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Abstract

The quantified derandomization problem of a circuit class C with a function
B : N → N is the following: Given an input circuit C ∈ C over n bits, deter-
ministically distinguish between the case that C accepts all but B(n) of its inputs
and the case that C rejects all but B(n) of its inputs. This generalizes the standard
derandomization problem, which is the special case where B(n) = 2n/3.

A major goal of this framework is to serve as a stepping-stone on the way
to standard derandomization. Specifically, we want to construct reductions of the
standard derandomization problem of a class C to the quantified derandomization
problem (e.g., using strong error-reduction), and to then construct an algorithm
that solves the latter.

In this note we show that if both the reduction (from standard derandom-
ization to quantified derandomization) and the algorithm (for quantified deran-
domization) are constructed using two specific natural techniques that only rely on
“black-box” access to the input circuit C, then a naive combination of the two algo-
rithms does not suffice to yield a standard derandomization of C. That is, when
using these two techniques, the parameter value B(n) to which standard deran-
domization is reduced is necessarily larger than the value B(n) that the quantified
derandomization algorithm can handle.

1 Introduction

For a circuit class C and a function B : N→N, the (C, B)-quantified derandomization
problem is the following: Given a circuit C ∈ C over n input bits, deterministically
distinguish between the case that C accepts all but at most B(n) of its inputs and the
case that C rejects all but at most B(n) of its inputs. This problem was introduced
by Goldreich and Wigderson [GW14], and constitutes a generalization of the classical
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problem of standard derandomization, which is obtained by setting B(n) = 2n/3. We
call B(n) the number of exceptional inputs for the circuit C.

A major goal in the study of quantified derandomization is to use this framework
in order to solve the standard derandomization problem. Specifically, fix a circuit class
C, and assume that we constructed an algorithm that reduces the standard derandom-
ization problem of C to quantified derandomization of C with Bred exceptional inputs
(e.g., such an algorithm can get as input a circuit C ∈ C over m bits with at most
2m/3 exceptional inputs, and construct a circuit C′ ∈ C over n = poly(m) bits with
at most Bred(n) exceptional inputs, such that the most frequent output of C′ equals
the most frequent output of C). Also assume that we constructed an algorithm for
quantified derandomization of C that can handle Balg exceptional inputs. Then, if
Balg(n) ≥ Bred(n), we can combine both algorithms in the straightforward way to
obtain an algorithm for standard derandomization of C.

In this note we show a limitation of two specific natural techniques in quantified deran-
domization. One technique is used to reduce standard derandomization to quantified
derandomization, and is based on error-reduction using seeded extractors that are
computable by circuits in C. The other technique is used to construct quantified de-
randomization algorithms, and is based on pseudorandom distributions of restrictions
that simplify every circuit C ∈ C, with high probability. The two foregoing techniques,
which are described in detail in Section 2, only rely on “black-box” access to the input
circuit C; that is, the algorithm (either for the reduction or for quantified derandom-
ization) does not use the explicit description of C, beyond the guarantee that C ∈ C
and the ability to evaluate C at arbitrarily-chosen inputs.

Informally, our main theorem asserts that the straightforward combination of the
two foregoing techniques cannot suffice to yield a standard derandomization algo-
rithm. This is the case since the function Bred for quantified derandomization to which
standard derandomization is reduced is necessarily larger than the function Balg that
the quantified derandomization algorithm can handle. That is,

Theorem 1 (a limitation of two “black-box” techniques in quantified derandomization; in-
formal). Assume that there exists a reduction of standard derandomization of a class C to
quantified derandomization of C with Bred exceptional inputs that is based on seeded extrac-
tors that are computable in C. Also assume that there exists a quantified derandomization
algorithm for C with Balg exceptional inputs that is based on a distribution over restrictions
that simplifies every C ∈ C to a constant, with high probability. Then, Balg(n) < Bred(n).

This result is particularly meaningful for derandomization of AC0. In this setting,
we know of a reduction to quantified derandomization with Bred exceptional inputs
and of a quantified derandomization algorithm with Balg inputs such that Bred and
Balg are very close (i.e., both are of the form 2n/poly log(n); see [Tel17a, Thms. 1 &
3]). However, the algorithms for both these results rely on the aforementioned “black-
box” techniques, and therefore Theorem 1 implies that one cannot hope to obtain a
standard derandomization algorithm for AC0 by merely improving the parameters
of the underlying technical results. Nevertheless, for other circuit classes, results in
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quantified derandomization were obtained using different techniques, which are not
“black-box”; in particular, such results were obtained for various subclasses of AC0[⊕]
and for sparse T C0 circuits (see Section 2 for more details).

Organization. In Section 2 we describe the two “black-box” techniques that are the
focus of the current text. In Section 3 we prove the main theorem (i.e., Theorem 1).
In Section 4 we discuss several relaxations of the hypotheses of the main theorem
(i.e., several natural modifications of the two “black-box” techniques) that do not seem
sufficient to bypass the conclusion of the theorem.

2 Two black-box techniques for quantified derandomization

Throughout the text, whenever we refer to a class C of circuits, we will always think
of C as a set of circuits, rather than a collection of such sets. That is, we consider
C =

⋃
n∈N Cn, where Cn is some fixed set of circuits over n input bits. This is done

merely for simplicity of presentation, and all results extend to the standard setting
(i.e., when considering circuit families) in a natural way.

2.1 Error-reduction using a C-computable sampler

The first technique that we discuss is used to reduce standard derandomization of
a circuit class C to quantified derandomization of C. This technique is based on
randomness-efficient error reduction, using seeded extractors (equivalently, averaging
samplers; see, e.g., [Vad12, Cor. 6.24], [Gol08, Apdx. D.4.1.2]) that are computable
by C-circuits. That is,

Definition 2 (C-computable sampler). For Bred : N → N, we say that a function Samp :
{0, 1}n × {0, 1}s → {0, 1}m is a Boolean sampler with Bred bad inputs if it satisfies the
following: For every T ⊆ {0, 1}m, for all but at most Bred of the inputs x ∈ {0, 1}n it
holds that Pri∈{0,1}s [Samp(x, i) ∈ T] ∈ |T|/2m ± 1/10. 1 For a circuit class C, we say
that Samp is computable in C if for every fixed i ∈ {0, 1}s, each output bit of the function
Samp(i)(x) = Samp(x, i) is computable by a circuit in C.

Samplers that are computable in a circuit class C can be used for error-reduction
of C-circuits. Specifically, assume that for every m ∈ N we can efficiently construct
circuits for the output bits of a C-computable sampler Samp : {0, 1}n × {0, 1}s →
{0, 1}m with Bred bad inputs. Then, given a circuit C ∈ C over m input bits, we
can efficiently construct a circuit C′ : {0, 1}n → {0, 1} that gets input x ∈ {0, 1}n,
computes the 2s outputs of the sampler on x (each output is an m-bit string), evaluates
C on each of these outputs, and outputs the majority of the evaluations of C; that is,
C′(x) = MAJ

(
{C(Samp(x, i))}i∈{0,1}s

)
. If C accepts (resp., rejects) all but at most 2m/3

of its inputs, then C′ accepts (resp., rejects) all but at most Bred(n) of its inputs.

1Indeed, for simplicity, we fixed the accuracy parameter of the sampler to 1/10.
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We typically want to minimize the overhead of C′ with respect to the original cir-
cuit C, since we reduce the standard derandomization problem of C to quantified
derandomization of C′. Hence, typical settings of the parameters are n = poly(m) and
s = O(log(n)), such that the size of C′ is polynomial in the size of C. Also observe that
the majority function in the definition of C′ can be replaced by an “approximate major-
ity” (i.e., a function that distinguishes between strings with relative Hamming weight
≤ 0.49 and strings with relative Hamming weight ≥ 0.51, as in [Ajt83, Vio09]). For
further discussion of the effect of the “overhead” when constructing C′, see Section 3.

Observe that the algorithm above (that constructs the circuit C′) uses the same
sampler Samp, regardless of the input circuit C ∈ C. Thus, in order to evaluate C′ at
any point, the algorithm does not need the explicit description of C, but rather only
“black-box” access to C (i.e., the ability to evaluate C at arbitrarily-chosen points).

This approach has been used to reduce standard derandomization to quantified
derandomization in the contexts of AC0 circuits (see [Tel17a, Thm. 1], which uses the
extractor of [CL16]), of AC0[⊕] circuits (see [GW14, Thm. 1.4] and [Tel17a, Thm. 5]),
and of T C0 circuits (see [Tel17b, Thm. 1.2]). A somewhat different approach for error-
reduction was taken in [GW14, Thm. 3.4 in the full version]; their approach is also
insufficient to bypass the limitation in our main theorem, but is interesting in its own
right (see further discussion in Section 4.2).

2.2 A quantified derandomization algorithm that uses pseudorandom re-
strictions

The second technique that we discuss can be used to construct a quantified deran-
domization algorithm. This technique relies on the existence of a distribution Sn over
subsets of {0, 1}n (i.e., over “restrictions”) such that for any C ∈ C over n input bits,
with high probability over S ∼ Sn it holds that C�S is constant. That is,

Definition 3 (simplifier sets). For Balg : N→N, we say that a distribution Sn over subsets
of {0, 1}n is a distribution of simpli�er sets of size more than Balg for C if the following
conditions hold:

1. Every subset S in the support of Sn is of size |S| > Balg(n).

2. For every C ∈ C over n input bits, PrS∼Sn [C�S is constant] > 1/2.

To see why simplifier sets are useful for quantified derandomization, let C ∈ C
be a circuit over n bits with Balg(n) exceptional inputs. Then, with probability more
than 1/2 over S ∼ Sn it holds that C�S is a constant function; and since Balg(n) < |S|,
whenever C�S is a constant function, this constant equals the most frequent output
of C. Now, assume that we can efficiently sample a succint representation of a set
S ∼ Sn using only a few (say, O(log(n))) random bits, and that this representation
allows to efficiently find some input x ∈ S. In this case, we can solve the quantified
derandomization problem as follows: We enumerate the choices of S ∼ Sn, evaluate
C on an (arbitrary) input in each choice of S, and output the majority value among
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the evaluations of C. Note that the only information about C that the algorithm in
this approach uses, other than the fact that C ∈ C, is the ability to evaluate C on
arbitrarily-chosen inputs.

This (“black-box”) approach has been used to construct quantified derandomiza-
tion algorithms for AC0 (see [GW14, Thm. 1.3] and [Tel17a, Thm. 3]) and for T C0 cir-
cuits of depth two (see [Tel17b, Thm. 7.2]). Nevertheless, for other circuit classes, pseu-
dorandom restriction algorithms that are “non-black-box” have been constructed and used
for quantified derandomization; these classes include various subclasses of AC0[⊕]
(see [Tel17a, Thm. 6]) and sparse T C0 circuits (see [Tel17b, Thm. 1]).

3 Proof of the main theorem

Towards formally stating and proving Theorem 1, let us now carefully track how the
combination of the two techniques from Section 2 works. We are interested in standard
derandomization of a circuit class C. That is, we are given a circuit C ∈ C over m input
bits, and want to distinguish between the case that C accepts all but at most 2m/3 of
its inputs and the case that C rejects all but at most 2m/3 of its inputs.

To do so, we fix some sampler Samp : {0, 1}n × {0, 1}s → {0, 1}m with Bred bad
inputs, and consider the “error-reduced” circuit C′ : {0, 1}n → {0, 1} such that C′(x) =
MAJ

(
{C(Samp(x, i))}i∈{0,1}s

)
. 2 We think of the circuit C′ as belonging to some new

circuit class, which we denote by Ĉ; for example, we can define Ĉ to be the class of
circuits of the form C′′(x) = Φ

(
{C0(Samp(x, i)}i∈{0,1}s

)
, where C0 ∈ C and Φ is one

of several “simple composition” functions (the majority function being one of them).
Indeed, it might be the case that Ĉ ⊆ C, if C is closed to the overhead involved in
constructing circuits such as C′, but we do not assume so. However, we assume that
Samp is computable in Ĉ, which holds under reasonable definitions of Ĉ. 3

Now we are interested in quantified derandomization of the class Ĉ with Bred

bad inputs, using simplifier sets. However, the following lemma asserts that in any
distribution of simplifier sets of size more than Balg for a class that can compute
Samp (and in particular for Ĉ), the size of the sets satisfies Balg(n) < Bred(n). When
reading the lemma’s statement, we encourage the reader to think of a sampler Samp :
{0, 1}n × {0, 1}s → {0, 1}m such that s = O(log(n)) and m = nΩ(1).

Lemma 4 (simplifier sets and samplers). Let Ĉ be a circuit class, and let Bred : N→ N and
Balg : N → N. For n ∈ N and s, m ∈ N such that 2s+3m/4 ≤ 2m/5, assume that there
exists a Boolean sampler Samp : {0, 1}n × {0, 1}s → {0, 1}m with Bred bad inputs that is
computable in Ĉ. Also assume that there exists a distribution Sn of simplifier sets of size more
than Balg for Ĉ. Then Balg(n) < Bred(n).

2Recall that the majority function can also be replaced by “approximate majority”.
3For example, if Ĉ is indeed defined as all circuits of the form Φ

(
{C0(Samp(x, i)}i∈{0,1}s

)
, where in

particular C0 and Φ can be any pair of dictator functions, then Samp is computable in Ĉ.
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Proof. Assuming that a distribution Sn as in the hypothesis exists, we will construct
a set T ⊆ {0, 1}m such that for more than Balg(n) inputs x ∈ {0, 1}n, the set T is
“over-sampled” by the sampler Samp with input x; that is, for every such x it holds
that Pri∈{0,1}s [Samp(x, i) ∈ T] > |T|/2m + 1/10. Thus, the number Bred(n) of “bad”
inputs for the sampler is larger than Balg(n).

In order to construct T ⊆ {0, 1}m, we will first fix a single set S ⊆ {0, 1}n of size
|S| > Balg(n) of inputs for the sampler; these inputs will later on be the ones that will
cause the sampler to “over-sample” T. To do so, for any fixed choice of S ∼ Sn, let us
call an index i ∈ {0, 1}s bad under S if at least a quarter of the output bits of Samp(i)�S
are constant functions (i.e., when restricting the function Samp(i)(x) = Samp(x, i) to
the set S, at least m/4 of the m output bits of Samp(i)�S become constant functions).
For any i ∈ {0, 1}s, recall that each output bit of Samp(i) can be computed by a Ĉ-
circuit, and therefore (since Sn simplifies Ĉ) the expected number of output bits of
Samp(i) that become constant under S ∼ Sn is more than half. Thus, there exists some
set S ∼ Sn such that at least one third of the indices i ∈ {0, 1}s are bad under S. 4 We
now fix any such set S, and note that |S| > Balg(n) (since Sn is of size more than Balg).

Let us now construct T ⊆ {0, 1}m that is “over-sampled” by the sampler when
given any input x ∈ S. To do so, let B ⊆ {0, 1}s be the set of bad indices under S. For
any i ∈ B, let Φi ⊆ [m] be the set of output bits of Samp(i)�S that are constant; that is,
Φi =

{
j ∈ [m] : ∃σj ∈ {0, 1}, (Samp(i)�S)j ≡ σj

}
and |Φi| ≥ m/4 (since i is bad under

S). Also, let Qi be the subcube of {0, 1}m corresponding to the non-constant output
bits of Samp(i)�S; that is, Qi =

{
z ∈ {0, 1}m : ∀j ∈ Φi, zj = (Samp(i)�S)j

}
. We define T

to be the union of the subcubes Qi for all i ∈ B; that is, T =
⋃

i∈B Qi.
Note that |T| < 2m/5, since for every i ∈ B it holds that |Qi| ≤ 23m/4 (and since we

assumed that 2s · 23m/4 < 2m/5). On the other hand, for every x ∈ S, the probability
over i ∈ {0, 1}s that Samp(x, i) ∈ T is lower bounded by the probability that i ∈ B,
which is at least 1/3. Therefore, for any x ∈ S it holds that Pri∈{0,1}s [Samp(x, i) ∈ T] ≥
1/3 > |T|/2m + 1/10.

We mention that lemmas similar to Lemma 4 were proved for the specific setting of
AC0 circuits (i.e., when C = AC0) in [Vio05, Thm. 6.4] and [GVW15, Thm. 5.4], using
a different proof strategy. 5 Relying on Lemma 4 and on the discussion that preceded
the lemma’s statement, we can now formally state our main theorem:

Theorem 5 (a limitation of two “black-box” techniques in quantified derandomization; The-
orem 1, restated). Let Bred : N → N and Balg : N → N. For n, s, m ∈ N such that

4For any i ∈ {0, 1}s, denote by αi(S) the random variable that is the number of output bits of Samp(i)�S
that are constant functions. Then, we have that PrS∼Sn [αi(S) ≥ m/4] ≥ 1/3 (otherwise ES∼Sn [αi(S)] <
1
3 ·m + 2

3 · (m/4) = m/2). Thus, the expected number of bad indices under S ∼ Sn is at least 2s/3.
5Instead of relying directly on the existence of simplifier sets, they relied on the low average sensitivity

of AC0 circuits; this property follows from a stronger notion of simplifier sets, which in particular are
subcubes (i.e., it follows from Håstad’s switching lemma; see [LMN93, Bop97, Tal17]). In comparison,
our proof is simpler, and also applies to classes of functions with high sensitivity that have distributions
of simplifier sets (recall that the simplifier sets in Definition 3 are not necessarily subcubes).
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2s+3m/4 ≤ 2m/5, let C : {0, 1}m → {0, 1}, and let Samp : {0, 1}n × {0, 1}s → {0, 1}m

be a Boolean sampler with Bred bad inputs. Let Ĉ be any circuit class that can compute the
function C′(x) = MAJ

(
{C(Samp(x, i))}i∈{0,1}s

)
and such that Samp is computable in Ĉ.

Then, for any distribution Sn of simplifier sets of size more than Balg for Ĉ it holds that
Balg(n) < Bred(n).

We stress that Theorem 5 holds regardless of the class C for which we wanted to
solve the standard derandomization problem. This is the case since the limitation in
Theorem 5 only relies on the hypothesis that Samp is computable in Ĉ, and not on the
fact that the circuit C′ (which depends on C) is computable in Ĉ.

Indeed, we did not use the fact that Ĉ contains a circuit (i.e., C′) that computes
a function that is “more complicated” than (the output bits of) Samp. Intuitively, we
expect that “complicated” circuits will require simplifier sets that are smaller than
simplifier sets for “simpler” circuits (e.g., Håstad’s switching lemma [Hås87] yields
simplifier sets of size 2Ω(n/ logd−1(n)) for circuits of depth d). In particular, in typical
situations we expect that simplifier sets for Ĉ will need to be even smaller than simpli-
fier sets for Samp. In such situations, the upper bound on Balg(n) in Theorem 5 is not
tight; that is, in such situations Bred and Balg are far apart by significantly more than
just a single bit (as is asserted in the theorem).

4 Strengthenings of the main theorem: Natural relaxations
that do not suffice to bypass the limitation in Theorem 5

Following Theorem 5, the main question we are faced with is which relaxations of the
hypotheses are sufficient to avoid the conclusion of the theorem, and thus to bypass the
limitation arising from it. We now mention a few natural relaxations that do not seem
sufficient to bypass this limitation.

4.1 Simplifier sets that simplify C-circuits to non-constant functions

In Definition 3 we assumed that for every C ∈ C, with high probability over S ∼ Sn
it holds that C�S is constant. We now note that if we assume that C�S simplifies to a
“simple” (non-constant) function, then we can still obtain a corresponding quantified
derandomization algorithm (with a mild loss in the parameters); but that in some
natural settings, this relaxation does not suffice to bypass the limitations in Theorem 5.

Let us first see why this relaxation still suffices for quantified derandomization.
Fix a circuit C : {0, 1}n → {0, 1} with at most Balg(n) exceptional inputs. Assume that
there exists a distribution Sn over subsets S ⊆ {0, 1}n of size at least 3 · Balg(n) such
that PrS∼Sn [C�S ∈ CSimple] > 1/2, where CSimple is some class of “simple” functions.
Further assume that an algorithm can efficiently sample a succint representation of S ∼
Sn using few random bits, and that given a representation of S such that C�S ∈ CSimple,
the algorithm can efficiently approximate the acceptance probability of C�S, up to error
1/10. Note that for a strict majority of the choices of S ∼ Sn, the acceptance probability
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of C�S is either at most 1/3 or at least 2/3 (since |S| > 3 · Balg(n) for any S ∼ Sn), and
we can distinguish between the two cases by estimating the acceptance probability
of C�S ∈ CSimple. Thus, a quantified derandomization algorithm can enumerate the
choices of S ∼ Sn, decide for each choice whether the acceptance probability of C�S is
at most 1/3 or at least 2/3, and rule according to a majority vote. 6

Nevertheless, in some cases, this relaxation does not seem sufficient to bypass the
limitation in Theorem 5. This is since for some natural classes CSimple of “very simple”
functions, a random restriction simplifies every C ∈ CSimple to a constant function,
with high probability; for example, this holds for constant-depth circuits [Hås87] and
for linear threshold functions [KW16]. In these cases, the existence of Sn as above
implies the existence of S′n that meets the stronger definition (i.e., Definition 3), with a
quantitative loss in the parameter Balg that depends on CSimple (i.e., the loss is induced
by the random restriction that turns functions in CSimple to constant functions).

4.2 A sampler that only samples C-events

Our requirement from the sampler in Definition 2 was information-theoretic: For any
set T ⊆ {0, 1}m, we required that for all but Bred inputs, the sampler will hit T with
an approximately correct probability (i.e., Pri∈{0,1}s [Samp(x, i) ∈ T] ∈ |T|/2m ± 1/10).
However, since we only want to use the sampler to approximate the acceptance prob-
ability of a circuit C ∈ C, one may consider a relaxation in wish we only require that
the sampler “appropriately samples” sets T that are decidable by C circuits. That is,

Definition 6 (sampler for C-events). We say that a function SampC : {0, 1}n × {0, 1}s →
{0, 1}m is a Boolean sampler for C-events with Bred bad inputs if it satisfies the following:
For every T ⊆ {0, 1}m such that T = C−1(1) for some C ∈ C, for all but at most Bred of the
inputs x ∈ {0, 1}n it holds that Pri∈{0,1}s [Samp(x, i) ∈ T] ∈ |T|/2m ± 1/10.

The point that we wish to make is that in many natural settings, the relaxation
in Definition 6 does not suffice to bypass the limitation in Theorem 5. This is the
case because the “over-sampled” set T ⊆ {0, 1}m that was constructed in the proof of
Theorem 5 can be decided by a circuit that is a DNF of size at most 2s. 7 (Using the
notation of the proof, T is the union of |B| ≤ 2s subcubes Q1, ..., Q|B| ⊆ {0, 1}m.) In
particular, if the initial circuit C belongs to a class C that contains DNFs of size 2s, then
the relaxation in Definition 6 does not suffice to bypass the limitation in Theorem 5.

Detour. The notion of a sampler for C-events might be of independent interest. The
main point is that potentially, in some settings, the relaxation embodied in the def-
inition of samplers for C-events might allow to construct such samplers with better

6The algorithm may not be able to correctly decide whether the acceptance probability of C�S is at
most 1/3 or at least 2/3 when C�S 6∈ CSimple, but the latter event only happens in the minority of the
choices S ∼ Sn.

7Recall that a typical setting of the parameters is s = O(log(n)), and therefore the size of such a DNF
is 2s = poly(n).
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parameters than the parameters of information-theoretic samplers (i.e., as in Defini-
tion 2). For an example of a construction of a sampler forAC0-events, see [GW14, Thm.
3.4 in the full version]: They constructed an AC0-computable sampler for AC0-events
with 2n/poly log(n) bad inputs and m = nΩ(1).

We note, however, that this construction from [GW14] was later superseded by a
construction of an AC0-computable sampler in the information-theoretic sense (i.e., as
in Definition 2) that also has 2n/poly log(n) bad inputs, and that has m = n/poly log(n);
see [CL16, Thms. 1.5 & 1.7]. Moreover, this construction, coupled with Lemma 4
and with Håstad’s switching lemma [Hås87], implies that AC0-computable samplers
for AC0-events cannot have significantly better parameters than AC0-computable sam-
plers in the information-theoretic sense (i.e., as in Definition 2). This is the case since
Håstad’s switching lemma yields a distribution of simplifier sets of size 2Ω(n/ logd−2(n))

for depth-d circuits, and thus Lemma 4 implies that any sampler computable by depth-
d circuits (even if it is a sampler only for DNF-events) must have at least 2Ω(n/ logd−2(n))

bad inputs; 8 and the number of bad inputs in the information-theoretic construc-
tions in [CL16] is already 2Ω(n/ logd−10(n)) (or 2n/ logΩ(d)(n), if one wishes to maximize the
output length m), which nearly matches this lower-bound.

4.3 Samplers that are not efficiently computable

To combine the two techniques from Section 2 into a single algorithm, we need an effi-
cient uniform algorithm that can compute Samp(x, i) for arbitrarily-chosen x ∈ {0, 1}n

and i ∈ {0, 1}s; that is, we need the sampler not only to be computable in the class C,
but also to be efficiently computable by a uniform algorithm.

We note, however, that the limitation in Theorem 5 holds even if we use a sampler
that is not necessarily efficiently computable by a uniform algorithm. This is the case
since the argument in Theorem 5 did not rely on such a hypothesis regarding the
sampler, and thus holds also for “non-uniform” samplers.
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