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Abstract

Let X be a random variable distributed over n-bit strings with H(X) ≥ n−k, where k � n.
Using subadditivity we know that a random coordinate looks random. Meir and Wigderson [1]
showed a random coordinate looks random to an adversary who is allowed to query around n/k
other coordinates non-deterministically. They used this result to obtain top-down arguments
in depth-3 circuit lower bounds. In this note we give an alternative proof of their main result
which tightens their parameters. Our proof is inspired by a paper of Paturi, Pudlák and Zane
[3] who gave a non-trivial k-SAT algorithm and tight depth-3 circuit lower bounds for parity.

1 Introduction

Motivated by developing top-down arguments in circuit complexity, Meir and Wigderson [1] recently
studied the following question: let X = (X1, . . . , Xn) ∈ {0, 1}n be a random variable with entropy
at least n− k. An adversary who knows the distribution of X and a uniformly chosen coordinate
i ∈ [n] needs to predict the value of Xi. He is allowed to query q coordinates of X other than i. How
large should q be so that the adversary has non-negligible advantage? The answer is ω(n/k) and it
holds even if the adversary can make his queries non-deterministically. This is formally captured
as follows.

Definition 1. A witness for Xi is a pair (Q, a), Q ⊆ [n] \ {i}, a ∈ {0, 1}|Q|. The length of the
witness is the size of Q. We say that witness (Q, a) ε-predicts Xi if for some b ∈ {0, 1}

Pr[Xi = b | X|Q = a] ≥ 1/2 + ε/2.

Definition 2. A certificate for Xi is a witness that 1-predicts Xi.

Definition 3. A q-family of witnesses (certificates) is a tuple F = (F1, . . . ,Fn) where each F i is
a set of witness (respectively certificates) for Xi. For α ∈ {0, 1}n we write α |= F i if α contains a
member of F i.

Theorem 1 ([1]). Let X be a random variable over {0, 1}n such that H(X) ≥ n − k, and q ≤ n.
For ε ∈ (0, 1) let F be a q-family of witnesses that ε-predict Xis and let σi be the probability that
X |= F i. Then σ̄ := Ei[σi] is at most 300·k·q

ε3·n .
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To see the application of this theorem in circuit lower bounds we refer the reader to [1]. The
focus of this note is an improvement of Theorem 1 given below and the background which gave rise
to the proof which interestingly comes from similar questions in circuit lower bounds.

Theorem 2. Let X be a random variable over {0, 1}n such that H(X) ≥ n − k, and q ≤ n. For
ε ∈ (0, 1] let F be a q-family of witnesses that ε-predict Xis and let σi be the probability that X |= F i.
Then σ̄ := Ei[σi] is at most k·(q+1)

(1−h(1/2+ε/2))·n , where h is the binary entropy function.

To compare our result with Theorem 1 we use the inequality h(1/2 + ε/2) ≤ 1 − ε2/2. Hence

we get an upper bound of 2·k·(q+1)
ε2·n for ε < 1 and for ε = 1 we get k · (q+ 1)/n. Note that the bound

in Theorem 2 is tight. For any σ ∈ [0, 1] we can consider a random variable X = (X1, X2, . . . , Xn)
defined by the following process: group the first σn coordinates in blocks of size q + 1. Then for
every block assign all coordinates except the last one uniformly at random and set the last one to be
the xor of the previous ones with probability 1/2+ε/2 (i.e., with probability 1/2+ε/2 the sum of all
the coordinates in a block is even). Finally assign all remaining coordinates Xσn+1, Xσn+2, . . . , Xn

uniformly at random. It is easy to see that

H(X) =
σn

q + 1
· (q + h(1/2 + ε/2)) + (1− σ)n = n− σn · 1− h(1/2 + ε/2)

q + 1
.

Applying Theorem 2 with k = σn · 1−h(1/2+ε/2)
q+1 we get σ̄ ≤ σ. On the other hand each of the first

σn coordinates has witnesses (with probability 1) of size q that ε-predicts it, hence σ̄ ≥ σ.
Furthermore, as a consequence we also get the following improvement.

Definition 4. We say that a decision tree ε-predicts Xi if the decision tree makes queries to the
coordinates in [n] \ {i} and outputs the value of Xi correctly with probability at least 1/2 + ε/2.

Corollary 1 (Improves Corollary 1.5 from [1]). Let X be a random variable taking values from
{0, 1}n such that H(X) ≥ n− k, and let q ∈ N, 0 ≤ ε ≤ 1. Then, the number of coordinates i ∈ [n]
that are ε-predicted by some decision tree that makes at most q queries is at most 2 · k · q/ε2.

2 Background for the proof

Let ψ be a k-CNF formula in n variables. We say that a satisfying assignment α is isolated
if flipping any single bit of α falsifies some clause. Paturi, Pudlák and Zane [3] showed that the
number of isolated solutions is upper bounded by 2(1−1/k)n. This immediately implies a 2n/k−1 lower
bound for parity against Σ3

k circuits (depth-3 OR-AND-OR circuits with bottom fan-in bounded
by k). Furthermore since they proved this via an efficient encoding, they also managed to obtain
an algorithm for k-SAT. Following a similar line of reasoning Paturi, Pudlák, Saks and Zane [2]
showed that if every pair of solutions of a k-CNF disagree on a super-constant number of bits, the
number of satisfying assignments is upper bounded by 2(1−π2/6k+o(1))n. This subsequently gave an
improved lower bound for error-correcting codes with proper parameters and an improved k-SAT
algorithm which still remains the best known. The best Σ3

k lower bounds are 2Ω(n/k) and the best
upper bound bound for k-SAT is 2(1−Ω(1/k))n. Improving the dependence on k remains a major
challenge in complexity theory. One way to make progress in this direction would be to make the
arguments of [3] and [2] more flexible through replacing the efficient encoding by direct entropy
arguments. This brings us to the result of Meir and Wigderson.
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Let X be a uniformly chosen isolated solution of ψ. We can generate a (k − 1)-family of
certificates F for X as follows. For every isolated solution α and every i ∈ [n], flip the ith bit.
This falsifies some clause Cα,i which means that under α, Cα,i is satisfied only by xi. We then add
the set of variables other than xi in Cα,i and their values under α to F i. By the construction of
F for every i ∈ [n] we have that Pr[X |= F i] = 1 and thus Ei[σi] = 1. Theorem 1 then implies
that H(X) ≤ (1− 1/300k)n, since otherwise we would have Ei[σi] < 1. However [3] gives the tight
bound H(X) ≤ (1− 1/k)n. This suggests that it might be possible to improve Theorem 1 and this
is what we achieved.

Our proof is inspired by the argument of [3] and it bounds the entropy by considering random
permutations of the bits, whereas the proof of [1] considers random splittings of X in two parts.
Unfortunately our improvement does not imply any new result. However we would like to stress our
original motivation which led to the current proof and pose the question of reproving or improving
the circuit lower bound of [2] as follows.

Question 1. Let ψ be a k-CNF whose satisfying assignments are pairwise of super-constant dis-
tance. Let X be uniformly distributed over set of satisfying assignments. Can we upper bound
H(X) directly without adhering to the explicit encoding of [2]?

3 Proof of Theorem 2

Let X = (X1, . . . , Xn) be a random variable over {0, 1}n. For i ∈ [n] we will use X<i as a shorthand
for (X1, . . . , Xi−1).

Using the chain rule one can derive the following equality

H(X) = H(X1) +H(X2 | X1) + · · ·+H(Xn | X<n).

The same equality holds if we permute coordinates of X:

H(X) = H(Xπ) = H(Xπ
1 ) +H(Xπ

2 | Xπ
1 ) + · · ·+H(Xπ

n | Xπ
<n).

where π ∈ Sn is a permutation of [n] and Xπ is a random variable equal to X permuted with π,
i.e. Xπ = (Xπ

1 , X
π
2 , . . . , X

π
n ) = (Xπ(1), Xπ(2), . . . , Xπ(n)).

Lemma 1. For any i ∈ [n] and α ∈ {0, 1}n such that α contains an ε-witness (Q, a) for Xi of size
at most q,

E
π

[H(Xi | Xπ
<π−1(i) = απ<π−1(i))] ≤ 1− 1− h(1/2 + ε/2)

q + 1
,

where h is a binary entropy function: h(p) = p log 1
p + (1− p) log 1

1−p .

Proof. If for fixed permutation π all indices in Q precede π−1(i), i.e. ∀j ∈ Q, π−1(j) < π−1(i), then
H(Xi | Xπ

<π−1(i) = απ<π−1(i)) ≤ H(Xi | X|Q = a) ≤ h(1/2 + ε/2) by the definition of ε-witness. We
have
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E
π

[H(Xi | Xπ
<π−1(i) ≤ α

π
<π−1(i))

]
= Pr

π
[∀j ∈ Q, π−1(j) < π−1(i)] ·H(Xi | X|Q = a)

+ Pr
π

[∃j ∈ Q, π−1(j) > π−1(i)] ·H(Xi)

=
1

|Q|+ 1
·H(Xi | X|Q = a) +

(
1− 1

|Q|+ 1

)
·H(Xi)

≤ 1

|Q|+ 1
h(1/2 + ε/2) + 1− 1

|Q|+ 1

= 1− 1− h(1/2 + ε/2)

|Q|+ 1

≤ 1− 1− h(1/2 + ε/2)

q + 1
.

Hence we get the statement of the lemma.

Let us bound the expectation of H(X) over all permutations of [n].

E
π

[H(Xπ)] = E
π

[
n∑
i=1

H(Xπ
i | Xπ

<i)

]
(chain rule)

= E
π

 n∑
i=1

∑
β∈{0,1}i−1

Pr[Xπ
<i = β] ·H(Xπ

i | Xπ
<i = β)

 (expansion)

= E
π


n∑
i=1

∑
β∈{0,1}i−1

∑
α∈{0,1}n
απ<i=β

Pr[X = α] ·H(Xπ
i | Xπ

<i = β)

 (expansion)

= E
π

 n∑
i=1

∑
α∈{0,1}n

Pr[X = α] ·H(Xπ
i | Xπ

<i = απ<i)

 (α extends β)

= E
π

 n∑
j=1

∑
α∈{0,1}n

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))

 (j = π(i))

= E
π


n∑
j=1

∑
α∈{0,1}n
α|=Fj

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))

+
n∑
j=1

∑
α∈{0,1}n
α 6|=Fj

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))


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By the linearity of expectation, we have

E
π

[H(Xπ)] =
n∑
j=1

∑
α∈{0,1}n
α|=Fj

Pr[X = α] · E
π

[H(Xj | Xπ
<π−1(j) = απ<π−1(j))]

+
n∑
j=1

∑
α∈{0,1}n
α 6|=Fj

Pr[X = α] · E
π

[H(Xj | Xπ
<π−1(j) = απ<π−1(j))]

Applying Lemma 1 we get

E
π

[H(Xπ)] ≤
n∑
j=1

∑
α∈{0,1}n
α|=Fj

Pr[X = α] ·
(

1− 1− h(1/2 + ε/2)

q + 1

)
+

n∑
j=1

∑
α∈{0,1}n
α 6|=Fj

Pr[X = α] · 1

=

n∑
j=1

(
σj ·

(
1− 1− h(1/2 + ε/2)

q + 1

)
+ (1− σj) · 1

)
=

n∑
j=1

(
1− σi · (1− h(1/2 + ε/2))

q + 1

)
= n− n · σ̄ · (1− h(1/2 + ε/2))

q + 1
.

Having in mind that Eπ[H(Xπ)] = Eπ[H(X)] = H(X) ≥ n− k we get σ̄ ≤ k·(q+1)
(1−h(1/2+ε/2))·n .
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