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Abstract

Let X be a random variable distributed over n-bit strings with H(X) ≥ n − k, where
k � n. Using subadditivity we know that the average coordinate has high entropy. Meir and
Wigderson [1] showed that a random coordinate looks random to an adversary who is allowed
to query around n/k other coordinates non-deterministically. They used this result to obtain
top-down arguments in depth-3 circuit lower bounds. In this note we give an alternative proof
of their main result which tightens their parameters. Our proof is inspired by a paper of Paturi,
Pudlák and Zane [3] who gave a non-trivial k-SAT algorithm and tight depth-3 circuit lower
bounds for parity.

1 Introduction

Motivated by developing top-down arguments in circuit complexity, Meir and Wigderson [1] recently
studied the following question: let X = (X1, . . . , Xn) ∈ {0, 1}n be a random variable with entropy
at least n− k. An adversary who knows the distribution of X and a uniformly chosen coordinate
i ∈ [n] needs to predict the value of Xi. He is allowed to query q coordinates of X other than i. How
large should q be so that the adversary has non-negligible advantage? The answer is ω(n/k) and it
holds even if the adversary can make his queries non-deterministically. This is formally captured
as follows.

Definition 1. A witness for a coordinate i ∈ [n] is a pair (Q, a) where Q ⊆ [n]\{i} and a ∈ {0, 1}|Q|.
The witness appears in a string x ∈ {0, 1}n if x|Q = a. The length of the witness is |Q|.

Definition 2. A q-family of witnesses F for a coordinate i ∈ [n] is a set of witnesses for i of length
at most q. We say that a string X ∈ {0, 1}n satisfies F , denoted by X |= F , if at least one of the
witnesses in F appears in X. For a random string X ∈ {0, 1}n, a bit b ∈ {0, 1} and 0 ≤ ε ≤ 1, we
say that F ε-predicts Xi = b if

Pr[Xi = b | X satisfies F ] ≥ 1

2
+
ε

2
.
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Theorem 1 ([1]). Let X be a random variable over {0, 1}n such that H(X) ≥ n − k, and q ≤ n.
For ε ∈ (0, 1], every i ∈ [n] and b ∈ {0, 1} let Fbi be a q-family of witnesses that ε-predicts Xi = b
and let σi be the probability that X |= F0

i or X |= F1
i hold. Then σ̄ := Ei[σi] is at most 300·k·q

ε3·n .

The application of this theorem in circuit lower bounds uses ε = 1 (see [1]). The main focus of
this note is an improvement of Theorem 1 for this case and the background which gave rise to the
proof, interestingly coming from similar questions in circuit lower bounds. For arbitrary ε we will
adapt our proof to give the optimal bound when witnesses can be represented by decision trees.

Definition 3. Given a random string X ∈ {0, 1}n, a coordinate i ∈ [n] and a bit b ∈ {0, 1}, a
b-certificate for i is a witness (Q, a) such that

Pr[Xi = b | X|Q = a] = 1.

Theorem 2. Let X be a random variable over {0, 1}n such that H(X) ≥ n − k, and q ≤ n. For
every i ∈ [n] and b ∈ {0, 1} let σi be the probability that X contains any certificate for Xi. Then

σ̄ := Ei[σi] is at most k·(q+1)
n .

It is easy to compare this theorem with Theorem 1 for case ε = 1. Note that the bound in
Theorem 2 is tight. For any σ ∈ [0, 1] we can consider a random variable X = (X1, X2, . . . , Xn)
defined by the following process: group the first σn coordinates in blocks of size q + 1. Then for
every block assign all coordinates except the last one uniformly at random and set the last one
to be the xor of the previous ones. Finally assign all remaining coordinates Xσn+1, Xσn+2, . . . , Xn

uniformly at random. It is easy to see that

H(X) =
σn

q + 1
· q + (1− σ) · n = n− σn

q + 1
.

Applying Theorem 2 with k = σn/(q + 1) we get σ̄ ≤ σ. On the other hand each of the first σn
coordinates has certificate (with probability 1) of size q that predicts it, hence σ̄ ≥ σ.

Definition 4. We say that two witnesses are inconsistent if no string contains both witnesses.

Theorem 3. Let X be a random variable over {0, 1}n such that H(X) ≥ n − k, and q ≤ n. For
ε ∈ (0, 1], every i ∈ [n] and b ∈ {0, 1} let Fbi be a q-family of pairwise inconsistent witnesses that
ε-predict Xi = b and let σi be the probability that X |= F0

i or X |= F1
i hold. Then σ̄ := Ei[σi] is at

most k·(q+1)
(1−h(1/2+ε/2))·n , where h is the binary entropy function.

Note that the bound in Theorem 3 is tight. For any σ ∈ [0, 1] we can consider a random variable
X = (X1, X2, . . . , Xn) defined by the following process: group the first σn coordinates in blocks of
size q+ 1. Then for every block assign all coordinates except the last one uniformly at random and
set the last one to be the xor of the previous ones with probability 1/2 + ε/2 (i.e., with probability
1/2+ε/2 the sum of all the coordinates in a block is even). Finally assign all remaining coordinates
Xσn+1, Xσn+2, . . . , Xn uniformly at random. It is easy to see that

H(X) =
σn

q + 1
· (q + h(1/2 + ε/2)) + (1− σ)n = n− σn · 1− h(1/2 + ε/2)

q + 1
.

Applying Theorem 3 with k = σn · 1−h(1/2+ε/2)
q+1 we get σ̄ ≤ σ. On the other hand each of the first

σn coordinates has witnesses (with probability 1) of size q that ε-predicts it, hence σ̄ ≥ σ.
Theorem 3 gives us the following improvement.
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Definition 5. We say that a decision tree ε-predicts Xi if the decision tree makes queries to the
coordinates in [n] \ {i} and outputs the value of Xi correctly with probability at least 1/2 + ε/2.

Corollary 1 (Improves Corollary 1.5 from [1]). Let X be a random variable taking values from
{0, 1}n such that H(X) ≥ n− k, and let q ∈ N, 0 ≤ ε ≤ 1. Then, the number of coordinates i ∈ [n]

that are ε-predicted by some decision tree that makes at most q queries is at most k·(q+1)
1−h(1/2+ε/2) .

To compare this result with Theorem 1 we use the inequality h(1/2 + ε/2) ≤ 1 − ε2/2. Hence

we get an upper bound of 2·k·(q+1)
ε2

for ε < 1 and for ε = 1 we get k · (q + 1).

2 Background for the proof

Let ψ be a k-CNF formula in n variables. We say that a satisfying assignment α is isolated
if flipping any single bit of α falsifies some clause. Paturi, Pudlák and Zane [3] showed that the
number of isolated solutions is upper bounded by 2(1−1/k)n. This immediately implies a 2n/k−1 lower
bound for parity against Σ3

k circuits (depth-3 OR-AND-OR circuits with bottom fan-in bounded
by k). Furthermore since they proved this via an efficient encoding, they also managed to obtain
an algorithm for k-SAT. Following a similar line of reasoning Paturi, Pudlák, Saks and Zane [2]
showed that if every pair of solutions of a k-CNF disagree on a super-constant number of bits, the
number of satisfying assignments is upper bounded by 2(1−π2/6k+o(1))n. This subsequently gave an
improved lower bound for error-correcting codes with proper parameters and an improved k-SAT
algorithm which still remains the best known. The best Σ3

k lower bound is 2Ω(n/k) and the best
upper bound for k-SAT is 2(1−Ω(1/k))n. Improving the dependence on k remains a major challenge
in complexity theory. One way to make progress in this direction would be to make the arguments
of [3] and [2] more flexible through replacing the efficient encoding by direct entropy arguments.
This brings us to the result of Meir and Wigderson.

Let X be a uniformly chosen isolated solution of ψ. We can generate a (k − 1)-family of
certificates F for X as follows. For every isolated solution α and every i ∈ [n], flip the ith bit.
This falsifies some clause Cα,i which means that under α, Cα,i is satisfied only by xi. We then add
the set of variables other than xi in Cα,i and their values under α to F i. By the construction of
F for every i ∈ [n] we have that Pr[X |= F i] = 1 and thus Ei[σi] = 1. Theorem 1 then implies
that H(X) ≤ (1− 1/300k)n, since otherwise we would have Ei[σi] < 1. However [3] gives the tight
bound H(X) ≤ (1− 1/k)n. This suggests that it might be possible to improve Theorem 1 and this
is what we achieved.

Our proof is inspired by the argument of [3] and it bounds the entropy by considering random
permutations of the bits, whereas the proof of [1] considers random splittings of X in two parts.
Unfortunately our improvement does not imply any new result. However we would like to stress our
original motivation which led to the current proof and pose the question of reproving or improving
the circuit lower bound of [2] as follows.

Question 1. Let ψ be a k-CNF whose satisfying assignments are pairwise of super-constant Ham-
ming distance. Let X be uniformly distributed over the set of satisfying assignments. Can we upper
bound H(X) directly without adhering to the explicit encoding of [2]?
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3 Proof of Theorem 2

Let X = (X1, . . . , Xn) be a random variable over {0, 1}n. For i ∈ [n] we will use X<i as a shorthand
for (X1, . . . , Xi−1) and let F i be the set of all certificates for Xi.

Using the chain rule one can derive the following equality

H(X) = H(X1) +H(X2 | X1) + · · ·+H(Xn | X<n).

The same equality holds if we permute the coordinates of X:

H(X) = H(Xπ) = H(Xπ
1 ) +H(Xπ

2 | Xπ
1 ) + · · ·+H(Xπ

n | Xπ
<n).

where π ∈ Sn is a permutation of [n] and Xπ is a random variable equal to X permuted with π,
i.e. Xπ = (Xπ

1 , X
π
2 , . . . , X

π
n ) = (Xπ(1), Xπ(2), . . . , Xπ(n)).

Lemma 1. For any i ∈ [n] and α ∈ {0, 1}n such that α contains a certificate (Q, a) for Xi of size
at most q,

E
π

[H(Xi | Xπ
<π−1(i) = απ<π−1(i))] ≤ 1− 1

q + 1
.

Proof. If for a fixed permutation π all indices in Q precede π−1(i), i.e., ∀j ∈ Q, π−1(j) < π−1(i),
then H(Xi | Xπ

<π−1(i) = απ<π−1(i)) = H(Xi | X|Q = a) = 0 by the definition of certificate. The

probability that Q precedes π−1(i) is equal to 1/(|Q| + 1): for any final set S and element s ∈ S
the probability that in a random permutation of S element s will be the last one is 1/|S|. Thus

E
π

[H(Xi | Xπ
<π−1(i) = απ<π−1(i))

]
= Pr

π
[∀j ∈ Q, π−1(j) < π−1(i)] ·H(Xi | X|Q = a)

+ Pr
π

[∃j ∈ Q, π−1(j) > π−1(i)] ·H(Xi | Xπ
<π−1(i) = απ<π−1(i))

=
(

1− 1

|Q|+ 1

)
·H(Xi | Xπ

<π−1(i) = απ<π−1(i))

≤ 1− 1

|Q|+ 1
≤ 1− 1

q + 1
.

Hence we get the statement of the lemma.

Let us bound the expectation of H(X) over all permutations of [n].

E
π

[H(Xπ)] = E
π

[
n∑
i=1

H(Xπ
i | Xπ

<i)

]
(chain rule)

= E
π

 n∑
i=1

∑
β∈{0,1}i−1

Pr[Xπ
<i = β] ·H(Xπ

i | Xπ
<i = β)

 (expansion)

= E
π


n∑
i=1

∑
β∈{0,1}i−1

∑
α∈{0,1}n
απ<i=β

Pr[X = α] ·H(Xπ
i | Xπ

<i = β)

 (expansion)
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= E
π

 n∑
i=1

∑
α∈{0,1}n

Pr[X = α] ·H(Xπ
i | Xπ

<i = απ<i)

 (α extends β)

= E
π

 n∑
j=1

∑
α∈{0,1}n

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))

 (j = π(i))

Now we separately bound expectation for assignments with and without certificate.

E
π

[H(Xπ)] = E
π


n∑
j=1

∑
α∈{0,1}n
α|=Fj

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))

+

n∑
j=1

∑
α∈{0,1}n
α 6|=Fj

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))


By the linearity of expectation, we have

E
π

[H(Xπ)] =
n∑
j=1

∑
α∈{0,1}n
α|=Fj

Pr[X = α] · E
π

[H(Xj | Xπ
<π−1(j) = απ<π−1(j))]

+
n∑
j=1

∑
α∈{0,1}n
α6|=Fj

Pr[X = α] · E
π

[H(Xj | Xπ
<π−1(j) = απ<π−1(j))]

Applying Lemma 1 we get

E
π

[H(Xπ)] ≤
n∑
j=1

∑
α∈{0,1}n
α|=Fj

Pr[X = α] ·
(

1− 1

q + 1

)
+

n∑
j=1

∑
α∈{0,1}n
α 6|=Fj

Pr[X = α] · 1

=
n∑
j=1

(
σj ·

(
1− 1

q + 1

)
+ (1− σj) · 1

)

=
n∑
j=1

(
1− σi

q + 1

)
= n− n · σ̄

q + 1
.

Having in mind that Eπ[H(Xπ)] = Eπ[H(X)] = H(X) ≥ n− k we get σ̄ ≤ k·(q+1)
n .
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4 Proof of Theorem 3

We will use the following fact.

Lemma 2. For any random variable Y over {0, 1} and any event E that is a union of disjoint

events E1, . . . , Em, i.e., E =
m⊔
i=1

Ei, such that ∀i ∈ [m] and b ∈ {0, 1}, Pr[Ei] > 0,

m∑
i=1

Pr[Ei] ·H(Y | Ei) ≤ Pr[E] ·H(Y | E).

Proof. We can use Jensen’s inequality and expand the left part as follows
m∑
i=1

Pr[Ei] ·H(Y | Ei) =

m∑
i=1

Pr[Ei] ·
∑

b∈{0,1}

Pr[Y = b | Ei] · log
1

Pr[Y = b | Ei]

=
m∑
i=1

∑
b∈{0,1}

Pr[Y = b, Ei] · log
Pr[Ei]

Pr[Y = b, Ei]

=
∑

b∈{0,1}

Pr[Y = b, E] ·
m∑
i=1

Pr[Y = b, Ei]

Pr[Y = b, E]
· log

Pr[Ei]

Pr[Y = b, Ei]

≤
∑

b∈{0,1}

Pr[Y = b, E] · log

m∑
i=1

Pr[Y = b, Ei] · Pr[Ei]

Pr[Y = b, E] · Pr[Y = b, Ei]

=
∑

b∈{0,1}

Pr[Y = b, E] · log
Pr[E]

Pr[Y = b, E]

= Pr[E] ·
∑

b∈{0,1}

Pr[Y = b | E] · log
1

Pr[Y = b | E]
= Pr[E] ·H(Y | E).

By X ⊇ σ we mean that substring (partial assignment) σ appears in X. Denote the event
X ⊇ (Q, a) by EQ,a and set of witnesses F i = F0

i ∪F1
i .

Lemma 3. Let (Q, a) be a witness for Xi and let π be a permutation under which all elements of
Q appear before i. We have∑

α⊇(Q,a)

Pr[X = α] ·H(Xi | Xπ
<π−1(i) = απ<π−1(i)) ≤ Pr[EQ,a] ·H(Xi | EQ,a).

Proof. Let σ = (Q, a). Note that we can rewrite the left hand side in terms of partial assignments
instead of full assignments as follows∑

ρ⊇σ
Pr[Xπ

<π−1(i) = ρ] ·H(Xi | Xπ
<π−1(i) = ρ).

Since all events Xπ
<π−1(i) = ρ are disjoint we can apply Lemma 2, and hence∑

ρ⊇σ
Pr[Xπ

<π−1(i) = ρ] ·H(Xi | Xπ
<π−1(i) = ρ) ≤ Pr[EQ,a] ·H(Xi | EQ,a).
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Lemma 4. Let F i be a set of pairwise inconsistent witnesses for Xi. We have∑
(Q,a)∈Fi

Pr[EQ,a] ·H(Xi | EQ,a) ≤ Pr[X |= F i] ·H(Xi | X |= F i).

Proof. We apply Lemma 2 for disjoint events {EQ,a} and get the statement of the lemma.

As in the proof of Theorem 2 we bound the expectation of H(X) over all permutations of [n].
We start with the equality that was proved on page 4.

E
π

[H(Xπ)] = E
π

 n∑
j=1

∑
α∈{0,1}n

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))

 .
Now we use pairwise inconsistency to group all α’s with the same witness and bound the entropy
for α’s without witnesses by 1. Thus we can upper bound the expression above by

n∑
j=1

E
π

 ∑
(Q,a)∈Fi

∑
α⊇(Q,a)

Pr[X = α] ·H(Xj | Xπ
<π−1(j) = απ<π−1(j))

+

n∑
j=1

(1− σj).

As we have already seen the probability that j precede Q in permutation π is 1/(|Q| + 1). Hence
applying Lemma 3 we can upper bound this by

n∑
j=1

∑
(Q,a)∈Fi

 1

|Q|+ 1
· Pr[EQ,a] ·H(Xi | EQ,a) +

∑
α⊇(Q,a)

Pr[X = α] ·
(

1− 1

|Q|+ 1

) +
n∑
j=1

(1−σj).

Now we apply |Q| ≤ q and Lemma 4, hence it is at most

n∑
j=1

 1

q + 1
· Pr[X |= F i] ·H(Xi | X |= F i) +

∑
(Q,a)∈Fi

Pr[EQ,a] ·
(

1− 1

q + 1

)+

n∑
j=1

(1− σj).

By definition H(Xi | X |= F i) = h(Pr[Xi = 0 | X |= F i]) ≤ h(1/2 + ε/2). Thus

E
π

[H(Xπ)] ≤
n∑
j=1

σj

(
1

q + 1
·H(Xi | X |= F i) +

(
1− 1

q + 1

))
+

n∑
j=1

(1− σj)

≤ n−
n∑
j=1

σj

(
1

q + 1
· h(1/2 + ε/2)− 1

q + 1

)
= n− n · σ̄(1− h(1/2 + ε/2))

q + 1
.

Having in mind that Eπ[H(Xπ)] = Eπ[H(X)] = H(X) ≥ n− k we get σ̄ ≤ k·(q+1)
(1−h(1/2+ε/2))·n .
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