
Circuit Lower Bounds for Nondeterministic Quasi-Polytime:
An Easy Witness Lemma for NP and NQP

Cody D. Murray
MIT

R. Ryan Williams∗

MIT

Abstract

We prove that if every problem in NP has nk-size circuits for a fixed constant k, then for every NP-
verifier and every yes-instance x of length n for that verifier, the verifier’s search space has an nO(k3)-size
witness circuit: a witness for x that can be encoded with a circuit of only nO(k3) size. An analogous
statement is proved for nondeterministic quasi-polynomial time, i.e., NQP = NTIME[nlogO(1) n]. This
significantly extends the Easy Witness Lemma of Impagliazzo, Kabanets, and Wigderson [JCSS’02]
which only held for larger nondeterministic classes such as NEXP.

As a consequence, the connections between circuit-analysis algorithms and circuit lower bounds
can be considerably sharpened: algorithms for approximately counting satisfying assignments to given
circuits which improve over exhaustive search can imply circuit lower bounds for functions in NQP, or
even NP. To illustrate, applying known algorithms for satisfiability of ACC◦THR circuits [R. Williams,
STOC 2014] we conclude that for every fixed k, NQP does not have nlogk n-size ACC◦THR circuits.

∗Supported by NSF CAREER award CCF-1552651.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 188 (2017)

1 Introduction

Proving non-uniform circuit lower bounds for functions in nondeterministic complexity classes such as
NP or NEXP = NTIME[2nO(1)

] is a well-known grand challenge. A natural approach is to assume that a
given complexity class has small circuits, and to derive unlikely consequences, eventually absurd enough to
derive a contradiction with other results. Over the years, interesting consequences have been derived from
assuming (for example) NP has O(n)-size circuits, or NEXP has polynomial-size circuits; for a sample,
see [KL82, Kan82, Lip94, KW98, IKW02, FSW09, Din15, Wil16].

One of the most striking results in this line of work is the Easy Witness Lemma of Impagliazzo, Kabanets,
and Wigderson [IKW02]. Informally, they show that if NEXP has small circuits, then every yes-instance of
every NEXP problem has a highly compressible “easy” witness:

Lemma 1.1 (Easy Witness Lemma [IKW02] (Informal)) If NTIME[2n] has circuits of size s(n), then there
is a k such that every yes-instance for every verifier for every problem in NTIME[2n] has a witness string w
(of O(2n) length) which can be encoded by a circuit of size at most s(s(nk)k)k. In particular, viewing w as
the truth table of a function fw : {0,1}n+O(1)→{0,1}, this fw has s(s(nk)k)k-size circuits.

For s(n) being polynomial or quasipolynomial (i.e., s(n) = 2logO(1) n), Lemma 1.1 says that small circuits
for NEXP imply small circuits encoding solutions to NEXP problems. Informally, we say the consequence
of Lemma 1.1 means NTIME[2n] has small witness circuits. Note an NEXP search problem has 22poly(n)

possible solutions; having small witness circuits means that the existence of some witness in this huge
space implies an “easy” witness with a short description, in a much smaller search space. Furthemore, if
NTIME[2n] has poly-size witness circuits, then NEXP= EXP, by enumerating over all 2poly(n) small circuits
and checking if any encode a witness for the given verifier. Thus Lemma 1.1 shows NEXP ⊂ P/poly
implies NEXP = EXP. Impagliazzo, Kabanets, and Wigderson found many other applications, including a
surprising equivalence between NEXP 6⊂ P/poly and non-trivial derandomizations.

Application: NEXP Lower Bounds. The second author [Wil11, Wil14] used the Easy Witness Lemma
(along with other ideas) to prove NEXP does not have nlogO(1) n-size ACC circuits (with the polylog factors
tightened in [CP16]), and NEXP does not have nlogO(1) n-size ACC ◦THR circuits (ACC composed with
a layer of linear threshold gates at the bottom). These results were proved by designing faster-than-2n

algorithms for the SAT problem for ACC circuits, and using the algorithms in an involved argument with the
Easy Witness Lemma which (eventually) applies the nondeterministic time hierarchy [Wil10]. In general,
improving the time complexity of CIRCUIT SAT (or even estimating the fraction of satisfying assignments
to within a small constant, which is widely believed to be in P) for a “typical” complexity class C (such as
ACC, TC0, NC1, NC, P/poly) from 2n · sO(1) time to (for example) 2n · sO(1)/npoly(logn) time would imply
NEXP does not have C -circuits of nlogn size [Wil10, SW13, BSV14]. This algorithmic approach to proving
circuit lower bounds via weak circuit satisfiability algorithms has led to some optimism that lower bounds
like NEXP 6⊂ P/poly may be approachable, and provable.

The Quest for Lower-Complexity Functions. While this program for proving lower bounds has seen
some successes, a major deficiency is that it can only yield circuit lower bounds for functions in NTIME[2nε

]

and higher, for ε > 0. As NEXP is presumably an enormous class, results such as NEXP 6⊂ ACC are far less
interesting than proving that a more explicit function, such as SAT, is not in ACC. A key bottleneck in the
arguments is the Easy Witness Lemma: Lemma 1.1 is crucial in the connection between SAT algorithms

1

and lower bounds, but its proof only works for nondeterministic exponential-time classes.1 Given an Easy
Witness Lemma for NP (i.e., if NP has nk-size circuits, then every yes-instance of every NP problem has
n f (k)-size witness circuits), or for NQP = NTIME[nlogO(1) n], circuit lower bounds for these smaller classes
could be obtained as well, provided that the necessary (weak) CIRCUIT SAT algorithms are fast enough.2

Prior work tried to avoid this problem by working with the larger classes QPNP [Wil11] or PNP [FSW09],
but these are less natural and less obviously weaker (it is open whether NEXP= PNP!).

1.1 Easy Witness Lemmas for NP and NQP and Applications.

In this paper, we prove an easy witness lemma that works for both NP and NQP. These results readily imply
(using the existing framework) stronger circuit lower bounds: for example, NQP does not have ACC◦THR
circuits of nlogk n size, for all fixed k.

Lemma 1.2 (Easy Witnesses for NP) There is a c≥ 1 such that for all k ≥ 1, if NP⊂ SIZE[nk] then every
L ∈ NP has witness circuits of size at most nck3

.

Lemma 1.3 (Easy Witnesses for NQP) There is a c≥ 1 such that for all k≥ 1, if NQP⊂ SIZE[2logk n] then

every L ∈ NQP has witness circuits of size 2c logk3
n.

The full formal statement encapsulating both lemmas can be found in Lemma 4.1. Our primary motivation
for proving these lemmas is to improve the known generic connections between circuit-SAT algorithms and
circuit lower bounds. We only need the underlying class C of Boolean circuits to satisfy a few simple
properties. Informally, a circuit class C is evaluatable if given a description of a C from C and an assignment
x to some of the inputs, it is easy to evaluate C(x); C is closed under negation if it is easy to compute the
negation of a given circuit from C ; C is closed under conjunctions if it is easy to take a collection of C -
circuits, each with n inputs, and output one n-input C -circuit equivalent to the conjunction of the given
circuits. Classes with all three properties are called typical. (Definitions are in the Preliminaries.)

For any circuit class C , let C -SAT be the satisfiability problem for circuits from C . We state our results
in terms of a presumably much easier problem, the GAP C UNSAT problem, in which we are promised that
the given C -circuit on n inputs is either unsatisfiable, or has at least 2n/4 satisfying assignments. Unlike
C -SAT, the GAP C UNSAT problem is trivially solvable with randomness. (In prior work [SW13] the
problem is called DERANDOMIZE-C ; another version is called CAPP [IKW02].) We say a nondeterministic
algorithm solves GAP C UNSAT if:

• it outputs yes, no, or don’t know on every computation path,
• if its input circuit has at least 2n/4 satisfying assignments, then it outputs no on some path,
• if its input circuit is unsatisfiable, then it outputs yes on some path, and
• for every input circuit, it never outputs yes on some path and no on another path.

It is widely believed that GAP C UNSAT is solvable in deterministic polynomial time; this would follow from
the existence of pseudorandom generators sufficient for P = BPP. With this notation, our new algorithms-
to-lower bounds connections can be stated:

1There are simple easy witness lemmas for deterministic classes such as P and EXP, as one can see from [Lip94, FSW09]. But
it is not known how to extend the connection from SAT algorithms to circuit lower bounds to prove non-uniform lower bounds
for functions in deterministic classes such as P and EXP; a crucial aspect of those arguments is that the non-uniform circuit is
nondeterministically guessed in the eventual proof-by-contradiction.

2It’s worth noting that proving NP doesn’t have circuits of size nk would have other major implications, such as NEXP 6⊂P/poly
and non-trivial derandomizations of MA [IKW02].

2

Theorem 1.1 (NP Lower Bounds from 2(1−ε)n-time Circuit-SAT) Let C be typical, and let ε ∈ (0,1).
Suppose GAP C UNSAT on n-input, 2εn-size circuits is solvable in nondeterministic O(2(1−ε)n) time. Then
there is a c≥ 1 such that for all k, NTIME[nck4/ε] does not have nk-size C -circuits.3

Theorem 1.2 (NQP Lower Bounds from 2n−nε -time Circuit-SAT) Let C be typical, and let ε ∈ (0,1).
Suppose GAP C UNSAT on n-input, 2nε

-size circuits is in nondeterministic O(2n−nε

) time. Then for all k,

there is a c≥ 1 such that NTIME[2logck4/ε n] does not have 2logk n-size C -circuits.

It is important to note that for 2εn size and n inputs, CIRCUIT SAT is solvable in polynomial time. Sim-
ilarly, CIRCUIT SAT is in quasi-polynomial time for circuits of size 2nε

. Thus Theorems 1.1 and 1.2 are
concerned with improving the running time of problems in P and QP respectively, possibly using nondeter-
ministic algorithms, and the problem GAP C SAT is believed to be in P even for poly(n) circuit sizes.

These new generic algorithm-to-lower-bound connections immediately imply much tighter lower bounds
for ACC and ACC◦THR circuits, namely the separation NQP 6⊂ ACC◦THR:

Theorem 1.3 For every constant k, d, and m≥ 2, there is an e≥ 1 and a problem in NTIME[nloge n] which
does not have depth-d nlogk n-size AC[m] circuits, even with nlogk n linear threshold gates at the bottom layer.

1.2 Intuition

Our proof of the easy witness lemma for NP and NQP has some similarities to the original Impagliazzo-
Kabanets-Wigderson argument [IKW02], but makes some important modifications. Let us review their
proof. For simplicity, we restrict ourselves here to looking at poly-size circuits, but the full proof is much
more general, allowing for quasi-polynomials and even third-exponentials.

IKW’s Easy Witness Lemma. At a high level, the proof of Lemma 1.1 works as follows. Assume

(A) NTIME[2n] has circuits of size nk, and
(B) NTIME[2n] does not have witness circuits of size nO(k2).

We wish to obtain a contradiction. We show that (A) and (B) contradict the theorem that there is a language
Lhard ∈ TIME[2nk+1

] such that for all but finitely many n, Lhard does not have n-input circuits of size O(n)k

(note this is provable by direct diagonalization; see Theorem 2.3 in the Preliminaries, which shows we can
put Lhard in SPACE[nk+1]).

Assumption (A) implies that Lhard ∈ TIME[2nk+1
] has nO(k2)-size circuits, by padding/translation. Build-

ing on the proof that EXP ⊂ P/poly implies EXP = MA ([BFNW93]), that in turn implies (as noted
by [MNW99]) that Lhard has a Merlin-Arthur protocol P running in nO(k2) time.

We can use (B) to “derandomize” the Arthur part of the Merlin-Arthur protocol P for Lhard , as follows.
Assumption (B) implies that for all c≥ 1, there is a “bad” O(2n)-time verifier Vc that takes x of length n and
y of length O(2n), such that for infinitely many ni, there is a “bad” input xi of length ni such that Vc(xi,yi)

accepts for some yi, but every yi accepted by Vc(xi, ·) has circuit complexity at least nck2
. Thus, if we give xi

as n bits of advice, nondeterministically guess a string yi of length O(2n), and verify Vc(xi,yi) accepts, we
are guaranteed yi encodes the truth table of a function with circuit complexity at least nck2

.

Applying standard hardness-to-randomness connections, the hard function yi can be used to power a
pseudorandom generator G with O(k2c logn)-length seeds that runs in 2O(n) time and fools circuits of size
nck2/g, for some universal g≥ 1. For large enough c, we have a generator G that can “fool” the Arthur part of

3In fact, the GAP C UNSAT algorithm could even use 2o(n) bits of advice; see Remark 1.

3

the protocol P for Lhard , given an input and Merlin’s message. So by guessing yi (of O(2n) length), guessing
Merlin’s message, and running G on all seeds, the Merlin-Arthur protocol P can be faithfully simulated on
infinitely many input lengths ni by a nondeterministic algorithm N, running in 2O(n) time, with n bits of
advice. Finally, applying (A) once more to N, we conclude that Lhard has circuits of size O(n)k on infinitely
many input lengths, contradicting the definition of Lhard .

How to Improve IKW? A Minor Modification. Suppose we replace NTIME[2n] with NP or NQP in
assumptions (A) and (B) in the above. What goes wrong? For starters, we no longer have EXP = MA or
PSPACE=MA as a consequence of our assumptions, so we can no longer easily infer from our assumptions
that a hard language Lhard has efficient Merlin-Arthur protocols! Thus it is not at all clear what lower bound
we may hope to contradict. All is not lost though. Since [IKW02] appeared, other circuit lower bounds
have been proved, such as the celebrated result of Santhanam [San07] that for all k, MA/1 6⊂ SIZE[nk]. In
particular, Santhanam ([San07], Theorem 4.3) gives an explicit language Lk computable by a Merlin-Arthur
protocol Pk in nO(k2) time (with 1 bit of advice) which does not have nk-size circuits. Letting d � k2, and
assuming NTIME[nd] does not have witness circuits of nO(k2) size, we can derandomize Pk just as in the
IKW argument, by guessing-and-verifying a witness of length O(nd) with circuit complexity at least nΩ(k2).
We conclude that Lk is solvable in nondeterministic nO(d) time, with n+1 bits of advice, for infinitely many
input lengths. If we further assume that NTIME[nO(d)] has nk-size circuits, we could then infer that Lk has
O(n)k-size circuits for infinitely many input lengths. Unfortunately, Santhanam’s MA/1 lower bound for Lk

is not known to hold in the infinitely-often setting; his proof only rules out a nk-size circuit family computing
Lk on all but finitely many input lengths. However, this new argument does show that, if NP has nk-size
circuits, then NP also has nO(k2)-size witness circuits for infinitely many input lengths n (because if NP did
not have such witness circuits almost everywhere, then we could simulate Pk nondeterministically almost
everywhere with small advice, and get the desired contradiction). Call this the “infinitely-often witness”
argument.

As far as we can tell, having witness circuits “infinitely often” is not enough for the lower bound appli-
cations. (For one, we would need an “almost-everywhere” nondeterministic time hierarchy theorem to get
the final contradiction, but it is open whether NEXP is contained in io-NP!) We need another approach to
getting a contradiction; perhaps another type of circuit lower bound for MA would work?

Our Approach: “Almost” an Almost-Everywhere Circuit Lower Bound for MA. Again, here we
stick to polynomial-size circuits, to keep the exposition simple. By allowing a little more advice to a Merlin-
Arthur protocol, we still do not get a lower bound for all but finitely many input lengths, but we can guarantee
that MA/O(logn) has nk-size lower bounds on input lengths that are only polynomially far apart, for all but
finitely many n. In particular, we prove:

Theorem 1.4 (Informal) For all k, there is an explicit language L′k computable by a Merlin-Arthur protocol
Pk in nO(k2) time (with O(logn) bits of advice) such that, for all but finitely many input lengths n, either

• L′k does not have an nk-size circuit on inputs of length n, or
• L′k does not have an nO(k2) size circuit on inputs of length nO(k).

The full formal statement can be found in Theorem 3.1. Our L′k is related to Santhanam’s aforementioned
MA/1 language, as they both attempt to compute a paddable, self-correctable, and downward self-reducible
PSPACE-complete language LPSPACE on padded inputs (due to Trevisan and Vadhan [TV02], with modifi-
cations by Santhanam [San07]). Santhanam breaks his analysis into two cases, whether or not PSPACE has
polynomial-size circuits, and shows his language does not have small circuits in either case.

4

Our advice and analysis are very different. At a high level, our Merlin-Arthur protocol Pk has two parts.
Its advice on input length n encodes the largest `n such that LPSPACE has circuits of size nak2

on length-`n

inputs for a sufficiently large a≥ 1, which will indicate which part to run on an input y of length n:
Part 1: If `n ≥ nck, then Pk guesses-and-randomly-checks a circuit of nak2

size with nck inputs for LPSPACE

(via Theorem 2.2), and uses this circuit to decide if y is in a language Ldiag ∈ SPACE[nO(k)] (Theo-
rem 2.3) which provably does not have nk-size circuits for any infinite set of input lengths. (Here, we
use the fact that LPSPACE is PSPACE-complete.)

Part 2: If `n < nck, then Pk parses y as a padded string 1q0x. If |x|+ 1 > `n then Pk rejects, else Pk tries to
compute LPSPACE on 1`n−|x|−10x, by guessing-and-checking a circuit with `n inputs and nak2

size.
(Here, c ≤ a is a large enough constant.) Let L′k be the language accepted by Pk. By our choice of `n, P′k
only guesses circuits for LPSPACE when valid ones exist, and it uses the circuit as an oracle in Santhanam’s
checker for LPSPACE. Together, these ensure that P′k satisfies the MA promise condition on all inputs.

To prove the lower bound for L′k, suppose there is an infinite set S⊆ N such that for all n ∈ S,
(A) L′k has nk-size circuits for length-n inputs, and
(B) L′k has nck2

-size circuits for length-nck inputs.
We wish to derive a contradiction. We consider two cases:
Case 1. Suppose there is an infinite subset S′ ⊆ S such that for all n ∈ S′, `nck ≥ nc2k2 . Then for all n ∈ S′,
Pk runs the first part of its protocol on nck-length inputs. In particular, for all n ∈ S′, Pk on y of length nck

guesses a circuit of nO(k3) size with nO(k2) inputs for LPSPACE, verifies the circuit using randomness, then
uses the circuit to simulate Ldiag. By definition of Ldiag, for almost all n ∈ S′, L′k does not have nck2

-size
circuits for nck-length inputs. However, note this is in direct contradiction with (B).
Case 2. Suppose for all but finitely many n ∈ S, `nck < nc2k2 . Then for almost all n ∈ S, the protocol
Pk runs the second part of its protocol on nck-length inputs: Pk simulates LPSPACE on 1`n−|x|−10x, provided
|x|+1≤ `n. We show how the second part of Pk, together with assumptions (A) and (B), can be used to infer
that LPSPACE itself has an nck2

-size circuit on inputs of length nck, using a “bootstrapping” kind of argument.
In more detail, assume for some m that L′k has an mk-size circuit on length-m input, and that `m < mck, so

that the second part of Pk is run on length-m inputs. We start by observing `m ≥ 1: Pk can (unconditionally)
guess-and-check O(1)-size circuits for LPSPACE on inputs of length 1. If Pk on m-bit inputs can be used to
compute LPSPACE on `-bit inputs (i.e., mck > `m ≥ `), then (using the assumed L′k circuit) there is an mk-size
circuit for LPSPACE on `-bit inputs. By the downward self-reducibility of LPSPACE, there is also an mdk-size
circuit C computing LPSPACE on (`+ 1)-bit inputs, for some (fixed) d. For d ≤ ak, this circuit C implies
that `m ≥ `+1. Thus the protocol Pk has enough time to guess and verify this C, and the second part of Pk

on m-bit inputs can also compute LPSPACE on (`+1)-bit inputs. Since L′k has a mk-size circuit on length-m
inputs, the mdk-size circuit for LPSPACE on (`+ 1)-bit inputs can then be replaced by an mk-size circuit(!).
We can repeat this argument for lengths ` = 1, . . . ,m− 1, implying that LPSPACE has mk-size circuits for
input length m.

Therefore, in Case 2, for almost all n ∈ S, nck2
-size circuits for L′k on length-nck inputs (assumption (B))

implies that LPSPACE has an nck2
-size circuit for length nck. Since c≤ a, by definition of `n it follows that for

almost all n ∈ S we have `n ≥ nck. Thus the first part of Pk is run on these n ∈ S, so Pk is simulating Ldiag on
almost all inputs of length n∈ S. By definition of Ldiag, for almost all n∈ S, L′k does not have nk-size circuits
for length-n inputs. But this is a direct contradiction with (A). This completes the intuition for Theorem 1.4.

From an MA Circuit Lower Bound to Easy Witnesses. Let us briefly discuss how this Merlin-Arthur
lower bound can be used for our new Easy Witness Lemma. We have to show the “almost” almost-
everywhere lower bound is enough for obtaining a contradiction with the aforementioned “infinitely-often

5

witness” argument. Assume NP has nk-size circuits, and assume there is an NP-verifier V that does not
have nck3

-size witness circuits (rather than nk2
, as in IKW) for large c. Then there are infinitely many “bad”

inputs xi such that Vc(xi,yi) accepts for some yi, but every yi accepted by Vc(xi, ·) has circuit complexity
at least nck3

. Then, just as in the IKW argument and infinitely-often witness argument, we can use yi in a
pseudorandom generator that fools circuits of size nck3/g. Take the “hard” Merlin-Arthur protocol Pk. On
infinitely many pairs of input lengths (n,nΘ(k)) corresponding to the bad inputs xi, we want to derive an
nk-size circuit for length-n inputs and an nΘ(k2)-size circuit on length-nΘ(k) inputs, to contradict the “almost”
almost-everywhere lower bound. Because the circuit constructed from the Merlin-Arthur protocol has size
nO(k3) even on inputs of length nΘ(k), this pseudorandom generator works not only for input length n but also
for length nk. Thus, if witness circuits of size nck3

did not exist, we would be able to simulate Pk on infinitely
many pairs of input lengths (n,nΘ(k)) in NP, using n+O(logn) bits of advice. Assuming NP has nk-size
circuits, this contradicts the earlier lower bound proved for Pk.

Outline of the Rest. The rest of the paper is structured as follows. In Section 2 we give definitions and
review related material from the literature. In Section 3 we prove the “almost” almost-everywhere lower
bound for MA. In Section 4 we prove the new Easy Witness Lemma in its full form. In Section 5 we
improve connections between circuit-analysis and circuit lower bounds using the Lemma. In Section 6 we
conclude with some open questions.

2 Preliminaries
Basics. All languages/functions are over {0,1}, and all logarithms are base-2 with ceilings as appropriate.
We assume knowledge of basic complexity theory [AB09] such as circuit families computing a language,
and complexity classes such as EXP, NEXP, ACC, etc. We use SIZE[s(n)] to denote the class of problems
computed by a (non-uniform) s(n)-size circuit family. When we refer to a “typical” circuit class (AC0, ACC,
TC0, NC1, NC, or P/poly), we assume the underlying circuit families are non-uniform and of polynomial-
size, unless otherwise specified.

We will often take as given that any O(t(n))-time algorithm can be converted (in O(t(n)2) time) into an
equivalent circuit family of size at most t(n)2, for all but finitely many n. (Different circuit conversions
would only affect the constant factors in our arguments.)

We use advice classes: for a deterministic or nondeterministic class C and a function a(n), C /a(n) is the
class of languages L such that there is an L′ ∈C and an arbitrary function f : N→{0,1}? with | f (n)| ≤ a(n)
for all x, such that L = {x | (x, f (|x|)) ∈ L′}. That is, the arbitrary advice string f (n) can be used to solve all
n-bit instances within class C .

In our MA lower bound, we need to show that some protocol “satisfies the MA promise” on all inputs:

Definition 2.1 We say that a Merlin-Arthur protocol P satisfies the MA promise on length ` if for all x ∈
{0,1}`, either there is a Merlin message such that Arthur accepts x with probability at least 2/3, or for all
Merlin messages, Arthur rejects x with probability at least 2/3. In other words, P satisfies the MA promise
on length ` if it obeys the usual semantics of an MA language on all inputs of that length.

Typical Circuit Classes. In general, a Boolean circuit class C is a collection of descriptions of Boolean
functions. C is evaluatable if given a description of a C from C and given an 0/1 assignment a to some
(but not necessarily all) of the inputs, the sub-circuit C(a) can be determined in polynomial time. Say that a
class of Boolean circuits C is closed under negation if there is a poly(n)-time algorithm A such that, given
any n-bit description of a circuit C from C , A outputs a description of ¬C. C is closed under conjunctions

6

if there is a poly(n)-time algorithm A such that, given the descriptions of n circuits C1,C2, . . . ,Cn, each on
n inputs from C , algorithm A outputs a circuit C′(x1, . . . ,xn) ≡C1(x1, . . . ,xn)∧ ·· · ∧Cn(x1, . . . ,xn). Any C

satisfying all three properties is called typical.

Circuit Complexity of Strings and Pseudorandom Generators. Let x1, . . . ,x2` be the `-bit strings in
lexicographical order. For a circuit C on ` inputs, define tt(C) :=C(x1) · · ·C(x2`), i.e., tt(C) ∈ {0,1}2` is the
truth table of C. For every string y, let 2` be the smallest power of 2 such that 2` ≥ |y|+ 1. We define the
circuit complexity of y, or CC(y), to be the circuit complexity of the `-input function defined by the truth
table y102`−|y|−1. We will use the following strong construction of pseudorandom generators from hard
functions:

Theorem 2.1 (Umans [Uma03]) There is a universal constant g and a function G : {0,1}?×{0,1}? →
{0,1}? such that, for all s and Y satisfying CC(Y)≥ sg, and for all circuits C of size s,∣∣∣∣ Pr

x∈{0,1}g log |Y |
[C(G(Y,x)) = 1]− Pr

x∈{0,1}s
[C(x) = 1]

∣∣∣∣< 1/s.

Furthermore, G is computable in poly(|Y |) time.

Witness Circuits. We formally define the terminology behind “witness circuits” (also found in [Wil10,
Wil16, Wil11]).

Definition 2.2 Let L ∈ NTIME[t(n)] where t(n)≥ n is constructible. An algorithm V (x,y) is a verifier for
L if V runs in time O(|y|+ t(|x|)) and for all strings x,

x ∈ L ⇐⇒ there is a y of length O(t(n)) (a witness for x) such that V (x,y) accepts.

We denote L(V) to be the NTIME[t(n)] language verified by V .
We say V has witness circuits of size w(n) if for all strings x, if x ∈ L(V) then there is a yx of length O(t(n))
such that V (x,yx) accepts and yx has circuit complexity at most w(n).
We say L has witness circuits of size w(n) if every verifier for L has witnesses of size w(n).
NTIME[t(n)] has witness circuits of size w(n) if every L ∈ NTIME[t(n)] has witness circuits of size w(n).

Thinking of w(n)� t(n), if a nondeterministic time-t(n) language L has size-w(n) witness circuits, then
for every O(t(n))-time verifier V for L, all x ∈ L have a highly compressible witness yx with respect to V : yx

is a string of length t(n), but as a truth table, it has a circuit of size at most w(n).

A Structured PSPACE-Complete Problem. A fundamental result used often in the theory of pseudo-
randomness (modifying a construction of Trevisan and Vadhan [TV02, San07]) is that there is a PSPACE-
complete language with strong reducibility properties. First, we define the properties.

Definition 2.3 A language L ⊆ {0,1}? is downward self-reducible if there is a (deterministic) polynomial-
time oracle algorithm A? such that for all n and all x ∈ {0,1}n, ALn−1

(x) = L(x).

Theorem 2.2 ([San07]) There is a PSPACE-complete language LPSPACE which is paddable, downward
self-reducible, and furthermore is “checkable” in that there is a probabilistic polynomial-time oracle Turing
machine M so that, for any input x,

• M asks its oracle queries only of length |x|.

7

• if M is given LPSPACE as oracle and x ∈ L, then M accepts with probability 1.
• if x 6∈ LPSPACE, then irrespective of the oracle given to M, M rejects with probability at least 2/3.

Note that Santhanam proves the existence of the probabilistic polynomial-time “checker” M, and that
LPSPACE is PSPACE-complete; we also note in the below proof that his language is paddable and downward
self-reducible. All four of these properties of LPSPACE will be used in our argument.

Proof. We simply verify that the language given by Santhanam [San07] has the additional desired prop-
erties. Let LPSPACE = {1i | i ≥ 0}∪ {1i0x | x ∈ S and i ≥ 0}, where S is the PSPACE-complete language
of Trevisan and Vadhan [TV02] which is downward self-reducible and “self-correctable” (which we do not
define here). By definition, it is clear that for any amount of padding m, 1mx ∈ LPSPACE ⇐⇒ x ∈ LPSPACE.
To construct a downward self-reduction A for LPSPACE, we can make use of the downward self-reduction A0

for the language S:

A: On input y, parse y = 1m0x. If m > 0, accept iff 1m−10x ∈ LPSPACE.
If m = 0, run the downward self-reduction A0 on x.
For every query x′ for S made by A0, query 0x′ ∈ LPSPACE instead.
Accept if and only if A0 accepts on x.

Observe A is a downward self-reduction for LPSPACE: Either y has some amount of 1-padding at the
beginning, or it has no 1-padding. In the first case, LPSPACE can be quickly solved with one oracle query
(remove a 1). In the second case, the downward self-reduction for S can be used. Since x has length |y|−1,
all of the queries x′ made by A0 are of length |y|−2, so 0x′ is a query to LPSPACE of length |y|−1. �

We also need a standard almost-everywhere circuit lower bound, provable by direct diagonalization:

Theorem 2.3 Let s(n) < 2n/(2n) be space-constructible. There is a language Ldiag ∈ SPACE[s(n)2] that
does not have s(n)-size circuits for all but finitely many input lengths n.

Proof. Folklore. On an input of length n, using O(s(n)2) space one can exhaustively try all Boolean
functions f : {0,1}2log(s(n)) → {0,1} and circuits of size s(n), until one finds the lexicographically first
function fn, represented as a bit string of length 22log(s(n)) ≤ O(s(n)2), that is not computable by any circuit
of size s(n). Then the padded language

Ldiag =
⋃

n∈N
{1n−1−2log(s(n))0x | |x|= 2log(s(n))∧ fn(x) = 1}

does not have s(n)-size circuits for all but finitely many n, but is computable in space O(s(n)2). �

Significant Separations. For the case of poly-size circuits, the circuit lower bound of Theorem 3.1 implies
a “significant separation”, as defined by Fortnow and Santhanam [FS17]. They say a class C has a significant
separation from D , if there is an f ∈C such that for all g∈D there is a k so that for every m, the function fn

(restricted to n-bit inputs) differs from gn on some input length n in [m,mk]. The lower bound of Theorem 3.1
implies a significant separation of MA (with advice) from small circuits. However, our lower bound seems
a bit stronger in that, rather than proving an lower bound for some input length in all polynomially-long
intervals, we show an lower bound for every pair of input lengths which are polynomially far apart.

8

3 “Almost” an Almost-Everywhere Circuit Lower Bound for MA

In this section, we prove the main lower bound needed for our new Easy Witness Lemmas. For a language
L⊆ {0,1}? and n ∈N, let Ln be the language L restricted to n-bit inputs. Say that s : N→N is a circuit-size
function if it is increasing, time constructible, and s(n)< 2n/(2n) holds for all sufficiently large n.

Theorem 3.1 (“Almost” A.E. Circuit Lower Bound for MA with Advice) There are d1,d2,d3 ≥ 1 such
that for all circuit-size functions s and time-constructible s1,s2 : N→ N satisfying

(i) s2(n)≥ s(n)2d2 ,
(ii) s1(n)≥ s(s2(n)), and

(iii) s1(n)≥ s(n)2d1+1,

there is a language L1 computable by a Merlin-Arthur protocol in O(s1(n)2 · s2(n)d3) time with 2logs2(n)
advice, such that for all sufficiently large n ∈ N, either

• the circuit complexity of Ln
1 is greater than s(n), or

• the circuit complexity of Ls2(n)
1 is greater than s(s2(n)).

That is, we “almost” prove an almost-everywhere size-s(n) circuit lower bound for MA with 2logs(n) ad-
vice: for almost all n, the MA language L1 either has high complexity on length n, or it has high complexity
on length s2(n). Later, we will use this “almost” almost-everywhere lower bound to obtain a stronger easy
witness lemma.

The rest of this section is devoted to proving Theorem 3.1. The language L1 is formed from two different
Merlin-Arthur protocols:

1. One protocol attempts to solve the problem Ldiag that does not have size-s(n) circuits almost every-
where (from Theorem 2.3), by guessing and checking circuits for the complete language LPSPACE,
and applying a reduction from Ldiag to LPSPACE.

2. The other protocol solves LPSPACE (from Theorem 2.2) on inputs with sufficiently long padding.

The 2logs2(n) bits of advice are used to determine which of these two languages can be successfully com-
puted by our MA protocol, on a given input length.

Set d1,d2,d3 ≥ 1 such that:

• the downward self-reduction A for LPSPACE (as seen in Theorem 2.2) runs in time O(nd1),
• every reduction from a language L ∈ SPACE[s(n)] to LPSPACE runs in time at most O(s(n)d2) and

produces an LPSPACE instance of length s(n)d2 . To ensure this condition, set d2 such that the language
L′ = {(M,x,1t) | M accepts x using space at most t} can be reduced to LPSPACE in O(nd2−1) time.
Then, every SPACE[s(n)] language L has an O(s(n))-time reduction to L′, and therefore L has an
O(s(n)d2)-time reduction to LPSPACE.
• the probabilistic polytime oracle machine M for LPSPACE (as seen in Theorem 2.2) runs in time O(nd3).

Since s(n) < 2n/(2n), there is a language Ldiag without s(n)-size circuits almost everywhere (Theo-
rem 2.3). Using Ldiag ∈ SPACE[s(n)2] and the reduction from Ldiag to LPSPACE, we have:

Claim 1 There is an O(s(n)2d2)-time reduction R such that for all strings y, |R(y)| = s(|y|)2d2 and y ∈
Ldiag ⇐⇒ R(y) ∈ LPSPACE.

We are now in position to define a Merlin-Arthur protocol M1 recognizing a hard language L1. For input
length n, define

`(n) := the largest integer ` such that L`
PSPACE has a circuit of size at most s1(n). (1)

9

Note that a circuit always exists when s1(n)≥ 2`, so we have `(n)≥ log(s1(n)). Also note that since LPSPACE

is paddable, a circuit for Lm
PSPACE can solve L`

PSPACE for any ` < m by setting the first m− ` bits to 1. Our
advice αn for inputs of length n will be the integer

αn := min{s2(n), `(n)}. (2)

Note that αn can be encoded in at most 2 logs2(n) bits. (For example, the first bit of the encoding could
denote which of s2(n), `(n) is the minimum; if it is s2(n), then no further information is required, as
that can be computed by the machine. If the minimum is `(n), then we can encode `(n) as an integer in
{0,1, . . . ,s2(n)−1} using less than 2logs2(n) bits.)

Let R be the reduction from Ldiag to LPSPACE of Claim 1, with running time O(s(n)2d2). The Merlin-Arthur
protocol M1 defining a language L1 is described in pseudocode as follows:

Advice αn := min{s2(n), largest ` ∈ N s.t. L`
PSPACE has an s1(n)-size circuit}

M1(y)/αn := Let n = |y|.
If αn = s2(n):

// simulate Ldiag on y

Let z = R(y); note |z| ≤ s2(n) (by constraint (i)).

Guess an s2(n)-input circuit C of size s1(n).

Output MC(1s2(n)−|z|z) (Theorem 2.2).

Otherwise (αn < s2(n)):

// simulate LPSPACE on a padded input

Parse y = 1a0x for some a≥ 0. If |x|+1 > αn then reject.

Guess an αn-input circuit C of size s1(n).

Output MC(1αn−|x|−10x) (Theorem 2.2).

MA Promise and Running Time Analysis. First, we verify that the advice αn ensures that M1 satisfies
the MA promise on all input lengths — in particular, αn ensures that the desired circuits C being guessed
always exist in both branches of M1 — and that M1 runs in O(s1(n)2 · s2(n)d3) time. Intuitively, Merlin
provides a circuit C and Arthur runs MC.

• If αn = s2(n), then by definition (2) (and padding) Ls2(n)
PSPACE has a s1(n)-size circuit.

If y∈ Ldiag, then 1s2(n)−|z|z∈ LPSPACE, which means there is a (Merlin) circuit C of size s1(n) such that
MC(z) (Arthur) accepts with probability 1 (following Theorem 2.2). In particular, the reduction from
Ldiag to LPSPACE runs in time O(s(n)2d2) and produces an instance z of length s(n)2d2 . By constraint
(i) (s2(n)≥ s(n)2d2), we can pad z and MC will accept it with probability 1.
If y 6∈ Ldiag, then for every possible (Merlin) circuit C, the probabilistic polynomial time MC (Arthur)
will reject with probability at least 2/3 (again following Theorem 2.2). So M1 satisfies the MA
promise in this case. Simulating MC can be done in time O(s1(n)2 · s2(n)d3), where the extra s1(n)2

factor comes from evaluating the circuit C on each oracle query.

10

• If αn < s2(n), then M1 guesses a s1(n)-size circuit C for Lαn
PSPACE, then runs MC(1αn−|x|−11x).

Suppose y = 1a0x ∈ LPSPACE. By the paddability of LPSPACE, it follows that 1αn−|x|−10x ∈ LPSPACE

as well. Moreover by definition (2), Lαn
PSPACE has a circuit of size s1(n) when αn < s(n). Therefore

there is a circuit C of size-s1(n) and αn inputs such that MC(1αn−|x|−10x) accepts with probability 1
(following Theorem 2.2).
On the other hand, if y = 1a0x 6∈ LPSPACE, then we also have 1αn−|x|−10x 6∈ LPSPACE. By the properties
of M from Theorem 2.2, it follows that for every possible circuit C, MC(1αn−|x|−10x) rejects with
probability at least 2/3, so M1 satisfies the MA promise in this case as well.
Here, the running time of M1 is the time needed to run MC(1αn−|x|−10x) by directly simulating C,
which is O(s1(n)2 ·αd3

n)≤ O(s1(n)2 · s2(n)d3).

Therefore M1 with advice {αn} satisfies the MA promise on all inputs and runs in O(s1(n)2 ·s2(n)d3) time.

“Almost” Almost-Everywhere Hardness. Let L1 be the language recognized by M1. Next we show for
all sufficiently large n ∈ N, either the circuit complexity of Ln

1 is greater than s(n), or the circuit complexity
of Ls2(n)

1 is greater than s(s2(n)). We do this by showing that if the circuit complexity was low in both cases,
even infinitely often, then the language Ldiag would also have size-s(n) circuits infinitely often, contradicting
Theorem 2.3.

For the sake of contradiction, assume there is an infinite sequence {ni} such that

(A) Lni
1 has a circuit of size s(ni) and

(B) Ls2(ni)
1 has a circuit of size s(s2(ni)).

Let I = {ni | i ∈ N}∪{s2(ni) | i ∈ N}. We begin by showing that for all but finitely many m ∈ I, if L1 has
s(m)-size circuits on length m inputs, then L1 cannot be simulating Ldiag on length m (therefore it must be
simulating the padded version of LPSPACE, instead). We use the abbreviation “a.e.” to mean “almost every”,
a.k.a. “all but finitely many” in the following.

Proposition 1 For a.e. m ∈ I, if Lm
1 has a s(m)-size circuit, then `(m)< s2(m).

Proof. Suppose there were infinitely many m ∈ I such that Lm
1 has a circuit of size s(m) and `(m)≥ s2(m).

Then αm = s2(n) for those m, and by the definition of L1, Lm
1 = Lm

diag for those m. Thus Ldiag would have
circuits of size s(m) for infinitely many m, which is a contradiction to Theorem 2.3. �

Applying assumption (A) to Proposition 1, we find that for all sufficiently large m ∈ I,

αm < s2(m). (3)

Thus for all sufficiently large m ∈ I, a circuit for Lm
1 computes a padded version of LPSPACE, under our

assumptions. Our next step is to show that sufficiently small circuits for L1 for a given input length m
actually implies analogously small circuits for LPSPACE on input length m:

Lemma 3.1 For a.e. m ∈ I, if Lm
1 has a size-s(m) circuit, then Lm

PSPACE has a size-s(m) circuit.

Assuming Lemma 3.1 holds, we can finish the proof of Theorem 3.1, and show the desired lower bound on
L1. In particular, applying assumption (B) to Lemma 3.1 yields that Ls2(ni)

PSPACE has a circuit of size s(s2(ni)),
for all sufficiently large i. By constraint (ii) (s1(n) ≥ s(s2(n))), Ls2(ni)

PSPACE has a circuit of size at most s1(ni)

for all sufficiently large i, so by definition of the `-function, `(ni)≥ s2(ni). But this implies αni = s2(ni) for
all sufficiently large i, which contradicts (3).

11

We now turn to showing how to prove Lemma 3.1. Intuitively, our strategy is to use s(m)-size circuits
for Lm

1 to obtain s(m)-size circuits for LPSPACE on progressively larger and larger input lengths, using the
downward self-reducibility of LPSPACE and the hypothesis that Lm

1 has small circuits.

Proof of Lemma 3.1. Let m ∈ I be sufficiently large, and assume Lm
1 has a circuit Cm of size s(m). We

want to prove that Lm
PSPACE has a circuit of size s(m). Since L1

PSPACE has an O(1)-size size circuit (and s(m)

is increasing), it’s clear that L1
PSPACE has a circuit of size s(m) for all but finitely many input lengths m. We

make the following inductive claim:

Amplification Claim: Under the hypothesis, if there is an ` < m such that L`
PSPACE has a size-s(m) circuit,

then L`+1
PSPACE also has a size-s(m) circuit.

Assuming the claim with ` := 1, we conclude that L`+1
PSPACE = L2

PSPACE also has a circuit of size s(m).
Repeatedly applying the claim for ` = 1 up to ` = m− 1, we conclude that Lm

PSPACE has a circuit of size
s(m). That would complete the proof of the lemma.

To prove the Amplification Claim, suppose there is an ` < m such that L`
PSPACE has a size s(m) circuit D`.

Using the downward self-reduction for LPSPACE, we can also obtain a circuit D′`+1 for L`+1
PSPACE, of size at

most O(s(m)2d1+1). In particular, we can construct an L`
PSPACE-oracle circuit for L`+1

PSPACE using the O(nd1)-
time downward self-reduction. This oracle circuit has size at most (`+ 1)2d1 ; if we replace each L`

PSPACE

oracle query with the size-s(m) circuit D`, this yields a circuit D′`+1 of size at most (`+ 1)2d1 · s(m) ≤
s(m)2d1+1. By constraint (iii), we have that D′`+1 has size at most s1(m).

We want to use the assumed size-s(m) circuit Cm for Lm
1 to reduce the circuit complexity of L`+1

PSPACE down
to s(m). By (3), we have αm < s2(m) for sufficiently large m ∈ I, so (by the properties of the protocol M1)
the circuit Cm implements LPSPACE for inputs of up to length αm.

We claim that by feeding the string 1m−`−1 to the first m− `−1 inputs of Cm, the remaining subcircuit of
size at most s(m) can compute L`+1

PSPACE on all x of length `+1. (Note that since we assume `≤ m−1, the
padding amount m− `−1≥ 0.) Since the circuit D′`+1 has size at most s1(m), L`+1

PSPACE has a circuit of size
at most s1(m). Therefore by the definition of αn (2) and `(n) (1), for our choice of m we have αm ≥ `+1.

Since Cm implements LPSPACE for inputs of up to length αm, and αm ≥ `+1, the circuit

C′`+1(x) :=Cm(1m−`−1x)

is of size s(m) and computes L`+1
PSPACE correctly (by the paddability of LPSPACE). This completes the proof

of the Amplification Claim, and also the proof of Lemma 3.1. �

This completes the proof of Theorem 3.1.

4 Small Circuits Imply Small Witnesses

In this section we prove our new Easy Witness Lemma, using the new Merlin-Arthur circuit lower bound
(Theorem 3.1).

Lemma 4.1 (Easy Witnesses for Low Nondeterministic Time) There are e,g ≥ 1 such that for every in-
creasing time-constructible s(n), s2(n) := s(e · n)e, and t(n), if NTIME[O(t(n)e)] ⊂ SIZE[s(n)] then every
L ∈ NTIME[t(n)] has witness circuits of size s2(s2(s2(n)))2g, provided that

(a) s(n)< 2n/e/n and
(b) t(n)≥ s2(s2(s2(n)))d for a sufficiently large constant d.

12

For s(n) = nk, if NP ⊂ SIZE[nk], then NP has witness circuits of size nO(k3) (Theorem 1.2). For s(n) =

2(logn))k
, NQP⊂ SIZE[2(logn)k

] implies that NQP has witness circuits of size 2O((logn)k3
) (Theorem 1.3).

Proof. Let w(n) := s2(s2(s2(n)))2g. Suppose

NTIME[O(t(n)e)]⊆ SIZE[s(n)], (4)

and assume NTIME[t(n)] does not have w(n)-size witness circuits, i.e.,

there is some linear-time verifier V such that there are infinitely many “bad” inputs x, (5)

where there is a yx of length t(|x|) such that V (x,yx) accepts,

yet all such yx have circuit complexity at least w(|x|).

We wish to establish a contradiction. Take e≥ 1 to be a sufficiently large parameter (all our constraints on e
will be constant lower bounds on it). Using our assumptions on s(n) and s2(n), we claim that the hard MA
language L1 of Theorem 3.1 exists for

s′(n) := s(e ·n),s′2(n) := s′(n)d′ , and s′1(n) := s′(s′2(n)),

assuming d′ is chosen such that max(2d2,2d1 +1,d3 +2)≤ d′ ≤ e.
Let us check that these functions s′, s′1, and s′2 satisfy all the constraints of Theorem 3.1:
• First, since s(n)< 2n/e/n (by constraint (a)), we know that s′(n) = s(e ·n)< 2e·n/e/(e ·n)< 2n/(2n),

for all sufficiently large n and e≥ 2. Thus s′ is a circuit-size function.
• For constraint (i), d′ ≥ 2d2 implies s′2(n) = s′(n)d′ ≥ s′(n)2d2 .
• For constraint (ii), d′ ≥ 2d1 +1 implies s′1(n) = s′(s′2(n))≥ s′2(n) = s′(n)d′ ≥ s′(n)2d1+1.
• Constraint (iii) s′1(n)≥ s′(s′2(n)) is trivially satisfied.

Thus by Theorem 3.1, L1 is computable by an MA protocol in O(s′1(n)
2 · s′2(n)d3) time with advice of

length
2logs′2(n) = 2d′ logs′(n)< 2d′ · log(2e·n/e) = 2d′ ·n.

For d′ ≥ d3 +2, we also have

s′1(n)
2 · s′2(n)d3 = s′(s′2(n))

2 · s′2(n)d3 ≤ s′(s′2(n))
2+d3 ≤ s′2(s

′
2(n))≤ s2(s2(n))

since s′2(n) = s(e ·n)d′ ≤ s(e ·n)e = s2(n) for d′ ≤ e. So L1 is computable by an MA protocol in O(s2(s2(n)))
time with 2d′ ·n bits of advice, and has circuit lower bounds for size s′(n)= s(e ·n). That is, for all sufficiently
large n ∈ N, either
• the circuit complexity of Ln

1 is greater than s(e ·n), or

• the circuit complexity of Ls′2(n)
1 is greater than s(e · s′2(n)).

By (5), there are infinitely many input lengths {ni} such that, by encoding a bad input xi of length ni as
advice and guessing a valid yi such that V (xi,yi) accepts, we can nondeterministically guess and verify the
truth table of a function yi with circuit complexity at least w(|xi|).

Our next step is to use these bad xi’s to derandomize the MA protocol defining L1: we give a nondeter-
ministic algorithm N such that for all i and all inputs of length ni, N uses (2d′+1)ni bits of advice, runs in
O(t(ni)

e) time, and correctly decides L1 on all ni-bit inputs. On inputs of length ni, the advice to N is:
• a bad input xhard of length ni, and
• the advice αni used by the Merlin-Arthur protocol M1 of Theorem 3.1, on inputs of length ni.

13

On inputs of length s′2(ni), the advice to N is xhard as well as the advice αs′2(ni) used by M1.

On inputs x of length ni and inputs x of length s′2(ni), N first guesses a string yhard of length O(t(ni))

and runs V (xhard ,yhard). If V rejects, then N rejects. Otherwise, N will use yhard as a hard function in the
pseudorandom generator G(·, ·) of Theorem 2.1, for fooling circuits of size w(n)1/g = s2(s2(s2(n)))2.

Fix a constant a≥ 1 such that G(yhard , ·) runs in O(|yhard |a) time. Let `i ∈ {ni,s′2(ni)}, depending on the
current input length. Our N constructs a circuit Cx(·, ·) simulating the deterministic O(s2(s2(`i)))-time part
of M1(x). In particular, the circuit Cx takes a “nondeterministic” input z of length at most s2(s2(`i))

2, as well
as “randomness” input r of length at most s2(s2(`i))

2, and C has size at most s2(s2(`i))
2 ≤ s2(s2(s2(ni)))

2.
Then N nondeterministically guesses an input z, and enumerates all s = |yhard |g seeds to the generator
G(yhard , ·), obtaining output strings r1, . . . ,rs in O(|yhard |a+g) = O(t(ni)

a+g) time. (We emphasize that this
is done for both `i = ni and `i = s′2(ni).) Finally, N computes the probability that Cx(yhard ,r j) accepts over
all j = 1, . . . ,s. If this probability is greater than 1/2, then N accepts else it rejects.

In total, N takes time O(s2(s2(ni))
2 + t(ni)

a+g + t(ni)
g · s2(s2(ni))

2) = O(t(ni)
a+g) on inputs of length ni.

Note the yhard for an input xhard of length ni has circuit complexity at least s2(s2(s2(ni)))
2g. Since the circuit

Cx(·, ·) for inputs x of length `i = s′2(ni) has size s2(s2(s′2(ni)))
2 ≤ s2(s2(s2(ni)))

2, the same advice xhard can
also be used with the generator G(·, ·) to derandomize M1 on inputs of length s′2(ni) as well. Thus on inputs
of length s′2(ni), N takes ni +2d′ · s′2(ni) advice and runs in time

O(s2(s2(s2(ni)))
2 + t(ni)

a+g + t(ni)
g · s2(s2(s2(ni)))

2)≤ O(t(ni)
a+g)≤ O(t(s′2(ni))

a+g),

where in the next-to-last inequality, we have applied constraint (b).

If we set e ≥ a+ g, then by (4), the nondeterministic O(t(n)e)-time algorithm N (using (2d′+ 1)n bits
of advice) described in the previous paragraph has circuits of size s((2d′+ 2)n). In particular, for almost
every input length in the set {ni}, the language L1 has circuits of size s((2d′+2)ni) on ni-bit inputs, and has
circuits of size s((2d′+1) · s′2(ni)+ni)≤ s((2d′+2) · s′2(ni)) on s′2(ni)-bit inputs.

For e≥ 2d′+2, this contradicts the circuit lower bound of Theorem 3.1. �

5 Applications

Now we turn to showing how the new Easy Witness Lemmas imply stronger algorithm-to-lower bound
connections. Recall a nondeterministic algorithm for GAP C UNSAT outputs yes, no, or don’t know on
every computation path, it outputs no on some computation path if its input circuit has at least 1/4 of its
assignments satisfying, outputs yes on some path if its input circuit is unsatisfiable, and for every input
circuit, the algorithm never outputs yes on some path and no on another path.

Reminder of Theorem 1.1 Let C be typical, and let ε ∈ (0,1). Suppose GAP C UNSAT on n-input,
2εn-size circuits is solvable in nondeterministic O(2(1−ε)n) time. Then there is a c ≥ 1 such that for all k,
NTIME[nck4/ε] does not have nk-size C -circuits.

Proof. The proof is similar to earlier arguments [Wil10, Wil11, SW13]. Let ε ∈ (0,1) be given. Assume

(A) for all c≥ 1, there is a k ≥ 1 such that NTIME[nck4/ε] has nk-size C -circuits, and
(B) GAP C UNSAT on n-input 2εn-size circuits is in O(2(1−ε)n) time.

Let c be sufficiently large in the following, and let

t(n) = nck4/ε

14

for notational convenience. Since C is evaluatable (given a circuit from the class, we can evaluate it on
an input in polynomial time), from (A) it follows that NTIME[t(n)] has nO(k)-size unrestricted circuits
(e.g., over the basis AND/OR/NOT of fan-in two). By the Easy Witness Lemma for NP (Lemma 1.2),
NTIME[t(n)] has nO(k3)-size witness circuits for every NP verifier. We choose the PCP verifier of Ben-
Sasson and Viola [BSV14], which yields proofs which are quasi-linear for any running time T (n). In
particular, for every verifier algorithm V (x,y) running in time T (n)≥ n, they give an algorithm A running in
poly(n, logT (n)) time which, given x ∈ {0,1}n, outputs an oracle circuit CO

x with the following properties:4

• CO
x has ` = log2(T (n))+O(log logT (n)) inputs, poly(n, logT (n)) size, and each copy of the oracle

gate O in CO
x has ` inputs as well.

• If there is a y of length T (n) such that V (x,y) accepts, then there is an oracle O : {0,1}`→{0,1} such
that CO

x is unsatisfiable.
• If V (x,y) rejects on all y of length T (n), then for every oracle O : {0,1}` → {0,1}, CO

x has at least
2` · (1−1/n) satisfying assignments.

Note the oracle O acts as a witness for the PCP verifier which runs the above transformation on x, and checks
whether CO

x is unsatisfiable or not by guessing random inputs to CO
x .

Take a language L ∈ NTIME[t(n)]−NTIME[t(n)1−ε/2] such that L ⊆ {1n | n≥ 0} [SFM78, Žák83], and
let V be a O(t(n))-time verifier for L. On an input 1n, let N be a nondeterministic algorithm which:

1. runs the algorithm A in poly(n, log t(n)) time to produce a circuit CO
n ,

2. guesses a witness circuit Wn of size nO(k3) encoding the oracle O for the PCP verifier,
3. plugs the circuit Wn in place of the oracle O in the circuit CO

n , obtaining a circuit of size nO(k3) ·
poly(n, log t(n))≤ nO(k3),

4. checks satisfiability of CWn
n by exhaustive search, in time 2` · nO(k3) ≤ t(n) · poly(log t(n)) · nO(k3) ≤

nck4/ε+O(k3).

We will show how to simulate N in nondeterministic time t(n)1−ε · poly(log t(n)), implying a contradic-
tion. If we had an unrestricted CIRCUIT SAT algorithm or GAP CIRCUIT UNSAT algorithm running in
O(2`(1−ε)) ≤ t(n)1−ε+o(1) time, this would be easy: we could just use the nondeterministic GAP CIRCUIT

UNSAT algorithm to speed up item 4 in the description above. Because we only have a GAP C UNSAT

algorithm, and C might be weaker than unrestricted circuits (as far as we know), the argument becomes
more complicated.

Consider the task:

EVAL-GATE: Given a circuit CO of n size, a circuit of size at most n encoding an oracle O, an
input x of length `, and an integer i = 1, . . . ,n, what is the output of the i-th gate of CO evaluated
on x?

Clearly EVAL-GATE is computable in polynomial time. By assumption (A), EVAL-GATE has C -circuits
of size nO(k). In lieu of item 4 in the description of N, our new nondeterministic algorithm N′ guesses a
C -circuit E computing EVAL-GATE which can take CO

n and Wn as inputs; since both have size nO(k3), a
C -circuit of nO(k4) suffices. For every i = 1, . . . ,s of CWn

n (where s = nO(k3)), E(CO
n ,Wn,x, i) outputs the value

of the i-th gate of CWn
n (x); by convention, we let the s-th gate be the output of the circuit. Assuming E is a

circuit correctly computing EVAL-GATE on the appropriate input length, it is easy to see that

E(CO
n ,Wn,x,s) = 1 ⇐⇒ CWn

n (x) = 1.

4This is not formally stated in their article, but it is immediate from their Theorem 1.1.

15

Without loss of generality, assume all gates of CWn
n have a fixed gate type (e.g., NAND). For each gate i

of CWn
n , let i1, i2 < i be the indices of the two gates of CWn

n whose outputs are the two inputs to gate i. Let
Fi(gi,gi1 ,gi2) be the canonical 3-CNF on three variables (where g j corresponds to the output of gate j) which
is true if and only if the outputs of gates i1 and i2 are consistent with the output of gate i. Now consider the
circuit

D(x) := ¬

(
s∧

i=1

Fi(E(CO
n ,Wn,x,gi),E(CO

n ,Wn,x,gi1),E(C
O
n ,Wn,x,gi2))

)
.

It is easy to see that D(x) = 0 if and only if E is consistent for all gates of CWn
n on the input x; that is, E

claims correct outputs for every gate of the circuit CWn
n on the input x. From this, we have the consistency

condition:

for all x, D(x) = 0 implies that E(CO
n ,Wn,x,s) =CWn

n (x). (6)

Furthermore, since C is closed under conjunctions and projections, given E, CO
n , and Wn, the circuit D can

be computed in time nO(k4), where D is a circuit from C . By our choice of t(n) (with sufficiently large c),

nO(k4) ≤ 2ε` ≤ t(n)ε ·poly(log t(n)).

So the circuit D has ` inputs and size 2ε`, so our nondeterministic algorithm N′ can run the nondeterministic
GAP C UNSAT algorithm on D, assumed by (B). N′ rejects if the nondeterministic GAP-UNSAT algorithm
outputs no or don’t know on D. Otherwise, N′ accepts if and only if the nondeterministic GAP-UNSAT
algorithm outputs yes on E(CO

n ,Wn, ·,s) (with ` free inputs).

The running time of N′ is
nO(k4)+2(1−ε)` ≤ t(n)1−ε ·poly(log t(n)).

By the properties of the PCP verifier and our GAP-UNSAT algorithm, we have:

• If 1n ∈ L, then there is a Wn and an E such that D is unsatisifiable. Then, N′ accepts 1n on the correct
guesses of Wn and E. In particular, the GAP-UNSAT algorithm will report yes on D (since D is
unsatisfiable) on some path, and report yes on E(CO

n ,Wn, ·,s) on some path as well.
• If 1n /∈ L, for all choices of Wn, the circuit CWn

n has at least 2` · (1−1/n) satisfying assignments. The
algorithm N′ guesses a circuit E for EVAL-GATE and constructs the circuit D. If our GAP-UNSAT
algorithm returns no or don’t know on D, then N′ rejects by definition. If GAP-UNSAT returns yes
on some path, then it must be that D has less than 2`/4 satisfying assignments (if it had more, the
GAP-UNSAT algorithm would return no on some path, and therefore never output yes on any path, by
definition). So D(x)= 0 on at least 3/4 of the inputs x. By (6), E(CO

n ,Wn,x,s)=CWn
n (x) for at least 3/4

of the inputs x. Since CWn
n has at least 2` · (1−1/n) satisfying assignments, it must be that the circuit

E(CO
n ,Wn, ·,s) of ` inputs has at least 2` · (1− 1/n− 1/4) ≥ 2`/4 satisfying assignments. Therefore

the GAP-UNSAT algorithm on the circuit E(CO
n ,Wn, ·,s) will not return yes on any computation path

(because it must return no on some path, and it never outputs contradictory answers on the same
circuit). Thus N′ rejects 1n on all computation paths.

In summary, N′ correctly decides the language L. This is a contradiction, as N′ runs in t(n)1−ε ·poly(log t(n))
time. �

Remark 1 Fortnow and Santhanam [FS16] proved that for all polynomials t(n), there is an α > 0 and
an L ∈ NTIME[t(n)] that is not in NTIME[t(n)1−ε/2]/nα . If we use this L in the above proof, then the
nondeterministic GAP C SAT algorithm could even use 2βn bits of advice on n-input circuits of size 2εn (for

16

small enough β > 0 depending on ε and k), and still yield the desired lower bound.

Reminder of Theorem 1.2 Let C be typical, and let ε ∈ (0,1). Suppose GAP C UNSAT on n-input, 2nε

-size

circuits is in nondeterministic O(2n−nε

) time. Then for all k, there is a c ≥ 1 such that NTIME[2logck4/ε n]

does not have 2logk n-size C -circuits.

Proof. We use the exact same strategy as Theorem 1.1, with the following minor modifications. Assume

(A) for all c, there is a k ≥ 1 such that NTIME[2logck4/ε n] has 2logk n-size C -circuits, and
(B) GAP C UNSAT on n-input 2nε

-size circuits is in O(2n−nε

) time.

Set t(n) = 2logck4/ε n. As argued in Theorem 1.1, by the Easy Witness Lemma for NQP (Lemma 1.2),

NTIME[t(n)] has 2O(logk3
n)-size witness circuits for every NP verifier. Use the PCP verifier of Ben-Sasson

and Viola [BSV14] as before which outputs a circuit CO
n of poly(n) size with number of inputs

`= (log2 n)ck4/ε +O(log logn).

Take L ∈ NTIME[t(n)]−NTIME[t(n)/2logε/2 t(n)] such that L ⊆ {1n | n ≥ 0} [SFM78, Žák83], and let V be
a O(t(n))-time verifier for L. On an input 1n, let N be a nondeterministic algorithm which:

1. runs in poly(n) time to produce a circuit CO
n ,

2. guesses a witness circuit Wn of size 2O(logk3
n) encoding the oracle O for the PCP verifier,

3. plugs the circuit Wn in place of the oracle O in the circuit CO
n , obtaining a circuit of size 2O(logk3

n) ·
poly(n)≤ 2O(logk3

n),

4. checks satisfiability of CWn
n by exhaustive search, in time 2` ·2O(logk3

n) ≤ 2logck4/ε n+O(logk3
n).

As before, we show how to simulate N faster. We define the EVAL-GATE problem as before; by assumption

(A), it has C -circuits of size 2logk n. Thus there is a circuit E of size 2O(logk4
n) which can take Wn and CO

n as

input and faithfully simulate EVAL-GATE. Also as before, we construct the circuit D of size 2O(logk4
n) and

of ` inputs. For sufficiently large c, the size of D is

2O(logk4
n) ≤ 2logε t(n) ≤ 2((logck4

n)+O(log logn))ε ≤ 2`
ε

,

so the assumed nondeterministic GAP C UNSAT algorithm can be run on D, and it can be run on the
circuit E(CO

n ,Wn, ·,gi), obtaining yes/no answers in nondeterministic time

O(2`−`
ε

)≤ t(n)/2logε t(n).

Following the rest of the proof of Theorem 1.1, we can decide L in nondeterministic time t(n)/2logε t(n),
which is a contradiction. �

Finally, to conclude lower bounds such as NQP 6⊂ ACC◦THR (Theorem 1.3), we only have to appeal to
the ACC◦THR-SAT algorithm:

Theorem 5.1 ([Wil14]) For all integers d and m≥ 2, there is an ε > 0 and an O(2n−nε

)-time deterministic
algorithm for the satisfiability problem on depth-d size-2nε

circuits over unbounded fan-in AND, OR, and
MODm gates, with linear threshold gates at the bottom layer.

17

6 Conclusion

We have shown how slightly faster CIRCUIT SAT algorithms, even those distinguishing unsatisifiable circuits
from circuits with many satisfying assigments, can also imply circuit lower bounds for the nondeterministic
classes NP and NQP. This suggests that the age-old problem of proving that NP does not have linear-size
circuits may well be in striking distance, or at least that we may find non-linear lower bounds for weak
circuit classes in the near future (however, note ENP 6⊂ SIZE[O(n)] is still open, and one has to prove this
first!). We would like to draw attention to a few related open problems:
NP versus ACC? The main obstacle to proving NP 6⊂ ACC is the lack of a GAP ACC UNSAT algorithm
which runs in 2(1−ε)n time on 2εn-size circuits, for some ε > 0. The ACC-SAT algorithm used in the NQP

lower bound applies the well-known transformation of ACC to SYM ◦AND [Yao90, BT94], which blows
up the circuit by a quasi-polynomial factor; because of this blow-up it does not seem possible to get a much
faster GAP ACC UNSAT algorithm using this transformation. But perhaps a better SAT algorithm can be
derived under the assumption NP⊂ ACC.
EXP or BPEXP lower bounds? We now have interesting circuit lower bounds for Nondeterministic Quasi-
Polynomial Time (NQP). We do not believe that NQP⊆ EXP, but it seems very unlikely that EXP-complete
problems are solvable in NQP; EXP-complete problems ought to be just as hard. Can the framework be
extended further to show that faster CIRCUIT SAT or GAP UNSAT algorithms imply EXP lower bounds?
How about lower bounds for the randomized exponential time class, BPEXP? It is known that if we have
non-trivial learning algorithms for circuit classes with appropriate parameters, then BPEXP lower bounds
follow [FK09, OS17]. Perhaps SAT algorithms can help expedite learning?
Reduce ENP? In several settings [Wil10, JMV15, CGI+16], it is known that faster SAT algorithms for
weak classes of formulas would imply a circuit lower bound for the (huge) class ENP. For example, a
1.9n-time nondeterministic CNF-UNSAT algorithm would imply ENP does not have linear-size “Valiant-
series-parallel” circuits [JMV15, CGI+16]. When can the gigantic class ENP be reduced to a smaller class?

Acknowledgements. We thank Marco Carmosino, Valentine Kabanets, and Igor Carboni Oliveira for
helpful comments.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–
318, 1993.

[BSV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In ICALP, pages
163–173, 2014.

[BT94] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, pages 350–366, 1994.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Proceedings of the ACM Conference on Innovations in
Theoretical Computer Science (ITCS), pages 261–270, 2016.

18

[CP16] Shiteng Chen and Periklis A. Papakonstantinou. Depth-reduction for composites. In FOCS,
pages 99–108, 2016.

[Din15] Ning Ding. Some new consequences of the hypothesis that p has fixed polynomial-size circuits.
In International Conference on Theory and Applications of Models of Computation (TAMC),
pages 75–86. Springer, 2015.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower bounds.
Journal of Computer and System Sciences, 75(1), 2009.

[FS16] Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds for uniform classes. In
CCC, pages 19:1–19:14, 2016.

[FS17] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations. Inf.
Comput., 256:149–159, 2017.

[FSW09] Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed-polynomial size circuit bounds.
In CCC, pages 19–26. IEEE, 2009.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

[JMV15] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In ICALP, pages 749–760.
Springer, 2015.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1):40–56, 1982.

[KL82] Richard Karp and Richard Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(2):191–209, 1982.

[KW98] Johannes Kobler and Osamu Watanabe. New collapse consequences of np having small circuits.
SIAM Journal on Computing, 28(1):311–324, 1998.

[Lip94] Richard Lipton. Some consequences of our failure to prove non-linear lower bounds on explicit
functions. In Structure in Complexity Theory, pages 79–87, 1994.

[MNW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In COCOON, LNCS 1627, pages
210–220. Springer, 1999.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In CCC, pages 18:1–18:49, 2017.

[San07] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM Journal on Comput-
ing, 39(3):1038–1061, 2009. Preliminary version in STOC’07.

[SFM78] Joel Seiferas, Michael Fischer, and Albert Meyer. Separating nondeterministic time complexity
classes. JACM, 25(1):146–167, 1978.

19

[SW13] Rahul Santhanam and Ryan Williams. On uniformity and circuit lower bounds. Computational
Complexity, 23(2):177–205, 2013. Preliminary version in CCC’13.

[TV02] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uni-
form reductions. Computational Complexity, 16(4):331–364, 2007. Preliminary version in
CCC’02.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. Journal of Computer and
System Sciences, 67(2):419–440, 2003.

[Wil14] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. In
STOC, pages 194–202, 2014.

[Wil16] R. Ryan Williams. Natural proofs versus derandomization. SIAM Journal on Computing,
45(2):497–529, 2016.

[Wil11] Ryan Williams. Nonuniform ACC circuit lower bounds. JACM, 61(1):2, 2014. See also
CCC’11.

[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42(3):1218–1244, 2013. See also STOC’10.

[Yao90] Andrew Chi-Chih Yao. On ACC and threshold circuits. In FOCS, pages 619–627, 1990.

[Žák83] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–
333, 1983.

20
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

