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Abstract

In recent years the explosion in the volumes of data being stored online has resulted in distributed
storage systems transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs)
have emerged as the codes of choice for these applications. An (n, r ,h,a,q)-LRC is a q-ary code, where
encoding is as a two stage process. In the �rst stage, h redundant parity symbols are generated from k
data symbols. In the second stage, the k+h symbols are partitioned into sets of size r −a and each set is
extended with a redundant symbols using an MDS code to form a local group. Local groups ensure that
when at most a coordinates are erased, any missing coordinate can be recovered by accessing at most
r − a symbols. Also, if a larger number of coordinates is erased, the missing symbols can be recovered
by potentially accessing all remaining symbols.

An (n, r ,h,a,q)-LRC code as above is Maximally Recoverable (MR), if it corrects all erasure pa�erns
which are information theoretically correctable given the presence of local groups. ObtainingMR LRCs
over �nite �elds ofminimal size is important in practice and has been the goal of a line of work in coding
theory. In this work we make progress towards this goal. In particular:

– We show that when a and h are constant and r may grow, for every maximally recoverable LRC,
q > Ωa,h

(
n · rmin{a,h−2}

)
. Prior to our work, there was no super-linear lower bound known on

the �eld size of MR LRCs for any se�ing of parameters.
– We obtain a family of MR (n, r ,h = 2,a,q)-LRCs, where q = O (n) for all se�ings of parameters.

Prior to our work the best constructions required q to be quadratic in n for some regimes.
– We obtain a family of MR (n, r ,h = 3,a,q)-LRCs, where q = O (n3) for all se�ings of parameters.

Prior to our work the best constructions required q to be nΘ(a) for some regimes.
– Our results in the �rst two bullets above suggest the se�ing of r = 3,a = 1,h = 3 as the �rst

se�ing where existence of MR LRCs over �elds of near linear size is an open question. We resolve
this question in the positive by developing a new approach to LRC constructions based on elliptic
curves and arithmetic progression free sets.
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1 Introduction

�e explosion in the volumes of data being stored online means that duplicating or triplicating data is not
economically feasible. �is has resulted in distributed storage systems employing erasure coding based
schemes in order to ensure reliability with low storage overheads. In recent years Local Reconstruction
Codes (LRCs) emerged as the codes of choice for many such scenarios and have been implemented in a
number of large scale systems e.g., Microso� Azure [HSX+12] and Hadoop [SAP+13].

Classical erasure correcting codes [MS77] guarantee that data can be recovered if a bounded number
of codeword coordinates is erased. However recovering data typically involves accessing all surviving
coordinates. By contrast, Local Reconstruction Codes∗ (LRCs) distinguish between the typical case when
only a small number of codeword coordinates are erased (e.g., few machines in a datacenter fail) and a
worst case when a larger number of coordinates might be unavailable, and guarantee that in the prior case
recovery of individual coordinates can be accomplished in sub-linear time, without having to access all
surviving symbols.

LRCs are systematic linear codes, where encoding is a two stage process. In the �rst stage, h redundant
heavy parity symbols are generated from k data symbols. Each heavy parity is a linear combination of all
k data symbols. During the second stage, the k + h symbols are partitioned into k+h

r−a sets of size r − a and
each set is extended with a local parity symbols using an MDS code to form a local group. Encoding as
above ensures that when at most a coordinates are erased, any missing coordinate can be recovered by
accessing at most r − a symbols. However, if a larger number of coordinates (that depends on h) is erased;
then all missing symbols can be recovered by potentially accessing all remaining symbols.

Our description of LRC codes above is not complete. To specify a concrete code we need to �x coe�-
cients in linear combinations that de�ne h heavy and k+h

r−a ·a local parities. Di�erent choices of coe�cients
could lead to codes with di�erent erasure correcting capabilities. �e best we could hope for is to have
an optimal choice of coe�cients which ensures that our code can correct every pa�ern of erasures that is
correctable for some se�ing of coe�cients. Such codes always exist and are called Maximally Recoverable
(MR) [CHL07, HCL07] LRCs.† Combinatorially, an (n, r ,h,a,q)-LRC is maximally recoverable it if corrects
every pa�ern of erasures that can be obtained by erasing a coordinates in each local group and up to h
additional coordinates elsewhere. Explicit constructions of MR LRCs are available (e.g., [CK17]) for all
ranges of parameters. Unfortunately, all known constructions require �nite �elds of very large size.

Encoding a linear code and decoding it from erasures involve matrix vector multiplication and linear
equation solving respectively. Both of these require performing numerous �nite �eld arithmetic opera-
tions. Having small �nite �elds results in faster encoding and decoding and thus improves the overall
throughput of the system [PGM13, Section 2]. It is also desirable in practice to work over �nite �elds of
characteristic 2. Obtaining MR LRCs over �nite �elds of minimal size is one of the central problems in the
area of codes for distributed storage.

1.1 State of the art and our results

We now summarize what is known about the minimal �eld size of maximally recoverable local reconstruc-
tion codes with parameters n, r ,a and h and �rst cover the easy cases.

– When a = 0, LRCs are equivalent to classical erasure correcting codes. In this case Reed Solomon
codes are maximally recoverable, and they have a �eld size of roughly n, which is known to be

∗�e term local reconstruction codes is from [HSX+12]. Essentially the same codes were called locally repairable codes
in [PD14] and locally recoverable codes in [TB14]. �ankfully all names above abbreviate to LRCs.

†Maximally recoverable LRCs are called Partial MDS (PMDS) in [Bla13, BHH13] and many follow up works.
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optimal up to constant factors [Bal12].
– Whenh 6 1, there are constructions of maximally recoverable LRCs over �elds of sizeO (r ) [BHH13]

which is optimal.
– When r = a + 1, codes in the local groups are necessarily simple repetition codes. MR LRCs can

be obtained by starting with a Reed Solomon code of length n/r and repeating every coordinate r
times. �us the optimal �eld size is Θ(n/r ).

�is leaves us with the main case, when a > 1, r > a + 2, and h > 2. A number of constructions have been
obtained [Bla13, BHH13, TPD16, GHJY14, HY16, GHK+17, CK17, BPSY16, GYBS17]. �e best constructions
for the case of h = 2 are from [BPSY16] and require a �eld of size O (a · n). For most other se�ings of
parameters the best families of MR LRCs are from [GYBS17]. �ey require �elds of size

O
(
r · n(a+1)h−1

)
and O

(
max

(
n/r , rh+a

)h)
. (1)

�e �rst bound is typically be�er when r = Ω(n).�e second bound is be�er when r � n. Both bounds
require q to grow rapidly with the codeword length. �e results above exhibit code constructions but not
any inherent limitations. In particular, up until our work it remained a possibility that codes over �elds of
size O (n) could exist for all ranges of LRC parameters. We now summarize our results:

– We obtain the �rst lower bound on the �eld size of MR LRCs. In particular, we show that when a
and h are constant and r may grow, for every maximally recoverable LRC, subject to h 6 n/r :

q > Ωa,h
(
n · rmin{a,h−2}

)
. (2)

– We obtain a family of MR (n, r ,h = 2,a,q)-LRCs, where q = O (n) for all se�ings of parameters.
Prior to our work the best constructions [BPSY16] required q to beO (a ·n) which in general may be
up to quadratic in n. If we require that the �eld has characteristic two, we can get such codes with
q = n1+o (1) .

– We obtain a family of MR (n, r ,h = 3,a,q)-LRCs, where q = O (n3) for all se�ings of parameters.
Prior to our work the best constructions (1) required q to be up to nΘ(a) for some regimes. If we
require that the �eld has characteristic two, we can get such codes with q = n3+o (1) .

– Our results in the �rst two bullets above suggest the se�ing of r = 3,a = 1,h = 3 as the �rst se�ing
where existence of MR LRCs over �elds of near linear size is an open question. We resolve this
question in the positive by developing a new approach to LRC constructions based on elliptic curves
and AP free sets.

1.2 Our techniques

Similarly to most earlier works in the area we represent LRC codes via their parity check matrices. Such
matricesH have size

(
a · nr + h

)
×n and a simple block structure. Columns are partitioned into r -sized local

groups. For each local group there is a corresponding collection of a rows that impose MDS constraints
on coordinates in the group, and have no support outside the group. Remaining h rows of H correspond
to heavy parity symbols and carry arbitrary values.

A LRC is MR if any subset of columns of H that can be obtained by selecting a columns from each
local group and then h more has full rank. Suppose all h additional columns are selected from distinct local
groups. In this case showing that some aд + h columns are independent easily reduces to showing that a
certain (ah+h)× (ah+h) determinant is non-zero. An important algebraic identity that underlies our �rst
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three results reduces such determinants to much smaller h×h determinants of determinants in the entries
of H . A special case of this identity when h = 2 and matrices are Vandermonde type appears in [BPSY16].

To establish our lower bound, we start with a parity check matrix of an arbitrary maximally recov-
erable local reconstruction code. We utilize the determinantal identity to obtain a family of large subsets
X1, . . . ,Xn/r in the projective space PFh−1q , such that any collection of vectors x1, . . . ,xh , where vectors
{xi }i ∈[h] belong to di�erent sets {X j } has full rank. We use vertex expansion properties of the hyperplane-
point incidence graph of the projective space [Alo86] to bound the size of the families {X j } and translate
this bound to the lower bound on the alphabet size.

Our code constructions both in the case of h = 2 and h = 3 also employ the determinantal identity.
In addition to that we utilize various properties of �nite �elds such as the structure of multiplicative sub-
groups and �eld extensions. In the case of h = 3, we deviate from most existing constructions of MR LRCs
in that we do not use linearized constraints (x ,xq ,xq2 ) or Vandermonde constraints (x ,x2,x3) and instead
rely on Cauchy matrices [LN83] to specify heavy parities.

Our construction of MR (n, r = 3,h = 3,a = 1,q)-LRCs is technically disjoint from our other results.
We observe that in this narrow case, MR LRCs are equivalent to subsets A of the projective plane PF2q ,
where A is partitioned in triples A = ti {ai ,bi , ci } so that some three elements of A are collinear if and
only if they constitute one of the triples {ai ,bi , ci } in the partition. Moreover, minimizing the �eld size
of maximally recoverable local reconstruction codes is in fact equivalent to maximizing the cardinality
of such sets A. By considering all the q + 1 lines through an arbitrary point of A, it is easy to see that
|A| 6 q + 3. We construct sets A with size |A| > q1−o (1) . For our construction we start with an elliptic
curve E over Fq such that the group of Fq-rational points, E (Fq ), is a cyclic group of size Ω(q). We observe
that three points of E (Fq ) are collinear if only and only if they sum to zero in the group. We then select
a large AP-free set of points of E (Fq ) using the classical construction of Behrend [Beh46] and complete
these points to desired triples.

1.3 Related work

�e �rst family of codes with locality for applications in storage comes from [HCL07, CHL07]. �ese
papers also introduced the concept of maximal recoverability in a certain restricted se�ing. �e work
of [GHSY12] introduced a formal de�nition of local recovery and focused on codes that guarantee local
recovery for a single failure. For this simple se�ing they were able to show that optimal codes must have a
certain natural topology, e.g., codeword coordinates have to be arranged in groups where each group has
a local parity. While [GHSY12] focused on systematic codes that provide local recovery for information
symbols, [PD14] considered codes that provide locality for all symbols and de�ned local reconstruction
codes. In parallel works maximally recoverable LRCs have been studied in [BHH13, Bla13]. Construction
of local reconstruction codes with optimal distance over �elds of linear size has been given in [TB14]. (Note
that distance optimality is a much weaker property than maximal recoverability, e.g., when a + h < r it
only requires all pa�erns of size a + h to be correctable, while MR property requires lots of very large
pa�erns including some of size (a + 1)h to be correctable.)

Maximal recoverability can be de�ned with respect to more general topologies then just local recon-
struction codes [GHJY14]. �e �rst lower bound for the �eld size of MR codes in any topology was recently
given in [GHK+17]. �is line of work was continued in [KLR17] where nearly matching upper and lower
bounds were obtained. �e topology considered in [GHK+17, KLR17] is a grid-like topology, where code-
words form a codimension one subspace of tensor product codes, i.e., codewords are matrices, there is one
heavy parity symbol, and each row / column constitutes a local group with one redundant symbol.

Finally, there are few other models of erasure correcting codes that provide e�cient recovery in typical
failure scenarios. �ese include regenerating codes [DGW+10, WTB17, YB17, GW16] that optimize band-
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width consumed during repair rather than the number of coordinates (machines) accessed during repair;
locally decodable codes [Yek12] that guarantee sub-linear time recovery of information coordinates even
when a constant fraction of coordinates are erased; and SD codes [Bla13, BPSY16] that correct a certain
subset of failure pa�erns correctable by MR LRCs.

1.4 Organization

In Section 2 we setup our notation, give formal de�nitions of local reconstruction codes and maximal
recoverability, and establish some basic facts about MR LRCs. In Section 3 we present our determinantal
identity and use it to obtain the lower bound on the alphabet size. In Section 4 we give a construction of
MR LRCs with two heavy parity symbols over �elds of nearly linear size. In Section 5 we generalize the
determinantal identity and employ it together with some basic properties of �nite �elds to get explicit MR
codes over �elds of nearly cubic size. Finally, in Section 6 we focus on the narrow case of codes with three
heavy parities, one parity per local group, and local groups of size three. We introduce the machinery of
elliptic curves and AP free sets and employ it to obtain maximally recoverable codes over �elds of nearly
linear size. We conclude by listing some open problems in Section 7.

2 Preliminaries

We begin by summarizing few standard facts about erasure correcting codes [MS77].

– [n,k,d]q denotes a linear code (subspace) of dimension k, codeword lengthn, and Hamming distance
d over a �eld Fq .We o�en write [n,k,d] or [n,k] instead of [n,k,d]q when the le� out parameters
are not important.

– An [n,k,d] code is called Maximum Distance Separable (MDS) if d = n − k + 1.

– A linear [n,k,d]q code C can be speci�ed via its parity check matrix H ∈ F(n−k )×nq , where C = {x ∈
Fnq | H · x = 0}. A code C is MDS i� every (n − k ) × (n − k ) minor of H is full rank.

– LetC be an [n,k] code with a parity check matrix H ∈ F(n−k )×n . Let E be a subset of the coordinates
ofC . If coordinates in E are erased; then they can be recovered (corrected) i� the matrixH restricted
to coordinates in E has full rank.

We proceed to formally de�ne local reconstruction codes.

De�nition 2.1. Let r | n, a < r , and h be integers and q be a prime power. Let д = n
r . Assume h 6 n−aд and

let k = n−дa−h. A linear [n,k] codeC over a �eld Fq is an (n, r ,h,a,q)-LRC if for each i ∈ [д], restrictingC to
coordinates in {r (i−1)+1, . . . , ri}, yields a maximum distance separable code with parameters [r , r −a,a+1].

Let [n] = {1, . . . ,n}. Inwhat followswe refer to subsets {r (i−1)+1, . . . , ri} of the set of code coordinates
[n] as local groups. �ere are д local groups and each such group has size r . It is immediate from the
De�nition 2.1 that every (n, r ,h,a,q)-LRC admits a parity check matrix H of the following form

H =



A1 0 · · · 0
0 A2 · · · 0
...
...
. . .

...

0 0 · · · Aд
B1 B2 · · · Bд



. (3)

4



Here A1,A2, · · · ,Aд are a × r matrices over Fq , B1,B2, · · · ,Bд are h × r matrices over Fq .�e rest of the
matrix is �lled with zeros. Every matrix {Ai }i ∈[д] is a parity check matrix of an [r , r − a,a + 1] MDS code.
�e bo�om h rows of H serve to increase the code co-dimension from aд to aд + h. Conversely, every
matrix H as in (3), where rank(H ) = aд + h, and every a × a minor in each {Ai }i ∈[д] has full rank, de�nes
an (n, r ,h,a,q)-LRC.

De�nition 2.2. ‡ Let C be an arbitrary (n, r ,h,a,q)-local reconstruction code. We say that C is maximally
recoverable if for any set E ⊆ [n], |E | = дa + h, where E is obtained by selecting a coordinates from each of д
local groups and then h more coordinates arbitrarily; E is correctable by the code C .

�e term maximally recoverable code is justi�ed by the following observation (e.g., [GHJY14]): if an
erasure pa�ern cannot be obtained via the process detailed in the De�nition 2.2; then it cannot be corrected
by any linear code whose parity check matrix has the shape (3). �us MR codes provide the strongest
possible reliability guarantees given the locality constraints de�ning the shape of the parity check matrix.

Existence of MR LRCs can be established non-explicitly [GHJY14] (i.e., by se�ing the non-zero entries
in the matrix (3) at random in a large �nite �eld and then analyzing the properties of the resulting code).
�ere are also multiple explicit constructions available [CK17, GHJY14, GYBS17]. �e key challenge in
this line of work is to determine the minimal size of �nite �elds where such codes exist. In practice one is
naturally mostly interested in �elds of characteristic two.
Notation: We use A & B to denote A = Ω(B) and A . B to denote A = O (B). We use A = O` (B) and
A = Ω` (B) to denote that the hidden constants can depend on some parameter ` but independent of other
parameters.

3 �e lower bound

In this Section we establish our lower bound on the �eld size of maximally recoverable local reconstruction
codes (�eorems 3.5 and 3.8). A code is MR if it corrects every erasure pa�ern that can be obtained by
erasing a symbols per local group, and then h more. Note that if some local group carries at most a
erasures; then it can be immediately corrected using only the properties of the local MDS code. �us we
never need to consider erasure pa�erns spread across more than h groups. Our lower bound does not use
all the properties of MR LRCs, but only relies on code’s ability to correct all pa�erns obtained by erasing
a + h elements in a single group as well as all pa�erns obtained by erasing exactly a + 1 coordinates in
some h local groups.

�e actual proof of the lower bound appears in Section 3.3, and in Sections 3.1 and 3.2 we prepare the
necessary machinery. In particular, in Section 3.1 we setup notation, introduce some linear algebra tools,
and establish an identity that allows us to reduce (ah+h)× (ah+h) determinants that arise when h distinct
local groups each experience a + 1 erasures, to h × h determinants of determinants in the entries of the
parity check matrix of the code. �at identity is used in Section 3.3 to turn a parity check matrix of an MR
LRC over a small �eld Fq into a family of large subsets X1, . . . ,Xд in the projective space PFh−1q , where no
hyperplane can simultaneously contain points from h di�erent sets {X j }j ∈[д]. In Section 3.2 we use vertex
expansion properties of the hyperplane-point incidence graph of the projective space to bound the size of
such families {X j }j ∈[д] and later translate this bound to the lower bound on the alphabet size.

‡Alternatively, one could de�ne MR LRCs is as follows. Consider a matrix (3). Each way of �xing non-zero entries in (3) gives
rise to (instantiates) a linear code. An instantiation is MR if it corrects all erasure pa�erns that are correctable for some other
instantiation. It can be shown that under such de�nition and the minor technical assumption of h 6 n

r · (r − a) −max
{
n
r , r − a

}

local codes have to be MDS [GHK+17, Proposition 4] as required in De�nition 2.1.
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3.1 �e determinantal identity

Given a partitioned matrix of the form

M =

[
A U

B V

]

whereA is a squarematrix of full rank, we can do column operations to removeU using linear combinations
of columns of A as follows:

[
A U

B V

]
·

[
I −A−1U

0 I

]
=

[
A 0
B V − BA−1U

]
.

�ematrixV −BA−1U is called the Schur complement ofA and is denoted byM/A. Since column operations
do not change the determinant, we have

det(M ) = det(A) det(M/A).

In what follows we sometimes abuse notation and employ the same variable to denote a number x , a 1× 1
matrix containing x , or a single element set containing x .WhenA is an a×amatrix andM is (a+1)× (a+1)
matrix, the Schur complement is

M/A =
det(M )

det(A) .

For anm × n matrix A, we denote by A(S ) (T ), the submatrix of A formed by choosing the subset S ⊆ [m]
of its rows and the subset T ⊆ [n] of its columns. When S = [m] or T = [n], we abbreviate A(S ) (T ) to
respectively A(T ) and A(S ) .

�e following lemma allows us to reduce (ah + h) × (ah + h) determinants that can be obtained by
selecting a + 1 columns from some h di�erent local groups in a matrix (3) to simpler determinants of size
h × h. A special case of this lemma when h = 2 and matrices are Vandermonde type appears in [BPSY16].
We also prove and use a more general form of this lemma in our MR code construction for h = 3 in
Section 5, but we include the simpler form below for a self-contained treatment of our lower bound proof.

Lemma 3.1. LetC1, · · · ,Ch be a × (a + 1) dimensional matrices and D1, · · · ,Dh be h × (a + 1) dimensional
matrices over a �eld and let D (j )

i be the jth row of Di . �en,

det



C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0 0 · · · Ch

D1 D2 · · · Dh



= (−1)
ah (h−1)

2 det



det
(
C1
D (1)
1

)
· · · det

(
Ch

D (1)
h

)
...

. . .
...

det
(
C1
D (h)
1

)
· · · det

(
Ch

D (h)
h

)


.

Proof. As we are showing an algebraic identity, without loss of generality, we can assume that the �rst a
columns ofCi are independent for each i ∈ [h]. We can add a linear combination of the �rst a columns ofCi
to the last column to make it zero and use the fact that the Schur complement of the (a+1)× (a+1) matrix(
Ci

D (j )
i

)
with respect to leading principal a × a minorCi ([a]) is det

(
Ci

D (j )
i

)
/ det(Ci ([a])). �e corresponding
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column operation is shown below:

[
Ci
Di

]
→



Ci ([a]) 0

D (1)
i ([a]) det

(
Ci

D (1)
i

)
/ det(Ci ([a]))

...
...

D (h)
i ([a]) det

(
Ci

D (h)
i

)
/ det(Ci ([a]))



.

A�er such columns operations, we can permute the columns to get the following matrix:



C1 ([a]) 0 · · · 0 0
0 C2 ([a]) · · · 0 0
...

...
. . .

...
...

0 0 · · · Ch ([a])

D1 ([a]) D2 ([a]) · · · Dh ([a])

det
(
C1
D (1)
1

)
/ det(C1 ([a])) · · · det

(
Ch

D (1)
h

)
/ det(Ch ([a]))

...
. . .

...

det
(
C1
D (h)
1

)
/ det(C1 ([a])) · · · det

(
Ch

D (h)
h

)
/ det(Ch ([a]))



�e above matrix is block triangular and so its determinant is the product of determinants of the diagonal
blocks. Since column operations do not change the determinant and permuting the columns changes the
sign of the determinant by (−1)ah (h−1)/2, we get the desired result. �

Next we establish the following basic linear algebra fact, that will be used in the proof of our �eld size
lower bound.

Lemma 3.2. Let V be a (d − 1) × d dimensional matrix over F which is full rank. �en the one dimensional
subspace orthogonal to the row space of V is spanned by

V⊥ = (−1)d+1
(
det(V ([d] \ {1})),− det(V ([d] \ {2})), · · · , (−1)d−1 det(V ([d] \ {d }))

)
. (4)

Moreover, for any vector u ∈ Fd , we have:

〈
V⊥,u

〉
= det

(
V
u

)
.

Proof. By Laplace expansion of the determinant, it is clear that

〈
V⊥,u

〉
= det

(
V
u

)

where V⊥ is de�ned as above. Now u ∈ Fd is spanned by the rows of V i� the det
(
V
u

)
vanishes, so V⊥ is

the vector orthogonal to the subspace spanned by the rows of V . �
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3.2 Families of subsets of PFdq in general position

In this section we prepare the last ingredient (Lemma 3.4) of our �eld size lower bound. Our lemma follows
from the following result regarding vertex expansion properties of the the point-hyperplane incidence
graph in PFdq .

Lemma 3.3. (�eorem 2.3 in [Alo86]) LetU = PFdq be the set of points andV = PFdq be the set of hyperplanes
in the d-dimensional projective space over Fq . LetG (U ∪V ,E) be the incidence bipartite graph where a point
p ∈ U is connected to a hyperplane H ∈ V i� p lies on H . �en for every X ⊆ U ,

|N (X ) | > |V | −
|V |1+

1
d

|X |

where N (X ) is the neighborhood of X in G.

We are now ready to prove the Lemma.

Lemma 3.4. Let X1, · · · ,XM ⊆ PF
d
q be mutually disjoint subsets of size t . If

⌊ M

d + 1

⌋
t > (q + 1) (d + 1) (5)

then there exists a hyperplane H ∈ PFdq which contains points from d + 1 distinct subsets among X1, · · · ,XM .

Proof. LetG be the point-hyperplane incidence graph in PFdq and forX ⊆ PFdq , letN (X ) be the hyperplanes
incident to at least one point in X . Let n = |PFdq | = (qd+1 − 1)/(q − 1) be the number of points in PFdq . Set
m =

⌊
M
d+1

⌋
and for i ∈ [d + 1], de�ne

Si = X (i−1)m+1 ∪ X (i−1)m+2 ∪ · · · ∪ Xim .

By Lemma 3.3 and (5),

|N (Si ) | 6
n1+1/d

mt
6

n(q + 1)
mt

<
n

d + 1 .

By union bound there exists a hyperplane H such that H ∈ N (S1) ∩ N (S2) ∩ · · · ∩ N (Sd+1) and therefore
contains d + 1 points from distinct subsets among X1, · · · ,Xm (d+1) . �

3.3 Proof of the lower bound

We �rst establish the following theorem that relies on the condition a + 2 6 h. Later in �eorem 3.8 we
generalize our argument to take care of the case when h < a + 2.

Theorem 3.5. When a + 2 6 h 6 n/r , any maximally recoverable (n, r ,h,a,q)-local reconstruction code
must have

q >
⌊ n

rh2

⌋
·

(
r

a + 1

)
− 1. (6)

Proof. Consider an arbitrary maximally recoverable (n, r ,h,a,q)-LRC C with д = n
r local groups. Accord-

ing to the discussion in Section 2 the code C admits a parity check matrix of the shape


A1 0 · · · 0
0 A2 · · · 0
...
...
. . .

...

0 0 · · · Aд
B1 B2 · · · Bд



. (7)
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Here A1,A2, · · · ,Aд are a × r matrices over Fq , B1,B2, · · · ,Bд are h × r matrices over Fq .�e rest of the
matrix is �lled with zeros. Every a × a minor in each matrix {Ai }i ∈[д] has full rank. For i ∈ [д] and each
subset S ⊆ [r ] of size |S | = a + 1, de�ne pi,S ∈ Fhq as

pi,S =



det
(
Ai (S )

B (1)
i (S )

)
det

(
Ai (S )

B (2)
i (S )

)
...

det
(
Ai (S )

B (h)
i (S )

)



.

�e MR property implies that any subset of columns of the parity check matrix (7) which can be obtained
by picking a columns in each local group and h arbitrary additional columns is full rank. We will use this
property to make two claims about the vectors {

pi,S
}
.

Claim 3.6. For every distinct `1, · · · , `h ∈ [д] and subsets S1, · · · , Sh ⊆ [r ] of size a+1 each, the h×h matrix[
p`1,S1 , · · · ,p`h,Sh

]
is full rank.

Proof. Suppose we erase the coordinates corresponding to S1, · · · , Sh in groups `1, · · · , `h respectively. MR
property implies that the following matrix is full rank:



A`1 (S1) 0 · · · 0
0 A`2 (S2) · · · 0
...

...
. . .

...

0 0 · · · A`h (Sh )

B`1 (S1) B`2 (S2) · · · B`h (Sh )



(8)

By Lemma 3.1, the above matrix is full rank i� the h × h matrix
[
p`1,S1 , · · · ,p`h,Sh

]
is full rank. �

In particular the vectors pi,S are nonzero for every i ∈ [д] and S ∈
( [r ]
a+1

)
. We can also conclude that

across di�erent local groups, pi,S and pj,T are never multiples of each other when i , j . In fact, we will
now show that even in the same local group, pi,S and pi,T are not multiples of each other unless S = T .

Claim 3.7. For every i ∈ [д], no two vectors in {pi,S : S ⊆
( [r ]
a+1

)
} are multiples of each other.

Proof. Suppose pi,S = λ · pi,T for some distinct sets S,T ⊂ [r ] of size a + 1 each and some nonzero λ ∈ Fq .
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Let Ai (S )
⊥ and Ai (T )

⊥ be column vectors de�ned as in (4). By Lemma 3.2,

[
Ai (S )
Bi (S )

]
· Ai (S )

⊥ − λ ·

[
Ai (T )
Bi (T )

]
· Ai (T )

⊥ =



0
...

0

det
(
Ai (S )

B (1)
i (S )

)
det

(
Ai (S )

B (2)
i (S )

)
...

det
(
Ai (S )

B (h)
i (S )

)



− λ ·



0
...

0

det
(
Ai (T )

B (1)
i (T )

)
det

(
Ai (T )

B (2)
i (T )

)
...

det
(
Ai (T )

B (h)
i (T )

)



=

(
0

pi,S

)
− λ ·

(
0

pi,T

)
= 0

Note that every coordinate of Ai (S )
⊥ and Ai (T )

⊥ is nonzero as it carries the value of the determinant of

an a × a minor of the matrix Ai .�us we have a linear combination of the columns of
(
Ai (S ∪T )
Bi (S ∪T )

)
which

is zero. Moreover the combination is non-trivial because there is some j ∈ S \T and the column Ai (j ) has
a nonzero coe�cient. However

|S ∪T | 6 2a + 2 6 a + h. (9)

Observe however that any set of columns of the matrix
(
Ai
Bi

)
of cardinality at most a+h has to be full rank

by the MR property, as this set can be obtained by selecting (a subset of) a and then h more columns from
the matrix (7). �us we arrive at a contradiction that completes the proof of the claim. �

By Claim 3.7 and the discussion above the claim, we can think of
{
pi,S : i ∈ [д], S ∈

( [r ]
a+1

)}
as distinct

points in PFh−1q . For brevity, from here on we assume that pi,S refers to the corresponding point in PFh−1q .

De�ne sets X1, · · · ,Xд ⊆ PF
h−1
q as Xi =

{
pi,S : S ∈

( [r ]
a+1

)}
, we have |X1 | = |X2 | = · · · = |Xд | =

(
r

a+1

)
and

they are mutually disjoint. Also д > h by the hypothesis. By Claim 3.6, there is no hyperplane in PFh−1q
which contains h points from distinct subsets of X1, · · · ,Xд . So applying Lemma 3.4,

(q + 1)h >
⌊д
h

⌋
·

(
r

a + 1

)
.

�us
q >

⌊ n

rh2

⌋
·

(
r

a + 1

)
− 1,

which concludes the proof. �

In the argument above we used vectors {
pi,S

}
, where i varies across indices of д local groups and S

varies across all
(

r
a+1

)
subsets of [r ] of size a+1. In the proof we relied on the condition a+2 6 h to ensure

that the union of any two such sets S has size at most a + h.
Parikshit Gopalan [Gop17] has recently observed (and kindly allowed us to include his observation

here) that we can generalize �eorem 3.5 to the case when h < a + 2. To do this, in cases when h < a + 2
we only consider sets S that have size a + 1 but are constrained to contain the set {1, 2, . . . ,a + 2 − h},
as this ensures that pairwise unions still have size at most a + h. Clearly, the total number of such sets is(
r−a+h−2

h−1

)
.�e rest of the proof remains the same and yields the following
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Theorem 3.8. Assume h < a + 2 and h 6 n/r ; then any maximally recoverable (n, r ,h,a,q)-local recon-
struction code must have

q >
⌊ n

rh2

⌋
·

(
r − a + h − 2

h − 1

)
− 1. (10)

�e following corollary follows immediately from �eorems 3.5 and 3.8 and presents the asymptotic
form of our �eld size lower bound.

Corollary 3.9. Suppose that a and h are arbitrary constants, but r may grow with n. Further suppose that
h 6 n/r . In every maximally recoverable (n, r ,h,a,q)-LRC, we have:

q > Ωa,h
(
n · rmin{a,h−2}

)
. (11)

4 Maximally recoverable LRCs with h = 2

In this section we present our construction of maximally recoverable local reconstruction codes with two
heavy parity symbols. Our construction relies on the determinantal identity (Lemma 3.1) and properties
of �nite �elds. Let F∗q denote the multiplicative group of the �eld Fq .

Lemma 4.1. Let r | n, a < r be integers. Let д = n
r . Assume that n − дa − 2 is positive. Suppose q is a prime

power such that there exists a subgroup of F∗q of size at least r and with at least n/r cosets; then there exists an
explicit maximally recoverable (n, r ,h = 2,a,q)-local reconstruction code.

Proof. LetG ⊂ F∗q be themultiplicative subgroup from the statement of the theorem. Let α1,α2, · · · ,αr ∈ G
be distinct elements from G and let λ1, λ2, · · · , λд ∈ F∗q be elements from distinct cosets of G. We specify
our code via a parity check matrix of the form (3). For i ∈ [д], we choose matrices {Ai } and {Bi } as:

Ai =



α1 α2 · · · αr
α2
1 α2

2 · · · α2
r

...
...
. . .

...

αa1 αa2 · · · αar



; Bi =
[
λi λi · · · λi
αa+11 αa+12 · · · αa+1r

]
. (12)

Suppose that we have a erasures per local group and two more. We can easily correct the coordinates
corresponding to local groups which have at most a erasures in them. �is is because every matrix Ai is a
Vandermonde matrix and all its a × a minors are nonzero. Now we are le� with two cases:

Case 1: Both the extra erasures occured in the same local group. Say, the ith local group. In this case, we

can correct the erased coordinates because any (a + 2) × (a + 2) minor of
[
Ai
Bi

]
(which is a Vandermonde

matrix) is non degenerate.

Case 2: �e two extra erasures occur in di�erent groups say groups ` and `′, so we are le� with two groups
with a + 1 erasures in each. Let S be the columns erased in group ` and let S ′ be the columns erased in
group `′. We want to argue that the following (2a + 2) × (2a + 2) submatrix is full rank:

M =



A` (S ) 0
0 A`′ (S

′)

B` (S ) B`′ (S
′)


. (13)
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Let S = {γ1,γ2, · · · ,γa+1} and S ′ = {γ ′1,γ ′2, · · · ,γ ′a+1}, then by Lemma 3.1,

det(M ) = 0 ⇐⇒ det



det
(
A` (S )
B` (S )

(1)

)
det

(
A`′ (S

′)
B`′ (S

′) (1)

)
det

(
A` (S )
B` (S )

(2)

)
det

(
A`′ (S

′)
B`′ (S

′) (2)

)


= 0 (14)

⇐⇒ det



det

*........
,

γ1 · · · γa+1
γ 21 · · · γ 2a+1
...
. . .

...

γ a1 · · · γ aa+1
λ` · · · λ`

+////////
-

det

*........
,

γ ′1 · · · γ ′a+1
(γ ′1 )

2 · · · (γ ′a+1)
2

...
. . .

...

(γ ′1 )
a · · · (γ ′a+1)

a

λ`′ · · · λ`′

+////////
-

det

*........
,

γ1 · · · γa+1
γ 21 · · · γ 2a+1
...

. . .
...

γ a1 · · · γ aa+1
γ a+11 · · · γ a+1a+1

+////////
-

det

*........
,

γ ′1 · · · γ ′a+1
γ ′1

2
· · · (γ ′a+1)

2

...
. . .

...

γ ′1
a
· · · (γ ′a+1)

a

γ ′1
a+1

· · · (γ ′a+1)
a+1

+////////
-



= 0 (15)

⇐⇒ det
[

λ` λ`′∏
i ∈[a+1] γi

∏
i ∈[a+1] γ

′
i

]
= 0 (16)

where we factored out the (nonzero) Vandermonde determinant from each column. Since γi ,γ ′i ∈ G and
λ`, λ`′ are in di�erent cosets of G, the last determinant is not zero. �

In Lemma 4.1, given n and r such that r | n, we want to �nd a small �eld Fq such that F∗q contains a
subgroup of size at least r and with at least n/r cosets. For example, if n + 1 is a prime power, then we can
take q = n + 1. �e following lemma shows that one can always �nd such a �eld of size q = O (n). We
defer the proof to the Appendix.

Lemma 4.2. Let r ,n be some positive integers with r 6 n. �en there exists a �nite �eld Fq withq = O (n) such
that themultiplicative group F∗q contains a subgroup of size at least r andwith at leastn/r cosets. If additionally
we require that the �eld has characteristic two, then such a �eld exists with q = n · exp(O (

√
logn)).

Combining Lemma 4.2 with Lemma 4.1 gives the following theorem.

Theorem 4.3. Let r | n, a < r be integers. Let д = n
r . Assume that n − дa − 2 is positive. �en there exists

an explicit maximally recoverable (n, r ,h = 2,a,q)-local reconstruction code with q = O (n). If we require the
�eld to be of characteristic 2, such a code exists with q 6 n · exp(O (

√
logn)).

5 Maximally recoverable LRCs with h = 3

In this section, we present our construction of maximally recoverable local reconstruction codes with
three heavy parity symbols. Our construction extends the ideas in the construction of Section 4 using �eld
extensions.

5.1 A determinantal identity

For our construction and analysis, wewill need a generalization of the determinantal identity in Lemma 3.1.
To prove the generalization, we need the following expansion of determinant of a column partitioned
matrix.
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Lemma 5.1. For i ∈ [`], let Fi be an h × ti matrix with
∑`

i=1 ti = h. �en,

det[F1 |F2 | · · · |F`] =
∑

S1t···tS`=[h], |Si |=ti

sgn(S1, · · · , S` )
∏
i ∈[`]

det F (Si )
i

where S1 t · · · t S` ranges over partitions of [h] such that |Si | = ti . Here sgn(S1, · · · , S` ) is the sign of the
permutation taking (1, 2, · · · ,h) to (S̃1, S̃2, · · · , S̃` ) where S̃i is the tuple formed by ordering the elements of
Si in increasing order.

Proof. Given distinct integers a1, · · · ,an , de�ne sgn(a1,a2, · · · ,an ) := (−1)t where t is number of trans-
positions needed to sort the elements a1,a2, · · · ,an in increasing order. �us for a permutation π ∈ Sh ,
sgn(π ) = sgn(π (1),π (2), · · · ,π (h)). Let F = [F1 |F2 | · · · |F`] and for i ∈ [`], letTi = {ti−1 + 1, · · · , ti } where
t0 = 0. We can expand det(F ) as:

det(F ) =
∑
π ∈Sh

sgn(π )
h∏
i=1

Fπ (i )i

=
∑

S1t···tS`=[h], |Si |=ti

∑
π : π (Ti )=Si

sgn(π )
h∏
i=1

Fπ (i )i

Note that if π (Ti ) = Si , then for i ∈ [`],

sgn(π ) = sgn(S̃1, · · · , S̃` )
∏̀
i=1

sgn(π (ti−1 + 1), · · · ,π (ti ))

because we can sort (π (1), · · · ,π (h)) �rst within each group to get (S̃1, · · · , S̃` ) and then sort it to get
(1, 2, · · · ,h).�erefore,∑

π : π (Ti )=Si

sgn(π )
h∏
i=1

Fπ (i )i

=
∑

σ1:T1→S1, ..., σ` :T`→S`

sgn(S̃1, · · · , S̃` )
∏̀
i=1

*.
,
sgn(σi (ti−1 + 1), · · · ,σi (ti ))

ti∏
j=ti−1+1

Fσi (j )j
+/
-

(where the summation is over all bijections σi : Ti → Si )

= sgn(S̃1, · · · , S̃` )
∏̀
i=1

*.
,

∑
σi :Ti→Si

sgn(σi (ti−1 + 1), · · · ,σi (ti ))
ti∏

j=ti−1+1
Fσi (j )j

+/
-

= sgn(S̃1, · · · , S̃` )
∏̀
i=1

det F (Si )
i . �

�e following is a generalization of Lemma 3.1.
Lemma 5.2. For i ∈ [`], letCi be an a×(a+ti )matrix andDi be anh×(a+ti )matrix for some t1+t2+· · ·+t` =
h where ti > 1. �en,

det



C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0 0 · · · C`

D1 D2 · · · D`



= (−1)a (
∑`
i=1 ti (`−i ))

∑
S1t···tS`=[h], |Si |=ti

sgn(S1, · · · , S` )
∏
i ∈[`]

det
(
Ci

D (Si )
i

)
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where S1 t · · · t S` ranges over partitions of [h] such that |Si | = ti and sgn(S1, · · · , S` ) is de�ned as in
Lemma 5.1.

Proof. Let

F = [F1 |F2 | · · · |F`] =



C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0 0 · · · C`

D1 D2 · · · D`



.

Let [p,q] be the integers between p and q, i.e., [p,q] = {i : p 6 i 6 q}. By Lemma 5.1,

det F = det[F1 |F2 | · · · |F`] =
∑

T1t···tT`=[a`+h], |Ti |=a+ti

sgn(T1, · · · ,T` )
∏
i ∈[`]

det F (Ti )
i

Note that the only terms which survive correspond to partitions T1 t T2 t · · · t T` of rows of F such
that for every i ∈ [`], Ti contains the rows of Ci (i.e. [(i − 1)a + 1, ia]). In the other terms, there exists
some i ∈ [`] such that F (Ti )

i contains a zero row and thus det F (Ti )
i = 0. Such partitions are given by

Ti = [(i − 1)a + 1, ia] ∪ Si where S1 t S2 · · · t S` is some partition of rows of [D1 |D2 | · · · |D`] such that
|Si | = ti . So the expansion for det F can be wri�en as:

det F =
∑

S1t···tS`=[a`+1,a`+h], |Si |=ti

sgn([1,a] ∪ S1, · · · , [(` − 1)a + 1, `a] ∪ S` )
∏
i ∈[`]

det F ([(i−1)a,ia]∪Si )
i

= (−1)a (
∑`
i=1 ti (`−i ))

∑
S1t···tS`=[a`+1,a`+h], |Si |=ti

sgn([1, `a], S1, S2, · · · S` )
∏
i ∈[`]

det F ([(i−1)a,ia]∪Si )
i

= (−1)a (
∑`
i=1 ti (`−i ))

∑
S1t···tS`=[h], |Si |=ti

sgn(S1, S2, · · · S` )
∏
i ∈[`]

det
(
Ci

D (Si )
i

)
. �

Applying the above lemma to a special case, we get the following corollary:

Corollary 5.3. Let C1 be an a × (a + 1) matrix, C2 be an a × (a + 2) matrix, D1 be a 3 × (a + 1) matrix and
D2 be a 3 × (a + 2) matrix and let D (j )

i be the jth row of Di . �en,

det


C1 0
0 C2
D1 D2


= 0 ⇐⇒ det

(
C1
D (1)
1

)
· det

*..
,

C2
D (2)
2

D (3)
2

+//
-
− det

(
C1
D (2)
1

)
· det

*..
,

C2
D (1)
2

D (3)
2

+//
-
+ det

(
C1
D (3)
1

)
· det

*..
,

C2
D (1)
2

D (2)
2

+//
-
= 0

5.2 Code construction and analysis

Our construction is based on Cauchy matrices, and we will also need the the following lemma about the
determinants of such matrices.

Lemma 5.4. ([LN83]) Let α1, · · · ,αm , β1, · · · , βm ∈ Fq be all distinct; then

det



1
α1−β1

1
α2−β1

· · · 1
αm−β1

1
α1−β2

1
α2−β2

· · · 1
αm−β2

...
...

. . .
...

1
α1−βm

1
α2−βm

· · · 1
αm−βm



=

∏
i>j (αi − α j ) (βj − βi )∏

i, j (αi − βj )
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Matrices of the above form are called Cauchy matrices. Every minor of a Cauchy matrix is nonzero
because the minors themselves look like a Cauchy matrix. We are now ready to present the construction
for three global parities.

Lemma 5.5. Let r | n, a < r be integers. Let д = n
r . Assume that n −дa − 3 is positive. Suppose q0 > 2r + 3 is

a prime power such that there exists a subgroup of F∗q0 of size at least r + 2 and with at least n/r cosets. �en
there exists an explicit maximally recoverable (n, r ,h = 3,a,q = q30)-local reconstruction code.

Proof. Let G ⊂ F∗q0 be the multiplicative subgroup from the statement of the theorem. Choose distinct
βa+1, βa+2, βa+3 ∈ Fq0 and let

Ω =

{
α ∈ Fq0 :

α − βa+2
α − βa+3

∈ G

}
.

Clearly |Ω | = |G | −1 > r +1, so we can choose distinct α1, · · · ,αr ∈ Ω \ {βa+1}. Finally, since q0 > 2r +3 >
r + a + 3, we can choose distinct β1, · · · , βa ∈ Fq0 \ {α1, · · · ,αr , βa+1, βa+2, βa+3}. Let µ1, · · · , µд ∈ Fq0 be
elements from distinct cosets of G.

Now let Fq be a degree 3 extension of Fq0 , so we have q = q30. As Fq is a 3-dimensional vector space
over Fq0 , choose a basis v0,v1,v2 ∈ Fq for this space and choose distinct γ1, · · · ,γд ∈ Fq0 . De�ne λi =
v0 +γiv1 +γ

2
i v2. �en any three of the elements λ1, · · · , λд ∈ Fq are linearly independent over Fq0 ; we call

this property 3-wise independence over Fq0 . De�ne the matrices Ai and Bi as follows:

Ai =



1
α1−β1

· · · 1
αr−β1

...
. . .

...
1

α1−βa
· · · 1

αr−βa



; Bi =


λi
α1−βa+1

· · ·
λi

αr−βa+1µi
α1−βa+2

· · ·
µi

αr−βa+2
1

α1−βa+3
· · · 1

αr−βa+3


(17)

Now we will show that the above construction satis�es the MR property. We have a erasures per local
group and 3 more. We can easily correct groups with only a erasures because Ai are Cauchy matrices
where every a × a minor is non-degenerate. So we only need to worry about local groups with more than
a erasures. �ere are three cases.

Case 1: All three extra erasures in the same group.

Say we have a + 3 erasures in local group i , then we can correct these errors because the matrix
(
Ai
Bi

)
is

a Cauchy matrix (except for some scaling factors in the rows), and therefore each of its (a + 3) × (a + 3)
minors is nonzero by Lemma 5.4.

Case 2: �e three extra erasures are distributed across two groups.
Suppose the extra erasures occur in groups `, `′ with (a + 1) erasures in group ` corresponding to a subset
S ⊆ [r ] of its columns and (a + 2) erasures in group `′ corresponding to a subset S ′ ⊆ [r ] of its columns.
To correct these erasures we need to show the following matrix is full rank:



A` (S ) 0
0 A`′ (S

′)

B` (S ) B`′ (S
′)


. (18)
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By Corollary 5.3, the above matrix fails to be full rank i�

det
(
A` (S )
B` (S )

(1)

)
· det

*..
,

A`′ (S
′)

B`′ (S
′) (2)

B`′ (S
′) (3)

+//
-
− det

(
A` (S )
B` (S )

(2)

)
· det

*..
,

A`′ (S
′)

B`′ (S
′) (1)

B`′ (S
′) (3)

+//
-

+ det
(
A` (S )
B` (S )

(3)

)
· det

*..
,

A`′ (S
′)

B`′ (S
′) (1)

B`′ (S
′) (2)

+//
-
= 0

�e above determinant is a Fq-linear combination of λ` and λ`′ and the coe�cient of λ` , which arises from

the �rst term, is nonzero because
(
A`

B`

)
and

(
A`′

B`′

)
are Cauchy matrices. By 3-wise independence of λ’s,

this linear combination cannot be zero, and therefore the matrix (18) has full rank.

Case 3: �e three extra erasures occur in distinct groups.
Suppose the three extra erasures occur in groups `1, `2, `3 ∈ [д] and let S1, S2, S3 ⊆ [r ] be sets of size a + 1
corresponding to the erasures in the groups `1, `2, `3 respectively. To correct these erasures we need to
show the following matrix is full rank:



A`1 (S1) 0 0
0 A`2 (S2) 0
0 0 A`3 (S3)

B`1 (S1) B`2 (S2) B`3 (S3)



By Lemma 3.1, if the above matrix is not full rank then

det



det *
,

A`1 (S1)

B (1)
`1
(S1)

+
-

det *
,

A`2 (S2)

B (1)
`2
(S2)

+
-

det *
,

A`3 (S3)

B (1)
`3
(S3)

+
-

det *
,

A`1 (S1)

B (2)
`1
(S1)

+
-

det *
,

A`2 (S2)

B (2)
`2
(S2)

+
-

det *
,

A`3 (S3)

B (2)
`3
(S3)

+
-

det *
,

A`1 (S1)

B (3)
`1
(S1)

+
-

det *
,

A`2 (S2)

B (3)
`2
(S2)

+
-

det *
,

A`3 (S3)

B (3)
`3
(S3)

+
-



= 0.

For k ∈ {1, 2, 3}, let ck =
∏

i>j,i, j ∈Sk (αi − α j ),d =
∏

i>j,i, j ∈[a] (βj − βi ), ek =
∏

i ∈Sk , j ∈[a] (αi − βj ). By
Lemma 5.4, we can write down explicit expressions for the entries in the above determinant to get:

det



λ`1
c1d

∏
i∈[a] (βi−βa+1)

e1
∏
i∈S1 (αi−βa+1)

λ`2
c2d

∏
i∈[a] (βi−βa+1)

e2
∏
i∈S2 (αi−βa+1)

λ`3
c3d

∏
i∈[a] (βi−βa+1)

e3
∏
i∈S3 (αi−βa+1)

µ`1
c1d

∏
i∈[a] (βi−βa+2)

e1
∏
i∈S1 (αi−βa+2)

µ`2
c2d

∏
i∈[a] (βi−βa+2)

e2
∏
i∈S2 (αi−βa+2)

µ`3
c3d

∏
i∈[a] (βi−βa+2)

e3
∏
i∈S3 (αi−βa+2)

c1d
∏
i∈[a] (βi−βa+3)

e1
∏
i∈S1 (αi−βa+3)

c2d
∏
i∈[a] (βi−βa+3)

e2
∏
i∈S2 (αi−βa+3)

c3d
∏
i∈[a] (βi−βa+3)

e3
∏
i∈S3 (αi−βa+3)



= 0.

We can scale rows and columns to conclude that

det



λ`1
∏

i ∈S1

( αi−βa+3
αi−βa+1

)
λ`2

∏
i ∈S2

( αi−βa+3
αi−βa+1

)
λ`3

∏
i ∈S3

( αi−βa+3
αi−βa+1

)
µ`1

∏
i ∈S1

( αi−βa+3
αi−βa+2

)
µ`2

∏
i ∈S2

( αi−βa+3
αi−βa+2

)
µ`3

∏
i ∈S3

( αi−βa+3
αi−βa+2

)
1 1 1



= 0.
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By the choice of α ’s, ∏i ∈Sj

( αi−βa+3
αi−βa+2

)
∈ G for j = 1, 2, 3. By writing the Laplace expansion of the determi-

nant over the �rst row, the above determinant is a linear combination in λ`1 , λ`2 , λ`3 with coe�cients from
Fq0 . �e coe�cients of λ’s in this linear combination are nonzero because µ`1 , µ`2 , µ`3 belong to distinct
cosets of G in F∗q0 . Because λ’s are 3-wise independent over Fq0 , we get a contradiction. �

Combining Lemma 5.5 with Lemma 4.2 gives the following theorem.

Theorem 5.6. Let r | n, a < r be integers. Let д = n
r > 2. Assume that n−дa−3 is positive. �en there exists

an explicit maximally recoverable (n, r ,h = 3,a,q)-local reconstruction code with q = O (n3). If we require
the �eld to be of characteristic 2, such a code exists with q = n3 · exp(O (

√
logn)).

6 Maximally recoverable LRCs from elliptic curves

Our construction of MR (n, r = 3,h = 3,a = 1,q)-LRCs is technically disjoint from our results in the
previous sections. We observe that in this narrow case, maximally recoverable LRCs are equivalent to
families ofmatching collinear triples in the projective plane PF2q , i.e., sets of points partitioned into collinear
triples, where no three points other than those forming a triple are collinear. In Section 6.1 we state the
quantitative parameters of such a family A that we can obtain and translate those to parameters of an
MR LRC. �e goal of Section 6.2 is to construct the family A using elliptic curves and 3-AP free sets. In
Section 6.2.1 we develop the necessary machinery of elliptic curves, and in Section 6.2.2 we carry out the
construction.

6.1 LRCs from matching collinear triples

We will reduce the problem of constructing maximally recoverable codes for h = 3, r = 3,a = 1 to the
problem of constructing matching collinear triples in PF2q which we de�ne below.

De�nition 6.1. We say that A ⊂ PF2q has matching collinear triples if A can be partitioned into triples,
A = tmi=1{ai ,bi , ci }, such that the only collinear triples in A are {ai ,bi , ci } for i ∈ [m].

What is the largest subset A ⊂ PF2q with matching collinear triples? If we consider all the q + 1 lines
through some �xed point of A, at most one line can contain two other points of A. All other lines can
contain at most one other point of A. So |A| 6 q + 3. �e following lemma shows that we can construct a
set A with size |A| > q1−o (1) . It is an interesting open question if we can get |A| > Ω(q).

Lemma 6.2. For any prime power q, there is an explicit set A ⊂ PF2q with matching collinear triples of size
|A| > q · exp(−C

√
logq) where C > 0 is some absolute constant.

We will prove Lemma 6.2 in Section 6.2.2.

Lemma 6.3. Assume д > 2.�ere exists a subset S ⊂ PF2q that has д matching collinear triples if and only
if there exists a maximally recoverable (3д, r = 3,h = 3,a = 1,q)-local reconstruction code.

Proof. We �rst show how to obtain codes from families of collinear triples. Let S = ∪дi=1{ai ,bi , ci } be such
that the only collinear triples in S are {ai ,bi , ci } for i ∈ [д]. From now, we will think of elements of S as
vectors in F3q such that every triple of points except for the triples {ai ,bi , ci } are linearly independent. We
can scale each vector with nonzero elements in Fq such that ai + bi + ci = 0 in F3q for every i ∈ [д]. For
i ∈ [д], de�ne blocks Ai and Bi of the parity check matrix (3) as:

Ai =
[
1 1 1

]
; Bi =

[
0 −bi ci

]
.
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We need to correct 1 erasure per group and any 3 extra erasures. We can correct groups with a single
erasure because Ai is a simple parity check constraint on all the coordinates of the group. We now have
to correct groups with more than one erasure, there are two cases:
Case 1: �e three extra erasures are in two groups.
Suppose the two groups are i, j and in group i all the coordinates are erased and in group j the second and
third coordinates are erased (the other two cases are similar). To correct these erasures, we have to argue
that the following matrix is full rank:



1 1 1 0 0
0 0 0 1 1
0 −bi ci −bj c j


Subtract the �rst column in each group from the rest, it is equivalent to the following matrix being full
rank: 

1 0 0 0 0
0 0 0 1 0
0 −bi ci −bj c j + bj


=



1 0 0 0 0
0 0 0 1 0
0 −bi ci −bj aj


which is true because bi , ci ,aj are linearly independent.
Case 2: �e three extra erasures are in distinct groups.
Suppose the three groups are i, j,k and in each group the second and third columns are erased (the other
cases are similar). To correct these erasures, we have to argue that the following matrix is full rank:



1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
−bi ci −bj c j −bk ck



Subtract the �rst column in each group from the rest, it is equivalent to the following matrix being full
rank:



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
−bi ci + bi −bj c j + bj −bk ck + bk



=



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
−bi −ai −bj −aj −bk −ak



which is true because ai ,aj ,ak are linearly independent.
Reverse connection. We now proceed to show how to obtain a set with matching collinear triples from
codes. Given a maximally recoverable (3д, r = 3,h = 3,a = 1,q)-local reconstruction code with a parity
check matrix (3), without loss of generality assume that for all i ∈ [д],

Ai =
[
1 1 1

]
; Bi =

[
v1
i v2

i v3
i

]
,

where {vsi }s ∈[3],i ∈[д] ⊆ F3q . For each i ∈ [д], de�ne

ai = v
2
i −v

1
i bi = v

3
i −v

2
i ci = v

1
i −v

3
i .

Clearly, for all i ∈ [д], ai + bi + ci = 0. Consider {ai ,bi , ci }i ∈[д] as elements of PF2q and de�ne our family
to be S = ∪дi=1{ai ,bi , ci }. It remains to show that all triples of elements of S other than {ai ,bi , ci } are non-
collinear. When all three elements vαi − v

β
i ,v

γ
j − v

δ
j ,v

ε
k − v

ζ
k belong to di�erent groups this follows from
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the fact that, as implied by the MR property, the matrix


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
v
β
i vαi vδj v

γ
j v

ζ
k vεk



=



1 0 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
v
β
i vαi −v

β
i vδj v

γ
j −v

δ
j v

ζ
k vεk −v

ζ
k



is full rank. When triples come from two groups, (say, vβi − vαi ,v
γ
i − v

α
i ,v

δ
j − v

ε
j ) this again follows from

the MR property, as the matrix


1 1 1 0 0
0 0 0 1 1
vαi v

β
i v

γ
i vεj vδj


=



1 0 0 0 0
0 0 0 1 0
vαi v

β
i −v

α
i v

γ
i −v

α
i vεj vδj −v

ε
j


is also full rank. �

Combining Lemma 6.2 and Lemma 6.3 along with the fact that all the constructions are explicit gives
the following theorem.

Theorem 6.4. For any n > 3 which is a multiple of 3 and for any �nite �eld Fq , there exists an explicit maxi-
mally recoverable (n, r = 3,h = 3,a = 1,q)-local reconstruction code provided thatq > Ω

(
n · exp

(
C
√
logn

))
where C > 0 is some absolute constant.

6.2 Matching Collinear Triples from AP free sets

In this section, we will prove Lemma 6.2 by constructing a large A ⊂ PF2q with matching collinear triples.
�e main idea is to reduce the problem to constructing a large subset A ⊂ Z/NZ with matching tri-sums
where N = Ω(q). A subset A ⊂ Z/NZ has matching tri-sums if A can partitioned into disjoint triples,
A = ti {ai ,bi , ci } such that the only 3 element subsets of A which sum to zero are the triples {ai ,bi , ci }
in the partition. Such sets can be constructed from subsets of [N ] without any non-trivial arithmetic
progressions. �e best known construction of a subset of [N ] with no non-trivial three term arithmetic
progressions is due to Behrend [Beh46] which was slightly improved in [Elk11]. An explicit construction
with similar bounds as [Beh46] was given in [Mos53].

Theorem 6.5 ([Beh46, Mos53, Elk11]). For some absolute constant C > 0, there exists an explicit A ⊂
{1, 2, · · · ,N } with |A| > N · exp(−C

√
logN ) which doesn’t contain any 3 term arithmetic progressions i.e.

there doesn’t exist distinct x ,y, z ∈ A such that x + z = 2y.

It is also known that any set A ⊂ {1, 2, · · · ,N } with no non-trivial 3 term arithmetic progressions
should have size |A| . (log logN )4

logN · N [Blo16].
�e reduction from matching collinear triples in F2q to subsets of Z/NZ with matching tri-sums is

simple when q is a prime. In this case we can set N = q. �ree points (x1,y1), (x2,y2), (x3,y3) ∈ F2q on the
cubic curve Y = X 3 are collinear i� x1 + x2 + x3 = 0. So we can get a large subset of PF2q with matching
collinear triples, from a large subset of Fq � Z/qZwith matching tri-sums. And from�eorem 6.5, we can
get such a set of size > q · exp(−O (

√
logq)).

When q is not prime, the additive group of Fq is not cyclic anymore and subsets of Fq with matching
tri-sums are much smaller. For example, if Fq has characteristic 2, which is the main se�ing of interest
for us, the size of the largest subset of Fq with matching tri-sums is 6 qc for some absolute constant
c < 1 [Kle16]. We will use some results on elliptic curves which are a special kind of cubic curves to make
the reduction work over any �eld.
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6.2.1 Elliptic curves

We will give a quick introduction to elliptic curves, please refer to [Sil09, MBG+13] for proofs and formal
de�nitions. Let K be a �nite �eld and K be its algebraic closure. A Weierstrass equation de�ned over K is
homogeneous cubic equation in three variables of the following form:

F (X ,Y ,Z ) = Y 2Z + a1XYZ + a3YZ
2 − X 3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0

where a1,a2, · · · ,a6 ∈ K. A point p ∈ PK2 is called a singular point if

∂F

∂X
(p) =

∂F

∂Y
(p) =

∂F

∂Z
(p) = 0.

If there are no such points, we call the equation non-singular, else we call the equation singular. Since the
equation is cubic, it can have at most one singular point. �ere is an explicit polynomial function ∆ in
variables a1,a2, · · · ,a6 and coe�cients in K called the discriminant, such that the Weierstrass equation is
singular i�∆(a1, · · · ,a6) = 0 (see Section III.1 in [Sil09] for the explicit polynomial). A singularWeierstrass
equation§ E with singularity at (X ,Y ,Z ) = (0, 0, 1) can be wri�en as:

E : Y 2Z + a1XYZ − a3X
2Z = X 3.

We associate with E the set of all points in PK2 which satisfy the equation E. �ere is exactly one point in
E with Z -coordinate equal to 0, namely (0 : 1 : 0), we call this special point the point at in�nity and denote
it by O. �e set of non-singular K-rational points of E, denoted by Ens (K) is de�ned as follows:

Ens (K) =
{
(x : y : 1) |F (x ,y, 1) = 0, x ,y ∈ K, (x ,y) , (0, 0)} ∪ {O}.

Ens (K) is an Abelian group under a certain addition operation ‘+’, with the point at in�nity O as the group
identity. Under this operation, three points a,b, c ∈ Ens (K) satisfy a + b + c = O i� a,b, c are collinear in
PK2. �e following theorem shows that Ens (K) is isomorphic to K∗ when E is of a special form.

Theorem 6.6 (�eorem 8.1 in [MBG+13]). Let E : (Y − αX ) (Y − βX )Z = X 3 be a singular Weierstrass
equation with α , β ∈ K and α , β . �en the map ϕ : Ens (K) → K∗ de�ned as:

ϕ : O 7→ 1 ϕ : (x ,y, 1) 7→ y − βx

y − αx

is a group isomorphism.

Since K∗ is a cyclic group for any �nite �eld K, Ens (K) is isomorphic to Z/NZ for N = |K| − 1 when
E is a singular Weierstrass equation as in �eorem 6.6.

6.2.2 Proof of Lemma 6.2

Proof. Let E be a singular Weierstrass equation¶ de�ned over Fq as in �eorem 6.6. By �eorem 6.6,
Ens (Fq ) � Z/NZ where N = q − 1. Recall that a,b, c ∈ Ens (Fq ) satisfy a + b + c = 0 in the group i� they
are collinear.

§Usually elliptic curves are de�ned as curves given by non-singular Weierstrass equations. But for our purpose, it is easier to
work with singular Weierstrass equations.

¶It is not essential to work with singular Weierstrass equations. �e proof also works with non-singular elliptic curves as long
the group of K-rational points is cyclic or has a large cyclic subgroup.
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LetB ⊂ {1, 2, · · · ,N /20} be an explicit subset of size |B | & N ·exp(−C
√
logN )with no 3-term arithmetic

progressions, as guaranteed by �eorem 6.5. Now de�ne subsets A1,A2,A3 ⊂ Z/NZ as

A1 = {x : x ∈ B} ,A2 =
{⌊N

3

⌋
+ x : x ∈ B

}
,A3 =

{
N −

⌊N
3

⌋
− 2x : x ∈ B

}
.

Clearly, A1,A2,A3 are disjoint. Finally we de�ne Ã = A1 ∪ A2 ∪ A3. Now we claim that the only triples
from Ã which sum to zero in Z/NZ are {x , bN /3c + x ,N − bN /3c − 2x } for x ∈ B and these triples form a
partition of Ã.

It is not hard to see that if three distinct elements a,b, c ∈ Ã satisfy a + b + c = 0, then a,b, c should
come from 3 di�erent sets A1,A2,A3. So a�er reordering, we can assume

a = x ,b = bN /3c + y, c = N − bN /3c − 2z

for some x ,y, z ∈ B. �us a +b + c = 0 implies that x +y = 2z, which implies that x = y = z since B is free
from 3 arithmetic progressions.

Finally let A ⊂ PF2q be the set of points in Ens (Fq ) which map to the set Ã ⊂ Z/NZ under the iso-
morphism Ens (Fq ) � Z/NZ. Now it is easy to see that A has matching collinear triples and we have
|A| & q · exp(−C

√
logq). �

7 Open problems

In this work we made progress towards quantifying the minimal size of �nite �elds required for existence
of maximally recoverable local reconstruction codes and obtained both lower and upper bounds. �ere is
a wide array of questions that remain open. Here we highlight some of them:

– Our lower bound (2) implies that even in the regime of constant a and h, when h > 3 and r grows
with n there exist no MR codes over �elds of sizeO (n). It would be of great interest to understand if
such codes always exist when all parameters a,h, and r are held constant and only n grows.

– Our Lemma 6.3 provides an equivalence between the parameters of families of matching collinear
triples in the projective plane and maximally recoverable local reconstruction codes with r = 3,h =
3, and a = 1. We hope that this reduction will be useful to obtain an ω (n) lower bound for the
alphabet size of MR (n, r = 3,h = 3,a = 1,q)-LRCs, or lead to a construction over �elds of linear
size. It is also very interesting to see if techniques similar to those in Section 6.2 can be used to get
codes over �elds of nearly linear size when r > 3 or a > 1 or h > 3.

– It is interesting to understand whether various technical conditions that appear in our theorems
are in fact necessary. For instance, can one relax the condition h 6 n/r in our main lower bound
(�eorems 3.5 and 3.8)? Also, in the case of �elds of characteristic two, can one reduce the �eld sizes
in �eorems 4.3 and 5.6 to O (n) and O (n3) to match the case of prime �elds?

– Finally, it is interesting to see if our lower bounds (�eorems 3.5 and 3.8) can be generalized to
the se�ing of non-linear codes. Basic results about LRCs such as distance vs. redundancy trade-
o� [GHSY12] have been generalized to non-linear se�ing in [SAP+13, FY14].
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A Proof of Lemma 4.2

�e goal of the section is to prove Lemma 4.2 which is restated here for convenience.

Lemma A.1 (Restatement of Lemma 4.2). Let r ,n be some positive integers with r 6 n. �en there exists a
�nite �eld Fq with q = O (n) such that the multiplicative group F∗q contains a subgroup of size at least r and
with at least n/r cosets. If additionally we require that the �eld has characteristic two, then such a �eld exists
with q = n · exp(O (

√
logn)).

We will need some estimates from analytic number theory, we will setup some notation �rst.

π (x ;m,a) : number of primes p 6 x such that p ≡ a mod m

π (x ,y;m,a) = π (y;m,a) − π (x ;m,a)

Li(x ) =
∫ x

2

1
ln t dt

(m,a) : greatest common divisor ofm and a
ϕ (m) : number of positive integers a 6 m such that (a,m) = 1 (Euler’s totient function)

By the prime number theorem, the number of primes 6 x is approximately Li(x ) = Θ(x/ logx ). So if
the primes are equidistributed among di�erent congruence classes of m with no obvious divisors (i.e. a
mod mwhere (a,m) = 1), thenwe expect to see approximately Li(x )/ϕ (m) primes in each such congruence
class. �e following theorem gives an upper bound on the error term in this approximation averaged over
m <

√
x (logx )A.
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Theorem A.2 (�eorem from [BFI86] (Page 250)). Let a , 0,A > 0 be some �xed constants and x > 3. We
then have ∑

(m,a)=1; m<
√
x (log x )A

�����
π (x ;m,a) − Li(x )

ϕ (m)

�����
.a,A x

(log logx )B

(logx )3

where B is an absolute constant.

Applying the above theorem with a = 1,A = 0 for x and 2x , and using triangle inequality, we get the
following corollary.

Corollary A.3. For x large enough,∑
m<
√
x

�����
π (x , 2x ;m, 1) − (Li(2x ) − Li(x ))

ϕ (m)

�����
. x

(log logx )B

(logx )3

where B is an absolute constant.

Lemma A.4. Let a 6 b be some positive integers. �en there exists A > a,B > b such that AB + 1 is a prime
and AB = O (ab).

Proof. If there exists some A such that a 6 A 6 2a and there is a prime p between 4ab + 1 and 8ab which
is congruent to 1 mod A, then we can take B = (p − 1)/A > b. Suppose this is not true, we will arrive at a
contradiction. For every a 6 m 6 2a, we have π (4ab, 8ab;m, 1) = 0. Applying corollary A.3 with x = 4ab,
we get

ab
(log logab)B

(logab)3 &
∑

m<2
√
ab

�����
π (4ab, 8ab;m, 1) − (Li(8ab) − Li(4ab))

ϕ (m)

�����

>
∑

a6m<2a

�����
π (4ab, 8ab;m, 1) − (Li(8ab) − Li(4ab))

ϕ (m)

�����

=
∑

a6m<2a

(Li(8ab) − Li(4ab))
ϕ (m)

> a
Li(8ab) − Li(4ab)

2a &
ab

log(ab)

which is a contradiction when ab is large enough. �

In practice, it is desirable to work with �elds of characteristic two, the following lemma gives us such
�elds.

Lemma A.5. Let a,b be some positive integers and let n = ab. �en there exists A > a, B > b such that
q = AB + 1 is a power of two and q = n · exp(O

√
logn).

Proof. Letm be a positive integer to be chosen later. Let ` be an integer such that

2`(2m−1) > Cn + 1 > 2(`−1) (2m−1)

where C > 1 is some su�ciently large constant to be chosen later and let x = 2`,q = x2
m . We will now

show that for any a 6 n, we can factor q − 1 as A · B where A > a and B > n/a = b. We can factor
q − 1 = x2

m
− 1 as:

x2
m
− 1 = (x − 1)

∏
i ∈[m]

(1 + x2i−1 ).
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We will rearrange these factors to get the desired factorization of q − 1. Let 0 6 α 6 2m − 1 be such that
xα−1 < a 6 xα . Expand α into its binary expansion as α = ∑

i ∈S 2i where S ⊂ {0, 1, · · · ,m − 1}. De�ne
A =

∏
i ∈S (1 + x2

i
) and de�ne B = (x2

m
− 1)/A. Clearly A > xα > a. We can lower bound B as follows:

B =
(x2

m
− 1)∏

i ∈S (1 + x2
i )
=

∏
i ∈S

(1 + x−2i )−1 · (x
2m − 1)∏
i ∈S x2

i

> exp(−
∑
j>0

x−2
j
)
(x2

m
− 1)

xα
> exp(−

∑
j>0

2−2j ) (x
2m − 1)
xa

> exp(−
∑
j>0

2−2j ) (x
2m−1 − 1)

a
> exp(−

∑
j>0

2−2j )Cn
a
>

n

a

when C = exp(∑j>0 2−2
j
). Now we need to bound q = x2

m as a function of n.

q = 2`2m = 2(`−1) (2m−1) · 2` · 22m−1

6 (Cn + 1) · 2` · 22m−1

. n1+1/(2
m−1) · 22m−1

. n exp(O (
√
logn))

if we choosem such that (2m − 1) = Θ(
√
logn).

�

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. By Lemma A.4, there exists A > r and B > n/r such that q = AB + 1 is prime and
q = O (n). Since F∗q is a cyclic group of size q − 1 and A divides q − 1, there exists a subgroup of F∗q of size
A > r with B > n/r cosets. To get a �nite �eld of characteristic two, we use Lemma A.5 instead. �
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