proof system. For example, it simulates the Extended
Frege proof system (but the opposite direction is unknown).

In 2016 Forbes et al. [14] considered C-IPS proof systems for several classes of circuits C and proved
exponential lower bounds for some of them including the IPS-like proof system based on algebraic read-once
oblivious branching programs (roABP) defined by Nisan [27].

An algebraic read-once oblivious branching program (roABP) on the variables x1, . . . , xn over a field F,
is a directed acyclic graph such that:

1. the vertices are partitioned into n + 1 layers V0, . . . , Vn, so that if s is a source node and t is a sink
node then V0 = {s}, Vn = {t}, and each edge goes from Vi−1 to Vi for some 0 < i ≤ n;

2. each edge e is labeled by an univariate polynomial over F;

3. each variable xi appears exactly on edges in edge labels in an exactly one layer.

Each s-t path in the roABP is said to compute the polynomial equal to the product of the labels of its edges
and the roABP computes the sum over all s-t paths of such polynomials.

Note that layers define a variable order. Thus, roABPs are very similar to OBDDs and roABPs over F2

are also known as ⊕-OBDDs. In order to stress this similarities we give the equivalent definition of ⊕-OBDD.
A parity ordered binary decision diagram (⊕-OBDD) on the variables x1, . . . , xn is a directed acyclic

graph such that:

1. each vertex in this graph is labeled either by a variable xi for i ∈ [n], or by ⊕, or by a Boolean constant;

2. If a vertex is labeled by a variable, then it has exactly two outgoing edges: one edge is labeled by 0
and the other one is labeled by 1, additionally if a vertex is labeled by a constant it is a sink;

3. there is an order π such that on any path in the graph all variables that appear as labels of vertices
among the path are ordered in this order.

Every such a diagram defines a Boolean function {0, 1}n → {0, 1}. The value of this function may be
computed in a recursive manner: for a sink the value is equal to the label of the sink, for a vertex labeled by
a variable the value is equal to the value of a diagram along the edge that corresponds to the value of the
variable, and for a vertex labeled by ⊕ the value is equal to the parity of the values of its children.

Because of the similarities between roABP and ⊕-OBDD, it is reasonable to consider proof systems
similar to roABP-IPS, but based on classical branching programs.

In the following we consider three types of branching programs: ⊕-OBDD, (1,+b)-BP, and b-OBDD (for
formal definitions see Section 2). Based on them we define three types of proof systems: ⊕-OBDD-PSa,

(1,+b)-BP-PSa, and b-OBDD-PSa, where proof of φ(x1, . . . , xn) =
m
∧

i=1

Ci(x̄) in C-PSa (C is a class of

branching programs) is a C branching program D on the variables x1, . . . , xn, y1, . . . , ym such that

1. D(x1, . . . , xn, 1, . . . , 1) = 1,

2. D(x1, . . . , xn, C1(x1, . . . , xn), . . . , Cm(x1, . . . , xn)) = 0, and

3. on any path in D the variables y1, . . . , ym occur at most a times in total altogether.

1.1 Our results and Structure of the Paper

In Section 3, we show that for the new proof systems based on (1,+b)-BP and b-OBDD the size of the
smallest proof of φ is equal to the smallest size of (1,+b)-BP and b-OBDD diagram for Searchφ, respectively
and prove that ⊕-OBDD-PS1 p-simulates b-OBDD-PS1 for any constant b > 0.

In Section 4, we construct a transformation that maps a formula φ to a formula ψ such that if Searchφ
has large communication complexity, then Searchψ has large best-communication complexity. Using this

2

transformation and result of Göös and Pitassi [16] we construct hard formulas for b-OBDD-PS1 and moreover,
prove that b-OBDD-PS1 does not p-simulate RegRes. However, we show that TreeTh(k) does not p-
simulate OBDD-PS1.

In Section 5, using lower bounds on the communication with a limited number of rounds, we prove

2Ω(n
1/2b) lower bound for size of b-OBDD-PS1 proofs of Tseitin formulas. Moreover, we show that this

lower bound is almost tight and as a result, show that Res does not p-simulates b-OBDD-PS1 for b ≥ 2.
Additionally, we generalize this proof and using this generalization show that Clique–Coloring principle

has b-OBDD-PS1 proof of size 2Ω(nc/b logn) for some absolute constant c > 0. Hence, we separate se-
mantic CP and b-OBDD-PS1 for large enough b. In addition, we prove a polynomial upper bound for
size of ⊕-OBDD-PS1 proof of Tseitin formulas. Hence, we prove that b-OBDD-PS1 does not p-simulate
⊕-OBDD-PS1.

In the last section, we extend separation between Res and 2-OBDD-PS1. We also show that RegRes

does not p-simulates (1,+1)-BP-PS1.
For all the listed results see Figure 1.

2 Preliminaries

2.1 Branching programs

The proof systems studied in the paper are based on different types of branching programs. This section
presents a formal definition of them and gives some important properties of them.

Let Λ be a set and Ω be a set of functions such that any function f ∈ Ω maps Λl to Λ for some l. An
Ω-nondeterministic branching program or Ω-nondeterministic binary decision diagram is a data structure
that represents a {0, 1}n → Λ function. Let Γ = {x1, . . . , xn} be a set of propositional variables. An Ω-
nondeterministic binary decision diagram is a directed acyclic graph with one source. Every vertex of the
graph is labeled by a variable from Γ, or a function from Ω, or by an element of Λ.

• If a vertex is labeled by an element of Λ, then it is a sink (a sink is a vertex with out-degree 0). We
call a vertex labeled by λ ∈ Λ a λ-sink.

• If a vertex is labeled by a variable, then it has exactly two outgoing edges: one edge is labeled by 0
and the other one is labeled by 1.

• If a vertex is labeled by a function {0, 1}l → {0, 1}, then vertex has l outgoing edges, labeled by
numbers 1, . . . , l.

Every binary decision diagram defines a function {0, 1}n → Λ. The value of the function for given values
of x1, . . . , xn is computed recursively. For each vertex v of a diagram corresponds a value from Λ computed
in the following manner:

• if v is a sink, then the value is equal to a label in the vertex,

• if v is labeled by a variable xi and u is a vertex such that v and u are connected by an edge labeled by
the value of xi, then the value in the vertex v is equal to the value in the vertex u,

• if v is labeled by a function f : Λl → Λ, u1, . . . , ul are vertices such that v and ui are connected by an
edge labeled by i, and a1, . . . , al are the values in the vertices u1, . . . , ul respectively, then the value
in v is equal to f(a1, . . . , al).

In addition, if R ⊆ {0, 1}n × Λ, then we say that a branching program D is a branching program for R
iff D represents a function f : {0, 1}n → Λ such that, (x̄, f(x̄)) ∈ R for all x̄ ∈ {0, 1}n.

In the text we consider three types of branching programs.

3

1-BP-PS1RegRes

2-OBDD-PS1

⊕-OBDD-PS1

Res

k-OBDD-PS1

(1,+1)-BP-PS1

OBDD-PS1

TreeTh(k)

⊕-(1,+1)-BP-PS1

⊕-(1,+k)-BP-PS1

(1,+k)-BP-PS1

⊕-1-BP-PS1

TreeRes

CP

OrdRes

Figure 1: C1 −→ C2 denotes C1 p-simulates C2, and C1 99K C2 denotes C1 does not p-simulate C2. Blue
indicates new results.

4

x

yy

zz

10

1

1

1

0

0

0

1

1

0

0

(a) OBDD for x⊕ y ⊕ z

⊕

y zx

10

1 1

1

0

0

0

(b) ⊕-OBDD for x⊕ y ⊕ z

• Let ⊕n : {0, 1}n → {0, 1} be the parity function and
⊕

=
⋃

n∈N

{⊕n}. A
⊕

-nondeterministic branching

program D is called a ⊕-(1,+b)-BP if on any path in D there are at most b variables that occur more
than once. If b is equal to 0 we denote such a diagram ⊕-1-BP.

• A
⊕

-nondeterministic branching program D is called a read-b ⊕-OBDD if there is an order π and a
partition of vertices of D to b layers D1, . . . , Db such that on any path in Di variables are ordered
in this order and edges leaving Di go to Di+1, . . . , Db. If b is equal to 1 we denote such a diagram
⊕-OBDD. Sometimes we need to write a read-b ⊕-OBDD as a string, in this case we write an order
over the variables, a partition of the graph into layers, and a graph with all labels.

• A read-b ⊕-OBDD D is called a b-OBDD if D is an ∅-nondeterministic branching program. If b is
equal to 1 we call such a diagram an OBDD.

• Additionally a ⊕-(1,+b)-BP D is called a (1,+b)-BP if D is an ∅-nondeterministic branching program.
If b is equal to 0 we call such a diagram a 1-BP.

It is easy to see, that any function has OBDD representation of size at most 2n+1 and as a result it has
b-OBDD, (1,+b)-BP, ⊕-(1,+b)-BP, and ⊕-OBDD of size at most 2n+1.

One of the most important property of these classes of branching programs is the following.

Theorem 2.1 ([35]). There are polynomial-time algorithms for satisfiability testing of b-OBDD.

Theorem 2.2 ([6]). There are polynomial-time algorithms for satisfiability testing of ⊕-OBDD.

Theorem 2.3 ([31]). For any constant b there is a polynomial-time algorithms for satisfiability testing of
(1,+b)-BP and moreover there is a polynomial-time one-side error probabilistic algorithm for satisfiability
testing of ⊕-(1,+b)-BP.

Additionally, we need the following folklore property.

Theorem 2.4. Let D be a (1,+b)-BP, or a ⊕-(1,+b)-BP, or a b-OBDD, or a ⊕-OBDD representing f , a
(1,+b)-BP, or a ⊕-(1,+b)-BP, or a b-OBDD, or a ⊕-OBDD respectively that represents ¬f can be computed
in polynomial in |D| time.

Theorem 2.5 ([8]). For any k, there is a polynomial p such that for any function representable by a read-k
⊕-OBDD of size S there is a ⊕-OBDD representation of size p(S).

Moreover, for any fixed b there is a polynomial-time algorithm that constructs a read-1 ⊕-OBDD by a
read-b ⊕-OBDD.

5

2.2 Proof systems

2.2.1 Resolution based proof systems

The resolution principle says that if C and D are clauses and x is a variable, then any assignment that
satisfies both of the clauses C ∨x and D∨¬x also satisfies C ∨D. The clause C ∨D is said to be a resolvent
of the clauses C ∨ x and D ∨ ¬x derived by resolving on the variable x.

This definition leads us to a definition of a resolution proof system (Res). A resolution derivation of a
clause C from a CNF φ is a sequence of clauses in which each clause is either a clause of φ, or is a resolvent
of two previous clauses, and C is the last clause in the sequence; it is a refutation of φ if C is the empty
clause.

It is possible to represent a resolution refutation as a directed acyclic graph where the vertices are the
clauses in the refutation, each clause of φ has out-degree 0, and any other clause has two edges go to the
two clauses that produced it. The empty clause is the only source in this graph. The edges go to C ∨ x and
D ∨ ¬x are labeled with the literals x and ¬x respectively.

In this paper we mostly interested in three subclasses of resolution proofs. A regular resolution (RegRes)
refutation of φ is a resolution refutation such that on any path from the empty clause to a clause in φ, no
variable occurs more than once as an edge label. We call a regular resolution refutation ordered (OrdRes) if
every sequence of variables labelling a path from the empty clause to a clause in φ respects the same ordering
on the variables.

Finally, a tree-like resolution (TreeRes) refutation is one in which the underlying graph is a tree.

2.2.2 Proof systems based on binary decision diagrams

Let us now define a new family of proof systems studied in this paper.

Let φ(x̄) =
m
∧

i=1

Ci(x̄) be an unsatisfiable formula in CNF, Ω be a set of Boolean functions, and C be a

class of Ω-nondeterministic branching programs. A C-PSa proof of formula φ is a diagram D ∈ C such that

• D depends on variables x1, . . . , xn, y1, . . . , ym,

• D(x̄, 1, . . . , 1) = 1 for all x̄ ∈ {0, 1}n,
• D(x̄, C1(x̄), . . . , Cm(x̄)) = 0 for all x̄ ∈ {0, 1}n,
• on any path in D the variables y1, . . . , ym occur not greater than a times in total altogether2.

It is easy to see that these proof systems is sound; completeness is little bit trickier and depends on a
class C, but is also true since any function has an OBDD representation. Now let us prove efficiency for
b-OBDD-PSa, ⊕-OBDD-PSa, and (1,+b)-BP-PSa using properties of these classes of branching programs.

Theorem 2.6. For any constants a > 0 and b > 0, b-OBDD-PSa and ⊕-OBDD-PSa are proof systems in
the Cook and Reckhow sense. Also for any constant k > 0, (1,+b)-BP-PSa is a proof system for k-CNFs
in the Cook and Reckhow sense and ⊕-(1,+b)-BP-PSa is a probabilistic proof system for k-CNFs in the
following sense (for similar proof systems see [17,29,30]): there is a polynomial-time randomized algorithm
V (x, y) such that

• for any unsatisfiable formula φ in k-CNF and any ⊕-(1,+b)-BP-PSa proof P of φ,

Pr[V (φ, P) = 1] = 1.

• for any formula φ if P is not a ⊕-(1,+b)-BP-PSa proof of φ, then

Pr[V (φ, P) = 1] ≤ 1

4
.

2 Note that when C = (1,+b)-BP there are two constraints on variables y1, . . . , ym: on any path they occur at most a times
and at most b of them occur more than once.

6

For proving this theorem we need the following Lemmas.

Lemma 2.1 ([31]). The test if a branching program is a (1,+b)-BP can be done in polynomial time.

Additionally using ideas of Lemma 2.1 we may prove the following lemma.

Lemma 2.2. For any constant b > 0 the test if a branching program is a ⊕-(1,+b)-BP can be done in
polynomial time.

Proof. Without loss of generality we may assume that given branching program D is a branching program
over the variables x1, . . . , xn. Let us denote as E the set of edges of D.

For any I ⊆ [n] we assign to every path p a function αI,p : [n] → {0, 1, 2} such that for all i ∈ I

αp(i) = min(si, 2) where si is a number of occurrences of xi in p.
By TαI (v) we denote a truth value of the statement that there is a path p from v to the sink such that

αI,p = α. If i ∈ I let us also denote by α+ i a function β : I → {0, 1, 2} such that β(i) = min(α(i) + 1, 2).
Let v be a node labeled by xi. It is easy to see, that if i ∈ I, and v0 and v1 are 0-successor and 1-successor

respectively, then TαI (v) =
∨

β:β+i=α

T
β
I (v0) ∨ T

β
I (v1) and if i 6∈ I or if v is a nondetermenistic node, then

TαI =
∨

(v,u)∈E
TαI (u).

Let s be the sink of D. In order to test the required property it is sufficient to check if for every I of size
b + 1 and every α : I → {0, 1, 2} such that α(i) = 2, TαI (s) is false. Note that using the formula for TαI it
is possible to compute each TαI in polynomial time and we have to compute it for

(

n
k

)

different choices of I.
As a result, we can check the required property in polynomial time.

Lemma 2.3. Let Ga be a set of all directed labeled graphs G such that:

1. G does not have cycles,

2. G has one source,

3. the vertices of G are labeled by variables y1, . . . , ym, and

4. on any path in from the source to a sink there at most a vertices labeled by y1, . . . , yi in total.

For any a, the test if a graph G belongs to G can be done in polynomial time.

Proof. The proof of this lemma is similar to the proof of Lemma 2.2. Let G be a given graph. It is easy to
see that we can check first four constraints in polynomial time. But we also want to check that on any path
in this graph the variables y1, . . . , ym occur not greater than a times in total. In order to to it we mark
each vertex v by the minimal number Ov such that on any path p from the source to v the variables y1, . . . ,
ym occur on not greater than Ov times in total altogether.

In order to do it, let us consider in the topological ordering of the graph G. It is easy to see that for the
source s = v1 of the graph Os = 0 and for any vertex v with successors u1, . . . , ud if v is labeled by yi for
some i ∈ [m], then Ov = min

i∈[d]
Oui

+ 1 and if v is not labeled by yi for any i ∈ [m], then Ov = min
i∈[d]

Oui
. As a

result we can check that Ov is at most a for all vertices v.

Proof of Theorem 2.6. Let φ =
m
∧

i=1

Ci be a CNF, Ω be a set of all parity functions, and D be a Ω-

nondeterministic branching program that is a candidate for ⊕-OBDD-PSa proof of φ.
In order to check that D is a ⊕-OBDD-PSa proof of φ we have to check five properties.

1. D depends only on the variables x1, . . . , xn, y1, . . . , ym;

2. D(x̄, 1, . . . , 1) = 1 for all x̄ ∈ {0, 1}n;

3. D(x̄, C1(x̄), . . . , Cm(x̄)) = 0 for all x̄ ∈ {0, 1}n;

7

4. on any path in D the variables y1, . . . , ym occur not greater than a times in total;

5. D is a ⊕-OBDD.

It is easy to see that property 1 can be checked by lookup on all vertices of D. We can check property
5 since encoding of a ⊕-OBDD includes a candidate for order over variables and we can check if all labels
are ordered in this order by lookup on all vertices and their predecessors. Property 4 can be checked using
Lemma 2.3.

Let us check now property 2. This property is equivalent to the property that ¬D(x̄, 1, . . . , 1) is unsatisfi-
able. Using Theorem 2.4 and Theorem 2.2 we can check this property in polynomial time. In order to check
property 3 we have to check that D(x̄, C1(x̄), . . . , Cm(x̄)) is unsatisfiable. Note that if we replace each yi by
a ⊕-OBDD representing a clause Ci we get a read-(a+2) ⊕-OBDD represents D(x̄, C1(x̄), . . . , Cm(x̄)) of size
at most |D| ·n and using Theorem 2.5 and Theorem 2.2 we can check if it is unsatisfiable in polynomial time.
Hence we prove that ⊕-OBDD-PSa is a proof system in the Cook and Reckhow sense. For b-OBDD-PSa
the proof is the same but we also have to check that given branching program is deterministic.

For the case of (1,+b)-BP-PSa (⊕-(1,+b)-BP-PSa) we need the additional requirement: φ should be a
k-CNF formula. In this case after the substitution of the clause Ci instead of yi we get a (1,+(b+ ak))-BP
(⊕-(1,+(b + ak))-BP-PSa) and we can use Theorem 2.3 and do everything as in the previous case. Also,
for testing if a branching program is a (1,+b)-BP we use Lemma 2.1 (for testing if a branching program is
a ⊕-(1,+b)-BP we use Lemma 2.2).

3 The Canonical Search Problem

Let φ(x1, . . . , xn) =
m
∧

i=1

Ci(x1, . . . , xn) be an unsatisfiable formula in CNF. Let us define a relation Searchφ ⊆
{0, 1}n × [m] such that (x1, . . . , xn, i) ∈ Searchφ iff Ci(x1, . . . , xn) = 0. In the paper [25] was proven that,
the size of the smallest regular resolution proof (ordered resolution proof) of φ is equal to the size of the
smallest read-once branching program (ordered binary decision diagram) for the relation Searchφ.

In this paper we for each a ∈ N we consider the following generalization of this relation: a-Searchφ ⊆
{0, 1}n × [m]a such that ((x1, . . . , xn), (i1, . . . , ia)) ∈ a-Searchφ iff these exists j ∈ [a] such that
Cij (x1, . . . , xn) = 0.

We show an equivalence between the smallest size of a b-OBDD ((1,+b)-BP) for a-Searchφ and the
smallest b-OBDD-PSa ((1,+b)-BP-PSa) proof of φ respectively.

Theorem 3.1. Let φ =
m
∧

i=1

Ci be an unsatisfiable formula in CNF in n variables.

1. If there is a (1,+b)-BP (b-OBDD) for a-Searchφ of size S, then there is a (1,+b)-BP-PSa proof
(b-OBDD-PSa proof) of φ of size (a+ 2) · S.

2. If there is a (1,+b)-BP-PSa (b-OBDD-PSa) proof of φ of size S, then there is a (1,+b)-BP (b-OBDD)

for a-Searchφ of size

(

a
∑

i=0

(

n
i

)

)

· S.

Proof. The proof of the first statement is relatively easy. Let D be a diagram for a-Searchφ. We replace
each sink of the diagram labeled by {i1, . . . , ia} by a diagram representing the conjunction of yi1 , . . . , yia
and get a diagram D′. It is easy to see, that

• D′(x1, . . . , xn, 1, . . . , 1) = 1 for all x1, . . . , xn,

• D′(x1, . . . , xn, C1(x1, . . . , xn), . . . , Cm(x1, . . . , xn)) = 0 for all x1, . . . , xn, and

• the size of D′ is at most 2a · |D|.

8

The proof of the second statement is little bit more involved. But the idea behind it is simple: we
somehow reverse the transformation from the proof of the first statement. Let us fix some b-OBDD-PSa
((1,+b)-BP-PSa) proof D of the formula φ. Let p be a consistent path from source to a vertex v and
Yp = {i ∈ [m] : yi occur on the path p}. Note that if v is a 0-sink, and x̄ ∈ {0, 1}n is an input such that
x̄, C1(x̄), . . . , Cm(x̄) activates the path p, and for all i ∈ Yp, Ci(x̄) = 0 holds, then x̄, 1, . . . , 1 also activates
the path p but it is a contradiction with a constraint 2 in the definition of b-OBDD-PSa ((1,+b)-BP-PSa).
Hence for any input x̄ if x̄, C1(x̄), . . . , Cm(x̄) activates the path p there is i ∈ Yp such that Ci(x1, . . . , xn) = 0.

We would like to label each 0-sink v of D by a corresponding Yp (where p is some path from the source
to v). The problem is that for different paths p and q from the source to the 0-sink two sets Yp and Yq may
be different. To solve this issue we construct a b-OBDD-PSa ((1,+b)-BP-PSa) proof D

′ of φ such that for
any vertex v of D′ and two paths p and q from the source of D′ to v Yp = Yq holds. In order to do it we

create
a
∑

i=0

(

n
i

)

copies of each vertex of the diagram D (the diagram D′ splits in a copy of a vertex v by the

same variable as in the vertex v), each of them is marked by a subset of [n] of size i ∈ {0, . . . , a}. Let u′

be a copy of u and v′ be a copy of a v. Let us assume that u′ is marked by Y u
′

and v′ is marked by Y v
′

.
If there is an edge from u to v, and Y u

′

= Y v
′

, and u is labeled by xi for some i ∈ [n], then we create an
edge from u′ to v′. Additionally, if there is an edge from u to v, and Y u

′ ∪ {i} = Y v
′

, and u is labeled by yi
for some i, then we create an edge from u′ to v′. Unfortunately, this diagram has more than one source, in
order to solve this problem we delete all vertices not reachable from the copy of the source of D marked by
the empty set.

Note that for any path p in D′ from the source to a vertex v the set Yp = Y v. Now let us transform this
proof into a a b-OBDD ((1,+b)-BP) D′′ that returns a subset of [n] of size at most a such that if an input
x̄ ∈ {0, 1}n and ȳ ∈ {0, 1}m activates a path that goes through a vertex v labeled by yi, then i ∈ D′′(x̄, ȳ)
and for any input x̄ ∈ {0, 1}n there is i ∈ D′′(x̄, C1(x̄), . . . , Cm(x̄)) such that Ci(x̄) = 0. In order to do it,
we copy a diagram D′ and say that in each sink v of D′ the diagram returns the value Y v.

Finally, we transform D′′ into a b-OBDD ((1,+b)-BP) D′′′ for a-Searchφ by eliminating splittings by the
variables yi. For each vertices u, v, and w such that there is an l-edge from u to v (l ∈ {0, 1}), and v is
labeled by yi, and there is a 1-edge from v to w, we remove these edges and create an l-edge from u to w.
Let us prove that the resulting diagram is a diagram for a-Searchφ. Consider some input x̄ ∈ {0, 1}n and a
path p in D′′ that is activated by x̄, C1(x̄), . . . , Cm(x̄). Note that there is i ∈ D′′(x̄, C1(x̄), . . . , Cm(x̄)) such
that Ci(x̄) = 0 and there is a vertex v in the path p labeled by yi. Let us consider the first vertex u in the
path p such that u is labeled by a variable yj such that Cj(x̄) = 0. Note that j ∈ D′′′(x̄). Also note that

size of D′′′ is at most

(

a
∑

i=0

(

n
i

)

)

· S.

Corollary 3.1. • The proof system 1-BP-PS1 is polynomially equivalent to regular resolution.

• The proof system OBDD-PS1 is polynomially equivalent to ordered resolution.

Proof. The result follows immediately from results in [25]. The paper [25] proved that for any unsatisfiable
formula φ in CNF the minimal size of a regular resolution (ordered resolution) proof of φ is equal to the
minimal size of a 1-BP (OBDD) for Searchφ. Hence using Theorem 3.1 we prove the equivalence.

Corollary 3.2. Let b > 0 and a > 0 be constants and φ be an unsatisfiable formula in CNF. If there is a
b-OBDD-PSa proof of φ of size S, then there is an order π and a (b+1)-OBDD-PSa proof D of φ such that

• |D| =
(

a
∑

i=0

(

n
i

)

)

· (a+ 2) · S,

• D is a π-(b+ 1)-OBDD,

• the variables x1, . . . , xn precedes the variables y1, . . . , ym in the order π, and

• all the variables y1, . . . , ym occur in D only in the last layer.

9

Proof. Let us consider a b-OBDD-PSa proof D′′ of φ of size S. We transform D′′ into a b-OBDD D′ for

Searchφ of size

(

a
∑

i=0

(

n
i

)

)

S. After that we replace each sink of D′ labeled by {i1, . . . , ia} by a diagram for

yi1 ∧ · · · ∧ yia and get a diagram D.
It is easy to see that D satisfies constraints of this conjecture.

Moreover, using Corollary 3.2 we can show that ⊕-OBDD-PSa polynomially simulates b-OBDD-PSa.

Theorem 3.2. Let b > 0 be a constant. There is a polynomial p such that if for some CNF φ there is a
b-OBDD-PSa proof of size S, then there is a ⊕-OBDD-PSa proof of size p(S).

Lemma 3.1 ([15]). Let f : {0, 1}n → {0, 1}, g : {0, 1}n → {0, 1}, and F and G be ⊕-OBDDs that represent
functions f and g respectively. Then

• there is a ⊕-OBDD that represents f(x) ∧ g(x) of size |F | · |G|;

• there is a ⊕-OBDD that represents f(x)⊕ g(x) of size |F |+ |G|+ 1;

Proof of Theorem 3.2. Let φ be an unsatisfiable formula in CNF, D be its (b + 1)-OBDD-PSa proof with
the corresponding order π from Lemma 3.2, D1, . . . , Db+1 be a partition of D into layers from the definition
of (b+ 1)-OBDD, and V1, . . . , Vb+1 be sets of vertices corresponding to D1, . . . , Db+1.

For v ∈ Vb+1 let D(v) be an OBDD obtained from D by choosing v as a source and eliminating all vertices
not reachable from v. For v ∈ Vi and w ∈ Vj (1 ≤ i < j ≤ b), let D(v, w) be an OBDD obtained from D by
choosing v as a source, replacing each node except w from layers Vl for l > i by 0-sink and w by 1-sink, and
eliminating all nodes not reachable from v.

Let v1 be a source of D and consider a consistent path starting at v1 in D1 and leading through layers
1 = l(1) < l(2) · · · < l(r) = b + 1 such that layer Dl(i) reached the first time at a vertex vi. Note that a
condition z̄ is a satisfying input and this path is activated by x̄ is equivalent to a condition that D(vi, vi+1)
is satisfied by z̄ for all 1 ≤ i < r and D(vr) is also satisfied by z̄. Since r, l(1), . . . , l(r), v1, . . . , vr are fixed
by the path and the path is fixed by the input z̄ we have the following claim.

Claim 3.2.1. An input z̄ is satisfiable input of D iff there are unique r, 1 = l(1) < l(2) · · · < l(r) = b + 1,
v2 ∈ Vl(2), . . . , vr ∈ Vl(r) such that

∧

1≤i<r
D(vi, vi+1) ∧D(vr) is satisfied by z̄.

Also note that number of different r, v1, . . . , vr is bounded by (k+1)·|D|b and for each choice of them the
π-OBDDs D(v1, v2), . . . , D(vr−1, vr), and D(vr) have size at most |D|. Hence if we consider ∧

1≤i<r
D(vi, vi+1)

by Lemma 3.2 we get a π-OBDD of size at most |D|b, additionally note that
∧

1≤i<r
D(vi, vi+1) does not split

by the variables y1, . . . , ym. Since all the variables y1, . . . , ym precedes the variables x1, . . . , xn in the order
π and D is a b-OBDD-PS1 proof of φ, an OBDD representation of

∧

1≤i<r
D(vi, vi+1) ∧D(vr)

has size at most |D|b+1 and the variables y1, . . . , ym occur at most a times in total on any path in this
diagram.

As a result, by Claim 3.2.1 and by Lemma 3.2 a ⊕-OBDD representation of

⊕

r,v1,...,vr





∧

1≤i<r
D(vi, vi+1) ∧D(vr)





is a ⊕-OBDD-PSa proof of φ of size O(|D|2b+2).

10

4 Lower Bounds via Best-Communication Complexity

In this section we prove a lower bound for b-OBDD-PS1 and technique we use for the lower bound we prove
a separation between b-OBDD-PS1 and 1-BP-PS1.

4.1 Lower Bound for b-OBDD-PS1

Theorem 4.1. There is a family {φn}n∈N
of formulas in CNF such that for any b > 0

• |φn| = poly(n);

• any b-OBDD-PS1 proof of φn has size at least 2Ω(
n

b log n).

For proving this theorem we need to introduce a notion of communication complexity introduced by
Yao [38]. Let f : {0, 1}n → {0, 1} be a Boolean function. We have two players called Alice and Bob, who
have to compute f(s) with partition Π = (Π0,Π1) ⊆ [n]2 (Π0 ∩ Π1 = ∅). The function f is known by both
of them. However Alice knows only bits of s with indices from Π0 and Bob knows only bits of s with indices
from Π1. They have a two-sided communication channel. On each round of their communication one of
them sends a string and Alice and Bob are trying to minimize two parameters: total number of sent bits
and number of rounds.

In a more general situation, we have a relation R ⊆ {0, 1}n × Z and Alice knows bits with indices from
Π0 and Bob knows with indices from Π1 and they wish to find z ∈ Z such that (s, z) ∈ R.

More formally, a communication protocol is a tree T where each internal node v is labeled either by a
function av : {0, 1}n → {0, 1}lv depending on bits with indices from Π0 or by a function bv : {0, 1}n → {0, 1}lv
depending on bits with indices from Π1, each leaf is labeled by an element z ∈ Z, each node has 2lv children,
and each edge is labeled by a string from {0, 1}lv . The value of the protocol T on input s is the label of the
leaf reached starting from the root, and walking on the tree, at each internal node labeled by m we go by
the edge labeled by m(s).

The cost of the protocols on input s is the sum of lengths of strings on edges from the path, and the
number of rounds on input s is the length of the path. The cost (number of rounds) of T is a maximum of
costs (numbers of rounds) over all inputs.

The communication complexity denoted DΠ (R) of a relation R is the cost of the best protocol for this
relation with partition Π. Additionally, we denote by D(k),Π (R) the cost of the best protocol with k rounds
for this relation with partition Π.

Sometimes, we consider communication complexity of functions f : A × B → Λ, in this case we omit
partitions and assume that Alice knows value a ∈ A and Bob knows value b ∈ B.

It is easy to see that for any relation R ⊆ {0, 1}n×Z, partition of input bits Π, and order π over variables
x1, . . . , xn such that for any i ∈ Π0 and j ∈ Π1 i precedes j in order π, DΠ (R) ≤ ⌈logS⌉, where S is the size
of the smallest π-OBDD for R. Indeed, Alice simulates first |Π0| variables of the π-OBDD for R, she then
sends a description of a node from which the simulation should continue and Bob can finish the simulation
and compute the output.

Unfortunately, if we do not fix an order, classical communication complexity is not enough for describing
OBDD complexity. Let us consider for instance a function EQn : {0, 1}2n → {0, 1} such that EQn(x, y) = 1.
It is known that communication complexity of EQn with partition ({1, . . . , n} , {n+ 1, . . . , 2n}) is equal to
n+ 1, but there is an OBDD of size 2n for it.

However, if we consider the best-communication complexity, then the situation would be much better.
The best-communication complexity Dbest (R) of a relation R ⊆ {0, 1}2n×Z is the minimal communication
complexity over all the partitions Π of input bits between Alice and Bob such that |Π0| = |Π1| = n. Besides,
we denote by D(k),best (R) the best-communication complexity with k rounds.

Lemma 4.1 (see for example [23, Lemma 12.12]). Let f : {0, 1}n → {0, 1} be a Boolean function. For any
b > 0, if there is an b-OBDD of size S for f , then Dbest (f) ≤ (2b− 1) ⌈logS⌉.

11

For proving lower bounds for b-OBDD-PS1 it is sufficient to construct a formula φ in CNF such that
Searchφ has big best-communication complexity. Our construction is based on a CNF φ such that Searchφ
has big communication complexity for at least one partition.

Such a result was proven in the paper [16]. Actually the have proven stronger lower bound, they have
proven a lower bound for probabilistic communication complexity. However, deterministic complexity is
enough for our case.

Lemma 4.2 ([16]). There is a family φn of formulas in k-CNF (k is a constant) such that

• |φn| = poly(n) and φn depends on O(n) variables;

• there is a partition Π of variables of φ such that DΠ (Searchφ) = Ω
(

n
logn

)

Now we need to transform this formula to a formula with large best-communication complexity of the
corresponded search problem. There is a construction of such a transformation introduced by Lam and
Ruzzo [24], but their transformation does not fit out our situation. In construction of Lam and Ruzzo it
is necessary that hard problem is paddable, but Searchφ for φ from Lemma 4.2 is not paddable. So we
introduce a new transformation based on ideas of Segerlind [32].

Theorem 4.2. There is a transformation F of CNFs into CNFs such that for any large enough n, constant k,
formula φ in k-CNF depending on n variables, and partition of inputs Π, Dbest

(

SearchF(φ)

)

≥ DΠ (Searchφ)
and |F(φ)| = poly(n, |φ|) hold.

Idea of the transformation may be explained in three steps. Let φ be an unsatisfiable formula in CNF
with variables x1, . . . , xn.

1. Let us consider the following transformation:

permSn
(φ)(z1, . . . , zl, x1, . . . , xn) =

∧

α∈Sn

(enc(z1, . . . , zl) = α) → φ(xα(1), . . . , xα(n)),

where Sn is a set of permutations over [n], l = ⌈log |Sn|⌉ and enc : {0, 1}l → Sn is some surjective
function. If Π = (Π0,Π1) is a partition of the variables x1, . . . , xn, then for any partition Γ of the

variables x1, . . . , xn, z1, . . . , zl such that |Π0| = | {xi : xi ∈ Γ0} | holds DΓ
(

SearchpermSn
(φ)

)

≥
DΠ (Searchφ). Indeed, let α be a permutation over [n] such that Π0 = α({xi : xi ∈ Γ0}); we consider
a protocol for SearchpermSn

(φ) and run this protocol for some values of the variables x1, . . . , xn and

the values of the variables z1, . . . , zl such that enc(z1, . . . , zl) = α. By definition we get a protocol for
Searchφ.

The problem of this construction is the length of permSn
(φ) it is exponential in n.

2. Second idea is to consider some “good” set of permutations P instead of Sn. Unfortunately, in this
case permutation α such that Π0 = α({xi : xi ∈ Γ0}) does not necessary belongs to P .

3. Finally, third idea is to replace variables of φ by or of many fresh variables. Consider

permP (φ)(z1, . . . , zl, y1, . . . , ynm) =

∧

α∈P



(enc(z1, . . . , zl) = α) → φ





m
∨

i=1

yα(i), . . . ,

nm
∨

i=(n−1)m+1

yα(i)







 ,

where P ⊆ Snm, l = ⌈logP ⌉, and enc : {0, 1}l → P is some surjective function.

12

Now let us explain how to encode the result of this transformation in CNF. First of all, we need to define
a composition of formulas. Let φ be a k1-CNF depending on x1, . . . , xn and g be a k2-CNF depending on
m variables. We denote by φ ⋄ g a k1 · k2-CNF of size |g|k1 |φ| depending on variables the y1,1, . . . , ym,n such

that φ⋄ g is a result of substitutions xi for g(yi,1, . . . , yi,m) and applications of distributive law. If g =
m
∨

i=1

yi,

then we denote φ ⋄ g by φm.
Let t ∈ N be given, F be a field of size 2t. Define the set Pt to be a set of all mappings given by x 7→ ax+b

with a, b ∈ F and a 6= 0. Let φ be a CNF in the variables x1, . . . , xn. Note that Pt is not a subset of Sn,
but subset of S2t , hence we have to add fresh variables. Let us consider t = ⌈log n⌉ and xn+1, . . . , x2t , z1,
. . . , z2t are new variables. We use z1, . . . , z2t to encode the permutations of Pt in some surjective manner.
The CNF perm(φ) is the CNF obtained as follows: for each assignment α ∈ {0, 1}2t to z1, . . . , z2t, let π
denotes permutation encoded by α. For every clause

∨

i∈I
xσi
i from φ there is a clause

∨

i∈[2t]

z1−αi
i ∨ ∨

i∈I
xσi

π(i) in

perm(φ).
For proving this theorem we also need two technical results.

Lemma 4.3 ([37]). For any t, |Pt| = 2t · (2t − 1), every mapping from Pt is a permutation, and for any
x1, x2, y1, y2 ∈ [2t] if x1 6= x2 and y1 6= y2, then Pr

π∈Pt

[π(x1) = y1, π(x2) = y2] =
1

2t(2t−1) .

Lemma 4.4 (Chebyshev’s inequality). If X1, . . . , Xt are random Boolean variables and Y =
t
∑

i=1

Xi, then

Pr[Y = 0] ≤
E[Y] +

∑

i6=j∈[t]

Cov(Xi, Xj)

(E[Y])
2 .

Proof of Theorem 4.2. Let m = 100n, F(φ) = perm(φm), and N be a number of the variables in φm. Fix
two arbitrary balanced partitions Γ and Π of the variables F(φ) and φ respectively. We prove that if there is
a protocol for Searchperm(φm) and the partition Γ with communication complexity S, then there is a protocol
for Searchφ and the partition Π with communication complexity S.

Let us assume that there is a permutation π ∈ P⌈logN⌉ such that for any i ∈ [n] and k ∈ {0, 1} there is
j, such that yi,j is mapped to a variable from Γk by π.

Let V = {v1, . . . , v2⌈log N⌉} be a set of the variables of perm(φm) except variables z1, . . . , z2⌈logN⌉ encoding
permutation and let for every i ∈ [n] and k ∈ {0, 1}, vr(i,k) denotes some variable yi,j that is mapped to a
variable from Γk by the permutation π. The protocol will be the following: on input x1, . . . , xn it runs the
protocol for Searchperm(φm) with substitution to input values such that z1, . . . , z2⌈logN⌉ encode π, all the

variables from V \
{

vr(i,k) : i ∈ [n], k ∈ {0, 1}
}

are equal to zero, and

1. vr(i,k) = xi and vr(i,1−k) = 0 if xi ∈ Πk and

2. vr(i,k) = 0 and vr(i,1−k) = xi otherwise.

It is easy to see that the communication complexity of this protocol is equal to S on the partition Γ.
Thus, DΠ (Searchφ) ≤ DΓ

(

Searchperm(φm)

)

.
In the rest we prove existence of such a permutation π.
In the following we denote vπ(i) by π(vi). Let Γ

′ be a partition induced by Γ on V . Note that Γ′ is almost

balanced i.e. N
2 ≥ |Γ′

k| ≥ N
2 − 2 ⌈logN⌉.

Choose uniformly random π ∈ P⌈logN⌉ and for k ∈ {0, 1} let us consider random variables such that

χki,j = 1 iff yi,j is mapped by π into Γ′
k and Y ki =

m
∑

j=1

χki,j .

By Lemma 4.3 χki,j has expectation equals
|Γ′

k|
N and by additivity of expectation, expectation of Y ki is

13

T

σ1 σ2 . . . σ3

T

Dσ1 Dσ2 . . . Dσ3

Figure 3: On the right side presented a diagram for perm(φ) where T is a complete decision tree for enc and
Dσ is a (1,+k)-BP for a-Searchφ(xσ(1),...,xσ(n))

equal to
m|Γ′

k|
N . Note that

Cov(χki,j0 , χ
k
i,j1) = E[χki,j0 · χki,j1]− E[χki,j0]E[χ

k
i,j1]

=
∑

u6=v∈Γ′
k

Pr[π(u) = yi,j0 , π(v) = yi,j1]−
|Γ′
k|2
N2

=
|Γ′
k|(|Γ′

k| − 1)

N(N − 1)
− |Γ′

k|2
N2

<
|Γ′
k|2
N

(

1

N − 1
− 1

N

)

=
|Γ′
k|2

N2(N − 1)
=

(

E[Y ki]
)2

m2(N − 1)
.

Hence by Lemma 4.4

Pr[Y ki = 0] ≤
E[Y ki] +

∑

i6=j∈[n]

Cov(χki,j0 , χ
k
i,j1

)

(

E[Y ki]
)2

≤ N

m|Γ′
k|

+
m(m− 1)

m2(N − 1)
≤ N

m
(

N
2 − 2 logN

) +
1

N − 1

≤ N

mN
4

+
1

N − 1
=

4

m
+

1

nm− 1

Therefore, by union bound Pr
[

∃i, k Y ki = 0
]

≤ 8n
m + 2n

nm−1 ≤ 1. As a result, there is a permutation
π ∈ P⌈logN⌉ such that for any i ∈ [n] and k ∈ {0, 1} there is a j ∈ [m] and vr(i,k) ∈ Γ′

k such that
vr(i,k) = π (yi,j).

Proof of the Theorem 4.1. Let φn be a family of formulas from Lemma 4.2. By Lemma 4.1 and Theorem 4.2

there is F such that any k-OBDD for SearchF(φn) has size 2Ω(
n

k log n) and |F(φn)| = poly(n).

As a result, any b-OBDD-PS1 proof of F(φn) has size 2Ω(
n

b log n) by Theorem 3.1.

4.2 Separation Between b-OBDD-PS1 and 1-BP-PS1

It is easy to see that in previous theorem perm(φm) is hard for k-OBDD-PS1 mostly because for different
substitutions for z1, . . . , zl we need to use different order on variables. However, for such proof systems as
1-BP-PS1 it is not a problem. Using this difference between these two proof systems we may separate them.

Theorem 4.3. There are a family {φn}n∈N
of formulas in CNF and a constant c > 0 such that

• |φn| = poly(n) and φn;

14

• any k-OBDD-PS1 proof of φn has size 2Ω(nc);

• there is a 1-BP-PS1 proof of φn of size poly(n).

At first prove that perm(φ) is not harder than φ for (1,+b)-BP-PSa.

Theorem 4.4. Let φ be a CNF on variables x1, . . . , xn and k be a constant. If there is a proof of φ in
(1,+b)-BP-PSa of size S, then there is a proof of perm(φ) of size poly(S, n).

Proof. Let D be a (1,+k)-BP for a-Searchφ of size S. It is easy to see that there are diagrams Dπ for
a-Searchφ(xπ(1),...,xπ(n)) of size S (it may be constructed from D by replacement xi by xπ(i) for all i ∈
{1, . . . , n}).

Now let us construct a (1,+b)-BP for a-Searchperm(φ). Let t = ⌈log(n)⌉ and m = |Pt|. Let us consider a
complete decision tree for the function enc and replace leaf of this tree labeled by π by the root of a diagram
Dπ (see Figure 3).

It is easy to prove that this is a diagram for a-Searchperm(φ) and its size is at most 22⌈log(n)⌉S = poly(S, n).
So by Theorem 3.1 there is a (1,+b)-BP-PSa proof of perm(φ) of size poly(n, S).

Now we need a formula φ and a partition Π such that DΠ (Searchφ) however, φ
m is not hard for 1-BP-PS1

for anym. For this reason we consider the pebbling contradictions. Pebbling contradiction PebG for a directed
acyclic graph G (for simplicity we consider such a graph with only one sink t, vertex with out degree 0) is a
conjunction of the following clauses:

sink axiom: ¬xt;

propagation axiom:

(

l
∧

i=1

xpi

)

→ xv, where p1, . . . , pl is a least of all predecessors of v for every v.

In 2014 Göös and Pitassi have proven that there is a gadget g such that the communication complexity
of SearchPebG⋄g is high.

Lemma 4.5 ([16]). There is a family Gn of graphs of constant degree d and a CNF g such that there is a
partition Π of variables of PebG ⋄ g such that DΠ

(

SearchPebGn⋄g
)

= Ω(
√
n) and Gn is a graph with O(n)

vertices.

However, using techniques similar to techniques from [9] we can show that for any CNF g and graph G
there is an OBDD-PS1 proof of PebG ⋄ g.

Theorem 4.5. For any oriented graph G on n vertices with maximal degree not greater than d and CNF g

depends on k variables there is an OBDD-PS1 proof of PebG ⋄ g of size poly(n, 2d, 2k).

We prove this Theorem using equivalence between OBDD-PS1 and ordered resolution.

Lemma 4.6. For any graph G on n vertices with maximal degree not greater than d, CNF g depends on k
variables, v be a vertex of G, and p1, . . . , pl all predecessors of v.

For any order over variables of PebG⋄g and clause C of xv⋄g there is a polynomial size ordered resolution

derivation of C from clauses of formulas xp1 ⋄g, . . . , xpl ⋄g, and
((

l
∧

i=1

xpi

)

→ xv

)

⋄g respecting this order.

Moreover, this derivation does not resolve on the variables of xv ⋄ g.

Proof. Consider the clauses of formulas xp1 ⋄ g, . . . , xpl ⋄ g, and

(

l
∧

i=1

¬xpi
)

⋄ g. Their conjunction us

unsatisfiable, hence there is an ordered resolution refutation of size 2dk.

If we add literals of the clause C to clauses of

(

l
∧

i=1

¬xpi
)

⋄ g and their descendants in the proof, then

we get a proof of C that does not resolve on the variables of PebG ⋄ g.

15

Proof of Theorem 4.5. Let t be the only sink of the graph G. Let us fix an order over the variables of PebG⋄g
that respects a topological ordering of a graph G. To construct the refutation, we start with the graph G.
Label each source v of G with the axiom xv ⋄ g. For each non-source vertex v of G with predecessors p1, . . . ,
pl, replace v with the ordered derivation of xv ⋄ g guaranteed by Lemma 4.6 that respects the ordering. The
result is an ordered derivation of the clause xt ⋄ g that has not resolved on the variables of xt ⋄ g. Resolve
this clause with the axioms ¬xt ⋄ g such a way that respects the fixed ordering.

Proof of Theorem 4.3. Let us consider a family graphs Gn and a function g from Lemma 4.5. By
Theorem 4.5 Dbest

(

SearchPebGn⋄gm
)

= Ω(
√
n). Hence, because of equivalence between the complex-

ity of Searchperm(PebGn⋄g) and the b-OBDD-PS1 proof complexity of perm(PebGn
⋄ gm) the size of any

b-OBDD-PS1 proof of perm(PebGn
⋄ gm) is at least 2Ω(

√
n). However, by Theorem 4.5 and Theorem 4.4

there is a 1-BP-PS1 proof of perm(PebGn
⋄ gm) of size at most poly(n).

Additionally, using this techniques we can show separation between OBDD-PS1 and TreeTh(k).

Corollary 4.1. There are a family {φn}n∈N
of formulas in CNF and a constant c > 0 such that

• |φn| = poly(n);

• any TreeTh(k) proof of φn has size 2Ω(nc);

• there is an OBDD-PS1 proof of φn of size poly(n).

Proof. Göös and Pitassi have proven [16] that there is a family of graphs Gn on n vertices with constant
degree and a function g such that any TreeTh(k) proof of PebGn

⋄ g has size at least 2Ω(nc) for some c > 0.
In the same time by Theorem 4.5 there is a proof of PebGn

⋄ g of size at most poly(n). Hence we can choose
φ = PebGn

⋄ g.

5 Communication Complexity with Bounded Number of Rounds

In the previous section we proved several lower bounds for b-OBDD-PSa, unfortunately, these formulas are
artificial. In this section we prove lower bounds for unsatisfiable Tseitin formulas.

For a graph G, in the sequel we denote by V (G) the set of vertices of G and by E(G) the set of edges of
G. Additionally, if M ⊆ E(G) we denote by G[M] the graph whose vertex set is V (G) and edge set is M .

Let G be an undirected graph with degree bounded by a constant d and c : V (G) → {0, 1} be a function,
we call it the labelling function, then a Tseitin formula TSG,c for the graph G and the labelling function
c be the following. Every edge e ∈ E(G) has the corresponding propositional variable pe (in this section
we assume that G does not contain loops). For every vertex v ∈ V we write down a formula in CNF that
encodes

∑

u∈V (G):(u,v)∈E(G)

p(u,v) ≡ c(v) (mod 2). The conjunction of the formulas described above is called a

Tseitin formula. If
∑

v∈U
c(v) ≡ 1 (mod 2) for some connected component U ⊆ V (G), then the Tseitin formula

is unsatisfiable. Indeed, if we sum up all equalities stated in the vertices from U we get 0 ≡ 1 (mod 2) since
every variable has exactly 2 occurrences. If

∑

v∈U
c(v) ≡ 0 (mod 2) for every connected component U , then

the Tseitin formula is satisfiable ([34, Lemma 4.1]).
However, the communication complexity method does not work for Tseitin formulas.

Proposition 5.1. Let G be a graph with a constant degree, c : V (G) → {0, 1} be a labeling function, and Π
be a partition of the variables of TSG,c. If TSG,c is unsatisfiable, then DΠ

(

SearchTSG,c

)

= O(log(|V (G)|)).

Proof. Let us consider a protocol with l = O(log(|V |)) stages such that on the stage with number i Alice
and Bob consider a subset Vi ⊆ V (G) such that

∑

v∈Vi,u∈V :(v,u)∈E(G)

p(v,u) 6=
∑

v∈Vi

cv and |Vl| = 1 hold.

16

Initially V1 = V (G) and if |Vi| 6= 1 Alice and Bob split Vi into two arbitrary parts V 1
i and V 2

i such that
0 ≤ |V 1

i | − |V 2
i | ≤ 1 and if

∑

v∈V 1
i ,u∈V (G):(v,u)∈E(G)

p(v,u) =
∑

v∈V 1
i

cv set Vi+1 = V 2
i , otherwise set Vi+1 = V 1

i .

Note that if Alice and Bob know the variable v such that
∑

u∈V (G):(v,u)∈E(G)

p(v,u) 6= cv, then the can find

a falsified clause using constant communication.
Additionally, it is easy to see that regardless of the partition of the variables Alice and Bob can check

the equality
∑

v∈V 1
i ,u∈V (G):(v,u)∈E(G)

p(v,u) =
∑

v∈V 1
i

cv using two bits of communication. As a result, this is a

protocol for SearchTSG,c
with the cost equal to O(log(|V (G)|)).

Nevertheless, if we bound number of round in protocols we can get a lower bound for SearchTSG,c
.

Lemma 5.1 ([23, Lemma 12.12]). Let f : {0, 1}n → {0, 1} be a Boolean function. For any b > 0, if there is
a b-OBDD representation of f of size S, then D(2b−1),best (f) ≤ (2b− 1) ⌈log(S)⌉.

Now, if we prove a lower bound for the communication complexity of SearchTSG,c
with bounded number

of rounds, using equivalence between b-OBDD complexity of SearchTSG,c
and b-OBDD-PS1 proof complexity

of TSG,c we prove a lower bound for the size of b-OBDD-PS1 proof of TSG,c.

Theorem 5.1. There is a family {Gn}n∈N
of graphs with degree less than d and a family of labeling functions

{cn : V (Gn) → {0, 1}}n∈N
such that any b-OBDD-PS1 proof of TSGn,cn has size at least 2Ω(n

1/(2b−1)).

To prove this theorem we consider Karchmer–Wigderson communication games [21]. Let f : {0, 1}n →
{0, 1} be a Boolean function. By KW(f) we denote the Karchmer–Wigderson game for the function f . The
Karchmer–Wigderson game for the function f is the relation R ⊆ f−1(0)× f−1(1)× [n] such that

(x, y, i) ∈ R ⇐⇒ xi 6= yi.

By L(b)(f) we denote the minimal size of a formula computing f with b alternating levels of unbounded
fan-in AND and OR gates. Nissan andWigderson [28] in 1993 noticed thatD(b) (KW (f)) = Θ(log

(

L(b)(f)
)

).

Theorem 5.2 ([18]). Let ⊕n : {0, 1}n → {0, 1} be the parity function. For any b > 1 holds D(b) (KW (⊕n)) =
Ω
(

n1/(b−1)
)

.

Proof. H̊astad in 1983 [18] have proven that for any b > 1, L(b)(⊕n) = 2Ω(n
1/(b−1)). Using connection

between L(b)(⊕n) and D(b) (KW (⊕n)) we get the desired statement.

Theorem 5.3. There are a family of graphs {Gn}n∈N
of constant degree and a family of labeling func-

tions {cn : V (Gn) → {0, 1}}n∈N
such that TSGn,cn is unsatisfiable for any n and D(b),best

(

SearchTSGn,cn

)

=

Ω(n1/(b−1)).

Before we start proving this theorem let us illustrate its proof on a simpler example.
Let G be a grid n× n, c : V (G) → {0, 1} be a labeling function such that only the left top corner of G is

labeled by 1, and Π be a partition such that Alice knows the variables corresponding to the lower triangle
(edges to the left to the main diagonal of G) and Bob knows the variables corresponding to the upper
triangle. We prove that D(b),Π

(

SearchTSG,c

)

≥ D(b) (KW (⊕n)) by constructing a reduction KW(⊕n) to
SearchTSG,c

. Let A ∈ ⊕−1
n (0) and B ∈ ⊕−1

n (1) be Alice and Bob’s inputs of KW (⊕n), we construct without
communication an instance (x, y) of SearchTSG,c

(with respect to the partition Π) such that Alice and Bob
can obtain an answer for KW (⊕n) (A,B) from the answer of SearchTSG,c

(x, y) without communication.
Let v1, . . . , vn be all the vertices from the main diagonal of G, and for each i, j ∈ [n], qui,j be a path from

vi to vj in the upper triangle and qℓi,j be a path from vi to vj in the lower triangle.
We construct an instance (x, y) in three steps.

• Initially, Alice and Bob have all zero instance (x, y) of SearchTSG,c
.

17

• Note that
n
∑

i=1

Ai ≡ 0 (mod 2), since A ∈ ⊕−1
n (0). Hence, the set {i ∈ [n] : Ai = 1} has even size and

Alice can split it into pairs (l1, r1), . . . , (lt, rt). After that Alice inverts all the edges along the paths
qul1,r1 , . . . , q

u
lt,rt

(it is possible to do without communication since paths qui,j are paths in the upper
triangle).

• Similarly
n
∑

i=1

Bi ≡ 1 (mod 2), since B ∈ ⊕−1
n (1). Hence, the set {i ∈ [n] : Bi = 1}∆ {1} has even

size and Bob can split it into pairs (l1, r1), . . . , (lt, rt). After that Bob inverts all the edges along the
paths qℓl1,r1 , . . . , q

ℓ
lt,rt

(it is possible to do without communication since paths qℓi,j are paths in the lower
triangle).

It is clear, that all the clauses corresponded to the vertices outside from the main diagonal are satisfied
since when we invert values of the edges along the path we invert even number of incident edges. Note
that by construction if Eℓi ⊆ E(G) is a set of all edges incident to a vertex vi in the lower triangle, then
∑

e∈Eℓ
i

x(e) = Ai and if Eui ⊆ E(G) is a set of all edges incident to a vertex vi in the upper triangle, then

∑

e∈Eu
i

y(e) = Bi + c(vi). Hence, a clause corresponds to a vertex vi is falsified if Ai 6= Bi, and moreover if

Ai 6= Bi, then there is a clause corresponds to a vertex vi that is falsified. Hence we get a reduction KW(⊕n)
to SearchTSG,c

.
In this reduction we use that Bob knows values of all edges along the path between the vertex labeled

by 1 and vi for each i ∈ [n]. However if we do not fix the partition we can not guarantee this property. In
order to solve this problem we prove that for all labeling functions c for the fixed graph G complexities of
Tseitin formulas TSG,c are the same.

Lemma 5.2. If G is a connected graph, c and c′ are labeling functions such that TSG,c and TSG,c′ are
unsatisfiable, then for any constant b > 0 and partition of the variables Π holds D(b),Π

(

SearchTSG,c

)

=

D(b),Π
(

SearchTSG,c′

)

.

Proof. Let Alice and Bob get some instance I : {pe : e ∈ E(G)} → {0, 1} of SearchTSG,c
we show that they

can construct without communication an instance I ′ of SearchTSG,c′
such that if they know a clause of TSG,c′

falsified by I ′, then they can find a clause of TSG,c falsified by I. As a result, we get the following inequality

D(b),Π
(

SearchTSG,c

)

≤ D(b),Π
(

SearchTSG,c′

)

and using symmetry of the statement we prove the theorem.

Let 1c = {v ∈ V (G) : c(v) = 1} and 1c′ = {v ∈ V (G) : c′(v) = 1}. Note that, 1c and 1c′ have odd
number elements since TSG,c and TSG,c′ are unsatisfiable. Hence 1c∆1c′

3 has even number of elements. We
split 1c∆1c′ into pairs (x1, y1), . . . , (xt, yt) and consider paths q1, . . . , qt such that qi is a path between xi
and yi.

Note that, if we invert in I all the edges along the paths q1, . . . , qt we get an instance I ′ of TSG,c′ such
that I falsify a clause C corresponds to a vertex v ∈ V (G) iff I ′ falsify a clause C ′ corresponds to a vertex
v ∈ V (G) and moreover we can get C ′ if we invert in C all the variables correspond to edges along the paths
q1, . . . , qt.

In Theorem 5.1 we will prove lower bounds for Tseitin formulas on expander graphs

Definition 5.1. A graph G with vertices V and edges E is an (n, d, α)-algebraic expander, if |V | = n, the
degree of any vertex in V equals d and the absolute value of the second largest eigenvalue of the adjacency
matrix of G is not greater than αd.

It is well known that for all α > 0 and all large enough constants d there exists a family {Gn}n∈N
of

(n, d, α)-algebraic expanders. There are explicit constructions such that Gn can be constructed in poly(n)
time [26]. Also, it is known that a random d-regular graph is a good expander with high probability.

3From here on after A∆B denotes a symmetric difference of A and B.

18

In our sketch we use two important properties: the upper and the lower triangles are connected and have
a large intersection. Fortunately, expander graphs have similar property: if M is an arbitrary half of edges
of G, then G[M] and G[E(G) \M] have connected components V1 and V2, respectively, such that V1 and V2
have large intersection.

Lemma 5.3 ([2]). (Expander mixing lemma) Let G be an (n, d, α)-expander. For any two subsets

S, T ⊆ V (G) the following inequality holds: ||ES,T (G)| − d|S||T |
n | ≤ αd

√

|S||T |, where |ES,T (G)| =
| {(u, v) : u ∈ S, v ∈ T, (u, v) ∈ E(G)} |4.
Corollary 5.1. For any (n, d, α)-expander G for α < 1

16 and M ⊆ E(G) such that
⌊

dn
4

⌋

≤ |M | ≤
⌈

dn
4

⌉

there are two subsets of vertices V1, V2 ⊆ V (G) such that |V1 ∩ V2| ≥ n
162 , V1 is a connected component in

G[M], and V2 is a connected component in G[E(G) \M].

Proof. First of all, let us prove that for any M ⊆ E(G) of size at least
⌈

dn
4

⌉

there is a large connected
component in G[M] i.e. there is a subset of vertices V ′ ⊆ V (G) such that |V ′| ≥ n

8 and V ′ is a connected
component of G[M].

Let us assume that for some M all connected components S1, . . . , Sl in G[M] have size less than n
8 .

Note that
l
∑

i=1

|ESi,Si
(G)| ≥ 2|M | and by the expander mixing lemma |ESi,Si

(G)| ≤ d|Si|2
n +αd|Si|. Since we

assume that |Si| < n
8 we have the following inequality

|ESi,Si
(G)| < d|Si|

8
+ αd|Si| <

3d|Si|
16

.

As a result, we get a contradiction:

2

⌊

dn

4

⌋

≤ 2|M | ≤
l

∑

i=1

|ESi,Si
(G)| <

l
∑

i=1

3d|Si|
16

=
3dn

16
.

Now let V1 be any connected component of G[M] of size at least n
8 and V2 be any connected component

of G[E \M] of size at least n
8 .

Note that for any vertices v1 ∈ V1 and v2 ∈ V2 if (v1, v2) ∈ M , then v2 ∈ V1 since V1 is a connected
component in G[M] and if (v1, v2) ∈ E(G) \ M , then v1 ∈ V2 since V2 is a connected component in
G[E(G) \M]. Hence for any v1 ∈ V1 and v2 ∈ V2, if (v1, v2) ∈ E(G), then v1 ∈ V1 ∩ V2 or v2 ∈ V1 ∩ V2. As
a result,

EV1,V2
(G)

2d ≤ |V1 ∩ V2|. However, by mixing lemma |EV1,V2
(G)| ≥ dn2

82n − αdn8 ≥ dn
16·8 .

Proof of Theorem 5.3. Let us consider a family {Gn}n∈N
of (n, d, α)-expanders and some family of la-

beling functions {cn : V (Gn) → {0, 1}}n∈N
. At the beginning we prove that for some constant ǫ > 0

the following inequality D(b)
(

SearchTSGn,cn

)

≥ D(b) (KW (⊕ǫn)) holds and by Theorem 5.2 it implies,

D(b)
(

SearchTSGn,cn

)

≥ Ω
(

n1/(b−1)
)

.
Let us fix n ∈ N and some balanced partition Π of the variables of SearchTSGn,cn

. Note that there is a
set of edges M corresponding to Π0. By the previous Corollary there are V1, V2 ⊆ V (Gn) such that V1 is
a connected component in G[M], V2 is a connected component in G[E(Gn) \M], and |V1 ∩ V2| ≥ n

128 . Let
V1 ∩V2 = {v1, . . . , vk} (k ≥ n

256) and c
′ be a labeling function such that the only vertex labeled by 1 belongs

to V1 ∩ V2.
By Lemma 5.2, D(b),Π

(

SearchTSGn,cn

)

= D(b),Π
(

SearchTSGn,c′

)

. Hence, it is enough to prove that

D(b) (KW (⊕k)) ≤ D(b)
(

SearchTSGn,c′

)

.

We prove this inequality using reduction KW(⊕k) to SearchTSGn,c′
. Let for each i, j ∈ [k], q1i,j be a path

from vi to vj in G[M] and q2i,j be a path from vi to vj in G[E(G) \M]. Let Alice gets a vector a ∈ {0, 1}k

such that ⊕k(a) = 0 and Bob gets b ∈ {0, 1}k such that ⊕k(b) = 1. We construct an instance (x, y) such that
Alice and Bob can obtain KW(⊕k) (a, b) from SearchTSGn,c′

without communication. Construction consists
of three steps and each of them does not involve communication between Alice and Bob.

4Note that if u, v ∈ S ∩ T , then we count an edge between them twice.

19

• Initially, Alice and Bob have all zero instance (x, y) of SearchTSGn,c′
;

• Note that
k
∑

i=1

ai ≡ 0 (mod 2), since ⊕k(a) = 0. Hence, the set {i ∈ [k] : ai = 1} has even size and

Alice can split it into pairs (l1, r1), . . . , (lt, rt). After that Alice inverts all the edges along the paths
q1l1,r1 , . . . , q

1
lt,rt

.

• Similarly
k
∑

i=1

bi ≡ 0 (mod 2), since ⊕k(b) = 1. Hence, the set {i ∈ [k] : bi = 1}∆ {1} has even size

and Alice can split it into pairs (l1, r1), . . . , (lt, rt). After that Alice inverts all the edges along the
paths q2l1,r1 , . . . , q

2
lt,rt

.

It is clear, that all the clauses corresponded to the vertices outside V1 ∩V2 are satisfied since when we invert
values of the edges along the path we invert even number of incident edges. Note that by construction if
E1
i ⊆ M is a set of all edges incident to a vertex vi, then

∑

e∈E1
i

x(e) = ai and if E2
i ⊆ E(G) \M is a set of

all edges incident to a vertex vi, then
∑

e∈E2
i

y(e) = bi + c′(vi). Hence, a clause corresponds to a vertex vi is

falsified if ai 6= bi, and moreover if ai 6= bi, then there is a clause corresponds to a vertex vi that is falsified.
Hence we get a reduction KW(⊕k) to SearchTSGn,c′

.

Proof of the Theorem 5.1. Let {Gn}n∈N
and {cn : V (Gn) → {0, 1}}n∈N

be a family of graphs and a family
of labeling functions from Theorem 5.3.

Let us assume that there is a b-OBDD diagram for SearchTSGn,cn
of size S. Lemma 5.1 implies that

D(2b−1),best
(

SearchTSGn,cn

)

≤ (2b − 1) · S. Hence, by Theorem 5.3 S = Ω(n1/(2b−1)). As a result, using

Theorem 3.1 we conclude that any b-OBDD-PS1 proof of TSGn,cn has size 2Ω(n1/(2b−1)).

It is possible to see, that Theorem 5.3 gives almost tight lower bound for communication complexity of
Tseitin formulas and we can transform protocol from Proposition 5.2 to b-round setting with cost O(n1/b).

Proposition 5.2. Let b > 0 be a constant, G be a graph with a constant degree, c : V (G) → {0, 1}
be a labeling function, and Π be a partition of the variables of TSG,c. If TSG,c is unsatisfiable, then
D(b),Π

(

SearchTSG,c

)

= O(|V (G)|1/b).

Proof. Let us consider the protocol with b stages such that on the stage with number i Alice and Bob consider
a subset Vi ⊆ V (G) such that

∑

(u,v)∈EG(Vi,V (G))

p(u,v 6=
∑

v∈Vi

c(v) and |Vb| = 1.

Initially, V1 = V (G) and if |Vi| 6= 1 Alice and Bob split Vi into l =
⌈

|V (G)|1/b
⌉

parts V 1
i , . . . , V

l
i such

that −1 ≤ |V ji | − |V ki | ≤ 1 for all j, k ∈ [l] and if

∑

(u,v)∈EG(V j
i ,V (G))

p(u,v) 6=
∑

v∈V j
i

cv

for some j ∈ [l] set Vi+1 = V
j
i .

Note that, if Alice and Bob know the variable v such that
∑

u∈NG(v)

pu,v 6= c(v) (NG(v) denotes all neighbors

of v in the graph G), then they can find a falsified clause using constant communication.
Additionally, it is easy to see that regardless of the partition of the variables Alice and Bob can check

the equality
∑

(u,v)∈EG(V j
i ,V (G))

p(v,u) =
∑

v∈V j
i

cv

using two bits of communication. As a result, this is a protocol for SearchTSG,c
with the cost equal to

O(
⌈

|V (G)|1/b
⌉

) (they exchange with 2l = 2
⌈

|V (G)|1/b
⌉

bits on each step).

20

Moreover, there is a b-OBDD of size n22(n
1/b).

Theorem 5.4. Let b, d, n > 0 be integers, G be a graph on n vertices with maximal degree d, and c : V (G) →
{0, 1} be a labeling function. If TSG,c is unsatisfiable, then there is a b-OBDD-PS1 proof of TSG,c of size at

most n22(n
1/b+d).

Proof. Without loss of generality we may assume that the graph G is connected.
First of all, let us note that for any set {fi(x) = bi}ki=1 of linear equation onm variables there is an OBDD

of size m2k that represents the function g : {0, 1}m → {0, 1}k such that for any x ∈ {0, 1}m, g(x)i = 1 iff
fi(x) = bi.

Now, let us construct a b-OBDD for SearchTSG,c
. Let us fix k =

⌈

n1/b
⌉

and construct the following tree
(with vertices labeled by subsets of V (G)):

• the root of this tree is labeled by V (Gn);

• for each node p labeled by a set of size more than 1 we create k children q1, . . . , qk of p, split the
current label Vp ⊆ V (G) into k almost equal sized sets Vq1 , . . . , Vqk , and label q1, . . . , qk by Vq1 , . . . ,
Vqk ;

• we terminate this process if current set has size at most 1;

Note that, depth of this tree is at most b.
It is easy to see, that for any input x we can go from the root to a leaf of this tree such that on any step

we stay in the node p such that
∑

(u,v)∈EG(Vp,V (G))

x(u,v) 6=
∑

v∈Vp

c(v). Indeed, in the root this statement is true

because TSG,c is unsatisfiable and if this statement is true for some node p, then there is a child q in the tree

such that this statement holds for q too, because {Vqi}ki=1 is a partition of Vp. Hence, when we reach a leaf,
this leaf is labeled by a set {v} such that

∑

(v,u)∈E(Gn)

x(v,u) 6= c(v). We can not reach a leaf labeled by an

empty set since the sum over the empty set is always zero.

One can transform this tree into a b-OBDD for SearchTSG,c
of size kbn(2k + 2d) = n22(n

1/b+d). At
first, we construct an OBDD for each node p with children q1, . . . , qk that find a node qi such that

∑

(u,v)∈EG(Vqi
,V (G))

x(u,v) 6=
∑

v∈Vqi

c(v) if
∑

(u,v)∈EG(Vp,V (G))

x(u,v) 6=
∑

v∈Vp

c(v). By previous remark, this OBDDs

have size at most n2k. After that, we connect this OBDDs into b-OBDD similarly to the tree. It is easy to
see that we get a (b−1)-OBDD that finds a vertex such that one of the corresponding to it clauses is falsified
by x (we have an OBDD for all vertices except leafs). The size of these (b− 1)-OBDD equals kb(n2k) since
each vertex has at most k children. Hence if we put an OBDD that finds a falsified clause corresponding to
a vertex v ∈ V (G) in each node labeled by the vertex v we get b-OBDD for SearchTSG,c

of size kbn(2k + 2d)
since the last OBDD has size at most 2d.

Using this result we can show that b-OBDD-PS1 does not p-simulate (2b)-OBDD-PS1

Corollary 5.2. There are a family of graphs {Gn}n∈N
and labeling functions {cn}n∈N

such that

• Gn has n vertices and a constant degree d;

• Tseitin formulas TSGn,cn are unsatisfiable;

• for any b > 0, any b-OBDD-PS1 proof of TSGn,cn has size at least 2Ω(n
1/(2b−1));

• for any b > 0, there is a (2b)-OBDD-PS1 proof of TSGn,cn of size at most 2(n
1/(2b) log n).

Additionally, using Theorem 5.4 we can show that Res does not p-simulate b-OBDD-PS1 for b ≥ 2.

Corollary 5.3. There is a family of graphs {Gn}n∈N
and labeling functions {cn}n∈N

such that

21

• Gn has n vertices and a constant degree d;

• Tseitin formulas TSGn,cn are unsatisfiable;

• any resolution proof of TSGn,cn has size at least 2Ω(n);

• for any b there is a b-OBDD-PS1 proof of TSGn,cn of size at most 2(n
1/b log n).

Theorem 5.4 and Theorem 3.2 show that unsatisfiable Tseitin formulas have ⊕-OBDD-PS1 proofs of
sub-exponential size. Moreover, this upper bound for ⊕-OBDD-PS1 may be enhanced and we can prove
that Tseitin formulas have ⊕-OBDD-PS1 proofs of polynomial size.

Theorem 5.5. For any graph G on n vertices with maximal degree d and labeling function c : V (G) → {0, 1}
if TSG,c is unsatisfiable, then there is a ⊕-OBDD-PS1 proof of TSG,c of size poly(n, 2d).

Proof. Without loss of generality we may assume that G is a connected graph.
In the sequel we construct a ⊕-OBDD-PS1 proof of TSG,c for any order of variables. Let us consider the

case when G has an odd number of vertices. Note that, since TSG,c is unsatisfiable, then the cardinality of

the set

{

v ∈ V (G) :
∑

(u,v)∈E(G)

p(u,v) 6= c(v)

}

is odd for any substitution to the variables pe (e ∈ E(G)).

Let us define for each v ∈ V (G), Sv ∈ {0, 1} such that Sv = 0 iff
∑

(u,v)∈E(G)

p(u,v) 6= c(v). It is easy to see

that
⊕

v∈V (G)

Sv = 0 and
⊕

v∈V (G)

1 = 1 since V (G) has odd number of vertices.

Let TSG,c =
m
∧

i=1

Ci and Fv : {0, 1}|E(G)| × {0, 1}m → {0, 1} be a function with two types of variables:

variables corresponding to edges and variables corresponding to clauses of TSG,c (placeholder variables), such
that Fv(p̄, ȳ) = 0 iff

∑

u∈V (G):(u,v)∈E(G)

p(u,v) 6= c(v) and a placeholder variable that corresponds to a falsified

clause of the subformula
∑

u∈V (G):(u,v)∈E(G)

p(u,v) = c(v) (note that any substitution to this formula may falsify

at most one clause) of the formula TSG,c is equal to zero. Fv has an OBDD representation of size at most
2d+2 (since there are at most d variables p(u,v) in this formula); hence ⊕-OBDD representation of

⊕

v∈V (G)

Fv

has size n2d+2. Moreover, since
⊕

v∈V (G)

Fv(x̄, C1(x̄), . . . , Cm(x̄)) =
⊕

v∈V (G)

Sv = 0 for any x ∈ {0, 1}|E(G)|

and
⊕

v∈V (G)

Fv(x̄, 1, . . . , 1) =
⊕

v∈V (G)

1 = 1 for any x ∈ {0, 1}|E(G)|
, ⊕-OBDD representation of

⊕

v∈V (G)

Fv is a

⊕-OBDD-PS1 proof of TSG,c.
For the case when G has even number of vertices, the proof is almost the same. Let v be a vertex such that

G′ = G \ v is connected graph. Note that for any graph G with labeling function c : V (G) → {0, 1} we may
consider graph G′ with labeling function c(f) : V (G′) → {0, 1} such that c(f)(u) = c(u) for u not incident with

v and c(f)(u) = c(u)⊕f(u) for u ∈ NG(v) where f ∈ Rv =

{

g : NG(v) → {0, 1} :
∑

u∈NG(v)

g(u) = c(v)

}

. It

is easy to see that if TSG,c is unsatisfiable, then TSG′,c(f) is unsatisfiable for any f ∈ Rv. Since graph G′ has

odd number of vertices there is a ⊕-OBDD proof D(f) of TSG′,c(f) of size poly(n). Now, let us consider the
following diagram: it splits by the variables p(u,v) for all u ∈ NG(v) and if these variables falsifies a clause
Ci of the subformula

∑

u∈V (G):(u,v)∈E(G)

p(u,v) = c(v) of formula TSG,c we return the value of yi, otherwise we

consider a function f ∈ Rv such that f(u) = p(u,v) for all u ∈ NG(v) and return the value of D(f). Obviously

it is a ⊕-OBDD-PS1 proof of TSG,c of size poly(n, 2d).

As a result, using this theorem we can show that b-OBDD-PS1 does not p-simulate ⊕-OBDD-PS1.

Corollary 5.4. There are a family of graphs {Gn}n∈N
and labeling functions {cn}n∈N

such that

22

• Gn has n vertices and a constant degree d;

• Tseitin formulas TSGn,cn are unsatisfiable;

• for any b > 0, any b-OBDD-PS1 proof of TSGn,cn has size at least 2Ω(n
1/b);

• there is a ⊕-OBDD-PS1 proof of TSGn,cn of size poly(n).

The idea behind the proof of the upper bound for b-OBDD-PS1 on TSG,c may be generalized to the
following case.

In standard decision trees, at each node a test on a single variable is made. If the result is 0, one descends
into the left subtree, whereas if the result is 1, one descends into the right subtree. The label of the reached
leaf is the value of the function (on that particular input). We will now consider decision trees where more
general test are allowed. In an OBDD decision tree, at each node one evaluate a value of some π-OBDD on
input. If the result is 0 one descends into the left subtree, whereas if the result is 1, one descends into the
right subtree. The cost of such a tree is a maximum among sizes of OBDDs in this tree (note that an order
π is the same for all nodes of the tree).

Theorem 5.6. If there is an OBDD-decision tree for a relation Searchφ of cost S and depth d, then there

is a b-OBDD for Searchφ of size S2⌈ d
b ⌉ · 2d.

We prove this theorem in the end of the paragraph. Now let us prove some corollaries of this theorem.
It is easy to see, that the communication protocol for SearchTSG,c

from Proposition 5.2 may be transformed
into an OBDD-tree of size O(n) and depth log n (since on each step of the protocol we compute a parity of
some variables). Hence, using Theorem 5.6 we can almost get a result of Theorem 5.4, we can prove that
for any graph G on n vertices with maximal degree d and labeling function c : V (G) → {0, 1} there is a

b-OBDD for SearchTSG,c
of size n2

log n/b

2logn = 2O(n1/b logn).
It is possible to note that, using standard transformation between proofs and communication protocols,

any OBDD(∧,weakening) proof [3,20,22] of a formula φ of size S can be transformed into an OBDD-decision
tree of cost S and depth O(logS).

Using this argument we want to extend Corollary 4.1 for k = 1 and prove that semantic CP does
not simulate b-OBDD-PS1 for large enough b. For this separation we need a formula that is easy for
OBDD(∧,weakening) but it is hard for semantic CP.

An example of such a formula is the Clique-Coloring principle. The Clique-Coloring principle is a formula
encoding the statement that it is impossible that graph is (m − 1)-colorable and has a m-clique in the
same time. The Clique-Coloring principle is a formula on variables {pi,j}i6=j∈[n], {ri,l}i∈[n],l∈[m−1], and

{qk,i}k∈[m],i∈[n]. Informally pi,j = 1 iff there is an edge between vertices i and j, ri,l = 1 iff vertex i has color

l, and qk,i = 1 iff vertex i is kth vertex in the clique.
More formally, the Clique-Coloring principle is a conjunction of the following statements written in CNF.

•

n
∨

i=1

qk,i for any k ∈ [m], this constraint states that there is a vertex in the clique with number k;

• ¬qk,i ∨ ¬qk′,j ∨ pi,j for all i, j ∈ [n] and k 6= k′ ∈ [m], this constraint states that if both i and j are in
the clique then there is an edge between them;

•

m−1
∨

l=1

ri,l for all i, this constraint states that any vertex is colored;

• ¬pi,j ∨ ¬ri,l ∨ ¬rj,l for all i 6= j and l, this constraint states that for any two vertices with the same
color it is impossible that there is an edge between them.

We denote by Clique-Coloringn,m the Clique-Coloring principle for n and m.

23

Theorem 5.7 ([12]). There is a constant c > 0 such that any semantic CP proof of Clique-Coloringn,
√
n

has size at least 2n
c

.

However, recently was proven that there is an OBDD(∧,weakening) proof of Clique-Coloringn,√n of size
poly(n) [10].

Theorem 5.8 (see [10]). For any n there is an OBDD-decision tree with cost O(n) and depth O(log n+logm)
for SearchClique-Coloringn,m

.

In fact, direct construction of an OBDD-decision tree for SearchClique-Coloringn,m
of cost O(n) and depth

O(log n+ logm) is much easier than construction of OBDD(∧,weakening) proof.

Proof. Let us consider the following algorithm that solves SearchClique-Coloringn,m
that can be easily trans-

formd into an OBDD-tree.

1. If
∑

i∈[n],k∈[m],l∈[m−1]

qk,iri,l ≥ m, then go to the step 2, otherwise go to the step 5.

2. On this step we know that
m−1
∑

l=1

∑

i∈[n],k∈[m]

qk,iri,l ≥ m. Hence there is l ∈ [m − 1] such that

∑

i∈[n],k∈[m]

qk,iri,l > 1 and we can find this l using the binary search. After we find l, go to the

step 3.

3. On this step we know that
∑

i∈[n],k∈[m]

qk,iri,l > 1; hence there are k1 ∈ [m], i1 ∈ [n], k2 ∈ [m], and

i2 ∈ [n] such that qk1,i1 = qk2,i2 = ri1,l = ri2,l = 1 and (k1, i1) 6= (k2, i2); We find them using the
binary search and go to the step 4.

4. We know that qk1,i1 = qk2,i2 = ri1,l = ri2,l = 1; If pi1,i2 = 1, then return the clause ¬pi,j ∨¬ri,l ∨¬rj,l,
otherwise return the clause ¬qk,i ∨ ¬qk′,j ∨ pi,j .

5. We know that
m
∑

k=1

∑

i∈[n],l∈[m−1]

qk,iri,l < m. Hence there is k ∈ [m] such that
∑

i∈[n],l∈[m−1]

qk,iri,l = 0

and we can find it using the binary search. After we find k, go to the step 6.

6. We know that
∑

i∈[n],l∈[m−1]

qk,iri,l = 0; hence if for some i ∈ [n], qk,i = 1 holds, then ri,l = 0 for all

l ∈ [m−1]. Using binary search find i such that qk,i = 1 if there is not such i return the clause
n
∨

i=1

qk,i,

otherwise return the clause
m−1
∨

l=1

ri,l.

It is easy to see, that on each step of this algorithm we split by the value of an OBDD of size O(n). Also,
number of steps of this algorithm on any input is bounded by O(log n). Hence, the resulting tree has depth
O(log n) and cost O(n).

Corollary 5.5. There are a family of formulas {φ}n∈N
and constants c > 0 and d > 0 such that

• |φn| = poly(n) and φn depends on poly(n) variables;

• any semantic CP proof of φn has size at least 2Ω(nc);

• for any b there is a b-OBDD-PS1 proof of φn of size at most 2O(n
d/b log n).

Proof. Let us consider a formula φn = Clique-Coloringn,
√
n. By Theorem 5.7 any semantic CP proof of φn

has size at least 2n
c

for some constant c > 0. However by Theorem 5.8 there is an OBDD-decision tree of
cost O(n) and depth d log n for some constant d > 0; hence using Theorem 5.6 we can get an b-OBDD-PS1

proof of Clique-Coloringn,
√
n of size n2

d log n/b

2d logn = 2O(n
d/b logn).

24

Now let us prove Theorem 5.6. First of all, we need the following technical Lemmas.

Lemma 5.4 ([36, Theorem 3.3.6]). Let f : {0, 1}n → Λf , g : {0, 1}n → Λg, and p : Λf × Λg → Λ. If there
are OBDDs F and G that represent functions f and g respectively, then there is an OBDD that represents
p(f(x), g(x)) of size |F | · |G|.

Corollary 5.6. For any functions f, g : {0, 1}n → Λ and function h : {0, 1}n → Λ × Λ such that h(x) =
(f(x), g(x)) holds for any x ∈ {0, 1}n if F and G are OBDDs that represents f and g, respectively, then
there is an OBDD H that represents h of size at most |F | · |G|.

Proof. We just use Lemma 5.4 with the Identity function p : Λ× Λ → Λ× Λ.

Corollary 5.7. For any functions f : {0, 1}n → Λ × Λ, g : {0, 1}n → {0, 1} and h : {0, 1}n → such that
for any x ∈ {0, 1}n h(x) = f(x)g(x) holds if F and G are OBDDs that represents f and g, respectively, then
there is an OBDD H that represents h of size at most |F | · |G|.

Proof. We just use Lemma 5.4 with the Identity function p : Λ× Λ → Λ× Λ.

Lemma 5.5. If there is an OBDD-decision tree for a function f of cost S and depth d, then there is an

OBDD for f of size at most S2d−1.

Proof. We prove this lemma using mathematical induction by d. The basis is clear, now let us prove the
induction step from d to d+ 1.

Let us consider a tree T of depth d+1 and cost S, let r be its root labeled by D, by induction hypothesis

we can transform left and right subtrees of r into OBDDs L and R, respectively, of size at most S2d−1. By

Corollary 5.6 and Corollary 5.7 we get an OBDD for f of size |D| · |L| · |R| ≤ S ·S2d−1 ·S2d−1 = S2d+1−1.

Proof of Theorem 5.6. Let T be an OBDD-decision tree for a relation Searchφ of cost S and depth d. Let
us split T (starting from the root) into trees of depth

⌈

d
b

⌉

and organize them in a natural way as a tree of

arity at most 2⌈ d
b ⌉ and depth b.

By Lemma 5.5 we can transform each of these trees into an OBDD of size S2⌈ d
b ⌉

. Hence we can get a
b-OBDD that computes by an input the number of a leaf of T corresponding to this input and size of this

b-OBDD is at most S2⌈ d
b ⌉

2d.

As a result we get a b-OBDD for Searchφ of size at most S2⌈ d
b ⌉ · 2d.

6 Ordering Priniple and its Variations

In the previous paragraph we have proven hierarchy for b-OBDD-PS1, however, for (1,+b)-BP-PS1 hierarchy
does not known. In this paragraph we show that at least first two layers are different i.e. 1-BP-PS1 does
not p-simulate (1,+1)-BP-PS1. We also enhence a sepration between Res and OBDD-PS1 in this section.

Theorem 6.1. There is a family of unsatisfiable CNFs {φn}n∈N
such that

• |φn| = poly(n);

• any 1-BP-PS1 proof of φn has size at least 2Ω(n);

• there is a (1,+1)-BP-PS1 proof of φn of size poly(n).

For proving this theorem we use a lower bound proven by Alekhnovich et. al. [1] for the following formula.
Let ρ : [n]3 → [n]2; the formula GT′n,ρ is the conjunction of the following statements written in CNF:

antisymmetry: xi,j ↔ ¬xj,i for all i 6= j ∈ [n];

25

totality:
∨

k∈[n],k 6=j
xk,j for all j ∈ [n];

positively corrupted transitivity: ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 ∨ xρ(i1,i2,i3) for all distinct i1, i2, i3 ∈ [n];

negatively corrupted transitivity: ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 ∨ ¬xρ(i1,i2,i3) for all distinct i1, i2, i3 ∈ [n].

Note that the formula GT′n,ρ has only variables x1,1, . . . , xn,n.

Theorem 6.2 ([1]). For n sufficiently large, there exists ρ such that any regular resolution refutation of
GT′n,ρ has size greater than 2n/200.

For proving an upper bound for GT′n,ρ let us consider an easier formula. The formula GTn is the conjunc-
tion of the following statements written in CNF:

antisymmetry: xi,j ↔ ¬xj,i for all i 6= j ∈ [n];

totality:
∨

k∈[n],k 6=j
xk,j for all j ∈ [n];

transitivity: ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 for all distinct i1, i2, i3 ∈ [n].

Theorem 6.3 ([7]). For any n there is an OrdRes proof of GTn of size O(n3).

Using this upper bound we can prove the upper bound for GT′n,ρ.

Proof of Theorem 6.1. To prove Theorem 6.1 it is enough to prove that for any n and ρ there is an
(1,+1)-BP-PS1 proof of GT′n,ρ of size O(n3).

By Theorem 3.1 it is enough to prove an upper bound for (1,+1)-BP for SearchGT′n,ρ
.

By Theorem 6.3 and Theorem 3.1 there is an OBDDD for SearchGTn of size O(n3). LetD′ be the following
modification of the diagram D, we replace each leaf of D labeled by a clause ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 by
a diagram that splits by a the variable xρ(i1,i2,i3) and if it is true, then returns ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 ∨
¬xρ(i1,i2,i3), otherwise ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 ∨ xρ(i1,i2,i3).

Note that the size of the diagram D′ equal to 3|D| = O(n3).

Additionally, using a construction on base of GTn we can prove a stronger separation between Res and
2-OBDD-PS1 than in Corollary 5.3.

Theorem 6.4. There are a family of formulas {φn}n∈N
and a constant c > 0 such that

• |φn| = poly(n);

• there is a 2-OBDD-PS1 proof of φn of size poly(n);

• any resolution proof of φn has size 2Ω(nc).

For proving this result we need to introduce a notion of width: width of a resolution proof is the maximum
size of a clause in the proof.

Alekhnovich and Razborov have proven a connection between the minimal width of a formula and the
minimal size of a resolution proof of the xorification of this formula (composition of this formula and a
function x1 ⊕ x2).

Theorem 6.5 ([5]). There is a constant c > 0 such that, for any formula φ in k-CNF, if any resolution
proof of φ has width at least w, then any resolution proof of φ ⋄ ⊕2 has size at least 2c·(w−k).

The plan of the proof of Theorem 6.4 is the following.

1. We construct a formula ψ with a small resolution proof but any resolution proof of this formula has
big size;

26

2. We prove that if formula φ has small ordered resolution proof, then φ ⋄ ⊕2 has small 2-OBDD-PS1

proof;

3. In the last step we use Theorem 6.5 and two results from previous steps to show that ψ ⋄⊕2 is suitable
for the statement of Theorem 6.4.

For the first step let us consider the following modification of the ordering principle. Formula MGTn is the
conjunction of the following clauses.

antisymmetry: xi,j ↔ ¬xj,i for all i 6= j ∈ [n];

extended totality: • ¬y0,j for all j ∈ [n];

• yi−1,j ∨ xi ∨ ¬yi+1,j for all i 6= j ∈ [n];

• yn,j for all j ∈ [n];

transitivity: ¬xi1,i2 ∨ ¬xi2,i3 ∨ ¬xi3,i1 for all distinct i1, i2, i3 ∈ [n].

Theorem 6.6 ([7]). Width of any resolution proof of MGTn is at least Ω(n). However, there is an ordered
resolution proof of MGTn of size poly(n).

Proof of the second step statement is almost straightforward.

Lemma 6.1. Let φ be an unsatisfiable formula in k-CNF. If there is an ordered resolution proof of φ of size
S, then there is a 2-OBDD-PS1 proof of φ ⋄ ⊕2 of size 22k+1S.

Proof. By Theorem 3.1 it is enough to construct a 2-OBDD for Searchφ⋄⊕2
of size 22kS.

Let D be an OBDD of size at most S for Searchφ it exists since φ has ordered resolution proof of size
at most S. Let F (C) be some OBDD such that if clause C ⋄ ⊕2 is false on the input, then F (C) finds which
clause of C ⋄ ⊕2 is false. Note that for any clause C there is a diagram F (C) of size at most 22k. Let D′ be
the following modification of D, we replace each node splitting by a variable x by a diagram splitting by a
value of x ⋄ ⊕2 and we replace each sink labeled by a clause C by a diagram F (C).

It is clear, that D′ is a 2-OBDD for Searchφ⋄⊕2
of size 22kS.

Proof of Theorem 6.4. Let us consider φn = MGTn ⋄⊕2. It is easy to see, that size of this formula is O(n). By
Theorem 6.6 and Theorem 6.5 size of any resolution proof of φ is at least 2Ω(n). However, by Theorem 6.6
and Lemma 6.1 there is a 2-OBDD-PS1 proof of size poly(n).

7 Acknowledgment

The author is grateful to Edward A. Hirsch for bringing the problem to his attention, to Dmitry Itsykson
and Sam Buss for proofreading of the paper, and to Dmitry Sokolov for fruitful discussions about expander
graphs.

8 Further Directions

1. Lower bounds for RegRes imply lower bounds for 1-BP-PS1, but for any k > 0 lower bounds for
(1,+k)-BP-PS1 are unknown. Additionally, it is interesting to compare Res with (1,+k)-BP-PS1.

2. We proved that k-OBDD-PS1 does not p-simulates (2k)-OBDD-PS1. However, it is interesting to
study relationships between k-OBDD-PS1 and (k + 1)-OBDD-PS1.

3. Prove a superpolynomial lower bound for ⊕-OBDD-PS1 and study the relationship between Res and
⊕-OBDD-PS1.

27

References

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential separa-
tion between regular and general resolution. Theory of Computing, 3(1):81–102, 2007.

[2] Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks. Discrete
Mathematics, 306(10-11):1068–1071, 2006.

[3] Albert Atserias, Phokion G. Pg. Kolaitis, and Moshe Y. Vardi. Constraint propagation as a proof system.
In Mark Wallace, editor, Principles and Practice of Constraint Programming - CP 2004, volume 3258
of Lecture Notes in Computer Science, pages 77–91. Springer, 2004.

[4] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovasz-Schrijver systems and
beyond follow from multiparty communication complexity. SIAM Journal on Computing, 37(3):845–869,
2007.

[5] Eli Ben-Sasson. Size space tradeoffs for resolution. In John H Reif, editor, Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 457–
464. ACM, 2002.

[6] Beate Bollig, Martin Sauerhoff, Detlef Sieling, and Ingo Wegener. Hierarchy theorems for k-OBDDs
and k-IBDDs. Theoretical Computer Science, 205(1-2):45–60, 1998.

[7] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution. Computational
Complexity, 10(4):261–276, 2001.

[8] Henrik Brosenne, Matthias Homeister, and Stephan Waack. Nondeterministic ordered binary decision
diagrams with repeated tests and various modes of acceptance. Information Processing Letters, 98(1):6–
10, 2006.

[9] Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements. Journal of
Symbolic Logic, 72(4):1336–1352, 2007.

[10] Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering rule makes obdd proof
systems stronger. Private communication.

[11] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders real
communication (and what it means for proof and circuit complexity). In Irit Dinur, editor, IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 295–304. IEEE Computer Society, 2016.

[12] Yuval Filmus, Pavel Hrubes, and Massimo Lauria. Semantic versus syntactic cutting planes. In Nicolas
Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 35:1——–35:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[13] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random CNFs are hard for
cutting planes. Electronic Colloquium on Computational Complexity (ECCC), 45:1–19, 2017.

[14] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity lower bounds
from algebraic circuit complexity. In 31st Conference on Computational Complexity, CCC 2016, May
29 to June 1, 2016, Tokyo, Japan, pages 32:1–32:17, 2016.

[15] Jordan Gergov and Christoph Meinel. Mod-2-OBDDs - a data structure that generalizes EXOR-sum-
of-products and ordered binary decision diagrams. Formal Methods in System Design, 8(3):273–282,
1996.

28

[16] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
847–856, 2014.

[17] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial identity
testing. 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 110–119, 2014.

[18] Johan Hastad. Computational limitations of small-depth circuits. MIT Press, Cambridge, MA, USA,
1987.

[19] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communication
complexity hardness to time-space trade-offs in proof complexity. In Proceedings of the 44th ACM
Symposium on Theory of Computing, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
233–248, 2012.

[20] Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, and Dmitry Sokolov. On OBDD-based
algorithms and proof systems that dynamically change order of variables. In Heribert Vollmer and
Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017,
March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 43:1–43:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[21] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require Super-logarithmic
depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990.

[22] Jan Krajiček. An exponential lower bound for a constraint propagation proof system based on ordered
binary decision diagrams. Journal of Symbolic Logic, 73(1):227–237, 2008.

[23] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.

[24] Tak Wah Lam and Walter L. Ruzzo. Results on communication complexity classes. Journal of Computer
and System Sciences, 44(2):324–342, 1992.

[25] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision tree
model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.

[26] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–
277, 1988.

[27] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In Proceedings of
the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, pages 410–418, 1991.

[28] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM Journal on
Computing, 22(1):211–219, 1993.

[29] Toniann Pitassi. Algebraic Propositional Proof Systems. In Neil Immerman and Phokion G Kolaitis,
editors, Descriptive Complexity and Finite Models, Proceedings of a DIMACS Workshop 1996, Prince-
ton, New Jersey, USA, January 14-17, 1996, volume 31 of {DIMACS} Series in Discrete Mathematics
and Theoretical Computer Science, pages 215–244. DIMACS/AMS, 1996.

[30] Toniann Pitassi. Propositional proof complexity and unsolvability of polynomial equations. In Proceed-
ings of the International Congress of Mathematicians, volume 3, pages 10–19, 1998.

[31] Petr Savický. A probabilistic nonequivalence test for syntactic (1,+k)-branching programs. Electronic
Colloquium on Computational Complexity (ECCC), 5(51), 1998.

29

[32] Nathan Segerlind. On the relative efficiency of resolution-like proofs and ordered binary decision diagram
proofs. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008,
23-26 June 2008, College Park, Maryland, USA, pages 100–111. IEEE Computer Society, 2008.

[33] Dmitry Sokolov. Dag-like communication and its applications. In Pascal Weil, editor, Computer Science
- Theory and Applications - 12th International Computer Science Symposium in Russia, CSR 2017,
Kazan, Russia, June 8-12, 2017, Proceedings, volume 10304 of Lecture Notes in Computer Science,
pages 294–307. Springer, 2017.

[34] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, 1987.

[35] Stephan Waack. On the descriptive and algorithmic power of parity ordered binary decision diagrams.
In Rüdiger Reischuk and Michel Morvan, editors, STACS 97, 14th Annual Symposium on Theoretical
Aspects of Computer Science, Lübeck, Germany, February 27 - March 1, 1997, Proceedings, volume
1200 of Lecture Notes in Computer Science, pages 201–212. Springer, 1997.

[36] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

[37] Mark N Wegman and Larry Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–279, 1981.

[38] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary re-
port). In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,
pages 209–213, New York, NY, USA, 1979. ACM.

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

