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Abstract

We study the parameterized complexity of approximating the k-Dominating Set (DomSet)
problem where an integer k and a graph G on n vertices are given as input, and the goal is to
find a dominating set of size at most F(k) · k whenever the graph G has a dominating set of
size k. When such an algorithm runs in time T(k) · poly(n) (i.e., FPT-time) for some computable
function T, it is said to be an F(k)-FPT-approximation algorithm for k-DomSet. Whether such an
algorithm exists is listed in the seminal book of Downey and Fellows (2013) as one of the “most
infamous” open problems in Parameterized Complexity. This work gives an almost complete
answer to this question by showing the non-existence of such an algorithm under W[1] 6= FPT
and further providing tighter running time lower bounds under stronger hypotheses. Specifi-
cally, we prove the following for every computable functions T, F and every constant ε > 0:

• Assuming W[1] 6= FPT, there is no F(k)-FPT-approximation algorithm for k-DomSet.
• Assuming the Exponential Time Hypothesis (ETH), there is no F(k)-approximation algo-

rithm for k-DomSet that runs in T(k) · no(k) time.
• Assuming the Strong Exponential Time Hypothesis (SETH), for every integer k ≥ 2, there

is no F(k)-approximation algorithm for k-DomSet that runs in T(k) · nk−ε time.
• Assuming the k-SUM Hypothesis, for every integer k ≥ 3, there is no F(k)-approximation

algorithm for k-DomSet that runs in T(k) · ndk/2e−ε time.

Previously, only constant ratio FPT-approximation algorithms were ruled out under
W[1] 6= FPT and (log1/4−ε k)-FPT-approximation algorithms were ruled out under ETH
[Chen and Lin, FOCS 2016]. Recently, the non-existence of an F(k)-FPT-approximation algo-
rithm for any function F was shown under Gap-ETH [Chalermsook et al., FOCS 2017]. Note
that, to the best of our knowledge, no running time lower bound of the form nδk for any abso-
lute constant δ > 0 was known before even for any constant factor inapproximation ratio.

Our results are obtained by establishing a connection between communication complexity
and hardness of approximation, generalizing the ideas from a recent breakthrough work of
Abboud et al. [FOCS 2017]. Specifically, we show that to prove hardness of approximation
of a certain parameterized variant of the label cover problem, it suffices to devise a specific
protocol for a communication problem that depends on which hypothesis we rely on. Each of
these communication problems turns out to be either a well studied problem or a variant of
one; this allows us to easily apply known techniques to solve them.
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1 Introduction

In the dominating set problem (DomSet), we are given an undirected graph G on n vertices
and an integer k, and the goal is to decide whether there is a subset of vertices S ⊆ V(G)
of size k such that every vertex outside S has a neighbor in S (i.e., S dominates every vertex
in G and is thus called a dominating set). Often regarded as one of the classical problems in
computational complexity, DomSet was first shown to be NP-complete in the seminal work of
Karp [Kar72]1. Thus, its optimization variant, namely the minimum dominating set, where the
goal is to find a dominating set of smallest possible size, is also NP-hard. To circumvent this
apparent intractability of the problem, the study of an approximate version was initiated. The
quality of an approximation algorithm is measured by the approximation ratio, which is the ra-
tio between the size of the solution output by an algorithm and the size of the minimum dom-
inating set. A simple greedy heuristic for the problem, which has by now become one of the
first approximation algorithms taught in undergraduate and graduate algorithm courses, was in-
tensively studied and was shown to yield a (ln n − ln ln n + Θ(1))-approximation for the prob-
lem [Joh74, Chv79, Lov75, Sri95, Sla96]. On the opposite side, a long line of works in hard-
ness of approximation [LY94, RS97, Fei98, AMS06, Mos15] culminated in the work of Dinur and
Steurer [DS14], who showed that obtaining an (1− ε) ln n-approximation for the problem is NP-
hard for every ε > 0. This essentially settles the approximability of the problem.

Besides approximation, another widely-used technique to cope with NP-hardness is parameteriza-
tion. The parameterized version of DomSet, which we will refer to simply as k-DomSet, is exactly
the same as the original decision version of the problem except that now we are not looking for
a polynomial time algorithm but rather a fixed parameter tractable (FPT) algorithm – one that runs
in time T(k) · poly(n) for some computable function T (e.g., T(k) = 2k or 22k

). Such running time
will henceforth be referred to as FPT time. Alas, even with this relaxed requirement, k-DomSet
still remains intractable: in the same work that introduced the W-hierarchy, Downey and Fel-
lows [DF95a] showed that k-DomSet is complete for the class W[2], which is generally believed to
not be contained in FPT, the class of fixed parameter tractable problems. In the ensuing years,
stronger running time lower bounds have been shown for k-DomSet under strengthened assump-
tions. Specifically, Chen et al. [CHKX06] ruled out T(k) · no(k)-time algorithm for k-DomSet assum-
ing the Exponential Time Hypothesis (ETH)2. Furthermore, Pătras, cu and Williams [PW10] proved,
for every k ≥ 2, that, under the Strong Exponential Time Hypothesis (SETH)3, not even O(nk−ε) algo-
rithm exists for k-DomSet for any ε > 0. Note that the trivial algorithm that enumerates through
every k-size subset and checks whether it forms a dominating set runs in O(nk+1) time. It is pos-
sible to speed up this running time using fast matrix multiplication [EG04, PW10]. In particular,
Pătras, cu and Williams [PW10] themselves also gave an nk+o(1)-time algorithm for every k ≥ 7,
painting an almost complete picture of the complexity of the problem.

Given the strong negative results for k-DomSet discussed in the previous paragraph, it is natural to
ask whether we can somehow incorporate the ideas from the area of approximation algorithms to
come up with a fix parameter approximation (FPT-approximation) algorithm for k-DomSet. To motivate

1To be precise, Karp showed NP-completeness of Set Cover, which is well-known to be equivalent to DomSet.
2ETH [IP01] states that no subexponential time algorithm can solve 3-CNF-SAT; see Hypothesis 2.
3SETH [IP01], a strengthening of ETH, states that, for every ε > 0, there exists k = k(ε) ∈N such that no O(2(1−ε)n)-

time algorithm can solve k-CNF-SAT; see Hypothesis 3.
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the notion of FPT-approximation algorithms, first notice that the seemingly reasonable O(log n)-
approximation given by the greedy algorithm can become unjustifiable when the optimum k is
small since it is even possible that the overhead paid is unbounded in terms of k. As a result,
FPT-approximation algorithms require the approximation ratios to be bounded only in terms of k;
specifically, for any computable function F, we say that an algorithm is a F(k)-FPT-approximation
algorithm for k-DomSet if it runs in FPT time and, on any input (G, k) such that the minimum
dominating set of G is of size at most k, it outputs a dominating set of size at most F(k) · k.

This brings us to the main question addressed in our work: Is there an F(k)-FPT-approximation al-
gorithm for k-DomSet for some computable function F? This question, which dates back to late 1990s
(see, e.g., [DFM06]), has attracted significant attention in literature [DFM06, CGG06, DFMR08,
CH10, DF13, HKK13, CHK13, BEKP15, CL16, CCK+17]. In fact, it is even listed in the seminal
textbook of Downey and Fellows [DF13] as one of the six “most infamous” open questions4 in the
area of Parameterized Complexity. While earlier attempts fell short of ruling out either F(k) that is
super constant or all FPT algorithms (see Section 1.2 for more details), the last couple of years have
seen significant progresses on the problem. In a remarkable result of Chen and Lin [CL16], it was
shown that no FPT-approximation for k-DomSet exists for any constant ratio unless W[1] = FPT.
They also proved that, assuming ETH, the inapproximability ratio can be improved to log1/4−ε k
for any constant ε > 0. Very recently, Chalermsook et al. [CCK+17] proved, under the Gap Expo-
nential Time Hypothesis (Gap-ETH)5, that no F(k)-approximation algorithm for k-DomSet exists for
any computable function F. Such non-existence of FPT-approximation algorithms is referred to in
literature as the total FPT-inapproximability of k-DomSet.

Although Chalermsook et al.’s result on the surface seems to settle the parameterized complexity
of approximating dominating set, several aspects of the result are somewhat unsatisfactory. First,
while Gap-ETH may be plausible, it is quite strong and, in a sense, does much of the work in the
proof. Specifically, Gap-ETH itself already gives the gap in hardness of approximation; once there
is such a gap, it is not hard6 to build on it and prove other inapproximability results. As an exam-
ple, in the analogous situation in NP-hardness of approximation, once one inapproximability re-
sult can be shown, others follow via relatively simple gap-preserving reductions (see, e.g., [PY91]).
On the other hand, creating a gap in the first place requires the PCP Theorem [AS98, ALM+98],
which involves several new technical ideas such as local checkability of codes and proof compo-
sition7. Hence, it is desirable to bypass Gap-ETH and prove total FPT-inapproximability under
assumptions that do not involve hardness of approximation in the first place. Drawing a paral-
lel to the theory of NP-hardness of approximation once again, it is imaginable that a success in
bypassing Gap-ETH may also reveal a “PCP-like Theorem” for parameterized complexity.

An additional reason one may wish to bypass Gap-ETH for the total FPT-inapproximability of k-
DomSet is that the latter is a statement purely about parameterized complexity, so one expects it

4Since its publication, one of the questions, the parameterized complexity of biclique, has been resolved [Lin15].
5Gap-ETH [Din16, MR16], another strengthening of ETH, states that no subexponential time algorithm can distin-

guish satisfiable 3-CNF formulae from ones that are not even (1− ε)-satisfiable for some ε > 0.
6One issue grossed over in this discussion is that of gap amplification. While Gap-ETH gives some constant gap,

Chalermsook et al. still needed to amplify the gap to arrive at total FPT-inapproximability. Fortunately, unlike the
NP-hardness regime that requires Raz’s parallel repetition theorem [Raz98], the gap amplification step in [CCK+17],
while non-trivial, only involved relatively simple combinatorial arguments. (See [CCK+17, Theorem 4.3].)

7Even in the “combinatorial proof” of the PCP Theorem [Din07], many of these tools still remain in use, specifically
in the alphabet reduction step of the proof.
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to hold under a standard parameterized complexity assumption. Given that Chen and Lin [CL16]
proved W[1]-hardness of approximating k-DomSet to within any constant factor, a concrete ques-
tion here is whether we can show W[1]-hardness of approximation for every function F(k):

Open Question 1.1. Can we base the total FPT-inapproximability of k-DomSet on W[1] 6= FPT?

Another issue not completely resolved by [CCK+17] is the running time lower bound. While the
work gives a quite strong running time lower bound that rules out any T(k) · no(k)-time F(k)-
approximation algorithm for any computable functions T and F, it is still possible that, say,
an O(n0.5k)-time algorithm can provide a very good (even constant ratio) approximation for k-
DomSet. Given the aforementioned O(nk−ε) running time lower bound for exact algorithms of
k-DomSet by Pătras, cu and Williams [PW10], it seems reasonable to ask whether such a lower
bound can also be established for approximation algorithms:

Open Question 1.2. Is it hard to approximate k-DomSet in O(nk−ε)-time?

This question has perplexed researchers, as even with the running time of, say, O(nk−0.1), no F(k)-
approximation algorithm is known for k-DomSet for any computable function F.

1.1 Our Contributions

Our contributions are twofold. Firstly, at a higher level, we prove parameterized inapproximabilty
results for k-DomSet, answering the two aforementioned open questions (and more). Secondly, at a
lower level, we demonstrate a connection between communication complexity and parameterized
inapproximability, allowing us to translate running time lower bounds for parameterized prob-
lems into parameterized hardness of approximation. This latter part of the contribution extends
ideas from a recent breakthrough of Abboud et al. [ARW17], who discovered similar connections
and used them to establish inapproximability for problems in P. In this subsection, we only focus
on the first part of our contributions. The second part will be discussed in detail in Section 2.

Parameterized Inapproximability of Dominating Set

Our first batch of results are the inapproximability results for k-DomSet under various stan-
dard assumptions in parameterized complexity and fine-grained complexity: W[1] 6= FPT, ETH,
SETH and the k-SUM Hypothesis. First, we show total inapproximability of k-DomSet under
W[1] 6= FPT. In fact, we show an even stronger8 inapproximation ratio of (log n)1/poly(k):

Theorem 1.3. Assuming W[1] 6= FPT, no FPT time algorithm can approximate k-DomSet to within a
factor of (log n)1/poly(k).

8Note that the factor of the form (log n)1/poly(k) is stronger than that of the form F(k). To see this, assume that we
have an F(k)-FPT-approximation algorithm for some computable function F. We can turn this into a (log n)1/poly(k)-
approximation algorithm by first checking which of the two ratios is smaller. If F(k) is smaller, then just run the
F(k)-FPT-approximation algorithm. Otherwise, use brute force search to solve the problem. Since the latter case can
only occur when n ≤ exp(F(k)poly(k)), we have that the running time remains FPT.
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Our result above improves upon the constant factor inapproximability result of Chen and
Lin [CL16] and resolves the question of whether we can base total FPT inapproximability of k-
DomSet on a purely parameterized complexity assumption. Furthermore, if we are willing to
assume the stronger ETH, we can even rule out all T(k) · no(k)-time algorithms:

Theorem 1.4. Assuming ETH, no T(k) · no(k)-time algorithm can approximate k-DomSet to within a
factor of (log n)1/poly(k).

Note that the running time lower bound and approximation ratio ruled out by the above theorem
are exactly the same as those of Charlermsook et al.’s result based on Gap-ETH [CCK+17]. In
other words, we successfully bypass Gap-ETH from their result completely. Prior to this, the best
known ETH-based inapproximability result for k-DomSet due to Chen and Lin [CL16] ruled out
only (log1/4+ε k)-approximation for T(k) · no(

√
k)-time algorithms.

Assuming the even stronger hypothesis, SETH, we can rule out O(nk−ε)-time approximation al-
gorithms for k-DomSet, matching the running time lower bound from [PW10] while excluding not
only exact but also approximation algorithms. We note, however, that the approximation ratio
we get in this case is not (log n)1/poly(k) anymore, but rather (log n)1/poly(k,e(ε)) for some function e,
which arises from SETH and the Sparsification Lemma [IPZ01].

Theorem 1.5. There is a function e : R+ → N such that, assuming SETH, for every integer k ≥ 2
and for every ε > 0, no O(nk−ε)-time algorithm can approximate k-DomSet to within a factor of
(log n)1/poly(k,e(ε)).

Finally, to demonstrate the flexibility of our proof techniques (which will be discussed at length
in the next section), we apply the framework to the k-SUM Hypothesis9 which yields an ndk/2e−ε

running time lower bound for approximating k-DomSet as stated below.

Theorem 1.6. Assuming the k-SUM Hypothesis, for every integer k ≥ 3 and for every ε > 0, no
O(ndk/2e−ε)-time algorithm can approximate k-DomSet to within a factor of (log n)1/poly(k).

We remark here that the k-SUM problem is known to be W[1]-hard [DF95a, ALW14] and our proof
of Theorem 1.6 indeed yields an alternative proof of W[1]-hardness of approximating k-DomSet
(Theorem 1.3). Nevertheless, we provide a different self-contained W[1]-hardness reduction di-
rectly from Clique since the ideas there are also useful for our ETH-hardness result (Theorem 1.4).

The summary of our results and those from previous works are shown in Table 1.

1.2 Comparison to Previous Works

In addition to the lower bounds previously mentioned, the parameterized inapproximability of k-
DomSet has also been investigated in several other works [DFMR08, CHK13, HKK13, BEKP15].
Specifically, Downey et al. [DFMR08] showed that obtaining an additive constant approxima-
tion for k-DomSet is W[2]-hard. On the other hand, in [HKK13, CHK13], the authors ruled

9The k-SUM Hypothesis states that, for every ε > 0, k ∈N such that k ≥ 3, no O(ndk/2e−ε)-time algorithm solves the
k-SUM problem; see Hypothesis 4.
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Summary of Previous Works and The Results in This Paper

Complexity Assumption Inapproximability Ratio Running Time Lower Bound Reference

W[1] 6= FPT
Any constant T(k) · poly(n) [CL16]

(log n)1/poly(k) T(k) · poly(n) This paper

ETH
(log k)1/4+ε T(k) · no(

√
k) [CL16]

(log n)1/poly(k) T(k) · no(k) This paper

Gap-ETH (log n)1/poly(k) T(k) · no(k) [CCK+17]

SETH
Exact O(nk−ε) [PW10]

(log n)1/poly(k,e(ε)) O(nk−ε) This paper

k-SUM Hypothesis (log n)1/poly(k) O(ndk/2e−ε) This paper

Table 1: Summary of our and previous results on k-DomSet. We only show those whose inapprox-
imability ratios are at least some constant greater than one (i.e., we exclude additive inapproxima-
bility results). Here e : R+ → N is some function, T : N → N can be any computable function
and ε can be any positive constant. The Gap-ETH has been bypassed in this paper, and prior to
this paper, the k-SUM Hypothesis had never been used in proving inapproximability of k-DomSet.

out (log k)1+ε-approximation in time exp(exp((log k)1+ε)) · poly(n) for some fixed constant ε >
0 by assuming ETH and the projection game conjecture proposed in [Mos15]. Further, Bon-
net et al. [BEKP15] ruled out (1 + ε)-FPT-approximation, for some fixed constant ε > 0, assuming
Gap-ETH10. We note that, with the exception of W[2]-hardness results [DF95a, DFMR08], our
results subsume all other aforementioned lower bounds regarding k-DomSet, both for approxima-
tion [CHK13, HKK13, BEKP15, CL16, CCK+17] and exact algorithms [CHKX06, PW10].

While our techniques will be discussed at a much greater length in the next section (in particu-
lar we compare our technique with [ARW17] in Section 2.2), we note that our general approach
is to first show inapproximability of a parameterized variant of the Label Cover problem called
MaxCover and then reduce MaxCover to k-DomSet. The first step employs the connection between
communication complexity and inapproximability of MaxCover, whereas the second step follows
directly from the reduction in [CCK+17] (which is in turn based on [Fei98]). While MaxCover was
not explicitly defined until [CCK+17], its connection to k-DomSet had been implicitly used both in
the work of Pătras, cu and Williams [PW10] and that of Chen and Lin [CL16].

From this perspective, the main difference between our work and [PW10, CL16, CCK+17] is the
source of hardness for MaxCover. Recall that Pătras, cu and Williams [PW10] ruled out only ex-
act algorithms; in this case, a relatively simple reduction gave hardness for the exact version
of MaxCover. On the other hand, both Chalermsook et al. [CCK+17] and Chen and Lin [CL16]
ruled out approximation algorithms, meaning that they needed gaps in their hardness results

10The authors assume the same statement as Gap-ETH (albeit, with imperfect completeness) but have an additional
assertion that it is implied by ETH (see Hypothesis 1 in [BEKP15]). It is not hard to see that their assumption can be
replaced by Gap-ETH.
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for MaxCover. Chalermsook et al. obtained their initial gap from their assumption (Gap-ETH),
after which they amplified it to arrive at an arbitrarily large gap for MaxCover. On the other
hand, [CL16] derived their gap from the hardness of approximating Maximum k-Intersection
shown in Lin’s earlier breakthrough work [Lin15]. Lin’s proof [Lin15] made use of certain com-
binatorial objects called threshold graphs to prove inapproximability of Maximum k-Intersection.
Unfortunately, this construction was not very flexible, in the sense that it produced MaxCover
instances with parameters that were not sufficient for proving total-FPT-inapproximability for k-
DomSet. Moreover, his technique (i.e., threshold graphs) was limited to reductions from k-Clique
and was unable to provide a tight running time lower bound under ETH. By resorting to the con-
nection between MaxCover and communication complexity, we can generate MaxCover instances
with wider ranges of parameters from much more general assumptions, allowing us to overcome
the aforementioned barriers.

Organization. In the next section, we give an overview of our lower level contributions; for read-
ers interested in the general ideas without too much notational overhead, this section covers most
of the main ideas from our paper through a proof sketch of our W[1]-hardness of approximation
result (Theorem 1.3). After that, in Section 3, we define additional notations and preliminaries
needed to formalize our proofs. Section 4 provides a definition for Product Space Problems (PSP)
and rewrites the hypotheses in these terms. Next, in Section 5, we establish a general theorem
converting communication protocols to a reduction from PSP to MaxCover. Sections 6, 7 and 8
provide communication protocols for our problems of interest: Set Disjointness, Multi-Equality and
Sum-Zero. Finally, in Section 9, we conclude with a few open questions and research directions.

2 Connecting Communication Complexity and Parameterized Inap-
proximability: An Overview

This section is devoted to presenting our connection between communication complexity and
parameterized inapproximability (which is one of our main contributions as discussed in the in-
troduction) and serves as an overview for all the proofs in this paper. As mentioned previously,
our discovery of this connection is inspired by the work of Abboud et al. [ARW17] who showed
the connection between the communication protocols and hardness of approximation for prob-
lems in P. More specifically, they showed how a Merlin-Arthur protocol for Set Disjointness with
certain parameters implies the SETH-hardness of approximation for a problem called PCP-Vectors
and used it as the starting point to prove inapproximability of other problems in P. We extend this
idea by identifying a communication problem associated with each of the complexity assumptions
(W[1] 6= FPT, ETH, SETH and k-SUM Hypothesis) and then prove a generic theorem that trans-
lates communication protocols for these problems to conditional hardness of approximation for a
parameterized variant of the Label Cover problem called MaxCover [CCK+17]. Since the hardness
of MaxCover is known to imply the hardness of k-DomSet [CCK+17] (see Section 3.3), we have
arrived at our inapproximability results for k-DomSet. As the latter part is not the contribution of
this paper, we will focus on explaining the connection between communication complexity and
the hardness of approximating MaxCover. We start by defining MaxCover:
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Definition 2.1. The input for MaxCover is a label cover instance Γ, which consists of a bipartite graph
G = (U, W; E) such that U is partitioned into U1 ∪ · · · ∪Uq and W is partitioned into W1 ∪ · · · ∪Wh.
We sometimes refer to Ui’s and Wj’s as left and right super-nodes of Γ, respectively.

A solution to MaxCover is called a labeling, which is a subset of vertices S ⊆W formed by picking a vertex
wj from each Wj (i.e., |S ∩Wj| = 1 for all j ∈ [h]). We say that a labeling S covers a left super-node Ui if
there exists a vertex ui ∈ Ui such that ui is a neighbor of every vertex in S. The goal in MaxCover is to find
a labeling that covers the maximum fraction of left super-nodes.

For concreteness, we focus on the W[1]-hardness proof (Theorem 1.3); at the end of this subsection,
we will discuss how this fits into a larger framework that encapsulates other hypotheses as well.

For the purpose of our current discussion, it suffices to think of MaxCover as being parameterized
by h, the number of right super-nodes; from this viewpoint, we would like to show that it is
W[1]-hard to approximate MaxCover to within (log n)1/poly(h) factor. For simplicity, we shall be
somewhat imprecise in our overview below, all proofs will be formalized later in the paper.

We reduce from the k-Clique problem, which is well-known to be W[1]-hard [DF95a]. The input to
k-Clique is an integer k and a graph which we will call G′ = (V ′, E′) to avoid confusion with the
label cover graph. The goal is to determine whether G′ contains a clique of size k. Recall that, to
prove the desired W[1]-hardness, it suffices to provide an FPT-reduction from any k-Clique instance
(G′, k) to approximate MaxCover instance G = (U, W; E); this is an FPT-time reduction such that
the new parameter h is bounded by a function of the original parameter k. Furthermore, since
we want a hardness of approximation result for the latter, we will also show that, when (G′, k)
is a YES instance of k-Clique, there is a labeling of G that covers all the left super-nodes. On the
other hand, when (G′, k) is a NO instance of k-Clique, we wish to show that every labeling of G
will cover at most 1/(log n)1/poly(h) fraction of the left super-nodes. If we had such a reduction,
then we would have arrived at the total FPT-inapproximability of MaxCover under W[1] 6= FPT.
But, how would we come up with such a reduction? We will do this by devising a specific kind of
protocol for a communication problem!

2.1 A Communication Problem for k-Clique

The communication problem related to k-Clique we consider is a multi-party problem where there
are h = (k

2) players, each associated with a two-element subset {i, j} of [k]. The players cannot
communicate with each other. Rather, there is a referee that they can send messages to. Each
player {i, j} is given two vertices u{i,j}i and u{i,j}j such that {u{i,j}i , u{i,j}j } forms an edge in G′. The

vertices u{i,j}i and u{i,j}j are allegedly the i-th and j-th vertices of a clique respectively. The goal is

to determine whether there is indeed a k-clique in G′ such that, for every {i, j} ⊆ [k], u{i,j}i and

u{i,j}j are the i-th and j-th vertices of the clique.

The communication protocol that we are looking for is a one-round protocol with public random-
ness and by the end of which the referee is the one who outputs the answer. Specifically, the
protocol proceeds as follows. First, the players and the referee together toss r random coins. Then,
each player sends an `-bit message to the referee. Finally, the referee decides, based on the mes-
sages received and the randomness, either to accept or reject. The protocol is said to have perfect
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completeness and soundness s if (1) when there is a desired clique, the referee always accepts and
(2) when there is no such clique, the referee accepts with probability at most s. The model de-
scribed here is referred to in the literature as the multi-party Simultaneous Message Passing (SMP)
model [Yao79, BGKL03, FOZ16]. We refer to a protocol in the SMP model as an SMP protocol.

From Communication Protocol to MaxCover. Before providing a protocol for the previously de-
scribed communication problem, let us describe how to turn the protocol into a label cover in-
stance G = (U = U1 ∪ · · · ∪Uq, W = W1 ∪ · · · ∪Wh; E).

• Let h = (k
2). Again, we associate elements in [h] with two-element subsets of [k]. Each right

super-node W{i,j} represents Player {i, j}. Each vertex in W{i,j} represents a possible input to
the player, i.e., we have one vertex a{u,v} ∈ W{i,j} for each edge {u, v} ∈ E′ in the graph G′.
Assume w.l.o.g. that i < j and u < v. This vertex a{u,v} represents player {i, j} receiving u
and v as the alleged i-th and j-th vertices of the clique respectively.

• Let q = 2r. We associate each element in [q] with an r-bit string. For each γ ∈ {0, 1}r,
the left super-node Uγ contains one node corresponding to each accepting configuration on
randomness γ; that is, for each h-tuple of `-bit strings (m{1,2}, . . . , m{k−1,k}) ∈ ({0, 1}`)h,
there is a node (m{1,2}, . . . , m{k−1,k}) in Uγ iff the referee on randomness γ and message
m{1,2}, . . . , m{k−1,k} from all the players accepts.

• The edges in E are defined as follows. Recall that each node a in a right super-node W{i,j}
corresponds to an input that each player receives in the protocol. For each γ ∈ {0, 1}r,
suppose that the message produced on this randomness by the {i, j}-th player on the input
corresponding to a is ma,γ. We connect a to every accepting configuration on randomness γ
that agrees with the message ma,γ. More specifically, for every γ ∈ {0, 1}r, a is connected to
every vertex (m{1,2}, . . . , m{k−1,k}) ∈ Uγ iff m{i,j} = ma,γ.

Consider any labeling S ⊆ W. It is not hard to see that, if we run the protocol where the {i, j}-th
player is given the edge corresponding to the unique element in S ∩W{i,j} as an input, then the
referee accepts a random string γ ∈ {0, 1}r if and only if the left super-node Uγ is covered by the
labeling S. In other words, the fraction of the left super-nodes covered by S is exactly equal to the
acceptance probability of the protocol. This means that if (G′, k) is a YES-instance of k-Clique, then
we can select S corresponding to the edges of a k-clique and every left super-node will be covered.
On the other hand, if (G′, k) is a NO-instance of k-Clique, there is no subset S that corresponds to
a valid k-clique, meaning that every labeling S covers at most s fraction of the edges. Hence, we
have indeed arrived at hardness of approximation for MaxCover. Before we move on to describe
the protocol, let us note that the running time of the reduction is poly(2r+`h, |E′|), which also gives
an upper bound on the number of vertices in the label cover graph G.

SMP Protocol. Observe first that the trivial protocol, one where every player sends the whole in-
put to the referee, does not suffice for us; this is because the message length ` is Ω(log n), meaning
that the running time of the reduction is nΩ(h) = nΩ(k2) which is not FPT time.
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Nevertheless, there still is a simple protocol that does the job. Notice that the input vertices u{i,j}i

and u{i,j}j given to Player {i, j} are already promised to form an edge. Hence, the only thing the
referee needs to check is whether each alleged vertex of the clique sent to different players are
the same; namely, he only needs to verify that, for every i ∈ [k], we have u{i,1}i = u{i,2}i = · · · =
u{i,i−1}

i = u{i,i+1}
i = · · · = u{i,k}i . In other words, he only needs to check equalities for each of

the k unknowns. The equality problem and its variants are extensively studied in communication
complexity (see, e.g., [Yao79, KN97]). In our case, the protocol can be easily derived using any
error-correcting code. Specifically, for an outcome γ ∈ {0, 1}r of the random coin tosses, every
Player {i, j} encodes each of his input (u{i,j}i and u{i,j}j ) using a binary error-correcting code and
sends only the γ-th bit of each encoded word to the referee. The referee then checks whether, for
every i ∈ [k], the received γ-th bits of the encodings of u{i,1}i , u{i,2}i , . . . , u{i,k}i are equal.

In the protocol described above, the message length ` is now only two bits (one bit per vertex),
the randomness r used is logarithmic in the block length of the code, the soundness s is one minus
the relative distance of the code. If we use a binary code with constant rate and constant relative
distance (aka good codes), then r will be simply O(log log n); this means that the running time of
the reduction is poly(n, exp(O(k2))) as desired. While the soundness in this case will just be some
constant less than one, we can amplify the soundness by repeating the protocol multiple times
independently; this increases the randomness and message length, but it is still not hard to see
that, with the right number of repetitions, all parameters lie within the desired ranges. With this,
we have completed our sketch for the proof of W[1]-hardness of approximating MaxCover.

2.2 A Framework for Parameterized Hardness of Approximation

The W[1]-hardness proof sketched above is an example of a much more general connection be-
tween communication protocol and the hardness of approximating MaxCover. To gain insight on
this, consider any function f : X1 × · · · × Xk → {0, 1}. This function naturally induces both a
communication problem and a computational problem. The communication problem for f is one
where there are k players, each player i receives an input ai ∈ Xi, and they together wish to com-
pute f (a1, . . . , ak). The computational problem for f , which we call the Product Space Problem11 of f
(abbreviated as PSP( f )), is one where the input consists of subsets A1 ⊆ X1, . . . , Ak ⊆ Xk and the
goal is to determine whether there exists (a1, . . . , ak) ∈ A1 × · · · × Ak such that f (a1, . . . , ak) = 1.
The sketch reduction to MaxCover above in fact not only applies to the specific communication
problem of k-Clique: the analogous construction is a generic way to translate any SMP protocol for
the communication problem of any function f to a reduction from PSP( f ) to MaxCover. To phrase
it somewhat differently, if we have an SMP protocol for f with certain parameters and PSP( f ) is
hard to solve, then MaxCover is hard to approximate.

This brings us to the framework we use in this paper. It consists of only two steps. First, we
rewrite the problem in the hypotheses as Product Space Problems of some family of functions F .
This gives us the conditional hardness for solving PSP(F ). Second, we devise an SMP protocol for
every function f ∈ F . Given the connection outlined in the previous paragraph, this automatically
yields the parameterized hardness of approximating MaxCover.

11The naming comes from the product structure of the domain of f .
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To gain more intuition into the framework, note that in the case of k-Clique above, the function
f ∈ F we consider is just the function f : X{1,2} × · · · × X{k,k−1} where each of X{1,2}, · · · , X{k,k−1}
is a copy of the edge set. The function f “checks” that the edges selected form a clique, i.e.,
that, for every i ∈ [k], the alleged i-th vertex of the clique specified in the {i, j}-coordinate is
equal for every j 6= i. Since this is a generalization of the equality function, we call such a class
of functions “multi-equality”. It turns out that 3-CNF-SAT can also be written as PSP of multi-
equality; each Xi contains assignments to 1/k fraction of the clauses and the function f checks that
each variable is assigned the same value across all Xi’s they appear in. A protocol essentially the
same as the one given above also works in this setting and immediately gives our ETH-hardness
result (Theorem 1.4)! Unfortunately, this does not suffice for our SETH-hardness. In that case, the
function used is the k-way set disjointness; this interpretation of SETH is well-known (see, e.g.,
[Wil05]) and is also used in [ARW17]. Lastly, the k-SUM problem is already written in PSP form
where f is just the Sum-Zero function that checks whether the sum of k specified numbers equals
to zero.

Let us note that in the actual proof, we have to be more careful about the parameters than in
the above sketch. Specifically, the reduction from MaxCover to k-DomSet from [CCK+17] incurs
a blow-up in size that is exponential in terms of the number of vertices in each left super-node
(i.e., exponential in |Uγ|). This means that we need |U1|, . . . , |Ur| = o(log n). In the context of
communication protocol, this translates to keeping the message length O(log log n) where O(·)
hides a sufficiently small constant. Nevertheless, for the protocol for k-Clique reduction (and more
generally for multi-equality), this does not pose a problem for us since the message length be-
fore repetitions is O(1) bits; we can make sure that we apply only O(log log n) repetitions to the
protocol.

For Sum-Zero, known protocols either violate the above requirement on message length [Nis94]
or use too much randomness [Vio15]. Nonetheless, a simple observation allows us to compose
Nisan’s protocol [Nis94] and Viola’s protocol [Vio15] and arrive at a protocol with the best of both
parameters. This new protocol may also be of independent interest beyond the scope of our work.

On the other hand, well-known communication complexity lower bounds on set disjoint-
ness [Raz92, KS92, BJKS04] rule out the existence of protocols with parameters we wish to have!
[ARW17] also ran into this issue; in our language, they got around this problem by allowing the
referee to receive an advice. This will also be the route we take. Even with advice, however,
devising a protocol with the desired parameters is a technically challenging issue. In particular,
until very recently, no protocol for set disjointness with O(log log n) message length (and o(n)
advice length) was known. This was overcome in the work of Rubinstein [Rub17b] who used
algebraic geometric codes to give such a protocol for the two-player case. We extend his proto-
col in a straightforward manner to the k-player case; this extension was also suggested to us by
Rubinstein [Rub17a].

A diagram illustrating the overview of our approach can be found in Figure 1.

Comparison to Abboud et al. The main result of Abboud et al. [ARW17] is their SETH-hardness
of the gap label cover problem which they refer to as the PCP-Vectors problem. In fact, PCP-
Vectors is equivalent to MaxCover when h = 2 (i.e., the number of right super nodes is two).
However, formulating the label cover problem as MaxCover instead of PCP-Vectors is beneficial
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W[1] 6= FPT
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(Section 6)

Protocol for SUMZERO
(Section 8)

Reduction from
[CCK+17]

(Appendix A)

Figure 1: Overview of Our Framework. The first step is to reformulate each hypothesis in terms
of hardness of a PSP problem, which is done in Section 4. Using the connection between SMP
protocols and MaxCover outlined earlier (and formalized in Section 5), our task is now to devise
SMP protocols with certain parameters for the corresponding communication problems; these
are taken care of in Sections 6, 7 and 8. For completeness, the final reduction from MaxCover to
k-DomSet which was shown in [CCK+17] is included in Appendix A.

for us, as our goal it to reduce to graph problems.

In their work, they merge the roles of the referee and the first player as it is necessary to achieve
the goal of proving hardness of approximation for important problems in P (which are usually
defined on one or two sets of vectors). However, by doing this the details of the proof become
a little convoluted. On the contrary, our framework with the SMP model is arguably a cleaner
framework to work with and it works well for our goal of proving hardness of approximation for
parameterized problems.

Finally, we note that our observation that the hardness of approximating MaxCover can be obtained
from any arbitrary hypothesis as long as there is an underlying product structure (as formalized
via PSPs) is a new contribution of this paper.

3 Preliminaries and Backgrounds

We use standard graph terminology. Let G be any graph. The vertex and edge sets of G are
denoted by V(G) and E(G), respectively. We say that a subset of vertices S ⊆ V(G) dominates G if
every vertex v ∈ S \V(G) has a neighbor in S, and we call S a dominating set of G. A k-dominating
set of G is a dominating set of G with cardinality k. The domination number, denoted by (DomSet
(G)) of G is the size of the smallest dominating set of G. A clique H in G is a complete subgraph of
G, and we say that H is a k-clique if H contains k vertices. The clique number of G is the size of the
largest clique in G. Sometime we abuse notation and call a subset of vertices S ⊆ V(G), a clique,
if S induces a complete subgraph in G.

12



3.1 Problem Definitions

Below are the list of problems considered in this paper.

• Dominating Set. In the k-Dominating Set problem (k-DomSet), we are given a graph G, and
the goal is to decide whether G has a dominating set of size k. In the minimization version,
called Minimum Dominating Set (DomSet, for short), the goal is to find a dominating set in G
of minimum size.

• Clique. In the k-Clique problem (k-Clique), we are given a graph G, and the goal is to decide
whether G has a clique of size k. In the maximization version, called Maximum Clique (Clique,
for short), the goal is to find a clique in G of maximum size.

• k-SAT. In the k-SAT problem (k-CNF-SAT), we are given a CNF formula Φ with at most k
literals in a clause and the goal is to decide whether Φ is satisfiable.

• k-Sum. In k-SUM, we are given k subsets S1, . . . , Sk ⊆ ([−M, M] ∩Z) of integers between
−M and M (inclusive), and the goal is to determine whether there exist x1 ∈ S1, . . . , xk ∈ Sk
such that x1 + · · · + xk = 0. That is, we wish to pick one integer from each subset so that
they sum to zero.

In addition to the above problems, we devote the next section to define and discuss a variant of
the label cover problem, namely MaxCover.

3.2 MaxCover – A Variant of Label Cover

We now define a variant of the label cover problem called MaxCover, which was introduced by
Chalermsook et al. [CCK+17] to capture the parameterized inapproximability of k-Clique and k-
DomSet. The approximation hardness of MaxCover will be the basis of our hardness results.

The input of MaxCover is a label cover instance; a label cover instance Γ consists of a bipartite graph
G = (U, W; E) such that U is partitioned into U = U1 ∪ · · · ∪U` and W is partitioned into W =
W1 ∪ · · · ∪Wh. We sometimes refer to Ui’s and Wj’s as left super-nodes and right super-nodes of Γ,
respectively. Another parameter we will be interested in is the maximum size of left super nodes,
i.e., max

i∈[`]
|Ui|; we refer to this quantity as the left alphabet size of the instance.

A solution to MaxCover is called a labeling, which is a subset of vertices S ⊆ W formed by picking
a vertex wj from each Wj (i.e., |S ∩Wj| = 1 for all j ∈ [h]). We say that a labeling S covers a left
super-node Ui if there exists a vertex ui ∈ Ui such that ui is a neighbor of every vertex in S. The
goal in MaxCover is to find a labeling that covers the maximum fraction of left super-nodes. We
abuse the notation MaxCover and also use it for the optimum as well, i.e.,

MaxCover(Γ) =
1
`

(
max

labeling S
|{i ∈ [`] | Ui is covered by S}|

)
.

The above terminologies for MaxCover are from [CCK+17]. Note, however, that our definitions
are phrased somewhat different than theirs; in our definitions, the input graphs are the so-called
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label-extended graphs whereas in their definitions, the input graphs are the constraint graphs. Nev-
ertheless, it is not hard to see that the two versions are in fact equivalent. Another difference is
that we use MaxCover to denote the fraction of left super-nodes covered by the optimal labeling
whereas [CCK+17] uses the notion for the number of covered left super-nodes. The former nota-
tion is somewhat more convenient for us as the value is between zero and one.

3.3 Inapproximability of DomSet from MaxCover

The relation between MaxCover and DomSet has been observed in literature. The k-prover system
introduced by Feige in [Fei98] can be casted as a special case of MaxCover with projection property,
and it has been shown that this proof system can be transformed into an instance of DomSet. We
note, however, that the optimal value of the DomSet instance produced by Feige’s k-prover system
has size dependent on the number of left super-nodes rather than k, the number of right super-
nodes. Recently, Chalermsook et al. [CCK+17] observed that even without the projection property,
the relation between MaxCover and DomSet still holds, and the value of the optimal solution can
be reduced to k. This is stated formally below.

Theorem 3.1 (Reduction from MaxCover to DomSet [CCK+17]). There is an algorithm that, given a
MaxCover instance Γ = (U =

⋃q
j=1 Uj, W =

⋃k
i=1 Wi, E), outputs a k-DomSet instance G such that

• If MaxCover(Γ) = 1, then DomSet(G) = k.

• If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k · k.

• |V(G)| = |W|+ ∑j∈[q] k|Uj|.

• The reduction runs in time O
(
|W|

(
∑j∈[q] k|Uj|

))
.

For the sake of self-containedness, we provide the proof of Theorem 3.1 in Appendix A.

3.4 The Hypotheses

We now list and discuss the computational complexity hypotheses on which our results are based.

3.4.1 W[1] 6= FPT Hypothesis

The first hypothesis is W[1] 6= FPT, which is one of the most popular hypotheses used in the area
of parameterized complexity since many fundamental parameterized problems turn out to be
W[1]-hard. For the interest of space, we do not give the full definition of W-hierarchy; we refer the
readers to standard textbook in the field (e.g. [DF13, CFK+15]) for the definition and discussions
regarding the hierarchy. Rather, since it is well-know that k-Clique is W[1]-complete, we will use a
more convenient formulation of W[1] 6= FPT, which simply states that k-Clique is not in FPT:

Hypothesis 1 (W[1] 6= FPT Hypothesis). For any computable function T : N → N, no algorithm can
solve k-Clique in T(k) · poly(n) time where n denotes the number of vertices in the input graph.

14



3.4.2 Exponential Time Hypothesis and Strong Exponential Time Hypothesis

Our second hypothesis is the Exponential Time Hypothesis (ETH), which can be stated as follows.

Hypothesis 2 (Exponential Time Hypothesis (ETH) [IP01, IPZ01, Tov84]). There exists δ > 0 such
that no algorithm can solve 3-CNF-SAT in O(2δn) time where n is the number of variables. Moreover, this
holds even when restricted to formulae in which each variable appears in at most three clauses.

Note that the original version of the hypothesis from [IP01] does not enforce the requirement that
each variable appears in at most three clauses. To arrive at the above formulation, we first apply
the Sparsification Lemma of [IPZ01], which implies that we can assume without loss of generality
that the number of clauses m is O(n). We then apply Tovey’s reduction [Tov84] which produces a
3-CNF instance with at most 3m + n = O(n) variables and every variable occurs in at most three
clauses. This means that the bounded occurrence restriction is also without loss of generality.

We will also use a stronger hypothesis called the Strong Exponential Time Hypothesis (SETH):

Hypothesis 3 (Strong Exponential Time Hypothesis (SETH) [IP01, IPZ01]). For every ε > 0, there
exists k = k(ε) ∈ N such that no algorithm can solve k-CNF-SAT in O(2(1−ε)n) time where n is the
number of variables. Moreover, this holds even when the number of clauses m is at most c(ε) · n where c(ε)
denotes a constant that depends only on ε.

Again, we note that, in the original form [IP01], the bound on the number of clauses is not en-
forced. However, the Sparsification Lemma [IPZ01] allows us to do so without loss of generality.

3.4.3 k-SUM Hypothesis

Our final hypothesis is the k-SUM Hypothesis, which can be stated as follows.

Hypothesis 4 (k-SUM Hypothesis [AL13]). For every integer k ≥ 3 and every ε > 0, no O(ndk/2e−ε)
time algorithm can solve k-SUM where n denotes the total number of input integers, i.e., n = |S1|+ · · ·+
|Sk|. Moreover, this holds even when M = n2k.

The above hypothesis is a natural extension of the more well-known 3-SUM Hypothesis [GO95,
Pat10], which states that 3-SUM cannot be solved in O(n2−ε) time for any ε > 0. Moreover, the
k-SUM Hypothesis is closely related to the question of whether SUBSET-SUM can be solved in
O(2(1/2−ε)n) time; if the answer to this question is negative, then k-SUM cannot be solved in
O(nk/2−ε) time for every ε > 0, k ∈ N. We remark that, if one is only willing to assume this latter
weaker lower bound of O(nk/2−ε) instead of O(ndk/2e−ε), our reduction would give an O(nk/2−ε)
running time lower bound for approximating k-DomSet. Finally, we note that the assumption
that M = n2k can be made without loss of generality since there is a randomized reduction from
the general version of the problem (where M is, say, 2n) to this version of the problem and this
reduction can be derandomized under a certain circuit complexity assumption [ALW14].
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3.5 Error-Correcting Codes

An error correcting code C over alphabet Σ is a function C : Σm → Σd where m and d are positive
integers which are referred to as the message length and block length of C respectively. Intuitively, the
function C encodes an original message of length m to an encoded message of length d. Since we
will also deal with communication protocols, for which “message length” has another meaning,
we will sometimes refer to the message length of codes as code message length whenever there
is an ambiguity. The rate of a code ρ(C) is defined as the ratio between its message length and
its block length, i.e., ρ(C) = m/d. The relative distance of a code, denoted by δ(C), is defined as

min
x 6=y∈Σm

δ(C(x), C(y)) where δ(C(x), C(y)) is the relative Hamming distance between C(x) and C(y),

i.e., the fraction of coordinates on which C(x) and C(y) disagree.

3.5.1 Good Codes

In the construction of our communication protocol in Section 7, we require our codes to have con-
stant rate and constant relative distance (referred to as good codes). It is not hard to see that random
codes, ones where each codeword C(x) is randomly selected from Σd independently from each
other, satisfy these properties. For binary codes (i.e., |Σ| = 2), one can explicitly construct such
codes using expander graphs (so called Expander Codes [SS96]); alternatively Justesen Code [Jus72]
also have the same property (see Appendix E.1.2.5 from [Gol08] for an excellent exposition).

Fact 3.2. For some absolute constant δ, ρ > 0, there exists a family of codes C := {Cm : {0, 1}m →
{0, 1}d(m)}m∈N such that for every m ∈ N the rate of Cm is at least ρ and the relative distance of Cm is at
least δ. Moreover, any codeword of Cm can be computed in time poly(m).

3.5.2 Algebraic Geometric Codes

In the construction of our communication protocol in Section 6, we require our codes to have
some special algebraic properties which have been shown to be present in algebraic geometric
codes [GS96]. First, we will introduce a couple of additional definitions.

Definition 3.3 (Systematicity). Given s ∈N, a code C : Σm → Σd is s-systematic if there exists a size-s
subset of [d], which for convenience we identify with [s], such that for every x ∈ Σs there exists w ∈ Σm in
which x = C(w) |[s].

Definition 3.4 (Degree-t Closure). Let Σ be a finite field. Given two codes C : Σm → Σd, C′ : Σm′ → Σd

and positive integer t, we say that C′ is a degree-t closure of C if, for every w1, . . . , wr ∈ Σm and P ∈
F[X1, . . . , Xr] of total degree at most t, it holds that ω := P(C(w1), . . . , C(wr)) is in the range of C′,
where ω ∈ Σd is defined coordinate-wise by the equation ωi := P(C(w1)i, . . . , C(wr)i).

Below we provide a self-contained statement of the result we rely on in Section 6; it follows from
Theorem 7 of [SAK+01], which gives an efficient construction of the algebraic geometric codes
based on [GS96]’s explicit towers of function fields.
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Theorem 3.5 ([GS96, SAK+01]). There are two polynomial functions r̂, q̂ : N → N such that for every
k ∈ N and any prime q > q̂(k), there are two code families A = {An}n∈N, B = {Bn}n∈N such that the
following holds for all n ∈N,

• An and Bn are n-systematic code with alphabet Fq2 ,

• An and Bn have block length less than n · r̂(k).

• Bn has relative distance ≥ 1/2,

• Bn is a degree-k closure of An, and,

• Any codeword in An or Bn can be computed in poly(n) time .

We remark here that variants of the above theorem have previously found applications in the
construction of special kinds of PCPs [BCG+16, BKK+16]. In these works, the theorems are also
stated in a language similar to Theorem 3.5 above.

4 Product Space Problems and Popular Hypotheses

In this section, we define a class of computational problems called Product Space Problems (PSP).
As the name suggests, a problem in this class is defined on a class of functions whose domain is a k-
ary Cartesian Product, i.e., f : X1× · · · ×Xk → {0, 1}. The input of the problem are subsets12 A1 ⊆
X1, . . . , Ak ⊆ Xk, and the goal is to determine whether there exists (a1, . . . , ak) ∈ A1×· · ·×Ak such
that f (a1, . . . , ak) = 1. The size of the problem is determined by max

i∈[k]
|Ai|. A formal definition of

PSP can be found below.

Definition 4.1 (Product Space Problem). Let m : N×N → N be any function and F := { fN,k :
{0, 1}m(N,k)×k → {0, 1}}N,k∈N be a family of Boolean functions indexed by N and k. For each k ∈ N,
the product space problem PSP(k,F ) of order N is defined as follows: given k subsets A1, . . . , Ak of
{0, 1}m(N,k) each of cardinality at most N as input, determine if there exists (a1, . . . , ak) ∈ A1 × · · · × Ak
such that fN,k(a1, . . . , ak) = 1. We use the following shorthand PSP(k,F , N) to describe PSP(k,F ) of
order N.

In all the PSPs considered in this paper, the input length m(N, k) is always at most poly(k) · log N
and fN,k is always computable in time poly(m(N, k)). In such a case, there is a trivial Nk+ok(1)-time
algorithm to solve PSP(k,F , N): enumerating all (a1, . . . , ak) ∈ A1 × · · · × Ak and check whether
fN,k(a1, . . . , ak) = 1. The rest of this section is devoted to rephrasing the hypotheses (SETH, ETH,
W[1] 6= FPT and the k-SUM Hypothesis) in terms of lower bounds for PSPs. The function families
F ’s, and running time lower bounds will depend on the hypotheses. For example, SETH will cor-
responds to set disjointness whereas W[1] 6= FPT will correspond to a generalization of equality
called “multi-equality”; the former will give an Nk(1−o(1)) running time lower bound whereas the
latter only rules out FPT time algorithms.

12Each Ai will be explicitly given as part of the input through the elements that it contains.
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4.1 k-SUM Hypothesis

To familiarize the readers with our notations, we will start with the k-SUM Hypothesis, which
is readily in the PSP form. Namely, the functions in the family are the Sum-Zero functions that
checks if the sum of k integers is zero:

Definition 4.2 (Sum-Zero). Let k, m ∈N. SUMZEROm,k : ({0, 1}m)k → {0, 1} is defined by

SUMZEROm,k(x1, . . . , xk) =

1 if ∑
i∈[k]

xi = 0,

0 otherwise,

where we think of each xi as a number in [−2m−1, 2m−1 − 1], and the addition is over Z.

The function family F SUMZERO can now be defined as follows.

Definition 4.3 (Sum-Zero Function Family). Let m : N×N→N be a function defined by m(N, k) =
2kdlog Ne. F SUMZERO is defined as {SUMZEROm(N,k),k}N∈N,k∈N .

The following proposition is immediate from the definition of the k-SUM Hypothesis.

Proposition 4.4. Assuming the k-SUM Hypothesis, for every integer k ≥ 3 and every ε > 0, no
O(Ndk/2e−ε)-time algorithm can solve PSP(k,F SUMZERO, N) for all N ∈N.

4.2 Set Disjointness and SETH

We recall the k-way disjointness function, which has been studied extensively in literature (see,
e.g., [LS09] and references therein).

Definition 4.5 (Set Disjointness). Let k, m ∈N. DISJm,k : ({0, 1}m)k → {0, 1} is defined by

DISJm,k(x1, . . . , xk) = ¬

 ∨
i∈[m]

 ∧
j∈[k]

(xj)i

 .

The function family FDISJ
c can now be defined as follows.

Definition 4.6 (Set Disjointness Function Family). For every c ∈ N, let mc : N ×N → N be a
function defined by mc(N, k) = cdk log Ne. FDISJ

c is defined as {DISJmc(N,k),k}N∈N,k∈N .

We have the following proposition which follows easily from the definition of SETH and its well-
known connection to the Orthogonal Vectors Hypothesis [Wil05].

Proposition 4.7. Let k ∈ N such that k > 1. Assuming SETH, for every ε > 0 there exists c := cε ∈ N

such that no O(Nk(1−ε))-time algorithm can solve PSP(k,FDISJ
c , N) for all N ∈N.
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Proof. Fix ε > 0 and k > 1. By SETH, there exists w := w(ε) ∈ N and c := c(ε) ∈ N such
that no algorithm can solve w-CNF-SAT in O(2(1−ε)n) time where n is the number of variables and
m ≤ cn is the number of clauses. For every w-CNF-SAT formula φ, we will build Aφ

1 , . . . , Aφ
k ⊆

{0, 1}m each of cardinality N := 2n/k such that there exists (a1, . . . , ak) ∈ Aφ
1 × · · · × Aφ

k such
that DISJm,k(a1, . . . , ak) = 1 if and only if φ is satisfiable. Thus, if there was an O(Nk(1−ε))-time
algorithm that can solve PSP(k,FDISJ

c , N) for all N ∈N, then it would violate SETH.

All that remains is to show the construction of Aφ
1 , . . . , Aφ

k from φ. Fix i ∈ [k]. For every partial
assignment σ to the variables x(i−1)∗(n/k)+1, . . . , xi∗(n/k) we build an m-bit vector aσ ∈ Aφ

i as fol-
lows: ∀j ∈ [m], we have aσ(j) = 0 is σ satisfies the jth clause, and aσ(j) = 1 otherwise (i.e., the
clause is not satisfied, or its satisfiability is indeterminate). It is easy to verify that there exists
(a1, . . . , ak) ∈ Aφ

1 × · · · × Aφ
k such that DISJm,k(a1, . . . , ak) = 1 if and only if φ is satisfiable.

We remark that we can prove a similar statement as that of Proposition 4.7 for ETH: assuming
ETH, there exists k0 such that for every k > k0 there exists c := ck0 ∈ N such that no O(No(k))-
time algorithm can solve PSP(k,FDISJ

c , N) for all N ∈ N. However, instead of associating ETH
with DISJ, we will associate with the Boolean function MULTEQ (which will be defined in the next
subsection) and its corresponding PSP. This is because, associating ETH with MULTEQ provides
a more elementary proof of Theorem 1.4 (in particular we will not need to use algebraic geometric
codes – which are essentially inevitable if we associate ETH with DISJ).

4.3 W[1] 6= FPT Hypothesis and ETH

Again, we recall the k-way Equality function which has been studied extensively in literature (see,
e.g., [AMS12, ABC09, CRR14, CMY08, LV11, PVZ12] and references therein).

Definition 4.8 (Equality). Let k, m ∈N. EQm,k : ({0, 1}m)k → {0, 1} is defined by

EQm,k(x1, . . . , xk) =
∧

i,j∈[k]

(
xi = xj

)
where xi = xj is a shorthand for

∧
p∈[m]

(xi)p = (xj)p.

Unfortunately, the PSP associated with EQ is in fact not hard: given sets A1, . . . , Ak, it is easy to
find whether they share an element by just sorting the combined list of A1 ∪ · · · ∪ Ak. Hence,
we will need a generalization of the equality function to state our hard problem. Before we
do so, let us first state an intermediate helper function, which is a variant of the usual equality
function where some of the k inputs may be designed as “null” and the function only checks
the equality over the non-null inputs. We call this function the Selective-Equality (SELEQ) func-
tion. For notational convenience, in the definition below, each of the k inputs is now viewed as
(xi, yi) ∈ {0, 1}m−1 × {⊥,>}; if yi = ⊥, then (xi, yi) represents the “null” input.

Definition 4.9 (Selective-Equality). Let k, m ∈ N. SELEQm,k : ({0, 1}m−1 × {⊥,>})k → {0, 1} is
defined by

SELEQm,k((x1, y1), . . . , (xk, yk)) =
∧

i,j∈[k]

(
(yi = ⊥) ∨ (yj = ⊥) ∨ (xi = xj)

)
.
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Next, we introduce the variant of EQ whose associated PSP is hard under W[1] 6= FPT and ETH.
In the settings of both Equality and Selective-Equality defined above, there is only one unknown
that is given in each of the k inputs a1 ∈ A1, . . . , ak ∈ Ak and the functions check whether they
are equal. The following function, which we name Multi-Equality, is the t-unknown version of
Selective-Equality. Specifically, the ith part of the input is now a tuple ((xi,1, yi,1), . . . , (xi,t, yi,t))
where xi,1, . . . , xi,t are bit strings representing the supposed values of the t unknowns while, sim-
ilar to Selective-Equality, each yi,q ∈ {⊥,>} is a symbol indicating whether (xi,q, yi,q) is the “null”
input. Below is the formal definition of MULTEQ; note that for convenience, we use (xi,q, yi,q)q∈[t]
as a shorthand for ((xi,1, yi,1), . . . , (xi,t, yi,t)), i.e., the ith part of the input.

Definition 4.10 (Multi-Equality). Let k, t ∈ N and let m ∈ N be any positive integer such that m is
divisible by t. Let m′ = m/t. MULTEQm,k,t : (({0, 1}m′−1 × {⊥,>})t)k → {0, 1} is defined by

MULTEQm,k,t((x1,q, y1,q)q∈[t], . . . , (xk,q, yk,q)q∈[t]) =
∧

q∈[t]
SELEQm′,k((x1,q, y1,q), . . . , (xk,q, yk,q)).

Next, we define the family FMULTEQ; note that in the definition below, we simply choose t(k), the
number of unknowns, to be k + (k

2) + (k
3). As we will see later, this is needed for ETH-hardness.

For W[1]-hardness, it suffices to use a smaller number of variables. However, we choose to define
t(k) in such a way so that we can conveniently use one family for both ETH and W[1]-hardness.

Definition 4.11. Let t : N→ N be defined by t(k) = k + (k
2) + (k

3). Let m : N×N→ N be defined by
m(N, k) = t(k) (1 + kdlog Ne). We define FMULTEQ as {MULTEQm(N,k),k,t(k)}N∈N,k∈N.

We next show a reduction from k-Clique to PSP(k′,FMULTEQ) where k′ = (k
2). The overall idea

of the reduction is simple. First, we associate the integers in [k′] naturally with the elements of

([k]2 ). We then create the sets
(

A{i,j}
)
{i,j}⊆[k],i 6=j

in such a way that each element of the set A{i,j}
corresponds to picking an edge between the i-th and the j-th vertices in the supposed k-clique.
Then, MULTEQ is used to check that these edges are consistent, i.e., that, for every i ∈ [k], a{i,j}
and a{i,j′} pick the same vertex to be the ith vertex in the clique for all j, j′ ∈ [k] \ {i}. This idea is
formalized in the following proposition and its proof.

Proposition 4.12. Let k ∈ N and k′ = (k
2). There exists a poly(N, k)-time reduction from any instance

(G, k) of Clique to an instance (A1, . . . , Ak′) of the PSP(k′,FMULTEQ, N′) where N denotes the number of
vertices of G and N′ = (N

2 ).

Proof. Given a Clique instance13 (G, k), the reduction proceeds as follows. For convenience, we
assume that the vertex set V(G) is [N]. Furthermore, we associate the elements of [k′] naturally
with the elements of ([k]2 ). For the sake of conciseness, we sometimes abuse notation and think of
{i, j} as an ordered pair (i, j) where i < j. For every {i, j} ∈ ([k]2 ) such that i < j, the set A{i,j}
contains one element a{u,v}

{i,j} =
(

a{u,v}
{i,j},1, . . . , a{u,v}

{i,j},t(k′)

)
for each edge {u, v} ∈ E(G) such that u < v,

13We assume without loss of generality that G does not contain any self-loop.
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where

a{u,v}
{i,j},q =


(u,>) if q = i,
(v,>) if q = j,
(0,⊥) otherwise.

Note that in the definition above, we view u, v and 0 as (m(N′,k′)/t(k′)− 1)-bit strings, where m :
N×N → N is as in Definition 4.11. Also note that each set A{i,j} has size at most (N

2 ) = N′,
meaning that (A{i,j}){i,j}⊆[k] is indeed a valid instance of PSP(k′,FMULTEQ, N′). For brevity, below
we will use f as a shorthand for MULTEQm(N′,k′),k′,t(k′).

(⇒) Suppose that (G, k) is a YES instance for Clique, i.e., there exists a k-clique {u1, . . . , uk} in G.
Assume without loss of generality that u1 < · · · < uk. We claim that,

f
((

a
{ui ,uj}
{i,j}

)
i,j∈[k],i<j

)
= 1.

To see that this is the case, observe that for every q ∈ [t(k′)] and for every {i, j} ⊆ [k]

such that i < j, we have either a
{ui ,uj}
{i,j},q = (0,⊥) or a

{ui ,uj}
{i,j},q = (uq,>). This means that,

SELEQ

((
a
{ui ,uj}
{i,j},q

)
i,j∈[k],i<j

)
= 1 for every q ∈ [t(k′)].

(⇐) Suppose that (A{i,j}){i,j}⊆[k] is a YES instance for PSP(k′,FMULTEQ, N′), i.e., there exists
a∗{i,j} ∈ A{i,j} for every {i, j} ⊆ [k] such that f ((a∗{i,j}){i,j}⊆[k]) = 1. Suppose that a∗{i,j} =

(x∗{i,j},1, y∗{i,j},1, . . . , x∗{i,j},t(k′), y∗{i,j},t(k′)). From this solution {a∗{i,j}}{i,j}⊆[k], we can recover the k-
clique as follows. For each i ∈ [k], pick an arbitrary j(i) ∈ [k] that is not equal to i. Let ui be
x∗{i,j},i. We claim that u1, . . . , uk forms a k-clique in G. To show this, it suffices to argue that, for ev-
ery distinct i, i′ ∈ [k], there is an edge between ui and ui′ in G. To see that this holds, consider a∗{i,i′}.
Since y∗{i,i′},i = y∗{i,j(i)},i = >, we have x∗{i,i′},i = x∗{i,j(i)},i = ui. Similarly, we have x∗{i,i′},i′ = ui′ . Since
a∗{i,i′} ∈ A{i,i′} and from how the set A{i,i′} is defined, we have {ui, ui′} ∈ E(G), which concludes
our proof.

Lemma 4.13. Assuming W[1] 6= FPT, for any computable function T : N → N, there is no T(k) ·
poly(N) time algorithm that can solve PSP(k,FMULTEQ, N) for every N, k ∈N.

Proof. Suppose for the sake of contradiction that, for some computable function T : N→N, there
is a T(k) · poly(N) time algorithm A that can solve PSP(k,FMULTEQ, N) for every N, k ∈ N. We
will show that this algorithm can also be used to solve k-Clique parameterized by k in FPT time.

Given an instance (G, k) of k-Clique, we first run the reduction from Proposition 4.12 to produce an
instance (A1, . . . , Ak′) of PSP(k′,FMULTEQ, N′) in poly(N, k) time where N = |V(G)|, N′ = (N

2 ) and
k′ = (k

2). We then runA on (A1, . . . , Ak′), which takes time T(k′) · poly(N′). This means that we can

also solve our k-Clique instance (G, k) in time poly(N, k) + T(k′) · poly(N′) = poly(N, k) + T
(
(k

2)
)
·

poly(N), which is FPT time. Since k-Clique is W[1]-complete, this contradicts with W[1] 6= FPT.
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Next, we will prove ETH-hardness of PSP(k,FMULTEQ). Specifically, we will reduce a 3-
CNF-SAT instance φ where each variable appears in at most three clauses to an instance of
PSP(k,FMULTEQ, N) where N = 2O(n/k) and n denotes the number of variables in φ. The over-
all idea is to partition the set of clauses into k parts of equal size and use each element in Aj to
represent a partial assignment that satisfies all the clauses in the jth partition. This indeed means
that each group has size 2O(n/k) as intended. However, choosing the unknowns are not as straight-
forward as in the reduction from k-Clique above; in particular, if we view each variable by itself
as an unknown, then we would have n unknowns, which is much more than the designated
t(k) = k + (k

2) + (k
3) unknowns! This is where we use the fact that each variable appears in at most

three clauses: we group the variables of φ together based on which partitions they appear in and
view each group as a single variable. Since each variable appears in at most three clauses, the
number of ways they can appear in the k partitions is k + (k

2) + (k
3) which is indeed equal to t(k).

The ideas are formalized below.

Proposition 4.14. Let k ∈ N. There exists a poly(N, k)-time reduction from any instance φ of 3-
CNF-SAT such that each variable appears in at most three clauses in an instance (A1, . . . , Ak) of the
PSP(k,FMULTEQ, N) where N = 23dm/ke and m denotes the number of clauses in φ.

Proof. Given a 3-CNF-SAT formula φ such that each variable appears in at most three clauses. Let
the variable set of φ be Z = {z1, . . . , zn} and the clauses of φ be C = {C1, . . . , Cm}. Then for every
k ∈N, we produce an instance (A1, . . . , Ak) of PSP(k,FMULTEQ, N) where N = 23dm/ke as follows.

First, we partition the clause set C into k parts C1, . . . , Ck each of size at most dm/ke. For each
variable zi, let Si denote {j ∈ [k] | ∃Ch ∈ Cj such that zi ∈ Ch or zi ∈ Ch}. Since every zi appears in
at most three clauses, we have Si ∈ ( [k]≤3). For each S ∈ ( [k]≤3), let ν(S) denote the set of all variables
zi’s such that Si = S (i.e. S is exactly equal to the set of all partitions that zi appears in). The
general idea of the reduction is that we will view a partial assignment to the variables in ν(S)
as an unknown for MULTEQ; let us call this unknown XS (hence there are k + (k

2) + (k
3) = t(k)

unknowns). For each j ∈ [k], Aj contains one element for each partial assignment to the variables
that appear in the clauses in Cj and that satisfies all the clauses in Cj. Such a partial assignment

specifies
(

1 + k + (k
2)
)

unknowns: all the XS such that j ∈ S. The MULTEQ function is then used
to check the consistency between the partial assignments to the variables from different Aj’s.

To formalize this intuition, we first define more notations. Let m̃ = 3kdm/ke. For every subsets
T ⊆ T′ ⊆ Z and every partial assignment α : T′ → {0, 1}, the restriction of α to T, denoted by α|T
is the function from T to {0, 1} where α|T(z) = α(z) for every z ∈ T. Furthermore, we define the
operator ext(α), which “extends” α to m̃ bits, i.e., the i-th bit of ext(α) is α(zi) if zi ∈ T and is zero
otherwise. Finally, we use var(Cj) to denote the set of all variables that appear in at least one of
the clauses from Cj, i.e., var(Cj) =

⋃
C∈Cj

var(C) where var(C) denotes {zi ∈ Z | zi ∈ C or zi ∈ C}.

Now, since our t(k) is exactly
∣∣∣( [k]≤3)

∣∣∣, we can associate each element of [t] with a subset S ∈ ( [k]≤3).
Specifically, for each partial assignment α : var(Cj) → {0, 1} such that α satisfies all the clauses in
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Cj, the set Aj contains an element aα
j = (aα

j,S)S∈( [k]≤3)
where, for every S ∈ ( [k]≤3),

aα
j,S =

{(
ext
(

α|ν(S)
)

,>
)

if j ∈ S,

(0m̃,⊥) otherwise.

Observe that ν(S) ⊆ var(Cj) for all j ∈ S. Moreover, since each Cj contains at most dm/ke clauses,
there are at most 3dm/ke variables in var(Cj). This means that Aj has size at most 23dm/ke. Hence,
(A1, . . . , Ak) is indeed a valid instance of PSP (k,FMULTEQ, N) where N = 23dm/ke. For brevity,
below we will use f as a shorthand for MULTEQm(N,k),k,t(k).

(⇒) Suppose that φ is satisfiable. Let α : C → {0, 1} be an assignment that satisfies all the clauses.

Let a∗j = a
α|var(Cj)

j ∈ Aj for every j ∈ [k]. Observe that, for every S ∈ ( [k]≤3) and every j ∈ [k], we
either have a∗j,S = (0m̃,⊥) or a∗j,S = (ext(α|ν(S)),>). This indeed implies that f (a∗1 , . . . , a∗k ) = 1.

(⇐) Suppose that there exists (aα1
1 , . . . , aαk

k ) ∈ A1 × · · · × Ak such that f (aα1
1 , . . . , aαk

k ) = 1. We
construct an assignment α : Z → {0, 1} as follows. For each i ∈ [n], pick an arbitrary j(i) ∈ [k]
such that zi ∈ var(Cj(i)) and let α(zi) = αj(i)(zi). We claim that α satisfies every clause. To see
this, consider any clause C ∈ C. Suppose that C is in the partition Cj. It is easy to check that
f (aα1

1 , . . . , aαk
k ) = 1 implies that α|var(C) = αj|var(C). Since αj is a partial assignment that satisfies C,

α must also satisfy C. In other words, α satisfies all clauses of φ.

Lemma 4.15. Assuming ETH, for any computable function T : N → N, there is no T(k) · No(k) time
algorithm that can solve PSP(k,FMULTEQ, N) for every N, k ∈N.

Proof. Let δ > 0 be the constant in the running time lower bound in ETH. Suppose for the sake
of contradiction that ETH holds but, for some function T, there is a T(k) · No(k) time algorithm A
that can solve PSP(k,FMULTEQ, N) for every N, k ∈N. Thus, there exists a sufficiently large k such
that the running time of A for solving PSP(k,FMULTEQ, N) is at most O(Nδk/10) for every N ∈N.

Given a 3-CNF formula φ such that each variable appears in at most three clauses. Let n, m denote
the number of variables and the number of clauses of φ, respectively. We first run the reduction
from Proposition 4.14 on φ with this value of k. This produces an instance (A1, . . . , Ak) of PSP
(k,FMULTEQ, N) where N = 23dm/ke. Since each variable appears in at most three clauses, we have
m ≤ 3n, meaning that N = O(29n/k). By running A on this instance, we can decide whether φ is
satisfiable in time O(Nδk/10) = O(20.9δn), contradicting ETH.

5 Communication Protocols and Reduction to Gap Label Cover

In this section, we first introduce a communication model for multiparty communication known in
literature as the Simultaneous Message Passing model. Then, we introduce a notion of “efficient”
communication protocols, and connect the existence of such protocols to a reduction from PSP to
a gap version of MaxCover.
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5.1 Efficient Protocols in Simultaneous Message Passing Model

The two-player Simultaneous Message Passing (SMP) model was introduced by Yao [Yao79] and
has been extensively studied in literature [KN97]. In the multiparty setting, the SMP model is
considered popularly with the number-on-forehead model, where each player can see the input
of all the other players but not his own [CFL83, BGKL03]. In this paper, we consider the multiparty
SMP model where the inputs are given as in the number-in-hand model (like in [FOZ16, WW15]).

Simultaneous Message Passing Model. Let f : {0, 1}m×k → {0, 1}. In the k-player simultaneous
message passing communication model, we have k players each with an input xi ∈ {0, 1}m and
a referee who is given an advice µ ∈ {0, 1}∗ (at the same time when the players are given the
input). The communication task is for the referee to determine if f (x1, . . . , xk) = 1. The players
are allowed to only send messages to the referee. In the randomized setting, we allow the players
and the referee to jointly toss some random coins before sending messages, i.e., we allow public
randomness.

Next, we introduce the notion of efficient protocols, which are in a nutshell one-round randomized
protocols where the players and the referee are in a computationally bounded setting.

Efficient Protocols. Let π be a communication protocol for a problem in the SMP model. We say
that π is a (w, r, `, s)-efficient protocol if the following holds:

• The referee receives w bits of advice.

• The protocol is one-round with public randomness, i.e., the following actions happen se-
quentially:

1. The players receive their inputs and the referee receives his advice.

2. The players and the referee jointly toss r random coins.

3. Each player on seeing the randomness (i.e. results of r coin tosses) deterministically
sends an `-bit message to the referee.

4. Based on the advice, the randomness, and the total ` · k bits sent from the players, the
referee outputs accept or reject.

• The protocol has completeness 1 and soundness s, i.e.,

– If f (x1, . . . , xk) = 1, then there exists an advice on which the referee always accepts.

– If f (x1, . . . , xk) = 0, then, on any advice, the referee accepts with probability at most s.

• The players and the referee are computationally bounded, i.e., all of them perform all their
computations in poly(m)-time.

The following proposition follows immediately from the definition of an efficient protocol and
will be very useful in later sections for gap amplification.

Proposition 5.1. Let z ∈N and π be a communication protocol for a problem in the SMP model. Suppose
π is a (w, r, `, s)-efficient protocol. Then there exists a (w, z · r, z · `, sz)-efficient protocol for the same
problem.
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Proof. The proof follows by a simple repetition argument. More precisely, we repeat steps 2-4
in the protocol z times, each time using fresh randomness, but note that the z steps of drawing
random coins can be clubbed into one step, and the decision by the referee can be reserved till
the end of the entire protocol, wherein he accepts if and only if he would accept in each of the
individual repetitions.

5.2 Lower Bounds on Gap-MaxCover

The following theorem is the main conceptual contribution of the paper: we show below that the
existence of efficient protocols can translate (exact) hardness of PSPs to hardness of approximating
MaxCover.

Theorem 5.2. Let m : N×N → N be any function. Let F := { fN,k : {0, 1}m(N,k)×k → {0, 1}}N,k∈N

be a family of Boolean functions indexed by N, k. Suppose there exists a (w, r, `, s)-efficient protocol14

for fN,k in the k-player SMP model for every N, k ∈ N. Then, there is a reduction from any instance
(A1, . . . , Ak) of PSP(k,F , N) to 2w label cover instances {Γµ}µ∈{0,1}w such that

• The running time of the reduction is 2w+r+`kpoly(m(N, k)).

• Each Γµ = (Uµ = Uµ
1 ∪ · · · ∪Uµ

q , Wµ = Wµ
1 ∪ · · · ∪Wµ

h ; Eµ) has the following parameters:

– Γµ has at most Nk right nodes, i.e., |Wµ| ≤ Nk,

– Γµ has k right super nodes, i.e., h = k,

– Γµ has 2r left super nodes, i.e., q = 2r,

– Γµ’s left alphabet size is at most 2`k, i.e., |Uµ
1 |, . . . , |Uµ

q | ≤ 2`k.

• If (A1, . . . , Ak) is a YES instance of PSP(k,F , N), then MaxCover(Γµ) = 1 for some µ ∈ {0, 1}w.

• If (A1, . . . , Ak) is a NO instance of PSP(k,F , N), then MaxCover(Γµ) ≤ s for every µ ∈ {0, 1}w.

Proof. Given a (w, r, `, s)-efficient protocol π of fN,k and an instance (A1, . . . , Ak) of PSP(k,F , N),
we will generate 2w instances of MaxCover. Specifically, for each µ ∈ {0, 1}w, we construct an
instance Γµ = (Uµ = Uµ

1 ∪ · · · ∪Uµ
q , Wµ = Wµ

1 ∪ · · · ∪Wµ
h ; Eµ) of MaxCover as follows.

• Let h = k. For each j ∈ [h], the right super-node Wµ
j contains one node for each xj ∈ Aj.

• Let q = 2r. For each random string γ ∈ {0, 1}r, the left-super node Uµ
γ contains one node

for each of the possible accepting messages from the k players, i.e., each vertex in Uµ
γ corre-

sponds to (m1, . . . , mk) ∈ ({0, 1}`)k where in the protocol π the referee, on an advice µ and a
random string γ, accepts if the messages he received from the k players are m1, . . . , mk.

• We add an edge between xj ∈ Wµ
j and (m1, . . . , mk) ∈ Uµ

γ if mj is equal to the message that j
sends on an input xj and a random string γ in the protocol π.

14w, r, ` and s can depend on N and k.
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Observe that there is a bijection between labelings of Γµ and elements of A1 × · · · × Ak.

Now consider a labeling S ⊆ Wµ of Γµ and the corresponding (x1, . . . , xk) ∈ A1 × · · · × Ak. For
each random string γ ∈ {0, 1}r, observe that the referee accepts on an input (x1, . . . , xk), an advice
µ, and a random string γ if and only if there is a vertex u ∈ Uγ (corresponding to the messages sent
by the players) that has an edge to every vertex in S. Therefore, the acceptance probability of the
protocol on advice µ is the same as the fraction of left super-nodes covered by S. The completeness
and soundness then easily follows:

Completeness. If there exists (x1, . . . , xk) ∈ A1× · · · × Ak such that fN,k(x1, . . . , xk) = 1, then there
is an advice µ ∈ {0, 1}w on which the referee always accepts for this input (x1, . . . , xk), meaning
that the corresponding labeling covers every left super-node of Γµ, i.e., MaxCover(Γµ) = 1.

Soundness. If fN,k(x1, . . . , xk) = 0 for every (x1, . . . , xk) ∈ A1 × · · · × Ak, then, for any advice µ ∈
{0, 1}w, the referee accepts with probability at most s on every input (x1, . . . , xk) ∈ A1 × · · · × Ak.
This means that, for any µ ∈ {0, 1}w, no labeling covers more than s fraction of left the super-
nodes. In other words, MaxCover(Γµ) ≤ s for all µ ∈ {0, 1}w.

For the rest of this subsection, we will use the following shorthand. Let Γ = (U = U1 ∪ · · · ∪
Uq, W = W1 ∪ · · · ∪Wh; E) be a label cover instance, and we use the shorthand Γ(N, k, r, `) to say
that the label cover instance has the following parameters:

• Γ has at most Nk right nodes, i.e., |W| ≤ Nk,

• Γ has k right super nodes, i.e., h = k,

• Γ has 2r left super nodes, i.e., q = 2r,

• Γ has left alphabet size of at most 2`k, i.e., |U1|, . . . , |Uq| ≤ 2`k.

The rest of this section is devoted to combining Theorem 5.2 with the results in Section 4 to obtain
conditional hardness for the gap-MaxCover problem, assuming that we have efficient protocols
with certain parameters. These protocols will be devised in the three subsequent sections.

Understanding the Parameters. Before we state the exact dependency of parameters, let us
first discuss some intuition behind it. First of all, if we start with an instance of PSP(k,F , N),
Theorem 5.2 will produce 2w instances of Γ(N, k, r, `). Roughly speaking, since we want the
lower bounds from PSP to translate to MaxCover, we would like the number of instances to be
No(1), meaning that we want w = o(log N). Recall that in all function families we consider
m = Θk(log N). Hence, this requirement is the same as w = ok(m). Moreover, we would like
the instance size of Γ(N, k, r, `) to also be Ok(N), meaning that the number of left vertices, 2r+`k

has to be Ok(N). Thus, it suffices to have a protocol where r + `k = ok(m).

If we additionally want the hardness to translate also to k-DomSet, the parameter dependencies
become more subtle. Specifically, applying Theorem 3.1 to the MaxCover instances results in a
blow-up of ∑j∈[q] k|Uj| = 2r · k2`k

= 2r+(log k)·2`k
. We also want this to be at most No(1), meaning

that we need r + (log k) · 2`k = o(log N) = ok(m). In other words, it suffices for us to require that
`k < (log m)/β for some constant β > 1. The exact parameter dependencies are formalized below.
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SETH

Corollary 5.3. For any c ∈ N, let FDISJ
c be the family of Boolean functions as defined in Definition 4.6.

For every δ > 0, suppose there exists a (w, r, `, s)-efficient protocol for DISJm,k in the k-player SMP model
for every k ∈ N and every m ∈ N, such that w ≤ δm and r + `k = ok(m). Then, assuming SETH, for
every ε > 0 and integer k > 1, no O(Nk(1−ε))-time algorithm can distinguish between MaxCover(Γ) = 1
and MaxCover(Γ) ≤ s for any label cover instance Γ(N, k, r, `) for all N ∈N. Moreover, if ` < (log m)/β·k
for some constant β > 1 then assuming SETH, for every ε > 0 and integer k > 1, no O(Nk(1−ε))-time

algorithm can distinguish between DomSet(G) = k and DomSet(G) ≥
( 1

s

) 1
k · k for any graph G with at

most Ok(N) vertices, for all N ∈N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is an
O(Nk(1−ε))-time algorithm A for some fixed constant ε > 0 and integer k > 1 which can distin-
guish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s for any label cover instance Γ(N, k, r, `) for
all N ∈ N. From Proposition 4.7, we have that there exists cε ∈ N such that no O(Nk(1−ε/2))-time
algorithm can solve PSP(k,FDISJ

cε
, N) for all N ∈ N. Fix δ = ε/3cε. Next, by considering Theo-

rem 5.2 for the case of (w, r, `, s)-efficient protocols, we have that there are 2w label cover instances
{Γµ}µ∈{0,1}w which can be constructed in 2δm(1+ok(1)) time. Note that 2δm(1+ok(1)) = Nkε/3(1+ok(1)) by
our choice of δ. Thus, we can run A on each Γµ and solve PSP(k,FDISJ

c , N) for all N, k ∈N in time
less than Nk(1−ε/2). This contradicts Proposition 4.7.

To prove the second part of the theorem statement, we apply the reduction described in Theo-

rem 3.1 and note that 2r = No(1) and k2`k
= 2

(log2 k)·(m(N,k))1/β

= No(1).

The proof of Theorem 1.5 follows by plugging in the parameters of the protocol described in
Corollary 6.2 to the above corollary.

ETH

Corollary 5.4. LetFMULTEQ be the family of Boolean functions as defined in Definition 4.11. Suppose there
exists a (w, r, `, s)-efficient protocol for MULTEQm,k,t in the k-player SMP model for every k, t, m ∈N such
that w + r + `k = ok(m). Then, assuming ETH, for any computable function T : N → N, there is no
T(k) · No(k) time algorithm that can distinguish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s for
any label cover instance Γ(N, k, r, `) for all N, k ∈N. Moreover, if ` < (log m)/β·k for some constant β > 1
then, assuming ETH, for any computable function T : N → N, there is no T(k) · No(k) time algorithm

that can distinguish between DomSet(G) = k and DomSet(G) ≥
( 1

s

) 1
k · k for any graph G with at most

Ok(N) vertices, for all N, k ∈N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is
an algorithm A running in time T̃(k) · No(k) for some computable function T̃ : N → N that
can distinguish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s for any label cover instance
Γ(N, k, r, `) for all N, k ∈ N. From Lemma 4.15, we have that for any computable function T :
N→N, there is no T(k) ·No(k) time algorithm that can solve PSP(k,FMULTEQ, N) for every N, k ∈
N. Next, by considering Theorem 5.2 for the case of (w, r, `, s)-efficient protocols, we have that
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there are 2w label cover instances {Γµ}µ∈{0,1}w which can be constructed in 2ok(m) time. Note that
2ok(m) = Ok(No(1)) by the choice of m(N, k) in Definition 4.11. Thus, we can run A on each Γµ and
solve PSP(k,FMULTEQ, N) for all N, k ∈N in time T̃(k) · No(k). This contradicts Lemma 4.15.

To prove the second part of the theorem statement, we apply the reduction described in Theo-

rem 3.1 and note that 2r = No(1) and k2`k
= 2

(m(N,k))1/β ·log2 k
= No(1).

The proof of Theorem 1.4 follows by plugging in the parameters of the protocol described in
Corollary 7.2 to the above corollary.

W[1] 6= FPT

Corollary 5.5. LetFMULTEQ be the family of Boolean functions as defined in Definition 4.11. Suppose there
exists a (w, r, `, s)-efficient protocol for MULTEQm,k,t in the k-player SMP model for every k, t, m ∈N such
that w + r + `k < m/tk. Then, assuming W[1] 6= FPT, for any computable function T : N→ N, there is
no T(k) · poly(N)-time algorithm that can distinguish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s
for any label cover instance Γ(N, k, r, `) for all N, k ∈ N. Moreover, if r < m/2tk and ` < (log m)/β·k for
some constant β > 1 then assuming W[1] 6= FPT, for any computable function T : N → N, there is no

T(k) · poly(N)-time algorithm that can distinguish between DomSet(G) = k and DomSet(G) ≥
( 1

s

) 1
k · k

for any graph G with at most Ok(N) vertices, for all N, k ∈N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there
is an algorithm A running in time T̃(k) · poly(N) for some computable function T̃ : N → N

that can distinguish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s for any label cover instance
Γ(N, k, r, `) for all N, k ∈N. From Lemma 4.13, we have that for any computable function T : N→
N, there is no T(k) · poly(N) time algorithm that can solve PSP(k,FMULTEQ, N) for every N, k ∈N.
Next, by considering Theorem 5.2 for the case of (w, r, `, s)-efficient protocols, we have that there
are 2w label cover instances {Γµ}µ∈{0,1}w which can be constructed in 2m(N,k)/k·t(k) ·poly(m(N, k)) time.
Note that 2m(N,k)/k·t(k) = O(N) and poly(m(N, k)) = No(1) by the choice of m(N, k) in Definition 4.11.
Thus, we can run A on each Γµ and solve PSP(k,FMULTEQ, N) for all N, k ∈ N in time less than
T̃(k) · poly(N). This contradicts Lemma 4.13.

To prove the second part of the theorem statement, we apply the reduction described in Theo-

rem 3.1 and note that 2r = O(
√

N) and k2`k
= 2

(m(N,k))1/β ·log2 k
= No(1).

The proof of Theorem 1.3 follows by plugging in the parameters of the protocol described in
Corollary 7.2 to the above corollary.

k-SUM Hypothesis

Corollary 5.6. Let F SUMZERO be the family of Boolean functions as defined in Definition 4.3. Suppose there
exists a (w, r, `, s)-efficient protocol for SUMZEROm,k in the k-player SMP model for every m, k ∈N, such
that w + r + `k = ok(m). Then assuming the k-SUM Hypothesis, for every integer k ≥ 3 and every ε > 0,
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no O(Ndk/2e−ε)-time algorithm can distinguish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s for any
label cover instance Γ(N, k, r, `) for all N ∈ N. Moreover, if ` < (log m)/β·k for some constant β > 1, then
assuming the k-SUM Hypothesis, for every ε > 0 no O(Ndk/2e−ε)-time algorithm can distinguish between

DomSet(G) = k and DomSet(G) ≥
( 1

s

) 1
k · k for any graph G with at most Ok(N) vertices for all N ∈N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is
an algorithm A running in time O(Ndk/2e−ε) for some fixed constant ε > 0 and some integer
k ≥ 3 that can distinguish between MaxCover(Γ) = 1 and MaxCover(Γ) ≤ s for any label cover
instance Γ(N, k, r, `) for all N ∈ N. From Proposition 4.4, we have that no O(Ndk/2e−ε/2)-time
algorithm can solve PSP(k,F SUMZERO, N) for all N ∈N. Next, by considering Theorem 5.2 for the
case of (w, r, `, s)-efficient protocols, we have that there are 2w label cover instances {Γµ}µ∈{0,1}w

which can be constructed in 2ok(m) time. Note that 2ok(m) = Ok(No(1)) by the choice of m(N, k) in
Definition 4.3. Thus, we can run A on each Γµ and solve PSP(k,F SUMZERO, N) for all N ∈ N in
time O(Ndk/2e−ε). This contradicts Proposition 4.4.

To prove the second part of the theorem statement, we apply the reduction described in Theo-

rem 3.1 and note that 2r = No(1) and k2`k
= 2

(m(N,k))1/β ·log2 k
= No(1).

The proof of Theorem 1.6 follows by plugging in the parameters of the protocol described in
Corollary 8.6 to the above corollary.

6 An Efficient Protocol for Set Disjointness

Set Disjointness has been extensively studied primarily in the two-player setting (i.e., k =
2). In that setting, we know that the randomized communication complexity is Ω(m) [KS92,
Raz92, BJKS04], where m is the input size of each player. Surprisingly, [AW09] showed that
the MA-complexity of two-player set disjointness is Õ(

√
m). Their protocol was indeed an

(Õ(
√

m), O(log m), Õ(
√

m), 1/2)-efficient protocol for the case when k = 2. Recently, [ARW17]
improved (in terms of the message size) the protocol to be an (m/log m, O(log m), O((log m)3), 1/2)-
efficient protocol for the case when k = 2. Both these results can be extended naturally for all
k > 1, to give an (mk/log m, Ok(log m), Ok((log m)3), 1/2)-efficient protocol. However, this does not
suffice for proving Theorem 1.5 since we need a (w, r, `, s)-efficient protocol with w = o(m) and
` = o(log m). Fortunately, Rubinstein [Rub17b] recently showed that the exact framework of the
MA-protocols as in [AW09, ARW17] but with the use of algebraic geometric codes instead of Reed
Muller or Reed Solomon codes gives the desired parameters in the two-player case. Below we
naturally extend Rubinstein’s protocol to the k-player setting. This extension was suggested to us
by Rubinstein [Rub17a].

Theorem 6.1. There is a polynomial function ˆ̀ : N×N → [1, ∞) such that for every k ∈ N and every
α ∈ N, there is a protocol for k-player DISJm,k in the SMP model which is an (m/α, log2 m, ˆ̀(k, α), 1/2)-
efficient protocol, where each player is given m bits as input, and the referee is given at most m/α bits of
advice.
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Proof. Fix k, m, α ∈N. Let q be the smallest prime greater than q̂(k) such that q > (2αr̂(k))2, where
the functions r̂ and q̂ are as defined in Theorem 3.5. Let G = Fq2 . Let T = 2αr̂(k) log2 q.

We associate [m] with [T] × [m/T] and write the input xj ∈ {0, 1}m as vectors x1
j , . . . , xT

j where
xt

j ∈ {0, 1}m/T. For every j ∈ [k], Player j computes Am/T(xt
j) for every t ∈ [T]. We denote

the block length of Am/T by d. From the systematicity guaranteed by Theorem 3.5 we have
that Am/T(xt

j) |[m/T]= xt
j. Also, notice that for all t ∈ [T], we have ∧

j∈[k]
xt

j = 0m/T if and only if

∏j∈[k] Am/T(xt
j) = 0m/T.

With the above observation in mind, we define the marginal sum Γ ∈ Gd as follows:

∀i ∈ [d], Γi = ∑
t∈[T]

∏
j∈[k]

Am/T(xt
j)i.

Again, notice that for all t ∈ [T], we have ∧
j∈[k]

xt
j = 0m/T if and only if Γi = 0 for all i ∈ [m/T]. This

follows from the following:

• For all i ∈ [m/T], we have Am/T(xt
j)i ∈ {0, 1} and thus ∏

j∈[k]
Am/T(xt

j)i ∈ {0, 1}.

• The characteristic of G being greater than (2αr̂(k)) · √q ≥ (2αr̂(k)) · log2 q = T.

More importantly, we remark that Γ is a codeword in Bm/T. This follows because Bm/T is a degree
k closure code of Am/T. To see this, in Definition 3.4, set t = k, r = k · T, and P[x1,1, . . . , xk,T] =

∑i∈[T] ∏j∈[k] xi,j.

The protocol

1. Merlin sends the referee Φ which is allegedly equal to the marginal sums codeword Γ de-
fined above.

2. All players jointly draw r ∈ [d] uniformly at random.

3. For every j ∈ {1, . . . , k}, Player j sends to the referee Am/T(xt
j)r, ∀t ∈ [T].

4. The referee accepts if and only if both of the following hold:

∀i ∈ [m/T], Φi = 0 (1)

Φr = ∑
t∈[T]

∏
j∈[k]

Am/T(xt
j)r. (2)

Analysis

Advice Length. To send the advice, Merlin only needs to send a codeword in Bm/T to the verifier.
This means that the advice length (in bits) is no more than log2 q2 times the block length, which is
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d ≤ (m/T) r̂(k) = m/2α log2 q where the equality comes from our choice of T and the inequality from
Theorem 3.5.

Message Length. Each player sends T elements of G. Hence, the message length is T log2 q2 ≤
αr̂(k)(2 log2 q)2. Recall that q can be upper bounded by a polynomial in k and α. Hence, the
message length is upper bounded entirely as a polynomial in k and α as desired.

Randomness. The number of coin tosses is log2(d) ≤ log2 (mr̂(k)/T) = log2 (m/2α log2 q) < log2 m.

Completeness. If the k sets are disjoint, Merlin can send the true Γ, and the verifier always accepts.

Soundness. If the k sets are not disjoint and Φ is actually Γ, then (1) is false and the verifier always
rejects. On the other hand, if Φ 6= Γ, then, since both are codewords of Bm/T, from Theorem 3.5
their relative distance must be at least 1/2. As a result, with probability at least 1/2, Φr 6= Γr.
Since the right hand side of (2) is simply Γr, the verifier will reject for such r. Hence, the rejection
probability is at least 1/2.

The following corollary follows immediately by applying Proposition 5.1 with z = (log2 m)/2k·`(k,α)

to the above theorem.

Corollary 6.2. There is a polynomial function ŝ : N × N → [1, ∞) such that for every k ∈
N and every α ∈ N there is a protocol for k-player DISJm,k in the SMP model which is an(

m/α, O
(
(log2 m)2) , (log2 m)/2k, (1/m)

1/ŝ(k,α)
)

-efficient protocol, where each player is given m bits as input,
and the referee is given at most m/α bits of advice.

7 An Efficient Protocol for Multi-Equality

Equality has been extensively studied, primarily in the two-player setting (i.e., k = 2). In that
setting, when public randomness is allowed, we know that the randomized communication com-
plexity is O(1) [Yao79, KN97], and the protocols can be naturally extended to the k-player SMP
model that yields a randomized communication complexity of O(k). There are many protocols
which achieve this complexity bound but for the purposes of proving Theorems 1.3 and 1.4, we
will use the protocol where the players encode their input using a fixed good binary code and
then send a jointly agreed random location of the encoded input to the referee who checks if all
the messages he received are equal. Below we extend that protocol for Multi-Equality.

Theorem 7.1. For some absolute constant δ > 0, for every t, k ∈ N and every m ∈ N such that m is
divisible by t, there is a (0, log m+O(1), 2t, 1− δ)-efficient protocol for MULTEQm,k,t in the k-player SMP
model.

Proof. Let C = {Cm : {0, 1}m → {0, 1}d(m)}m∈N be the family of good codes with rate at least ρ and
relative distance at least δ as guaranteed by Fact 3.2. Fix m, k, t ∈ N as in the theorem statement.
Let m′ := m/t.
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The protocol

1. All players jointly draw i? ∈ [d(m′)] uniformly at random.

2. If player j’s input is xj = (xj,1, yj,1, . . . , xj,t, yj,t), then he sends (C(xj,1)i∗ , yj,1, . . . , C(xj,t)i∗ , yj,t)
to the referee.

3. The referee accepts if and only if the following holds:

MULTEQ2t,k,t((C(x1,1)i∗ , y1,1, . . . , C(x1,t)i∗ , y1,t), . . . , (C(xk,1)i∗ , yk,1, . . . , C(xk,t)i∗ , yk,t)) = 1.

Analysis

Parameters of the Protocol. In the first step of the protocol all the players jointly draw i? ∈ [d(m′)]
uniformly, which requires dlog d(m′)e ≤ log m′+ log(1/ρ) ≤ log m +O(1) random bits. Then, for
every j ∈ [k], player j sends the referee 2t bits. Finally, since the code Cm′ is efficient, it is easy to
see that the players and referee run in poly(m)-time.

Completeness. If MULTEQm,k,t(x1, . . . , xk) = 1, then, for every q ∈ [t] and i, j ∈ [k], we have
(yi,q = ⊥) ∨ (yj,q = ⊥) ∨ (xi,q = xj,q) = 1. This implies that, for every q ∈ [t], i, j ∈ [k]
and i∗ ∈ [d(m)], we have (yi,q = ⊥) ∨ (yj,q = ⊥) ∨ (C(xi,q)i∗ = C(xj,q)i∗). In other words,
MULTEQ2t,k((C(x1,1)i∗ , y1,1, . . . , C(x1,t)i∗ , y1,t), . . . , (C(xk,1)i∗ , yk,1, . . . , C(xk,t)i∗ , yk,t)) = 1 for every
i∗ ∈ [d(m)], meaning that the referee always accepts.

Soundness. Suppose that MULTEQm,k,t(x1, . . . , xk) = 0. Then, there exists some q ∈
[t] and i, j ∈ [k] such that yi,q = >, yj,q = > and xi,q 6= xj,q. Since the code
C has relative distance at least δ, C(xi,q) and C(xj,q) must differ on at least δ fraction
of the coordinates. When the randomly selected i∗ is such a coordinate, we have that
MULTEQ2t,k((C(x1,1)i∗ , y1,1, . . . , C(x1,t)i∗ , y1,t), . . . , (C(xk,1)i∗ , yk,1, . . . , C(xk,t)i∗ , yk,t)) = 0, i.e., the
referee rejects. Hence, the referee rejects with probability at least δ.

The following corollary follows immediately by applying Proposition 5.1 to the above theorem
with z = log2 m/4kt.

Corollary 7.2. For some absolute constant δ > 0, for every t, k ∈ N and every m ∈ N such that m is
divisible by t, there is a (0, O((log m)2), (log2 m)/2k, (1/m)

1/O(kt))-efficient protocol for MULTEQm,k,t in the
k-player SMP model.

8 An Efficient Protocol for Sum-Zero

The Sum-Zero problem has been studied in the SMP model and efficient protocols with the follow-
ing parameters have been obtained.

Theorem 8.1 ([Nis94]). For every k ∈ N and m ∈ N there is a (0, O(log(m + log k)), O(log(m +
log k)), 1/2)-efficient protocol for SUMZEROm,k in the k-player SMP model.
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The above protocol is based on a simple (yet powerful) idea of picking a small random prime
p and checking if the numbers sum to zero modulo p. Viola put forth a protocol with better
parameters than the above protocol (i.e., smaller message length) using specialized hash functions
and obtained the following:

Theorem 8.2 ([Vio15]). For every k ∈N and m ∈N there is a (0, O(m), O(log k), 1/2)-efficient protocol
for SUMZEROm,k in the k-player SMP model.

In order to prove Theorem 1.6, we need a protocol with o(m) randomness and o(log m) message
length, and both the protocols described above do not meet these conditions. We show below that
the above two results can be composed to get a protocol with O(log k) communication complexity
and Ok(log m) randomness. In fact, we will use a slightly different protocol from [Vio15]: namely,
the protocol for the Sum-Zero(Zp) problem as stated below.

Definition 8.3 (Sum-Zero(Zp) Problem). Let k, m, p ∈ N. Zp-SUMZEROm,k : ({0, 1}m)k → {0, 1} is
defined by

Zp-SUMZEROm,k(x1, . . . , xk) =

{
1 if ∑i∈[k] xi = 0 mod p,
0 otherwise,

where we think of each xi as a number in [−2m−1, 2m−1 − 1].

Theorem 8.4 ([Vio15]). For every p, k ∈ N and m ∈ N, there is a (0, O(log p), O(log k), 1/2)-efficient
protocol15 for Zp-SUMZEROm,k in the k-player SMP model.

Below is our theorem which essentially combines Theorem 8.1 and Theorem 8.4.

Theorem 8.5. For every k ∈ N and m ∈ N there is a (0, O(log(m + log k)), O(log k), 3/4)-efficient
protocol for SUMZEROm,k in the k-player SMP model.

Proof. Let π∗ be the protocol of Viola from Theorem 8.4.

The protocol

Let t = 2(m− 1 + log k). Let p1, . . . , pt be the first t primes.

1. All players jointly draw i? ∈ [t] uniformly at random.

2. The players and the referee run π? where each player now has input yi = xi mod pi? , and
the referee accepts if and only if ∑i∈[k] yi = 0 mod pi? .

Notice that the above protocol is still an efficient protocol as the first step of the above protocol can
be combined with the draw of random coins in the first step of π? to form a single step in which
the players and the referee jointly draw random coins from the public randomness.

15As written in [Vio15], the protocol has the following steps. First, the players send some messages to the referee.
Then the players and the referee jointly draw some random coins, and finally the players send some more messages to
the referee. However, we note that the first and second steps of the protocol can be swapped in [Vio15] to obtain an
efficient protocol as the drawing of randomness do not depend on the messages sent by the players to the referee.
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Analysis

Randomness. In the first step of the protocol all the players jointly draw i? ∈ [t] uniformly, which
requires dlog2 te random bits. Then, the players draw O(log pi?) additional random coins for π?.
The bound on the randomness follows by noting that pi? ≤ pt = O(t log t) .

Message Length. For every j ∈ [k], Player j sends the referee O(log k) bits as per π?.

Completeness. If the k numbers sum to zero, then for any p ∈ N, they sum to zero mod p and
thus the referee always accepts.

Soundness. If the k numbers do not sum to zero, then let s(π?) be the soundness of π? and let S
be the subset of the first t primes defined as follows:

S =

pi

∣∣∣∣∣i ∈ [t], ∑
j∈[k]

xj = 0 mod pi


It is clear that the referee rejects with probability at least (1− |S|/t) · (1 − s(π?)). Therefore, it
suffices to show that |S| < t/2 as s(π?) ≤ 1/2. Let x := ∑j∈[k] xj. We have that x ∈ [−k · 2m−1, k ·

2m−1] and that, for every p ∈ S, p divides x. Since x 6= 0, we know that |x| ≥ ∏
p∈S

p ≥
|S|
∏
i=1

pi ≥ 2|S|.

Since |x| ≤ k · 2m−1, we have that |S| < m− 1 + log k = t, and the proof follows.

The following corollary follows immediately by applying Proposition 5.1 with z = log2 m/2k·c log k

to the above theorem, where c is some constant such that the message length of the protocol in
Theorem 8.5 is at most c log k.

Corollary 8.6. For every k, m ∈ N there is a
(

0, O((log(m + log k))2), (log2 m)/2k, (1/m)
1/O(k log k)

)
-

efficient protocol for SUMZEROm,k in the k-player SMP model.

9 Conclusion and Open Questions

We showed the parameterized inapproximability results for k-DomSet under W[1] 6= FPT, ETH,
SETH and k-SUM Hypothesis, which almost resolve the complexity status of approximating pa-
rameterized k-DomSet. Although we showed the W[1]-hardness of the problem, the exact version
of k-DomSet is W[2]-complete. Thus, a remaining question is whether approximating k-DomSet is
W[2]-hard:

Open Question 9.1. Can we base total inapproximability of k-DomSet on W[2] 6= FPT?

We note that even 1.01-approximation of k-DomSet is not known to be W[2]-hard.

Another direction is to look beyond k-DomSet and try to prove inapproximability of other param-
eterized problems. Since k-DomSet is W[2]-complete, there are already known reductions from it
to other W[2]-hard problems. Some of these reductions such as those for k-Set Cover, k-Hitting Set,
k-DomSet on tournaments [DF95b] and k-Contiguous Set [CNW16] are gap-preserving reductions
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(in the sense of [CCK+17, Definition 3.4]) and total inapproximability under W[1] 6= FPT trans-
late directly to those problems. In this sense, one may wish to go beyond W[2]-hard problems
and prove hardness of approximation for problems in W[1]. One of the most well-studied W[1]-
complete problems is k-Clique which we saw earlier in our proof; in its optimization variant, one
wishes to find a clique of maximum size in the graph. Note that in this case a k-approximation is
trivial since we can just output one vertex. It was shown in [CCK+17] that no o(k)-approximation
is possible in FPT time assuming Gap-ETH. Since this rules out all non-trivial approximation algo-
rithms, such a non-existential result is also referred to as the total FPT-inapproximability of k-Clique.
Hence, the question is whether one can bypass Gap-ETH for this result as well:

Open Question 9.2. Can we base total inapproximability of k-Clique on W[1] 6= FPT or ETH?

Again, we note that the current state-of-the-art results do not even rule out 1.01-FPT-
approximation algorithms for k-Clique under W[1] 6= FPT or ETH.

Another direction is to look beyond parameterized complexity questions. As mentioned earlier,
Abboud et al. [ARW17] used the hardness of approximating of PCP-Vectors as a starting point
of their inapproximability results of problems in P. Since MaxCover is equivalent to PCP-Vectors
when the number of right super-nodes is two, it may be possible that MaxCover for larger number
of right super-nodes can also be used to prove hardness of problems in P as well. At the moment,
however, we do not have any natural candidate in this direction (see Appendix B for further
discussions).
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A A Reduction From MaxCover to DomSet

In this section, we provide the reduction from MaxCover to DomSet (i.e. Theorem 3.1). The reduc-
tion and its proof presented here are quoted almost directly from Chalermsook et al. [CCK+17]
except with appropriate notational adjustments. We include it here only for the sake of self-
containedness.

To ease the presentation, we will present the reduction in terms of a different variant of the label
cover problem called MinLabel. The input to MinLabel is the same as that of MaxCover, i.e., it is a
label cover instance Γ = (U =

⋃
i∈[q] Ui, W =

⋃
j∈[k] Wj; E) as defined in Subsection 3.2.

However, the solution and the objective of the problem will be different from MaxCover. Specifi-
cally, a solution of MinLabel is called a multi-labeling, which is simply a subset of vertices Ŝ ⊆ W.
We say that a multi-labeling Ŝ covers a left super-node Ui if there exists a vertex ui ∈ Ui that has a
neighbor in Ŝ∩Wj for every j ∈ [k]. The goal in MinLabel is to find a minimum-size multi-labeling
that covers all the left super-nodes Ui’s. Again, we overload the notation and use MinLabel to also
denote the optimum, i.e.,

MinLabel(Γ) = min
multi-labeling Ŝ

that covers every Ui

|Ŝ|.

The following lemma demonstrates relations between MaxCover and MinLabel on the same input
label cover instance. These relations in turns allow us to deduce inapproximability results of
MinLabel from that of MaxCover.

Proposition A.1. Let Γ be any label cover instance with k right super-nodes. Then, we have

• If MaxCover(Γ) = 1, then MinLabel(Γ) = k.

• If MaxCover(Γ) ≤ ε for some 0 < ε, then MinLabel(Γ) ≥ (1/ε)1/k · k.

40



Before proceeding to prove Proposition A.1, let us state the desired reduction from label cover to
DomSet (Theorem 3.1) in terms of MinLabel instead of MaxCover:

Lemma A.2 (Reduction from MinLabel to DomSet [CCK+17, Theorem 5.4])). There is an algorithm
that, given a label cover instance Γ = (U =

⋃q
j=1 Uj, W =

⋃k
i=1 Wi, E), outputs a k-DomSet instance G

such that

• MinLabel(Γ) = DomSet(G).

• |V(G)| = |W|+ ∑i∈[q] k|Uq|.

• The reduction runs in time O
(
|W|

(
∑i∈[q] k|Uq|

))
.

It is obvious that Proposition A.1 and Lemma A.2 together imply Theorem 3.1. The rest of this
section is devoted to proving Proposition A.1 and Lemma A.2. Their proofs can be found in
Subsections A.1 and A.2, respectively.

A.1 From MaxCover to MinLabel: Proof of Proposition A.1

In this section, we prove Proposition A.1. The proof presented here is due to [CCK+17] with slight
changes to match our notations.

Proof of Proposition A.1. (1) Suppose MaxCover(Γ) = 1. Then there exists a labeling S ⊆ W that
covers every left super-node Ui. Hence, S is also a multi-labeling that covers every left super-
node, which implies that MinLabel(Γ) = k.

(2) We prove by contrapositive. Assume that MinLabel(Γ) < (1/ε)1/kk. Then there exists a multi-
labeling Ŝ ⊆ W of size less than (1/ε)1/kk that covers every left super-node. Observe that
we can construct a feasible S′ solution to MaxCover by choosing Ŝ ∩ U and randomly and
independently choosing one node from Ŝ ∩Wj, for each of the right super-node Wj.

Thus, the expected number of left super-nodes covered by S′ is

ES′
[
|{i ∈ [q] : S′ covers Ui}|

]
= ∑

i∈[q]
∏
j∈[k]
|Ŝ ∩Wj|−1

(By AM-GM inequality) ≥ ∑
i∈[q]

1
k ∑

j∈[k]
|Ŝ ∩Wj|

−k

> q ·
(

1
k
·
((

1
ε

)1/k

k

))−k

= q · ε

Hence, there is a labeling that covers > εq left super-nodes, i.e., MaxCover(Γ) > ε.
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A.2 From MinLabel to DomSet: Proof of Lemma A.2

We devote this subsection to show a reduction from MinLabel to DomSet as stated in Lemma A.2.

Proof of Lemma A.2. We show the reduction from MinLabel to the bipartite version of DomSet,
where the input graph G = (A, B; E) is bipartite, and we are asked to find a subset of (left) ver-
tices of A that dominates all the (right) vertices in B. This variant of DomSet is known as Red-Blue
DomSet, which is equivalent to the Set Cover problem. One can transform the bipartite version of
DomSet into the general case just by forming a clique on A. It is not hard to see that the optimum
remains unchanged.

We apply the reduction from [CCK+17], which is in turn taken from [Fei98] (and [LY94]) with
small adjustments. Our construction requires the hypercube partition system.

Hypercube Partition System. The (κ, ρ)-hypercube partition system consists of the universeM
and a collection of subset {Px,y}x∈[ρ],y∈[κ] where

M = [κ]ρ and Px,y = {z ∈ M : zx = y}

The following are properties that can be observed from the hypercube partition system:

• Partition Cover: For each row x ∈ [ρ], Px = (Px,1, . . . , Px,κ) is a partition of M. Thus,⋃
y∈[κ] Px,y =M and Px,y ∩ Px,y′ = ∅ for y 6= y′.

That is, ones can cover the universeM by picking all κ subsets from some row x ∈ [κ].

• Robust Property: For any y∗1 , . . . , y∗ρ ∈ [κ],
⋃

x∈[α],y∈[κ]\{y∗x} Px,y 6=M.

That is, the only way to cover the universeM is to pick all the κ subsets from the same row.
Otherwise, even if we include κ− 1 subsets from every row x ∈ [ρ], it is not possible to cover
the universeM.

• Size: The number of elements in the partition is κρ.

The Reduction. Now we present our reduction. Let Γ = (U =
⋃q

j=1 Uj, W =
⋃k

i=1 Wi; E′) be an
instance of MinLabel. We will construct a bipartite graph G = (A, B; E) of Red-Blue DomSet from
Γ. The vertices of A are taken from the right vertices of Γ, i.e., A = W.

For each super-node Ui, we create the (k, |Ui|)-hypercube partition system (Mi, {Pi
x,y}x∈[|Uq|],y∈[k])

(i.e., ρ = |Uq| and κ = k); then we take the elements ofMj as left vertices of G.

We name vertices in Ui by ui
1, ui

2, . . . , ui
|Ui | for i ∈ [q]. For each j ∈ k and each wj ∈Wj, we join wj to

every vertex z ∈ Pi
x,j if {ui

x, wj} is an edge in Γ. More precisely, the bipartite graph G = (A, B; E)
is defined such that

A := W =
k⋃
j

Wj, B :=
q⋃

i=1

Mi, E := {{wj, z} : i ∈ [q], j ∈ [k], x ∈ [|Ui|], wj ∈Wj, z ∈ Pi
x,j, {ui

x, wj} ∈ E′}.
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Size of The Construction. It is clear from that the numbers of left and right vertices in our
construction is as follows.

The Number of Left veritces of G = |W|
The Number of Right vertices of G = ∑

i∈[q]
k|Ui |

Analysis. Clearly, the size translation satisfies the lemma statement. For the claim MinLabel(Γ) =
DomSet(G), observe that any solution S to the MinLabel instance corresponds to a solution to the
Red-Blue DomSet instance. We claim that S is feasible to the MinLabel instance if and only if it is
feasible to the DomSet instance. This will prove the claim and thus imply the lemma.

First, suppose S is feasible to MinLabel. Then, for every Ui, there is a vertex ui
x ∈ Ui that has an

edge to some vertex wj
y ∈Wj ∩ S, for all j ∈ [k]. This means that we have an edge from wj

y to every
vertex z ∈ Pi

x,y. It then follows by the Partition Cover property of the hypercube partition system
that S dominates every vertex in the universeMi. Consequently, we conclude that S dominates
B =

⋃
i∈[q]Mi.

Conversely, suppose S is feasible to DomSet. Then S has an edge to every vertex in the universe
Mi ⊆ B. We know by construction and the Robustness Property of the hypercube partition system
that, for some x ∈ [|Ui|], S contains vertices w1 ∈ S ∩W1, w2 ∈ S ∩W2, . . . , wk ∈ S ∩Wk, which
correspond to the subsets Pi

x,y’s in the partition system, and that w1, w2, . . . , wk are incident to the
vertex ui

x ∈ Ui. This means that S covers the left super-node Ui. Consequently, we conclude that
S is a feasible multi-labeling, thus completing the proof.

B Connection to Fine-Grained Complexity

In this section, we will demonstrate the conditional hardness of problems in P by basing them on
the conditional hardness of PSP. First, we define the problem in P of interest to this section.

Definition B.1 (k-linear form inner product). Let k, m ∈ N. Given x1, . . . , xk ∈ Rm, we define the
inner product of these k vectors as follows:

〈x1, . . . , xk〉 = ∑
i∈[m]

∏
j∈[k]

xi(j),

where xi(j) denotes the jth coordinate of the vector xi.

Definition B.2 (k-chromatic Maximum Inner Product). Let k ∈N. Given k collections A1, A2, . . . , Ak
each of N vectors in {0, 1}D, where D = No(1), and an integer s, the k-chromatic Maximum Inner Product
(MIP) problem is to determine if there exists ai ∈ Ai for all i ∈ [k] such that 〈a1, . . . , ak〉 ≥ s.

We continue to use the shorthand Γ(N, k, r, `) introduced in Section 5.2. Moreover, while using the
shorthand Γ(N, k, r, `), we will assume that for all i ∈ [h], |Wi| ≤ N. We define Unique MaxCover to

43



be the MaxCover problem with the following additional structure: for every labeling S ⊆ W (see
Section 3.2 to recall the definition of a labeling) and any left super-node Ui, there is at most one
node in Ui which is a neighbor to all the nodes in S. We remark that the reduction in Theorem 5.2
already produces instances of Unique MaxCover. This follows from the proof of Theorem 5.2 by
noting that on every random string, each player sends a message to the referee in a deterministic
way. Finally, we have the following connection between unique MaxCover and MIP.

Theorem B.3. Let N, k, r, ` ∈ N. There is a reduction from any Unique MaxCover instance Γ(N, k, r, `)
to k-chromatic MIP instance (A1, . . . , Ak, s) such that

• For all i ∈ [k], |Ai| ≤ N, s = 2r, and D ≤ 2r+`k.

• The running time of the reduction is O(Nk · 2r+`k).

• For any integer s∗, there exists ai ∈ Ai for all i ∈ [k] such that 〈a1, . . . , ak〉 ≥ s∗ if and only if
MaxCover(Γ) ≥ s∗/2r.

Proof. For every i ∈ [k], we associate each Ai with the right super-node Wi. Each node in Wi
corresponds to a vector in Ai. Given a node w in Wi, the corresponding vector a ∈ Ai is constructed
as follows. Each coordinate of a corresponds to a left node. Let the jth coordinate of a correspond
to a node u ∈ U. The jth coordinate of a is 1 if there is an edge between u and w in the graph
G of the instance Γ; otherwise, the jth coordinate of a is 0. It is easy to see that |Ai| ≤ N and
D ≤ 2r+`k, and the running time of the reduction is O(Nk · 2r+`k). It is also easy to see that if
MaxCover(Γ) ≥ s∗/2r then the vectors ai corresponding to the nodes in the labeling resulting in the
maximum cover, have inner product at least s∗.

We will now show that for any integer s∗, if there exists ai ∈ Ai for all i ∈ [k] such that 〈a1, . . . , ak〉 ≥
s∗ then MaxCover(Γ) ≥ s∗/2r. Fix an integer s∗. Suppose that there exists ai ∈ Ai for all i ∈ [k] such
that 〈a1, . . . , ak〉 ≥ s∗. The k-tuple (a1, . . . , ak) corresponds to a labeling S of unique MaxCover.
For each coordinate such that all the ai = 1 on that coordinate, we note that there is a left node
(corresponding to the coordinate) which is a common neighbor of all the nodes in the labeling.
Moreover, since in the unique MaxCover we can have at most one node in each left super-node
which is a common neighbor of the nodes in the labeling, we have that:

MaxCover(Γ) ≥ 1
2r · |{i ∈ [2r] | Ui is covered by S}| = 〈a1, . . . , ak〉 ≥ s∗.

The results for hardness of approximation for problems in P is obtained by simply fixing the value
of k in the above theorem to some universal constant (such as k = 2). For example, by fixing
k = 2 and applying the above reduction to Corollary 5.3, we recover the main result of [ARW17]
on bichromatic MIP. This is not surprising as under SETH, our framework is just a generalization
of the distributed PCP framework of [ARW17].

Furthermore, we demonstrate the flexibility of our framework by fixing k = 3 and applying the
above reduction to Corollary 5.6, to establish a hardness of approximation result of trichromatic
MIP under the 3-SUM Hypothesis as stated below. We note here that the running time lower bound
is only N2−o(1), which is likely not tight since the lower bound from SETH is N3−o(1).
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Theorem B.4. Assuming the 3-SUM Hypothesis, for every ε > 0, no O(N2−ε) time algorithm can, given
three collections A, B, and C each of N vectors in {0, 1}D, where D = No(1), and an integer s, distinguish
between the following two cases:

Completeness. There exists a ∈ A, b ∈ B, c ∈ C such that 〈a, b, c〉 ≥ s.

Soundness. For every a ∈ A, b ∈ B, c ∈ C, 〈a, b, c〉 ≤ s/2(log N)1−o(1)
.

Proof. We apply Proposition 5.1 with z = m/(log2 m)2 and k = 3 to Theorem 8.5, to obtain a(
0, O(m/log m), O(m/(log m)2), (1/2)m1−o(1)

)
-efficient protocol for SUMZEROm,3 in the 3-player SMP

model. By plugging in the parameters of the above protocol to Corollary 5.6, we obtain that assum-
ing the 3-SUM hypothesis, for every ε > 0, no O(N2−ε)-time algorithm can distinguish between

MaxCover(Γ) = 1 and MaxCover(Γ) ≤ (1/2)(log N)1−o(1)
for any label cover instance Γ(N, 3, r, `) for

all N ∈N. The proof of the theorem concludes by applying Theorem B.3 to the above hardness of
MaxCover (Note that Theorem 5.2 provides a reduction from PSP(k,F , N) to UniqueMaxCover).
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