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Abstract

The well-known Sensitivity Conjecture regarding combinatorial complexity measures on
Boolean functions states that for any Boolean function f : {0, 1}n → {0, 1}, block sensitivity of
f is polynomially related to sensitivity of f (denoted by s(f)). From the complexity theory side,
the Xor Log-Rank Conjecture states that for any Boolean function, f : {0, 1}n → {0, 1}
the communication complexity of a related function f⊕ : {0, 1}n × {0, 1}n → {0, 1}, (defined as
f⊕(x, y) = f(x⊕ y)) is bounded by polynomial in logarithm of the sparsity of f (the number of
non-zero Fourier coefficients for f , denoted by sparsity(f)). Both the conjectures play a central
role in the domains in which they are studied.

A recent result of Lin and Zhang (2017) implies that to confirm the above two conjectures
it suffices to upper bound alternation of f (denoted alt(f)) for all Boolean functions f by
polynomial in s(f) and logarithm of sparsity(f), respectively. In this context, we show the
following results:

• We show that there exists a family of Boolean functions for which alt(f) is at least expo-
nential in s(f) and alt(f) is at least exponential in log sparsity(f). En route to the proof,
we also show an exponential gap between alt(f) and the decision tree complexity of f ,
which might be of independent interest.

• As our main result, we show that, despite the above exponential gap between alt(f) and
log sparsity(f), the Xor Log-Rank Conjecture is true for functions with the alternation
upper bounded by poly(log n). It is easy to observe that the Sensitivity Conjecture
is also true for this class of functions.

• The starting point for the above result is the observation (derived from Lin and Zhang
(2017)) that for any Boolean function f , deg(f) ≤ alt(f)deg2(f)degm(f) where deg(f),
deg2(f) and degm(f) are the degrees of f over R, F2 and Zm respectively. We give three
further applications of this bound: (1) We show that for Boolean functions f of constant
alternation have deg2(f) = Ω(logn). (2) Moreover, these functions also have high sparsity
(Ω(
√
deg(f))), thus partially answering a question of Kulkarni and Santha (2013). (3) We

observe that our relation upper bounding real degree also improves the upper bound for
influence to deg2(f)2 · alt(f) improving Guo and Komargodski (2017).
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1 Introduction

A central theme of research in Boolean function complexity is relating the complexity measures of
Boolean functions (see [6] for a survey). For a Boolean function f : {0, 1}n → {0, 1}, sensitivity
of f on x ∈ {0, 1}n, is the maximum number of indices i ∈ [n], such that f(x ⊕ ei) 6= f(x) where
ei ∈ {0, 1}n with exactly the ith bit as 1. The sensitivity of f (denoted by s(f)) is the maximum
sensitivity of f over all inputs. A related parameter is the block sensitivity of f (denoted by bs(f)),
where we allow disjoint blocks of indices to be flipped instead of a single bit. Another parameter is
the degree (denoted by deg(f)) of a multilinear polynomial over reals that agrees with f on Boolean
inputs. If the polynomial is over F2, then the degree of the polynomial is denoted by deg2(f).

Nisan and Szegedy conjectured that for an arbitrary function f : {0, 1}n → {0, 1}, bs(f) ≤
poly(s(f)) and this is popularly known as the Sensitivity Conjecture [26]. Though the measures
bs(f) and s(f) were introduced to understand the Crew-Pram model of computation [9, 25],
subsequent works [6, 3, 29] showed connection to other Boolean function parameters, in particular,√

bs(f) ≤ deg(f) ≤ bs(f)3. Hence the Sensitivity Conjecture can equivalently be stated as
: for any Boolean function f , deg(f) ≤ poly(s(f)). This question has been extensively studied in
[28, 18, 1] (see [15] for a survey) and for various restricted classes of Boolean functions in [25, 31,
8, 7, 2]. There are also recent approaches to settle the conjecture via a formulation in terms of a
communication game [11] and via a formulation in terms of distributions on the Fourier spectrum
of Boolean functions [13].

For an f : {0, 1}n → {−1, 1}, define f⊕(x, y) = f(x ⊕ y). From the complexity theory side,
the Xor Log-Rank Conjecture (proposed in [33]) says that the deterministic communication
complexity of f⊕ (denoted by CC⊕(f)) is polynomially upper bounded by the logarithm of sparsity
of f (denoted by sparsity(f)). The best known bound for any Boolean function f is due to Tsang et
al., [30] who showed that the CC⊕(f) is O(

√
sparsity(f) log sparsity(f)). The conjecture was proved

for restricted classes of Boolean functions like monotone functions [23], symmetric functions [32],
functions computable by constant depth polynomial size circuits [19], functions of small spectral
norm [30] and read restricted polynomials over F2 [16].

Recently, Lin and Zhang [20] studied both the above stated conjectures in connection to alterna-
tion, a measure of non-monotonicity of f (denoted by alt(f), see Section 2 for definition), by proving
that for any Boolean function f , bs(f) = O(s(f)alt(f)2) and CC⊕(f) = O(log sparsity(f)alt(f)2).
These results shows that to settle the Sensitivity Conjecture, it suffices to show that for any
Boolean function f , alt(f) ≤ poly(s(f)) and to settle the Xor Log-Rank Conjecture, it suffices
to show that for any Boolean function f , alt(f) ≤ poly(log sparsity(f)).

Our Results : As a first step, we ask is it indeed true that for all Boolean functions f , alt(f) =
O(poly(s(f))) and for all Boolean functions f , alt(f) ≤ poly(log sparsity(f)). We answer both
of these questions in the negative by exhibiting a family of Boolean functions F = {fk | k ∈ N}
(Definition 3.1) for which alt(fk) is at least exponential in s(fk) and alt(fk) is at least exponential
in log sparsity(fk).

Theorem 1.1. There exists a family of Boolean functions F = {fk : {0, 1}nk → {0, 1} | k ∈ N}
such that alt(fk) ≥ 2s(fk) − 1 and alt(fk) ≥ 2(log sparsity(fk))/2 − 1.

The main property of fk ∈ F which we exploit to prove Theorem 1.1 is that alt(fk) = 2DT(fk)−1
(Theorem 3.2) where DT(fk) is the depth of the optimal decision tree computing fk (see Section 2
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for definition). We also show an asymptotically matching upper bound for alternation of any
Boolean function. More precisely, for any f : {0, 1}n → {0, 1}, we show that alt(f) ≤ 2DT(f)+1 − 1
(Theorem 3.4).

Though the function family F rules out settling the Sensitivity Conjecture (Xor Log-
Rank Conjecture resp.) via upper bounding alternation by a polynomial in sensitivity (polyno-
mial in the logarithm of sparsity resp.) for all Boolean functions, it is partly unsatisfactory since
both the conjectures are true for all fk ∈ F (see Section 3.3 for details).

In fact, any f : {0, 1}n → {0, 1} for which alt(f) = 2Ω(DT(f)), must satisfy DT(f) = O(log n).
In addition, if f depends on all the input variables, the Sensitivity Conjecture is true for f .
Notice that, for all fk ∈ F , DT(fk) = log nk and fk depends on all the nk variables. Hence a natural
question is, does there exist another family of functions f where alt(f) is at least super-polynomial
in s(f), but DT(f) is not logarithmic in n. To this end, we exhibit a family of Boolean functions G,
such that for all g ∈ G, alt(g) is super-linear in s(g) and DT(g) is ω(log n) where n is the number
of variables in g.

Theorem 1.2. There exists a family of Boolean functions G = {gk : {0, 1}nk → {0, 1} | k ∈ N}
such that alt(gk) ≥ s(gk)

log3 5 while DT(gk) is Ω(n
log6 3
k ).

The main tool used in proving Theorem 1.2 is a bound on the alternation of composed Boolean
functions (Lemma 3.5).

As mentioned before, Lin and Zhang [20] showed that Xor Log-Rank Conjecture is true
for all Boolean functions satisfying alt(f) ≤ poly(log sparsity(f)). As our main result, we further
strengthen this when sparsity(f) < n.

Theorem 1.3 (Main). For large enough n, the Xor Log-Rank Conjecture is true for all
f : {0, 1}n → {0, 1}, such that alt(f) ≤ poly(log n) where f depends on all its inputs.

Our starting point in proving the above result is a relation connecting deg, deg2, degm and alt. For
all Boolean functions f ,

deg(f) ≤ alt(f) · deg2(f) · degm(f) (1)

We remark that for special cases, Eq. (1) is known to be true. For instance, if f is a monotone,
it can be shown1 that deg(f) ≤ deg2(f)2. However, there are functions of large alternation where
deg2(f) is constant while deg(f) is n (for instance, parity on n bits). Hence, we cannot upper
bound degree by F2-degree in general but Eq. (1) (for m = 2) says that we can indeed upper bound
deg(f) by deg2(f) using alt(f). This case (m = 2) is implicit in [20]. We now give three further
applications of Eq. (1) (see Section 5).

As our first application, we show that using a related result due to Gopalan et al. [12] and Eq. (1)
(with m = 2), all Boolean functions of bounded alternation (alt(f) = O(1)) must have deg2(f) =
Ω(log n) (see Corollary 5.1 for a generalization).

As a second application, we show that Boolean functions with bounded alternation have high
sparsity. Kulkarni and Santha [19] had studied the relation between log sparsity(f) and deg(f) in
the case of restricted families of monotone functions and asked if they are linearly related in the
case of monotone functions. In this direction, we show the following lower bound for log2 sparsity(f)
in terms of deg(f).

1When f is monotone, it is known that DT(f) ≤ s(f)2 and s(f) ≤ deg2(f) (Corollary 5 and Proposition 4 resp.,
of [6]). Proposition 4 of [6] though states that s(f) ≤ deg(f) for any monotone f , the argument is valid for deg2(f)
also. Since, deg(f) ≤ DT(f) (cf. [6]), deg(f) ≤ deg2(f)

2.
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Theorem 1.4. For Boolean functions f with alt(f) = O(1), log sparsity(f) = Ω(
√
deg(f))

As a third application, we observe that Eq. (1) implies an improved upper bound for influence
(denoted by I[f ], see Section 2 for a definition) to deg2(f)2 ·alt(f). This improves the result of Guo
and Komargodski [14] who showed that I[f ] = O(alt(f)

√
n), thus giving faster learning algorithms

for functions of bounded alternation in the PAC learning model.

2 Preliminaries

We introduce the notations and definitions used in this paper. All logarithms are to the base 2
unless otherwise stated. Let [n]

def
= {1, 2, . . . , n}. For i ∈ [n], define ei to be an n bit Boolean string

with one in ith location and zero elsewhere. A Boolean function f : {0, 1}n → {0, 1} is monotone
if ∀x, y ∈ {0, 1}n, x ≺ y =⇒ f(x) ≤ f(y) where, x ≺ y iff ∀i ∈ [n], xi ≤ yi. The alternation
of a Boolean function is a measure of non-monotonicity of the Boolean function. More precisely,
if we define a collection of distinct inputs x0, x1, x2 . . . , xn ∈ {0, 1}n satisfying 0n = x0 ≺ x1 ≺
x2 ≺ · · · ≺ xn = 1n as a chain in the Boolean hypercube Bn then, alternation of f (denoted by
alt(f)) is defined as max {alt(f, C) | C is a chain in Bn} where alt(f, C)) is |{i | f(xi−1) 6= f(xi), xi ∈
C, i ∈ [n]}|. Indeed for a monotone f , alt(f) = 1.

Any chain C of a Boolean hypercube over {0, 1}n is uniquely determined by a permutation
σ ∈ Sn and vice versa. An x ∈ {0, 1}n belongs to a chain C defined by σ ∈ Sn iff x = 0n or

x =
∨wt(x)
i=1 eσ(i) where the OR is taken coordinate wise and wt(x) is the number of ones in x. If a

chain is defined using a permutation σ, we use σ to denote the chain C.
For a Boolean function f on m variables and g on n variables, we denote f ◦ g as a function

on mn variables {x11, . . . , xmn} defined as f(g(x11, . . . , x1n), g(x21, . . . , x2n), . . . , g(xm1, . . . , xmn)).
We define g◦k as the Boolean function on nk variables as g◦(k−1) ◦ g for k > 1 and g for k = 1.

Given a Boolean function, there always exists a unique n variable multilinear polynomial over
R[x1, . . . , xn] such that the evaluation agrees with the function on {0, 1}n. The degree of function
f is the degree of such a polynomial (denoted by deg(f)). If we consider the polynomial to be over
Zm[x1, . . . , xn] for an integer m > 1 instead, we get the Zm-degree of f (denoted by degm(f)). If
m = 2, it is the F2-degree of f (denoted by deg2(f)).

A deterministic Boolean decision tree is a rooted tree where the leaves are labeled 0 or 1 and
non-leaf nodes labeled by a variable having two outgoing edges (corresponding to the value taken
by the variable). A decision tree is said to compute a Boolean function f , if for all inputs x, the
path from root to the leaf determined by x is labeled f(x). Define DT(f) as the depth of the
smallest depth decision tree computing f .

For an x, y ∈ {0, 1}n, we denote by x⊕ y, the input obtained by taking bitwise parity of x and
y. For B ⊆ [n], eB denotes the characteristic vector of B. For f : {0, 1}n → {0, 1} and x ∈ {0, 1}n,
define the sensitivity of f on x (denoted by s(f, x)) as |{i | f(x⊕ ei) 6= f(x), i ∈ [n]}|. We define
the block sensitivity of f on x (denoted by bs(f, x)) as the size of maximal collection of disjoint
non-empty sets {Bi} where each Bi ⊆ [n] in the collection satisfy f(x ⊕ eBi) 6= f(x). Certificate
complexity of f on input x (denoted by C(f, x)) is the size of the smallest certificate S ⊆ [n] such
that ∀y ∈ {0, 1}n with y|S = x|S =⇒ f(y) = f(x). The sensitivity of f (denoted by s(f)) is
defined as maxx∈{0,1}n s(f, x). The influence of a Boolean function f (denoted by I[f ]) is defined as
Ex∈{0,1}n [s(f, x)]. The block sensitivity of f (denoted by bs(f)) is maxx∈{0,1}n bs(f, x). Note that
I[f ] ≤ s(f) ≤ bs(f). It is also known that I[f ] ≤ deg(f) ≤ DT(f) (cf. [6]).

4



For x ∈ {0, 1}n and S ⊆ [n], define χS(x) = (−1)
∑

i∈S xi . Any f : {0, 1}n → {−1, 1} can be
uniquely expressed as

∑
S⊆[n] f̂(S)χS(x) where f̂(S) ∈ R, indexed by S ⊆ [n], denotes the Fourier

coefficients of f which is 1
2n
∑

x f(x)χS(x) (see [27] for more details). The sparsity of a Boolean
function f (denoted by sparsity(f)) is the number of non-zero Fourier coefficients of f . For Boolean
functions f whose range is {0, 1}, we define sparsity of f to be the sparsity of the function 1− 2f
in this paper.

3 Alternation vs Sensitivity and Alternation vs Logarithm of Spar-
sity

In this section, we show that there exists a family of function F = {fk | k ∈ N} with alt(fk) is at least
exponential in s(fk), DT(fk) and log sparsity(fk) respectively (Section 3.1). Complementing this,
we show that for any Boolean function f , alt(f) can be at most exponential in DT(f) (Section 3.2).
We prove a bound on the alternation of composed Boolean functions and use it to obtain a family
of functions with super-linear gap between alternation and sensitivity with large decision tree depth
unlike functions in F (Section 3.3).

3.1 Exponential Gaps : Alternation vs Decision Tree Depth

We prove Theorem 1.1 in this section. We first show that there exists a family of function F =
{fk | k ∈ N} with alt(fk) equals 2DT(fk) − 1 (Theorem 3.2). Since for any Boolean function f ,
s(f) ≤ DT(f) (cf. [6]), we have, alt(fk) = 2DT(fk) − 1 ≥ 2s(fk) − 1 and since for any Boolean
function f , log sparsity(f) ≤ 2deg(f) ≤ 2DT(f) (cf. [27]), we get that for fk, alt(fk) = 2DT(fk)−1 ≥
20.5 log sparsity(fk) − 1 thereby proving Theorem 1.1.

Hence, one cannot hope to show that for all Boolean functions f , alternation is upper bounded
polynomially by sensitivity of f or polynomially by logarithm of sparsity of f . We now define our
family F of Boolean functions.

Definition 3.1. Let F = {fk | k ∈ N} be a family of Boolean functions where for every k ∈ N,

fk : {0, 1}2k−1 → {0, 1} is defined by the decision tree which is a full binary tree of depth k with
each of the 2k − 1 internal node querying a distinct variable and each of the nodes at level k have
left leaf child labeled 0 and right leaf child labeled 1.

A Boolean function f3 ∈ F is described using a decision tree in Fig. 1a.

Theorem 3.2. For every k ≥ 1, fk ∈ F , alt(fk) = 2DT(fk) − 1.

Proof. By definition, fk is computed by a decision tree of depth k. We show that for k ≥ 1,
alt(fk) ≥ 2k − 1. Since fk is defined on 2k − 1 variables, we get that alt(fk) = 2k − 1 thereby
completing the proof.

Since we need to work with functions whose variable set is not necessarily numbered from 1
to n, we associate bijections (instead of permutations) with chains. For any set Ω, let BΩ be
defined as {σ : [|Ω|]→ Ω | σ is a bijection}. For a Boolean function f defined on the variables
{xi1 , xi2 , . . . , xin}, var(f) be defined as {i1, i2, . . . , in}.

We now show that alt(fk) ≥ 2k − 1 by induction on k. For k = 1, since f depends only on 1
variable the result holds.
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(a) Boolean function f3 ∈ F
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0 0 . . . 0
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1 1 . . . 1
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← ym+1

← ym+2

← yn

...

...

...

...

...
...

...
...

(b) The chain σ constructed in the proof of Theo-
rem 3.2. Note that Ω1 and Ω2 need not be contigu-
ous.

Figure 1

Suppose that the result holds for fk ∈ F . For fk+1 ∈ F on n = 2k+1−1 variables {x1, x2, . . . , xn},
let T be the decision tree (as in Definition 3.1) computing fk+1 of depth k + 1 with xj being the
root variable for some j ∈ [n]. Let T1 and T2 be the left and right subtree of the root node xj .
Consider the Boolean function f1 (resp. f2) computed by the decision tree T1 (resp. T2). Note
that since T1 and T2 are obtained from T in this way, by Definition 3.1, f1 and f2 belongs to F
and computes the same function upto variable renaming. Also note that both f1 and f2 are on
m = 2k − 1 variables. Since both T1 and T2 are of depth k, by inductive hypothesis, alt(f1) ≥ m
and alt(f2) ≥ m. Using this, we now construct a chain for fk+1 of alternation 2k+1 − 1.

Let Ω1 = var(f1), Ω2 = var(f2). Let σ1 ∈ BΩ1 and σ2 ∈ BΩ2 be such that alt(f1, σ1) = 2k−1 and
alt(f2, σ2) = 2k − 1. We now define a σ ∈ Bvar(f) = BΩ1∪Ω2∪{j} as σ(i) = σ1(i) if i ∈ {1, 2, . . . ,m},
σ(m + 1) = j and σ(m + 1 + i) = σ2(i) if i ∈ {1, 2, . . . ,m}. By definition, σ is indeed a bijection.
The σ obtained is pictorially represented in Fig. 1b for clarity of exposition.

We now claim that alt(f, σ) = 2k+1 − 1. To show this, consider the chain corresponding to
σ given by 0n ≺ y1 ≺ . . . ym ≺ ym+1 ≺ . . . ≺ yn = 1n all belonging to {0, 1}n. By definition
of σ, for i ∈ [m] since jth bit of yi is 0, f(yi) = f1(yi|Ω1) and for i ∈ {0} ∪ [m], since jth bit of
ym+1+i is 1, f(ym+1+i) = f2(ym+1+i|Ω2). Again by definition of σ, for i ∈ [m], 0m along with the
elements yi|Ω1 for i ∈ [m] (in that order) is a chain witnessing f1 alternating m times and ym+1+i|Ω2

for i ∈ {0} ∪ [m] (in that order) is a chain witnessing f2 alternating m times. Now observe that
f(ym) 6= f(ym+1). This is because f(ym) is f1 evaluated on xi = 1 for all i ∈ Ω1 is the rightmost
child of T1 which is 1 and f(ym+1) is f2 evaluated on xi = 0 for all i ∈ Ω2 is the leftmost child of
T2 which is 0. Hence alt(f, σ) = alt(f1, σ1) + alt(f2, σ2) + 1 = 2m + 1 = 2k+1 − 1 completing the
induction.

In the next section, we show that for any Boolean function f , we can indeed upper bound
alternation of f by an exponential in decision tree depth of f .
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3.2 Alternation is at most Exponential in Decision Tree Depth

In this section, we show that for all Boolean functions f , alt(f) ≤ 2DT(f)+1 − 1. Markov [22]
studied a parameter closely related to alt(f) defined as decrease (denoted by dc(f)) where the
definition is same as alternation except that the flips in the chain from 1 to 0 (correspond-
ing to a decrease in the function value) alone are counted. Hence for any Boolean function f ,
alt(f) ∈ {2dc(f)− 1, 2dc(f), 2dc(f) + 1}. Markov [22] showed the following tight connection be-
tween negations needed to compute a Boolean function and its decrease.

Theorem 3.3 (Markov [22]). Let negs(f) be the minimum number of negations needed in any
circuit computing f . Then, for an f : {0, 1}n → {0, 1}, negs(f) = dlog(1 + dc(f))e.

We also use the notion of a connector for two Boolean functions which is a crucial idea used by
Markov in proving the above theorem. A connector of two Boolean functions f0 and f1 is a function
g(b0, b1, x) on n + 2 bits such that g(0, 1, x) = f0(x) and g(1, 0, x) = f1(x). Markov showed the
following remarkable bound that negs(g) ≤ max{negs(f0), negs(f1)} (for a proof, see Jukna [17]).
We now prove our result which follows from an inductive application of Theorem 3.3.

Theorem 3.4. For any f : {0, 1}n → {0, 1}, alt(f) ≤ 2DT(f)+1 − 1.

Proof. Since alt(f) ≤ 2dc(f)+1, it suffices to show that dc(f) ≤ 2DT(f)−1. Proof is by induction on
DT(f). For DT(f) = 1, the function depends on at most 1 variable, giving dc(f) ≤ 1 = 2DT(f) − 1.
For any f with DT(f) ≥ 2 computed by a decision tree T of depth k, let xi be the variable
queried at the root of T for some i ∈ [n]. Define f0 as f restricted to xi = 0 and f1 as f
restricted to xi = 1. Removing the node xi from T gives two decision trees which computes f0

and f1 (respectively) giving DT(f0) ≤ DT(f) − 1 and DT(f1) ≤ DT(f) − 1. Hence by induction,
dc(f0) ≤ 2DT(f0) − 1 ≤ 2DT(f)−1 − 1 and similarly, dc(f1) ≤ 2DT(f)−1 − 1.

Applying Theorem 3.3, we get, negs(f0) = dlog(dc(f0) + 1)e (and similarly for f1). Let g be
the connector for f0 and f1. Since f(x) = xi ∧ f1(x) ∨ ¬xi ∧ f0(x), f(x) = g(¬xi, xi, x). Applying
Markov’s result on the number of negations needed in computing g, we get negs(f) ≤ negs(g)+1 ≤
1 + max{negs(f0), negs(f1)}. Since, max{negs(f0), negs(f1)} ≤

⌈
log(2DT(f)−1 − 1 + 1)

⌉
which is

DT(f)− 1, negs(f) ≤ DT(f). Applying Theorem 3.3, on f completes the induction.

Note that for the family of functions F , Theorem 3.2 shows that the above result is asymptoti-
cally tight. In Appendix A.1, we present a simpler proof of a slightly weaker result (in terms of an
additive constant) that for all f , alt(f) ≤ 2DT(f)+1 + 1.

3.3 Super Linear Gaps Between Alternation and Sensitivity

In this section, we exhibit a family of functions with a super-linear gap between alternation and
sensitivity with high decision tree depth. We start by giving a motivation for this study.

In Section 3.1, we showed the existence of a family F of Boolean functions with alternation at
least exponential in sensitivity and alternation is at least logarithm of sparsity. Hence this family
F rules out the possibility of upper bounding alternation by a polynomial sensitivity or a polyno-
mial in logarithm of sparsity for all Boolean functions which would have settled the Sensitivity
Conjecture and Xor Log-Rank Conjecture by the results of Lin and Zhang [20]. However,
this is still unsatisfactory as the above mentioned conjectures holds true for the family F as argued
below.
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Sensitivity Conjecture is true for all fk ∈ F : To argue this, we first observe that as fk
depends on all its inputs, s(fk) = Ω(log nk) [28]. Hence we can conclude that DT(fk) = O(s(fk)).
Since deg(fk) ≤ DT(fk) (cf. [6]), we get deg(fk) = O(s(fk)). Note that, this argument is valid for
any function f that depends on n variables, and DT(f) = O(log n).
Xor Log-Rank Conjecture is true for all fk ∈ F : Let Tk be the decision tree computing fk
(as per Definition 3.1). Consider the Fourier expansion of fk : {0, 1}nk → {−1, 1} given by,

fk(x) =
∑

a∈{0,1}k
val(`a)

∏
ij∈var(`a)

1 + (−1)xij (−1)aj

2

=
−1

2k

∑
a∈{0,1}k

val(`a)
∑

S⊆var(`a)

χS(x)
∏
j:ij∈S

(−1)aj

where, for the leaf `a of Tk, a ∈ {0, 1}k is the value taken by the variables with indices var(`a) =
{i1, i2, . . . , ik} in the path to `a and val(`a) ∈ {−1, 1} is the value of fk on the input a. For
a, b ∈ {0, 1}k, if a 6= b then var(`a) 6= var(`b) as the variable set in each path of Tk are different.
Hence χS(x) for S = var(`a) is never canceled in the above expansion and we can conclude that
sparsity(fk) ≥ 2k. Since DT(fk) = k, we have DT(fk) ≤ log sparsity(fk). Using the fact that for any
Boolean function f , CC⊕(f) ≤ 2DT(f) [23], CC⊕(fk) = O(log sparsity(fk)) thereby concluding that
Xor Log-Rank Conjecture is true for all fk ∈ F .

The key property of f ∈ F due to which both the conjectures are true is that the decision tree
complexity of f ∈ F is logarithmic in the number of variables of f . In fact for any f : {0, 1}n →
{0, 1} which satisfy alt(f) ≥ 2DT(f) must have DT(f) = O(log n) as alt(f) ≤ n. Hence, we ask if
there exists a family of functions f where alt(f) grows faster than s(f) but DT(f) is not very small.
Super-linear Gap between Alternation and Sensitivity :

In the rest of this section, we answer this question by exhibiting a family of Boolean functions
G = {gk : {0, 1}nk → {0, 1} | k ∈ N} with alt(gk) = ω(s(gk)) and DT(gk) is Ω(n

log6 3
k ). Before pro-

ceeding, we show a lower bound on the alternation of composition of two Boolean functions in
terms of its alternation.

Lemma 3.5. For any g : {0, 1}n → {0, 1}, with g(0n) 6= g(1n) and any f : {0, 1}m → {0, 1},
alt(f ◦ g) ≥ alt(f) · alt(g).

Proof. Without loss of generality, assume g(0n) = 0 and g(1n) = 1 (otherwise work with ¬g as
alt(g) = alt(¬g)). Let A = (0n = z0 ≺ z1 ≺ · · · ≺ zn = 1n) be a chain on {0, 1}n such that
the alternation of g is maximum. Consider any maximum alternation chain of f and let σ be the
permutation associated with the chain. We exhibit a chain B = (y0, y1, . . . , ynm) on {0, 1}nm with
alt(f) · alt(g) many alternations.

We divide the inputs in the chain B into m blocks of size n each. We say that for a k ∈ [nm],
the input yk ∈ {0, 1}nm belongs to the block b if b = d kne. We define the position of yk in its block,
pos(k), as n if n | k and (k mod n) otherwise. Let yk = (xk1, x

k
2, . . . , x

k
m) where xki ∈ {0, 1}n. For

k = 0, define xki = 0n for all i ∈ [m] and for k = nm, define xki = 1n for all i ∈ [m]. For the
remaining values of k, xki for i ∈ [m] is defined as

xki =


zn = 1n if i ∈ {σ(1), σ(2), . . . , σ(b− 1)} and b ≥ 2

zpos(k) if i = σ(b)

z0 = 0n otherwise
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We can see that y0 = 0nm and ynm = 1nm and for k ∈ [nm], from the above definition, yk−1 ≺ yk
as ∀i ∈ [m] xk−1

i ≺ xki . We now argue that f ◦ g alternates at least alt(f) · alt(g) times in the chain
B. Consider the input (g(xk1), g(xk2), . . . , g(xkm)) to the function f and let yk belong to the block b.

Consider the case when b = 1. In this case, all of xki except i = σ(b) is 0n. As long as yk stays
within the block b, the input the function f changes its value only at xkσ(b) = xkσ(1) . Since g(xkσ(b))

changes its value alt(g) times, f ◦ g will also alternate alt(g) times if value of f changes on flipping
location σ(b) in its input.

For k such that b > 1, by definition of yk, x
k
σ(1), . . . , x

k
σ(b−1) is 1n and xkσ(b+1) . . . , x

k
σ(m) is 0n.

Since g(0n) = 0 and g(1n) = 1, the input to f will be either r1 = ∨bi=1eσ(i) or r0 = ∨b−1
i=1eσ(i). Since

g alternates alt(g) times thereby changing the input to f between r0 and r1, f ◦g will also alternate
alt(g) times if value of f changes on flipping location σ(b).

Thus in both cases, if f alternates once, f ◦g alternates alt(g) in the chain B. Since f alternates
alt(f) times on σ, f ◦ g alternates alt(f) · alt(g) times in the chain B.

For f = ∨n and g being a parity on m bits for any odd integer m, alt(f ◦g) ≥ mn by Lemma 3.5
while alt(f) · alt(g) = m. Thus, in general, it is not true that alt(f ◦ g) ≤ alt(f) · alt(g) and hence
Lemma 3.5 is not tight. Using Lemma 3.5, we prove the following Corollary.

Corollary 3.6. For any h : {0, 1}n → {0, 1}, with h(0n) 6= h(1n), for any k ≥ 2, alt(h◦k) ≥ alt(h)k.

Proof. By induction on k. For k = 2, applying Lemma 3.5 with f = g = h, we get that alt(h ◦h) ≥
alt(h)2. Now for k > 2, applying Lemma 3.5 with f = h◦k−1 and g = h and by inductive hypothesis,
alt(h◦k−1 ◦h) ≥ alt(h◦k−1) · alt(h) ≥ alt(h)k−1 · alt(h). Hence alt(h◦k) = alt(h◦k−1 ◦h) ≥ alt(h)k.

We use Corollary 3.6 to exhibit a family of Boolean functions for which alternation is super-
linear in sensitivity.

Theorem 1.2 There exists a family of Boolean functions G = {gk : {0, 1}nk → {0, 1} | k ∈ N}
such that alt(gk) ≥ s(gk)

log3 5 while DT(gk) is Ω(n
log6 3
k ).

Proof. Consider the address function ADDRt : {0, 1}t+2t → {0, 1} defined as ADDRt(x1, x2, . . . , xt,
y0y1, y2, . . . , y2t−1) = yint(x1x2...xt) where int(x) is the integer corresponding to the binary string
x. Consider the chain (000000, 001000, 101000, 101010, 111010, 111011, 111111). Since, ADDR2

changes value 5 times along this chain, alt(ADDR2) ≥ 5 while s(ADDR2) = 3. We consider the family
of functions G = {gk | k ∈ N} obtained by composing ADDR2 k times. Since sensitivity of composed
function is at most the product of their sensitivity [29], s(gk) ≤ s(ADDR2)k = 3k. Since g1 = ADDR2

is 0 on all zero input and 1 on all ones input, applying Corollary 3.6, alt(gk) ≥ 5k ≥ s(gk)
log3 5.

Note that DT(gk) = DT(ADDR2)k (as decision tree depth multiplies under composition [29]). Hence

DT(gk) = 3k which is n
log6 3
k where nk is the number of variables of gk and hence does not grows

logarithmic in nk.

Remark 3.7. We observe that for the family of functions G = {gk : {0, 1}nk → {0, 1} | k ∈ N}
of Theorem 1.2, log sparsity(gk) ≤ 2deg(gk) = 2 · 3k [27]. In Theorem 1.2, we also showed that
alt(gk) ≥ 5k which is at least (0.5 log sparsity(gk))

log3 5. Hence the same family also exhibits a
super-linear gap between alt(gk) and log sparsity(gk).
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4 Xor Log-Rank Conjecture for Bounded Alternation Boolean
Functions

In this section, we prove the Xor Log-Rank Conjecture for f when alt(f) is at most poly(log n).
Before proceeding, we prove that for all Boolean functions f , deg(f) ≤ alt(f)deg2(f)degm(f)
(Eq. (1) from Introduction) in Lemma 4.1. We remark that the case m = 2 is already observed by
Lin and Zhang (Theorem 14, [20]).

Lemma 4.1. For any Boolean function f : {0, 1}n → {0, 1}, and m > 1,

deg(f) ≤ alt(f) · deg2(f) · degm(f) (1)

Proof. Proof of this lemma closely follows the argument of Lin and Zhang (Theorem 14, [20]) Fix
any Boolean function f . Buhrman and de Wolf [6] showed that given a certificate of f on 0n

of size C(f, 0n) and a polynomial representation of f over reals with degree of deg(f), DT(f) ≤
C(f, 0n)·deg(f). Their idea is that any certificate of f must set at least one variable in all monomials
of maximum degree in the polynomial representation of f . Hence, querying variables in a certificate
must reduce the degree of the function by at least once. Observe that the same argument holds
even if the polynomials are represented over Zm. Hence DT(f) ≤ C(f, 0n) · degm(f).

Applying a result of Lin and Zhang, who showed that C(f, 0n) ≤ alt(f)deg2(f) (Lemma 12(2)
of [20]), we get that, DT(f) ≤ alt(f)deg2(f)degm(f). Observing that deg(f) ≤ DT(f) (cf. [6])
completes the argument.

Applying Lemma 4.1 with m = 2, we have for any Boolean function f ,

deg(f) ≤ alt(f) · deg2(f)2 (2)

As mentioned above, Eq. (2) is implicit in the result of [20]. We now proceed to prove the
main result of this section. As a first step towards showing alt(f) ≤ poly(log n) implies that the
Xor Log-Rank Conjecture holds for f , we prove the following bound on the weighted average
of the Fourier coefficients, weighted by the number of elements.

Proposition 4.2. For an f : {0, 1}n → {−1, 1} that depends on all its inputs,
∑

S |f̂(S)||S| ≥ n

Proof. It suffices to show that for every i ∈ [n],
∑

S:i∈S |f̂(S)| ≥ 1. Fix an i ∈ [n]. Since

f(x) =
∑
S

f̂(S)χS(x) =
∑

S⊆[n]\{i}

(f̂(S) + f̂(S ∪ {i})(−1)xi)
∏
j∈S

(−1)xj

for any S ⊆ [n] \ {i} and b ∈ {0, 1}, f̂ |xi=b(S) = f̂(S) + (−1)b · f̂(S ∪ {i}). Hence we conclude that

for any x, fxi=0(x) − fxi=1(x) =
∑

S⊆[n]\{i} 2f̂(S ∪ {i})
∏
j∈S(−1)xj . Now taking absolute values

on both sides and applying triangle inequality,∣∣∣∣fxi=0 − fxi=1

2

∣∣∣∣ =

∣∣∣∣∣∣
∑

S⊆[n]\{i}

f̂(S ∪ {i})
∏
j∈S

(−1)xj

∣∣∣∣∣∣ ≤
∑

S⊆[n]\{i}

∣∣∣f̂(S ∪ {i})
∣∣∣

Since f is sensitive at i on some input a ∈ {0, 1}n, for the input a′ obtained by removing ith bit from
a, |fxi=0(a′) − fxi=1(a′)| = 2 implying

∑
S:i∈S |f̂(S)| ≥ 1 by the above equation which completes

the proof.
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We show that if alt(f) ≤ poly(log n), then deg(f) ≤ poly(log sparsity(f)). This implies that the
Xor Log-Rank Conjecture holds2 for f . As a first step, using Proposition 4.2, we show that if
deg(f) ≤ poly(log n), then deg(f) ≤ poly(log sparsity(f)) (Lemma 4.3). We then argue using Eq. (2)
that alt(f) ≤ poly(log n) implies that deg(f) ≤ poly(log n) proving Theorem 1.3.

Lemma 4.3. For an f : {0, 1}n → {0, 1} which depends on all its inputs and for large enough n,
if deg(f) ≤ (log n)c for some c > 0, then deg(f) ≤ (log sparsity(f))c.

Proof. Since the f depends on all the inputs, applying Proposition 4.2 to g(x) = 1 − 2f(x), n ≤∑
S |ĝ(S)||S| ≤ deg(f)

∑
S |ĝ(S)| ≤ deg(f)

√
sparsity(f). In concluding this, we used the fact that

maximum sized index |S| for which ĝ(S) 6= 0 is deg(f) and
∑

S |ĝ(S)| ≤
√
sparsity(f) [27]. Thus,√

sparsity(f) · deg(f) ≥ n. Since deg(f) ≤ (log n)c, we have
√
sparsity(f) ≥ n

(logn)c ≥
√
n for large

enough n. Hence deg(f) ≤ (log n)c ≤ (log sparsity(f))c.

Theorem 1.3 For large enough n, the Xor Log-Rank Conjecture is true for all f : {0, 1}n →
{0, 1}, such that alt(f) ≤ poly(log n) where f depends on all its inputs.

Proof. If deg2(f) = 1, then f is a parity function and the Xor Log-Rank Conjecture holds
for f . Hence we can assume that deg2(f) > 1. If alt(f) ≤ deg2(f), then by Eq. (2), we have
deg(f) ≤ deg2(f)3 ≤ log sparsity(f)3 (since deg2(f) > 1, deg2(f) ≤ log sparsity(f) [4]). Hence
the Xor Log-Rank Conjecture holds for f . If alt(f) > deg2(f), then by Eq. (2), deg(f) <
alt(f)3. Since alt(f) ≤ poly(log n), we have deg(f) ≤ poly(log n). Applying Lemma 4.3, we get that
deg(f) ≤ poly(log sparsity(f)).

Remark 4.4. It should be noted that for f satisfying conditions of Theorem 1.3, the Sensitivity
Conjecture is true. This is because for f that depends on all its inputs, s(f) = Ω(log n) [28]
implying that alt(f) ≤ poly(log n) ≤ poly(s(f)). Hence the Sensitivity Conjecture is true for
f by the result of Lin and Zhang [20].

We conclude this section, by giving an alternate proof for the result of Lin and Zhang [20] that if
for all Boolean functions f , alt(f) ≤ poly(log sparsity(f)), then the Xor Log-Rank Conjecture
is true by making use of Eq. (2). Then, we give a trade-off between sensitivity and sparsity of
Boolean functions.

Theorem 4.5. For any Boolean function f , alt(f) ≤ (log sparsity(f))c then Xor Log-Rank
Conjecture holds.

Proof. For any Boolean function f with alt(f) ≤ (log sparsity(f))c we have the following exhaustive
cases.

[Case 1 : alt(f) = 1 ] : When alt(f) = 1, f is unate. Hence the Xor Log-Rank Conjecture
holds due to the result of [23].

[Case 2: deg2(f) is constant ] : When deg2(f) is constant, the Xor Log-Rank Conjecture
holds due to the result of [30].

2Using the facts that CC⊕(f) ≤ 2DT(f) [23] and DT(f) ≤ deg(f)4 [6], CC⊕(f) = O(deg(f)4) implying CC⊕(f) =
O(poly(log sparsity(f)).
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[Case 3 : 1 < alt(f) < deg2(f) ] : For this case, when alt(f) < deg2(f), by Eq. (2), deg(f) ≤
deg2(f)3 which is upper bounded by (log sparsity(f))3 (since deg2(f) > 1, deg2(f) ≤ log sparsity(f) [4]).
Thus deg(f) ≤ (log sparsity(f))3. On the other hand, CC⊕(f) ≤ 2DT(f) [23]. Also it is known
that DT(f) ≤ deg(f)4 [6]. Hence CC⊕(f) = O(deg(f)4) giving CC⊕(f) = O((log sparsity(f))12).

[Case 4 : deg2(f) ≤ alt(f) ≤ (log sparsity(f))c ] : we have CC⊕(f) = O(deg(f)`) ≤ O(alt(f)3`)
where the last inequality follows by Eq. (2) in this case. By assumption, log sparsity(f) ≥
alt(f)1/c. Thus CC⊕(f) = O(log sparsity(f))3`/c).

From Proposition 4.2, we derive a trade-off between sensitivity and sparsity of Boolean functions.

Corollary 4.6. For any Boolean function f which depends on all its n bits, s(f)
√
sparsity(f) ≥ n

Proof. Applying Cauchy-Schwartz inequality to
∑

S |f̂(S)||S| ≥ n from Proposition 4.2, we get

∑
S

|f̂(S)||S| ≤
√∑

S

|S|2f̂(S)2 · sparsity(f) ≤ s(f)
√
sparsity(f)

The last inequality follows since
∑

S |S|2f̂(S)2 = 1
2n
∑

x s(f, x)2 ≤ s(f)2 (cf. [27]).

5 Three Further Applications of the deg vs deg2 Relation

We showed that for all Boolean functions f , deg(f) ≤ alt(f)deg2(f)2 (Eq. (2)) in Section 4. We
now give three applications of this result. Firstly, we shows that Boolean functions of bounded
alternation must have F2 degree Ω(log n). Secondly, we partially answer a question raised by
Kulkarni and Santha [19] on the sparsity of monotone Boolean functions by show a variant of
their statement. Thirdly, we observe that Eq. (2) improves a bound on I[f ] due to Guo and
Komargodski [14].

F2-degree of Bounded Alternation Functions : For an n bit monotone Boolean function f ,
we have deg(f) ≤ deg2(f)2. If f depends on all its n bits then deg(f) ≥ log n − O(log log n) [26].
This implies that for monotone functions, deg2(f) ≥ Ω(

√
log n). We now present a short argument

improving this bound using Eq. (2).
Suppose f : {0, 1}n → {0, 1} and it depends on all its input bits. Gopalan et al. [12] showed

that for any such Boolean function, deg(f) ≥ n/2deg2(f). Along with Eq. (2), this implies that for
an f with alt(f) ≤ nε where 0 < ε < 1, deg2(f)22deg2(f) ≥ n1−ε. Hence, deg2(f) ≥ (1 − ε) log n −
2(log

(
1−ε

2 log n
)
). This gives us the following corollary.

Corollary 5.1. Fix any 0 < ε < 1. Let f : {0, 1}n → {0, 1} be such that alt(f) ≤ nε and it depends
on all its inputs. Then,

deg2(f) ≥ (1− ε) log n−O
(

log

(
1− ε

2
log n

))
Hence, Boolean functions whose alternation is at most nε, cannot have a constant F2-degree.

However, this need not be the case if we allow alt(f) to be n (for instance, parity on n bits).
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Fourier Spectrum for Bounded Alternation Functions : Kulkarni and Santha [19] studied
certain special Boolean functions which are indicator functions fM of a bridgeless matroids M on
ground set [n]. While it is known that for any f , log sparsity(f) ≤ 2 · deg(f) [27], Kulkarni and
Santha showed that this upper bound is asymptotically tight for f = fM. They observed that fM
is a monotone function (by virtue of the underlying support set being a matroid) and asked if a
similar statement holds for the general class of monotone Boolean functions. More precisely, they
asked whether log sparsity(f) = Ω(deg(f)) for every monotone Boolean function f .

We show that for functions of constant alternation (which includes monotone functions), log sparsity(f)
is relatively large. This can be seen as a variant of the question posed by Kulkarni and Santha.

Theorem 1.4 For Boolean functions f with alt(f) = O(1), log sparsity(f) = Ω(
√
deg(f)).

Proof. Observe that for deg2(f) = 1, f is parity of constant number of variables or its negation
as alt(f) = O(1). Hence the result holds for this case. For deg2(f) > 1, by Eq. (2) and the
result that deg2(f) ≤ log sparsity(f) when deg2(f) > 1 [4], we get that deg(f) = O(deg2(f)2) =
O(log sparsity(f)2).

Note that Theorem 1.4 does show that logarithm of sparsity of monotone functions is nearly
close to the upper bound possible but does not completely settles the question of Kulkarni and
Santha.

Improved Upper Bound for I[f ] : For an n bit Boolean function, the best known upper
bound of I[f ] in terms of alt(f) is I[f ] ≤ O(alt(f)

√
n) due to Guo and Komargodski [14] using a

probabilistic argument. In Appendix A.2 we give a simpler proof using a recent characterization of
alternation due to Blais et al. [5]. Since I[f ] ≤ deg(f) [27], Eq. (2) gives an improvement over the
known bound on I[f ] when deg2(f) < 4

√
n.

Proposition 5.2. For any f : {0, 1}n → {0, 1}, I[f ] ≤ alt(f) · deg2(f)2.

This immediately gives improved learning algorithms for functions of bounded alternation in the
PAC learning model.

Blais et al. [5] gave a uniform learning algorithm for the class of functions Ct computable by
circuits with at most t negations that can learn an f ∈ Ct from random examples with error ε > 0
in time nO(2t

√
n)/ε where t ≤ O(log n). In terms of alternation, the runtime is nO(alt(f)

√
n)/ε. The

main tool used in this area is the low degree learning algorithm due to Linial, Mansour and Nisan
[21] using which the following result is derived in [27].

Lemma 5.3 (Corollary 3.22 and Theorem 3.36 [27]). For t ≥ 1, let

At = {f | f : {−1, 1}n → {−1, 1} , I[f ] ≤ t}

and
Bt = {f | f : {−1, 1}n → {−1, 1} , deg(f) ≤ t}

Then At can be learned from random examples with error ε in time nO(t/ε) for any ε ∈ (0, 1) and
Bt can be exactly learned from random examples in time ntpoly(n, 2t).

The claimed result follows from Proposition 5.2. Applying Lemma 5.3, we obtain

• an exact learning algorithm from random examples with a runtime of nO(k)poly(n, 2O(k)) for
k = alt(f)deg2(f)2 and
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• an ε error learning algorithm from random examples with a runtime nO(alt(f)deg2(f)2/ε)

thereby removing the dependence on the parameter n in the exponent and improving the runtime
for those f such that deg2(f) < 4

√
n.

6 Discussion and Open Problems

In this paper, we showed a limitation of alternation as a Boolean function parameter in settling
the Sensitivity Conjecture and Xor Log- Rank Conjecture. In spite of this limitation, we
derived that both the above conjectures are true for functions whose alternation is upper bounded
by poly(log n). En route the proof, we showed that the degree can be upper bounded in terms of F2

degree and alternation (Eq. (2)) and demonstrated its use with three applications. In conclusion,
we propose the following three directions for further exploration.

Parameter Trade-offs : The family of Boolean functions F (in Definition 3.1) have the drawback
that their decision tree depth is very small while exhibiting an exponential gap between
alternation and sensitivity, and alternation and logarithm of sparsity. On the other hand, the
family of Boolean functions G obtained (in Theorem 1.2) have a large decision tree depth but
could achieve the same with only a super linear gap between the above mentioned parameters.
These two family of functions seems to be at the two extremes ends in terms of the gap
achievable and the decision tree depth. Thus, an open problem would be to show a trade-off
between the lower bound on the decision tree depth and the gap that can be proven for these
parameters.

Monotone functions have dense spectrum : Can we show that for every monotone function
f , log sparsity(f) = Ω(deg(f)). Note that Theorem 1.4 shows that log sparsity(f) = Ω(

√
deg(f))

and hence only partially settle this question of Kulkarni and Santha [19].

Improving upper bound on deg(f) : Eq. (1) says that for any Boolean function f and m ≥ 2,
deg(f) ≤ alt(f) · deg2(f) · degm(f). Note that the upper bound is weak if deg2(f) is large.
Hence, we ask if it is possible to improve Eq. (1) by showing deg(f) ≤ alt(f)·degm(f)·degm′(f)
for m 6= m′.
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A Appendix

A.1 Second Proof of Exponential Upper Bound on Alternation

Nechiporuk [10], also discovered independently by Morizumi [24], related the decrease of a function
f to the minimum number of negations needed in any formula computing f .

Theorem A.1 (Nechiporuk, Morizumi). Let negsF (f) be the minimum number of negations needed
in any formula computing f . Then negsF (f) = dc(f).

We now give a weaker version (in terms of the additive constant) of Theorem 3.4.

Theorem A.2. For any Boolean function f , alt(f) ≤ 2DT(f)+1 + 1

Proof. Since alt(f) ≤ 2dc(f) + 1, it suffices to show that dc(f) ≤ 2DT(f) to complete the proof. Let
T be a decision tree of depth DT(f) computing f . Given such a decision tree T , we can always
obtain a formula computing f with at most 2DT(f) leaves. Hence, negsF (f) is upper bounded by
2DT(f) as all internal negations can be pushed to the leaves. Applying Theorem A.1, we get that
dc(f) ≤ 2DT(f) which completes the proof.

A.2 Simpler Proof of I[f ] ≤ alt(f)
√
n

Suppose f : {0, 1}n → {0, 1} is a parity of k monotone functions. Hence, in any chain from 0n to
1n in Bn, f changes its value at most k times. Blais et al. [5] recently showed that the converse of
the statement is also true.

Proposition A.3 (Characterization of Alternation [5]). Let f : {0, 1}n → {0, 1}. Then there exists
k = alt(f) monotone functions g1, . . . , gk each from {0, 1}n to {0, 1} such that

f(x) =

{
⊕ki=1gi if f(0n) = 0

¬ ⊕ki=1 gi if f(0n) = 1

Let f be such that I[f ] = Ω(n). Observe (cf. [27]) that an Ω(n) lower bound on influence implies
that a constant fraction of edges in the Boolean hypercube must have f evaluating to different
values on their end points. Blais et al. [5] used this idea and a probabilistic argument to prove
that the expected alternation in a random chain of the hypercube must be large – inferring that
alt(f) = Ω(

√
n). Later Guo and Komargodski [14], again using a similar probabilistic argument,

generalized it to show that I(f) = O(alt(f)
√
n).

We now give a simpler proof of the statement I[f ] ≤ O(alt(f)
√
n).

Lemma A.4. For any n variable Boolean function f , I[f ] ≤ alt(f)
√
n.
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Proof. For any Boolean function f1, f2 on n bits and for any x ∈ {0, 1}n, it is easy to see that
s(f1 ⊕ f2, x) ≤ s(f1, x) + s(f2, x) (cf. Lemma 28 of [7]). Hence,

I[f1 ⊕ f2] = Ex(s(f1 ⊕ f2, x)) ≤ Ex(s(f1, x)) + Ex(s(f2, x)) = I[f1] + I[f2] (3)

Suppose f(0n) = 0 and alt(f) = k. Applying Proposition A.3, we get that there exists k
monotone functions, g1, g2, . . . , gk all on n variables such that f(x) = g1(x) ⊕ g2(x) . . . ⊕ gk(x).
Repeatedly applying Eq. (3) on f , we get that I[f ] ≤

∑k
i=1 I[gi]. Since gis are monotone, I[gi] ≤√

n [27]. Hence I[f ] ≤ k
√
n = alt(f)

√
n. For the case when f(0n) = 1 in the decomposition

of Proposition A.3 all gis will still be monotone except one which will be negation of a monotone
function. But even for such functions influence is upper bounded by

√
n [27]. Hence a similar

argument holds in this case too.
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