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Abstract

Agreement tests are a generalization of low degree tests that capture a local-to-global phe-
nomenon, which forms the combinatorial backbone of most PCP constructions. In an agreement
test, a function is given by an ensemble of local restrictions. The agreement test checks that the
restrictions agree when they overlap, and the main question is whether average agreement of the
local pieces implies that there exists a global function that agrees with most local restrictions.

There are very few structures that support agreement tests, essentially either coming from al-
gebraic low degree tests or from direct product tests (and recently also from high dimensional ex-
panders). In this work, we prove a new agreement theorem which extends direct product tests to
higher dimensions, analogous to how low degree tests extend linearity testing. As a corollary of our
main theorem, we show that an ensemble of small graphs on overlapping sets of vertices can be glued
together to one global graph assuming they agree with each other on average.

Our agreement theorem is proven by induction on the dimension (with the dimension 1 case being
the direct product test, and dimension 2 being the graph case). A key technical step in our proof is
a new hypergraph pruning lemma which allows us to treat dependent events as if they are disjoint,
and may be of independent interest.

Beyond the motivation to understand fundamental local-to-global structures, our main theorem
is used in a completely new way in a recent paper by the authors [DFH17] for proving a structure
theorem for Boolean functions on the p-biased hypercube. The idea is to approximate restrictions
of the Boolean function on simpler sub-domains, and then use the agreement theorem to glue them
together to get a single global approximation.
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1 Introduction

Agreement tests are a type of PCP tests and capture a fundamental local-to-global phenomenon. In
this paper, we study an agreement testing question that is a new extension of direct product testing to
higher dimensions.

It is a basic fact of computation that any global computation can be broken down into a sequence
of local steps. The PCP theorem [AS98, ALM+98] says that moreover, this can be done in a robust
fashion, so that as long as most steps are correct, the entire computation checks out. At the heart of this
is a local-to-global argument that allows deducing a global property from local pieces that fit together
only approximately.

A key example is the line vs. line [GLR+91, RS96] low degree test in the proof of the PCP theorem.
In the PCP construction, a function on a large vector space is replaced by an ensemble of (supposed)
restrictions to all possible affine lines. These restrictions are supplied by a prover and are not a priori
guaranteed to agree with any single global function. This is taken care of by the “low degree test”,
which checks that restrictions on intersecting lines agree with each other, i.e. they give the same value
to the point of intersection. The crux of the argument is the fact that the local agreement checks imply
agreement with a single global function. Thus, the low degree test captures a local-to-global phenomenon.

In what other scenarios does such a local-to-global theorem hold? This question was first asked by
Goldreich and Safra [GS00] who studied a combinatorial analog of the low degree test. Let us describe
the basic framework of agreement testing in which we will study this question. In agreement testing,
a global function is given by an ensemble of local functions. There are two key aspects of agreement
testing scenarios:

• Combinatorial structure: for a given ground set V of size n, the combinatorial structure is a
collection H of subsets S ⊂ V such that for each S ∈ H we get a local function. For example, if V
is the points of a vector space then H can be the collection of affine lines.

• Allowed functions: for each subset S ∈ H, we can specify a space FS of functions on S that are
allowed. The input to the agreement test is an ensemble of functions {fS} such that for every
S ∈ H, fS ∈ FS . For example, in the line vs. line low degree test we only allow local functions on
each line that have low degree.

Given the ensemble {fS}, the intention is that fS is the restriction to S of a global function F : V → Σ.
Indeed, a local ensemble is called global if there is a global function F : V → Σ such that

∀S ∈ H, fS = F |S .

An agreement check for a pair of subsets S1, S2 checks whether their local functions agree, denoted
fS1
∼ fS2

. Formally,

fS1 ∼ fS2 ⇐⇒ ∀x ∈ S1 ∩ S2, fS1(x) = fS2(x).

A local ensemble which is global passes all agreement checks. The converse is also true: a local ensemble
that passes all agreement checks must be global.

An agreement test is specified by giving a distribution D over pairs (or triples, etc.) of subsets S1, S2.
We define the agreement of a local ensemble to be the probability of agreement:

agreeD({fS}) := Pr
S1,S2∼D

[fS1
∼ fS2

] .

An agreement theorem shows that if {fS}S is a local ensemble with agreeD({fS}) > 1−ε then it is close
to being global.

Example: direct product tests Perhaps the simplest agreement test to describe is the direct product
test, in which H contains all possible k-element subsets of V . For each S, we let FS be all possible
functions on S, that is FS = {f : S → Σ}. The input to the test is an ensemble of local functions
{fS}, and a natural testing distribution is to choose S1, S2 so that they intersect on t = Θ(k) elements.
Suppose that agree({fS}) ≥ 1 − ε. Is there a global function F : V → Σ such that F |S = fS for most
subsets S? This is the content of the direct product testing theorem of Dinur and Steurer [DS14]:
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Theorem 1.1 (Agreement theorem, dimension 1). There exists constants C > 1 such that for all
α, β ∈ (0, 1) satisfying α + β ≤ 1, all positive integers n ≥ k ≥ t satisfying n ≥ Ck and t ≥ αk and

k − t ≥ βk, and all finite alphabets Σ, the following holds: Let f = {fS : S → Σ | S ∈
(
[n]
k

)
} be an

ensemble of local functions satisfying agreeνn,k,t
(f) ≥ 1− ε, that is,

Pr
S1,S2∼νn,k,t

[fS1
|S1∩S2

= fS2
|S1∩S2

] ≥ 1− ε,

where νn,k,t is the uniform distribution over pairs of k-sized subsets of [n] of intersection exactly t.
Then there exists a global function F : [n]→ Σ satisfying Pr

S∈([n]
k )[fS = F |S ] = 1−Oα,β(ε).

The qualitatively strong aspect of this theorem is that in the conclusion, the global function agrees
perfectly with 1−O(ε) of the local functions. Achieving a weaker result where perfect agreement fS = F |S
is replaced by approximate one fS ≈ F |S would be significantly easier but also less useful. Quantitatively,
this is manifested in that the fraction of local functions that end up disagreeing with the global function
F is at most O(ε) and is independent of n and k. It would be significantly easier to prove a weaker
result where the closeness is O(kε) (via a union bound on the event that F (i) = fS(i)). This theorem
is proven [DS14] by imitating the proof of the parallel repetition theorem [Raz98]. This theorem is also
used as a component in the recent work on agreement testing on high dimensional expanders [DK17].

Our Results

In order to motivate our extension of Theorem 1.1, let us describe it in a slightly different form. The
global function F can be viewed as specifying the coefficients of a linear form

∑n
i=1 F (i)xi over variables

x1, . . . , xn. For each S, the local function fS specifies the partial linear form only over the variables in
S. This fS is supposed to be equal to F on the part of the domain where xi = 0 for all i 6∈ S. Given an
ensemble {fS} whose elements are promised to agree with each other on average, the agreement theorem
allows us to conclude the existence of a global linear function that agrees with most of the local pieces.

This description naturally leads to the question of extending this to higher degree polynomials. Now,
the global function is a degree d polynomial with coefficients in Σ, namely F =

∑
T F (T )xT , where we

sum over subsets T ⊂ [n], |T | ≤ d. The local functions fS will be polynomials of degree ≤ d, supposedly
obtained by zeroing out all variables outside S. Two local functions fS1

, fS2
are said to agree, denoted

fS1 ∼ fS2 , if every monomial that is induced by S1 ∩ S2 has the same coefficient in both polynomials.
Our new agreement theorem says that in this setting as well, local agreement implies global agreement.

Theorem 1.2 (Main). For every positive integer d and alphabet Σ, there exists a constant C > 1 such
that for all α, β ∈ (0, 1) satisfying α + β ≤ 1 and all positive integers n ≥ k ≥ t satisfying n ≥ Ck and

t ≥ max{αk, 2d} and k− t ≥ max{βk, d}, the following holds: Let f = {fS :
(
S
≤d
)
→ Σ | S ∈

(
[n]
k

)
} be an

ensemble of local functions satisfying agreeνn,k,t
(f) ≥ 1− ε, that is,

Pr
S1,S2∼νn,k,t

[fS1
|S1∩S2

= fS2
|S1∩S2

] ≥ 1− ε,

where νn,k,t is the uniform distribution over pairs of k-sized subsets of [n] of intersection exactly t.

Then there exists a global function G :
(
[n]
≤d
)
→ Σ satisfying Pr

S∈([n]
k )[fS = G|S ] = 1−Od,α,β(ε).

Here, F |S refers to the restriction F |( S
≤d)

.

Furthermore, we may assume that the global function G is the one given by “popular vote”, namely
for each A ∈

(
[n]
≤d
)

set G(A) to be the most frequently occurring value among {fS(A) | S ⊃ A} (breaking

ties arbitrarily).

For d = 1, this theorem is precisely Theorem 1.1 (but for the “furthermore” clause). The additional
“furthermore” clause strengthens our theorem by naming the popular vote function as a candidate
global function that explains most of the local functions. This addendum strengthens also Theorem 1.1
and turns out important for an application [DFH17] of our theorem which we describe later in the
introduction.

Let us spell out how this theorem fits into the framework described above. The ground set is V =
(
[n]
≤d
)
,

and the collection of subsets H is the collection of all induced hypergraphs on k elements. In particular,
if we focus on Σ = {0, 1}, we can view the local function of a subset S ⊂ [n], |S| = k, as specifying a
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hypergraph on the vertices of S with hyperedges of size up to d. The theorem says that if these small
hypergraphs agree with each other most of the time, then there is a global hypergraph that they nearly
all agree with.

For the special case of d = 2 and Σ = {0, 1}, we get an interesting statement about combining small
pieces of a graph into a global one.

Corollary 1.3 (Agreement test for graphs). There exist a constant C > 1 such that for all α, β ∈ (0, 1)
satisfying α + β ≤ 1 and all for all positive integers n ≥ k ≥ t ≥ 4 satisfying n ≥ Ck, t ≥ αk and
k − t ≥ max{βk, 2} the following holds:

Let {GS} be an ensemble of graphs, where S is a k element subset of [n] and GS is a graph on vertex
set S. Suppose that

Pr
S1,S2∈([n]

k )
|S1∩S2|=t

[GS1 |S1∩S2 = GS2 |S1∩S2 ] ≥ 1− ε.

Then there exists a single global graph G = ([n], E) satisfying Pr
S∈([n]

k )[GS = G|S ] = 1−O(ε).

Here too we emphasize that the strength of the statement is in that the conclusion talks about exact
agreement between the global graph and the local graphs, i.e. GS = G|S and not GS ≈ G|S , for a
fraction of 1−O(ε) of the sets S. It is also important that there is no dependence in the O(·) on either
n or k. A similar agreement testing statement can be made for hypergraphs of any uniformity ≤ d.

A technical component in our proof which we wish to highlight is a new hypergraph pruning lemma,
which may be of independent interest. The lemma can be interpreted by viewing a hypergraph as
specifying the minterms of a monotone DNF (of width at most d). The lemma allows to prune the DNF
so that the new sub-DNF still has similar density (the fraction of inputs on which it is 1), but also has
a structural property which we call bounded branching factor and which implies that for typical inputs,
only a single minterm is responsible for the function evaluating to 1.

Lemma 1.4 (hypergraph pruning lemma). Fix constants ε > 0 and d ≥ 1. There exists p0 > 0
(depending on d, ε) such that for every n ≥ k ≥ 2d satisfying k/n ≤ p0 and every d-uniform hypergraph
H on [n] there exists a subhypergraph H ′ obtained by removing hyperedges such that

1. PrS∼νn,k
[H ′|S 6= ∅] = Ωd,ε(PrS∼νn,k

[H|S 6= ∅]).

2. For every e ∈ H ′, PrS∼νn,k
[H ′|S = {e} | S ⊃ e] ≥ 1− ε.

Here H ′|S is the hypergraph induced on the vertices of S.

We illustrate an application of this lemma later on.

Context and Motivation

Agreement tests were first studied implicitly in the context of PCP theorems. In fact, every PCP
construction that has a composition step invariably relies on an agreement theorem. This is because
in a typical PCP construction, the proof is broken into small pieces that are further encoded e.g. by
composition or by a gadget. The soundness analysis decodes each gadget separately, thereby obtaining
a collection of local views. Then, essentially through an agreement theorem, these are stitched together
into one global NP witness. Similar to locally testable codes, agreement tests are a combinatorial
question that is related to PCPs. Interestingly, this relation has recently been made formal by Dinur et
al. [DKK+16], where it is proved that a certain agreement test (whose correctness is hypothesized there)
formally implies a certain rather strong unique games PCP theorem. Such a formal connection is not
known to exist between LTCs and PCPs. For example, even if someone manages to construct the
“ultimate” locally testable codes with linear length and distance, and testable with a constant number
of queries, this is not known to have any implications for constructing linear size PCPs (although one
may hope that such codes will be useful toward that goal).

Beyond their role in PCPs, we believe that agreement tests capture a fundamental local-to-global
phenomenon, and merit study on their own. Exploring new structures that support agreement theorems
seems to be an important direction.
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Application for structure theorems In a very recent work [DFH17], the authors have found a
totally different application for agreement tests (in particular, for Theorem 1.2) that is outside the PCP
domain. Theorem 1.2 is applied towards proving a certain structure theorem on Boolean functions in
the p-biased hypercube. Given a function on the p-biased hypercube, the key is to look at restrictions
of the global function to small sub-cubes that are identical to the uniform hypercube. On the uniform
hypercube, there are previously known structure theorems which give us a local approximation of our
function separately on each sub-cube. One ends up with an ensemble {fS} of simple functions (juntas,
actually) that locally approximate the function, and then Theorem 1.2 is used to stitch all of the local
junta approximations into one nice global function.

The interplay between the global structure of a function and how it behaves on (random) restrictions
is a powerful tool that is well studied for proving circuit complexity lower bounds. Although agreement
tests have not so far been useful in that arena, this seems like an interesting possibility.

Relation to Property Testing Agreement testing is similar to property testing in that we study
the relation between a global object and its local views. In property testing we have access to a single
global object, and we restrict ourselves to look only at random local views of it. In agreement tests,
we don’t get access to a global object but rather to an ensemble of local functions that are not apriori
guaranteed to come from a single global object. Another difference is that unlike in property testing,
in an agreement test the local views are pre-specified and are a part of the problem description, rather
than being part of the algorithmic solution.

Still, there is an interesting interplay between Corollary 1.3, which talks about combining an ensemble
of local graphs into one global graph, and graph property testing. Suppose we focus on some testable
graph property, and suppose further that the test proceeds by choosing a random set of vertices and
reading all of the edges in the induced subgraph, and checking that the property is satisfied there (many
graph properties are testable this way, for example bipartiteness [GGR98]). Suppose we only allow
ensembles {GS} where for each subset S, the local graph GS satisfies the property (e.g. it is bipartite).
This fits into our formalism by specifying the space of allowed functions FS to consist only of accepting
local views. This is analogous to requiring, in the low degree test, that the local function on each line
has low degree as a univariate polynomial. By Corollary 1.3, we know that if these local graphs agree
with each other with probability 1− ε, there is a global graph G that agrees with 1−O(ε) of them. In
particular, this graph passes the property test, so must itself be close to having the property! At this
point it is absolutely crucial that the agreement theorem provides the stronger guarantee that G|S = GS
(and not G|S ≈ GS) for 1−O(ε) of the S’s. We can thus conclude that not only is there a global graph
G, but actually that this global G is close to having the property.

This should be compared to the low degree agreement test, where we only allow local functions with
low degree, and the conclusion is that there is a global function that itself has low degree.

Technical Contribution

Our proof of Theorem 1.2 proceeds by induction on the dimension d. For d = 1, this is the direct product
test theorem of Dinur and Steurer [DS14], which we reprove in a way that more readily generalizes to
higher dimension. Given an ensemble {fS}, it is easy to define the global function G, by popular vote
(“majority decoding”). The main difficulty is to prove that for a typical set S, fS agrees with G|S on
all elements i ∈ S (and later on all d-sets).

Our proof doesn’t proceed by defining G as majority vote right away. Instead, like in many previous
proofs [DG08, IKW12, DS14], we condition on a certain event (focusing say on all subsets that contain a
certain set T , and such that fS |T = α for a certain value of α), and define a “restricted global” function,
for each T , by taking majority just among the sets in the conditioned event. This boosts the probability
of agreement inside this event. After this boost, we can afford to take a union bound and safely get
agreement with the restricted global function GT . The proof then needs to perform another agreement
step which stitches the restricted global functions {GT }T into a completely global function. The resulting
global function does not necessarily equal the majority vote function G, and a separate argument is then
carried out to show that the conclusion is correct also for G.

In higher dimensions d > 1, these two steps of agreement (first to restricted global and then to global)
become a longer sequence of steps, where at each step we are looking at restricted functions that are
defined over larger and larger parts of the domain.
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The technical main difficulty is that a single event fS = F |S consists of
(
k
d

)
little events, namely

fS(A) = F (A) for all A ∈
(
S
d

)
, that each have some probability of failure. We thus need an even larger

boost, to bound the failure probability by about ε/kd so that we can afford to take a union bound on the(
k
d

)
different sub-events. How do we get this large boost? Our strategy is to proceed by induction, where

at each stage, we condition on the global function from the previous stage, boosting the probability of
success further.

Hypergraph pruning lemma An important component that yields this boosting is the hypergraph
pruning lemma (Lemma 1.4) that was described earlier. The lemma allows approximating a given
hypergraph H by a subhypergraph H ′ ⊂ H that has a bounded branching factor.

Definition 1.5 (branching factor). For any ρ ≥ 1, a hypergraph H over a vertex set V is said to have
branching factor ρ if for all subsets A ⊂ V and integers r ≥ 0, there are at most ρr hyperedges in H of
cardinality |A|+ r containing A.

Our proof of the hypergraph pruning lemma produces a sub-hypergraph with branching factor ρ =
O(n/k). The branching factor is responsible for the second item in the lemma, which guarantees that
usually if a set S contains a hyperedge from H, it contains a unique hyperedge from H ′.

The importance of this is roughly for “inverting union bound arguments”. It essentially allows us to
estimate the probability of an event of the form “S contains some hyperedge of H ′” as the sum, over all
hyperedges, of the probability that S contains a specific hyperedge.

The proof of the lemma is subtle and proceeds by induction on the dimension d. It essentially
describes an algorithm for obtaining H ′ from H and the proof of correctness uses the FKG inequality.
We illustrate how Lemma 1.4 is used by its application to majority decoding.

Majority decoding The most natural choice for the global function F in the conclusion of Theorem 1.2
is the majority decoding, where F (A) is the most common value of fS(A) over all S containing A. This
is the content of the “furthermore” clause in the statement of the theorem. Neither the proof strategy
of [DS14] nor our generalization promises that the produced global function F is the majority decoding.
Our inductive strategy produces a global function which agrees with most local functions, but we cannot
guarantee immediately that this global function corresponds to majority decoding. What we are able
to show is that if there is a global function agreeing with most of the local functions then the function
obtained via majority decoding also agrees with most of the local functions. We outline the argument
below. Suppose that {fS} is an ensemble of local functions that mostly agree with each other, and
suppose that they also mostly agree with some global function F . Let G be the function obtained by
majority decoding: G(A) is the most common value of fS(A) over all S containing A. Our goal is to
show that G also mostly agrees with the local functions, and we do this by showing that F and G mostly
agree.

Suppose that F (A) 6= G(A). We consider two cases. If the distribution of fS(A) is very skewed
toward G(A), then fS(A) 6= F (A) will happen very often. If the distribution of fS(A) is very spread out,
then fS1(A) 6= fS2(A) will happen very often. Since both events fS(A) 6= F (A) and fS1(A) 6= fS2(A)
are known to be rare, we would like to conclude that F (A) 6= G(A) happens for very few A’s.

Here we face a problem: the bad events (either fS(A) 6= F (A) or fS1
(A) 6= fS2

(A)) corresponding
to different A’s are not necessarily disjoint. A priori, there might be many different A’s such that
F (A) 6= G(A), but the bad events implied by them could all coincide.

The hypergraph pruning lemma enables us to overcome this difficulty. Let H = {A : F (A) 6= G(A)},
and apply the hypergraph pruning lemma to obtain a subhypergraph H ′. The lemma states that with
constant probability, a random set S sees at most one disagreement between F and G. This implies that
the bad events considered above can be associated, with constant probability, with a unique A. In this
way, we are able to obtain an upper bound on the probability that F,G disagree on an input from H ′.
The hypergraph pruning lemma then guarantees that the probability that F,G disagree (on any input)
is also bounded.

Organization

The rest of this paper is organized as follows. We begin by reproving Theorem 1.1 of Dinur and
Steurer [DS14] in Section 2 a manner that generalizes to higher dimension. We then generalize the
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proof of the d = 1 theorem to higher dimensions (Theorem 3.1) in Section 3. This almost proves The-
orem 1.2 but for the “furthermore” clause. In Section 4, we prove the hypergraph pruning lemma, a
crucial ingredient in the generalization to higher dimensions. Finally, in Section 5, we use the hypergraph
pruning lemma (again) to prove the “furthermore” clause of Theorem 1.2 thus completing the proof of
our main result. We also show how the agreement theorem can be extended to the µp biased setting in
Section 5.

2 One-dimensional agreement theorem

In this section, we prove the following direct product agreement testing theorem for dimension one in
the uniform setting. This theorem is a special case of the more general theorem (Theorem 3.1) proved
in the next section and also follows from the work of Dinur and Steurer [DS14]. However, we give the
proof for the dimension one case as it serves as a warmup to the general dimension case.

Theorem 1.1 (Restated) (Agreement theorem, dimension 1). There exists constants C > 1 such that
for all α, β ∈ (0, 1) satisfying α + β ≤ 1, all positive integers n, k, t satisfying n ≥ Ck and t ≥ αk and

k − t ≥ βk, and all finite alphabets Σ, the following holds: Let f = {fS : S → Σ | S ∈
(
[n]
k

)
} be an

ensemble of local functions satisfying agreeνn,k,t
(f) ≥ 1− ε, that is,

Pr
S1,S2∼νn,k,t

[fS1 |S1∩S2 = fS2 |S1∩S2 ] ≥ 1− ε,

where νn,k,t is the uniform distribution over pairs of k-sized subsets of [n] of intersection exactly t.
Then there exists a global function F : [n]→ Σ satisfying Pr

S∈([n]
k )[fS = F |S ] = 1−Oα,β(ε).

The distribution νn,k.t is the distribution induced on the pair of sets (S1, S2) ∈
(
[n]
k

)2
by first choosing

uniformly at random a set U ⊂ [n] of size t and then two sets S1 and S2 of size k of [n] uniformly at
random conditioned on S1 ∩ S2 = U . We can think of picking these two sets as first choosing uniformly
at random a set T of size t− 1, then a random element i ∈ [n] \ T , setting U = T + i and then choosing
two sets S1 and S2 such that S1 ∩ S2 = T + i. Clearly, the probability that the functions fS1

and fS2

disagree is the sum of the probabilities of the following two events: (A) fS1
|T 6= fS2

|T , (B) fS1
|T = fS2

|T
but fS1

(i) 6= fS2
(i). This motivates the following definitions for any T ∈

(
[n]
t−1
)

and i ∈ [n] \ T .

εT (∅) = Pr
S1,S2∼ν(k,t)
S1∩S2⊇T

[fS1
|T 6= fS2

|T ],

εT (i) = Pr
S1,S2∼ν(k,t)
S1∩S2=T+i

[fS1
|T = fS2

|T and fS1
(i) 6= fS2

(i)].

It is easy to see that for a typical T , both εT (∅) and Ei/∈T [εT (i)] is O(ε). This suggests the following
strategy to prove Theorem 1.1. For each typical T , construct a “global” function gT : [n] → Σ based
on the most popular value of fS among the fS ’s that agree on T (see Section 2.2 for details) and show
that most gT ’s agree with each other. More precisely, we prove the theorem in 3 steps as follows: In the
first step (Section 2.1), we bound εT (∅) and εT (i) for typical T ’s and i. In the second step (Section 2.2),
we construct for a typical T , a “global” function gT that explains most “local” {fS}S⊃T . In the final
step (Section 2.3), we show that the global functions corresponding to most pairs of typical T ’s agree
with each other, thus demonstrating the existence of a single global function F (in particular a random
global function gT ) that explains most of the “local” functions fS even corresponding to S’s which do
not contain T .

2.1 Step 1: Bounding εT (∅) and εT (i)

We begin by showing that for a typical T of size t− 1, we can upper bound εT (∅) and Ei/∈T [εT (i)].

Lemma 2.1. We have ET [εT (∅)] ≤ ε and ET,i/∈T [εT (i)] ≤ ε
t .

Proof. For a non-negative integer j, let εj be the probability that the functions fS1
and fS2

corresponding
to a pair of sets (S1, S2) picked according to the distribution νn(k, t) disagree on exactly j elements in
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S1 ∩ S2. By assumption of Theorem 1.1, we have
∑t
j=1 εj ≤ ε. Furthermore, it is easy to see that

ET [εT (∅)] =
(
1− 1

t

)
ε1+

∑
j>1 εj and ET,i[εT (i)] = ε1/t. The lemma follows from these observations.

We will need the following auxiliary lemma in our analysis.

Lemma 2.2. Let c ∈ (0, 1) and n ≥ 4k/c. Consider the bipartite inclusion graph between [n] and
(
[n]
k

)
(ie., (i, S) is an edge if i ∈ S). Let B ⊂ [n] and T ⊂

(
[n]
k

)
be such that for each i ∈ B, the set of

neighbours of i in T (denoted by Ti := {S ∈ T | S 3 i}) is of size at least c
(
n−1
k−1
)
. Then either

Pr
S∼νn,k

[S ∈ T ] ≥ max

{
ck

2
· Pr
i

[i ∈ B],
c2

16

}
.

Proof. Let S be a random set of size k. To begin with, we can assume that |B| ≤ n/2 since otherwise
PrS [S ∈ T ] ≥ c/2 ≥ c2/16 and we are done. Let i be any element in B. The probability that S∩B = {i}
conditioned on the event that S contains i is given as follows:

Pr[S ∩B = {i} | i ∈ S] =

|B|−1∏
i=1

(
1− k − 1

n− i

)
≥
(

1− k − 1

n− |B|

)|B|
≥ 1− k

n/2
|B|.

Hence, for any i ∈ B, Pr[S ∈ Ti and S ∩B = {i} | i ∈ S] ≥ c− 2k
n · |B|. It follows that

Pr[S ∈ T ] ≥
∑
i∈B

Pr[S ∈ Ti and S∩B = {i}] ≥ k

n

∑
i∈B

Pr[S ∈ Ti and S∩B = {i} | i ∈ S] ≥ k

n
|B|
(
c− 2k

n
|B|
)
.

If the above is true for B, it is also true for any B′ ⊂ B. Now, if |B| ≥ cn/4k, then consider B′ ⊂ B of

size bcn/4kc ≥ cn/8k. Then applying the above inequality for B′, we have Pr[S ∈ T ] ≥ c
8 ·

c
2 = c2

16 . Other

wise |B| < cn/4k, now again appealing to the above inequality, we have Pr[S ∈ T ] ≥ ck
2 · Pr[i ∈ B].

2.2 Step 2: Constructing global functions for typical T ’s

We prove the following lemma in this section.

Lemma 2.3. For all α ∈ (0, 1) and positive integers n, k, t satisfying n ≥ 8k and t ≥ αk and alphabet Σ

the following holds: Let {fS : S → Σ | S ∈
(
[n]
k

)
} be an ensemble of local functions satisfying

Pr
S1,S2∈([n]

k )
|S1∩S2|=t

[fS1 |S1∩S2 6= fS2 |S1∩S2 ] ≤ ε,

then there exists an ensemble {gT : [n] → Σ | T ∈
(
[n]
t−1
)
} of global functions such when a random

T ∈
(
[n]
t−1
)

and S ∈
(
[n]
k

)
are chosen such that S ⊃ T , then Pr[gT |S 6= fS ] = Oα(ε).

By Lemma 2.1, we know that a typical T of size t − 1 satisfies εT (∅) = O(1). We prove the above
lemma, by constructing for each such typical T a global function gT that explains most local functions
fS for S ⊃ T . For the rest of this section fix such a T .

Given X =
(
[n]
k

)
, let XT := {S ∈ X | S ⊃ T}. Let n′ = n− (t− 1) and k′ = k − (t− 1). For i /∈ T ,

let XT,i := XT+i = {S ∈ XT | i ∈ S}.
We now define the “global” function gT : [n]→ Σ as follows. We first define the value of gT (we will

drop the subscript T when T is clear from context) for i ∈ T and then for each i /∈ T . Define g|T : T → Σ
to be the most popular restriction of the functions fS |T for S ∈ XT . In other words, g|T is the function
that maximizes PrS∈XT

[g|T = fS |T ]. Let X(0) := {S ∈ XT | fS |T = g|T } be the set of S’s that agree

with this most popular value. For each i /∈ T , let X
(0)
T,i := X(0) ∩XT,i. For each such i, define g(i) to be

the most popular value fS(i) among S ∈ X(0)
T,i . This completes the definition of the function g.
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We now show that if εT (∅) is small, then the function gT agrees with most functions fS , S ∈ XT .

Pr
S∈XT

[fS 6= g|S ] ≤ Pr
S∈XT

[fS |T 6= g|T ] +
∑
i/∈T

Pr
S∈XT

[i ∈ S and fS |T = g|T and fS(i) 6= g(i)]

= Pr
S∈XT

[fS |T 6= g|T ] +
k′

n′

∑
i/∈T

Pr
S∈XT,i

[fS |T = g|T and fS(i) 6= g(i)]

= Pr
S∈XT

[fS |T 6= g|T ] +
k′

n′

∑
i/∈T

Pr
S∈XT,i

[S ∈ X(0)
T,i ] · Pr

S∈X(0)
T,i

[fS(i) 6= g(i)] (1)

This motivates the definition of the following quantities which we need to bound.

γ(∅) := Pr
S∈XT

[fS |T 6= 1g|T ]; γ(i) := Pr
S∈X(0)

T,i

[fS(i) 6= g(i)]; ρ(i) := Pr
S∈XT,i

[S ∈ X(0)
T,i ].

We now bound γ(∅) and γ(i) in terms εT (∅) and Ei/∈T [εT (i)] via the following (disagreement) prob-
abilities.

κ(∅) := Pr
S1,S2∈XT

[fS1
|T 6= fS2

|T ]; κ(i) := Pr
S1,S2∈X(0)

T,i

[fS1
(i) 6= fS2

(i)].

Claim 2.4 (Bounding γ(∅)). γ(∅) ≤ κ(∅) ≤ 2εT (∅).

Proof. By definition, we have κ(∅) = ES1∈XT
[PrS2∈XT

[fST
|T 6= fS2 |T ]] ≥ γ(∅) since g|T is the most

popular value among fS |T for S ∈ XT . The only difference between κ(∅) and εT (∅) is the distribution
from which the pairs (S1, S2) are drawn; for κ(∅), (S1, S2) is drawn uniformly from all pairs XT ×XT

while for εT (∅), (S1, S2) is drawn from νn(k, t). To complete the argument, we choose S1, S2, S ∈ XT

in the following coupled fashion such that (S1, S2) ∼ X2
T while (S1, S), (S2, S) ∼ νn(k, t). First choose

S1, S2 ∈ XT at random, then choose i1 ∈ S1 \ T and i2 ∈ S2 \ T at random, and choose S ∈ XT at
random such that S1 ∩S = T + i1 and S2 ∩S = T + i2. We now have (S1, S), (S2, S) ∼ νn(k, t). Clearly,
if fS1

|T 6= fS2
|T , then either fS1

|T 6= fS |T or fS2
|T 6= fS |T . Hence, κ(∅) ≤ 2εT (∅).

Claim 2.5 (Bounding γ(i)). If 3k − 2t ≤ n, then γ(i) ≤ κ(i) ≤ 2εT (i)/ρ(i)3.

Proof. The proof of this claim proceeds similar to the proof of the previous claim. By definition, we have

κ(i) = E
S1∈X(0)

T,i

[
Pr

S2∈X(0)
T,i

[fST
(i) 6= fS2

(i)]
]
≥ γ(i) since g(i) is the most popular value among fS(i) for

S ∈ X(0)
T,i . We then observe that

κ(i) = Pr
S1,S2∈XT,i

[fS1
(i) 6= fS2

(i) | S1, S2 ∈ X(0)
T,i ] =

PrS1,S2∈XT,i
[S1, S2 ∈ X(0)

T,i and fS1
(i) 6= fS2

(i)]

ρ(i)2

We now choose S1, S2, S in a coupled fashion as follows. Let B be the distribution of |S1 ∩ S2| when

S1, S2 are chosen at random from XT,i. First choose S ∈ X
(0)
T,i at random. Then choose B ∼ B, so

B ≥ t. Choose disjoint sets I, I1, I2 disjoint from S of sizes B − t, k − B, k − B respectively, and let
Sj = Ij ∪I∪∪T{i} for j ∈ {1, 2}. Here, we have used the fact that 3k−B− t ≤ n. The joint distribution
(S1, S2, S) satisfy that (S1, S2) ∼ XT,i × XT,i and (Sj , S) ∼ νn(k, t) conditioned on Sj ∈ XT,i and

S ∈ X(0)
T,i . Furthermore, if S1, S2 ∈ X(0)

T,i (i.e., fS1
|T = fS2

|T = g|T ) and fS1
(i) 6= fS2

(i) then one of the
following must hold:

1. fS1
|T = fS |T and fS1

(i) 6= fS(i), or

2. fS2
|T = fS |T and fS2

(i) 6= fS(i).

(The first parts always hold, and the second parts cannot both not hold.) This shows that κ(i) is bounded
above by

κ(i) ≤ 2

ρ(i)2
· Pr
S1∈XT,i

S∈X(0)
T,i

S1∩S={i}

[fS1 |T = fS |T and fS1(i) 6= fS(i)]

≤ 2

ρ(i)3
· Pr
S1,S∈XT,i

S1∩S={i}

[fS1
|T = fS |T and fS1

(i) 6= fS(i)] =
2εT (i)

ρ(i)3
.
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Claim 2.6. If 8k ≤ n and εT (∅) ≤ 1
128 , then Pri/∈T

[
ρ(i) ≤ 1

2

]
≤ O(εT (∅)/k′).

Proof. This follows from an application of Lemma 2.2 by setting c = 1
2 and B := {i /∈ T | ρ(i) ≤ 1

2}.
Then, either γ(∅) ≥ 1/64 or Pr[i ∈ B] ≤ 4γ(∅)/k′ ≤ 8εT (∅)/k′.

We now return to bounding Pr[fS 6= g|S∪T ] from (1) as follows:

Claim 2.7. If n ≥ 8k and εT (∅) ≤ 1
128 , then PrS,T : S⊃T [fS 6= gT |S ] = O(εT (∅+ k′ · Ei/∈T [εT (i)]).

Proof.

Pr[fS 6= gT |S ] ≤ Pr
S∈XT

[fS |T 6= g|T ] +
k′

n′

∑
i/∈T

Pr
S∈XT,i

[S ∈ X(0)
T,i ] · Pr

S∈X(0)
T,i

[fS(i) 6= g(i)]

= γ(∅) +
k′

n′

∑
i/∈T,ρ(i)≤1/2

1 +
k′

n′

∑
i/∈T,ρ(i)>1/2

ρ(i) · γ(i)

≤ 2εT (∅) + 8εT (∅) +
k′

n′

∑
i/∈T,ρ(i)>1/2

2εT (i)

ρ(i)2
= O (εT (∅) + k′ · Ei/∈T [εT (i)]) .

We now complete the proof of the main lemma of this section.

Proof of Lemma 2.3. By Lemma 2.1, we have ET [εT (∅)] ≤ ε. Hence, PrT [εT (∅) ≤ 1
128 ] = 1− O(ε). We

call such a T typical. For non-typical T , we define gT arbitrarily (this happens with probability at most
O(ε)). For every typical T , we have from the global function gT satisfies

Pr
S∈XT

[fS 6= gT |S ] = O (εT (∅) + (k − (t− 1)) · Ei/∈T [εT (i)]) .

If t ≥ kα, the right hand side of the above inequality can be further bounded (using Lemma 2.1) as
O (εT (∅) + (k − (t− 1)) · Ei/∈T [εT (i)]) = O(ε+ k · ε/t) = Oα(ε). This completes the proof of Lemma 2.3.

2.3 Step 3: Obtaining a single global function

In the final step, we show that the global function gT corresponding to a random typical T explains most
local functions fS corresponding to S’s not necessarily containing T . We will first prove this under the
assumption that k − 2(t − 1) = Ω(k). For concreteness, let us assume t ≤ k/3. We will then show to
extend it to any t satisfying k − t ≥ βk.

Suppose we choose two (t − 1)-sets T1, T2 at random, and a k-set S containing T1 ∪ T2 at random
(here we use 2(t− 1) ≤ k). Then,

Pr[gT1
|S 6= gT2

|S ] = O(ε).

This prompts defining
δT1,T2

:= Pr
S⊇T1∪T2

[gT1
|S 6= gT2

|S ],

so that E[δT1,T2 ] = O(ε).
If gT1 , gT2 disagree on T1∪T2 then δT1,T2 = 1, which happens with probability at most O(ε). Assume

this is not the case. Denote by B the set of points of T1 ∪ T2 on which gT1 , gT2 disagree, and let
n′ = n − |T1 ∪ T2| = Θ(n), k′ = k − |T1 ∪ T2| = Θ(k). Applying Lemma 2.2 (with c = 1) shows that
unless δT1,T2

> 1/8 (which happens with probability at most O(ε)), we have |B|/n′ = O(δT1,T2
/k′), and

so |B|/n = O(δT1,T2
/k). This shows that if δT1,T2

≤ 1/8 then

Pr
i∈[n]

[gT1
(i) 6= gT2

(i) | δT1,T2
≤ 1/8] ≤ O(δT1,T2

/k).
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Choose a random S ∈
(
[n]
k

)
containing a random T2 (but not necessarily T1). Then

ET1

[
Pr

T2,S : S⊃T2

[gT1
|S 6= gT2

|S ]

]
= Pr
T1,T2,S : S⊃T2

[gT1
|S 6= gT2

|S ]

≤ Pr[δT1,T2
> 1/8] + Pr[∃i, i ∈ S and gT1

(i) 6= gT2
(i) | δT1,T2

≤ 1/8]

= O(ε) + n · (k − (t− 1))

(n− (t− 1))
· O(E[δT1,T2

| δT1,T2
≤ 1/8])

k

= O

(
ε+

E[δT1,T2
]

Pr[δT1,T2
≤ 1/8]

)
= O(ε).

Choose a set T1 such that the above probability holds with respect to T2, S, and define F = gT1
. Then

Pr[fS 6= F |S ] ≤ Pr[fS 6= gT2 |S ] + Pr[gT1 |S 6= gT2 |S ] = O(ε).

We have proved the following lemma.

Lemma 2.8. For all α ∈ (0, 1/3) if n ≥ 4k and αk ≤ t ≤ k/3, there exists a function F : [n]→ Σ such
that Pr[fS 6= F |S ] = Oα(ε).

Proof of Theorem 1.1. Consider the following coupling argument. Let S1, S2 ∼ νn(k, t′). Let S be a
random set of size k containing S1 ∩ S2 as well as t− t′ random elements from S1, S2 each and the rest
of the elements chosen from S1 ∪ S2. This can be done as long as k ≥ 2(t − t′) + t′ = 2t − t′. Clearly,
(S, Sj) ∼ νn(k, t) for j = 1, 2. Furthermore,

Pr[fS1
|S1∩S2

6= fS2
|S1∩S2

] ≤ Pr[fS1
|S1∩S 6= fS |S1∩S ] + Pr[fS2

|S2∩S 6= fS |S2∩S ] ≤ 2ε.

This demonstrates that if the hypothesis for the agreement theorem is true for a particular choice of
n, k, t, then the hypothesis is also true for n, k, t′ by increasing ε to 2ε provided k− t ≥ (k− t′)/2. Thus,
given the hypothesis is true for some t satisfying k−t ≥ βk, we can perform the above coupling argument
a constant number of times to to reduce t to less than k/3 and then conclude using Lemma 2.8.

3 Agreement theorem for high dimensions

Theorem 3.1 (Agreement theorem). There exists constants C > 1 such that for all positive integers d
and α, β ∈ (0, 1) satisfying α+β ≤ 1 and all positive integers n, k, t satisfying n ≥ Ck and t ≥ max{αk, d}
and k−t ≥ max{βk, d} and alphabet Σ the following holds: Let {fS :

(
S
≤d
)
→ Σ | S ∈

(
[n]
k

)
} be an ensemble

of functions satisfying
Pr

S1,S2∈([n]
k )

|S1∩S2|=t

[fS1
|S1∩S2

6= fS2
|S1∩S2

] ≤ ε,

then there exists a function F :
(
[n]
≤d
)
→ Σ satisfying Pr

S∈([n]
k )[fS 6= F |S ] = Oα,β,d(ε). Here, F |S refers to

the restriction F |( S
≤d)

.

As before, we let νn(k, t) denote the distribution induced on the pair of sets (S1, S2) ∈
(
[n]
k

)2
by first

choosing uniformly at random a set U ⊂ [n] of size t and then two sets S1 and S2 of size k of [n] uniformly
at random conditioned on S1 ∩S2 = U . The proof of this theorem proceeds similar to the dimension one
setting in three steps. In the first step (Section 3.1), we prove some preliminary lemmas which help in
bounding the error of a “typical” subset T of [n] of size t− d. In the second step (Section 3.2), we define

for each T ⊂ [n] of size t− d, a “global” function gT :
(
[n]
≤d
)
→ Σ such that when we pick a random pair

T ⊂ S where |T | = t− d and |S| = k, then PrT,S : T⊂S [gT |S = fS ] = O(ε). In other words, for a random
T ⊂ S, the global function explains the local function. Finally, in step (Section 3.3), we argue that a
random “global” function gT explains most “local” functions fS corresponding to S (not necessarily ones
that contain T ).

First for some notation. Let n′ := n − (t − d) and k′ := k − (t − d). For any set T ⊂ [n] of size

t − d, we let T := [n] \ T . Let XT := {S ∈
(
[n]
k

)
| S ⊃ T}. For A ⊂ T , |A| = i ≤ d, we define

XT,A := XT∪A = {S ∈
(
[n]
k

)
| S ⊃ T ∪A}.
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For i = −1, 0, . . . , d, Define T (i) := {U ∈
(
[n]
≤d
)
| |U \ T | ≤ i}. Clearly, ∅ = T (−1) ⊂

(
T
≤d
)

= T (0) ⊂
T (1) ⊂ . . . ⊂ T (d−1) ⊂ T (d) =

(
[n]
≤d
)
. For A ⊂ T and |A| = i, define T (A) := {U ∈

(
[n]
≤d
)
| U \ T ⊂

A} =
(
T∪A
≤d
)
. Clearly, T (i) =

⋃
A∈(T

i )
T (A). For S ∈ X(A), let fS |T,A denote the restriction fS |T (A)∩( S

≤d)
.

Similarly, fS |T,i := fS |T (i)∩( S
≤d)

. Note that fS |T,i refers to the restriction of fS to the set of all subsets

of size at most d which have at most i elements outside T . Given two local functions fS1
and fS2

,
we say that they agree (denoted by fS1

∼ fS2
) if they agree on the intersection of their domains (ie.,

fS1
(a) = fS2

(a) for all a ∈
(
S1∩S2

≤d
)
). Similarly, we say that two restrictions fS1

|T,i and fS2
|T,i agree

(denoted by fS1 |T,i ∼ fS2 |T,i) if fS1(a) = fS2(a) for all a ∈
(
S1∩S2

≤d
)
∩ T (i).

3.1 Step 1: some preliminary lemmas

Lemma 3.2. For all 0 ≤ i ≤ d,

Pr
S1,S2∼νn(k,t)

T⊆S1∩S2,|T |=t−d

[fS1
|T,i−1 ∼ fS2

|T,i−1 and fS1
6∼ fS2

] = Od,α(k−iε).

Proof. We can rewrite the above probability as

Pr
S1,S2∼νn(k,t)

[fS1 6∼ fS2 ] · ES1,S2∼νn(k,t)
fS1
6∼fS2

[
Pr

T⊆S1∩S2,|T |=t−d
[fS1
|T,i−1 ∼ fS2

|T,i−1]

]
.

The first factor is clearly at most ε. Now consider any S1, S2 of size k intersecting at a set of size t such
that fS1

6∼ fS2
, say fS1

(A) 6= fS2
(A) for some A ⊆ S1 ∩ S2. Hence, if fS1

and fS2
agree on all sets in

T (i−1) ∩
(
S1∩S2

≤d
)
, it must be the case that |A \ T | ≥ i. Hence,

Pr
T⊆S1∩S2,|T |=t−d

[fS1
|T,i−1 ∼ fS2

|T,i−1] ≤ Pr
T⊆S1∩S2,|T |=t−d

[|A \ T | ≥ i].

Let U = S1 ∩ S2. We can estimate the probability on the right by

Pr
T⊆U,|T |=t−d

[|A\T | ≥ i] ≤
∑

B⊆A,|B|=i

Pr
T⊆U,|T |=t−d

[U\T ⊇ B] =

(
d

i

)
d(d− 1) · · · (d− i+ 1)

t(t− 1) · · · (t− i+ 1)
= Od(t

−i) = Od,α(k−i),

wherein the last step we have used the fact t ≥ αk.

We deduce the following corollaries.

Corollary 3.3. Let |T | = t− d and |A| = i ≤ d be disjoint sets. Define

εT,A := Pr
S1,S2∼ν(k,t)
S1∩S2⊇T∪A

[fS1 |T,i−1 ∼ fS2 |T,i−1 and fS1 |T,A 6∼ fS2 |T,A].

Then ET,A[εT,A] = O(k−iε) where the expectation it taken over T and A such that |T | = t − d, |A| = i
and T ∩A = ∅.

Proof. This follows from the simple observation that

ET,A[εT,A] = ET,A

 Pr
S1,S2∼ν(k,t)
S1∩S2⊇T∪A

[fS1
|T,i−1 ∼ fS2

|T,i−1 and fS1
|T,A 6∼ fS2

|T,A]


≤ ET,A

 Pr
S1,S2∼ν(k,t)
S1∩S2⊇T∪A

[fS1
|T,i−1 ∼ fS2

|T,i−1 and fS1
6∼ fS2

]


= Pr

S1,S2∼νn(k,t)
T⊆S1∩S2,|T |=t−d

[fS1
|T,i−1 ∼ fS2

|T,i−1 and fS1
6∼ fS2

]

= O(k−iε).
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Corollary 3.4. Let |T | = k − d and let 0 ≤ i ≤ d. Define εT,i := EA⊂T ,|A|=i[εT,A]. Then ET [εT,i] =

O(k−iε).

We also need the following lemma (which in some sense is the generalization of Lemma 2.2 to general
d). However the proof of this lemma is far more elaborate and requires the hypergraph pruning lemma
(Lemma 1.4 proved in Section 4).

Lemma 3.5. Fix d ≥ 1 and c > 0. There exists p0 > 0 (depending on c, d) such that the following holds
for every n ≥ k ≥ 2d satisfying k/n ≤ p0.

Let F be a d-uniform hypergraph, and for each A ∈ F , let YA ⊆ XA = {S ∈
(
[n]
k

)
| S ⊇ A} have

density at least c in XA. Then

Pr
S : |S|=k

[
S ∈

⋃
A∈F

XA

]
= Oc,d

(
Pr

S : |S|=k

[
S ∈

⋃
A∈F

YA

])
.

Proof. Let ε = c/2, and apply the uniform hypergraph pruning lemma (Lemma 1.4) setting H := F to
get a subhypergraph F ′ of F . For every A ∈ F ′,

Pr
S : |S|=k

[S ∈ YA and F ′|S = {A} | S ∈ XA] ≥ c− Pr
S : |S|=k

[F ′|S 6= {A} | S ∈ XA] ≥ c− ε = c/2.

Summing over all A ∈ F ′, we get

Pr
S : |S|=k

[
S ∈

⋃
A∈F

YA

]
≥
∑
A∈F ′

Pr
S : |S|=k

[S ∈ YA and F ′|S = {A}] ≥

c

2

∑
A∈F ′

Pr
S : |S|=k

[S ∈ XA] ≥ c

2
Pr

S : |S|=k
[F ′|S 6= ∅] = Ωc,d

(
Pr

S : |S|=k
[F |S 6= ∅]

)
.

This completes the proof since the right-hand side is exactly the left-hand side of the statement of the
lemma.

3.2 Step 2: Constructing a global function for a typical T

We prove the following lemma in this section.

Lemma 3.6. For all α, β ∈ (0, 1) and positive integers d, there exists a constant p ∈ (0, 1) such that for
all positive integers n, k, t satisfying k ≤ pn, t ≥ max{αk, d}, k − t ≥ max{βk, d} and alphabet Σ the

following holds: Let {fS :
(
S
≤d
)
→ Σ | S ∈

(
[n]
k

)
} be an ensemble of local functions satisfying

Pr
S1,S2∈([n]

k )
|S1∩S2|=t

[fS1 |S1∩S2 6= fS2 |S1∩S2 ] ≤ ε,

then there exists an ensemble {gT :
(
[n]
≤d
)
→ Σ | T ∈

(
[n]
t−d
)
} of global functions such when a random

T ∈
(
[n]
t−d
)

and S ∈
(
[n]
k

)
are chosen such that S ⊃ T , then Pr[gT |S 6= fS ] = Oα,β,d(ε).

We now define the “global” function gT :
(
[n]
≤d
)
→ Σ. We will drop the subscript T for ease of notation.

We will define g incrementally by first defining g|T (−1) (the empty function) and then inductively extend-

ing the definition of g from the domain T (i−1) to T (i) (recall that T (−1) ⊂ T (0) ⊂ · · · ⊂ T (d) =
(
[n]
≤d
)
). To

begin with set X(−1) := XT and δ−1 := 1 − |X
(−1)|
|XT | = 0. Let g : T (−1) → Σ be the empty function. For

i := 0 . . . d do, we inductively extend the definition of g from T (i−1) to T (i) as follows. If δi−1 >
1
2 , set

g := ⊥ and exit. For each A ∈ T , |A| = i, let

X
(i−1)
(A) := {S ∈ X(i−1) | S ⊃ A},
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and gA be the most popular fS |T,A among S ∈ X(i−1)
(A) (breaking ties arbitrarily). Let γ(A) denote the

probability that a random value in X
(i−1)
(A) is not the popular value, more precisely

γ(A) := Pr
S∈X(i−1)

(A)

[fS |T,A 6= gA] ,

and ρ(A) :=
|X(i−1)

(A)
|

|X(A)|
. Note that gA :

(
T∪A
≤d
)
→ Σ and gA agrees with g on the domain T (i−1) (ie., the

domain where it has been defined so far). We now extend g from T (i−1) to T (i) as follows: for each

B ∈ T (i) \ T (i−1), let A be the unique subset in
(
T
i

)
such that B = B′ ∪ A for some B′ ∈ T . Set

g(B) := gA(B). Set

X(i) :=
{
S ∈ X(i−1) | ∀A ⊂ S \ T, |A| = i, fS |T,A = g|T (A)∩( S

≤d)

}
,

and δi := 1− |X
(i)|
|XT | before proceeding to the next i. Thus, X(i) refers to the set of S’s where the global

function g : T (i) → Σ agrees with local functions fS and δi is the density of those S’s that disagree with
the global function.

We would like to bound the probability that the global function g defined above agrees with local
functions, namely PrS : S⊃T [gT |S 6= fS ]. Note that this probability is upper bounded by the probability
δd. We now inductively bound δi, i = 0, . . . , d. First we need the following claims on γ(A) and ρ(A).

Claim 3.7 (Estimating γ(A)). If t+ d ≤ k and 3k ≤ n, then γ(A) ≤ 2εT,A/ρ(A)3.

Proof. By definition, we have γ(A) = minα Pr
S∈X(i−1)

(A)

[fS |T,A 6= α]. Hence, we have

γ(A) ≤ Pr
S1,S2∈X(i−1)

(A)

[fS1 |T,A 6∼ fS2 |T,A] ≤ 1

ρ(A)2
· Pr
S1,S2∈X(A)

[
S1, S2 ∈ X(i−1)

(A) and fS1 |T,A 6∼ fS2 |T,A
]
.

Let M be the distribution of |S1∩S2| when S1, S2 are chosen at random from X(A). Choose S ∈ X(i−1)
(A)

at random, and draw m ∼M (so m ≥ t − d + i). Choose two disjoint subsets R1, R2 of S \ (T ∪ A) of
size d− i, two disjoint subsets I1, I2 of S of size k −m− d + i, and a subset I disjoint from I1, I2, S of
size m − i − t + d; this is possible since t + d ≤ k and 3k ≤ n. Let Sj = A ∪ Rj ∪ Ij ∪ I ∪ T (which
have size i+ (d− i) + (k −m− d+ i) + (m− i− t+ d) + (t− d) = k, so that S1 ∩ S2 = A ∪ I ∪ T has
size i+ (m− i− t+ d) + (t− d) = m and Sj ∩ S = A ∪ Rj ∪ T have size i+ (d− i) + (t− d) = t. The
joint distribution (S1, S2, S) satisfy that (S1, S2) ∼ X(A) × X(A) and (Sj , S) ∼ νn(k, t) conditioned on

Sj ∈ X(A) and S ∈ X(i−1)
(A) . Furthermore, if fS1

|T,A 6∼ fS2
|T,A and S1, S2 ∈ X(i−1)

(A) (i.e., for all A1 ∈ S1\T
of size i, fS1 |T,A1 = g|T (A1)∩( S

≤d)
and for all A2 ∈ S2 \ T of size i, fS2 |T,A = g|T (A)∩( S

≤d)
), then one of the

following must hold:

1. fS1
|T,i ∼ fS |T,i and fS1

|T,A 6∼ fS |T,A, or

2. fS2
|T,i ∼ fS |T,i and fS2

|T,A 6∼ fS |T,A.

Hence,

γ(A) ≤ 2

ρ(A)2
· Pr
S1∈X(A)

S∈X(i−1)

(A)

|S1∩S|=t

[fS1 |T,i ∼ fS |T,i and fS1 |T,A 6∼ fS |T,A] ≤

2

ρ(A)3
· Pr
S1,S∈X(A)

|S1∩S|=t

[fS1
|T,i ∼ fS |T,i and fS1

|T,A 6∼ fS |T,A] ≤ 2εT,A
ρ(A)3

.

Claim 3.8 (Estimating ρ(A)). If k ≥ t+d and k ≤ p0n, then PrS∈XT

[
∃A ⊂ T , |A| = i, S ⊃ A, ρ(A) < 1

2

]
=

O(δi−1).
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Proof. Let F = {|A| = i | ρ(A) ≤ 1/2}. Define Y(A) = {S ∈ X(A) | S /∈ X
(i−1)
(A) }. If A ∈ F then

|Y(A)|/|X(A)| = 1− ρ(A) ≥ 1/2. Then applying Lemma 3.5 (setting d = d, c = 1/2, n = n− (t− d), k =
k − (t− d), we have

Pr
S∈XT

[S ⊇ A for some A ∈ F ] = O( Pr
S∈XT

[S ∈ Y(A) for some A ∈ F ]).

The conditions for Lemma 3.5 require k− (t−d) ≥ 2d and k− (t−d) ≤ p0(n− (t−d)) which are satisfied
if k ≥ t+ d and k ≤ pon. If S ∈ Y(A) for any A then S /∈ X(i−1), and so the probability on the right is

at most PrS∈XT
[S /∈ X(i−1)] = δi−1. Therefore

Pr
S∈XT

[
ρ(A) < 1/2 for some A ∈

(
S \ T
i

)]
= O(δi−1).

Claim 3.9. If k − t ≥ βk and δi−1 ≤ 1
2 , then δi = Oβ(δi−1 + kiεT,i).

Proof.

δi = Pr
S∈XT

[
S /∈ X(i)

]
= Pr
S∈XT

[
S /∈ X(i−1)

]
+ Pr
S∈XT

[
S ∈ X(i−1) and S /∈ X(i)

]
= δi−1 + Pr

S∈XT

[
∃A ∈ T , |A| = i, S ⊃ A and S ∈ X(i−1) and fS |T,A 6= g|T (A)∩( S

≤d)

]
= δi−1 + Pr

S∈XT

[
∃A ∈ T , |A| = i, S ⊃ A, ρ(A) <

1

2

]
+ Pr
S∈XT

[
∃A ∈ T , |A| = i, S ⊃ A, ρ(A) ≥ 1

2
, S ∈ X(i−1) and fS |T,A 6= g|T (A)∩( S

≤d)

]
= O (δi−1) +

∑
A : A∈(T

i ),ρ(A)> 1
2

Pr
S∈XT

[
S ⊃ A,S ∈ X(i−1) and fS |T,A 6= g|T (A)∩( S

≤d)

]
[By Claim 3.8]

= O (δi−1) +
∑

A : A∈(T
i ),ρ(A)> 1

2

Pr
S∈XT

[
S ∈ X(A)

]
· Pr
S∈X(A)

[
S ∈ X(i−1)

(A)

]
· Pr
S∈X(i−1)

(A)

[
fS |T,A 6= g|T (A)∩( S

≤d)

]

≤ O (δi−1) +

(
n′−i
k′−i

)(
n′

k′

) ∑
A : A∈(T

i ),ρ(A)> 1
2

ρ(A) · γ(A)

≤ O (δi−1) +

(
k′

n′

)i ∑
A : A∈(T

i ),ρ(A)> 1
2

2εT,A
ρ(A)2

[By Claim 3.7]

≤ O (δi−1) + 8

(
k′

n′

)i ∑
A : A∈(T

i )

εT,A = Oβ
(
δi−1 + kiεT,i

)
[Since k′ = k − (t− d) = Θ(k)]

= Oβ
(
δi−1 + kiεT,i

)
[By Corollary 3.4].

We are now ready to complete the proof of Lemma 3.6

Proof of Lemma 3.6. Given T , we have shown above how to construct a function gT , given that δi ≤ cδ
for all i. If the latter condition fails, define gT arbitrarily.

We have defined above a sequence δ−1 = 0, δ0, . . . , δd. We have defined δi only given δi−1 ≤ 1
2 . If

δi−1 >
1
2 , we define δi = 1. Note that Pr[fS 6= gT |S ] ≤ δd.

We have shown above that if δi−1 ≤ 1
2 then δi = O(δi−1 + kiεT,i). It is always the case that

δi = O(δi−1 + kiεT,i) + 1δi−1>
1
2
. We now prove by induction on i that ET [δi] = O(ε). This clearly holds

when i = −1. Assuming that it holds for i− 1, for i we get

E[δi] = O(E[δi−1] + kiE[εT,i]) + Pr[δi−1 >
1

2
] = O(ε).

We conclude that PrT,S [gT |S 6= fS ] ≤ E[δd] = O(ε).
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3.3 Step 3: Obtaining a single global function

Given the set of local functions {fS}S∈([n]
k ), we constructed a set of global functions {gT }T∈( [n]

t−d)
such

that for most pairs S ⊃ T , the global function gT agrees with the local function fS (Lemma 3.6). In this
step, we conclude that a random global function gT agrees with most local functions fS (not necessarily
S’s that contain T ).

We will first prove this under the assumption that k − 2(t − 1) = Ω(k). For concreteness, let us
assume t ≤ k/3. We will then show to extend it to any t satisfying k− t ≥ βk. To begin with, we observe
that Lemma 3.6 immediately implies the following claim.

Claim 3.10. For T1, T2 of size t − d, define δT1,T2
:= PrS⊇T1∪T2

[gT1
|S 6= gT2

|S ]. Then ET1,T2
[δT1,T2

] =
O(ε).

We now move to more general S in the following sense: S contains T2 but not necessarily T1.

Claim 3.11. For all T1, T2, Pr|S|=k,S⊇T2
[gT1 |S 6= gT2 |S ] = O(δT1,T2).

Proof. We will prove this be choosing L = Od(1) collection of k-sets (S, S1, . . . , SL) in a coupled fashion
such that each S is a random k-set containing T1 and for each j ≥ 1, Sj is a random k-set containing

T1 ∪ T2 with the additional property that
(
S
≤d
)
⊆
⋃
j≥1

(
S
≤d
)
. Given such a distribution, the lemma

follows by a union bound.
The coupled distribution is obtained in the following fashion. Let k − |T1 ∪ T2| ≥ k/3. We proceed

to find a collection of O(1) subsets Ri ⊆ [k] of size at most k/3 such that
(
[k]
d

)
=
⋃
i

(
Ri

d

)
. The idea is

to split [k] into O(d) parts of size at most k/(3d), and to take as Ri the union of any d of these. Given

a random k-set S ∈
(
[n]
d

)
containing T2, choose a random permutation mapping [k] to S, apply it to

the Ri, remove from the resulting sets any elements of T1 ∪ T2, and complete them to sets R̃i of size
k− |T1 ∪ T2| randomly and set Sj = R̃j ∪ T1 ∪ T2. Clearly, if S is a random k-set containing T2, the sets
Sj are individually random sets of size k containing T1 ∪ T2.

We can now complete the proof of Theorem 3.1

Proof of Theorem 3.1. As in the dimension one setting, we first prove Theorem 3.1 if αk ≤ t ≤ k/3 and
then extend it to any t satisfying k − t ≥ βk. From Claim 3.10 and Claim 3.11, we have that

ET1

[
Pr

T2,S : S⊃T2

[gT1
|S 6= gT2

|S ]

]
= O(δT1,T2

) = O(ε).

Choose a T1 such that the inner probability is O(ε) and set F = gT1
. We now have,

Pr
S

[fS 6= F |S ] = Pr
S,T2 : S⊃T2

[fS 6= F |S ]

≤ ET2

[
Pr

S : S⊃T2

[F |S 6= gT2
|S ]

]
+ ET2

[
Pr

S : S⊃T2

[fS 6= gT2
|S ]

]
= O(ε).

This completes the proof for t ≤ k/3 (in particular to any t satisfying k − 2t = Ω(k).
To extend the proof to all t satisfying k− t = Ω(k), we employ the following coupling argument as in

the dimension one setting. Let S1, S2 ∼ νn(k, t′). Let S be a random set of size k containing S1 ∩ S2 as
well as t− t′ random elements from S1, S2 each and the rest of the elements chosen from S1 ∪ S2. This
can be done as long as k ≥ 2(t− t′) + t′ = 2t− t′. Clearly, (S, Sj) ∼ νn(k, t) for j = 1, 2. Furthermore,

Pr[fS1
|S1∩S2

6= fS2
|S1∩S2

] ≤ Pr[fS1
|S1∩S 6= fS |S1∩S ] + Pr[fS2

|S2∩S 6= fS |S2∩S ] ≤ 2ε.

This demonstrates that if the hypothesis for the agreement theorem is true for a particular choice of
n, k, t, then the hypothesis is also true for n, k, t′ by increasing ε to 2ε provided k− t ≥ (k− t′)/2. Thus,
given the hypothesis is true for some t satisfying k−t ≥ βk, we can perform the above coupling argument
a constant number of times to to reduce t to less than k/3 and then conclude using the above argument
for t ≤ k/3.
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4 Hypergraph Pruning Lemma

We begin with a a few definitions. The number of hyperedges in a hypergraph H is denoted |H|. For a
vertex set V , µp refers to the biased distribution over subsets S of V defined by choosing each v ∈ V to
be in S independently with probability p while νn,k refers to the uniform distribution over subsets S of
V of size k. For a hypergraph H and a subset S of the vertices, H|S is the subhypergraph induced by
the vertices in S while H|S=∅ is obtained by removing all vertices in S from all hyperedges of H. For a
hypergraph H, ιp(H) := PrS∼µp [H|S 6= ∅]. And finally, we recall the definition of branching factor from
the introduction. For any ρ ≥ 1, a hypergraph H over a vertex set V is said to have branching factor ρ
if for all subsets A ⊂ V and integers k ≥ 0, there are at most ρk hyperedges in H of cardinality |A|+ k
containing A.

The main goal of this section is to prove the following two hypergraph pruning lemmas; one under
the biased µp distribution and the other under the uniform νn,k distribution, which was stated in the
introduction. These pruning lemma show that any hypergraph H has a subgraph H ′ with bounded
branching factor with almost the same ιp(H).

Lemma 4.1 (hypergraph pruning lemma (biased setting)). Fix constants c > 0 and d ≥ 0. There exists
p0 > 0 (depending on c, d) such that for every p ∈ (0, p0) and every d-uniform hypergraph H there exists
a subhypergraph H ′ obtained by removing hyperedges such that

1. H ′ has branching factor c/p.

2. ιp(H
′) = Ωc,d(ιp(H)).

Lemma 1.4 (Restated) (hypergraph pruning lemma (uniform setting)) Fix constants ε > 0 and d ≥ 1.
There exists p0 > 0 (depending on d, ε) such that for every n ≥ k ≥ 2d satisfying k/n ≤ p0 and every
d-uniform hypergraph H on [n] there exists a subhypergraph H ′ obtained by removing hyperedges such
that

1. PrS∼νn,k
[H ′|S 6= ∅] = Ωd,ε(PrS∼νn,k

[H|S 6= ∅]).

2. For every e ∈ H ′, PrS∼νn,k
[H ′|S = {e} | S ⊃ e] ≥ 1− ε.

Here H ′|S is the hypergraph induced on the vertices of S.

4.1 Proof in the µp biased setting

The hypergraph pruning lemma (Lemma 4.1) is proved by induction on d. The proof is divided into
several steps, expressed in the following lemmata. We begin with an easy claim.

Claim 4.2. If H has branching factor ρ then H|A=∅ has branching factor 2|A|ρ.

Proof. It’s enough to prove the theorem when A = {i}. Let B, k be given. We will show that the number
of hyperedges in H|i=∅ extending B by k elements is at most (2ρ)k. If k = 0 then this is clear. Otherwise,
for each such hyperedge e, either e or e+ i belongs in H. The former case includes all hyperedges of H
extending B by k elements, and the latter all hyperedges of H extending B + i by k elements. Since H
has branching factor ρ, we can upper bound the number of hyperedges by 2ρk ≤ (2ρ)k.

The first lemma identifies a “critical depth” for H.

Lemma 4.3. For every integer d, c > 0 and p ∈ (0, 1) the following holds. Let H be a d-uniform hyper-
graph. Then, either H has a subhypergraph H ′ with branching factor c/p such that ιp(H

′) ≥ ιp(H)/(d+1),
or for some there 1 ≤ r ≤ d, there exists a (d− r)-uniform hypergraph I, and a subhypergraph H ′ of H
such that

1. Each hyperedge in I has at least (c/p)r extensions in H ′.

2. For every e ∈ I and every A 6= ∅ disjoint from e, e ∪A has at most (c/p)r−|A| extensions in H ′.

3. ιp(I) ≥ ιp(H)/(d+ 1).
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Proof. We define a sequence of graphs Hr, Br for 0 ≤ r ≤ d as follows:

• H0 = H and B0 is the empty d-uniform hypergraph.

• Br contains all sets |A| = d− r which have at least (c/p)r extensions in Hr−1.

• Hr contains all hyperedges in Hr−1 which are not extensions of a set in Br.

It’s not hard to check that ιp(Hr) ≤ ιp(Hr+1) + ιp(Br+1), and so

ιp(H) ≤ ιp(B1) + · · ·+ ιp(Bd) + ιp(Hd).

Hence one of the values on the right-hand side is at least ιp(H)/(d+ 1).
The construction guarantees that for every r, every set A of size at least d− r has at most (c/p)d−|A|

extensions in Hr. In particular, Hd has branching factor c/p. This completes the proof when ιp(Hd) ≥
ιp(H)/(d + 1). If ιp(Br) ≥ ιp(H)/(d + 1) for some r ≥ 1 then we take I = Br and H ′ = Hr−1. The
first property in the statement of the lemma follows directly from the construction of Br, and the second
follows from the guarantee stated earlier for Hr−1 applied to e ∪ A, which has size d− r + |A| which is
at least d− (r − 1).

The strategy now is to apply induction on I to reduce its branching factor, and then to “complete”
it to a d-uniform hypergraph. The completion is accomplished in two steps. The first step adds all
hyperedges which can be associated with more than one hyperedge of the pruned I.

Lemma 4.4. For every integer d, c > 0 and p ∈ (0, 1) the following holds. Let H be a d-uniform
hypergraph and I a (d− r)-uniform hypergraph for some 1 ≤ r ≤ d such that

1. For every e ∈ I and every A 6= ∅ disjoint from e, e ∪A has at most (c/p)r−|A| extensions in H.

2. I has branching factor c/p.

Then the subhypergraph K of H consisting of all hyperedges of H which extend at least two hyperedges
of I has branching factor Od(c/p).

Proof. Fix a set B of size d − s, where s ≥ 1. We have to bound the number of extensions of B in K.
Each of these extensions belongs to one of the following types:

• Type 1: Extends e1 6= e2 ∈ I, where B * e1.

• Type 2: Extends e1 6= e2 ∈ I, where B ⊆ e1 ∩ e2.

We consider each of these types separately.
Type 1. Let B′ = B ∩ e1. There are at most 2|B| ≤ 2d choices for B′. Since I has branching factor

c/p and e1 ⊇ B′, given B′ ⊆ B there are at most (c/p)d−r−|B
′| choices for e1. By assumption, A := B\e1

is non-empty, and moreover |A| = |B|− |B ∩ e1| = d− s−|B′|. Hence the first property of I implies that
e1 ∪B = e1 ∪A has at most (c/p)r−|A| = (c/p)r+s−d+|B

′| extensions in H. In total, we have counted at
most 2d · (c/p)d−r−|B|′ · (c/p)r+s−d+|B′| = 2d(c/p)s extensions.

Type 2. Since e1 ⊇ B and I has branching factor c/p, there are at most (c/p)(d−r)−(d−s) = (c/p)s−r

choices for e1. Let e∩ = e1∩e2, and note that given e1, there are at most 2|e1| ≤ 2d choices for e∩. Given
e∩, since I has branching factor c/p, there are at most (c/p)d−r−|e∩| choices for e2. By assumption,
A := e2 \ e1 is non-empty, and moreover |A| = |e2| − |e∩| = d − r − |e∩|. Hence the first property of I
implies that e1 ∪ e2 = e1 ∪A has at most (c/p)r−|A| = (c/p)2r−d+|e∩| extensions in H. In total, we have
counted at most (c/p)s−r · 2d · (c/p)d−r−|e∩| · (c/p)2r−d+|e∩| = 2d(c/p)s extensions.

Summing over both types, there are at most 2d+1(c/p)s ≤ (2d+1c/p)s extensions, completing the
proof.

The second completion step guarantees that the completion contains enough hyperedges.

Lemma 4.5. For every integer d, c > 0, there exists p0 = p0(c, d) ∈ (0, 1) such that the following
holds for all p ∈ (0, p0). Let H be a d-uniform hypergraph and I a (d− r)-uniform hypergraph for some
1 ≤ r ≤ d such that
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1. Each hyperedge in I has at least (c/p)r extensions in H.

2. For every e ∈ I and every A 6= ∅ disjoint from e, e ∪A has at most (c/p)r−|A| extensions in H.

3. I has branching factor c/p.

Then there exists a subhypergraph K of H such that

1. K contains Ωd(|I|(c/p)r) hyperedges.

2. K has branching factor Od(c/p).

Proof. We choose p0 so that b(c/p)rc ≥ (c/p)r/2.1

Let K ′ be the subhypergraph constructured in Lemma 4.4. Every hyperedge in H \K ′ extends at
most one hyperedge of I. For every hyperedge e ∈ I, let ne be the number of extensions of e in K ′, let
me = max(b(c/p)rc−ne, 0), and let He be a set of me extensions of e in H\K ′. We let K = K ′∪

⋃
e∈I He.

By construction, every e ∈ I has at least (c/p)r/2 extensions in K. A given hyperedge can extend at
most 2d many hyperedges of I, so K contains at least |I|(c/p)r/2d+1 hyperedges.

It remains to bound the branching factor of K. Fix a set B of size d− s, where s ≥ 1. We will bound
the number of extensions of B in K \K ′.

Let B′ = B∩e. There are at most 2|B| ≤ 2d choices for B′. Since I has branching factor c/p, given B′

there are at most (c/p)d−r−|B
′| choices for e. Let A := B \ e, so that |A| = |B|− |B ∩ e| = d− s−|B′|. If

A 6= ∅ then the second property of I implies that e∪B = e∪A has at most (c/p)r−|A| = (c/p)r+s−d+|B
′|

extensions in H and so in K \ K ′. If A = ∅ then we get the same conclusion by construction since
e ∪ B = e. In total, we have counted at most 2d · (c/p)d−r−|B′| · (c/p)r+s−d+|B′| = 2d(c/p)s ≤ (2dc/p)s

extensions, completing the proof.

We will argue about the completion using the following fundamental lemma, which is also important
for applications.

Lemma 4.6. For every integer d, c > 0 and ε ∈ (0, 1), there exists f(c, d, ε) ∈ (0, 1) satisfying
limc→0 f(c, d, ε) = 1 for every d, ε such that the following holds. Let H be a d-uniform hypergraph,
and let p ∈ (0, 1 − ε). If H has branching factor c/p then for every hyperedge e ∈ H, PrS∼µp [H|S =
{e}] ≥ f(c, d, ε)pd.

Before proceeding to the proof of the lemma, we first recall the statement of FKG inequality.

Lemma 4.7 (FKG inequality). Let A and B be two monotonically increasing (or decreasing) family of
subsets. Then

µp(A ∩ B) ≥ µp(A) · µp(B).

Proof of Lemma 4.6. LetK := H|e=∅\∅ = (H−e)|e=∅. Note that PrS∼µp
[H|S = {e}] = pd PrS∼µp

[K|S =
∅]. Claim 4.2 shows that H|e=∅ has branching factor Od(c/p). In particular, for every s it has at most
Od(c/p)

s hyperedges of cardinality s. For every hyperedge e′ ∈ K, let Ee′ denote the event e′ /∈ K|S
(i.e., S + e′), where S ∼ µp. Note that

Pr[Ee′ ] = 1− ps = exp

(
log(1− ps)

ps
ps
)
.

Now log(1−x)/x = −1−x/2−· · · is decreasing (its derivative is −1/2−2x/3−· · · ), and so ps ≤ p ≤ 1−ε
implies that log(1− ps)/ps ≥ log ε/(1− ε). In other words, Pr[Ee′ ] ≥ e−Oε(p

s).
Since the events Ee′ are monotone decreasing, the FKG lemma shows that they positively correlate,

hence

Pr
S∼µp

[K|S = ∅] ≥
d∏
s=1

(1− ps)Od(c/p)
s

≥
d∏
s=1

e−Od,ε(c
s) =: f(c, d, ε).

The lemma follows since clearly limc→0 f(c, d, ε) = 1.

We can now complete the inductive proof of Lemma 4.1.

1Another possibility, which slightly affects the proof, is to choose p0 so that d(c/p)re ≤ 2(c/p)r.
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Proof of Lemma 4.1. The proof is by induction on d. When d = 0 we can take H ′ = H, so we can
assume that d ≥ 1. Let γ = c/Md, where Md ≥ 1 will be chosen later. We apply Lemma 4.3 to H with
c := γ. If H has a subhypergraph H ′ with branching factor γ/p such that ιp(H

′) ≥ ιp(H)/(d+ 1) then
we are done, so suppose that there exists some d − r uniform hypergraph I and a subhypergraph H ′

satisfying the properties of the lemma. Apply the induction hypothesis to construct a subhypergraph
I ′ of I that has branching factor γ/p and satisfies ιp(I

′) = Ωγ,d(ιp(I)) = Ωγ,d(ιp(H)) (this requires
p ≤ p′0(γ, d)). Next, apply Lemma 4.5 with c := γ, H := H ′, and I := I ′ (this requires p ≤ p′′0(γ, d)) to
obtain a subhypergraph K of H ′ (and so of H) satisfying

• K contains Ωd(|I ′|(γ/p)r) hyperedges.

• K has branching factor Od(γ/p).

We choose Md so that K has branching factor c/p, and let p0 = min(p′0(γ, d), p′′0(γ, d)), which depends
only on c, d.

We will take H ′ := K, so it remains to show that ιp(K) = Ωc,d(ιp(H)). Since p ≤ p0, Lemma 4.6
shows that for every hyperedge e ∈ K, PrS∼µp

[K|S = {e}] = Ωc,d(p
d). For different hyperedges these

events are disjoint, hence ιp(K) = Ωc,d(|K|pd) = Ωc,d(|I ′|pd−r). On the other hand, the union bound
shows that ιp(I

′) ≤ |I ′|pd−r, and so ιp(K) = Ωc,d(ιp(I
′)) = Ωc,d(ιp(H)), completing the proof.

As a corollary, we obtain the following useful result.

Corollary 4.8. Fix constants ε > 0 and d ≥ 0. There exists p0 > 0 (depending on d, ε) such that for
every p ∈ (0, p0) and every d-uniform hypergraph H there exists a subhypergraph H ′ obtained by removing
hyperedges such that

1. ιp(H
′) = Ωd,ε(ιp(H)).

2. For every e ∈ H ′, PrS∼µp
[H ′|S = {e}] ≥ (1− ε)pd.

Proof. Let c > 0 be a constant to be chosen later, and define p0 ≤ 1/2 so that the theorem applies. The
theorem gives us a subhypergraph satisfying the first property. Moreover, for every e ∈ H ′, Lemma 4.6
(applied with ε := 1/2) shows that PrS∼µp

[H|S = {e}] ≥ f(c, d)pd, where limc→0 f(c, d) = 1. Take c so
that f(c, d) > 1− ε to complete the proof.

4.2 Proof in the uniform setting

We now use Corollary 4.8 to transfer the hypergraph pruning lemma to the uniform setting (Lemma 1.4).

Recall that distribution νn,k refers to the uniform distribution over
(
[n]
k

)
.

Proof of Lemma 1.4. Let p = k/n. Notice that

Pr
S∼µp

[H|S 6= ∅] ≥
n∑
`=k

Pr[Bin(n, p) = `] Pr
S∼νn,`

[H|S 6= ∅] ≥ Pr[Bin(n, p) ≥ k] Pr
S∼νn,k

[H|S 6= ∅].

It is well-known that the median2 of Bin(n, p) is one of bnpc, dnpe. Since np = k, we deduce that
the median is k and Pr[Bin(n, p) ≥ k] ≥ 1/2. Therefore ιp(H) ≥ PrS∼νn,k

[H|S 6= ∅]/2. Applying
Corollary 4.8 with ε := min(ε/2, 1/2), we thus get a subhypergraph H ′ such that

ιp(H
′) = Ωd,ε( Pr

S∼νn,k

[H|S 6= ∅]),

which implies that
|H ′| = Ωd,ε( Pr

S∼νn,k

[H|S 6= ∅]/pd).

Let now e ∈ H ′ be an arbitrary hyperedge. We are given that PrS∼µp [H ′|S = {e} | e ∈ S] ≥ 1− ε/2.
For K = H ′|e=∅ \ {∅}, the left-hand side is PrS∼µp

[K|S = ∅]. As before, we have

Pr
S∼νn,k

[K|S 6= ∅] ≤ 2 Pr
S∼µp

[K|S 6= ∅] ≤ ε,

2The median of a distribution X on the integers is the integer m such that Pr[X ≥ m],Pr[X ≤ m] ≥ 1/2.
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and so we get the second property. For the first property, we have

Pr
S∼νn,k

[H ′|S 6= ∅] ≥
∑
e∈H′

Pr
S∼νn,k

[H ′|S = {e}] ≥ (1− ε)|H ′|k
d

nd
.

By assumption kd/nd ≥ (p/2)d, and so

Pr
S∼νn,k

[H ′|S 6= ∅] ≥ (1− ε) · Ωd,ε( Pr
S∼νn,k

[H|S 6= ∅]/pd) · (p/2)d = Ωd,ε( Pr
S∼νn,k

[H|S 6= ∅]).

5 Agreement theorem via majority decoding

A nice application of the hypergraph pruning lemma is to show that majority decoding always works for
agreement testing. In particular, if the agreement theorem (Theorem 3.1) holds, then one might without
loss of generality assume that the global function is the one obtained by majority/plurality decoding.

Lemma 5.1. For every positive integer d and alphabet Σ, there exists a p ∈ (0, 1) such that for α ∈ (0, 1)
and all positive integers n, k, t satisfying n ≥ k ≥ t ≥ max{2d, αk} and k ≤ pn the following holds.

Suppose an ensemble of local functions {fS :
(
S
d

)
→ Σ | S ∈

(
[n]
k

)
} and a global function F :

(
[n]
d

)
→ Σ

satisfy

Pr
S1,S2∼νn,k,t

[fS1
|S1∩S2

6= fS2
|S1∩S2

] = ε, Pr
S∼νn,k

[fS 6= F |S ] = δ.

Then, the global function G :
(
[n]
d

)
→ Σ defined by plurality decoding (ie., G(T ) is the most popular value

of fS(T ) over all S containing T , breaking ties arbitrarily) satisfies

Pr
S∼νn,k

[fS 6= G|S ] = Od,α(ε+ δ).

Proof. All probabilities below, unless specified otherwise, are over S ∼ νn,k.
Since Pr[fS 6= G|S ] ≤ Pr[fS 6= F |S ] + Pr[F |S 6= G|S ] = δ + Pr[F |S 6= G|S ], it suffices to bound

Pr[F |S 6= G|S ]. Let H := {T : G(T ) 6= F (T )}, so that Pr[F |S 6= G|S ] = Pr[H|S 6= ∅]. Note that F
and G are functions, while H is a hypergraph. Apply Lemma 1.4 on the hypergraph H, for a constant
ε = η := 1/(2|Σ|) > 0, to get a subhypergraph H ′ (p = p0(d, ε) is chosen such that k ≤ pn).

For any edge T ∈ H ′ and σ ∈ Σ, define the following quantities

p(T, σ) := Pr[H ′|S = {T} and fS(T ) = σ | S ⊇ T ], p(T ) := max
σ

p(T, σ)

q(T, σ) := Pr[fS(T ) = σ | S ⊇ T ], q(T ) := max
σ

q(T, σ)

Note that G(T ) by definition satisfies q(T ) = q(T,G(T )). Since by the hypergraph pruning lemma, we
have Pr[H ′|S = {T}|S ⊃ T ] ≥ 1 − η, we have q(T, σ) ≥ (1 − η) · p(T, σ) for all σ. Hence, q(T,G(T )) =
q(T ) ≥ (1 − η) · p(T ). On the other hand for any σ, p(T, σ) ≥ q(T, σ) − η. In particular, p(T,G(T )) ≥
q(T,G(T ))− η ≥ q(T,G(T ))/2 (since q(T,G(T )) ≥ 1/|Σ| and η ≤ 1/(2|Σ|)). Combining these, we have
that for all T ∈ H ′,

p(T,G(T )) ≥ (1− η) · p(T )/2. (2)

We now relate the probabilities p(T ) and p(T,G(T )) to δ and ε in the lemma statement.
By the hypergraph pruning lemma, we have Pr[H ′|S = {T}|S ⊃ T ] ≥ 1 − η or equivalently∑
σ p(T, σ) ≥ 1− η. For each hyperedge T ∈ H ′, we have

Pr
S1,S2∼νn,k

[fS1
(T ) 6= fS2

(T ) and H ′|S1
= H ′|S2

= {T} | S1 ∩ S2 ⊇ T ] =
∑
σ1 6=σ2

p(T, σ1)p(T, σ2)

≥
∑
σ1

p(T, σ1)(1− η − p(T, σ1)) ≥
∑
σ1

p(T, σ1)(1− η − p(T )) ≥ (1− η)(1− η − p(T )).

Consider now the following coupling. Choose S1, S2 ∼ νn,k containing T , and choose a set S inter-
secting each of S1, S2 in exactly t elements including T (this is possible since k/n is small enough). If
fS1(T ) 6= fS2(T ) then either fS1(T ) 6= fS(T ) or fS2(T ) 6= fS(T ), and so

(1− η)(1− η − p(T )) ≤ 2 Pr
S1,S∼νn,k,t

[fS1(T ) 6= fS(T ) and H ′|S1 = {T} | S1 ∩ S ⊇ T ].
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Summing over all edges in H ′, we deduce that

ε ≥
∑
T∈H′

(1− η)(1− η − p(T ))

2
Pr

S1,S2∼νn,k,t

[S1 ∩ S2 ⊇ T ] =
∑
T∈H′

(1− η)(1− η − p(T ))

2
Ωα(Pr[S ⊇ T ]),

(3)
since t ≥ αk.

We now relate δ to p(T,H(T )). We clearly have

Pr
S∼νn,k

[fS(T ) 6= F (T ) and H ′|S = {T} | S ⊇ T ] ≥ Pr
S∼νn,k

[fS(T ) = G(T ) and H ′|S = {T} | S ⊇ T ] = p(T,G(T )).

Summing over all edges in H ′, we deduce that

δ ≥
∑
T∈F ′

p(T,G(T )) · Pr[S ⊇ T ]. (4)

Either p(T ) ≤ 1/3 in which case (1−η)(1−η−p(T ))/2 = Ω(1) or p(T ) ≥ 1/3 and hence p(T,G(T )) ≥
1/6 = Ω(1) (from (2)). Thus, in either case, adding (4) and (3), we have

ε+ δ ≥
∑
T∈H′

Ωα(Pr[S ⊇ T ]) = Ωα(Pr[H ′|S 6= ∅]) = Ωd,α(Pr[H|S 6= ∅]).

We conclude that Pr[H|S 6= ∅] = Od,α(ε+ δ), completing the proof.

We can now combine the above lemma with the agreement theorem (Theorem 3.1) proved earlier
to obtain the agreement theorem (Theorem 1.2) as stated in the introduction, with the “furthermore”
clause.

Proof of Theorem 1.2. By Theorem 3.1, we have a global function F :
(
[n]
≤d
)
→ Σ (not necessarily G)

satisfying
Pr

S∈([n]
k )

[fS 6= F |S ] = O(ε).

For each i ∈ {0, 1, . . . , d}, let f (i)|S := fS |(S
i)
, F (i) := F |([n]

i ) and G(i) := G|([n]
i ). Clearly, we have for

each i,

Pr
S1,S2∼νn,k,t

[f
(i)
S1
|S1∩S2

6= f
(i)
S2
|S1∩S2

] = ε, Pr
S∼νn,k

[f
(i)
S 6= F (i)|S ] = O(ε).

Hence, by Lemma 5.1, we have

Pr
S∼νn,k

[f
(i)
S 6= G(i)|S ] = O(ε).

This implies PrS∼νn,k
[fS 6= G|S ] = d ·O(ε) = Od(ε).

The entire discussion in this paper so far has been with respect to the distribution νn,k, the uniform
distribution over k-sized subsets of [n]. We can extend these results to the biased setting µp using a
trick. In this setting, the distribution νn,k,t is replaced by the distribution µp,q, which is a distribution
over pairs S1, S2 of subsets of [n] defined as follows. For each element x independently, we put x only
in S1 or only in S2 with probability p(1 − q) (each), and we put x in both with probability pq. This is
possible if p(2− q) ≤ 1 (we assume below p ≤ 1/2 and hence p(2− q) ≤ 1). Note that if sets S1, S2 are
picked according to the distribution µp,q then the marginal distribution of each of S1 and S2 is µp.

Theorem 5.2 (Agreement theorem via majority decoding in the biased setting). For every positive
integer d and alphabet Σ, there exists constants p0 ∈ (0, 1/2) such that for all p ∈ (0, p0) and q ∈ (0, 1)
and sufficiently large n the following holds: Let {fS :

(
S
≤d
)
→ Σ | S ∈ {0, 1}n} be an ensemble of functions

satisfying
Pr

S1,S2∼µp,q

[fS1 |S1∩S2 6= fS2 |S1∩S2 ] ≤ ε,
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then the global function G :
(
[n]
≤d
)
→ Σ defined by plurality decoding (ie., G(T ) is the most popular value of

fS(T ) over all S containing T , chosen according to the distribution µp([n]) ie., PrS∼µp
[fS(T ) = G(T )] =

maxσ PrS∼µ[fS(T ) = σ]3) satisfies

Pr
S∼µp

[fS 6= G|S ] = Od,q(ε).

Proof. Let N be a large integer and define K = bpNc, T = bpqNc. For every S ∈
(
[N ]
K

)
, define

f̃S = fS∩[n]. In other words, for all A ⊂ S ∈
(
[N ]
K

)
, |A| ≤ d. let f̃S(A) = fS∩[n](A∩[n]). If S1, S2 ∼ νN,K,T

then the distribution of S1 ∩ [n], S2 ∩ [n] is close to µp,q, and so for large enough N we have

Pr
S1,S2∼νN,K,T

[f̃S1
|S1∩S2

6= fS2
|S1∩S2

] ≤ ε/2.

Hence, the ensemble of functions {f̃S}S∈([N]
K ) satisfies the hypothesis of the ageement theorem (The-

orem 1.2) with ε replaced by 3ε/2. Hence, by Theorem 1.2, if we define G̃ :
(
[N ]
≤d
)
→ Σ by plurality

decoding then PrS∼νN,K
[f̃S 6= G̃|S ] = Od(ε). Since f̃S depends only on S ∩ [n], there exists a function

Ĝ :
(
[n]
d

)
→ Σ such that G̃(T ) = Ĝ(T ∩ [n]). Moreover, for large enough N the distribution of S ∩ [n]

approaches µp, and so Ĝ = G.4 This completes the proof.
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