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Foreword

This document collects the lecture notes from my mini-course “Complexity Theory, Game Theory, and
Economics,” taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February
19–23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity.

The goal of this mini-course is twofold:

(i) to explain how complexity theory has helped illuminate several barriers in economics and game theory;
and

(ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including
several breakthroughs in the past few months!

It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computa-
tional complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity
theory in game theory and economics.1 No background in game theory is assumed.

Thanks are due to many people: Denis Therien and Anil Ada for organizing the workshop and for
inviting me to lecture; Omri Weinstein, for giving a guest lecture on simulation theorems in communication
complexity; Alex Russell, for coordinating the scribe notes; the scribes2, for putting together a terrific
first draft of these notes; and all of the workshop attendees, for making the experience so unforgettable (if
intense!).

The writing of these notes was supported in part by NSF award CCF-1524062, a Google Faculty Research
Award, and a Guggenheim Fellowship. I would be very happy to receive any comments or corrections from
readers.

Tim Roughgarden
Bracciano, Italy
December 2017

1Cris Moore: “So when are the stellar lectures?”
2Anil Ada, Amey Bhangale, Shant Boodaghians, Sumegha Garg, Valentine Kabanets, Antonina Kolokolova, Michal Koucký,

Cristopher Moore, Pavel Pudlák, Dana Randall, Jacobo Torán, Salil Vadhan, Joshua R. Wang, and Omri Weinstein.
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Solar Lecture 1
Introduction, Wish List, and Two-Player Zero-Sum Games

Lecturer: Tim Roughgarden Scribe: Anil Ada and Shant Boodaghians

1.1 The Plan

The topic of the week is Complexity Theory, Game Theory, and Economics. The theme is two-fold:

(i) how complexity theory has illuminated barriers in economics and game theory;

(ii) how studying fundamental complexity questions about game-theoretic concepts has led to the devel-
opment of new and interesting complexity theory (including some major breakthroughs in the past few
months!).

There will be 5 solar lectures and 5 lunar lectures. The solar lectures will focus on the communication
and computational complexity of computing an (approximate) Nash equilibrium. The lunar lectures are
meant to be understandable even after consuming a rum punch; they focus on applications of computational
complexity theory to game theory and economics.

1.1.1 The Solar Lectures: Complexity of Equilibria

Lecture 1: Introduction and wish list. The goal of the first lecture is to get the lay of the land. We’ll focus
on the types of positive results about equilibria that we want, like fast algorithms and quickly converging
distributed processes. Such positive results are possible in special cases (like zero-sum games), and the
challenge for complexity theory is to prove that they cannot be extended to the general case. The topics in
this lecture are mostly classical.

Lectures 2 and 3: The communication complexity of Nash equilibria. These two lectures cover the
main ideas in the brand-new (STOC ’17) paper of Babichenko and Rubinstein [9], which proves strong
communication complexity lower bounds for computing an approximate Nash equilibrium. Discussing the
proof will also give us an excuse to talk about “simulation theorems” in the spirit of Raz andMcKenzie [120],
which lift query complexity lower bounds to communication complexity lower bounds and have recently
found a number of exciting applications.
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Lecture 4: TFNP, PPAD, and all that. In this lecture we begin our study of the computational complexity
of computing a Nash equilibrium, where we want conditional but super-polynomial lower bounds. To prove
analogs of NP-completeness results, we will need to develop customized complexity classes appropriate for
the study of equilibrium computation.1 We will also discuss the existing evidence for the intractability of
these complexity classes, including some very recent developments.

Lecture 5: The computational complexity of computing an approximate Nash equilibrium of a bima-
trix game. The goal of this lecture is to give a high-level overview of Rubinstein’s recent breakthrough
result [135] that an ETH-type assumption for PPAD implies a quasi-polynomial-time lower bound for the
problem of computing an approximate Nash equilibrium (which is tight, by Corollary 1.17).

1.1.2 The Lunar Lectures: Complexity-Theoretic Barriers in Economics

Most of the lunar lectures have the flavor of “applied complexity theory.”2 While the solar lectures build on
each other to some extent, the lunar lectures will be episodic, and each can be read independently.

Lecture 1: The 2016 FCC Incentive Auction. This is a great case study of how computer science has
influenced real-world auction design. It is also the only lecture that gives a broader glimpse of the vibrant field
called algorithmic game theory, only about 10% of which concerns the complexity of computing equilibria.

Lecture 2: Barriers to near-optimal equilibria [126]. This lecture concerns the “price of anarchy,”
meaning the extent to which Nash equilibria approximate an optimal outcome. It turns out that nondeter-
ministic communication complexity lower bounds can be translated, in black-box fashion, to lower bounds
on the price of anarchy. We’ll see how this translation enables a theory of “optimal simple auctions.”

Lecture 3: Barriers in markets [131]. You’ve surely heard of the idea of “market-clearing prices,” which
are prices in a market such that supply equals demand. When the goods are divisible (milk, wheat, etc.),
market-clearing prices exist under relatively mild technical assumptions. With indivisible goods (houses,
spectrum licenses, etc.), market-clearing prices may or may not exist. It turns out complexity considerations
play a huge role in when prices exist and when they do not. This is cool and surprising because the issue
of equilibrium existence seems to have nothing to do with computation (in contrast to the Solar Lectures,
where the questions studied are explicitly about computation).

Lecture 4: The borders of Border’s theorem. [68]. Border’s theorem is a famous result in auction theory
from 1991, about single-item auctions. Despite its fame, no one has been able to generalize it to significantly
more general settings. We’ll see that complexity theory explains this mystery: significantly generalizing
Border’s theorem would imply that the polynomial hierarchy collapses!

Lecture 5: Tractable Relaxations of Nash Equilibria. Having spent the week largely on negative results
for computing Nash equilibria, for an epilogue we’ll switch to positive results for relaxations of Nash
equilibria, such as for correlated equilibria.

1Why can’t we just use the theory of NP-completeness? Because the guaranteed existence (Theorem 1.14) and efficient
verifiability of a Nash equilibrium imply that computing one is an easier task than solving an NP-complete problems, under
appropriate complexity assumption (see Theorem 4.1).

2Not an oxymoron!
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1.2 Nash Equilibria in Two-Player Zero-Sum Games

1.2.1 Preamble

To an algorithms person (like your lecturer), complexity theory is the science of why you can’t get what you
want. So what is it we want? Let’s start with some cool positive results for a very special class of games—
two-player zero-sum games—and then we can study whether or not they extend to more general games. For
the first positive result, we’ll review the famous Minimax theorem, and see how it leads to a polynomial-time
algorithm for computing a Nash equilibrium of a two-player zero-sum game. Then we’ll show that there
are natural “dynamics” (basically, a distributed algorithm) that converge rapidly to an approximate Nash
equilibrium.

1.2.2 Rock-Paper-Scissors

Recall the game rock-paper-scissors (or roshambo, if you like)3: there are two players, each simultaneously
picks a strategy from {rock, paper, scissors}. If both players choose the same strategy then the game is a
draw; otherwise, rock beats scissors, scissors beats paper, and paper beats rock.4

Here’s an idea: how about we play rock-paper-scissors, and you go first? This is clearly unfair—no
matter what strategy you choose, I have a response that guarantees victory. But what if you only have to
commit to a probability distribution over your three strategies (called a mixed strategy)? To be clear, the
order of operations is: (i) you pick a distribution; (ii) I pick a response; (iii) nature flips coins to sample a
strategy from your distribution. Now you can protect yourself—by picking a strategy uniformly at random,
no matter what I do, you have an equal chance of a win, a loss, or a draw.

The Minimax theorem states that, in any game of “pure competition” like rock-paper-scissors, a player
can always protect herself with a suitable randomized strategy—there is no disadvantage of having to move
first. The proof of the Minimax theorem will also give as a byproduct a polynomial-time algorithm for
computing a Nash equilibrium (by linear programming).

1.2.3 Formalism

We specify a two-player zero-sum game with an m × n payoff matrix A of numbers. The rows correspond to
the possible choices of Alice (the “row player”) and the columns correspond to possible choices for Bob (the
“column player”). Entry Ai j contains Alice’s payoff when Alice chooses row i and Bob chooses column j.
In a zero-sum game, Bob’s payoff is automatically defined to be −Ai j (when Alice chooses row i and Bob
chooses column j). Throughout the solar lectures, we normalize the payoff matrix so that |Ai j | ≤ 1 for all i
and j.5

For example, the payoff matrix corresponding to rock-paper-scissors is:

3https://en.wikipedia.org/wiki/Rock-paper-scissors
4Here are some fun facts about rock-paper-scissors. There’s a World Series of RPS every year, with a top prize of at least $50K.

If you watch some videos of them, you will see pure psychological welfare. Maybe this explains why some of the same players seem
to end up in the later rounds of the tournament every year.
There’s also a robot hand, built at the University of Tokyo, that plays rock-paper-scissors with a winning probability of 100%

(check out the video). No surprise, a very high-speed camera is involved.
5This is without loss of generality, by scaling.
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R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Mixed strategies for Alice and Bob correspond to probability distributions x and y over rows and
columns, respectively. When speaking about Nash equilibria, one always assumes that players randomize
independently. For a two-player zero-sum game A and mixed strategies x, y, we can write Alice’s expected
payoff as

x>Ay =
∑
i, j

Ai j xi y j .

Bob’s expected payoff is the negative of this quantity.

1.2.4 The Minimax Theorem

The question that the Minimax theorem addresses is the following:

If two players make choices sequentially in a zero-sum game, is it better to go first or second?

In a zero-sum game, there can only be a first-mover disadvantage. Going second gives a player the opportunity
to adapt to what the other player does first. And the second player always has the option of choosing whatever
mixed strategy she would have chosen had she gone first. But does going second ever strictly help? The
Minimax theorem gives an amazing answer to the question above: it doesn’t matter!

Theorem 1.1 (Minimax Theorem). Let A be the payoff matrix of a two-player zero-sum game. Then

max
x

(
min
y

x>Ay
)
= min

y

(
max
x

x>Ay
)
, (1.1)

where x ranges over probability distributions over the rows of A and y ranges over probability distributions
over the columns of A.

On the left-hand side of (1.1), the row player moves first and the column player second. The column
player plays optimally given the strategy chosen by the row player, and the row player plays optimally
anticipating the column player’s response. On the right-hand side of (1.1), the roles of the two players are
reversed. The Minimax theorem asserts that, under optimal play, the expected payoff of each player is the
same in the two scenarios.

The first proof of the Minimax theorem was due to von Neumann [148] and used fixed-point-type
arguments (which we’ll have much more to say about later). von Neumann and Morgenstern [149], inspired
by Ville [147], later realized that the Minimax theorem can be deduced from strong linear programming
duality.6

6Dantzig [40, p.5] describes meeting John von Neumann on October 3, 1947: “In under a minute I slapped the geometric and
the algebraic version of the [linear programming] problem on the blackboard. Von Neumann stood up and said ’Oh that!’ Then for
the next hour and a half, he proceeded to give me a lecture on the mathematical theory of linear programs.

“At one point seeing me sitting there with my eyes popping and my mouth open (after all I had searched the literature and found
nothing), von Neumann said: ’I don’t want you to think I am pulling all this out of my sleeve on the spur of the moment like a
magician. I have just recently completed a book with Oskar Morgenstern on the Theory of Games. What I am doing is conjecturing
that the two problems are equivalent.”

This equivalence between strong linear programming duality and the Minimax theorem is made precise in Dantzig [39], Gale et
al. [58], and Adler [2].
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Proof. The idea is to formulate the problem faced by the first player as a linear program. The theorem will
then follow from linear programming duality.

First, the player who moves second always has an optimal deterministic strategy—given the probability
distribution chosen by the first player, the second player can just play the strategy with the highest expected
payoff. This means the inner min and max in (1.1) may as well range over columns and rows, respectively,
rather than over all probability distributions. The left expression in (1.1) then translates to the following
linear program:

max v

s.t. v ≤

m∑
i=1

Ai j xi for all columns j,

x is a probability distribution over rows.

If the optimal point is (v∗, x∗), then v∗ equals the left-hand-side of (1.1) and x∗ belongs to the corresponding
arg-max. In plain terms, x∗ is what Alice should play if she has to move first, and v∗ is the consequent
expected payoff (assuming Bob responds optimally).

Similarly, we can write a second linear program that computes the optimal point (w∗, y∗) from Bob’s
perspective, where w∗ equals the right-hand-side of (1.1) and y∗ is in the corresponding arg-min:

min w

s.t. w ≥

n∑
j=1

Ai j y j for all rows i,

y is a probability distribution over columns.

It is straightforward to verify that these two linear programs are in fact duals of each other (left to the reader,
or see Chvátal [38]). By strong linear programming duality, we know that the two linear programs have equal
optimal objective function value and hence v∗ = w∗. This means that the payoff that Alice can guarantee
herself if she goes first is the same as the payoff that Bob can guarantee himself if he goes first, and this
completes the proof. �

Definition 1.2 (Value of a two-player zero-sum game; min-max pair). Let A be a payoffmatrix of a two-player
zero-sum game. Then the value of the game is defined to be the common value of

max
x

(
min
y

x>Ay
)

and min
y

(
max
x

x>Ay
)
.

A min-max strategy is a strategy x∗ in the arg-max of the left-hand side or a strategy y∗ in the arg-min of the
right-hind side. A min-max pair is a pair (x∗, y∗) where x∗ and y∗ are both min-max strategies.

For example, the value of the rock-paper-scissors game is 0 and (u, u) is its unique min-max pair, where
u denotes the uniform probability distribution.

The min-max pairs are the optimal solutions of the two linear programs in the proof of Theorem 1.1.
Since the optimal solution of a linear program can be computed in polynomial time, so can a min-max pair.
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1.2.5 Nash Equilibrium

In zero-sum games, a min-max pair is closely related to the notion of a Nash equilibrium, defined next.7

Definition 1.3 (Nash equilibrium in a two-player zero-sum game). Let A be a payoff matrix of a two-player
zero-sum game. The pair ( x̂, ŷ) is a Nash equilibrium if

(i) x̂>Aŷ ≥ x>Aŷ for all x (given that Bob plays ŷ, Alice cannot increase her expected payoff by deviating
unilaterally to a strategy different from x̂, i.e., given ŷ, x̂ is optimal);

(ii) x̂>Aŷ ≤ x̂>Ay for all y (given x̂, ŷ is an optimal strategy for Bob).

The pairs in Definition 1.3 are sometimes called mixed Nash equilibria, to stress that players are allowed
to randomize. (As opposed to a pure Nash equilibrium, where both players play deterministically.) Unless
otherwise noted, we will always be concerned with mixed Nash equilibria.

Claim 1.4. In a two-player zero-sum game, a pair (x∗, y∗) is a min-max pair if and only if it is a Nash
equilibrium.

Proof. Suppose (x∗, y∗) is a min-max pair, and so Alice’s expected payoff is v∗, the value of the game. Since
Alice plays her min-max strategy, Bob cannot make her payoff smaller than v∗ via some other strategy. Since
Bob plays his min-max strategy, Alice cannot make her payoff larger than v∗. Since neither player can do
better with a unilateral deviation, (x∗, y∗) is a Nash equilibrium.

Conversely, suppose (x∗, y∗) is not a min-max pair with, say, Alice not playing a min-max strategy.
If Alice’s expected payoff is less than v∗, then (x∗, y∗) is not a Nash equilibrium (she could do better by
deviating to a min-max strategy). Otherwise, since x∗ is not a min-max strategy, Bob has a response y such
that Alice’s expected payoff would be strictly less than v∗. Thus Bob could do better by deviating unilaterally
to y, and (x∗, y∗) is not a Nash equilibrium. �

There are several interesting consequences of Theorem 1.1 and Proposition 1.4:

1. The set of all Nash equilibria is a convex set, as the optimal solutions of a linear program form a
convex set.

2. All Nash equilibria (x, y) lead to the same value of x>Ay. That is, each player receives the same
expected payoff across all Nash equilibria.

3. Most importantly, since the proof of Theorem 1.1 uses linear programming duality and gives us a
polynomial-time algorithm to compute a min-max pair (x∗, y∗), we have a polynomial-time algorithm
to compute a Nash equilibrium of a two-player zero-sum game.

Corollary 1.5. A Nash equilibrium of a two-player zero-sum game can be computed in polynomial time.

1.2.6 Beyond Zero-Sum Games

There’s no reason to be content with our positive results so far. Two-player zero-sum games are important—
e.g., von Neumann was largely focused on them, with applications ranging from poker to war—but most
game-theoretic situations are not purely oppositional.8 Can we generalize any of their nice properties to

7If you think you learned this definition from the movie A Beautiful Mind, it’s time to learn the correct definition!
8They can even be cooperative, for example if you and I want to meet at some intersection in Manhattan. Our strategies are

intersections, and either we both get a high payoff (if we choose the same strategy) or we both get a low payoff (otherwise).
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games with more players or without the zero-sum property? For example, what about bimatrix games, where
there are still two players but the game is not necessarily zero-sum?9 Solar Lectures 4 and 5 are devoted to
this question, and provide evidence that there is no analog of Corollary 1.5 for bimatrix games.

1.2.7 Who Cares?

Before proceeding to our second cool fact about two-player zero-sum games, let’s take a step back and be
clear about what we’re trying to accomplish. Why do we care about computing equilibria in games, anyway?

1. We might want fast algorithms to actually use in practice. The demand for equilibrium computation
algorithms is significantly less than that for, say, linear programming solvers, but your lecturer reg-
ularly meets researchers who would make good use of better off-the-shelf solvers for computing an
equilibrium of a game.

2. Perhaps most relevant for this week’s audience, the study of equilibrium computation naturally leads
to interesting and new complexity theory (e.g., definitions of new complexity classes, such as PPAD).
As we’ll see this week, the most celebrated results in the area are quite deep and draw on ideas from
all across theoretical computer science.

3. Complexity considerations can be used to support or critique the practical relevance of an equilibrium
concept such as the Nash equilibrium. It is tempting to interpret a polynomial-time algorithm for
computing an equilibrium as a plausibility argument that players can figure one out quickly, and an
intractability result as evidence that players will not generally reach an equilibrium in a reasonable
amount of time.
Of course, the real story is more complex. First, computational intractability is not necessarily first
on the list of the Nash equilibrium’s issues. For example, its non-uniqueness in non-zero-sum games
already limits its predictive power.10
Second, it’s not particularly helpful to critique a definition without suggesting an alternative. Lunar
Lecture 5 partially addresses this issue by discussing two tractable equilibrium concepts, correlated
equilibria and coarse correlated equilibria.
Third, does an arbitrary polynomial-time algorithm, such as one based on solving a non-trivial
linear program, really suggest that independent play by strategic players will actually converge to
an equilibrium? Algorithms for linear programming do not resemble how players typically make
decisions in games. A stronger positive result would involve a behaviorally plausible distributed
algorithm that players can use to efficiently converge to a Nash equilibrium through repeated play over
time. We discuss such a result for two-player zero-sum games next.

1.3 Uncoupled Dynamics

In the first half of the lecture, we saw that a Nash equilibrium of a two-player zero-sum game can be
computed in polynomial time. This was done by interpreting the Minimax Theorem in the framework of
linear programming duality.

9Notice that three-player zero-sum games are already more general than bimatrix games—to turn one of the latter into one of
the former, add a dummy third player with only one strategy whose payoff is the negative of the combined payoff of the original two
players. Thus the most compelling negative results would be for the case of bimatrix games.

10Recall our “meeting in Manhattan” example—every intersection is a Nash equilibrium!
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It would be more compelling, however, to come up with a definition of a plausible process by which
players can learn a Nash equilibrium. Such a result requires a behavioral model for what players do when not
at equilibrium. The goal is then to investigate whether or not the process converges to a Nash equilibrium
(for an appropriate notion of convergence), and if so, how quickly.

1.3.1 The Setup

Uncoupled dynamics refers to a class of processes with the properties mentioned above. The idea is that
each player initially knows only her own payoffs (and not those of the other players), a la the number-in-hand
model in communication complexity. The game is then played repeatedly, with each player picking a strategy
in each time step as a function only of her own payoffs and what transpired in the past.

Uncoupled Dynamics (Two-Player Version)

At each time step t = 1, 2, 3, . . .:

1. Alice chooses a strategy xt as a function only of her own payoffs and the previously chosen
strategies x1, . . . , xt−1 and y1, . . . , yt−1.

2. Bob simultaneously chooses a strategy yt as a function only of his own payoffs and the previously
chosen strategies x1, . . . , xt−1 and y1, . . . , yt−1.

3. Alice learns yt and Bob learns xt .11

Uncoupled dynamics have been studied at length in both the game theory and computer science literatures
(often under different names). Specifying such dynamics boils down to a definition of how Alice and Bob
choose strategies as a function of their payoffs and the joint history of play. Let’s look at some famous
examples.

1.3.2 Fictitious Play

One natural idea is to best respond to the observed behavior of your opponent.

Example 1.6 (Fictitious Play). In fictitious play, each player assumes that the other player will mix according
to the relative frequencies of their past actions (i.e., the empirical distribution of their past play), and plays a
best response.

Fictitious Play (Two-Player Version)

At each time step t = 1, 2, 3, . . .:

1. Alice chooses a strategy xt that is a best response against ŷt−1 = 1
t−1

∑t−1
s=1 y

s , the past actions
of Bob (breaking ties arbitrarily).

2. Bob simultaneously chooses a strategy yt that is a best response against x̂t−1 = 1
t−1

∑t−1
s=1 xs , the

past actions of Alice (breaking ties arbitrarily).

11When Alice and Bob use mixed strategies, there are actually two different natural feedback models, one where each player
learns the actual mixed strategy chosen by the other player, and one where each learns only a sample (a pure strategy) from the other
player’s chosen distribution. It’s generally easier to prove results in the first model, but such proofs usually can be extended with
some additional work to hold (with high probability over the strategy realizations) in the second model as well.
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3. Alice learns yt and Bob learns xt .

One way to interpret fictitious play is to imagine that each player assumes that the other is using the
same mixed strategy every time step, and estimates this time-invariant mixed strategy with the empirical
distribution of past actions.

Note that each player picks a pure strategy in each time step (modulo tie-breaking in the case of multiple
best responses).

Fictitious play has an interesting history:

1. It was first proposed by G. W. Brown in 1949 (published in 1951 [20]) as a computer algorithm to
compute a Nash equilibrium of a two-player zero-sum game. Note this is not so long after the birth of
either game theory or computers!

2. In 1951, Julia Robinson (better known for her contributions to the resolution of Hilbert’s tenth problem
about Diophantine equations) proved that, in two-player zero-sum games, the time-averaged payoffs
of the players converges to the value of the game [122]. Robinson’s proof only gives an exponential
(in the number of strategies) bound on the number of iterations required for convergence. In 1959,
Samuel Karlin [84] conjectured that a polynomial bound should be possible (in two-player zero-sum
games). Relatively recently (2014), Daskalakis and Pan [41] refuted the conjecture and proved an
exponential lower bound for the case of adversarial (and not necessarily consistent) tie-breaking.

3. It is still an open question whether or not fictitious play converges quickly for natural (or even just
consistent) tie-breaking rules! The goal here would be to show that poly(n, 1/ε ) time steps suffice for
the time-averaged payoffs to be within ε of the value of the game (where n is the number of strategies).

4. The situation for non-zero-sum games was murky until 1964, when Lloyd Shapley [138] discovered a
3 × 3 game (a non-zero-sum variation on rock-paper-scissors) where fictitious play never converges to
a Nash equilibrium (which foreshadowed future developments on zero-sum vs. non-zero-sum games).

Next we’ll look at a different choice of dynamics that has much better convergence properties.

1.3.3 Smooth Fictitious Play

Fictitious play is “all-or-nothing”—even if two strategies have almost the same expected payoff against the
opponent’s empirical distribution, the slightly worse one is completely ignored in favor of the slightly better
one. A more stable approach, and perhaps a more behaviorally plausible one, is to assume that players
randomize, biasing their decision toward the strategies with the highest expected payoffs (again, against the
empirical distribution of the opponent). In other words, each player plays a “noisy best response” against the
observed play of the other player. For example, already in 1957 Hannan [70] considered dynamics where
each player chooses a strategy with probability proportional to its expected payoff (against the empirical
distribution of the other player’s past play), and proved polynomial convergence to the Nash equilibrium
payoffs in two-player zero-sum games.

Even better convergence properties are possible if poorly performing strategies are abandoned more
aggressively—this will correspond to a “softmax” version of fictitious play.

Example 1.7 (Smooth Fictitious Play). In time t of smooth fictitious play, a player (Alice, say) computes
the empirical distribution ŷt−1 =

∑t−1
s=1 xs of the other player’s past play, computes the expected payoff πti of

each pure strategy i under the assumption that Bob plays ŷt−1, and chooses xt by playing each strategy with
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probability proportional to eη
tπ t

i . Here η t is a tunable parameter that interpolates between always playing
uniformly at random (when η = 0) and fictitious play (when η = +∞). The choice η t ≈

√
t is often the best

one for proving convergence results.

Smooth Fictitious Play (Two-Player Version)

Given: parameter family {η t ∈ [0,∞) : t = 1, 2, 3, . . .}.

At each time step t = 1, 2, 3, . . .:

1. Alice chooses a strategy xt by playing each strategy i with probability proportional to eη
tπ t

i ,
where πti denotes the expected payoff of strategy i when Bob plays the mixed strategy ŷt−1 =
1

t−1
∑t−1

s=1 y
s .

2. Bob simultaneously chooses a strategy yt by playing each strategy j with probability proportional
to eη

t ρtj , where ρtj is the expected payoff of strategy j when Alice plays the mixed strategy
x̂t−1 = 1

t−1
∑t−1

s=1 xs .

3. Alice learns yt and Bob learns xt .

Versions of smooth fictitious play have been studied independently in the game theory literature (beginning
with Fudenberg and Levine [57]) and the computer science literature (beginning with Freund and Schapire
[56]). It converges extremely quickly.
Theorem 1.8 ([57, 56]). For a zero-sum two-player game with m rows and n columns and a parameter ε > 0,
after T = O(log(n + m)/ε2) time steps of smooth fictitious play, the empirical distributions x̂ = 1

T

∑T
t=1 xt

and ŷ = 1
T

∑T
t=1 y

t constitute an ε-approximate Nash equilibrium.

The ε-approximate Nash equilibrium condition in Theorem 1.8 is exactly what it sounds like: neither
player can improve their expected payoff by more than ε via a unilateral deviation (see also Definition 1.12,
below). (Recall that payoffs are assumed scaled to lie in [−1, 1].)

There are two steps in the proof of Theorem 1.8: (i) the noisy best response in smooth fictitious play is
equivalent to the “Multiplicative Weights” algorithm, which has “vanishing regret;” and (ii) in a two-player
zero-sum game, vanishing-regret guarantees translate to (approximate) Nash equilibrium convergence. The
optional Sections 1.3.5–1.3.7 provide more details for the interested reader.

1.3.4 Implications for Communication Complexity

Theorem 1.8 implies that smooth fictitious play can be used to define a randomized O(log2(n + m)/ε2)-bit
communication protocol for computing an ε-NE.12 The goal of the next two lectures is to prove that there
is no analogously efficient communication protocol for computing an approximate Nash equilibrium of a
non-zero-sum game.13 Ruling out low-communication protocols will in particular rule out any type of
quickly converging uncoupled dynamics.

12Actually, this is for the variant of smooth fictitious play where Alice (respectively, Bob) only learns a random sample from yt

(respectively, xt ); see footnote 11. Each such sample can be communicated to the other player in log(n + m) bits. Theorem 1.8
continues to hold (with high probability over the samples) for this variant of smooth fictitious play [57, 56].

13The communication complexity of computing anything about a two-player zero-sum game is a silly problem—Alice knows
the entire game at the beginning (since Bob’s payoff is the negative of hers) and can unilaterally compute whatever she wants. But it
still makes sense to ask if the communication bound implied by smooth fictitious play can be replicated in non-zero-games (where
Alice and Bob initially know only their own payoff matrices).
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1.3.5 Proof of Theorem 1.8, Part 1: Multiplicative Weights (Optional)

To elaborate on the first step of the proof of Theorem 1.8, we need to explain the standard setup for online
decision-making.

Online Decision-Making

At each time step t = 1, 2, . . . ,T :
a decision-maker picks a probability distribution pt over her actions Λ
an adversary picks a reward vector r t : Λ→ [−1, 1]
an action at is chosen according to the distribution pt , and the decision-maker receives
reward r t (at )

the decision-maker learns r t , the entire reward vector

In smooth fictitious play, each of Alice and Bob are in effect solving the online decision-making problem
(with actions corresponding to the game’s strategies). For Alice, the reward vector r t is induced by Bob’s
action at time step t (if Bob plays strategy j, then r t corresponds to the jth column of the game matrix A),
and similarly for Bob (with the ith row multiplied by −1). Next we interpret Alice and Bob’s behavior in
smooth fictitious play as algorithms for online decision-making.

An online decision-making algorithm specifies for each t the probability distribution pt , as a function of
the reward vectors r1, . . . , r t−1 and realized actions a1, . . . , at−1 of the first t −1 time steps. An adversary for
such an algorithm A specifies for each t the reward vector r t , as a function of the probability distributions
p1, . . . , pt used by A on the first t days and the realized actions a1, . . . , at−1 of the first t − 1 days.

Here is a famous online decision-making algorithm, the “Multiplicative Weights (MW)” algorithm
(see [100, 55, 27]).

Multiplicative Weights (MW) Algorithm

initialize w1(a) = 1 for every a ∈ Λ

for each time step t = 1, 2, 3, . . . do
use the distribution pt := wt/Γt over actions, where Γt =

∑
a∈Λ w

t (a) is the sum of the
weights
given the reward vector r t , for every action a ∈ Λ use the formula
wt+1(a) = wt (a) · (eη

t r t (a)) to update its weight (η t is a parameter, canonically ≈
√

t)

The MW algorithm maintains a weight, intuitively a “credibility,” for each action. At each time step the
algorithm chooses an action with probability proportional to its current weight. The weight of each action
evolves over time according to the action’s past performance.

Inspecting the descriptions of smooth fictitious play and the MW algorithm, we see that we can rephrase
the former as follows:

Smooth Fictitious Play (Rephrased)

Given: parameter family {η t ∈ [0,∞) : t = 1, 2, 3, . . .}.

At each time step t = 1, 2, 3, . . .:
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1. Alice uses an instantiation of the MW algorithm to choose a mixed strategy xt .

2. Bob uses a different instantiation of the MW algorithm to choose a mixed strategy yt .

3. Alice learns yt and Bob learns xt .

4. Alice feeds her MW algorithm a reward vector r t with r t (i) equal to the expected payoff of
playing row i, given Bob’s mixed strategy yt over columns; and similarly for Bob.

How should we assess the performance of an online decision-making algorithm like the MW algorithm,
and do guarantees for the algorithm have any implications for smooth fictitious play?

1.3.6 Proof of Theorem 1.8, Part 2: Vanishing Regret (Optional)

One of the big ideas in online learning is to compare the time-averaged reward earned by an online algorithm
with that earned by the best fixed action in hindsight.14

Definition 1.9 ((Time-Averaged) Regret). Fix reward vectors r1, . . . , rT . The regret of the action sequence
a1, . . . , aT is

1
T
max
a∈Λ

T∑
t=1

r t (a)︸              ︷︷              ︸
best fixed action

−
1
T

T∑
t=1

r t (at )︸         ︷︷         ︸
our algorithm

. (1.2)

Note that, by linearity, there is no difference between considering the best fixed action and the best fixed
distribution over actions (there is always an optimal pure action in hindsight).

We’d like an online decision-making algorithm that achieves low regret, as close to 0 as possible. Since
rewards lie in [−1, 1], the regret can never be larger than 2. We think of regret Ω(1) (as T → ∞) as an epic
fail for an algorithm.

It turns out that the MW algorithm has the best-possible worst-case regret guarantee (up to constant
factors).15

Theorem 1.10. For every adversary, the MW algorithm has expected regret O(
√

(log n)/T ).

See e.g. the book of Cesa-Bianchi and Lugosi [26] for a proof of Theorem 1.10, which is not overly
difficult.

An immediate corollary is that the number of time steps needed to drive the expected regret down to a
small constant is only logarithmic in the number of actions—this is surprisingly fast!

Corollary 1.11. There is an online decision-making algorithm that, for every adversary and ε > 0, has
expected regret at most ε after O((log n)/ε2) time steps.

14There is no hope of competing with the best action sequence in hindsight: consider two actions and an adversary that flips a
coin each time step to choose between the reward vectors (1, 0) and (0, 1).

15For the matching lower bound, with n actions, consider an adversary that sets the reward of each action uniformly at random
from {−1, 1} at each time step. Every online algorithm earns expected cumulative reward 0, while the expected reward of the best
action in hindsight is Θ(

√
T ·
√
log n).

17



1.3.7 Proof of Theorem 1.8, Part 3: Vanishing Regret Implies Convergence (Optional)

We now sketch the rest of the proof of Theorem 1.8. Consider a zero-sum game A with payoffs in [−1, 1]
and some ε > 0. Let n denote the number of rows or the number of columns, whichever is larger, and
set T = Θ((log n)/ε2) so that the guarantee in Corollary 1.11 holds with error ε/2. Let x1, . . . , xT and
y1, . . . , yT be the mixed strategies used by Alice and Bob throughout T steps of smooth fictitious play. Let
x̂ = 1

T

∑T
t=1 xt and ŷ = 1

T

∑T
t=1 y

t denote the time-averaged strategies of Alice and Bob, respectively. We
claim that ( x̂, ŷ) is an ε-NE.

In proof, let

v =
1
T

T∑
t=1

(xt )>Ayt

denote Alice’s time-averaged payoff. Since both Alice and Bob effectively used the MW algorithm to choose
their strategies, we can apply the vanishing regret guarantee in Corollary 1.11 once for each player and use
linearity to obtain

v ≥ *
,
max
x

1
T

T∑
t=1

x>Ayt+
-
−
ε

2
=

(
max
x

x>Aŷ
)
−
ε

2
(1.3)

and

v ≤ *
,
min
y

1
T

T∑
t=1

(xt )>Ay+
-
+
ε

2
=

(
min
y

x̂>Ay
)
+
ε

2
. (1.4)

In particular, taking x = x̂ in (1.3) and y = ŷ in (1.4) shows that

x̂>Aŷ ∈
[
v −

ε

2
, v +

ε

2

]
. (1.5)

Now consider a (pure) deviation from ( x̂, ŷ), say by Alice to the row i. Denote this deviation by ei . By
inequality (1.3) (with x = ei) we have

e>i Aŷ ≤ v +
ε

2
. (1.6)

Since Alice receives expected payoff at least v − ε
2 in ( x̂, ŷ) (by (1.5)) and at most v + ε

2 from any deviation
(by (1.6)), her ε-NE conditions are satisfied. A symmetric argument applies to Bob, completing the proof.

1.4 General Bimatrix Games

Unlike a zero-sum game, a general bimatrix game has two independent payoff matrices, an m × n matrix A
for Alice and an m× n matrix B for Bob. (In a zero-sum game, B = −A.) The definition of an (approximate)
Nash equilibrium is what you’d think it would be:

Definition 1.12 (ε-Approximate Nash Equilibrium). For a bimatrix game (A, B), row and column mixed
strategies x̂ and ŷ constitute an ε-NE if

x̂>Aŷ ≥ x>Aŷ − ε ∀x , and (1.7)
x̂>B ŷ ≥ x̂>By − ε ∀y . (1.8)

It has long been known that many of the nice properties of zero-sum games break down in general
bimatrix games.16

16We already mentioned Shapley’s 1964 example showing that fictitious play need not converge [138].
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Example 1.13 (Strange Bimatrix Behavior). Suppose two friends, Alice and Bob, want to go for dinner,
and are trying to settle on a choice of restaurant. Alice prefers Italian over Thai, and Bob prefers Thai over
Italian, but both would rather eat together than eat alone. Supposing the rows and columns are indexed by
Italian and Thai, in that order, and Alice is the row player, we get the following payoff matrices:

A =
[
2 0
0 1

]
, B =

[
1 0
0 2

]
, or, in shorthand, (A, B) =

[
(2, 1) (0, 0)
(0, 0) (1, 2)

]
.

There are two obvious Nash equilibria, both pure: either Alice and Bob go to the Italian restaurant, or they
both go to the Thai restaurant. But there’s a third Nash equilibrium, a mixed one17: Alice chooses Italian
over Thai with probability 2

3 , and Bob chooses Thai over Italian with probability 2
3 . This is an undesirable

Nash equilibrium, with Alice and Bob eating alone more than half the time.

Example 1.13 shows that, unlike in zero-sum games, different Nash equilibria can result in different
expected player payoffs. Similarly, the Nash equilibria of a bimatrix game do not generally form a convex
set (unlike in the zero-sum case).

Nash equilibria of bimatrix games are not completely devoid of nice properties, however. For starters,
we have guaranteed existence.

Theorem 1.14 (Nash’s Theorem [114, 113]). Every bimatrix game has at least one (mixed) Nash equilibrium.

The proof is a fixed-point argument that we will have more to say about in Solar Lecture 2.18 Nash’s
theorem holds more generally for games with any finite number of players and strategies.

Nash equilibria of bimatrix games have nicer structure than those in games with three or more players.
First, in bimatrix games with integer payoffs, there is a Nash equilibrium in which all probabilities are rational
numbers with bit complexity polynomial in that of the game.19 Second, there is a simplex-type pivoting
algorithm, called the Lemke-Howson algorithm [96], which computes a Nash equilibrium of a bimatrix game
in a finite number of steps (see von Stengel [150] for a survey). Like the simplex method, the Lemke-Howson
algorithm takes an exponential number of steps in the worst case [109, 136]. Nevertheless, the similarities
between Nash equilibria of bimatrix games and optimal solutions of linear programs originally led to some
optimism that a polynomial-time algorithm might exist. Alas, as we’ll see, this does not seem to be the case.

1.5 Approximate Nash Equilibria in Bimatrix Games

The last topic of this lecture is some semi-positive results about approximate Nash equilibria in general
bimatrix games. While simple, these results are important and will show up repeatedly in the rest of the
lectures.

1.5.1 Sparse Approximate Nash Equilibria

Here is a crucial result for us: there are always sparse approximate Nash equilibria.20,21

17Fun fact: outside of degenerate cases, every game has an odd number of Nash equilibria (see also Solar Lecture 4).
18Von Neumann’s alleged reaction when Nash told him his theorem [112, P.94]: “That’s trivial, you know. That’s just a fixed

point theorem.”
19Exercise: prove this by showing that, after you’ve guessed the two support sets of a Nash equilibrium, you can recover the

exact probabilities using two linear programs.
20Althöfer [4] and Lipton and Young [98] independently proved a precursor to this result in the special case of zero-sum games.

The focus of the latter paper is applications in complexity theory (like “anticheckers”).
21Exercise: there are arbitrarily large games where every exact Nash equilibrium has full support. Hint: generalize rock-paper-

scissors. Alternatively, see Section 5.2.6 of Solar Lecture 5.
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Theorem 1.15 (Lipton et al. [99]). For every ε > 0 and every n × n bimatrix game, there exists an ε-NE in
which each player randomizes uniformly over a multi-set of O((log n)/ε2) pure strategies.22

Proof idea. Fix an n × n bimatrix game (A, B).

1. Let (x∗, y∗) be an exact Nash equilibrium of (A, B). (One exists, by Theorem 1.14.)

2. As a thought experiment, sample Θ((log n)/ε2) pure strategies for Alice i.i.d. (with replacement)
from x∗, and similarly for Bob i.i.d. from y∗.

3. Let x̂, ŷ denote the empirical distributions of the samples (with probabilities equal to frequencies in
the sample)—equivalently, the uniform distributions over the two multi-sets of pure strategies.

4. Use Chernoff bounds to argue that ( x̂, ŷ) is an ε-NE (with high probability). Specifically, because of
our choice of the number of samples, the expected payoff of each row strategy w.r.t. ŷ differs from that
w.r.t. y∗ by at most ε/2 (w.h.p.). Since every strategy played with non-zero probability in x∗ is an exact
best response to y∗, every strategy played with non-zero probability in x̂ is within ε of a best response
to ŷ. Similarly with the roles of x̂ and ŷ reversed. This is a sufficient condition for being an ε-NE.23

�

1.5.2 Implications for Communication Complexity

Theorem 1.15 immediately implies the existence of an ε-NE of an n×n bimatrix gamewith description length
O((log2 n)/ε2), with ≈ log n bits used to describe each of the O((log n)/ε2) pure strategies in the multi-sets
promised by the theorem. Moreover, if an all-powerful prover writes down an alleged such description on
a publicly observable blackboard, then Alice and Bob can privately verify that the described pair of mixed
strategies is indeed an ε-NE. For example, Alice can use the (publicly viewable) description of Bob’s mixed
strategy to compute the expected payoff of her best response and check that it is at most ε more than her
expected payoff when playing the mixed strategy suggested by the prover. Summarizing:

Corollary 1.16. The nondeterministic communication complexity of computing an ε-NE of an n×n bimatrix
game is O((log2 n)/ε2).

Thus, if there is a polynomial lower bound on the deterministic or randomized communication complexity
of computing an approximate Nash equilibrium, the only way to prove it is via techniques that don’t
automatically apply also to the problem’s nondeterministic communication complexity. This observation
rules out many of the most common lower bound techniques. In Solar Lectures 2 and 3, we’ll see how to
thread the needle using a simulation theorem, which lifts a deterministic or random query (i.e., decision tree)
lower bound to an analogous communication complexity lower bound.

1.5.3 Implications for Computational Complexity

The second important consequence of Theorem 1.15 is a limit on the worst-possible computational hardness
we could hope to prove for the problem of computing an approximate Nash equilibrium of a bimatrix game:
at worst, the problem is quasi-polynomial-hard.

22By a padding argument, there is no loss of generality in assuming that Alice and Bob have the same number of strategies.
23This sufficient condition has its own name: a well-supported ε-NE.
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Corollary 1.17. There is an algorithm that, given as input a description of an n × n bimatrix game and a
parameter ε , outputs an ε-NE in O(n(log n)/ε2 ) time.

Proof. The algorithm enumerates all O(n(log n)/ε2 ) possible choices for the multi-sets promised by The-
orem 1.15. It is easy to check whether or not the mixed strategies induced by a choice constitute an
ε-NE—just compute the expected payoffs of each strategy and of the players’ best responses, as in the proof
of Corollary 1.16. �

The quasi-polynomial-time approximation scheme (QPTAS) in Corollary 1.17 initially led to optimism
that there should be a PTAS for the problem, in light of the paucity of natural problems for which the best-
possible running time is quasi-polynomial. Also, if there were a reduction showing quasi-polynomial-time
hardness for computing an approximate Nash equilibrium, what would it look like? Solar Lectures 4 and 5
will answer this question.
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Solar Lecture 2
Communication Complexity Lower Bound for Computing an Approximate Nash Equilibrium of a

Bimatrix Game (Part I)

Lecturer: Tim Roughgarden Scribe: Valentine Kabanets and Antonina Kolokolova

This lecture and the next consider the communication complexity of computing an approximate Nash
equilibrium, culminatingwith a proof of the very recent breakthrough polynomial lower bound of Babichenko
and Rubinstein [9]. This lower bound rules out the possibility of quickly converging uncoupled dynamics in
general bimatrix games (see Section 1.3).

2.1 Preamble

Recall the setup: there are two players, Alice and Bob, each with their own payoff matrices A and B. Without
loss of generality (by padding), the two players have the same number N of strategies. We consider a
two-party model where, initially, Alice only knows A and Bob only knows B. The goal is then for Alice and
Bob to compute an approximate Nash equilibrium (Definition 1.12) with as little communication as possible.

This lecture and the next explain all of the main ideas behind the following result:

Theorem 2.1 (Babichenko and Rubinstein [9]). There is a constant c > 0 such that, for all sufficiently small
constants ε > 0 and sufficiently large N , the randomized communication complexity of computing an ε-NE
is Ω(Nc ).

For our purposes, a randomized protocol with communication cost b always uses at most b bits of
communication, and terminates with at least one player knowing an ε-NE of the game with probability at
least 1

2 (over the protocol’s coin flips).
Thus, while there are lots of obstacles to players reaching an equilibriumof a game (see also Section 1.2.7),

communication alone is already a significant bottleneck. A corollary of Theorem 2.1 is that there can be no
uncoupled dynamics (Section 1.3) that converge to an approximate Nash equilibrium in a sub-polynomial
number of rounds in general bimatrix games (cf., the guarantee in Theorem 1.8 for smooth fictitious play in
zero-sum games). This is because uncoupled dynamics can be simulated by a randomized communication
protocol with logarithmic overhead (to communicate which strategy gets played each round).1 This corollary
should be regarded as a fundamental contribution to pure game theory and economics.

The goal of this and the next lecture is to sketch a full proof of the lower bound in Theorem 2.1 for
deterministic communication protocols. We do really care about randomized protocols, however, as these
are the types of protocols induced by uncoupled dynamics (see Section 1.3.4). The good news is that

1See also footnote 12 in Solar Lecture 1.
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“YES” 

“NO” 

Disjointness ε-Nash Equilibria 

Every 
equilibrium 
satisfies π  

No 
equilibrium 
satisfies π  

Figure 2.1: A naive attempt to reduce theDisjointness problem to the problem of computing an approximate
Nash equilibrium.

the argument for the deterministic case will already showcase all of the conceptual ideas in the proof of
Theorem 1.8. Extending the proof to randomized protocols requires substituting a simulation theorem for
randomized protocols (we’ll use only a simulation theorem for deterministic protocols, see Theorem 2.7)
and a few other minor tweaks.2

2.2 Naive Approach: Reduction From Disjointness

To illustrate the difficulty of proving a result like Theorem 2.1, consider a naive attempt that tries to
reduce, say, the Disjointness problem to the problem of computing an ε-NE, with YES-instances mapped
to games in which all equilibria have some property Π, and NO-instances mapped to games in which no
equilibrium has property Π (Figure 2.1).3 For the reduction to be useful, Π needs to be some property
that can be checked with little to no communication, such as “Alice plays her first strategy with positive
probability” or “Bob’s strategy has full support.” The only problem is that this is impossible! The reason
is that the problem of computing an approximate Nash equilibrium has polylogarithmic nondeterministic
communication complexity (because of the existence of sparse approximate equilibria, see Theorem 1.15
and Corollary 1.16), while the Disjointness function does not (for 1-inputs). A reduction of the proposed
form would translate a nondeterministic lower bound for the latter problem to one for the former, and hence
cannot exist.

Our failed reduction highlights two different challenges. The first is to resolve the typechecking error
that we encountered between a standard decision problem, where there might or might not be a witness

2When Babichenko and Rubinstein [9] first proved their result (in late 2016), the state-of-the-art in simultaneous theorems for
randomized protocols was much more primitive than for deterministic protocols. This forced Babichenko and Rubinstein [9] to use
a relatively weak simulation theorem for the randomized case (by Göös et al. [65]), which led to a number of additional technical
details in the proof. Amazingly, a full-blown randomized simulation theorem was published shortly after this workshop [67, 5]!
With this in hand, extending the argument here for deterministic protocols to randomized protocols is relatively straightforward.

3Recall the Disjointness function: Alice and Bob have input strings a, b ∈ {0, 1}n , and the output of the function is “0” if there
is a coordinate i ∈ {1, 2, . . . , n} with ai = bi = 1 and “1” otherwise. One of the first things you learn in communication complexity
is that the nondeterministic communication complexity of Disjointness (for certifying 1-inputs) is n (see e.g. [93, 130]). And of
course one of the most famous and useful results in communication complexity is that the function’s randomized communication
complexity (with two-sided error) is Ω(n) [83, 121].
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(like Disjointness, where a witness is an element in the intersection), and a total search problem where
there is always a witness (like computing an approximate Nash equilibrium, which is guaranteed to exist
by Nash’s theorem). The second challenge is to figure out how to prove a strong lower bound on the
deterministic or randomized communication complexity of computing an approximate Nash equilibrium
without inadvertently proving the same (non-existent) lower bound for nondeterministic protocols. To
resolve the second challenge, we’ll make use of simulation theorems that lift query complexity lower bounds
to communication complexity lower bounds (see Section 2.7); these are tailored to a specific computational
model, like deterministic or randomized protocols. For the first challenge, we need to identify a total search
problemwith high communication complexity. That is, for total search problems, which should be the analog
of 3SAT or Disjointness? The correct answer turns out to be fixed-point computation.

2.3 Finding Brouwer Fixed Points (The ε-BFP Problem)

This section and the next describe reductions from computing Nash equilibria to computing fixed points,
and from computing fixed points to a path-following problem. These reductions are classical. The content
of the proof in Theorem 2.1 are reductions in the opposite direction; these are discussed in Solar Lecture 3.

2.3.1 Brouwer’s Fixed-Point Theorem

Brouwer’s fixed-point theorem states that whenever you stir your coffee, there will be a point that ends up
exactly where it began. Or if you prefer a more formal statement:

Theorem2.2 (Brouwer’s Fixed-Point Theorem (1910)). IfC is a compact convex subset ofRd , and f : C → C
is continuous, then there exists a fixed point: a point x ∈ C with f (x) = x.

All of the hypotheses are necessary.4 We will be interested in a computational version of Brouwer’s
fixed-point theorem, the ε-BFP problem:

The ε-BFP Problem (Generic Version)

given a description of a compact convex set C ⊆ Rd and a continuous function f : C → C, output an
ε-approximate fixed point, meaning a point x ∈ C such that ‖ f (x) − x‖ < ε .

The ε-BFP problem, in its many different forms, plays a starring role in the study of equilibrium computation.
The setC is typically fixed in advance, for example to the d-dimensional hypercube. While much of the work
on the ε-BFP problem has focused on the `∞ norm (e.g. [74]), one innovation in the proof of Theorem 2.1
is to instead use a normalized version of the `2 norm (following Rubinstein [135]).

Nailing down the problem precisely requires committing to a family of succinctly described continuous
functions f . The description of the family used in the proof of Theorem 2.1 is technical and best left to
Section 3.1. Often (and in these lectures), the family of functions considered contains only O(1)-Lipschitz
functions.5 In particular, this guarantees the existence of an ε-approximate fixed point with description
length polynomial in the dimension and log 1

ε (by rounding an exact fixed point to its nearest neighbor on a
suitably defined grid).

4If convexity is dropped, consider rotating an annulus centered at the origin. If boundedness is dropped, consider x 7→ x + 1
on R. If closedness is dropped, consider x 7→ x

2 on (0, 1]. If continuity is dropped, consider x 7→ (x + 1
2 ) mod 1 on [0, 1]. Many

more general fixed-point theorems are known, and find applications in economics and elsewhere; see e.g. [15, 103].
5Recall that a function f defined on a metric space (X, d) is λ-Lipschitz if d( f (x), f (y)) ≤ λ · d(x, y) for all x, y ∈ X . That is,

the function can only amplify distances between points by a λ factor.
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2.3.2 From Brouwer to Nash

Fixed-point theorems have long been used to prove equilibrium existence results, including the original proofs
of the Minimax theorem (Theorem 1.1) and Nash’s theorem (Theorem 1.14).6 Analogously, algorithms for
computing (approximate) fixed points can be used to compute (approximate) Nash equilibria.

Fact 2.3. Existence/computation of ε-NE reduces to that of ε-BFP.

To provide further details, let’s sketch why Nash’s theorem (Theorem 1.14) reduces to Brouwer’s fixed-
point theorem (Theorem 2.2), following the version of the argument in Geanakoplos [60].7 Consider a
bimatrix game (A, B) and let S1, S2 denote the strategy sets of Alice and Bob (i.e., the rows and columns).
The relevant convex compact set is C = ∆1 × ∆2, where ∆i is the simplex representing the mixed strategies
over Si . We want to define a continuous function f : C → C, from mixed strategy profiles to mixed strategy
profiles, such that the fixed points of f are the Nash equilibria of this game. We define f separately for
each component f i : C → ∆i for i = 1, 2. A natural idea is to set f i to be a best response of player i to the
mixed strategy of the other player. This does not lead to a continuous, or even well defined, function. We
can instead use a “regularized” version of this idea, defining

f1(x1, x2) = argmax
x′1∈∆1

g1(x ′1, x2), (2.1)

where

g1(x ′1, x2) = E j∼x′1,`∼x2

[
Aj`

]︸              ︷︷              ︸
linear in x′1

− ‖x ′1 − x1‖22︸       ︷︷       ︸
strictly convex

, (2.2)

and similarly for f2 and g2 (with Bob’s payoff matrix B). The first term of the function gi encourages a
best response while the second “penalty term” discourages big changes to player i’s mixed strategy. Because
the function gi is strictly concave in x ′i , f i is well defined. The function f = ( f1, f2) is continuous (as
you should check). By definition, every Nash equilibrium of the given game is a fixed point of f . For the
converse, suppose that (x1, x2) is not a Nash equilibrium, with Alice (say) able to increase her expected
payoff by deviating unilaterally from x1 to x ′1. A simple computation shows that, for sufficiently small ε > 0,
g1((1 − ε )x1 + ε x ′1, x2) > g1(x1, x2), and hence (x1, x2) is not a fixed point of f (as you should check).

Summarizing, an oracle for computing Brouwer fixed points immediately gives an oracle for computing
a Nash equilibrium of a bimatrix game. The same argument applies to games with any (finite) number of
players. The same argument also shows that an oracle for computing an ε-approximate fixed point in the `∞
norm can be used to compute an O(ε )-approximate Nash equilibrium of a game. The first high-level goal of
the proof of Theorem 2.1 is to reverse the direction of the reduction—to show that the problem of computing
an approximate Nash equilibrium is as general as computing an approximate fixed point, rather than merely
being a special case.

Goal #1

ε-BFP ≤ ε-NE

6In fact, the story behind von Neumann’s original proof of the Minimax theorem is a little more complicated and nuanced; see
Kjeldsen [89] for a fascinating and detailed discussion.

7This discussion is borrowed from [129, Lecture 20].
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witnesses

canonical source

Figure 2.2: An instance of the EoL problem corresponds to a directed graph with all in- and out-degrees at
most 1. Solutions correspond to sink vertices and source vertices other than the given one.

This goal follows in the tradition of a sequence of celebrated computational hardness results last decade
for computing an exact Nash equilibrium (or an ε-approximate Nash equilibrium with ε polynomial in
1
n ) [44, 34].

There are a couple of immediate issues. First, it’s not clear how to meaningfully define the ε-BFP
problem in a two-party communication model—what are Alice’s and Bob’s inputs? We’ll address this issue
in Section 3.1. Second, even if we figure out how to define the ε-BFP problem and implement goal #1, so
that the ε-NE problem is at least as hard as the ε-BFP problem, what makes us so sure that the latter is hard?
This brings us to our next topic—a “generic” total search problem that is hard almost by definition and can
be used to transfer hardness to other problems (like ε-BFP) via reductions.8

2.4 The End-of-the-Line (EoL) Problem

For equilibrium and fixed-point computation problems, it turns out that the appropriate “generic” problem
involves following a path in a large graph; see also Figure 2.2.

The EoL Problem (Generic Version)

given a description of a directed graph G with maximum in- and out-degree 1, and a source vertex s
of G, find either a sink vertex of G or a source vertex other than s.

The restriction on the in- and out-degrees forces the graph G to consist of vertex-disjoint paths and cycles,
with at least one path (starting at the source s). The EoL problem is a total search problem—there is always
a solution, if nothing else the other end of the path that starts at s. Thus an instance of EoL can always be
solved by rotely following the path from s; the question is whether or not there is a more clever algorithm
that always avoids searching the entire graph.

It should be plausible that the EoL problem is hard, in the sense that there is no algorithm that always
improves over rote path-following; see also Section 2.6. But what does it have to do with the ε-BFP problem?
A lot, it turns out.

8For an analogy, a “generic” hard problem for the complexity class NP is: given a description of a polynomial-time verifier,
does there exist a witness (i.e., an input accepted by the verifier)?
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Figure 2.3: The proof of Sperner’s lemma, in action.

Fact 2.4. The problem of computing an approximate Brouwer fixed point reduces to the EoL problem (i.e.,
ε-BFP ≤ EoL).

The basic reason that fixed-point computation reduces to path-following is Sperner’s Lemma.

Lemma 2.5 (Sperner’s Lemma). Consider a triangle with vertices A, B,C and a triangulation T of it.
Suppose the vertices S of the triangulation T are 3-colored so that (1) A, B, and C receive distinct colors;
and (2) each vertex on the boundary of ABC is colored with one of the two colors of the endpoints of its side
of the triangle. Then, there exists an odd number of triangles of T for which all three corners have distinct
colors.

Figure 2.3 illustrates the proof of Sperner’s lemma: starting at a source vertex outside the triangle, one
can continue moving through the triangulation (entering via a bichromatic edge) until one finally hits a
trichromatic triangle; in the picture, one enters each time via a red-yellow edge. In other words, finding a
trichromatic triangle reduces to the EoL problem.9

Next we’ll use Sperner’s lemma to prove Brouwer’s fixed-point theorem for a 2-dimensional simplex ∆.
Let f : ∆→ ∆ be a λ-Lipschitz function (with respect to the `2 norm, say).

1. Subdivide ∆ into sub-triangles with side length at most ε/λ. Think of the points of ∆ as parameterized
by three coordinates (x, y, z), with x, y, z ≥ 0 and x + y + z = 1.

2. Associate each of the three coordinates with a distinct color. To color a point (x, y, z), consider its
image (x ′, y′, z′) under f and choose the color of a coordinate that strictly decreased (if there are
none, then (x, y, z) is a fixed point and we’re done). Note that the conditions of Sperner’s Lemma are
satisfied.

9We’re glossing over some details of the reduction. First, there is a canonical way to direct the edges of the graph induced by a
coloring, resulting in a directed graph as required for the EoL problem. Second, the source vertex outside the triangle can have odd
degree 2k − 1 larger than 1; splitting it into k vertices (a source vertex with out-degree 1 and k − 1 vertices with in- and out-degree
1) yields a graph of the required form.
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3. We claim that the center ( x̄, ȳ, z̄) of a trichromatic triangle must be an O(ε )-fixed point (in the `∞
norm). Because some corner of the triangle has its x-coordinate go down under f , ( x̄, ȳ, z̄) is at
distance at most ε/λ from this corner, and f is λ-Lipschitz, the x-coordinate of f ( x̄, ȳ, z̄) is at most
x̄ + O(ε ). The same argument applies to ȳ and z̄, which implies that each of the coordinates of
f ( x̄, ȳ, z̄) is within ±O(ε ) of the corresponding coordinate of ( x̄, ȳ, z̄).

By an inductive argument, Sperner’s Lemma extends to simplices in any (finite) number of dimensions.
The number of colors is one more than the number of dimensions, and a path-following argument implies
the existence of (an odd number of) sub-simplices for which every corner has a different color. Analogs of
Sperner’s Lemma can also be proved by similar arguments for other natural sets, like hypercubes.10

This brings us to the second high-level goal of the proof of Theorem 2.1: to reverse the direction of
the above reduction from ε-BFP to EoL. That is, we would like to show that the problem of computing an
approximate Brouwer fixed point is as general as every path-following problem (of the form in EoL), and is
not merely a special case.

Goal #2

EoL ≤ ε-BFP

If we succeed in implementing goals #1 and #2, and also prove directly that the EoL problem is hard, then
we’ll have proven hardness for the problem of computing an approximate Nash equilibrium.

2.5 Road Map for the Proof of Theorem 2.1

The high-level plan for the proof in the rest of this and the next lecture is to show that

a low-cost communication protocol for ε-NE

implies
a low-cost communication protocol for ε-2BFP,

where ε-2BFP is a two-party version of the problem of computing a fixed point (to be defined), which then
implies

a low-cost communication protocol for 2EoL,

where 2EoL is a two-party version of the End-of-the-Line problem (to be defined), which then implies

a low-query algorithm for EoL.

Finally, we’ll prove directly that the EoL problem does not admit a low-query algorithm. This gives us four
things to prove (hardness of EoL and the three implications); we’ll tackle them one-by-one in reverse order.
The first step (Section 2.6)) is easy. The second step (Section 2.7) follows directly from one of the simulation
theorems alluded to in Section 2.1. The last two steps, which correspond to goals #2 and #1, respectively,
are harder and deferred to Solar Lecture 3.

10Brouwer’s fixed-point theorem in its full generality follows easily from Sperner’s Lemma. To prove Brouwer’s fixed-point
theorem for simplices (of any dimension), take the limit ε → 0 in the argument above and use the continuity of f . Because every
compact convex subset of finite-dimensional Euclidean space is homeomorphic to a simplex of the same dimension (by scaling and
radial projection, essentially), Brouwer’s fixed-point theorem carries over to all compact convex subsets of Euclidean space.
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Most of the ingredients in this road map were already present in a paper by Omri Weinstein and your
lecturer [133], which was the first paper to define and study two-party versions of fixed-point computation
problems, and to propose the use of simulation theorems in the context of equilibrium computation. One
major innovation in Babichenko and Rubinstein [9] is the use of the generic EoL problem as the base of
the reduction, thereby eluding the tricky interactions in [133] between simulation theorems (which seem
inherently combinatorial) and fixed-point problems (which seem inherently geometric). Roughgarden and
Weinstein [133] applied a simulation theorem directly to a fixed-point problem (relying on strong query
complexity lower bounds for finding fixed points [74, 8]), which yielded a hard but unwieldy version of a
two-party fixed-point problem. It is not clear how to reduce this version to the problem of computing an
approximate Nash equilibrium. Babichenko and Rubinstein [9] instead apply a simulation theorem directly
to the EoL problem, which results in a reasonably natural two-party version of the problem (see Section 2.7).
There is significant flexibility in how to interpret this problem as a two-party fixed-point problem, and the
interpretation in Babichenko and Rubinstein [9] (see Section 3.1) yields a version of the problem that is
hard and yet structured enough to be solved using approximate Nash equilibrium computation. A second
innovation in [9] is the reduction from ε-2BFP to ε-NE (see Section 3.2) which, while not difficult, is both
new and clever.

2.6 Step 1: Query Lower Bound for EoL

We consider the following “oracle” version of the EoL problem. The vertex set V is fixed to be {0, 1}n . Let
N = |V | = 2n . Algorithms are allowed to access the graph only through vertex queries. A query to the vertex
v reveals its predecessor pred(v) (if any, otherwise pred(v) is NULL) and its successor succ(v) (or NULL
if it has no successor). The interpretation is that the directed edge (v,w) belongs to the implicitly defined
directed graph G = (V, E) if and only if both succ(v) = w and pred(w) = v. These semantics guarantee
that the graph has in- and out-degree at most 1. We also assume pred(0n ) = NULL, and interpret the vertex
0n as the a priori known source vertex of the graph.

The version of the EoL problem for this oracle model is:

The EoL Problem (Query Version)

given an oracle as above, find a vertex v ∈ V that satisfies one of the following:

(i) succ(v) is NULL;

(ii) pred(v) is NULL and v , 0n;

(iii) v , pred(succ(v)); or

(iv) v , succ(pred(v)) and v , 0n .

According to our semantics, cases (iii) and (iv) imply that v is a sink and source vertex, respectively. A
solution is guaranteed to exist—if nothing else, the other end of the path of G that originates with the
vertex 0n .

It will sometimes be convenient to restrict ourselves to a “promise” version of the EoL problem (which
can only be easier), where the graph G is guaranteed to be a single Hamiltonian path. Even in this special
case, because every vertex query reveals information about only three vertices or less, we have the following.
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Proposition 2.6. Every deterministic algorithm that solves the EoL problem requires Ω(N ) queries in the
worst case, even for instances that consist of a single Hamiltonian path.

Slightly more formally, consider an adversary that always responds with values of succ(v) and pred(v)
that are never-before-seen vertices (except as necessary to maintain the consistency of all of the adversary’s
answers, so that cases (iii) and (iv) never occur). After only o(N ) queries, the known parts of G constitute a
bunch of vertex-disjoint paths, andG could still be (among other things) any Hamiltonian path ofV consistent
with these. The end of this Hamiltonian path could be any of Ω(N ) different vertices, and the algorithm has
no way of knowing which one.11

2.7 Step 2: Communication Complexity Lower Bound for 2EoL via a Simu-
lation Theorem

Our next step is to use a “simulation theorem” to transfer our query lower bound for the EoL problem to a
communication complexity lower bound for a two-party version of the problem, 2EoL.12 The exact definition
of the 2EoL problem will be determined by the output of the simulation theorem.

2.7.1 The Query Model

Consider an arbitrary function f : ΣN → Σ, where Σ denotes a finite alphabet. There is an input z =
(z1, . . . , zN ) ∈ ΣN , initially unknown to an algorithm. The algorithm can query the input z adaptively, with
each query revealing zi for a coordinate i of the algorithm’s choosing. It is trivial to evaluate f (z) using N
queries; the question is whether or not there is an algorithm that always does better (for some function f
of interest). For example, the query version of the EoL problem in Proposition 2.6 can be viewed as a
special case of this model, with Σ = {0, 1}n × {0, 1}n (to encode pred(v) and succ(v)) and f (z) encoding
the (unique) vertex at the end of the Hamiltonian path.

2.7.2 Simulation Theorems

We now describe how a function f : ΣN → Σ as above induces a two-party communication problem. The
idea is to “factor” the input z = (z1, . . . , zN ) to the query version of the problem between Alice and Bob, so
that neither player can unilaterally figure out any coordinate of z. We use an Index gadget for this purpose,
as follows. (See also Figure 2.4.)

Two-Party Problem Induced by f : ΣN → Σ

Alice’s input: N “blocks” A1, . . . , AN . Each block has M = poly(N ) entries (with each entry in Σ).
(Say, M = N20.)

Bob’s input: N indices y1, . . . , yN ∈ [M].

Communication problem: compute f (A1[y1], . . . , AN [yN ]).

11A similar argument, based on choosing a Hamiltonian path of V at random, implies an Ω(N ) lower bound for the randomized
query complexity as well.

12These notes do not reflect a beautiful lecture given by Omri Weinstein on the history and applications of simulation theorems
(e.g., to the first non-trivial lower bounds for the clique vs. independent set problem [64]). Contact him for his slides!
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Figure 2.4: A query problem induces a two-party communication problem. Alice receives N blocks, each
containing a list of possible values for a given coordinate of the input. Bob receives N indices, specifying
where in Alice’s blocks the actual coordinates of the input reside.

Note that the yi th entry of Ai—Bob’s index into Alice’s block—is playing the role of zi in the original
problem. Thus each block Ai of Alice’s input can be thought of as a “bag of garbage;” it tells Alice a huge
number of possible values for the ith coordinate of the input, without any clue about which is the “real one.”
Meanwhile, Bob’s indices tell him the locations of the real values, without any clues about what these values
are.

If f can be evaluated with a query algorithm that always uses at most q queries, then the induced
two-party problem can be solved using O(q log N ) bits of communication. For Alice can just simulate the
query algorithm; whenever it needs to query the ith coordinate of the input, Alice asks Bob for his index
yi and supplies the query algorithm with Ai[yi]. Each of the at most q questions posed by Alice can be
communicated with ≈ log N bits, and each answer from Bob with ≈ log M = O(log N ) bits.

There could also be communication protocols for the two-party problem that look nothing like the
straightforward simulation. For example, Alice and Bob could send each other the exclusive-or of all of
their input bits. While it may not clear why this would be useful, it’s equally unclear how to prove that it
can’t be useful. The remarkable Raz-McKenzie simulation theorem asserts that there are no communication
protocols for the two-party problem that improve over the straightforward simulation of a query algorithm.

Theorem 2.7 (Raz-McKenzie Simulation Theorem [120, 66]). If every deterministic query algorithm for f
requires at least q queries in the worst case, then every deterministic communication protocol for the induced
two-party problem has cost Ω(q log N ).

The proof, which is not easy but also not unreadable, shows how to extract a good query algorithm from
an arbitrary low-cost communication protocol (essentially by a potential function argument).

The original Raz-McKenzie theorem [120] and the streamlined version by Göös et al. [66] are both
restricted to deterministic algorithms and protocols, and this is the version we’ll use in these notes. Very
recently, Göös et al. [67] and Anshu et al. [5] proved the analog of Theorem 2.7 for randomized query
algorithms and randomized communication protocols (with two-sided error).13 This randomized simulation

13Open question: prove a simulation theorem for quantum computation.
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theorem simplifies the original proof of Theorem 2.1 (which pre-dated [67, 5]) to the point that it’s almost
the same as the argument given here for the deterministic case.14

The Raz-McKenzie theorem provides a generic way to generate a hard communication problem from a
hard query problem. We can apply it in particular to the EoL problem, and we call the induced two-party
problem 2EoL.15

The EoL Problem (Two-Party Version, 2EoL)

• Let V = {0, 1}n and N = |V | = 2n .

• Alice’s input consists of N blocks, one for each vertex of V , and each block Av contains M
entries, each encoding a possible predecessor-successor pair for v.

• Bob’s input consists of one index yv ∈ {1, 2, . . . , M } for each vertex v ∈ V , encoding the entry
of the corresponding block holding the “real” predecessor-successor pair for v.

• The goal is to identify a vertex v ∈ V that satisfies one of the following:

(i) the successor in Av[yv] is NULL;
(ii) the predecessor in Av[yv] is NULL and v , 0n;
(iii) Av[yv] encodes the successor w but Aw[yw] does not encode the predecessor v; or
(iv) Av[yv] encodes the predecessor u but Au[yu] does not encode the successor v, and v , 0n .

The next statement is an immediate consequence of Claim 2.6 and Theorem 2.7.

Corollary 2.8. The deterministic communication complexity of the 2EoL problem is Ω(N log N ), even for
instances that consist of a single Hamiltonian path.

A matching upper bound of O(N log N ) is trivial, as Bob always has the option of sending Alice his
entire input.

Corollary 2.8 concludes the second step of the proof of Theorem 2.1 and furnishes a generic hard total
search problem. The next order of business is to transfer this communication complexity lower bound to the
more natural ε-BFP and ε-NE problems via reductions.

14For typechecking reasons, the argument for randomized protocols needs to work with a decision version of the EoL problem,
such as “is the least significant bit of the vertex at the end of the Hamiltonian path equal to 1?”

15Raz and McKenzie [120] stated their result for the binary alphabet and for total functions. Göös et al. [66] note that it applies
more generally to arbitrary alphabets and partial functions, which is important for its application here. For further proof details of
these extensions, see Roughgarden and Weinstein [133].
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Solar Lecture 3
Communication Complexity Lower Bound for Computing an Approximate Nash Equilibrium of a

Bimatrix Game (Part II)

Lecturer: Tim Roughgarden Scribe: Michal Koucký and Pavel Pudlák

This lecture completes the proof of Theorem 2.1. As a reminder, this result states that if Alice’s and Bob’s
private inputs are the two payoff matrices of an N × N bimatrix game, and ε is a sufficiently small constant,
then NΩ(1) communication is required to compute an ε-approximate Nash equilibrium (Definition 1.12), even
when randomization is allowed. In terms of the proof road map in Section 2.5, it remains to complete steps 3
and 4. This corresponds to implementing Goals #1 and #2 introduced in the last lecture—reversing the
direction of the classical reductions from the ε-BFP problem to path-following and from the ε-NE problem
to (a two-party version of) the ε-BFP problem.

3.1 Step 3: 2EoL ≤ ε-2BFP

3.1.1 Preliminaries

We know from Corollary 2.8 that 2EoL, the two-party version of the End-of-the-Line problem defined in
Section 2.7, has large communication complexity. This section transfers this lower bound to a two-party
version of an approximate fixed point problem, by reducing the 2EoL problem to it.

We next define our two-party version of the ε-BFP problem, the ε-2BFP problem. The problem is
parameterized by the dimension d and an approximation parameter ε . The latter should be thought of as a
sufficiently small constant (independent of d).

The ε-BFP Problem (Informal Two-Party Version)

• Let H = [0, 1]d denote the d-dimensional hypercube.

• Alice and Bob possess private inputs that, taken together, implicitly define a continuous function
f : H → H .

• The goal is to identify an ε-approximate fixed point, meaning a point x ∈ H such that
‖ f (x) − x‖ < ε , where ‖ · ‖ denotes the normalized `2 norm:

‖a‖ =

√√√
1
d

d∑
i=1

a2
i .
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The normalized `2 norm of a point in the hypercube (or the difference between two such points) is always
between 0 and 1. If a point x ∈ H is not an ε-approximate fixed point with respect to this norm, then f (x)
and x differ by a constant amount in a constant fraction of the coordinates. This version of the problem can
only be easier than the more traditional version, which uses the `∞ norm.

To finish the description of the ε-2BFP problem, we need to explain how Alice and Bob interpret their
inputs as jointly defining a continuous function.

3.1.2 Geometric Intuition

Our reduction from 2EoL to ε-2BFP will use no communication—Alice and Bob will simply reinterpret
their 2EoL inputs as ε-2BFP inputs in a specific way, and a solution to the 2EoL instance will be easy to
recover from any approximate fixed point.

Figure 3.1 shows the key intuition: graphs of paths and cycles naturally lead to continuous functions,
where the gradient of the function “follows the line” and fixed points correspond to sources and sinks of the
graph.

Figure 3.1: Directed paths and cycles can be converted to continuous functions that “follow the line.” Points
far from the path are moved by f is some canonical direction. (Figure courtesy of Yakov Babichenko.)

This idea originates in Hirsch et al. [74], who considered approximate fixed points in the `∞ norm.
Rubinstein [135] showed how to modify the construction so that it works even for the normalized `2 norm.
Babichenko and Rubinstein [9] used the construction from [135] in their proof of Theorem 2.1; our treatment
here includes some simplifications.

3.1.3 Embedding a Graph in the Hypercube

Before explaining exactly how to interpret graphs as continuous functions, we need to set up an embedding
of every possible graph on a given vertex set into the hypercube.

Let V = {0, 1}n and N = |V | = 2n . Let K denote the complete undirected graph with vertex set V—all
edges that could conceivably be present in an EoL instance (ignoring their orientations). Decide once and
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for all on an embedding σ of K into H = [0, 1]d , where d = Θ(n) = Θ(log N ), with two properties:1

(P1) The images of the vertices are well separated: for every v,w ∈ V (with v , w), ‖σ(v) − σ(w)‖ is at
least some constant (say 1

10 ).

(P2) The images of the edges are well separated. More precisely, a point x ∈ H is close (within distance
10−3, say) to the images σ(e) and σ(e′) of distinct edges e and e′ only if x is close to the image of a
shared endpoint of e and e′. (In particular, if e and e′ have no endpoints in common, then no x ∈ H is
close to both σ(e) and σ(e′).)

Property (P1) asserts that the images of two different vertices differ by a constant amount in a constant
fraction of their coordinates.2 One natural way to achieve this property is via an error-correcting code with
constant rate. The simplest way to achieve both properties is to take a random straight-line embedding. Each
vertex v ∈ V is mapped to a point in { 14,

3
4 }

d , with each coordinate set to 1
4 or 3

4 independently with 50/50
probability.3 Each edge is mapped to a straight line between the images of its endpoints. Provided d = cn
for a sufficiently large constant c, properties (P1) and (P2) both hold with high probability.4

The point of properties (P1) and (P2) is to classify the points of H into three categories: (i) those close
to the image of a (unique) vertex of K ; (ii) those not close to the image of any vertex but close to the image
of a (unique) edge of K ; and (iii) points not close to the image of any vertex or edge of K . Accordingly, each
point x ∈ H can be “decoded” to a unique vertex v of K , a unique edge (v,w) of K , or ⊥. Don’t forget that
this classification of points of H is made in advance of receiving any particular EoL input. In the ε-2BFP
problem, since Alice and Bob both know the embedding in advance, they can decode points at will without
any communication.5

3.1.4 Interpreting Paths as Continuous Functions

Given the embedding above, we can now describe how to interpret a directed graph G = (V, E) induced
by an instance of EoL as a continuous function on the hypercube, with approximate fixed points of the
function corresponding only to sources and sinks of G. Write a function f : H → H as f (x) = x + g(x)
for the “displacement function” g : H → [−1, 1]d . (The final construction will take care to define g so that
x + g(x) ∈ H for every x ∈ H .) An ε-approximate fixed point is a point x with ‖g(x)‖ < ε , so it’s crucial for
our reduction that our definition of g satisfies ‖g(x)‖ ≥ ε whenever x is not close to the image of a source
or sink of G.

Consider for simplicity a directed graph G = (V, E) of an EoL instance that has no 2-cycles and no

1By an embedding, we mean a function σ that maps each edge (v,w) of K to a continuous path in H with endpoints σ(v) and
σ(w).

2In the original construction of Hirsch et al. [74], vertices of K could potentially bemapped to points of H that differ significantly
in only one coordinate. This construction is good enough to prevent spurious approximate fixed points in the `∞ norm, but not in
the normalized `2 norm.

3For reasons related to the omitted technical details,, it’s convenient to have a “buffer zone” between the embedding of the graph
and the boundary of the hypercube.

4In the two-party communication model, we need not be concerned about efficiently constructing such an embedding. Since
Alice and Bob have unbounded computational power, they can both compute the lexicographically first such embedding in advance
of the protocol. When we consider computational lower bounds in Solar Lecture 5, we’ll need an efficient construction.

5As suggested by Figure 3.1, in the final construction it’s important to use a more nuanced classification that “interpolates”
between points in the three different categories. It will still be the case that Alice and Bob can classify any point of x ∈ H
appropriately without any communication.
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isolated vertices.6 A rough description of the displacement function g(x) induced by G is as follows, where
δ > 0 is a parameter (cf., Figure 3.1):

1. If x is close to σ(e), where the endpoints of e are u and v, then

g(x) = δ ·



direction of the line segment σ(e), oriented from u to v if directed edge (u, v) ∈ E
direction of the line segment σ(e), oriented from v to u if directed edge (v, u) ∈ E
some default direction otherwise.

2. For x close to σ(v), for v ∈ G,

(a) if v has an incoming edge (u, v) and an outgoing edge (v,w), then define g(x) by interpolating
the displacement vectors corresponding to the edges (u, v) and (v,w) (i.e., “turn slowly” as in
Figure 3.1);

(b) otherwise (i.e., v is a source or sink of G), set g(x) to interpolate the direction of the incoming
or outgoing edge (whichever one exists) and the all-0 vector.

3. For x that are not close to any σ(v) or σ(e), set g(x) to δ times the default direction.

For points x “in between” the three cases (e.g., almost but not quite close enough to the image of an edge),
g(x) is defined by interpolation (e.g., a weighted average of the direction of the edge and the default direction,
with weights determined by just how close x is to the image of the edge).

The default direction can be implemented by doubling the number of dimensions to 2d, and defining
the displacement direction as the vector (0, 0, . . . , 0, 1, 1, . . . , 1). Special handling (not detailed here) is then
required at points x with value close to 1 in one of these extra coordinates, to ensure that x + g(x) remains in
H while also not introducing any unwanted approximate fixed points. Similarly, special handling is required
for the source vertex 0n , to prevent σ(0n ) from being a fixed point. Roughly, this can be implemented by
mapping the vertex 0n to one corner of the hypercube and defining g to point in the opposite direction. The
parameter δ is a constant, bigger than ε by a constant factor. (For example, one can assume that ε ≤ 10−12
and take δ ≈ 10−6.) This ensures that whenever the normalized `2 norm of a direction vector y is at least
a sufficiently large constant, δ · y has norm larger than ε . This completes our sketch of how to interpret an
instance of EoL as a continuous function on the hypercube.

3.1.5 Properties of the Construction

Properly implemented, the construction in Sections 3.1.3 and 3.1.4 has the following properties:

1. Provided ε is at most a sufficiently small constant, a point x ∈ H satisfies ‖g(x)‖ < ε only if it is close
to the image of a source or sink of G different from the canonical source 0n . (Intuitively, this should
be true by construction.)

2. There is a constant λ, independent of d, such that the function f (x) = x + g(x) is λ-Lipschitz. In
particular, f is continuous. (Intuitively, this is because we take care to linearly interpolate between
regions of H with different displacement vectors.)

6Recall from Corollary 2.8 that the 2EoL problem is already hard in the special case where the induced graph G is guaranteed
to be a Hamiltonian path.
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Sections 3.1.3 and 3.1.4, together with Figure 3.1, provide a plausibility argument that a construction with
these two properties is possible along the proposed lines. Readers interested in further details are encouraged
to start with the carefully written two-dimensional construction in [74, Section 4]—wheremany of these ideas
originate—before proceeding to the general case in [74, Section 5] for the `∞ norm and finally Babichenko
and Rubinstein [9] for the version tailored to the normalized `2 norm (which is needed here).

3.1.6 The ε-2BFP Problem and Its Communication Complexity

We can now formally define the two-party version of the ε-BFP problem that we consider, denoted ε-2BFP.
The problem is parameterized by a positive integer n and a constant ε > 0.

The ε-2BFP Problem

• Alice and Bob begin with private inputs to the 2EoL problem: Alice with N = 2n “blocks”
A1, . . . , AN , each with M = poly(N ) entries from the alphabet Σ = {0, 1}n × {0, 1}n , and Bob
with N indices y1, . . . , yN ∈ [M].

• Let G be the graph induced by these inputs (with V = {0, 1}n and Av[yv] encoding
(pred(v), succ(v)).

• Let f denote the continuous function f : H → H induced by G, as per the construction in
Sections 3.1.3 and 3.1.4, where H = [0, 1]d is the d-dimensional hypercube with d = Θ(n).

• The goal is to compute a point x ∈ H such that ‖ f (x) − x‖ < ε , where ‖·‖ denotes the normalized
`2 norm.

The two properties in Section 3.1.5 imply a communication complexity lower bound for the ε-2BFP
problem and implement step 3 of the road map in Section 2.5.

Theorem 3.1 ([9]). For every sufficiently small constant ε > 0, the deterministic communication complexity
of the ε-2BFP problem is Ω(N log N ), even for O(1)-Lipschitz functions.

Proof. If there is a deterministic communication protocol with cost c for the ε-2BFP problem, then there is
also one for the 2EoL problem: Alice and Bob interpret their 2EoL inputs as inputs to the ε-2BFP problem,
run the assumed protocol to compute an ε-approximate fixed point x, and (using no communication)
decode x to a source or sink vertex v of G (that is different from 0n). The theorem follows immediately from
Corollary 2.8. �

3.1.7 Local Decodability of ε-2BFP Functions

There is one more important property of the functions f constructed in Sections 3.1.3 and 3.1.4: they are
locally decodable in a certain sense. Suppose Alice and Bob want to compute the value of f (x) at some
commonly known point x ∈ H . If x decodes to ⊥ (i.e., is not close to the image of any vertex or edge of the
complete graph K on vertex set V ), then Alice and Bob know the value of f (x) without any communication
whatsoever: f (x) is x plus δ times the default direction (or a known customized displacement if x is too
close to certain boundaries of H). If x decodes to the edge e = (u, v) of the complete graph K , then Alice and
Bob can compute f (x) as soon as they know whether or not edge e belongs to the directed graph G induced
by their inputs, along with its orientation. This requires Alice and Bob to exchange predecessor-successor
information about only two vertices (u and v). Analogously, if x decodes to the vertex v of K , then Alice and
Bob can compute f (x) after exchanging information about at most three vertices (v, pred(v), and succ(v)).
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3.2 Step 4: ε-2BFP ≤ ε-NE

This section completes the proof of Theorem 2.1 by reducing the ε-2BFP problem to the ε-NE problem,
where ε is a sufficiently small constant.

3.2.1 The McLennan-Tourky Analytic Reduction

The starting point for our reduction is a purely analytic reduction of McLennan and Tourky [104], which
reduces the existence of (exact) Brouwer fixed points to the existence of (exact) Nash equilibria.7 Subsequent
sections explain the additional ideas needed to implement this reduction for approximate fixed points and
Nash equilibria in the two-party communication model.

Theorem 3.2 (McLennan and Tourky [104]). Nash’s theorem (Theorem 1.14) implies Brouwer’s fixed-point
theorem (Theorem 2.2).

Proof. Consider an arbitrary continuous function f : H → H , where H = [0, 1]d is the d-dimensional
hypercube (for some positive integer d).8 Define a two-player game as follows. The pure strategies of Alice
and Bob both correspond to points of H . For pure strategies x, z ∈ H , Alice’s payoff is defined as

1 − ‖x − z‖2 = 1 −
1
d

d∑
i=1

(xi − zi )2 (3.1)

and Bob’s payoff as

1 − ‖z − f (x)‖2 = 1 −
1
d

d∑
i=1

(zi − f (x)i )2. (3.2)

Alice wants to imitate Bob’s strategy, while Bob wants to imitate the image of Alice’s strategy under the
function f .

For any mixed strategy σ of Bob (i.e., a distribution over points of the hypercube), Alice’s unique best
response is the corresponding center of gravityEz∼σ[z] (as you should check). Thus in anyNash equilibrium,
Alice plays a pure strategy x. Bob’s unique best response to such a pure strategy is the pure strategy z = f (x).
That is, every Nash equilibrium is pure, with x = z = f (x) a fixed point of f . Since a Nash equilibrium
exists, so does a fixed point of f .9 �

An extension of the argument above shows that, for λ-Lipschitz functions f , an ε ′-approximate fixed
point (in the normalized `2 norm) can be extracted easily from any ε-approximate Nash equilibrium, where ε ′
is a function of ε and λ only.10

7This reduction was popularized in a Leisure of the Theory Class blog post by Eran Shmaya (https://theoryclass.
wordpress.com/2012/01/05/brouwer-implies-nash-implies-brouwer/), who heard about the result from Rida Laraki.

8If fixed points are guaranteed for hypercubes in every dimension, then they are also guaranteed for all compact convex subsets
of finite-dimensional Euclidean space; see footnote 10 in Solar Lecture 2.

9Strictly speaking, we’re assuming a more general form of Nash’s theorem that asserts the existence of a pure Nash equilibrium
whenever every player has a convex compact strategy set (like H) and a continuous concave payoff function (like (3.1) and (3.2)).
(The version in Theorem 1.14 corresponds to the special case where each strategy set corresponds to a finite-dimensional simplex
of mixed strategies, and where all payoff functions are linear.) Most proofs of Nash’s theorem—including the one outlined in
Section 2.3.2—are straightforward to generalize in this way.

10It is not clear how to easily extract an approximate fixed point in the `∞ norm from an approximate Nash equilibrium without
losing a super-constant factor in the parameters. The culprit is the “ 1

d ” factor in (3.1) and (3.2)—needed to ensure that payoffs are
bounded—which allows each player to behave in an arbitrarily crazy way in a few coordinates without violating the ε-approximate
Nash equilibrium conditions. (Recall ε > 0 is constant while d → ∞.) This is one of the primary reasons why Rubinstein [135]
and Babichenko and Rubinstein [9] needed to modify the construction in Hirsch et al. [74] to obtain their results.
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3.2.2 The Two-Party Reduction: A Naive Attempt

We now discuss how to translate the McLennan-Tourky analytic reduction to an analogous reduction in the
two-party model. First, we need to discretize the hypercube. Define Hε as the set of ≈

(
1
ε

)n
points of

[0, 1]d for which all coordinates are multiples of ε . Every O(1)-Lipschitz function f is guaranteed to have an
O(ε )-approximate fixed point at some point of the discretized hypercube (by rounding an exact fixed point
to its nearest neighbor in Hε). This also means that the corresponding game (with payoffs defined as in (3.1)
and (3.2)) has an O(ε )-approximate Nash equilibrium in which each player deterministically chooses a point
of Hε .

The obvious attempt at a two-party version of the McLennan-Tourky reduction is:

1. Alice and Bob start with inputs to the ε-2BFP problem.

2. The players interpret these inputs as a two-player game, with strategies corresponding to points of the
discretized hypercube Hε , and with Alice’s payoffs given by (3.1) and Bob’s payoffs by (3.2).

3. The players run the assumed low-cost communication protocol for computing an approximate Nash
equilibrium.

4. The players extract an approximate fixed point of the ε-2BFP function from the approximate Nash
equilibrium.

Just one problem: this doesn’t make sense. The issue is that Bob needs to be able to compute f (x) to
evaluate his payoff function in (3.2), and his ε-2BFP input (just a bunch of indices into Alice’s blocks) does
not provide sufficient information to do this. Thus, the proposed reduction does not produce a well-defined
input to the ε-NE problem.

3.2.3 Description of the Two-Party Reduction

The consolation prize is that Bob can compute the function f at a point x after a brief conversation with Alice.
Recall from Section 3.1.7 that computing f at a point x ∈ H requires information about at most three vertices
of the 2EoL input that underlies the ε-2BFP input (in addition to x). Alice can send x to Bob, who can then
send the relevant indices to Alice (after decoding x to some vertex or edge of K), and Alice can respond
with the corresponding predecessor-successor pairs. This requires O(log N ) bits of communication, where
N = 2n is the number of vertices in the underlying 2EoL instance. (We are suppressing the dependence on
the constant ε in the big-O notation.) Denote this communication protocol by P.

At this point, it’s convenient to restrict the problem to the hard instances of 2EoL used to prove
Corollary 2.8, where in particular, succ(v) = w if and only if v = pred(w). (I.e., cases (iii) and (iv) in the
definition of the 2EoL problem in Section 2.7 never come up.) For this special case, P can be implemented
as a two-round protocol where Alice and Bob exchange information about one relevant vertex v (if x decodes
to v) or two relevant vertices u and v (if x decodes to the edge (u, v)).11

How can we exploit the local decodability of ε-2BFP functions? The idea is to enlarge the strategy
sets of Alice and Bob, beyond the discretized hypercube Hε , so that the players’ strategies at equilibrium

11If x decodes to the edge (u, v), then Alice and Bob exchange information about u and v in two rounds. If x decodes to the
vertex v, they exchange information about v in two rounds. This reveals v’s opinion of its predecessor u and successor w. In the
general case, Alice and Bob would still need to exchange information about u and w using two more rounds of communication to
confirm that succ(u) = pred(w) = v. (Recall our semantics: directed edge (u, v) belongs to G if and only if both succ(u) = v

and pred(v) = u.) In the special case of instances where succ(v) = w if and only if v = pred(w), these two extra rounds of
communication are redundant.
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effectively simulate the protocol P. Alice’s pure strategies are the pairs (x, α), where x ∈ Hε is a point of
the discretized hypercube and α is a possible transcript of Alice’s communication in the protocol P. Thus α
consists of at most two predecessor-successor pairs. Bob’s pure strategies are the pairs (z, β), where z ∈ Hε

and β is a transcript that could be generated by Bob in P—a specification of at most two different vertices
and his corresponding indices for them.12 Crucially, because the protocol P has cost O(log N ), there are
only NO(1) possible α’s and β’s. There are also only NO(1) possible choices of x and z—since ε is a constant
and d = Θ(n) in the ε-2BFP problem, |Hε | ≈

(
1
ε

)d
is polynomial in N = 2n . We conclude that the size of

the resulting game is polynomial in the length of the given ε-2BFP (or 2EoL) inputs.
We still need to define the payoffs of the game. Let A1, . . . , AN and y1, . . . , yN denote Alice’s and Bob’s

private inputs in the given ε-2BFP (equivalently, 2EoL) instance and f the corresponding function. Call an
outcome (x, α, z, β) consistent if α and β are the transcripts generated by Alice and Bob when they honestly
follow the protocol P to compute f (x). Precisely, a consistent outcome is one that meets the following two
conditions:

(i) for each of the (zero, one, or two) vertices v named in β, and corresponding index ŷv announced by
Bob in β, α contains the correct response Av[ŷv];

(ii) β specifies the names of the vertices relevant for Alice’s announced point x ∈ Hε , and for each such
vertex v, β specifies the correct index yv .

Observe that Alice can privately check if condition (i) holds (using her private input A1, . . . , AN and the
vertex names and indices in Bob’s announced strategy β), and Bob can privately check condition (ii) (using
his private input y1, . . . , yN and the point x announced by Alice).

For an outcome (x, z, α, β), we define Alice’s payoffs by{
−1 − 1

d

∑d
i=1(xi − zi )2 if (i) fails

1 − 1
d

∑d
i=1(xi − zi )2 otherwise. (3.3)

(Compare (3.3) with (3.1).) This definition makes sense because Alice can privately check whether or not (i)
holds and hence can privately compute her payoff.13

For Bob’s payoffs, we need a preliminary definition. Let fα (x) denote the value that the induced
function f would take on if α was consistent with x and with Alice’s and Bob’s private inputs. That is, to
compute fα (x):

1. Decode x to a vertex or an edge (or ⊥).

2. Interpret α as the predecessor-successor pairs for the vertices relevant for evaluating f at x.

3. Output x plus the displacement gα (x) defined as in Sections 3.1.3 and 3.1.4 (with α supplying any
predecessor-successor pairs that are necessary).

To review, f is the ε-2BFP function that Alice and Bob want to find a fixed point of, and f (x) generally
depends on the private inputs A1, . . . , AN and y1, . . . , yN of both Alice and Bob. The function fα is a
speculative version of f , predicated on Alice’s announced predecessor-successor pairs in her strategy α.
Crucially, the definition of fα does not depend at all on Alice’s private input, only on Alice’s announced

12In the protocol P, Bob does not need to communicate the names of any vertices—Alice can decode x privately. But it’s
convenient for the reduction to include the names of the vertices relevant for x in the β part of Bob’s strategy.

13If you want to be a stickler and insist on payoffs in [0, 1], then shift and scale the payoffs in (3.3) appropriately.
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strategy. Thus given α, Bob can privately execute the three steps above and evaluate fα (x) for any x ∈ Hε .
The other crucial property of fα is that, if α happens to be the actual predecessor-successor pairs {Av[yv]}
for the vertices relevant for x (given Alice’s and Bob’s private inputs), then fα (x) agrees with the value f (x)
of the true ε-2BFP function.

We can now define Bob’s payoffs as follows (compare with (3.2)):{
−1 if (ii) fails

1 − 1
d

∑d
i=1(zi − fα (x)i )2 otherwise. (3.4)

Because Bob can privately check condition (ii) and compute fα (x) (given x and α), Bob can privately
compute his payoff. This completes the description of the reduction from the ε-2BFP problem to the ε-NE
problem.

Alice and Bob can carry out this reduction with no communication—by construction, their ε-2BFP inputs
fully determine their payoff matrices. As noted earlier, because ε is a constant, the sizes of the produced
ε-NE inputs are polynomial in those of the ε-2BFP inputs.

3.2.4 Analysis of the Two-Party Reduction

Finally, we need to show that the reduction “works,” meaning that Alice and Bob can recover an approximate
fixed point of the ε-2BFP function f from any approximate Nash equilibrium of the game produced by the
reduction.

For intuition, let’s think first about the case where Alice’s and Bob’s strategies are points of the hyper-
cube H (rather than the discretized hypercube Hε) and the case of exact fixed points and Nash equilibria.
(Cf., Theorem 3.2.) What could a Nash equilibrium of the game look like? Consider mixed strategies by
Alice and Bob.

1. Alice’s payoff in (3.3) includes a term− 1
d

∑d
i=1(xi− zi )2 that is independent of her choice of α or Bob’s

choice of β, and the other term (either 1 or -1) is independent of her choice of x (since condition (i)
depends only on α and β). Thus, analogous to the proof of Theorem 3.2, in every one of Alice’s best
responses, she deterministically chooses x = Ez∼σ[z], where σ denotes the marginal distribution of z
in Bob’s mixed strategy.

2. Given that Alice is playing deterministically in her x-coordinate, in every one of Bob’s best responses,
he deterministically chooses β to name the vertices relevant for Alice’s announced point x and his
indices for these vertices (to land in the second case of (3.4) with probability 1).

3. Given that Bob is playing deterministically in his β-coordinate, Alice’s unique best response is to
choose x as before and also deterministically choose the (unique) message α that satisfies condition (i),
so that she will be in the more favorable second case of (3.3) with probability 1.

4. Given that Alice is playing deterministically in both her x- and α-coordinates, Bob’s unique best
response is to choose β as before and set z = fα (x) (to maximize his payoff in the second case
of (3.4)).

These four steps imply that every (exact) Nash equilibrium (x, z, α, β) of the game is pure, with α and β

consistent with x and Alice’s and Bob’s private information about the corresponding relevant vertices, and
with x = z = fα (x) = f (x) a fixed point of f .

As with Theorem 3.2, a more technical version of the same argument implies that an approximate fixed
point—a point x satisfying ‖ f (x) − x‖ < ε ′ with respect to the normalized `2 norm—can be easily extracted
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by Alice and Bob from any ε-approximate Nash equilibrium, where ε ′ depends only on ε (e.g., ε ′ = O(ε1/4)
suffices). For example, the first step of the proof becomes: in an ε-approximate Nash equilibrium, Alice
must choose a point x ∈ Hε that is close to E[z] except with small probability (otherwise she could increase
her expected payoff by more than ε by switching to the point of Hε closest to E[z]). And so on. Carrying
out approximate versions of all four steps above, while keeping careful track of the epsilons, completes the
proof of Theorem 2.1.

We conclude that computing an approximate Nash equilibrium of a general bimatrix game takes a
polynomial amount of communication, and in particular there are no uncoupled dynamics guaranteed to
converge to in a polylogarithmic number of iterations.
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Solar Lecture 4
TFNP, PPAD & All That

Lecturer: Tim Roughgarden Scribe: Amey Bhangale

Having resolved the communication complexity of computing an approximate Nash equilibrium of a
bimatrix game, we turn our attention to the computational complexity of the problem. Here, the goal will be to
prove a super-polynomial lower bound on the amount of computation required, under appropriate complexity
assumptions. The techniques developed in the last two lectures for our communication complexity lower
bound will again prove useful for this goal, but we will also need several additional ideas.

This lecture identifies the appropriate complexity class for characterizing the computational complexity
of computing an exact or approximate Nash equilibrium of a bimatrix game, namely PPAD. Solar Lecture 5
sketches some of the ideas in Rubinstein’s recent proof [135] of a quasi-polynomial-time lower bound for
the problem, assuming an analog of the Exponential Time Hypothesis for PPAD.

Section 4.1 explains why customized complexity classes are needed to reason about equilibrium com-
putation and other total search problems. Section 4.2 defines the class TFNP and some of its syntactic
subclasses, including PPAD.1 Section 4.3 reviews a number of PPAD-complete problems. Section 4.4
discusses the existing evidence that TFNP and its important subclasses are hard, and proves that the class
TFNP is hard on average assuming that NP is hard on average.

4.1 Preamble

We consider two-player (bimatrix) games, where each player has (at most) n strategies. The n × n payoff
matrices for Alice and Bob A and B are described explicitly, with Ai j and Bi j indicating Alice’s and Bob’s
payoffs when Alice plays her ith strategy and Bob his jth strategy. Recall from Definition 1.12 that an ε-NE
is a pair x̂, ŷ of mixed strategies such that neither player can increase their payoff with a unilateral deviation
by more than ε .

What do we know about the complexity of computing an ε-NE of a bimatrix game? Let’s start with the
exact case (ε = 0), where no subexponential-time (let alone polynomial-time) algorithm is known for the
problem. (This contrasts with the zero-sum case, see Corollary 1.5.) It is tempting to speculate that no such
algorithm exists. How would we amass evidence that the problem is intractable? Since we’re interested in
super-polynomial lower bounds, communication complexity is of no direct help.

Could the problem be NP-complete?2 The following theorem by Megiddo and Papadimitriou rules out
this possibility (unless NP = co-NP).

1Some of the discussion in these two sections is drawn from [129, Lecture 20].
2Technically, we’re referring to the search version of NP (sometimes called FNP, where the “F” stands for “functional”), where

the goal is to either exhibit a witness or correctly deduce that no witness exists.
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Algorithm for SAT 
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Figure 4.1: A reduction from the search version of the SAT problem to the problem of computing a Nash
equilibrium of a bimatrix game would yield a polynomial-time verifier for the unsatisfiability problem.

Theorem 4.1 ([105]). The problem of computing a Nash equilibrium of a bimatrix game is NP-hard only if
NP = co-NP.

Proof. The proof is short but a bit of a mind-bender, analogous to the argument back in Section 2.2. Suppose
there is a reduction from, say, (the search version of) satisfiability to the problem of computing a Nash
equilibrium of a bimatrix game. By definition, the reduction comprises two algorithms:

1. A polynomial-time algorithm A1 that maps every SAT formula φ to a bimatrix game A1(φ).

2. A polynomial-time algorithm A2 that maps every Nash equilibrium ( x̂, ŷ) of a game A1(φ) to a
satisfying assignment A2( x̂, ŷ) of φ, if one exists, and to the string “no” otherwise.

We claim that the existence of these algorithms A1 and A2 imply that NP = co-NP (see also Figure 4.1).
In proof, consider an unsatisfiable SAT formula φ, and an arbitrary Nash equilibrium ( x̂, ŷ) of the game
A1(φ).3 We claim that ( x̂, ŷ) is a short, efficiently verifiable proof of the unsatisfiability of φ, implying that
NP = co-NP. Given an alleged certificate ( x̂, ŷ) that φ is unsatisfiable, the verifier performs two checks:
(1) compute the game A1(φ) using algorithm A1 and verify that ( x̂, ŷ) is a Nash equilibrium of A1(φ); (2)
use the algorithm A2 to verify that A2( x̂, ŷ) is the string “no.” This verifier runs in time polynomial in the
description lengths of φ and ( x̂, ŷ). If ( x̂, ŷ) passes both of these tests, then correctness of the algorithms A1
and A2 implies that φ is unsatisfiable. �

4.2 TFNP and Its Subclasses

4.2.1 TFNP

What’s really going on in the proof of Theorem 4.1 is a mismatch between the search version of an NP-
complete problem like SAT, where an instance may or may not have a witness, and a problem like computing
a Nash equilibrium, where every instance has at least one witness. While the correct answer to a SAT
instance might well be “no,” a correct answer to an instance of Nash equilibrium computation is always a
Nash equilibrium. It seems that if the problem of computing a Nash equilibrium is going to be complete for
some complexity class, it must be a class smaller than NP.

3Crucially, A1(φ) has at least one Nash equilibrium (Theorem 1.14), including one whose description length is polynomial in
that of the game (see the discussion following Theorem 1.14)).
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The subset of NP (search) problems for which every instance has at least one witness is called TFNP,
for “total functional NP.” The proof of Theorem 4.1 shows more generally that if any TFNP problem is
NP-complete, then NP = co-NP. Thus a fundamental barrier to NP-completeness is the guaranteed existence
of a witness.

Since computing a Nash equilibrium does not seem to be NP-complete, the sensible refined goal is to
prove that the problem is TFNP-complete—as hard as any other NP problem with a guaranteed witness.

4.2.2 Syntactic vs. Semantic Complexity Classes

Unfortunately, TFNP-completeness is also too ambitious a goal. The reason is that TFNP does not seem to
have complete problems. Think about the complexity classes that are known to have complete problems—NP
of course, and also classes like P and PSPACE. What do these complexity classes have in common? They are
“syntactic,” meaning that membership can be characterized via acceptance by some concrete computational
model, such as polynomial-time or polynomial-space deterministic or nondeterministic Turing machines. In
this sense, there is a generic reason for membership in these complexity classes.

Syntactically defined complexity classes always have a “generic” complete problem, where the input is
a description of a problem in terms of the accepting machine and an instance of the problem, and the goal is
to solve the given instance of the given problem. For example, the generic NP-complete problem takes as
input a description of a verifier, a polynomial time bound, and an encoding of an instance, and the goal is to
decide whether or not there is a witness, meaning a string that causes the given verifier to accept the given
instance in at most the given number of steps.

TFNP has no obvious generic reason for membership, and as such is called a “semantic” class.4 For
example, the problem of computing a Nash equilibrium of a bimatrix game belongs to TFNP because of
the topological arguments that guarantee the existence of a Nash equilibrium (see Section 2.3). Another
problem in TFNP is factoring: given a positive integer, output its factorization. Here, membership in TFNP
has a number-theoretic explanation.5 Can the guaranteed existence of a Nash equilibrium of a game and of
a factorization of an integer be regarded as separate instantiations of some “generic” TFNP argument? No
one knows the answer.

4.2.3 Syntactic Subclasses of TFNP

Given that the problem of computing a Nash equilibrium appears too specific to be complete for TFNP,
we must refine our goal again, and try to prove that the problem is complete for a still smaller complexity
class. Papadimitriou [117] initiated the search for syntactic subclasses of TFNP that contain interesting
problems not known to belong to P. His proposal was to categorize TFNP problems according to the type of
mathematical proof used to prove the guaranteed existence of a witness. Interesting subclasses include the
following:

• PPAD (for polynomial parity argument, directed version): Problems that can be solved by path-
following in a (exponential-size) directed graph with in- and out-degree at most 1 and a known source
vertex (specifically, the problem of identifying a sink or source vertex other than the given one).

• PPA (for polynomial parity argument, undirected version): Problems that can be solved by path-
following in an undirected graph (specifically, given an odd-degree vertex, the problem of identifying

4There are many other interesting examples of classes that appear to be semantic in this sense, such as RP and NP ∩ co-NP.
5There are many more natural examples of TFNP problems, including computing a local minimum of a function, computing an

approximate Brouwer fixed point, and inverting a one-way permutation.
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a different odd-degree vertex).

• PLS (for polynomial local search): Problems that can be solved by path-following in a directed acyclic
graph (specifically, given such a graph, the problem of identifying a sink vertex).6

• PPP (for polynomial pigeonhole principle): Problems that reduce to the following: given a function f
mapping {1, 2, . . . , n} to {1, 2, . . . , n − 1}, find i , j such that f (i) = f ( j).

All of these complexity classes can be viewed as intermediate to P and NP. The conjecture, supported by
oracle separations [10], is that all four of these classes are distinct (Figure 4.2).

TFNP
PLSPPAD

Figure 4.2: Conjectured relationships between subclasses of TFNP.

Section 2.3 outlined the argument that the guaranteed existence of Nash equilibria reduces to the
guaranteed existence of Brouwer fixed points, and Section 2.4 showed (via Sperner’s Lemma) that Brouwer’s
fixed-point theorem reduces to path-following in a directed graph with in- and out-degrees at most 1. Thus,
PPAD would seem to be the subclass of TFNP with the best chance of capturing the complexity of computing
a Nash equilibrium.

4.3 PPAD and Its Complete Problems

4.3.1 EoL: The Generic Problem for PPAD

We can formally define the class PPAD by defining its generic problem. (A problem is then in PPAD if it
reduces to the generic problem.) Just as the End-of-the-Line (EoL) problem served as the starting point of
our communication complexity lower bound (see Section 2.4), a succinct version of the problem will be the
basis for our computational hardness results.

The EoL Problem (Succinct Version)

Given two circuits S and P (for “successor” and “predecessor”), each mapping {0, 1}n to {0, 1}n ∪
{NULL} and with size polynomial in n, and with P(0n ) = NULL, find an input v ∈ {0, 1}n that
satisfies one of the following:

(i) S(v) is NULL;

(ii) P(v) is NULL and v , 0n;

(iii) v , P(S(v)); or

6PLS was actually defined prior to TFNP, by Johnson et al. [81].
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(iv) v , S(P(v)) and v , 0n .

Analogous to Section 2.4, we can view the circuits S and P as defining a graph G with in- and out-degree
at most 1 (with edge (u, v) in G if and only if S(u) = v and P(v) = u), and with a given source vertex 0n .
The EoL problem then corresponds to identifying either a sink vertex of G or a source vertex other than 0n .7
A solution is guaranteed to exist—if nothing else, the other end of the path of G that originates with the
vertex 0n . Thus EoL does indeed belong to TFNP, and PPAD ⊆ TFNP. Note also that the class is syntactic
and by definition has a complete problem, namely the EoL problem.

4.3.2 Problems in PPAD

The class PPAD contains several natural problems (in addition to the EoL problem). For example, it contains
a computational version of Sperner’s Lemma—given a succinct description (e.g., polynomial-size circuits)
of a legal coloring of an exponentially large triangulation of a simplex, find a sub-simplex such that its
vertices showcase all possible colors. This problem can be regarded as a special case of the EoL problem
(see Section 2.4), and hence belongs to PPAD.

Another example is the problem of computing an approximate fixed point. Here the input is a succinct
description of a λ-Lipschitz function f (on the hypercube in d dimensions, say) and a parameter ε , and the
goal is to compute a point x with ‖ f (x) − x‖ < ε (with respect to some norm). The description length of x
should be polynomial in that of the function f . Such a point is guaranteed to exist provided ε is not too
small.8 The reduction from Brouwer’s fixed-point theorem to Sperner’s Lemma (with colors corresponding
to directions of movement, see Section 2.3) shows that this problem can also be regarded as a special case of
the EoL problem, and hence belongs to PPAD.

The problem of computing an exact or approximate Nash equilibrium of a bimatrix game also belongs
to PPAD. For the problem of computing an ε-approximate Nash equilibrium (with ε no smaller than inverse
exponential in n), this follows from the proof of Nash’s theorem outlined in Section 2.3.2. That proof shows
that computing an ε-NE is a special case of computing an approximate fixed point (of the regularized best-
response function defined in (2.1) and (2.2)), and hence the problem belongs to PPAD. The same argument
shows that this is true more generally for any number of players (and not just for bimatrix games).

The problem of computing an exact Nash equilibrium (ε = 0) also belongs to PPAD in the case of
two-player (bimatrix) games.9 One way to prove this is via the Lemke-Howson algorithm [96] (see also
Section 1.4), which reduces the computation of an (exact) Nash equilibrium of a bimatrix game to a path-
following problem, much in the way that the simplex algorithm reduces computing an optimal solution of
a linear program to following a path of improving edges along the boundary of the feasible region. All
known proofs of the Lemke-Howson algorithm’s inevitable convergence use parity arguments akin to the
one in the proof of Sperner’s lemma. These convergence proofs show that the problem of computing a Nash
equilibrium of a bimatrix game belongs to PPAD.

7The undirected version of the problem can be used to define the class PPA. The version of the problem where only sink vertices
count as witnesses seems to give rise to a different (larger) complexity class called PPADS.

8For example, for the `∞ norm, ε can be as small as (λ+1)
2n , where n is the description length of f . This follows from rounding

each coordinate of an exact fixed point to its nearest multiple of 2−n .
9Etessami and Yannakakis [49] proved that, with 3 or more players, the problem of computing an exact Nash equilibrium of a

game appears to be strictly harder than any problem in PPAD.

47



4.3.3 PPAD-Complete Fixed-Point Problems

The EoL problem is PPAD-complete by construction. What about “more natural” problems? Papadimitriou
[117] built evidence that PPAD is a fundamental complexity class by showing that fixed-point problems are
complete for it.

To be precise, let Brouwer(‖·‖, d,F, ε ) denote the following problem: given a (succinct description of
a) function f ∈ F, with f : [0, 1]d → [0, 1]d , compute a point x ∈ [0, 1]d such that ‖ f (x) − x‖ < ε . The
original hardness result from [117] is the following.

Theorem 4.2 (Papadimitriou [117]). The Brouwer(‖·‖, d,F, ε ) problem is PPAD-complete, even when
d = 3, the functions in F are O(1)-Lipschitz, ‖·‖ is the `∞ norm, and ε is exponentially small in the
description length n of a function f ∈ F.

The high-level idea of the proof is similar to the construction in Section 3.1 that shows how to interpret
EoL instances as implicitly defined Lipschitz functions on the hypercube. Given descriptions of the circuits
S and P in an instance of the generic EoL problem, it is possible to define an (efficiently computable) function
that “follows the line” of an embedding of the induced directed graph into the hypercube. Three dimensions
are needed in the construction in [117] to ensure that the images of different edges do not intersect (except at
a shared endpoint). Some time later, Chen and Deng [31] used a somewhat different approach to prove that
Theorem 4.2 holds even when d = 2.10

Muchmore recently, with an eye toward hardness results for ε-approximateNash equilibriawith constant ε
(see Solar Lecture 5), Rubinstein [135] proved the following.11

Theorem 4.3 (Rubinstein [135]). The Brouwer(‖·‖, d,F, ε ) problem is PPAD-complete even when the
functions in F are O(1)-Lipschitz functions, d is linear in the description length n of a function in F, ‖·‖ is

the normalized `2 norm (with ‖x‖ =
√

1
d

∑d
i=1 x2i ), and ε is a sufficiently small constant.

The proof of Theorem 4.3 is closely related to the third step of our communication complexity lower
bound (Section 3.1), and in particular makes use of a similar embedding of graphs into the hypercube with
the properties (P1) and (P2) described in Sections 3.1.3 and 3.1.4.12 One major difference is that our proof
of existence of the embedding in Section 3.1 used the probabilistic method and hence is not constructive
(which is not an issue in the two-party communication model), while the computational lower bound in
Theorem 4.3 requires a constructive version. In particular, the reduction from EoL to Brouwer(‖·‖, d,F, ε )
must efficiently produce a succinct description of the function f induced by an instance of EoL, and it should
be possible to efficiently evaluate f , presumably while using the given EoL circuits S and P only as black
boxes. For example, it should be possible to efficiently decode points of the hypercube (to a vertex, edge, or
⊥, see Section 3.1.3).

Conceptually, the fixes for these problems are relatively simple. First, rather than mapping the vertices
randomly into the hypercube, the reduction in the proof of Theorem 4.3 embeds the vertices using an
error-correcting code (with constant rate and efficient encoding and decoding algorithms). This enforces
property (P1) of Section 3.1.3. Second, rather than using a straight-line embedding, the reduction is
more proactive about making the images of different edges stay far apart (except for at shared endpoints).

10The one-dimensional case can be solved in polynomial time, essentially by binary search.
11Theorem 4.2 proves hardness in the regime where d and ε are both small, Theorem 4.3 when both are large. This is not an

accident; if d is small (i.e., constant) and ε is large (i.e., constant), the problem can be solved in polynomial time by exhaustively
checking a constant number of evenly spaced grid points.

12We have reversed the chronology; Theorem 2.1 was proved after Theorem 4.3 and used the construction in [135] more or less
as a black box.
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Specifically, an edge of the directed graph induced by the given EoL instance is now mapped to 5 straight
line segments, and along each line segment, two-thirds of the coordinates stay fixed. (This requires blowing
up the number of dimensions by a constant factor.) For example, the directed edge (u, v) can be mapped to
the path

(σ(u), σ(u), 14 ) 7→ (σ(u), σ(v), 14 ) 7→ (σ(u), σ(v), 34 ) 7→ (σ(v), σ(v), 34 ) 7→ (σ(v), σ(v), 14 ),

where σ denotes the error-correcting code used to map the vertices to the hypercube and the boldface 1
4 and

3
4

indicate the value of the last third of the coordinates. This maneuver enforces property (P2) of Section 3.1.3.
It also ensures that it is easy to decode points of the hypercube that are close to the image of an edge of the
graph—at least one of the edge’s endpoints can be recovered from the values of the frozen coordinates, and
the other endpoint can be recovered using the given predecessor and successor circuits.13

4.3.4 PPAD-Complete Equilibrium Computation Problems

Papadimitriou [117] defined the class PPAD in large part to capture the complexity of computing a Nash
equilibrium, conjecturing that the problem is in fact PPAD-complete. Over a decade later, a flurry of papers
confirmed this conjecture. First, Daskalakis, Goldberg, and Papadimitriou [43, 63] proved that computing
an ε-NE of a four-player game, with ε inverse exponential in the size of the game, is PPAD-complete. This
approach was quickly refined [29, 42], culminating in the proof of Chen and Deng [30] that computing a
Nash equilibrium (or even an ε-NE with exponentially small ε) of a bimatrix game is PPAD-complete. Thus
the nice properties possessed by Nash equilibria of bimatrix games (see Section 1.4) are not enough to elude
computational intractability. Chen et al. [32] strengthened this result to hold even for values of ε that are
only inverse polynomial in the size of the game.14 The papers by Daskalakis et al. [44] and Chen et al. [34]
give a full account of this breakthrough sequence of results.

Theorem 4.4 (Daskalakis et al. [44], Chen et al. [34]). The problem of computing an ε-NE of an n × n
bimatrix game is PPAD-complete, even when ε = 1/poly(n).

The proof of Theorem 4.4, which is a tour de force, is also outlined in the surveys by Johnson [80],
Papadimitriou [118], Daskalakis et al. [45], and Roughgarden [125]. Fundamentally, the proof shows how
to use a bimatrix game to perform a gate-by-gate simulation of the circuits of an EoL instance.

Theorem 4.4 left open the possibility that, for every constant ε > 0, an ε-NE of a bimatrix game can
be computed in polynomial time. (Recall from Corollary 1.17 that it can be computed in quasi-polynomial
time.) A decade later, Rubinstein [135] ruled out this possibility (under suitable complexity assumptions)
by proving a quasi-polynomial-time hardness result for the problem when ε is a sufficiently small constant.
We will have much more to say about this result in Solar Lecture 5.

4.4 Evidence of Hardness

4.4.1 Basing the Hardness of TFNP on Cryptographic Assumptions

It’s all fine and good to prove that a problem is as hard as any other problem in PPAD, but what makes
us so sure that PPAD problems (or even TFNP problems) are hard? The initial evidence was exponential

13This embedding is defined only for the directed edges that are present in the given EoL instance, rather than for all possible
edges (in contrast to the embedding in Sections 3.1.3 and 3.1.4).

14In particular, under standard complexity assumptions, this rules out an algorithm with smoothed polynomial complexity in
the sense of Spielman and Teng [141]. Thus the parallels between the simplex method and the Lemke-Howson algorithm (see
Section 1.4) only go so far.
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lower bounds for functions given as “block boxes,” or equivalently query complexity lower bounds, as in
Proposition 2.6 for the EoL problem or Hirsch et al. [74] for the Brouwer problem.

Can we relate the hardness of TFNP and its subclasses to other standard complexity assumptions?
Theorem 4.1 implies that we can’t base hardness of TFNP on the assumption thatP , NP, unlessNP = co-NP.
What about cryptographic assumptions? After all, the problem of inverting a one-way permutation belongs
to TFNP (and even the subclass PPP). Thus, sufficiently strong cryptographic assumptions imply hardness
of TFNP.

Can we prove hardness also for all of the interesting subclasses of TFNP, or can we establish the hardness
of TFNP under weaker assumptions (like the existence of one-way functions)? Along the former lines,
a recent sequence of papers (not discussed here) show that strong assumptions about indistinguishability
obfuscation (i.o.) imply that PPAD is hard [13, 59, 123, 75]. The rest of this lecture covers a recent result in
the second direction by Hubáček et al. [76], who show that the average-case hardness of TFNP can be based
on the average-case hardness of NP. (Even though the worst-case hardness of TFNP cannot be based on that
of NP, unless NP = co-NP!) Note that assuming that NP is hard on average is only weaker than assuming
the existence of one-way functions.

Theorem 4.5 ([76]). If there exists a hard-on-average language in NP, then there exists a hard-on-average
search problem in TFNP.

There is some fine print in the precise statement of the result (see Remarks 4.7 and 4.8), but the statement
in Theorem 4.5 is the gist of it.

4.4.2 Proof Sketch of Theorem 4.5

Let L be a language in NP which is hard on average w.r.t. some family of distributions Dn on input strings
of length n. Average-case hardness of (L, Dn ) means that there is no polynomial-time algorithm with
an advantage of 1/poly(n) over random guessing when the input is sampled according to Dn (for any
polynomial). Each Dn should be efficiently sampleable, so that hardness cannot be baked into the input
distribution.

One natural candidate for a hard-on-average problem in NP is that of inverting a one-way function on a
random range element. Since a one-way function is generally not surjective, this problem is not total and
hence does not belong to TFNP. Can we convert it into a problem that is total and yet retains its average-case
hardness?

Here’s an initial attempt:

Attempt #1

Input: l independent samples x1, x2, . . . , xl from Dn .
Output: a witness for some xi ∈ L.

As l → ∞, this problem is “almost total.” Because (L, Dn ) is hard-on-average, random instances are nearly
equally likely to be “yes” or “no” instances (otherwise a constant response would beat random guessing).
Thus, except with probability ≈ 2−l , at least one of the sampled instances xi is a “yes” instance and has a
witness. Taking l polynomial in n, we get a problem that is total except with exponentially small probability.
How can we make it “totally total?”

The idea is to sample the xi’s in a correlatedway, using a random shifting trick reminiscent of Lautemann’s
proof that BPP ⊆ Σ2 ∩ Π2 [94]. This will give a non-uniform version of Theorem 4.5; Remark 4.8 sketches
the changes necessary to get a uniform version.
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Fix n. Let Dn (r) denote the output of the sampling algorithm for Dn , given the random seed r ∈ {0, 1}n .
(By padding, we can assume that the input length and the random seed length both equal n.) Call a set
containing the strings s1, s2, . . . , sl ∈ {0, 1}n good if for every seed r ∈ {0, 1}n there exists an index i ∈ [l]
such that D(r ⊕ si ) ∈ L. We can think of the si’s as masks; goodness then means that there is always a mask
whose application yields a “yes” instance.

Claim 4.6. If s1, s2, . . . , s2n ∼ {0, 1}n are sampled uniformly and independently, then {s1, . . . , s2n } is good
with high probability.

Proof. Fix a seed r ∈ {0, 1}n . The distribution of r ⊕ si (over si) is uniform, so Dn (r ⊕ si ) has a roughly 50%
chance of being a “yes” instance (since (L, Dn ) is hard on average). Thus the probability (over s1, . . . , s2n)
that Dn (r ⊕ si ) is a “no” instance for every si is ≈ 2−2n . Taking a union bound over the 2n choices for r
completes the proof. �

Consider now the following reduction, from the assumed hard-on-average NP problem (L, Dn ) to a
hopefully hard-on-average TFNP problem.

Attempt 2 (non-uniform)

Chosen in advance: A good set of strings {s1, s2, . . . , s2n }.
Input: an instance x of (L, Dn ), in the form of the random seed r̂ used to generate x = Dn (r̂).
Output: a witness for one of the instances D(r̂ ⊕ s1), . . . , D(r̂ ⊕ s2n ).

By the definition of a good set of strings, there is always at least one witness of the desired form, and so the
output of this reduction is a TFNP problem (or more accurately, a TFNP/poly problem, with s1, . . . , s2n given
as advice). Let D′ denote the distribution over instances of this problem induced by the uniform distribution
over r̂ . It remains to show how a (non-uniform) algorithm that solves this TFNP/poly problem (with respect
to D′) can be used to beat random guessing (with inverse polynomial advantage) for (L, Dn ) in a comparable
amount of time. Given an algorithm A for the former problem (and the corresponding good set of strings),
consider the following algorithm B for (L, Dn ).

Algorithm Bs1,s2, ...,s2n

Input: A random instance x of (L, Dn ) and the random seed r̂ that generated it (so x = Dn (r̂)).

1. Choose i ∈ [2n] uniformly at random.

2. Set r? = r̂ ⊕ si .

3. Use the algorithm A to generate a witness w for one of the instances

D(r? ⊕ s1), D(r? ⊕ s2), . . . , D(r? ⊕ s2n ).

(Note that the ith problem is precisely the one we want to solve.)

4. If w is a witness for D(r? ⊕ si ), then output “yes.”

5. Otherwise, randomly answer “yes” or “no” (with 50/50 probability).
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Consider a “yes” instance Dn (r̂) of L. If algorithm A happens to output a witness to the ith instance
Dn (r? ⊕ si ) = Dn (r̂), then algorithm B correctly decides the problem. The worry is that the algorithm A
somehow conspires to always output a witness for an instance other than the “real” one.

Suppose algorithm A, when presented with the instances D(r? ⊕ s1), D(r? ⊕ s2), . . . , D(r? ⊕ s2n ),
exhibits a witness for the jth instance D(r? ⊕ s j ). This collection of instances could have been produced by
the reduction in exactly 2n different ways: with i = 1 and r̂ = r? ⊕ s1, with i = 2 and r̂ = r? ⊕ s2, and so
on. Since i and r̂ were chosen independently and uniformly at random, each of these 2n outcomes is equally
likely, and algorithm A has no way of distinguishing between them. Thus whatever j is, A’s witness has at
least a 1/2n chance of being a witness for the true problem Dn (r̂) (where the probability is over both r̂ and i).
We conclude that, for “yes” instances of L, algorithm B has advantage 1

2n over random guessing. Since
roughly 50% of the instances Dn (r̂) are “yes” instances (since (L, Dn ) is average-case hard), algorithm B
has advantage roughly 1

4n over random guessing for (L, Dn ). This contradicts our assumption that (L, Dn )
is hard on average.

We have completed the proof of Theorem 4.5, modulo two caveats.

Remark 4.7 (Public vs. Private Coins). The algorithm B used in the reduction above beats random guessing
for (L, Dn ), provided the algorithm receives as input the random seed r̂ used to generate an instance of (L, Dn ).
That is, our current proof of Theorem 4.5 assumes that (L, Dn ) is hard on average even with public coins.
While there are problems in NP conjectured to be average-case hard in this sense (like randomized SAT near
the phase transition), it would be preferable to have a version of Theorem 4.5 that allows for private coins.
Happily, Hubáček et al. [76] prove that there exists a private-coin average-case hard problem in NP only if
there is also a public-coin such problem. This implies that Theorem 4.5 holds also in the private-coin case.

Remark 4.8 (Uniform vs. Non-Uniform). Our proof of Theorem4.5 only proves hardness for the non-uniform
class TFNP/poly. (The good set {s1, . . . , s2n } of strings is given as “advice” separately for each n.) It is
possible to extend the argument to (uniform) TFNP, under some additional (reasonably standard) complexity
assumptions. The idea is to use techniques from derandomization. We already know from Claim 4.6 that
almost all sets of 2n strings from {0, 1}n are good. Also, the problem of checking whether or not a set
of strings is good is a Π2 problem (for all r ∈ {0, 1}n there exists i ∈ [2n] such that Dn (r ⊕ si ) has a
witness). Assuming that there is a problem in E with exponential-size Π2 circuit complexity, it is possible
to derandomize the probabilistic argument and efficiently compute a good set {s1, . . . , sl } of strings (with l
larger than 2n but still polynomial in n), à la Impagliazzo and Wigderson [77].

An important open research direction is to extend Theorem 4.5 to subclasses of TFNP, such as PPAD.

Open Problem: Does an analogous average-case hardness result hold for PPAD?
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Solar Lecture 5
The Computational Complexity of Computing an Approximate Nash Equilibrium

Lecturer: Tim Roughgarden Scribe: Salil Vadhan

5.1 Introduction

Last lecture we stated without proof the result by Daskalakis et al. [44] and Chen et al. [34] that computing an
ε-approximate Nash equilibrium of a bimatrix game is PPAD-complete, even when ε is an inverse polynomial
function of the game size (Theorem 4.4). Thus, it would be surprising if there were a polynomial-time (or
even subexponential-time) algorithm for this problem. Recall from Corollary 1.17 in Solar Lecture 1 that
the story is different for constant values of ε , where an ε-approximate Nash equilibrium can be computed in
quasi-polynomial (i.e., nO(log n)) time.

The Pavlovian response of a theoretical computer scientist to a quasi-polynomial-time algorithm is to
conjecture that a polynomial-time algorithm must also exist. (There are only a few known natural problems
that appear to have inherently quasi-polynomial time complexity.) But recall that the algorithm in the proof
of Corollary 1.17 is just exhaustive search over all probability distributions that are uniform over a multi-set
of logarithmically many strategies (which is good enough, by Theorem 1.15). Thus the algorithm reveals
no structure of the problem other than the fact that the natural search space for it has quasi-polynomial size.
It is easy to imagine that there are no “shortcuts” to searching this space, in which case a quasi-polynomial
amount of time would indeed be necessary. How would we ever prove such a result? Presumably by a
non-standard super-polynomial reduction from some PPAD-complete problem like succinct EoL (defined in
Section 4.3.1). This might seem hard to come by, but in a recent breakthrough, Rubinstein [135] provided
just such a reduction!

Theorem 5.1 ([135]). For all sufficiently small constants ε > 0, for every constant δ > 0, there is no
nlog

1−δ n-time algorithm for computing an ε-approximate Nash equilibrium of a bimatrix game, unless the
succinct EoL problem has a 2n1−δ′ -time algorithm for some constant δ′ > 0.

In other words, assuming an analog of the Exponential Time Hypothesis (ETH) [78] for PPAD, the
quasi-polynomial-time algorithm in Corollary 1.17 is essentially optimal!1,2

Three previous papers that used an ETH assumption (for NP) along with PCP machinery to prove
quasi-polynomial-time lower bounds for NP problems are:

1To obtain a quantitative lower bound like the conclusion of Theorem 5.1, it is necessary to make a quantitative complexity
assumption (like an analog of ETH). This approach belongs to the tradition of “fine-grained” complexity theory.

2How plausible is the assumption that the ETH holds for PPAD, even after assuming that the ETH holds for NP and that PPAD
has no polynomial-time algorithms? The answer is far from clear, although there are exponential query lower bounds for PPAD
problems (e.g. [74]) and no known techniques that show promise for a subexponential-time algorithm for the succinct EoL problem.
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1. Aaronson et al. [1], for the problem of computing the value of free games (i.e., two-prover proof
systems with stochastically independent questions), up to additive error ε ;

2. Braverman et al. [18], for the problem of computing the ε-approximate Nash equilibrium with the
highest expected sum of player payoffs; and

3. Braverman et al. [19] for the problem of distinguishing graphs with a k-clique from those that only
have k-vertex subgraphs with density at most 1 − ε .

In all three cases, the hardness results apply when ε > 0 is a sufficiently small constant. Quasi-polynomial-
time algorithms are known for all three problems.

The main goal of this lecture is to convey some of the ideas in the proof of Theorem 5.1. The proof is a
tour de force and the paper [135] is 57 pages long, so our treatment will necessarily be impressionistic. We
hope to explain the following:

1. What the reduction in Theorem 5.1 must look like. (Answer: a blow-up from size n to size ≈ 2
√
n .)

2. How a n 7→≈ 2
√
n-type blowup can naturally arise in a reduction to the problem of computing an

approximate Nash equilibrium.

3. Some of the tricks used in the reduction.

4. Why these tricks naturally lead to the development and application of PCP machinery.

5.2 Proof of Theorem 5.1: An Impressionistic Treatment

5.2.1 The Necessary Blow-Up

The goal is to reduce length-n instances of the succinct EoL problem to length- f (n) instances of the
problem of computing an ε-approximate Nash equilibrium with constant ε , so that a sub-quasi-polynomial-
time algorithm for the latter implies a subexponential-time algorithm for the former. Thus the mapping
n 7→ f (n) should satisfy 2n ≈ f (n)log f (n) and hence f (n) ≈ 2

√
n . That is, we should be looking to encode

a length-n instance of succinct EoL as a 2
√
n × 2

√
n bimatrix game. The

√
n will essentially come from the

“birthday paradox,” with random subsets of [n] of size s likely to intersect once s exceeds
√

n. The blow-up
from n to 2

√
n will come from PCP-like machinery, as well as a game-theoretic gadget (“Althöfer games,”

see Section 5.2.6) that forces players to randomize nearly uniformly over size-
√

n subsets of [n] in every
approximate Nash equilibrium.

5.2.2 The Starting Point: ε-BFP

The starting point of the reduction is the PPAD-complete version of the ε-BFP problem in Theorem 4.3. We
restate that result here.

Theorem 5.2 (Rubinstein [135]). The Brouwer(‖·‖, d,F, ε ) problem is PPAD-complete when the functions
in F are O(1)-Lipschitz functions from the d-dimensional hypercube H = [0, 1]d to itself, d is linear in the

description length n of a function in F, ‖·‖ is the normalized `2 norm (with ‖x‖ =
√

1
d

∑d
i=1 x2i ), and ε is a

sufficiently small constant.
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The proof is closely related to the reduction from 2EoL to ε-2BFP outlined in Section 3.1, and Sec-
tion 4.3.3 describes the additional ideas needed to prove Theorem 5.2. As long as the error-correcting
code used to embed vertices into the hypercube (see Section 4.3.3) has linear-time encoding and decoding
algorithms (as in [140], for example), the reduction can be implemented in linear time. In particular, our
assumption that the succinct EoL problem has no subexponential-time algorithms automatically carries over
to this version of the ε-BFP problem. In addition to the properties of the functions in F that are listed in
the statement of Theorem 5.2, the proof of Theorem 5.1 crucially uses the “locally decodable” properties of
these functions (see Section 5.2.8).

5.2.3 ε-BFP ≤ ε-NE (Attempt #1): Discretize McLennan-Tourky

One natural starting point for a reduction from ε-BFP to ε-NE is the McLennan-Tourky analytic reduction
in Section 3.2.1. Given a description of an O(1)-Lipschitz function f : [0, 1]d → [0, 1]d , with d linear in
the length n of the function’s description, the simplest reduction would proceed as follows. Alice and Bob
each have a strategy set corresponding to the discretized hypercube Hε (points of [0, 1]d such that every
coordinate is a multiple of ε). Alice’s and Bob’s payoffs are defined as in the proof of Theorem 3.2: for
strategies x, y ∈ Hε , Alice’s payoff is

1 − ‖x − y‖2 = 1 −
1
d

d∑
i=1

(xi − yi )2 (5.1)

and Bob’s payoff is

1 − ‖y − f (x)‖2 = 1 −
1
d

d∑
j=1

(y j − f (x) j )2. (5.2)

(Here ‖·‖ denotes the normalized `2 norm.) Thus Alice wants to imitate Bob’s strategy, while Bob wants to
imitate the image of Alice’s strategy under the function f .

This reduction is correct in that in every ε-approximate Nash equilibrium of this game, Alice’s and
Bob’s strategies are concentrated around an O(ε )-approximate fixed point of the given function f (in the
normalized `2 norm). See also the discussion in Section 3.2.1.

The issue is that the reduction is not efficient enough. Alice and Bob each haveΘ((1/ε )d ) pure strategies;
since d = Θ(n), this is exponential in the size n of the given ε-BFP instance, rather than exponential in

√
n.

This exponential blow-up in size means that this reduction has no implications for the problem of computing
an approximate Nash equilibria.

5.2.4 Separable Functions

How can we achieve a blow-up exponential in
√

n rather than in n? We might guess that the birthday paradox
is somehow involved. To build up our intuition, we’ll discuss at length a trivial special case of the ε-BFP
problem. It turns out that the hard functions used in Theorem 5.2 are in some sense surprisingly close to this
trivial case.

For now, we consider only instances f of ε-BFP where f is separable. That is, f has the form

f (x1, . . . , xd ) = ( f1(x1), . . . , fd (xd )) (5.3)

for efficiently computable functions f1, . . . , fd : [0, 1]→ [0, 1]. Separable functions enjoy the ultimate form
of “local decodability”—to compute the ith coordinate of f (x), you only need to know the ith coordinate
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of x. Finding a fixed point of a separable function is easy: the problem decomposes into d one-dimensional
fixed point problems (one per coordinate), and each of these can be solved efficiently by a form of binary
search. The hard functions used in Theorem 5.2 possess a less extreme form of “local decodability,” in that
each coordinate of f (x) can be computed using only a small amount of “advice” about f and x (cf., the
ε-2BFP ≤ ε-NE reduction in Section 3.2.3).

5.2.5 ε-BFP ≤ ε-NE (Attempt #2): Coordinatewise Play

Let’s try to at least compute fixed points of separable functions with approximate Nash equilibria using a
reduction with only subexponential blow-up. The key idea is, instead of Alice and Bob each picking one of
the (exponentially many) points of the discretized hypercube Hε , each will pick only a single coordinate of
points x and y. Thus a pure strategy of Alice comprises an index i ∈ [d] and a number xi ∈ [0, 1] that is a
multiple of ε , and similarly Bob chooses j ∈ [d] and y j ∈ [0, 1]. Given choices (i, xi ) and ( j, y j ), Alice’s
payoff is defined as




1 − (xi − yi )2 if i = j
0 if i , j

and Bob’s payoff is



1 − (yi − f i (xi ))2 if i = j
0 if i , j.

Thus Alice and Bob receive payoff 0 unless they “interact,” meaning choose the same coordinate to play
in, in which case their payoffs are analogous to (5.1) and (5.2). Note that Bob’s payoff is well defined only
because we have assumed that f is separable (Bob only knows the coordinate xi proposed by Alice, but this
is enough to compute the ith coordinate of the output of f and hence his payoff). Each player has only ≈ d

ε

strategies, so this is a polynomial-time reduction, with no blow-up.
The good news is that (approximate) fixed points give rise to (approximate) Nash equilibria of this game.

Specifically, if x̂ = ŷ = f ( x̂) is a fixed point of f , then the following is a Nash equilibrium (as you should
check): Alice and Bob pick their coordinates i, j uniformly at random and set xi = x̂i and y j = ŷ j . The
problem is that the game also has equilibria other than the intended ones, for example where Alice and Bob
choose pure strategies with i = j and xi = yi = f i (xi ).

5.2.6 ε-BFP ≤ ε-NE (Attempt #3): Gluing Althöfer Games

Our second attempt failed because Alice and Bob were not forced to randomize their play over all d
coordinates. We can address this issue with a game-theoretic gadget called an Althöfer game [4].3 For a
positive and even integer k, this k ×

(
k
k/2

)
game is defined as follows.

• Alice chooses an index i ∈ [k].

• Bob chooses a subset S ⊆ [k] of size k/2.

• Alice’s payoff is 1 if i ∈ S, and -1 otherwise.

• Bob’s payoff is -1 if i ∈ S, and 1 otherwise.

3Similar ideas have been used previously, including in the proofs that computing an ε-approximate Nash equilibrium with ε
inverse polynomial in n is a PPAD-complete problem [44, 34].

56



For example, here is the payoff matrix for the k = 4 case (with only Alice’s payoffs shown):

*....
,

1 1 1 −1 −1 −1
1 −1 −1 −1 1 1
−1 1 −1 1 −1 1
−1 −1 1 1 1 −1

+////
-

EveryAlthöfer game is a zero-sum gamewith value 0: for both players, choosing a uniformly random strategy
guarantees expected payoff 0. The following claim proves a robust converse for Alice’s play. Intuitively, if
Alice deviates much from the uniform distribution, Bob is well-positioned to punish her.4

Claim 5.3. In every ε-approximate Nash equilibrium of an Althöfer game, Alice’s strategy is ε-close to
uniformly random in statistical distance (a.k.a. total variation distance).

Proof. Suppose that Alice plays strategy i ∈ [k] with probability pi . After sorting the coordinates so that
pi1 ≤ pi2 ≤ · · · ≤ pik , Bob’s best response is to play the subset S = {i1, i2, . . . , ik/2}. We must have
either pik/2 ≤ 1/k or pik/2+1 ≥ 1/k (or both). Suppose that pik/2 ≤ 1/k (the other case can be handled
symmetrically). Then Bob’s expected payoff from playing S is:∑

j>k/2
pi j −

∑
j≤k/2

pi j =
∑
j>k/2

(pi j − 1/k) +
∑
j≤k/2

(1/k − pi j )

=
∑

j :pi j
>1/k

(pi j − 1/k) +
∑

j>k/2:pi j
≤1/k

(pi j − 1/k) +
∑
j≤k/2

(1/k − pi j )

≥
∑

j :pi j
>1/k

(pi j − 1/k),

where the last inequality holds because the pi j ’s are sorted in increasing order and pik/2 ≤ 1/k. The final
expression above equals the statistical distance between Alice’s mixed strategy ~p and the uniform distribution.
The claim now follows from that fact that Bob cannot achieve a payoff larger than ε in any ε-approximate
Nash equilibrium (otherwise, Alice could increase her expected payoff by more than ε by switching to the
uniform distribution). �

In Claim 5.3, it’s important that the loss in statistical distance (as a function of ε) is independent of the
size k of the game. For example, straightforward generalizations of rock-paper-scissors do not achieve the
guarantee in Claim 5.3.

Gluing Games. We incorporate Althöfer games into our coordinatewise play game as follows. Let

• G1 = the d
ε ×

d
ε coordinatewise game of Section 5.2.5,

• G2 = a d ×
(

d
d/2

)
Althöfer game, and

• G3 = a
(

d
d/2

)
× d Althöfer game, with the roles of Alice and Bob reversed.

Consider the following game, where Alice and Bob effectively play all three games simultaneously:

• A pure strategy of Alice comprises an index i ∈ [d], a multiple xi of ε in [0, 1], and a set T ⊆ [d] of
size d/2. The interpretation is that she plays (i, xi ) in G1, i in G2, and T in G3.

4The statement and proof here include a constant-factor improvement, due to Salil Vadhan, over those in [135].
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• A pure strategy of Bob comprises an index j ∈ [d], a multiple y j of ε in [0, 1], and a set S ⊆ [d] of
size d/2, interpreted as playing ( j, y j ) in G1, S in G2 and j in G3.

• Each player’s payoff is a weighted sum of their payoffs in the three games, 1
100 ·G1+

99
200 ·G2+

99
200 ·G3.

The good news is that, in every exact Nash equilibrium of the combined game, Alice and Bob mix uniformly
over their choices of i and j. Intuitively, because deviating from the uniform strategy can be punished by
the other player at a rate linear in the deviation (Claim 5.3), it is never worth doing (no matter what happens
in G1). Given this, à la the McLennan-Tourky reduction (Theorem 3.2), the xi’s and y j ’s must correspond
to a fixed point of f (for each i, Alice must set xi to the center of mass of Bob’s distribution over yi’s, and
then Bob must set yi = f i (xi )).

The bad news is that this argument breaks down for ε-approximate Nash equilibria with constant ε . The
reason is that, even when the distributions of i and j are perfectly uniform, the two players interact (i.e.,
choose i = j) only with probability 1/d. This means that the contribution of the game G1 to the expected
payoffs is at most 1/d � ε , freeing the players to choose their xi’s and y j ’s arbitrarily. Thus we need another
idea to force Alice and Bob to interact more frequently.

A second problem is that the sizes of the Althöfer games are too big—exponential in d rather than in
√

d.

5.2.7 ε-BFP ≤ ε-NE (Attempt #4): Blockwise Play

To solve both of the problems with the third attempt, we force Alice and Bob to play larger sets of coordinates
at a time. Specifically, we view [d] as a

√
d×
√

d grid, and any x, y ∈ [0, 1]d as
√

d×
√

d matrices. Now Alice
and Bob will play a row and column of their matrices, respectively, and their payoffs will be determined by
the entry where the row and column intersect. That is, we replace the coordinatewise game of Section 5.2.5
with the following blockwise game:

• A pure strategy of Alice comprises an index i ∈
[√

d
]
and a row xi∗ ∈ [0, 1]

√
d . (As usual, every xi j

should be a multiple of ε .)

• A pure strategy of Bob comprises an index j ∈
[√

d
]
and a column y∗ j ∈ [0, 1]

√
d .

• Alice’s payoff in the outcome (xi∗, y∗ j ) is

1 − (xi j − yi j )2.

• Bob’s payoff in the outcome (xi∗, y∗ j ) is

1 − (yi j − f i j (xi j ))2. (5.4)

Now glue this game together with k ×
(

k
k/2

)
and

(
k
k/2

)
× k Althöfer games with k =

√
d, as in Section 5.2.6.

(For example, Alice’s index i ∈
[√

d
]
is identified with a row in the first Althöfer game, and now Alice

also picks a subset S ⊆
[√

d
]
in the second Althöfer game, in addition to i and xi∗.) This construction

yields exactly what we want: a game of size exp(Õ(k)) = exp(Õ(
√

d)) in which every ε-approximate Nash
equilibrium can be easily translated to a δ-approximate fixed point of f (in the normalized `2 norm), where
δ depends only on ε .5,6

5The Õ(·) notation suppresses logarithmic factors.
6In more detail, in every ε-approximate Nash equilibrium of the game, Alice and Bob both randomize nearly uniformly over i

and j; this is enforced by the Althöfer games as in Section 5.2.6. Now think of each player as choosing its strategy in two stages,
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5.2.8 Beyond Separable Functions

We now know how to use an ε-approximate Nash equilibrium of a subexponential-size game (with constant ε)
to compute a δ-approximate fixed point of a function that is separable in the sense of (5.3). This is not
immediately interesting, because a fixed point of a separable function is easy to find by doing binary search
independently in each coordinate. The hard Brouwer functions identified in Theorem 5.2 have lots of nice
properties, but they certainly aren’t separable.

Conceptually, the rest of the proof of Theorem 5.1 involves pushing in two directions: first, identifying
hard Brouwer functions that are even “closer to separable” than the functions in Theorem 5.2; and second,
extending the reduction in Section 5.2.7 to accommodate “close-to-separable” functions. We already have
an intuitive feel for what the second step looks like, from Step 4 of our communication complexity lower
bound (Section 3.2.3 in Lunar Lecture 3), where we enlarged the strategy sets of the players so that they
could smuggle “advice” about how to decode a hard Brouwer function f at a given point. We conclude the
lecture with one key idea for the further simplification of the hard Brouwer functions in Theorem 5.2.

5.2.9 Local EoL

Recall the hard Brouwer functions constructed in our communication complexity lower bound (see Sec-
tion 3.1), which “follow the line” of an embedding of an EoL instance, as well as the additional tweaks
needed to prove Theorem 5.2 (see Section 4.3.3). We are interested in the “local decodability” properties
of these functions. That is, if Bob needs to compute the jth coordinate of f (x) (to evaluate the jth term in
his payoff in (5.2)), how much does he need to know about x? For a separable function f = ( f1, . . . , fd ),
he only needs to know x j . For the hard Brouwer functions in Theorem 5.2, Bob needs to know whether
or not x is close to an edge (of the embedding of the succinct EoL instance into the hypercube) and, if so,
which edge (or pair of edges, if x is close to a vertex). Ultimately, this requires evaluating the successor
circuit S and predecessor circuit P of the succinct EoL instance that defines the hard Brouwer function. It
is therefore in our interest to force S and P to be as simple as possible, subject to the succinct EoL problem
remaining PPAD-complete. In a perfect world, minimal advice (say, O(1) bits) would be enough to compute
S(v) and P(v) from v.7 The following lemma implements this idea. It shows that a variant of the succinct
EoL problem, called Local EoL, remains PPAD-complete even when S and P are guaranteed to change
only O(1) bits of the input, and when S and P are NC0 circuits (and hence each output bit depends on
only O(1) input bits).

Lemma 5.4 (Rubinstein [135]). The following Local EoL problem is PPAD-complete:

1. the vertex set V is a subset of {0, 1}n , with membership in V specified by a given AC0 circuit;

first the index i or j and then the corresponding values xi∗ or y∗ j in the row or column. Whenever Alice plays i, her best response
(conditioned on i) is to play E

[
yi j

]
in every column j, where the expectation is over the distribution of yi j conditioned on Bob

choosing index j. In an ε-approximate Nash equilibrium, in most coordinates, Alice must usually choose xi j ’s that are close to this
best response. Given this, for most indices j ∈

[√
d

]
, whenever Bob chooses j, he must usually choose a value of yi j that is close

to E
[
xi j

]
(for each i). It can be shown that this implies that Alice’s strategy corresponds to a δ-approximate fixed point (in the

normalized `2 norm), where δ is a function of ε only.
7It is also important that minimal advice suffices to translate between points x of the hypercube and vertices v of the underlying

succinct EoL instance (as f is defined on the former, while S and P operate on the latter). This can be achieved by using a
state-of-the-art locally decodable error-correcting code (with query complexity do (1) , similar to that in Kopparty et al. [91]) to
embed the vertices into the hypercube (as described in Section 4.3.3). Incorporating the advice that corresponds to local decoding
into the game produced by the reduction results in a further blow-up of 2do (1) . This is effectively absorbed by the 2

√
d blow-up that

is already present in the reduction in Section 5.2.7.
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2. the successor and predecessor circuits S, P are computable in NC0;

3. for every vertex v ∈ V , S(v) and P(v) differ from v in O(1) coordinates.

The proof idea is to start from the original circuits S and P of a succinct EoL instance and form circuits
S′ and P′ that operate on partial computation transcripts, carrying out the computations performed by the
circuits S or P one gate/line at a time (with O(1) bits changing in each step of the computation). The vertex
setV then corresponds to the set of valid partial computation transcripts. The full proof is not overly difficult;
see [135, Section 5] for the details. This reduction from succinct EoL to Local EoL can be implemented in
linear time, so our assumption that the former problem has no subexponential-time algorithms carries over
to the latter problem.

In the standard succinct EoL problem, every n-bit string v ∈ {0, 1}n is a legitimate vertex. In the Local
EoL problem, only elements of {0, 1}n that satisfy the given AC0 circuit are legitimate vertices. In our
reduction, we need to produce a game that also incorporates checking membership in V , also with only a
do (1) blow-up in how much of x we need to access. This is the reason why Rubinstein [135] needs to develop
customized PCP machinery in his proof of Theorem 5.1. These PCP proofs can then be incorporated into
the blockwise play game (Section 5.2.7), analogous to how we incorporated the interactive protocol P into
the game in our reduction from 2EoL to ε-NE in Section 3.2.3.
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Lunar Lectures
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Lunar Lecture 1
How Computer Science Has Influenced Real-World Auction Design.

Case Study: The 2016–2017 FCC Incentive Auction

Lecturer: Tim Roughgarden Scribe: Dana Randall

1.1 Preamble

Computer science is changing the way auctions are designed and implemented. For over 20 years, the US
and other countries have used spectrum auctions to sell licenses for wireless spectrum to the highest bidder.
What’s different this decade, and what necessitated a new auction design, is that in the US the juiciest parts
of the spectrum for next-generation wireless applications are already accounted for, owned by over-the-air
television broadcasters. This led Congress to authorize the FCC in the fall of 2012 to design a novel
auction (the FCC Incentive Auction) that would repurpose spectrum—procuring licenses from television
broadcasters (a relatively low-value activity) and selling them to parties that put them to better use (e.g.,
telecommunication companies whowant to roll out the next generation of wireless broadband services). Thus
the new auction is really a double auction, comprising two stages: a reverse auction, where the government
buys back licenses for spectrum from their current owners; and then a forward auction, where the government
sells the procured licenses to the highest bidder. Computer science techniques played a crucial role in the
design of the new reverse auction. The main aspects of the forward auction have been around a long time;
here, theoretical computer science has contributed on the analysis side, and to understanding when and why
such forward auctions work well. Sections 1.2 and 1.3 give more details on the reverse and forward parts of
the auction, respectively.

The FCC Incentive Auction finished around the end of March 2017, and so the numbers are in. The
government spent roughly 10 billion USD in the reverse part of the auction buying back licenses from
television broadcasters, and earned 20 billion USD of revenue in the forward auction. Most of the 10 billion
USD profit was used to reduce the US deficit!1

1.2 Reverse Auction

1.2.1 Descending Clock Auctions

The reverse auction is the part of the FCC Incentive Auction that was totally new, and where computer science
techniques played a crucial role in the design. The auction format, proposed by Milgrom and Segal [108],

1This was the plan all along, which is probably one of the reasons the bill didn’t have trouble passing through a notoriously
partisan Congress. Another reason might be the veto-proof title of the bill: “The Middle Class Tax Relief and Job Creation Act.”
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is what’s called a descending clock auction. By design, the auction is very simple from the perspective of
any one participant. The auction is iterative, and operates in rounds. In each round of the auction, each
remaining broadcaster is asked a question of the form: “Would you or would you not be willing to sell your
license for (say) 1 million dollars?” The broadcaster is allowed to say “no,” with the consequence of getting
kicked out of the auction forevermore (the station will keep its license and remain on the air, and will receive
no compensation from the government). The broadcaster is also allowed to say “yes” and accept the buyout
offer. In the latter case, the government will not necessarily buy the license for 1 million dollars—in the next
round, the broadcaster might get asked the same question, with a lower buyout price (e.g., 950,000 USD).
If a broadcaster is still in the auction when it ends (more on how it ends in a second), then the government
does indeed buy their license, at the most recent (and hence lowest) buyout offer. Thus a broadcaster just
has to answer a sequence of “yes/no” questions for some decreasing sequence of buyout offers. The obvious
strategy for a broadcaster is to formulate the lowest acceptable offer for their license, and to drop out of the
auction once the buyout price drops below this threshold.

The auction begins with very high buyout offers, so that every broadcaster would be ecstatic to sell their
license at the initial price. Intuitively, the auction then tries to reduce the buyout prices as much as possible,
subject to clearing a target amount of spectrum. Spectrum is divided into channels which are blocks of 6
MHz each. For example, one could target broadcasters assigned to channels 38–51, and insist on clearing
10 out of these 14 channels (60 MHz overall).2 By “clearing a channel,” we mean clearing it nationwide.
Of course, in the descending clock auction, bidders will drop out in an uncoordinated way—perhaps the first
station to drop out is channel 51 in Arizona, then channel 41 in western Massachusetts, and so on. To clear
several channels nationwide without buying out essentially everybody, it was essential for the government
to use its power to reassign the channels of the stations that remain on the air. Thus while a station that
drops out of the auction is guaranteed to retain its license, it is not guaranteed to retain its channel—a station
broadcasting on channel 51 before the auction might be forced to broadcast on channel 41 after the auction.

The upshot is that the auction maintains the invariant that the stations that have dropped out of the auction
(and hence remain on the air) can be assigned channels so that at most a target number of channels get used
(in our example, 4 channels). This is called the repacking problem. Naturally, two stations with overlapping
broadcasting regions cannot be assigned the same channel (otherwise they would interfere with each other).
See Figure 1.1.

1.2.2 Solving the Repacking Problem

Any properly trained computer scientist will recognize the repacking problem as the NP-complete graph
coloring problem in disguise.3 For the proposed auction format to be practically viable, it must quickly solve
the repacking problem. Actually, make that thousands of repacking problems every round of the auction!4

The responsibility of quickly solving repacking problems fell to a team led by Kevin Leyton-Brown
(see [54, 97]). The FCC gave the team a budget of one minute per repacking problem, ideally with most
instances solved within one second. The team’s approach was to build on state-of-the-art solvers for the
satisfiability (SAT) problem. As you can imagine, it’s straightforward to translate an instance of the repacking

2The FCC Incentive Auction would up clearing 84 MHz of spectrum (14 channels).
3The actual repacking problem was more complicated—overlapping stations cannot even be assigned adjacent channels, and

there are idiosyncratic constraints at the borders with Canada and Mexico. See Leyton-Brown et al. [97] for more details. But the
essence of the repacking problem really is graph coloring.

4Before the auction makes a lower offer to some remaining broadcaster in the auction, it needs to check that it would be OK
for the broadcaster to drop out of the auction. If a station’s dropping out would render the repacking problem infeasible, then that
station’s buyout price remains frozen until the end of the auction.
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The Repacking Problem 

8 Figure 1.1: Different TV stations with overlapping broadcasting areas must be assigned different channels
(indicated by shades of gray). Checking whether or not a given subset of stations can be assigned to a given
number of channels without interference is an NP-hard problem.

problem into a SAT formula (even with the idiosyncratic constraints).5 Off-the-shelf SAT solvers did pretty
well, but still timed out on too many representative instances.6 Leyton-Brown’s team added several new
innovations, including taking advantage of the advance knowledge of the interference constraints (as station’s
broadcasting regions are public), and implementing a number of effective caching techniques (reusing work
done solving previous instances to quickly solve closely related new instances). In the end, they were able to
solve more than 99% of the relevant repacking problems in under a minute.

Hopefully the high-level point is clear:

without cutting-edge techniques for solving N P-complete problems, the FCC would have had
to use a different auction format.

1.2.3 Reverse Greedy Algorithms

One final twist: the novel reverse auction format motivates some basic algorithmic questions (and thus ideas
flow from computer science to auction theory and back). We can think of the auction as an algorithm, a
heuristic that tries to maximize the value of the stations that remain on the air, subject to clearing the target
amount of spectrum. Milgrom and Segal [108] prove that, ranging over all ways of implementing the auction
(i.e., of choosing the sequences of descending prices), the corresponding algorithms are exactly the reverse
greedy algorithms.7 This result gives the first extrinsic reason to study the power and limitations of reverse

5A typical representative instance would have thousands of variables and tens of thousands of constraints.
6Every time the repacking algorithm fails to find a repacking when one exists, money is left on the table—the auction has to

conservatively leave the current station’s buyout offer frozen, even though it could have safely lowered it.
7For example, Kruskal’s algorithm for the minimum spanning tree problem (start with the empty set, go through the edges of the

graph from cheapest to most expensive, adding an edge as long as it doesn’t create a cycle) is a standard (forward) greedy algorithm.
The reverse version is: start with the entire edge set, go through the edges in reverse sorted order, and remove an edge whenever it
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greedy algorithms, a research direction explored by Dütting et al. [48] and Gkatzelis et al. [62].

1.3 Forward Auction

Computer science did not have an opportunity to influence the design of the forward auction used in the FCC
Incentive Auction, which resembles the formats used over the past 20+ years. Still, the theoretical computer
science toolbox turns out to be ideally suited for explaining when and why these auctions work well.8

1.3.1 Bad Auction Formats Cost Billions

Spectrum auction design is stressful, because small mistakes can be extremely costly. One cautionary
tale is provided by an auction run by the New Zealand government in 1990 (before governments had much
experience with auctions). For sale were 10 essentially identical national licenses for television broadcasting.
For some reason, lost to the sands of time, the government decided to sell these licenses by running 10 second-
price auctions in parallel. Recall that a second-price or Vickrey auction for a single good is a sealed-bid
auction that awards the item to the highest bidder and charges her the highest bid by someone else (the
second-highest bid overall). When selling a single item, the Vickrey auction is often a good solution. In
particular, each bidder has a dominant strategy (always at least as good as all alternatives), which is to bid
her true maximum willingness-to-pay.9

The nice properties of a second-price auction evaporate if many of them are run simultaneously. It is
no longer clear how a bidder should bid. For example, imagine you want one of the licenses, but only one.
How should you bid? One legitimate strategy is to pick one of the licenses—at random, say—and go for it.
Another strategy is to bid less aggressively on multiple licenses, hoping that you get one at a bargain price,
and that you don’t inadvertently win extra licenses that you don’t want. The difficulty is trading off the risk
of winning too many licenses with the risk of winning too few.

The challenge of bidding intelligently in simultaneous sealed-bid auctions makes the auction format
prone to poor outcomes. The revenue in the 1990 New Zealand auction was only $36 million, a paltry
fraction of the projected $250 million. On one license, the high bid was $100,000 while the second-highest
bid (and selling price) was $6! On another, the high bid was $7 million and the second-highest was $5,000.
To add insult to injury, the winning bids were made available to the public, who could then see just how
much money was left on the table!

1.3.2 Simultaneous Ascending Auctions

Modern forward auctions are simultaneous ascending auctions (SAAs), following 1993 proposals byMcAfee
and by Milgrom and Wilson. You’ve seen—in the movies, at least—the call-and-response format of an
ascending single-item auction, where an auctioneer asks for takers at successively higher prices. Such an
auction ends when there’s only one person left accepting the currently proposed price (who then wins, at
this price). Conceptually, SAAs are like a bunch of single-item English auctions being run in parallel in the
same room, with one auctioneer per item.

doesn’t disconnect the graph. For the minimum spanning tree problem (and more generally for finding the minimum-weight basis
of a matroid), the reverse greedy algorithm is just as optimal as the forward one. In general (and even for e.g. bipartite matching),
the reverse version of a good forward greedy algorithm can be bad [48].

8Much of the discussion in Sections 1.3.1–1.3.3 is from [129, Lecture 8], which in turn draws heavily from Milgrom [107].
9Intuitively, a second-price auction shades your bid optimally after the fact, so there’s no reason to try to game it.
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The primary reason that SAAs work better than sequential or sealed-bid auctions is price discovery.
As a bidder acquires better information about the likely selling prices of licenses, she can implement mid-
course corrections: abandoning licenses for which competition is fiercer than anticipated, snapping up
unexpected bargains, and rethinking which packages of licenses to assemble. The format typically resolves
the miscoordination problems that plague simultaneous sealed-bid auctions.

1.3.3 Inefficiency in SAAs

SAAs have two big vulnerabilities. The first problem is demand reduction, and this is relevant even when
items are substitutes.10 Demand reduction occurs when a bidder asks for fewer items than it really wants, to
lower competition and therefore the prices paid for the items that it gets.

To illustrate, suppose there are two identical items and two bidders. The first bidder has valuation 10 for
one of the items and valuation 20 for both. The second bidder has valuation 8 for one of the items and does
not want both (i.e., her valuation remains 8 for both). The socially optimal outcome is to give both licenses
to the first bidder. Now consider how things play out in an SAA. The second bidder would be happy to have
either item at any price less than 8. Thus, the second bidder drops out only when both items have price at
least 8. If the first bidder stubbornly insists on winning both items, her utility is 20 − 16 = 4. An alternative
strategy for the first bidder is to simply concede the second item and never bid on it. The second bidder takes
the second item and (since it only wants one license) withdraws interest in the first, leaving it for the first
bidder. Both bidders get their item essentially for free, and the utility of the first bidder has jumped to 10.

The second big problem with SAAs is relevant when items can be complements, and is called the
exposure problem.11 As an example, consider two bidders and two nonidentical items. The first bidder only
wants both items—they are complementary items for the bidder—and her valuation is 100 for them (and 0
otherwise). The second bidder is willing to pay 75 for either item but only wants one item. The socially
optimal outcome is to give both items to the first bidder. But in an SAA, the second bidder will not drop out
until the price of both items reaches 75. The first bidder is in a no-win situation: to get both items it would
have to pay 150, more than her value. The scenario of winning only one item for a nontrivial price could be
even worse. Thus the exposure problem leads to economically inefficient allocations for two reasons. First,
an overly aggressive bidder might acquire unwanted items. Second, an overly tentative bidder might fail to
acquire items for which it has the highest valuation.

1.3.4 When Do SAAs Work Well?

If you ask experts who design or consult for bidders in real-world SAAs, a rough consensus emerges about
when they are likely to work well.

Folklore Belief 1. Without strong complements, SAAs work pretty well. Demand reduction does happen,
but it is not a deal-breaker because the loss of efficiency appears to be small.

Folklore Belief 2. With strong complements, simple auctions like SAAs are not good enough. The exposure
problem is a deal-breaker because it can lead to very poor outcomes (in terms of both economic efficiency
and revenue).

10Items are substitutes if they provide diminishing returns—having one item only makes others less valuable. For two items A
and B, for example, the substitutes condition means that v(AB) ≤ v(A) + v(B). In a spectrum auction context, two licenses for the
same area with equal-sized frequency ranges are usually substitute items.

11Items are complements if there are synergies between them, so that possessing one makes others more valuable. With two
items A and B, this translates to the property v(AB) > v(A) + v(B). Complements arise naturally in wireless spectrum auctions, as
some bidders want a collection of licenses that are adjacent, either in their geographic areas or in their frequency ranges.
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There are a number of beautiful and useful theoretical results about spectrum auctions in the economics
literature, but none map cleanly to these two folklore beliefs. A possible explanation: translating these
beliefs into theorems seems to fundamentally involve approximate optimality guarantees, a topic right in the
wheelhouse of theoretical computer science.

In the standard model of combinatorial auctions, there are n bidders (e.g., telecoms) and m items (e.g.,
licenses). Bidder i has a nonnegative valuation vi (S) for each subset S of items it might receive. Note that
each bidder has 2m parameters. Each bidder wants to maximize its utility, which is the value of the items
received minus the price it pays for them. From a social perspective, we’d like to award bundles of items
T1, . . . ,Tn to the bidders to maximize the social welfare

∑n
i=1 vi (Ti ).

To make the first folklore belief precise, we need to commit to a definition of “without strong comple-
ments” and to a specific auction format. We’ll focus on simultaneous first-price auctions (S1As), where
each bidder submits a separate bid for each item, for each item the winner is the highest bidder, and winning
bidders pay their bid on each item won.12 One relatively permissive definition of “complement-free” is to
restrict bidders to have subadditive valuations. This means what it sounds like: if A and B are two bundles
of items, then bidder i’s valuation vi (A∪ B) of their union should be at most that of the sum vi (A) + vi (B).
Observe the subadditivity is violated in our exposure problem example above.

We also need to define what we mean by “the outcome of an auction” like S1As. Remember that bidders
are strategic, and will bid to maximize their utility (value of items won minus the price paid). Thus we
should prove approximation guarantees for the equilibria of auctions. Happily, computer scientists have been
working hard since 1999 to prove approximation guarantees for game-theoretic equilibria, also known as
bounds on the price of anarchy [92, 124, 132]. In the early days, price-of-anarchy bounds appeared somewhat
ad hoc and problem-specific. Fast forwarding to the present, we now have a powerful and user-friendly theory
for proving price-of-anarchy bounds, which combine “extension theorems” and “composition theorems” to
build up bounds for complex settings (including S1As) from bounds for simple settings.13 In particular,
Feldman et al. [52] proved the following translation of Folklore Belief #1.14

Theorem 1.1 (Feldman et al. [52]). When every bidder has a subadditive valuation, every equilibrium of an
S1A has social welfare at least 50% of the maximum possible.

One version of Theorem 1.1 concerns (mixed) Nash equilibria, as studied in the Solar Lectures. Even
here, the bound in Theorem 1.1 is tight in the worst case [37]. The approximation guarantee in Theorem 1.1
holds more generally for Bayes-Nash equilibria, the standard equilibrium notion for games of incomplete
information.15

Moving on to the second folklore belief, let’s now drop the subadditivity restriction. S1As no longer
work well.

Theorem 1.2 (Hassidim et al. [73]). When bidders have arbitrary valuations, an S1A can have a mixed Nash
equilibrium with social welfare arbitrarily smaller than the maximum possible.

12Similar results hold for other auction formats, like simultaneous second-price auctions. Directly analyzing what happens in
iterative auctions like SAAs when there are multiple items has proved difficult.

13We will say more about this theory in Lunar Lecture 5. See also Roughgarden et al. [134] for a recent survey.
14To better appreciate this result, we note that multi-item auctions like S1As are so strategically complex that they have historically

been seen as unanalyzable. For example, we have no idea what their equilibria look like in general. Nevertheless, we can prove
good approximation guarantees for them!

15In more detail, there is a commonly known prior distribution over bidders’ valuations. In a Bayes-Nash equilibrium, every
bidder bids to maximize its expected utility given its information at the time: its own valuation, its posterior belief about other
bidders’ valuations, and the bidding strategies (mapping valuations to bids) used by the other bidders. Theorem 1.1 continues to
hold for every Bayes-Nash equilibrium of an S1A, as long as bidders’ valuations are drawn independently (but not necessarily
identically).

67



Thus for S1As, the perspective of worst-case approximation confirms the dichotomy between the cases
of substitutes and complements. But the lower bound in Theorem 1.2 holds for just one auction format.
Could we do better with a different (but still relatively simple) auction format? Folklore Belief #2 asserts
the stronger statement that no “simple” auction works well with general valuations. This stronger statement
can also be translated into a theorem (using nondeterministic communication complexity), and this will be
the main subject of Lunar Lecture 2.

Theorem 1.3 (Roughgarden [126]). With general valuations, every simple auction can have arbitrarily bad
equilibria.

The definition of “simple” used in Theorem 1.3 is quite generous: it requires only that the number of
strategies available to each player is sub-doubly-exponential in the number of items m. For example, running
separate single-item auctions provides each player with only an exponential number of strategies (assuming
a bounded number of possible bid values). Thus Theorem 1.3 makes use of the theoretical computer science
toolbox to provide solid footing for Folklore Belief #2.
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Lunar Lecture 2
Communication Barriers to Near-Optimal Equilibria

Lecturer: Tim Roughgarden Scribe: Omri Weinstein

This lecture is about the communication complexity of the welfare-maximization problem in combina-
torial auctions and its implications for the price of anarchy of simple auctions. After defining the model in
Section 2.1, Section 2.2 proves lower bounds for nondeterministic communication protocols and Section 2.3
gives a black-box translation of these lower bounds to equilibria of simple auctions. In particular, Section 2.3
provides the proof of Theorem 1.3 from last lecture. Section 2.4 concludes with a juicy open problem on the
topic.1

2.1 Welfare Maximization in Combinatorial Auctions

Recall from Section 1.3.4 the basic setup in the study of combinatorial auctions.

1. There are k players. (In a spectrum auction, these are the telecoms.)

2. There is a set M of m items. (In a spectrum auction, these are the licenses.)

3. Each player i has a valuation vi : 2M → R+. The number vi (T ) indicates i’s value, or willingness to
pay, for the items T ⊆ M . The valuation is the private input of player i — i knows vi but none of the
other v j ’s. (I.e., this is a number-in-hand model.) We assume that vi (∅) = 0 and that the valuations
are monotone, meaning vi (S) ≤ vi (T ) whenever S ⊆ T . (The more items, the better.) To avoid
bit complexity issues, we’ll also assume that all of the vi (T )’s are integers with description length
polynomial in k and m. We sometimes impose additional restrictions on the valuations to study special
cases of the general problem.

Note that we may have more than two players—more than just Alice and Bob. (For example, you might want
to think of k as ≈ m1/3.) Also note that the description length of a player’s valuation is exponential in the
number of items m.

In thewelfare-maximization problem, the goal is to partition the items M into setsT1, . . . ,Tk to maximize,
at least approximately, the welfare

k∑
i=1

vi (Ti ), (2.1)

1Much of this lecture is drawn from [130, Lecture 7].

69



using communication polynomial in n and m. Note this amount of communication is logarithmic in the sizes
of the private inputs. Maximizing social welfare (2.1) is the most commonly studied objective function in
combinatorial auctions, and it is the one we will focus on in this lecture.

2.2 Communication Lower Bounds for Approximate Welfare Maximization

This section studies the communication complexity of computing an approximately welfare-maximizing
allocation in a combinatorial auction. For reasons that will become clear in Section 2.3, we are particularly
interested in the problem’s nondeterministic communication complexity.2

2.2.1 Lower Bound for General Valuations

We begin with a result of Nisan [115] showing that, alas, computing even a very weak approximation of the
welfare-maximizing allocation requires exponential communication. To make this precise, it is convenient
to turn the optimization problem of welfare maximization into a decision problem. In the Welfare-
Maximization(k) problem, the goal is to correctly identify inputs that fall into one of the following two
cases:

(1) Every partition (T1, . . . ,Tk ) of the items has welfare at most 1.

(0) There exists a partition (T1, . . . ,Tk ) of the items with welfare at least k.

Arbitrary behavior is permitted on inputs that fail to satisfy either (1) or (0). Clearly, communication lower
bounds for Welfare-Maximization(k) apply to the more general problem of obtaining a better-than-k-
approximation of the maximum welfare.3

Theorem 2.1 ([115]). The nondeterministic communication complexity of Welfare-Maximization(k) is
exp{Ω(m/k2)}, where k is the number of players and m is the number of items.

This lower bound is exponential in m, provided that m = Ω(k2+ε ) for some ε > 0. Since communication
complexity lower bounds apply even to players who cooperate perfectly, this impossibility result holds even
when all of the (tricky) incentive issues are ignored.

2.2.2 The Multi-Disjointness Problem

The plan for the proof of Theorem 2.1 is to reduce a multi-party version of the Disjointness problem to
it. There is some ambiguity about how to define a version of Disjointness for three or more players. For
example, suppose there are three players, and among the three possible pairings of them, two have disjoint
sets while the third have intersecting sets. Should this count as a “yes” or “no” instance? We’ll skirt this
issue by worrying only about unambiguous inputs, that are either “totally disjoint” or “totally intersecting.”

Formally, in the Multi-Disjointness problem, each of the k players i holds an input xi ∈ {0, 1}n .
(Equivalently, a set Si ⊆ {1, 2, . . . , n}.) The task is to correctly identify inputs that fall into one of the
following two cases:

2For basic background on nondeterministic multi-party communication protocols, see Kushilevitz and Nisan [93] or Roughgar-
den [130].

3Achieving a k-approximation is trivial: every player communicates their value vi (M) for the whole set of items, and the entire
set of items is awarded to the bidder with the highest value for them.
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(1) “Totally disjoint,” with Si ∩ Si′ = ∅ for every i , i′.

(0) “Totally intersecting,” with ∩k
i=1Si , ∅.

When k = 2, this is just Disjointness. When k > 2, there are inputs that are neither 1-inputs nor 0-inputs.
We let protocols off the hook on such ambiguous inputs — they can answer “1” or “0” with impunity.

The following communication complexity lower bound for Multi-Disjointness is credited to Jaikumar
Radhakrishnan and Venkatesh Srinivasan in [115]. (The proof is elementary, and for completeness is given
in Section 2.5.)

Theorem 2.2. The nondeterministic communication complexity of Multi-Disjointness, with k players with
n-bit inputs, is Ω(n/k).

This nondeterministic lower bound is for verifying a 1-input. (It is easy to verify a 0-input—the prover
just suggests the index of an element r in ∩k

i=1Si .)4

2.2.3 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on Theorem 2.2 and a combinatorial gadget. We construct this gadget using
the probabilistic method. As a thought experiment, consider t random partitions P1, . . . , Pt of M , where t is
a parameter to be defined later. By a random partition P j = (P j

1, . . . , P
j
k
), we just mean that each of the m

items is assigned to exactly one of the k players, independently and uniformly at random.
We are interested in the probability that two classes of different partitions intersect: for all i , i′ and

j , `, since the probability that a given item is assigned to i in P j and also to i′ in P` is 1
k2
, we have

Pr
[
P j
i ∩ P`i′ = ∅

]
=

(
1 −

1
k2

)m
≤ e−m/k

2
.

Taking a Union Bound over the k choices for i and i′ and the t choices for j and `, we have

Pr
[
∃i , i′, j , ` s.t. P j

i ∩ P`i′ = ∅
]
≤ k2t2e−m/k

2
. (2.2)

Call P1, . . . , Pt an intersecting family if P j
i ∩ P`i′ , ∅ whenever i , i′, j , `. By (2.2), the probability that

our random experiment fails to produce an intersecting family is less than 1 provided t < 1
k em/2k

2 . The
following lemma is immediate.

Lemma 2.3. For every m, k ≥ 1, there exists an intersecting family of partitions P1, . . . , Pt with t =
exp{Ω(m/k2)}.

A simple combination of Theorem 2.2 and Lemma 2.3 now proves Theorem 2.1.

Proof. (of Theorem 2.1) The proof is a reduction fromMulti-Disjointness. Fix k and m. (To be interesting,
m should be significantly bigger than k2.) Let (S1, . . . , Sk ) denote an input to Multi-Disjointness with t-bit
inputs, where t = exp{Ω(m/k2)} is the same value as in Lemma 2.3. We can assume that the players have

4To prove Theorem 2.1, we’ll be interested in the case where k is much smaller than n, such as k = Θ(log n). Intuition might
suggest that the lower bound should be Ω(n) rather than Ω(n/k), but this is incorrect — a slightly non-trivial argument shows that
Theorem 2.2 is tight for nondeterministic protocols (for all small enough k, like k = O(

√
n)). This factor-k difference won’t matter

for our applications, however.

71



coordinated in advance on an intersecting family of t partitions of a set M of m items. Each player i uses this
family and its input Si to form the following valuation:

vi (T ) =
{

1 if T ⊇ P j
i for some j ∈ Si

0 otherwise.

That is, player i is either happy (value 1) or unhappy (value 0), and is happy if and only if it receives
all of the items in the corresponding class P j

i of some partition P j with index j belonging to its input to
Multi-Disjointness. The valuations v1, . . . , vk define an input to Welfare-Maximization(k). Forming
this input requires no communication between the players.

Consider the case where the input to Multi-Disjointness is a 1-input, with Si ∩ Si′ = ∅ for every
i , i′. We claim that the induced input to Welfare-Maximization(k) is a 1-input, with maximum welfare
at most 1. To see this, consider a partition (T1, . . . ,Tk ) in which some player i is happy (with vi (Ti ) = 1).
For some j ∈ Si , player i receives all the items in P j

i . Since j < Si′ for every i′ , i, the only way to make
a second player i′ happy is to give it all the items in P`i′ in some other partition P` with ` ∈ Si′ (and hence
` , j). Since P1, . . . , Pt is an intersecting family, this is impossible — P j

i and P`i′ overlap for every ` , j.
When the input to Multi-Disjointness is a 0-input, with an element r in the mutual intersection ∩k

i=1Si ,
we claim that the induced input toWelfare-Maximization(k) is a 0-input, with maximumwelfare at least k.
This is easy to see: for i = 1, 2, . . . , k, assign the items of Pr

i to player i. Since r ∈ Si for every i, this makes
all k players happy.

This reduction shows that a (deterministic, nondeterministic, or randomized) protocol for Welfare-
Maximization(k) yields one for Multi-Disjointness (with t-bit inputs) with the same communication. We
conclude that the nondeterministic communication complexity of Welfare-Maximization(k) is Ω(t/k) =
exp{Ω(m/k2)}. �

2.2.4 Subadditive Valuations

To an algorithms person, Theorem 2.1 is depressing, as it rules out any non-trivial positive results. A natural
idea is to seek positive results by imposing additional structure on players’ valuations. Many such restrictions
have been studied. We consider here the case of subadditive valuations (see also Section 1.3.4 from last
lecture), where each vi satisfies vi (S ∪ T ) ≤ vi (S) + vi (T ) for every pair S,T ⊆ M .

Our reduction in Theorem 2.1 immediately yields a weaker inapproximability result for welfare maxi-
mization with subadditive valuations. Formally, define the Welfare-Maximization(2) problem as that of
identifying inputs that fall into one of the following two cases:

(1) Every partition (T1, . . . ,Tk ) of the items has welfare at most k + 1.

(0) There exists a partition (T1, . . . ,Tk ) of the items with welfare at least 2k.

Communication lower bounds for Welfare-Maximization(2) apply also to the more general problem of
obtaining a better-than-2-approximation of the maximum welfare.

Theorem2.4 (Dobzinski et al. [47]). The nondeterministic communication complexity ofWelfare-Maximization(2)
is exp{Ω(m/k2)}, even when all players have subadditive valuations.

This theorem follows from a modification of the proof of Theorem 2.1. The 0-1 valuations used in that
proof are not subadditive, but they can be made subadditive by adding 1 to each bidder’s valuation vi (T )
of each non-empty set T . The social welfare obtained in inputs corresponding to 1- and 0-inputs of Multi-
Disjointness become k + 1 and 2k, respectively, and this completes the proof of Theorem 2.4.
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There is also a quite non-trivial matching upper bound of 2 for deterministic, polynomial-communication
protocols [50].

2.3 Lower Bounds on the Price of Anarchy of Simple Auctions

The lower bounds of the previous section show that every protocol for the welfare-maximization problem
that interacts with the players and then explicitly computes an allocation has either a bad approximation
ratio or high communication cost. Over the past decade, many researchers have aimed to shift the work
from the protocol to the players, by analyzing the equilibria of simple auctions. Can such equilibria bypass
the communication complexity lower bounds proved in Section 2.2? The answer is not obvious, because
equilibria are defined non-constructively, and not through a low-cost communication protocol.

2.3.1 Auctions as Games

What do we mean by a “simple” auction? For example, recall the simultaneous first-price auctions (S1As)
introduced in Section 1.3.4 of the preceding lecture. Each player i chooses a strategy bi1, . . . , bim , with one
bid per item.5 Each item is sold separately in parallel using a “first-price auction”—the item is awarded to
the highest bidder, and the price is whatever that player bid.6 The payoff of a player in a given outcome (i.e.,
given a choice of strategy for each player) is then her utility:

vi (Ti )︸︷︷︸
value of items won

−
∑
j ∈Si

bi j︸  ︷︷  ︸
price paid for them

,

where Ti denotes the items on which i is the highest bidder (given the bids of the others).
Bidders strategize already in a first-price auction for a single item—a bidder certainly doesn’t want to

bid her actual valuation (this would guarantee utility 0), and instead will “shade” her down to a lower value.
(How much to shade is a tricky question, and depends on what the other bidders are doing.) Thus it makes
sense to assess the performance of an auction by its equilibria. As usual, a Nash equilibrium comprises a
(randomized) strategy for each player, so that no player can unilaterally increase her expected payoff through
a unilateral deviation to some other strategy (given how the other players are bidding).

2.3.2 The Price of Anarchy

So how good are the equilibria of various games, such as S1As? To answer this question, we use an analog of
the approximation ratio, adapted for equilibria. Given a game (like an S1A) and a nonnegative maximization
objective function on the outcomes (like the social welfare), the price of anarchy (POA) Koutsoupias and
Papadimitriou [92] is defined as the ratio between the objective function value of an optimal solution, and
that of the worst equilibrium:

PoA(G) :=
f (OPT (G))

minµ is an equilibrium of G f (µ)
,

5To keep the game finite, let’s agree that each bid has to be an integer between 0 and some known upper bound B.
6You may have also heard of the Vickrey or second-price auction, where the winner does not pay their own bid, but rather the

highest bid by someone else (the second-highest overall). We’ll stick with S1As for simplicity, but similar results are known for
simultaneous second-price auctions, as well.
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whereG denotes a game, f denotes a (maximization) objective function, andOPT (G) is the optimal outcome
of G (with respect to f ).7 Thus the price of anarchy of a game quantifies the inefficiency of selfish behavior.8
The POA of a game and a maximization objective function is always at least 1. It is common to identify
“good performance” of a system with strategic participants as having a POA close to 1.9

The POA depends on the choice of equilibrium concept. For example, the POA with respect to approx-
imate Nash equilibria can only be worse (i.e., bigger) than for exact Nash equilibria (since there are only
more of the former).

2.3.3 The Price of Anarchy of S1As

As we saw in Theorem 1.1 of the preceding lecture, the equilibria of simple auctions like S1As can be
surprisingly good.10 We restate that result here.11

Theorem 2.5 (Feldman et al. [52]). In every S1A with subadditive bidder valuations, the POA is at most 2.

This result is particularly impressive because achieving an approximation factor of 2 for the welfare-
maximization problem with subadditive bidder valuations by any means (other than brute-force search) is
not easy (see [50]).

As mentioned last lecture, a recent result shows that the analysis of [52] is tight.

Theorem 2.6 (Christodoulou et al. [37]). The worst-case POA of S1As with subadditive bidder valuations is
at least 2.

The proof of Theorem 2.6 is an ingenious explicit construction—the authors exhibit a choice of subaddi-
tive bidder valuations and a Nash equilibrium of the corresponding S1A so that the welfare of this equilibrium
is only half of the maximum possible. One reason that proving results like Theorem 2.6 is challenging is
that it can be difficult to solve for a (bad) equilibrium of a complex game like a S1A.

2.3.4 Price-of-Anarchy Lower Bounds from Communication Complexity

Theorem 2.5 motivates an obvious question: can we do better? Theorem 2.6 implies that the analysis in [52]
cannot be improved, but can we reduce the POA by considering a different auction? Ideally, the auction
would still be “reasonably simple” in some sense. Alternatively, perhaps no “simple” auction could be better
than S1As? If this is the case, it’s not clear how to prove it directly—proving lower bounds via explicit
constructions auction-by-auction does not seem feasible.

Perhaps it’s a clue that the POA upper bound of 2 for S1As (Theorem 2.5) gets stuck at the same threshold
for which there is a lower bound for protocols that use polynomial communication (Theorem 2.4). It’s not
clear, however, that a lower bound for low-communication protocols has anything to do with equilibria. Can
we extract a low-communication protocol from an equilibrium?

7If µ is a probability distribution over outcomes, as in a mixed Nash equilibrium, then f (µ) denotes the expected value of f
w.r.t. µ.

8Games generally have multiple equilibria. Ideally, we’d like an approximation guarantee that applies to all equilibria, so that
we don’t need to worry about which one is reached—this is the point of the POA.

9One caveat is that it’s not always clear that a system will reach an equilibrium in a reasonable amount of time. A natural
solution to this is to relax the notion of equilibrium enough so that it become relatively easy to reach an equilibrium. See Lunar
Lecture 5 for more on this point.

10The first result of this type, for simultaneous second-price auctions and bidders with submodular valuations, is due to
Christodoulou et al. [36].

11For a proof, see the original paper [52] or course notes by your lecturer [127, Lecture 17.5].
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Theorem 2.7 (Roughgarden [126]). Fix a class V of possible bidder valuations. Suppose there exists
no nondeterministic protocol with subexponential (in m) communication for the 1-inputs of the following
promise version of the welfare-maximization problem with bidder valuations in V:

(1) Every allocation has welfare at most W ∗/α.

(0) There exists an allocation with welfare at least W ∗.

Let ε be bounded below by some inverse polynomial function of n and m. Then, for every auction with
sub-doubly-exponential (in m) strategies per player, the worst-case POA of ε-approximate Nash equilibria
with bidder valuations in V is at least α.

Theorem 2.7 says that lower bounds for nondeterministic protocols carry over to all “sufficiently simple”
auctions, where “simplicity” is measured by the number of strategies available to each player. These POA
lower bounds follow automatically from communication complexity lower bounds, and do not require any
new explicit constructions.

To get a feel for the simplicity constraint, note that S1As with integral bids between 0 and B have (B+1)m

strategies per player—singly exponential in m. On the other hand, in a “direct-revelation” auction, where
each bidder is allowed to submit a bid on each bundle S ⊆ M of items, each player has a doubly-exponential
(in m) number of strategies.12

The POA lower bound promised by Theorem 2.7 is only for approximate Nash equilibria; since the POA
is a worst-case measure and the set of ε-NE is nondecreasing with ε , this is weaker than a lower bound for
exact Nash equilibria. It is an open question whether or not Theorem 2.7 holds also for the POA of exact
Nash equilibria.13

Theorem 2.7 has a number of interesting corollaries. First, consider the case where V is the set of
subadditive valuations. Since S1As have only a singly-exponential (in m) number of strategies per player,
Theorem 2.7 applies to them. Thus, combining it with Theorem 2.4 recovers the POA lower bound of
Theorem 2.6—modulo the exact vs. approximate Nash equilibria issue—and shows the optimality of the
upper bound in Theorem 2.5 without an explicit construction. Evenmore interestingly, this POA lower bound
of 2 applies not only to S1As, but more generally to all auctions in which each player has a sub-doubly-
exponential number of strategies. Thus, S1As are in fact optimal among the class of all such auctions when
bidders have subadditive valuations (w.r.t. the worst-case POA of ε-approximate Nash equilibria).

We can also take V to be the set of all (monotone) valuations, and then combine Theorem 2.7 with
Theorem 2.1 to deduce that no “simple” auction gives a non-trivial (i.e., better-than-k) approximation for
general bidder valuations. We conclude that with general valuations, complexity is essential to any auction
format that offers good equilibrium guarantees. This completes the proof of Theorem 1.3 from the preceding
lecture and formalizes the second folklore belief in Section 1.3.4; we restate that result here.

Theorem 2.8 ([126]). With general valuations, every simple auction can have equilibria with social welfare
arbitrarily worse than the maximum possible.

2.3.5 Proof of Theorem 2.7

Presumably, the proof of Theorem 2.7 extracts a low-communication protocol from a good POA bound. The
hypothesis of Theorem 2.7 offers the clue that we should be looking to construct a nondeterministic protocol.

12Equilibria can achieve the optimal welfare in a direct-revelation auction, so the bound in Theorem 2.7 on the number of
strategies is necessary.

13Arguably, Theorem 2.7 is good enough for all practical purposes—a POA upper bound that holds for exact Nash equilibria and
does not hold (at least approximately) for approximate Nash equilibria with very small ε is too brittle to be meaningful.
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(i)  OPT'≤'W/α'
(ii)  OPT'≥'W'

prover'writes''
down'an'ε9NE'x'

players'privately'
verify'ε9NE'condi@ons'

players'compute'
expected'welfare'of'x'

if'E[welfare(x)]'≤'W/α'
then'OPT'≤'ρW/α'<'W'
(so'case'(i))'

if'E[welfare(x)]'>'W/α'
then'OPT'>'W/α''
(so'case'(ii))'

Figure 2.1: Proof of Theorem 2.7. How to extract a low-communication nondeterministic protocol from a
good price-of-anarchy bound.

So what could we use an all-powerful prover for? We’ll see that a good role for the prover is to suggest a
Nash equilibrium to the players.

Unfortunately, it’s too expensive for the prover to even write down the description of a Nash equilibrium,
even in S1As. Recall that a mixed strategy is a distribution over pure strategies, and that each player has an
exponential (in m) number of pure strategies available in a S1A. Specifying a Nash equilibrium thus requires
an exponential number of probabilities. To circumvent this issue, we resort to approximate Nash equilibria,
which are guaranteed to exist even if we restrict ourselves to distributions with small descriptions. We proved
this for two-player games in Solar Lecture 1 (Theorem 1.15); the same argument works with games with any
number of players.

Lemma 2.9 (Lipton et al. [99]). For every ε > 0 and every game with k players with strategy sets A1, . . . , Ak ,
there exists an approximate Nash equilibrium with description length polynomial in k, log(maxk

i=1 |Ai |),
and 1

ε .

In particular, every game with a sub-doubly-exponential number of strategies admits an approximate
Nash equilibrium with subexponential description length.

We now proceed to the proof of Theorem 2.7.

Proof. (of Theorem2.7) Fix an auctionwith atmost A strategies per player, and a value for ε = Ω(1/poly(k,m)).
Assume that, no matter what the bidder valuations v1, . . . , vk ∈ V are, the POA of ε-approximate Nash equi-
libria of the auction is at most ρ < α. We will show that A must be doubly-exponential in m.

Consider the following nondeterministic protocol for verifying a 1-input of the welfare-maximization
problem—for convincing the k players that every allocation has welfare at most W ∗/α. See also Figure 2.1.
The prover writes on a publicly visible blackboard an ε-approximate Nash equilibrium (σ1, . . . , σk ) of the
auction, with description length polynomial in k, log A, and 1

ε = O(poly(k,m)) as guaranteed by Lemma 2.9.
The prover also writes down the expected welfare contribution E[vi (S)] of each bidder i in this equilibrium.

Given this advice, each player i verifies that σi is indeed an ε-approximate best response to the other
σ j ’s and that its expected welfare is as claimed when all players play the mixed strategies σ1, . . . , σk .
Crucially, player i is fully equipped to perform both of these checks without any communication—it knows
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its valuation vi (and hence its utility in each outcome of the game) and the mixed strategies used by all
players, and this is all that is needed to verify its ε-approximate Nash equilibrium conditions and compute
its expected contribution to the welfare.14 Player i accepts if and only if the prover’s advice passes these two
tests, and if the expected welfare of the equilibrium is at most W ∗/α.

For the protocol correctness, consider first the case of a 1-input, where every allocation has welfare
at most W ∗/α. If the prover writes down the description of an arbitrary ε-approximate Nash equilibrium
and the appropriate expected contributions to the social welfare, then all of the players will accept (the
expected welfare is obviously at most W ∗/α). We also need to argue that, for the case of a 0-input—where
some allocation has welfare at least W ∗—there is no proof that causes all of the players to accept. We can
assume that the prover writes down an ε-approximate Nash equilibrium and its correct expected welfare W ,
since otherwise at least one player will reject. Since the maximum-possible welfare is at least W ∗ and (by
assumption) the POA of ε-approximate Nash equilibria is at most ρ < α, the expected welfare of the given
ε-approximate Nash equilibrium must satisfy W ≥ W ∗/ρ > W/α. Since the players will reject such a proof,
we conclude that the protocol is correct. Our assumption then implies that the protocol has communication
cost exponential in m. Since the cost of the protocol is polynomial in k, m, and log A, A must be doubly
exponential in m. �

Conceptually, the proof of Theorem 2.7 argues that, when the POA of ε-approximate Nash equilibria is
small, every ε-approximate Nash equilibrium provides a privately verifiable proof of a good upper bound
on the maximum-possible welfare. When such upper bounds require large communication, the equilibrium
description length (and hence the number of available strategies) must be large.

2.4 An Open Question

While Theorems 2.4, 2.5, and 2.7 pin down the best-possible POA achievable by simple auctions with
subadditive bidder valuations, there are still open questions for other valuation classes. For example, a
valuation vi is submodular if it satisfies

vi (T ∪ { j}) − vi (T ) ≤ vi (S ∪ { j}) − vi (S)

for every S ⊆ T ⊂ M and j < T . This is a “diminishing returns” condition for set functions. Every
submodular function is also subadditive, so welfare-maximization with the former valuations is only easier
than with the latter.

The worst-case POA of S1As is exactly e
e−1 ≈ 1.58 when bidders have submodular valuations. The

upper bound was proved in [143], the lower bound in [37]. It is an open question whether or not there
is a simple auction with a smaller worst-case POA. The best lower bound known—for nondeterministic
protocols and hence, by Theorem 1.3, for the POA of ε-approximate Nash equilibria of simple auctions—is
2e

2e−1 ≈ 1.23 [46]. Intriguingly, there is an upper bound (very slightly) better than e
e−1 for polynomial-

communication protocols [51]—can this better upper bound also be realized as the POA of a simple auction?
What is the best-possible approximation guarantee, either for polynomial-communication protocols or for
the POA of simple auctions? Resolving this question would require either a novel auction format (better than
S1As), a novel lower bound technique (better than Theorem 2.7), or both.

14These computations may take a super-polynomial amount of time, but they do not contribute to the protocol’s cost.
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2.5 Appendix: Proof of Theorem 2.2

The proof of Theorem 2.2 proceeds in three easy steps.

Step 1: Every nondeterministic protocol with communication cost c induces a cover of the 1-inputs of
M ( f ) by at most 2c monochromatic boxes. By “M ( f ),” we mean the k-dimensional array in which the ith
dimension is indexed by the possible inputs of player i, and an array entry contains the value of the function f
on the corresponding joint input. By a “box,” we mean the k-dimensional generalization of a rectangle—a
subset of inputs that can be written as a product A1 × A2 × · · · × Ak . By “monochromatic,” we mean a box
that does not contain both a 1-input and a 0-input. (Recall that for the Multi-Disjointness problem there
are also inputs that are neither 1 nor 0—a monochromatic box can contain any number of these.) The proof
of this step is the same as the standard one for the two-party case (see e.g. [93]).

Step 2: The number of 1-inputs in M ( f ) is (k + 1)n . In a 1-input (x1, . . . , xk ), for every coordinate `, at
most one of the k inputs has a 1 in the `th coordinate. This yields k + 1 options for each of the n coordinates,
thereby generating a total of (k + 1)n 1-inputs.

Step 3: The number of 1-inputs in a monochromatic box is at most kn . Let B = A1 × A2 × · · · × Ak be a
1-box. The key claim here is: for each coordinate ` = 1, . . . , n, there is a player i ∈ {1, . . . , k} such that, for
every input xi ∈ Ai , the `th coordinate of xi is 0. That is, to each coordinate we can associate an “ineligible
player” that, in this box, never has a 1 in that coordinate. This is easily seen by contradiction: otherwise,
there exists a coordinate ` such that, for every player i, there is an input xi ∈ Ai with a 1 in the `th coordinate.
As a box, B contains the input (x1, . . . , xk ). But this is a 0-input, contradicting the assumption that B is a
1-box.

The claim implies the stated upper bound. Every 1-input of B can be generated by choosing, for each
coordinate `, an assignment of at most one “1” in this coordinate to one of the k − 1 eligible players for this
coordinate. With only k choices per coordinate, there are at most kn 1-inputs in the box B.

Conclusion: Steps 2 and 3 imply that covering the 1s of the k-dimensional array of the Multi-Disjointness
function requires at least (1 + 1

k )n 1-boxes. By the discussion in Step 1, this implies a lower bound of
n log2(1 + 1

k ) = Θ(n/k) on the nondeterministic communication complexity of the Multi-Disjointness
function (and output 1). This concludes the proof of Theorem 2.2.
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Lunar Lecture 3
Why Prices Need Algorithms

Lecturer: Tim Roughgarden Scribe: Sumegha Garg & Joshua R. Wang

You’ve probably heard about “market-clearing prices,” which equate the supply and demand in a market.
When are such prices guaranteed to exist? In the classical setting with divisible goods (milk, wheat, etc.),
market-clearing prices exist under reasonably weak conditions [6]. But with indivisible goods (houses,
spectrum licenses, etc.), such prices may or may not exist. As you can imagine, many papers in the
economics and operations research literatures study necessary and sufficient conditions for existence. The
punchline of today’s lecture, based on joint work with Inbal Talgam-Cohen [131], is that computational
complexity considerations in large part govern whether or not market-clearing prices exist in a market of
indivisible goods. This is cool and surprising because the question (existence of equilibria) seems to have
nothing to do with computation (cf., the questions studied in the Solar Lectures).

3.1 Markets with Indivisible Items

The basic setup is the same as in the preceding lecture, when we were studying price-of-anarchy bounds for
simple combinatorial auctions (Section 2.1). To review, there are k players, a set M of m items, and each
player i has a valuation vi : 2M → R+ describing its maximum willingness to pay for each bundle of items.
For simplicity, we also assume that vi (∅) = 0 and that vi is monotone (with vi (S) ≤ vi (T ) whenever S ⊆ T).
As in last lecture, we will often vary the class V of allowable valuations to make the setting more or less
complex.

3.1.1 Walrasian Equilibria

Next is the standard definition of “market-clearing prices” in a market with multiple indivisible items.

Definition 3.1 (Walrasian Equilibrium). A Walrasian equilibrium is an allocation S1, . . . , Sk of the items
of M to the players and nonnegative prices p1, p2, ..., pm for the items such that:

(W1) All buyers are as happy as possible with their respective allocations, given the prices: for every i =
1, 2, . . . , k, Si ∈ argmaxT (vi (T ) −

∑
j ∈T pj ).

(W2) Feasibility: Si ∩ Sj = ∅ for i , j.

(W3) The market clears: for every j ∈ M , j ∈ Si for some i.1
1The most common definition of a Walrasian equilibrium asserts instead that an item j is not awarded to any player only

if pj = 0. With monotone valuations, there is no harm in insisting that every item is allocated.
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Note that Si might be the empty set, if the prices are high enough for (W1) to hold for player i. Also,
property (P3) is crucial for the definition to be non-trivial (otherwise set pj = +∞ for every j).

Walrasian equilibria are remarkable: even though each player optimizes independently (modulo tie-
breaking) and gets exactly what it wants, somehow the global feasibility constraint is respected.

3.1.2 The First Welfare Theorem

Recall from last lecture that the social welfare of an allocation S1, . . . , Sk is defined as
∑k

i=1 vi (S). Walrasian
equilibria automatically maximize the social welfare, a result known as the “First Welfare Theorem.”

Theorem 3.2 (First Welfare Theorem). If the prices p1, p2, . . . , pm and allocation S1, S2, . . . , Sk of items
constitute a Walrasian equilibrium, then

(S1, S2, ..., Sk ) ∈ argmax(T1,T2, ...,Tk )

k∑
i=1

vi (Ti ),

where (T1, . . . ,Tk ) ranges over all feasible allocations (with Ti ∩ Tj = ∅ for i , j).

If one thinks of a Walrasian equilibrium as the natural outcome of a market, then Theorem 3.2 can be
interpreted as saying “markets are efficient.”2 There are many “First Welfare Theorems,” and all have this
flavor.

Proof. Let (S∗1, . . . , S
∗
k
) denote a welfare-maximizing feasible allocation. We can apply property (W1) of

Walrasian equilibria to obtain
vi (Si ) −

∑
j ∈Si

pj ≥ vi (S∗i ) −
∑
j ∈S∗i

pj

for each player i = 1, 2, . . . , k. Summing over i, we have

k∑
i=1

vi (Si ) −
k∑
i=1

*.
,

∑
j ∈Si

pj
+/
-
≥

k∑
i=1

vi (S∗i ) −
k∑
i=1

*.
,

∑
j ∈S∗i

pj
+/
-
. (3.1)

Properties (W2) and (W3) imply that the second term on the left-hand side of (3.1) equals the sum
∑m

j=1 pj

of all the item prices. Since (S∗1, . . . , S
∗
n ) is a feasible allocation, each item is awarded at most once and

hence the second term on the right-hand side is at most
∑m

j=1 pj . Adding
∑m

j=1 pj to both sides gives

k∑
i=1

vi (Si ) ≥
k∑
i=1

vi (S∗i ),

which proves that (S1, . . . , Sk ) is also welfare-maximizing. �

3.1.3 Existence of Walrasian Equilibria

The First Welfare Theorem says that Walrasian equilibria are great when they exist. But when do they exist?

2Needless to say, much blood and ink has been spilled over this interpretation over the past couple of centuries.
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Example 3.3. Suppose M contains only one item. Consider the allocation that awards the item to the player i
with the highest value for it, and a price that is between the i’s value and the highest value of some other
player (the second-highest overall). This is a Walrasian equilibrium: the price is low enough that bidder i
prefers receiving the item to receiving nothing, and high enough that all the other bidders prefer the opposite.
A simple case analysis shows that these are all of the Walrasian equilibria.

Example 3.4. Consider a market with two items, A and B. Suppose the valuation of the first player is

v1(T ) =



3 for T = {A, B}
0 otherwise

and that of the second player is

v2(T ) =



2 when T is A or B
0 otherwise.

The first bidder is called a “single-minded” or “AND” bidder, who is only happy if she gets both items. The
second bidder is called a “unit-demand” or “OR” bidder, and only wants one of the items.

We claim that there is no Walrasian equilibrium in this market. From the First Welfare Theorem, we
know what such an equilibrium must allocate the items to maximize the social welfare, which in this case
means awarding both items to the first player. For the second player to be happy getting neither item, the
price of each item must be at least 2. But then the first player pays 4 and has negative utility, and would
prefer to receive nothing.

These examples suggest a natural question: under what conditions is a Walrasian equilibrium guaranteed
to exist? There is a well-known literature on this question in economics (e.g. [87, 69, 106]); here are the
highlights.

1. If every player’s valuation vi satisfies the “gross substitutes (GS)” condition, then a Walrasian equilib-
rium is guaranteed to exist. We won’t need the precise definition of the GS condition in this lecture.
GS valuations are closely related to weighted matroid rank functions, and hence are a subclass of the
submodular valuations defined at the end of last lecture in Section 2.4.3 A unit-demand (a.k.a. “OR”)
valuation, like that of the second player in Example 3.4, satisfies the GS condition (corresponding to
the 1-uniform matroid). It follows that single-minded (a.k.a. “AND”) valuations, like that of the first
player in Example 3.4, do not in general satisfy the GS condition (otherwise the market in Example 3.4
would have a Walrasian equilibrium).

2. If V is a class of valuations that contains all unit-demand valuations and also some valuation that
violates the GS condition, then there is a market with valuations in V that does not possess a Walrasian
equilibrium.

These results imply that GS valuations are a maximal class of valuations subject to the guaranteed existence
of Walrasian equilibria. These results do, however, leave open the possibility of guaranteed existence
for classes V that contain non-GS valuations but not all unit-demand valuations, and a number of recent
papers in economics and operations research have pursued this direction (e.g. [11, 24, 25, 142]). All of the
non-existence results in this line of work use explicit constructions, like in Example 3.4.

3A weighted matroid rank function f is defined using a matroid (E, I) and nonnegative weights on the elements E, with f (S)
defined as the maximum weight of an independent set (i.e., a member of I) that lies entirely in S.
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3.2 Complexity Separations Imply Non-Existence of Walrasian Equilibria

3.2.1 Statement of Main Result

Next we describe a completely different approach to ruling out the existence of Walrasian equilibria, based
on complexity theory rather than explicit constructions. The main result is the following.

Theorem 3.5 (Roughgarden and Talgam-Cohen [131]). Let V denote a class of valuations. Suppose the
welfare-maximization problem for V does not reduce to the utility-maximization problem for V. Then, there
exists a market with all player valuations in V that has no Walrasian equilibrium.

In other words, a necessary condition for the guaranteed existence of Walrasian equilibria is that welfare-
maximization is no harder than utility-maximization. This connects a purely economic question (when do
equilibria exist?) to a purely algorithmic one.

To fill in some of the details in the statement of Theorem 3.5, by “does not reduce to,” we mean that there
is no polynomial-time Turing reduction from the former problem to the latter. By “the welfare-maximization
problem for V,” we mean the problem of, given player valuations v1, . . . , vk ∈ V, computing an allocation
that maximizes the social welfare

∑k
i=1 vi (Si ).4 By “the utility-maximization problem for V,” we mean the

problem of, given a valuation v ∈ V and nonnegative prices p1, . . . , pm , computing a utility-maximizing
bundle S ∈ argmaxT ⊆M )v(T ) −

∑
j ∈T pj .

The utility-maximization problem, which involves only one player, can generally only be easier than the
multi-player welfare-maximization problem. Thus the two problems either have the same computational
complexity, or welfare-maximization is strictly harder. Theorem 3.5 asserts that whenever the second case
holds, Walrasian equilibria need not exist.

3.2.2 Examples

Before proving Theorem 3.5, let’s see how to apply it. For most natural valuation classes V, a properly
trained theoretical computer scientist can identify the complexity of the utility- and welfare-maximization
problems in a matter of minutes.

Example 3.6 (AND Valuations). Let Vm denote the class of “AND” valuations for markets where |M | = m.
That is, each v ∈ Vm has the following form, for some α ≥ 0 and T ⊆ M:

v(S) =



α if S ⊇ T
0 otherwise.

The utility-maximization problem forVm is trivial: for a single playerwith anANDvaluationwith parameters
α and T , the better of ∅ or T is a utility-maximizing bundle. The welfare-maximization problem for Vm is
essentially set packing and is NP-hard (with m → ∞).5 We conclude that the welfare-maximization problem
for V does not reduce to the utility-maximization problem for V (unless P = NP). Theorem 3.5 then implies
that, assuming P , NP, there are markets with AND valuations that do not have any Walrasian equilibria.6

4For concreteness, think about the case where every valuation vi has a succinct description and can be evaluated in polynomial
time. Analogous results hold when an algorithm has only oracle access to the valuations.

5For example, given an instance G = (V, E) of the Independent Set problem, take M = E, make one player for each vertex
i ∈ V , and give player i an AND valuation with parameters α = 1 and T equal to the edges that are incident to i in G.

6It probably seems weird to have a conditional result ruling out equilibrium existence. A conditional non-existence result can
of course be made unconditional through an explicit example. A proof that the welfare-maximization problem for V is NP-hard will
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Of course, Example 3.4 already shows, without any complexity assumptions, that markets with AND
bidders do not generally have Walrasian equilibria.7 Our next example addresses a class of valuations for
which the status of Walrasian equilibria was not previously known.

Example 3.7 (Capped Additive Valuations). A capped additive valuation v is parameterized by m + 1
numbers c, α1, α2, . . . , αm and is defined as

v(S) = min



c,
∑
j ∈S

α j



.

The α j ’s indicate each item’s value, and c the “cap” on the maximum value that can be attained. Capped
additive valuations were proposed in Lehmann et al. [95] as a natural subclass of submodular valuations, and
have been studied previously from a welfare-maximization standpoint.

Let Vm,d denote the class of capped additive valuations in markets with |M | = m and with c and
α1, . . . , αm restricted to be positive integers between 1 and md . (Think of d as fixed and m → ∞.) A
Knapsack-type dynamic programming algorithm shows that the utility-maximization problem for Vm,d can
be solved in polynomial time (using that c and the α j ’s are polynomially bounded). For d a sufficiently large
constant, however, the welfare-maximization problem for Vm,d is NP-hard (it includes the strongly NP-hard
Bin Packing problem). Theorem 3.5 then implies that, assuming P , NP, there are markets with valuations
in Vm,d with no Walrasian equilibrium.

3.3 Proof of Theorem 3.5

3.3.1 The Plan

Here’s the plan for proving Theorem 3.5. Fix a classV of valuations, and assume that aWalrasian equilibrium
exists in every market with player valuations in V. We will show, in two steps, that the welfare-maximization
problem for V (polynomial-time Turing) reduces to the utility-maximization problem for V.

Step 1: The “fractional” version of the welfare-maximization problem for V reduces to the utility-
maximization problem for V.

Step 2: Amarket admits aWalrasian equilibrium if and only if the fractional welfare-maximization problem
has an optimal integral solution. (We’ll only need the “only if” direction.)

Since every market with valuations in V admits a Walrasian equilibrium (by assumption), these two steps
imply that the integral welfare-maximization problem reduces to utility-maximization.

generally suggest candidate markets to check for non-existence.
The following analogy may help: consider computationally tractable linear programming relaxations of NP-hard optimization

problems. Conditional on P , NP, such relaxations cannot be exact (i.e., have no integrality gap) for all instances. NP-hardness
proofs generally suggest instances that can be used to prove directly (and unconditionally) that a particular linear programming
relaxation has an integrality gap.

7Replacing the OR bidder in Example 3.4 with an appropriate pair of AND bidders extends the example to markets with only
AND bidders.
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3.3.2 Step 1: Fractional Welfare-Maximization Reduces to Utility-Maximization

This step is folklore, and appears for example in Nisan and Segal [116]. Consider the following linear
program (often called the configuration LP), with one variable xiS for each player i and bundle S ⊆ 2M :

max
k∑
i=1

∑
S⊆M

vi (S)xiS

s.t.
k∑
i=1

∑
S⊆M : j ∈S

xiS ≤ 1 for j = 1, 2, . . . ,m∑
S⊆M

xiS = 1 for i = 1, 2, . . . , k.

The intended semantics are

xiS =



1 if i gets the bundle S
0 otherwise.

The first set of constraints enforces that each item is awarded only once (perhaps fractionally), and the second
set enforces that every player receives one bundle (perhaps fractionally). Every feasible allocation induces a
0-1 feasible solution to this linear program according to the intended semantics, and the objective function
value of this solution is exactly the social welfare of the allocation.

This linear program has an exponential (in m) number of variables. The good news is that it has only a
polynomial number of constraints. This means that the dual linear program will have a polynomial number
of variables and an exponential number of constraints, which is right in the wheelhouse of the ellipsoid
method.

Precisely, the dual linear program is:

min
k∑
i=1

ui +
m∑
j=1

pj

s.t. ui +
∑
j ∈S

pj ≥ vi (S) for all i = 1, 2, . . . , k and S ⊆ M

pj ≥ 0 for j = 1, 2, . . . ,m,

where ui and pj corresponds to the primal constraints that bidder i receives one bundle and item j is allocated
at most once, respectively.

Recall that the ellipsoid method [88] can solve a linear program in time polynomial in the number of
variables, as long as there is a polynomial-time separation oracle that can verify whether or not a given
point is feasible and, if not, produce a violated constraint. For the dual linear program above, this separation
oracle boils down to solving the following problem: for each player i = 1, 2, . . . , k, check that

ui ≥ max
S⊆M


vi (S) −

∑
j ∈S

pj


.
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But this reduces immediately to the utility-maximization problem for V! Thus the ellipsoid method can
be used to solve the dual linear program to optimality, using a polynomial number of calls to a utility-
maximization oracle. The optimal solution to the original fractional welfare-maximization problem can then
be efficiently extracted from the optimal dual solution.8

3.3.3 Step 2: Walrasian Equilibria and Exact Linear Relaxations

We now proceed with the second step, which is based on Bikhchandani and Mamer [12] and follows from
strong linear programming duality. Recall from linear programming theory (see e.g. [38]) that a pair of primal
and dual feasible solutions are both optimal if and only if the “complementary slackness” conditions hold.9
These conditions assert that every non-zero decision variable in one of the linear programs corresponds to a
tight constraint in the other. For our primal-dual pair of linear programs, these conditions are:

(i) xiS > 0 implies that ui = vi (S) −
∑

j ∈S pj (i.e., only utility-maximizing bundles are used);

(ii) pj > 0 implies that
∑

i

∑
S: j ∈S xiS = 1 (i.e., item j is not fully sold only if it is worthless).

Comparing the definition of Walrasian equilibria (Definition 3.1) with conditions (i) and (ii), we see that
a 0-1 primal feasible solution x (corresponding to an allocation) and a dual solution p (corresponding to
item prices) constitute a Walrasian equilibrium if and only if the complementary slackness conditions hold
(where ui is understood to be set to maxS⊆M vi (S) −

∑
j ∈S pj ). Thus a Walrasian equilibrium exists if and

only if there is a feasible 0-1 solution to the primal linear program and a feasible solution to the dual linear
problem that satisfy the complementary slackness conditions, which in turn holds if and only if the primal
linear program has an optimal 0-1 feasible solution.10 We conclude that a Walrasian equilibrium exists if
and only if the fractional welfare-maximization problem has an optimal integral solution.11

3.4 Beyond Walrasian Equilibria

For valuation classes V that do not always possess Walrasian equilibria, is it possible to define a more general
notion of “market-clearing prices” so that existence is guaranteed? For example, what if we use prices that are
more complex than item prices? This section shows that complexity considerations provide an explanation
of why interesting generalizations of Walrasian equilibria have been so hard to come by.

Consider a class V of valuations, and a class P of pricing functions. A pricing function, just like a
valuation, is a function p : 2M → R+ from bundles to nonnegative numbers. The item prices p1, . . . , pm
used to define Walrasian equilibria correspond to additive pricing functions, with p(S) =

∑
j ∈S pj . The next

definition articulates the appropriate generalization ofWalrasian equilibria to more general classes of pricing
functions.

8In more detail, consider the (polynomial number of) dual constraints generated by the ellipsoid method when solving the dual
linear program. Form a reduced version of the original primal problem, retaining only the (polynomial number of) variables that
correspond to this subset of dual constraints. Solve this polynomial-size reduced version of the primal linear program using your
favorite polynomial-time linear programming algorithm.

9If you’ve never seen or have forgotten about complementary slackness, there’s no need to be afraid. To derive them, just
write down the usual proof of weak LP duality (which is a chain of inequalities), and back out the conditions under which all the
inequalities hold with equality.

10This argument re-proves the First Welfare Theorem (Theorem 3.2). It also proves the Second Welfare Theorem, which states
that for every welfare-maximizing allocation, there exist prices that render it a Walrasian equilibrium—any optimal solution to the
dual linear program furnishes such prices.

11Recall our analogy with integrality gaps of linear programs (footnote 6). NP-hardness implies an integrality gap (assuming
P , NP), and we now see that integrality gaps and non-existence of Walrasian equilibria go together.
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Definition 3.8 (Price Equilibrium). A price equilibrium (w.r.t. pricing functionsP) is an allocation S1, . . . , Sk
of the items of M to the players and a pricing function p ∈ P such that:

(P1) All buyers are as happy as possible with their respective allocations, given the prices: for every i =
1, 2, . . . , k, Si ∈ argmaxT (vi (T ) − p(T )).

(P2) Feasibility: Si ∩ Sj = ∅ for i , j.

(P3) Revenue maximizing, given the prices: (S1, S2, ..., Sk ) ∈ argmax(T1,T2, ...,Tk )
∑k

i=1 p(Ti ).

Condition (P3) is the analog of the market-clearing condition (W3) in Definition 3.1. It is not enough
to assert that all items are sold, because with a general pricing function, different ways of selling all of the
items can lead to different amounts of revenue. Under conditions (P1)–(P3), the First Welfare Theorem
(Theorem 3.2) still holds, with essentially the same proof, and so every price equilibrium maximizes the
social welfare.

For which choices of valuations V and pricing functions P is Definition 3.8 interesting? Ideally, the
following properties should hold.

1. Guaranteed existence: for every set M of items and valuations v1, . . . , vk ∈ V, there exists a price
equilibrium with respect to P.

2. Efficient recognition: there is a polynomial-time algorithm for checking whether or not a given
allocation and pricing function constitute a price equilibrium. This boils down to assuming that
utility-maximization (with respect to V and P) and revenue-maximization (with respect to P) are
polynomial-time solvable problems (to check (W1) and (W3), respectively).12

3. Markets with valuations in V do not always have a Walrasian equilibrium. (Otherwise, why bother
generalizing item prices?)

We can now see why there are no known natural choices of V and P that meet these three requirements.
The first two requirements imply that the welfare-maximization problem belongs to NP ∩ co-NP. To certify
a lower bound of W ∗ on the maximum social welfare, one can exhibit an allocation with social welfare at
least W ∗. To certify an upper bound of W ∗, one can exhibit a price equilibrium that has welfare at most W ∗—
this is well defined by the first condition, efficiently verifiable by the second condition, and correct by the
First Welfare Theorem.

Problems in (NP∩co-NP) \P appear to be rare, especially in combinatorial optimization. The preceding
paragraph gives a heuristic argument that interesting generalizations of Walrasian equilibria are possible
only for valuation classes for which welfare-maximization is polynomial-time solvable. For every natural
such class known, the linear programming relaxation in Section 3.3 has an optimal integral solution; in
this sense, solving the configuration LP appears to be a “universal algorithm” for polynomial-time welfare-
maximization. But the third requirement asserts that aWalrasian equilibrium does not always exist in markets
with valuations in V and so, by the second step of the proof of Theorem 3.5 (in Section 3.3.3), there are
markets for which the configuration LP sometimes has only fractional optimal solutions.

The upshot is that interesting generalizations of Walrasian equilibria appear possible only for valuation
classes where a non-standard algorithm is necessary and sufficient to solve the welfare-maximization problem
in polynomial time. It is not clear if there are any natural valuation classes for which this algorithmic barrier
can be overcome.13

12One could require the stronger property that a price equilibrium can be computed (not just verified) in polynomial time. Using
the weaker requirement makes our negative results stronger.

13See [131, Section 5.3.2] for an unnatural such class.
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Lunar Lecture 4
The Borders of Border’s Theorem

Lecturer: Tim Roughgarden Scribe: Cristopher Moore

Border’s theorem [16] is a famous result in auction theory about the design space of single-item auctions,
and it provides an explicit linear description of the single-item auctions that are “feasible” in a certain sense.
Despite the theorem’s fame, there have been few generalizations of it. This lecture, based on joint work with
Parikshit Gopalan and Noam Nisan [68], uses complexity theory to explain why: if there were significant
generalizations of Border’s theorem, the polynomial hierarchy would collapse!

4.1 Optimal Single-Item Auctions

4.1.1 The Basics of Single-Item Auctions

Single-item auctions have made brief appearances in previous lectures; let’s now study the classic model,
due to Vickrey [146], in earnest. There is a single seller of a single item. There are n bidders, and each
bidder i has a valuation vi for the item (its maximum willingness to pay). Valuations are private, meaning
that vi is known a priori to bidder i but not to the seller or the other bidders. Each bidder wants to maximize
the value obtained from the auction (vi if it wins, 0 otherwise) minus the price it has to pay. In the presence
of randomization (either in the input or internal to the auction), we assume that bidders are risk-neutral,
meaning they act to maximize their expected utility.

This lecture is our only one on the classical Bayesian model of auctions, which can be viewed as a form
of average-case analysis. The key assumption is that each valuation vi is drawn from a distribution Fi that is
known to the seller and possibly the other bidders. The actual realization vi remains unknown to everybody
other than bidder i. For simplicity we’ll work with discrete distributions, and let Vi denote the support
of Fi and f i (vi ) the probability that bidder i’s valuation is vi ∈ Vi . Typical examples include (discretized
versions of) the uniform distribution, the lognormal distribution, the exponential distribution, and power-law
distributions. We also assume that bidders’ valuations are stochastically independent.

When an economist speaks of an “optimal auction,” they usually mean the auction that maximizes the
seller’s expected revenue with respect to a known prior distribution.1 Before identifying optimal auctions,
we need to formally define the design space. The auction designer needs to decide who wins and how much
they pay. Thus they must define two (possibly randomized) functions of the bid vector ~b: an allocation

1One advantage of assuming a distribution over inputs is that there is an unequivocal way to compare the performance of
different auctions (by their expected revenues), and hence an unequivocal way to define an optimal auction. One auction generally
earns more revenue than another on some inputs and less on others, so in the absence of a prior distribution, it’s not clear which one
to prefer.
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rule ~x(~b) which determines which bidder wins the item, where xi = 1 and if i wins and xi = 0 otherwise,
and a payment rule ~p(~b) where pi is how much i pays. We impose the constraint that whenever bidder i
bids bi , the expected payment E

[
pi (~b)

]
of the bidder is at most bi times the probability xi (~b) that it wins.

(The randomization is over the bids by the other bidders and any randomness internal to the auction.) This
participation constraint ensures that a bidder who does not overbid will obtain nonnegative expected utility
from the auction. (Without it, an auction could just charge +∞ to every bidder.) The revenue of an auction
on the bid vector ~b is

∑n
i=1 pi (~b).

For example, in the Vickrey or second-price auction, the allocation rule awards the item to the highest
bidder, and the payment rule charges the second-highest bid. This auction is truthful, meaning that for each
bidder, truthful bidding (i.e., setting bi = vi) is a dominant strategy that maximizes its utility no matter what
the other bidders do. With a truthful auction, there is no need to assume that the distributions F1, . . . , Fn are
known to the bidders. The beauty of the Vickrey auction is that it delegates underbidding to the auctioneer,
who determines the optimal bid for the winner on their behalf.

A first-price auction has the same allocation rule as a second-price auction (give the item to the highest
bidder), but the payment rule charges the winner its bid. Bidding truthfully in a first-price auction guarantees
zero utility, so strategic bidders will underbid. Because bidders do not have dominant strategies—the optimal
amount to underbid depends on the bids of the others—it is non-trivial to reason about the outcome of first-
price auctions. The traditional solution is to assume that the distributions F1, . . . , Fn are known in advance to
the bidders, and to consider Bayes-Nash equilibria. Formally, a strategy of a bidder i in a first-price auction is
a predetermined plan for bidding—a function bi (·) that maps its valuation vi to a bid bi (vi ) (or a distribution
over bids). The semantics are: “when my valuation is vi , I will bid bi (vi ).” We assume that bidders’
strategies are common knowledge, with bidders’ valuations (and hence induced bids) private as usual. A
strategy profile b1(·), · · · , bn (·) is a Bayes-Nash equilibrium if every bidder always bids optimally given its
information—if for every bidder i and every valuation vi , the bid bi (vi ) maximizes i’s expected utility, where
the expectation is with respect to the distribution over the bids of other bidders induced by F1, . . . , Fn and
their bidding strategies.2 Note that the set of Bayes-Nash equilibria of an auction generally depends on the
prior distributions F1, . . . , Fn .

An auction is called Bayesian incentive compatible (BIC) if truthful bidding (with bi (vi ) = vi for all
i and vi) is a Bayes-Nash equilibrium. That is, as a bidder, if all other bidders bid truthfully, then you
also want to bid truthfully. A second-price auction is BIC, while a first-price auction is not.3 However,
for every choice of F1, . . . , Fn , there is a BIC auction that is equivalent to the first-price auction. Specifi-
cally: given bids a1, . . . , an , implement the outcome of the first-price auction with bids b1(a1), . . . , bn (an ),
where b1(·), . . . , bn (·) denotes a Bayes-Nash equilibrium of the first-price auction (with prior distributions
F1, . . . , Fn). Intuitively, this auction makes the following pact with each bidder: “you promise to tell me
your true valuation, and I promise to bid on your behalf as you would in a Bayes-Nash equilibrium.” More
generally, this simulation argument shows that for every auction A, distributions F1, . . . , Fn , and Bayes-Nash
equilibrium of A (w.r.t. F1, . . . , Fn), there is a BIC auction A′ whose (truthful) outcome (and hence expected
revenue) matches that of the chosen Bayes-Nash equilibrium of A. This result is known as the Revelation
Principle. This principle implies that, to identify an optimal auction, there is no loss of generality in
restricting to BIC auctions.4

2Straightforward exercise: if there are n bidders with valuations drawn i.i.d. from the uniform distribution on [0, 1], then setting
bi (vi ) = n−1

n · vi for every i and vi yields a Bayes-Nash equilibrium.
3The second-price auction is in fact dominant-strategy incentive compatible (DSIC)—truthful bidding is a dominant strategy

for every bidder, not merely a Bayes-Nash equilibrium.
4Of course, non-BIC auctions like first-price auctions are still useful in practice. For example, the description of the first-price

auction does not depend on bidders’ valuation distributions F1, . . . , Fn and can be deployed without knowledge of them. This is not
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4.1.2 Optimal Auctions

In optimal auction design, the goal is to identify an expected revenue-maximizing auction, as a function
of the prior distributions F1, . . . , Fn . For example, suppose that n = 1, and we restrict attention to truthful
auctions. The only truthful auctions are take-it-or-leave-it offers (or a randomization over such offers). That
is, the selling price must be independent of the bidder’s bid, as any dependence would result in opportunities
for the bidder to game the auction. The optimal truthful auction is then the take-it-or-leave-it offer at the
price r that maximizes

r︸︷︷︸
revenue of a sale

· (1 − F (r))︸       ︷︷       ︸
probability of a sale

,

where F denotes the bidder’s valuation distribution. Given a distribution F, it is usually a simple matter to
solve for the best r . An optimal offer price is called a monopoly price of the distribution F. For example,
if F is the uniform distribution on [0, 1], then the monopoly price is 1

2 .
Myerson [111] gave a complete solution to the optimal single-item auction design problem, in the form

of a generic compiler that takes as input prior distributions F1, . . . , Fn and outputs a closed-form description
of the optimal auction for F1, . . . , Fn . The optimal auction is particularly easy to interpret in the symmetric
case, when bidders’ valuations are drawn i.i.d. from a common distribution F. Here, the optimal auction is
just a second-price auction with a reserve price r equal to the monopoly price of F (i.e., an eBay auction
with a suitably chosen opening bid).5,6 For example, with any number n of bidders with valuations drawn
i.i.d. from the uniform distribution on [0, 1], the optimal single-item auction is a second-price auction with
a reserve price of 1

2 . This is a pretty amazing confluence of theory and practice—we optimized over the
space of all imaginable auctions (which includes some very strange specimens), and discovered that the
theoretically optimal auction format is one that is already in widespread use!7

Myerson’s theory of optimal auctions extends to the asymmetric case where bidders have different
distributions (where the optimal auction is no longer so simple), and also well beyond single-item auctions.8
The books by Hartline [72] and your lecturer [129, Lectures 3 and 5] describe this theory from a computer
science perspective.

4.2 Border’s Theorem

4.2.1 Context

Border’s theorem identifies a tractable description of all BIC single-item auctions, in the form of a polytope
in polynomially many variables. (See Section 4.1.1 for the definition of a BIC auction.) This goal is in some
sense more ambitious than merely identifying the optimal auction, since with this tractable description in
hand, one can efficiently compute the optimal auction for any given set F1, . . . , Fn of prior distributions.

Economists are interested in Border’s theorem because it can be used to extend the reach of Myerson’s
optimal auction theory (Section 4.1.2) to more general settings, such as the case of risk-adverse bidders

the case for the simulating auction.
5The winner is the highest bidder who clears the reserve (if any). The winner (if any) pays either the reserve price or the

second-highest bid, whichever is higher.
6Technically, this requires amild “regularity” condition on the distribution F, which holds for all of themost common parametric

distributions.
7In particular, there is always an optimal auction in which truthful bidding is a dominant strategy (as opposed to merely being

a BIC auction). This is also true in the asymmetric case.
8The theory applies more generally to “single-parameter problems.” These include problems where in each outcome a bidder

is either a “winner” or a “loser,” with private valuation vi for winning and 0 for losing (and with multiple winners allowed).

89



studied by Maskin and Riley [101]. Matthews [102] conjectured the precise result that was proved by Border
[16]. Computer scientists have used Border’s theorem for orthogonal extensions to Myerson’s theory, like
computationally tractable descriptions of the expected-revenue maximizing auction in settings with multiple
non-identical items [3, 21]. While there is no hope of deriving a closed-form solution to the optimal auction
design problemwith risk-adverse bidders or withmultiple items, Border’s theorem at least enables an efficient
algorithm for computing a description of an optimal auction (given descriptions of the prior distributions).

4.2.2 An Exponential-Size Linear Program

As a lead-in to Border’s theorem, we show how to formulate the space of BIC single-item auctions as an
(extremely big) linear program. The decision variables of the linear program encode the allocation and
payment rules of the auction (assuming truthful bidding, as appropriate for BIC auctions). There is one
variable xi (~v) ∈ [0, 1] that describes the probability (over any randomization in the auction) that bidder i
wins the item when bidders’ valuations (and hence bids) are ~v. Similarly, pi (~v) ∈ R+ denotes the expected
payment made by bidder i when bidders’ valuations are ~v.

Before describing the linear program, we need some odd but useful notation (which is standard in game
theory and microeconomics).

Some Notation

For an n-vector ~z and a coordinate i ∈ [n], let ~z−i denote the (n − 1)-vector obtained by removing the
ith component from ~z. We also identify (zi, ~z−i ) with ~z.

Also, recall that Vi denotes the possible valuations of bidder i, and that we assume that this set is finite.
Our linear program will have three sets of constraints. The first set enforces the property that truthful

bidding is in fact a Bayes-Nash equilibrium (as required for a BIC mechanism). For every bidder i, possible
valuation vi ∈ Vi for i, and possible false bid v′i ∈ Vi ,

vi · E~v−i∼ ~F−i

[
xi (~v)

]
− E

~v−i∼ ~F−i

[
pi (~v)

]︸                                              ︷︷                                              ︸
expected utility of truthful bid vi

≥ vi · E~v−i∼ ~F−i

[
xi (v′i,~v−i )

]
− E

~v−i∼ ~F−i

[
pi (v′i,~v−i )

]︸                                                           ︷︷                                                           ︸
expected utility of false bid v′i

. (4.1)

The expectation is over both the randomness in ~v−i and internal to the auction. Each of the expectations
in (4.1) expands to a sum over all possible ~v−i ∈ ~V−i , weighted by the probability

∏
j,i f j (v j ). Since all of

the f j (v j )’s are numbers known in advance, each of these constraints is linear (in the xi (~v)’s and pi (~v)’s).
The second set of constraints encode the participation constraints from Section 4.1.1, also known as the

interim individually rational (IIR) constraints. For every bidder i and possible valuation vi ∈ Vi ,

vi · E~v−i∼ ~F−i

[
xi (~v)

]
− E

~v−i∼ ~F−i

[
pi (~v)

]
≥ 0. (4.2)

The final set of constraints assert that, with probability 1, the item is sold to at most one bidder: for every
~v ∈ ~V ,

n∑
i=1

xi (~v) ≤ 1. (4.3)

By construction, feasible solutions to the linear system (4.1)–(4.3) correspond to the allocation and
payment rules of BIC auctions with respect to the distributions F1, . . . , Fn . This linear program has an
exponential number of variables and constraints, and is not immediately useful.
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4.2.3 Reducing the Dimension with Interim Allocation Rules

Is it possible to re-express the allocation and payment rules of BIC auctions with a small number of decision
variables? Looking at the constraints (4.1) and (4.2), a natural idea is use only the decision variables
{yi (vi )}i∈[n],vi ∈Vi and {qi (vi )}i∈[n],vi ∈Vi , with the intended semantics that

yi (vi ) = E~v−i

[
xi (vi,~v−i )

]
and qi (vi ) = E~v−i

[
pi (vi,~v−i )

]
.

In other words, yi (vi ) is the probability that bidder i wins when it bids vi , and qi (vi ) is the expected amount
that it pays; these were the only quantities that actually mattered in (4.1) and (4.2). (As usual, the expectation
is over both the randomness in ~v−i and internal to the auction.) In auction theory, the yi (vi )’s are called an
interim allocation rule, the qi (vi )’s an interim payment rule.9

There are only 2
∑n

i=1 |Vi | such decision variables, far fewer than the 2
∏n

i=1 |Vi | variables in (4.1)–(4.3).
We’ll think of the |Vi |’s (and hence the number of decision variables) as polynomially bounded. For example,
Vi could be the multiples of some small ε that lie in some bounded range like [0, 1].

We can then express the BIC constraints (4.1) in terms of this smaller set of variables by

vi · yi (vi ) − qi (vi )︸                 ︷︷                 ︸
expected utility of truthful bid vi

≥ vi · yi (v′i ) − qi (v′i )︸                 ︷︷                 ︸
expected utility of false bid v′i

(4.4)

for every bidder i and vi, v
′
i ∈ Vi . Similarly, the IIR constraints (4.2) become

vi · yi (vi ) − qi (vi ) ≥ 0 (4.5)

for every bidder i and vi ∈ Vi .
Just one problem. What about the feasibility constraints (4.3), which reference the individual xi (~v)’s and

not just their expectations? The next definition articulates what feasibility means for an interim allocation
rule.

Definition 4.1 (Feasible Interim Allocation Rule). An interim allocation rule {yi (vi )}i∈[n],vi ∈Vi is feasible
if there exist nonnegative values for {xi (~v)}

i∈[n],~v∈~V such that
n∑
i=1

xi (~v) ≤ 1

for every ~v (i.e., the xi (~v)’s constitute a feasible allocation rule), and

yi (vi ) =
∑

~v−i ∈~V−i

*.
,

∏
j,i

f j (v j )
+/
-
· xi (vi,~v−i )

for every i ∈ [n] and vi ∈ Vi (i.e., the intended semantics are respected).

In other words, the feasible interim allocation rules are exactly the projections (onto the yi (vi )’s) of the
feasible (ex post) allocation rules.

The big question is: how canwe translate interim feasibility into our new, more economical vocabulary?10
As we’ll see, Border’s theorem [16] provides a crisp and computationally useful solution.

9Auction theory generally thinks about three informational scenarios: ex ante, where each bidder knows the prior distributions
but not even its own valuation; ex interim, where each bidder knows its own valuation but not those of the others; and ex post, where
all of the bidders know everybody’s valuation. Bidders typically choose their bids at the interim stage.

10In principle, we know this is possible. The feasible (ex post) allocation rules form a polytope, the projection of a polytope is
again a polytope, and every polytope can be described by a finite number of linear inequalities. So the real question is whether or
not there’s a computationally useful description of interim feasibility.
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(v1, v2) x1(v1, v2) x2(v1, v2)
(1, 1)
(1, 2)
(2, 1)
(2, 2)

Table 4.1: Certifying feasibility of an interim allocation rule is analogous to filling in the table entries while
respecting constraints on the sums of certain subsets of entries.

4.2.4 Examples

To get a better feel for the issue of checking the feasibility of an interim allocation rule, let’s consider a
couple of examples. A necessary condition for interim feasibility is that the item is awarded to at most one
bidder in expectation (over the randomness in the valuations and internal to the auction):

n∑
i=1

∑
vi ∈Vi

f i (vi )yi (vi )︸                ︷︷                ︸
Pr[i wins]

≤ 1. (4.6)

Could this also be a sufficient condition? That is, is every interim allocation rule {yi (vi )}i∈[n],vi ∈Vi that
satisfies (4.6) induced by a bone fide (ex post) allocation rule?

Example 4.2. Suppose there are n = 2 bidders. Assume that v1, v2 are independent and each is equally likely
to be 1 or 2. Consider the interim allocation rule given by

y1(1) = 1
2, y1(2) = 7

8, y2(1) = 1
8, and y2(2) = 1

2 . (4.7)

Since f i (v) = 1
2 for all i = 1, 2 and v = 1, 2, the necessary condition in (4.6) is satisfied. Can you find an (ex

post) allocation rule that induces this interim rule? Answering this question is much like solving a Sudoko
or KenKen puzzle—the goal is to fill in the table entries in Table 4.1 so that each row sums to at most 1 (for
feasibility) and that the constraints (4.7) are satisfied. For example, the average of the top two entries in the
first column of Table 4.1 should be y1(1) = 1

2 . In this example, there are a number of such solutions; one is
shown in Table 4.2. Thus, the given interim allocation rule is feasible.

Example 4.3. Suppose we change the interim allocation rule to

y1(1) = 1
4, y1(2) = 7

8, y2(1) = 1
8, and y2(2) = 3

4 .

The necessary condition (4.6) remains satisfied. Now, however, the interim rule is not feasible. One way to
see this is to note that y1(2) = 7

8 implies that x1(2, 2) ≥ 3
4 and hence x2(2, 2) ≤ 1

4 . Similarly, y2(2) = 3
4

implies that x2(2, 2) ≥ 1
2 , a contradictory constraint.

(v1, v2) x1(v1, v2) x2(v1, v2)
(1, 1) 1 0
(1, 2) 0 1
(2, 1) 3/4 1/4
(2, 2) 1 0

Table 4.2: One solution to Example 4.2.

92



The first point of Examples 4.2 and 4.3 is that it is not trivial to check whether or not a given interim
allocation rule is feasible—the problem corresponds to solving a big linear system of equations and in-
equalities. The second point is that (4.6) is not a sufficient condition for feasibility. In hindsight, trying to
summarize the exponentially many ex post feasibility constraints (4.3) with a single interim constraint (4.6)
seems naive. Is there a larger set of linear constraints—possibly an exponential number—that characterizes
interim feasibility?

4.2.5 Border’s Theorem

Border’s theorem states that a collection of “obvious” necessary conditions for interim feasibility are also
sufficient. To state these conditions, assume for notational convenience that the valuation sets V1, . . . ,Vn

are disjoint.11 Let {xi (~v)}
i∈[n],~v∈~V be a feasible (ex post) allocation rule and {yi (vi )}i∈[n],vi ∈Vi the induced

(feasible) interim allocation rule. Fix for each bidder i a set Si ⊆ Vi of valuations. Call the valuations ∪ni=1Si
the distinguished valuations. Consider first the probability, over the random valuation profile ~v ∼ ~F and any
coin flips of the ex post allocation rule, that the winner of the auction (if any) has a distinguished valuation.
By linearity of expectations, this probability can be expressed in terms of the interim allocation rule:

n∑
i=1

∑
vi ∈Si

f i (vi )yi (vi ). (4.8)

The expression (4.8) is linear in the yi (vi )’s.
The second quantity we study is the probability, over ~v ∼ ~F, that there is a bidder with a distinguished

valuation. This has nothing to do with the allocation rule, and is a function of the prior distributions only:

1 −
n∏
i=1

*.
,
1 −

∑
vi ∈Si

f i (vi )
+/
-
. (4.9)

Since there can only be a winner with a distinguished valuation if there is a bidder with a distinguished
valuation, the quantity in (4.8) can only be less than (4.9). Border’s theorem asserts that these conditions,
ranging over all choices of S1 ⊆ V1, . . . , Sn ⊆ Vn , are also sufficient for the feasibility of an interim allocation
rule.

Theorem 4.4 (Border’s theorem [16]). An interim allocation rule {yi (vi )}i∈[n],vi ∈Vi is feasible if and only if
for every choice S1 ⊆ V1, . . . , Sn ⊆ Vn of distinguished valuations,

n∑
i=1

∑
vi ∈Si

f i (vi )yi (vi ) ≤ 1 −
n∏
i=1

*.
,
1 −

∑
vi ∈Si

f i (vi )
+/
-
. (4.10)

Border’s theorem can be derived from the max-flow/min-cut theorem (following [17, 28]); we include
the proof in Section 4.4 for completeness.

11This is without loss of generality, since we can simply “tag” each valuation vi ∈ Vi with the “name” i (i.e., view each vi ∈ Vi
as the set {vi, i}).
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Border’s theorem yields an explicit description as a linear system of the feasible interim allocation rules
induced by BIC single-item auctions. To review, this linear system is

vi · yi (vi ) − qi (vi ) ≥ vi · yi (v′i ) − qi (v′i ) ∀i and vi, v
′
i ∈ Vi (4.11)

vi · yi (vi ) − qi (vi ) ≥ 0 ∀i and vi ∈ Vi (4.12)
n∑
i=1

∑
vi ∈Si

f i (vi )yi (vi ) ≤ 1 −
n∏
i=1

*.
,
1 −

∑
vi ∈Si

f i (vi )
+/
-

∀S1 ⊆ V1, . . . , Sn ⊆ Vn . (4.13)

For example, optimizing the objective function

max
n∑
i=1

f i (vi ) · qi (vi ) (4.14)

over the linear system (4.11)–(4.13) computes the expected revenue of an optimal BIC single-item auction
for the distributions F1, . . . , Fn .

The linear system (4.11)–(4.13) has only a polynomial number of variables (assuming the |Vi |’s are
polynomially bounded), but it does have an exponential number of constraints of the form (4.13). One
solution is to use the ellipsoid method, as the linear system does admit a polynomial-time separation
oracle [3, 21].12 Alternatively, Alaei et al. [3] provide a polynomial-size extended formulation of the
polytope of feasible interim allocation rules (with a polynomial number of additional decision variables and
only polynomially many constraints). In any case, we conclude that there is a computationally tractable
description of the feasible interim allocation rules of BIC single-item auctions.

4.3 Beyond Single-Item Auctions: A Complexity-Theoretic Barrier

Myerson’s theory of optimal auctions (Section 4.1.2) extends beyond single-item auctions to all “single-
parameter” settings (see Section 4.3.1 for two examples). Can Border’s theorem be likewise extended? There
are analogs of Border’s theorem in settings modestly more general than single-item auctions, including k-unit
auctions with unit-demand bidders [3, 21, 28], and approximate versions of Border’s theorem exist fairly
generally [21, 22]. Can this state-of-the-art be improved upon? We next use complexity theory to develop
evidence for a negative answer.

Theorem 4.5 (Gopalan et al. [68]). (Informal) There is no exact Border’s-type theorem for settings signifi-
cantly more general than the known special cases (unless PH collapses).

We proceed to defining what we mean by “significantly more general” and a “Border’s-type theorem.”

4.3.1 Two Example Settings

The formal version of Theorem 4.5 conditionally rules out “Border’s-type theorems” for several specific
settings that are representative of what a more general version of Border’s theorem might cover. We mention
two of these here (more are in [68]).

In a public project problem, there is a binary decision to make: whether or not to undertake a costly
project (like building a new school). Each bidder i has a private valuation vi for the outcomewhere the project

12This is not immediately obvious, as the max-flow/min-cut argument in Section 4.4 involves an exponential-size graph.
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is built, and valuation 0 for the outcome where it is not. If the project is built, then everyone can use it. In this
setting, feasibility means that all bidders receive the same allocation: x1(~v) = x2(~v) = · · · = xn (~v) ∈ [0, 1]
for every valuation profile ~v.

In amatching problem, there is a set M of items, and each bidder is only interested in receiving a specific
pair j, ` ∈ M of items. (Cf., the AND bidders of the preceding lecture.) For each bidder, the corresponding
pair of items is known in advance, and the bidder’s valuation for the pair is private as usual. Feasible
outcomes correspond to (distributions over) matchings in the graph with vertices M and edges given by
bidders’ desired pairs.

Public project and matching problems are both “single-parameter” problems (i.e., each bidder has only
one private parameter). As such, Myerson’s optimal auction theory (Section 4.1.2) can be used to characterize
the expected revenue-maximizing auction. Do these settings also admit analogs of Border’s theorem?

4.3.2 Border’s-Type Theorems

What do we actually mean by a “Border’s-type theorem?” Since we aim to prove impossibility results,
we should adopt a definition that is as permissive as possible. Border’s theorem (Theorem 4.4) gives a
characterization of the feasible interim allocation rules of a single-item auction as the solutions to a finite
system of linear inequalities. This by itself is not impressive—since the set is a polytope, it is guaranteed
to have such a characterization. The appeal of Border’s theorem is that the characterization uses only the
“nice” linear inequalities in (4.10). Our “niceness” requirement is that the characterization use only linear
inequalities that can be efficiently recognized and tested. This is a weak necessary condition for such a
characterization to be computationally useful.

Definition 4.6 (Border’s-Type Theorem). A Border’s-type theorem holds for an auction design setting if, for
every instance of the setting (specifying the number of bidders and their prior distributions, etc.), there is a
system of linear inequalities such that the following properties hold.

1. (Characterization) The feasible solutions of the linear system are precisely the feasible interim alloca-
tion rules of the instance.

2. (Efficient recognition) There is a polynomial-time algorithm that can decide whether or not a given
linear inequality belongs to the linear system.

3. (Efficient testing) The bit complexity of each linear inequality is polynomial in the description of the
instance. (The number of inequalities can be exponential.)

For example, consider the original Border’s theorem, for single-item auctions (Theorem 4.4). The
recognition problem is straightforward: the left-side of (4.10) encodes the Si’s, from which the right-hand
side can be computed and checked in polynomial time. It is also evident that every inequality in (4.10) has a
polynomial-length description.13

4.3.3 Consequences of a Border’s-Type Theorem

The high-level idea behind the proof of Theorem 4.5 is to show that a Border’s-type theorem puts a certain
computational problem low in the polynomial hierarchy, and then to show that this problem is #P-hard for

13The characterization in Theorem 4.4 and the extensions in [3, 21, 28] have additional features not required or implied by
Definition 4.6, such as polynomial-time separation oracles (and even a compact extended formulation in the single-item case [3]).
The impossibility results in Section 4.3.4 rule out analogs of Border’s theorem that merely satisfy Definition 4.6, let alone these
stronger properties.
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the public project and matching settings defined in Section 4.3.1.14 The computational problem is: given
a description of an instance (including the prior distributions), compute the maximum-possible expected
revenue that can be obtained by a feasible and BIC auction.15

What use is a Border’s-type theorem? For starters, it implies that the problem of testing the feasibility
of an interim allocation rule is in co-NP. To prove the infeasibility of such a rule, one simply exhibits an
inequality of the characterizing linear system that the rule fails to satisfy. Verifying this failure reduces to
the recognition and testing problems, which by Definition 4.6 are polynomial-time solvable.

Proposition 4.7. If a Border’s-type theorem holds for an auction design setting, then themembership problem
for the polytope of feasible interim allocation rules belongs to co-NP.

Combining Proposition 4.7 with the ellipsoid method puts the problem of computing the maximum-
possible expected revenue in PNP.

Theorem 4.8. If a Border’s-type theorem holds for an auction design setting, then the maximum expected
revenue of a feasible BIC auction can be computed in PNP.

Proof. We compute the optimal expected revenue of a BIC auction via linear programming, as follows.
The decision variables are the same yi (vi )’s and qi (vi )’s as in (4.11)–(4.13), and we retain the BIC con-
straints (4.11) and the IIR constraints (4.12). By assumption, we can replace the single-item interim feasibility
constraints (4.13) with a linear system that satisfies the properties of Definition 4.6. The maximum expected
revenue of a feasible BIC auction can then be computed by optimizing a linear objective function (in the
qi (vi )’s, as in (4.14)) subject to these constraints. Using the ellipsoid method [88], this can be accomplished
with a polynomial number of invocations of a separation oracle (which either verifies feasibility or exhibits
a violated constraint). Proposition 4.7 implies that we can implement this separation oracle in co-NP, and
thus compute the maximum expected revenue of a BIC auction in PNP.16 �

4.3.4 Impossibility Results from Computational Intractability

Theorem 4.8 concerns the problem of computing the maximum expected revenue of a feasible BIC auction,
given a description of an instance. It is easy to classify the complexity of this problem in the public project
and matching settings introduced in Section 4.3.1 (and several other settings, see [68]).

Proposition 4.9. Computing the maximum expected revenue of a feasible BIC auction of a public project
instance is a #P-hard problem.

Proposition 4.9 is a straightforward reduction from the #P-hard problem of computing the number of
feasible solutions to an instance of the Knapsack problem.17

Proposition 4.10. Computing the maximum expected revenue of a feasible BIC auction of a matching
instance is a #P-hard problem.

14Recall that Toda’s theorem [144] implies that a #P-hard problem is contained in the polynomial hierarchy only if PH collapses.
15Sanity check: this problem turns out to be polynomial-time solvable in the setting of single-item auctions [68].
16One detail: Proposition 4.7 only promises solutions to the “yes/no” question of feasibility, while a separation oracle needs to

produce a violated constraint when given an infeasible point. But under mild conditions (easily satisfied here), an algorithm for the
former problem can be used to solve the latter problem as well [137, P.189].

17An aside for aficionados of the analysis of Boolean functions: Proposition 4.9 is essentially equivalent to the #P-hardness of
checking whether or not given Chow parameters can be realized by some bounded function on the hypercube. See [68] for more
details on the surprisingly strong correspondence between Myerson’s optimal auction theory (in the context of public projects) and
the analysis of Boolean functions.
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Figure 4.1: The max-flow/min-cut proof of Border’s theorem.

Proposition 4.10 is a straightforward reduction from the #P-hard Permanent problem.
We reiterate that Myerson’s optimal auction theory applies to the public project and matching settings,

and in particular gives a polynomial-time algorithm that outputs a description of an optimal auction (for given
prior distributions). Moreover, the optimal auction can be implemented as a polynomial-time algorithm.
Thus it’s not hard to figure out what the optimal auction is, nor to implement it—what’s hard is figuring out
exactly how much revenue it makes on average!

Combining Theorem 4.8 with Propositions 4.9 and 4.10 gives the following corollaries, which indicate
that there is no Border’s-type theorem significantly more general than the ones already known.

Corollary 4.11. If #P * PH, then there is no Border’s-type theorem for the setting of public projects.

Corollary 4.12. If #P * PH, then there is no Border’s-type theorem for the matching setting.

4.4 Appendix: A Combinatorial Proof of Border’s Theorem

Proof. (of Theorem 4.4) We have already argued the “only if” direction, and now prove the converse. The
proof is by the max-flow/min-cut theorem—given the statement of the theorem and this hint, the proof writes
itself.

Suppose the interim allocation rule {yi (vi )}i∈[n],vi ∈Vi satisfies (4.10) for every S1 ⊆ V1, . . . , Sn ⊆ Vn .
Form a four-layer s-t directed flow network G as follows (Figure 4.1(a)). The first layer is the source s, the
last the sink t. In the second layer X , vertices correspond to valuation profiles ~v. We abuse notation and
refer to vertices of X by the corresponding valuation profiles. There is an arc (s,~v) for every ~v ∈ X , with
capacity

∏n
i=1 f i (vi ). Note that the total capacity of these edges is 1.

In the third layerY , vertices correspond to winner-valuation pairs; there is also one additional “nowinner”
vertex. We use (i, vi ) to denote the vertex representing the event that bidder i wins the item and also has
valuation vi . For each i and vi ∈ Vi , there is an arc ((i, vi ), t) with capacity f i (vi )yi (vi ). There is also an arc
from the “no winner” vertex to t, with capacity 1 −

∑n
i=1

∑
vi ∈Vi

f i (vi )yi (vi ).18

18If
∑n

i=1
∑

vi ∈Vi
f i (vi )yi (vi ) > 1, then the interim allocation rule is clearly infeasible (recall (4.6)). Alternatively, this would

violate Border’s condition for the choice Si = Vi for all i.
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Finally, each vertex ~v ∈ X has n+1 outgoing arcs, all with infinite capacity, to the vertices (1, v1), (2, v2),
. . . , (n, vn ) of Y and also to the “no winner” vertex.

By construction, s-t flows of G with value 1 correspond to ex post allocation rules with induced
interim allocation rule {yi (vi )}i∈[n],vi ∈Vi , with xi (~v) equal to the amount of flow on the arc (~v, (i, vi )) times
(
∏n

i=1 f i (vi ))−1.
To show that there exists a flow with value 1, it suffices to show that every s-t cut has value at least 1 (by

the max-flow/min-cut theorem). So fix an s-t cut. Let this cut include the vertices A from X and B from Y .
Note that all arcs from s to X \ A and from B to t are cut (Figure 4.1(b)). For each bidder i, define Si ⊆ Vi

as the possible valuations of i that are not represented among the valuation profiles in A. Then, for every
valuation profile ~v containing at least one distinguished valuation, the arc (s,~v) is cut. The total capacity of
these arcs is the right-hand side (4.9) of Border’s condition.

Next, we can assume that every vertex of the form (i, vi ) with vi < Si is in B, since otherwise an
(infinite-capacity) arc from A to Y \ B is cut. Similarly, unless A = ∅—in which case the cut has value at
least 1 and we’re done—we can assume that the “no winner” vertex lies in B. Thus, the only edges of the
form ((i, vi ), t) that are not cut involve a distinguished valuation vi ∈ Si . It follows that the total capacity
of the cut edges incident to t is at least 1 minus the left-hand size (4.8) of Border’s condition. Given our
assumption that (4.8) is at most (4.9), this s-t cut has value at least 1. This completes the proof of Border’s
theorem. �
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Lunar Lecture 5
Tractable Relaxations of Nash Equilibria

Lecturer: Tim Roughgarden Scribe: Jacobo Torán

5.1 Preamble

We’ve spent much of this week proving several types of impossibility results for the efficient computation of
exact and approximateNash equilibria. How shouldwe respond to such rampant computational intractability?
What should be the message to economists—should they change the way they do economic analysis in some
way?1

One approach, familiar from coping with NP-hard problems, is to look for tractable special cases. For
example, Solar Lecture 1 proved tractability results for two-player zero-sumgames. Some interesting tractable
generalizations of zero-sum games have been identified (see [23] for a recent example), and polynomial-time
algorithms are also known for some relatively narrow classes of games (see e.g. [85]). Still, for the lion’s
share of games that we might care about, no polynomial-time algorithms for computing exact or approximate
Nash equilibria are known.

A different approach, which has beenmore fruitful, is to continue to work with general games and look for
an equilibrium concept that is more computationally tractable than exact or approximate Nash equilibria. The
equilibrium concepts that we’ll consider—the correlated equilibrium and the coarse correlated equilibrium—
were originally invented by game theorists, but computational complexity considerations are now shining a
much brighter spotlight on them.

Where do these alternative equilibrium concepts come from? They arise quite naturally from the study
of uncoupled dynamics, which we last saw in Solar Lecture 1.

5.2 Uncoupled Dynamics Revisited

Section 1.3 of Solar Lecture 1 introduced uncoupled dynamics in the context of two-player games. In this
lecture we work with the analogous setup for a general number k of players. We use Si to denote the (pure)
strategies of player i, si ∈ Si a specific strategy, σi a mixed strategy, ~s and ~σ for profiles (i.e., k-vectors) of
pure and mixed strategies, and ui (~s) for player i’s payoff in the outcome ~s.

1Recall the discussion in Section 1.2.7 of Solar Lecture 1: a critique of a widely used concept like the Nash equilibrium is not
particularly helpful unless accompanied by a proposed alternative.
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Uncoupled Dynamics (k-Player Version)

At each time step t = 1, 2, 3, . . .:

1. Each player i = 1, 2, . . . , k simultaneously chooses a mixed strategy σt
i over Si as a function

only of her own payoffs and the strategies chosen by players in the first t − 1 time steps.

2. Every player learns all of the strategies ~σt chosen at time t.

“Uncoupled” refers to the fact that each player initially knows only her own payoff function ui (·), while
“dynamics” means a process by which players learn how to play in a game.

One of the only positive algorithmic results that we’ve seen this week concerned smooth fictitious play
(SFP). The k-player version of SFP is as follows.

Smooth Fictitious Play (k-Player Version)

Given: parameter family {η t ∈ [0,∞) : t = 1, 2, 3, . . .}.

At each time step t = 1, 2, 3, . . .:

1. Every player i simultaneously chooses the mixed strategy σt
i by playing each strategy si with

probability proportional to eη
tπ t

i , where πti is the time-averaged expected payoff player i would
have earned by playing si at every previous time step. Equivalently, πti is the expected pay-
off of strategy si when the other players’ strategies ~s−i are drawn from the joint distribution
1

t−1
∑t−1

h=1 ~σ
h
−i .

2

2. Every player learns all of the strategies ~σt chosen at time t.

A typical choice for the ηt ’s is ηt ≈
√

t.
In Theorem 1.8 in Solar Lecture 1 we proved that, in an m × n two-player zero-sum game, after

O(log(m + n)/ε2) time steps, the empirical distributions of the two players constitute an ε-approximate
Nash equilibrium.3 An obvious question is: what is the outcome of a logarithmic number of rounds of
smooth fictitious play in a non-zero-sum game? Our communication complexity lower bound in Solar
Lectures 2 and 3 implies that it cannot in general be an ε-approximate Nash equilibrium. Does it have some
alternative economic meaning? The answer to this question turns out to be closely related to some classical
game-theoretic equilibrium concepts, which we discuss next.

2Recall from last lecture that for an n-vector ~z and a coordinate i ∈ [k], ~z−i denotes the (k − 1)-vector obtained by removing
the ith component from ~z, and we identify (zi, ~z−i ) with ~z.

3Recall the proof idea: smooth fictitious play corresponds to running the vanishing-regret “multiplicative weights” algorithm
(with reward vectors induced by the play of others), and in a two-player zero-sum game, the vanishing-regret guarantee (i.e., with
time-averaged payoff at least that of the best fixed action in hindsight, up to o(1) error) implies the ε-approximate Nash equilibrium
condition.
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5.3 Correlated and Coarse Correlated Equilibria

5.3.1 Correlated Equilibria

The correlated equilibrium is a well-known equilibrium concept defined by Aumann [7]. We define it, then
explain the standard semantics, and then offer an example.4

Definition 5.1 (Correlated Equilibrium). A joint distribution ρ on the set S1 × · · · × Sk of outcomes of a
game is a correlated equilibrium if for every player i ∈ {1, 2, . . . , k}, strategy si ∈ Si , and deviation s′i ∈ Si ,

E~s∼ρ
[
ui (~s) | si

]
≥ E~s∼ρ

[
ui (s′i,~s−i ) | si

]
. (5.1)

Importantly, the distribution ρ in Definition 5.1 need not be a product distribution; in this sense, the
strategies chosen by the players are correlated. The Nash equilibria of a game correspond to the correlated
equilibria that are product distributions.

The usual interpretation of a correlated equilibrium involves a trusted third party. The distribution ρ

over outcomes is publicly known. The trusted third party samples an outcome ~s according to ρ. For each
player i = 1, 2, . . . , k, the trusted third party privately suggests the strategy si to i. The player i can follow the
suggestion si , or not. At the time of decision making, a player i knows the distribution ρ and one component
si of the realization ~s, and accordingly has a posterior distribution on others’ suggested strategies ~s−i . With
these semantics, the correlated equilibrium condition (5.1) requires that every player minimizes her expected
cost by playing the suggested strategy si . The expectation is conditioned on i’s information—ρ and si—and
assumes that other players play their recommended strategies ~s−i .

Definition 5.1 is a bit of a mouthful. But you are intimately familiar with a good example of a correlated
equilibrium that is not a mixed Nash equilibrium—a traffic light! Consider the following two-player game,
with each matrix entry listing the payoffs of the row and column players in the corresponding outcome:

Stop Go
Stop 0,0 0,1
Go 1,0 -5,-5

This game has two pure Nash equilibria, the outcomes (Stop, Go) and (Go, Stop). Define ρ by randomizing
uniformly between these twoNash equilibria. This is not a product distribution over the game’s four outcomes,
so it cannot correspond to a Nash equilibrium of the game. It is, however, a correlated equilibrium.5

5.3.2 Coarse Correlated Equilibria

The outcome of smooth fictitious play in non-zero-sum games relates to a still more permissive equilibrium
concept, the coarse correlated equilibrium, which was first studied by Moulin and Vial [110].

Definition 5.2 (Coarse Correlated Equilibrium). A joint distribution ρ on the set S1 × · · · × Sk of outcomes
of a game is a coarse correlated equilibrium if for every player i ∈ {1, 2, . . . , k} and every unilateral deviation
s′i ∈ Si ,

E~s∼ρ
[
ui (~s)

]
≥ E~s∼ρ

[
ui (s′i,~s−i )

]
. (5.2)

4This section draws from [129, Lecture 13].
5For example, consider the row player. If the trusted third party (i.e., the traffic light) recommends the strategy “Go” (i.e., is

green), then the row player knows that the column player was recommended “Stop” (i.e., has a red light). Assuming the column
player plays her recommended strategy and stops at the red light, the best strategy for the row player is to follow her recommendation
and to go.

101



NE

CE

CCE

Figure 5.1: The relationship between Nash equilibria (NE), correlated equilibria (CE), and coarse correlated
equilibria (CCE). Enlarging the set of equilibria increases computational tractability but decreases predictive
power.

The condition (5.2) is the same as that for the Nash equilibrium (Definition 1.3), except without the
restriction that ρ is a product distribution. In this condition, when a player i contemplates a deviation s′i ,
she knows only the distribution ρ and not the component si of the realization. That is, a coarse correlated
equilibrium only protects against unconditional unilateral deviations, as opposed to the unilateral deviations
conditioned on si that are addressed in Definition 5.1. It follows that every correlated equilibrium is also a
coarse correlated equilibrium (Figure 5.1).

As you would expect, ε-approximate correlated and coarse correlated equilibria are defined by adding
a “−ε” to the right-hand sides of (5.1) and (5.2), respectively. We can now answer the question about
smooth fictitious play in general games: the time-averaged history of joint play under smooth fictitious play
converges to the set of coarse correlated equilibria.

Proposition 5.3. For every k-player game in which every player has at most m strategies, after T =
O((logm)/ε2) time steps of smooth fictitious play, the time-averaged history of play 1

T

∑T
t=1 ~σ

t is an ε-
approximate coarse correlated equilibrium.

Proposition 5.3 follows straightforwardly from the definition of ε-approximate coarse correlated equilibria
and the vanishing regret guarantee of smooth fictitious play that we proved in Solar Lecture 1. Precisely, by
Corollary 1.11 of that lecture, after O((logm)/ε2) time steps of smooth fictitious play, every player has at
most ε regret (with respect to the best fixed strategy in hindsight, see Definition 1.9 in Solar Lecture 1). This
regret guarantee is equivalent to the conclusion of Proposition 5.3 (as you should check).

What about correlated equilibria? While the time-averaged history of play in smooth fictitious play does
not in general converge to the set of correlated equilibria, Foster and Vohra [53] and Hart and Mas-Colell
[71] show that the time-averaged play of other reasonably simple types of uncoupled dynamics is guaranteed
to be an ε-correlated equilibrium after a polynomial (rather than logarithmic) number of time steps.

5.4 Computing an Exact Correlated or Coarse Correlated Equilibrium

5.4.1 Normal-Form Games

Solar Lecture 1 showed that approximate Nash equilibria of two-player zero-sum games can be learned (and
hence computed) efficiently (Theorem 1.8). Proposition 5.3 and the extensions in [53, 71] show analogs
of this result for approximate correlated and coarse correlated equilibria of general games. Solar Lecture 1
also showed that an exact Nash equilibrium of a two-player zero-sum game can be computed in polynomial
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time by linear programming (Corollary 1.5). Is the same true for an exact correlated or coarse correlated
equilibrium of a general game?

Consider first the case of coarse correlated equilibria, and introduce one decision variable x~s per outcome
~s of the game, representing the probability assigned to ~s in a joint distribution ρ. The feasible solutions to
the following linear system are then precisely the coarse correlated equilibria of the game:∑

~s

ui (~s)x~s ≥
∑
~s

ui (s′i,~s−i )x~s for every i ∈ [k] and s′i ∈ Si (5.3)∑
~s∈~S

x~s = 1 (5.4)

x~s ≥ 0 for every ~s ∈ ~S. (5.5)

Similarly, correlated equilibria are captured by the following linear system:∑
~s : si= j

ui (~s)x~s ≥
∑

~s : si= j

ui (s′i,~s−i )x~s for every i ∈ [k] and j, s′i ∈ Si (5.6)∑
~s∈~S

x~s = 1 (5.7)

x~s ≥ 0 for every ~s ∈ ~S. (5.8)

The following proposition is immediate.

Proposition 5.4 (Gilboa and Zemel [61]). An exact correlated or coarse correlated equilibrium of a game
can be computed in time polynomial in the number of outcomes of the game.

More generally, any linear function (such as the sum of players’ expected payoffs) can be optimized over
the set of correlated or coarse correlated equilibria in time polynomial in the number of outcomes.

For games described in normal form, with each player i’s payoffs {ui (~s)}
~s∈~S

given explicitly in the input,
Proposition 5.4 provides an algorithm with running time polynomial in the input size. However, the number
of outcomes of a game scales exponentially with the number k of players.6 The computationally interesting
multi-player games, and the multi-player games that naturally arise in computer science applications, are
those with a succinct description. Can we compute an exact correlated or coarse correlated equilibrium in
time polynomial in the size of a game’s description?

5.4.2 Succinctly Represented Games

For concreteness, let’s look at one concrete example of a class of succinctly represented games: graphical
games [86, 90]. A graphical game is described by an undirected graphG = (V, E), with players corresponding
to vertices, and a local payoff matrix for each vertex. The local payoff matrix for vertex i specifies i’s payoff
for each possible choice of its strategy and the strategies chosen by its neighbors in G. By assumption, the
payoff of a player is independent of the strategies chosen by non-neighboring players. When the graph G
has maximum degree ∆, the size of the game description is exponential in ∆ but polynomial in the number k
of players. The most interesting cases are when ∆ = O(1) or perhaps ∆ = O(log k). In these cases, the

6This fact should provide newfound appreciation for the distributed learning algorithms that compute an approximate coarse
correlated equilibrium (in Proposition 5.3) and an approximate correlated equilibrium (in [53, 71]), where the total amount of
computation is only polynomial in k (and in m and 1

ε ).
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number of outcomes (and hence the size of the game’s normal-form description) is exponential in the size of
the succinct description of the game, and solving the linear system (5.3)–(5.5) or (5.6)–(5.8) does not result
in a polynomial-time algorithm.

We next state a result showing that, quite generally, an exact correlated (and hence coarse correlated)
equilibrium of a succinctly represented game can be computed in polynomial time. The key assumption is
that the following Expected Utility problem can be solved in time polynomial in the size of the game’s
description.7

The Expected Utility Problem

Given a succinct description of a player’s payoff function ui and mixed strategies σ1, . . . , σk for all of
the players, compute the player’s expected utility:

E~s∼~σ
[
ui (~s)

]
.

For most of the succinctly represented multi-player games that come up in computer science applications,
the Expected Utility problem can be solved in polynomial time. For example, in a graphical game it
can be solved by brute force—summing over the entries in player i’s local payoff matrix, weighted by the
probabilities in the given mixed strategies. This algorithm takes time exponential in ∆ but polynomial in k,
and hence is polynomial in the size of the game’s succinct representation.

Tractability of solving the Expected Utility problem is a sufficient condition for the tractability of
computing an exact correlated equilibrium.

Theorem 5.5 (Papadimitriou and Roughgarden [119], Jiang and Leyton-Brown [79]). There is a polynomial-
time Turing reduction from the problem of computing a correlated equilibrium of a succinctly described game
to the Expected Utility problem.

Theorem 5.5 applies to a long list of succinctly described games that have been studied in the computer
science literature, with graphical games serving as one example.8

The starting point of the proof of Theorem 5.5 is the exponential-size linear system (5.6)–(5.8). We know
that this linear system is feasible (by Nash’s Theorem, since the system includes all Nash equilibria). With
exponentially many variables, however, it’s not clear how to efficiently compute a feasible solution. The dual
linear system, meanwhile, has a polynomial number of variables (corresponding to the constraints in (5.6))
and an exponential number of inequalities (corresponding to game outcomes). By Farkas’s Lemma—or,
equivalently, strong linear programming duality (see e.g. [38])—we know that this dual linear system is
infeasible.

The key idea is to run the ellipsoid algorithm [88] on the infeasible dual linear system—called the
“ellipsoid against hope” in [119]. A polynomial-time separation oracle must produce, given an alleged
solution (which we know is infeasible), a violated inequality. It turns out that this separation oracle reduces
to solving a polynomial number of instances of the Expected Utility problem (which is polynomial-time
solvable by assumption) and computing the stationary distribution of a polynomial number of polynomial-
size Markov chains (also polynomial-time solvable, e.g. by linear programming). The ellipsoid against hope
terminates after a polynomial number of invocations of its separation oracle, necessarily with a proof that
the dual linear system is infeasible. To recover a primal feasible solution (i.e., a correlated equilibrium), one

7Some kind of assumption is necessary to preclude baking an NP-complete problem into the game’s description.
8For the specific case of graphical games, Kakade et al. [82] were the first to develop a polynomial-time algorithm for computing

an exact correlated equilibrium.
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can retain only the primal decision variables corresponding to the (polynomial number of) dual constraints
generated by the separation oracle, and solve directly this polynomial-size reduced version of the primal
linear system.9

5.5 The Price of Anarchy of Coarse Correlated Equilibria

5.5.1 Balancing Computational Tractability with Predictive Power

We now understand senses in which Nash equilibria are computationally intractable (Solar Lectures 2–
5) while correlated equilibria are computationally tractable (Sections 5.3 and 5.4). From an economic
perspective, these results suggest that it could be prudent to study the correlated equilibria of a game, rather
than just its Nash equilibria.10

Passing fromNash equilibria to the larger set of correlated equilibria is a two-edged sword. Computational
tractability increases, and with it the plausibility that actual game play will conform to the equilibrium notion.
But whatever criticisms we had about the Nash equilibrium’s predictive power (recall Section 1.2.7 in Solar
Lecture 1), they are even more severe for the correlated equilibrium (since there are only more of them). The
worry is that games typically have far too many correlated equilibria to say anything interesting about them.
Our final order of business for the week is to dispel this worry, at least in the context of price-of-anarchy
analyses.

Recall from Lunar Lecture 2 that the price of anarchy (POA) is defined as the ratio between the objective
function value of an optimal solution, and that of the worst equilibrium:

PoA(G) :=
f (OPT (G))

minµ is an equilibrium of G f (µ)
,

where G denotes a game, f denotes a maximization objective function (with f (µ) = E~s∼µ
[

f (~s)
]
when µ is

a probability distribution), and OPT (G) is the optimal outcome of G with respect to f . Thus the POA of a
game is always at least 1, and the closer to 1, the better.

The POA of a game depends on the choice of equilibrium concept. Since it is defined with respect to the
worst equilibrium, the POA only degrades as the set of equilibria grows larger. Thus, the POA with respect
to coarse correlated equilibria can only be worse (i.e., larger) than that with respect to correlated equilibria,
which can in turn only be worse than the POA with respect to Nash equilibria (recall Figure 5.1).

The hope is that there’s a “sweet spot” equilibrium concept—permissive enough to be computationally
tractable, yet stringent enough to allow good worse-case approximation guarantees. Happily, the coarse
correlated equilibrium is just such a sweet spot!

5.5.2 Smooth Games and Extension Theorems

After the first ten years of price-of-anarchy analyses (roughly 1999-2008), it was clear to researchers in the
area that many such analyses across different application domains share a common architecture (in routing
games, facility location games, scheduling games, auctions, etc.). The concept of “proofs of POA bounds

9As a bonus, this means that the algorithm will output a “sparse” correlated equilibrium, with support size polynomial in the
size of the game description.

10This is not a totally unfamiliar idea to economists. According to Solan and Vohra [139], Roger Myerson, winner of the 2007
Nobel Prize in Economics, asserted that “if there is intelligent life on other planets, in a majority of them, they would have discovered
correlated equilibrium before Nash equilibrium.”
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that follow the standard template” was made precise in the theory of smooth games [128].11,12 One can then
define the robust price of anarchy as the best (i.e., smallest) bound on a game’s POA that can be proved by
following the standard template.

The proof template formalized by smooth games superficially appears to be relevant only for the POA
with respect to pure Nash equilibria, as the definition involves no randomness (let alone correlation). The
good news is that the template’s simplicity makes it relatively easy to use. One would expect the bad news to
be that bounds on the POA of more permissive equilibrium concepts require different proof techniques, and
that the corresponding POA bounds would be much worse. This is not the case—every POA bound proved
using the canonical template automatically applies not only to the pure Nash equilibria of a game, but more
generally to all of the game’s coarse correlated equilibria (and hence all of its correlated and mixed Nash
equilibria).13

Theorem 5.6 (Roughgarden [128]). In every game, the POA with respect to coarse correlated equilibria is
bounded above by its robust POA.

For ε-approximate coarse correlated equilibria—as guaranteed by a logarithmic number of rounds of
smooth fictitious play (Proposition 5.3)—the POA bound in Theorem 5.6 degrades by an additive O(ε ) term.

11The formal definition is a bit technical, and we won’t need it here. Roughly, it requires that the best-response condition is
invoked in an equilibrium-independent way and that a certain restricted type of charging argument is used.

12There are several important precursors to this theory, including Blum et al. [14], Christodoulou and Koutsoupias [35], and
Vetta [145]. See [128] for a detailed history.

13Smooth games and the “extension theorem” in Theorem 5.6 are the starting point for the modular and user-friendly toolbox
for proving POA bounds in complex settings mentioned in Section 1.3.4 of Lunar Lecture 1. Generalizations of this theory to
incomplete-information games (like auctions) and to the composition of smooth games (like simultaneous single-item auctions) lead
to good POA bounds for simple auctions [143]. (These generalizations also brought together two historically separate subfields of
algorithmic game theory, namely algorithmic mechanism design and price-of-anarchy analyses.) See [134] for a user’s guide to this
toolbox.

106



Bibliography

[1] S. Aaronson, R. Impagliazzo, and D. Moshkovitz. AM with multiple Merlins. In Proceedings of the
29th IEEE Conference on Computational Complexity (CCC), pages 44–55, 2014. 54

[2] I. Adler. The equivalence of linear programs and zero-sum games. International Journal of Game
Theory, 42(1):165–177, 2013. 9

[3] S. Alaei, H. Fu, N. Haghpanah, J. D. Hartline, and A. Malekian. Bayesian optimal auctions via multi-
to single-agent reduction. In Proceedings of the 13th Annual ACM Conference on Economics and
Computation (EC), page 17, 2012. 90, 94, 95

[4] I. Althöfer. On sparse approximations to randomized strategies and convex combinations. Linear
Algebra and Its Applications, 199(1):339–355, 1994. 19, 56

[5] A. Anshu, N. Goud, R. Jain, S. Kundu, and P. Mukhopadhyay. Lifting randomized query complexity
to randomized communication complexity. Technical Report TR17-054, ECCC, 2017. 23, 31, 32

[6] K. J. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22:265–290, 1954. 79

[7] R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1):67–96, 1974. 101

[8] Y. Babichenko. Query complexity of approximate Nash equilibria. Journal of the ACM, 63(4):36,
2016. 29

[9] Y. Babichenko and A. Rubinstein. Communication complexity of approximate Nash equilibria. In
Proceedings of 49th Annual ACM Symposium on Theory of Computing (STOC), pages 878–889, 2017.
6, 22, 23, 29, 34, 37, 38

[10] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of NP search
problems. Journal of Computer and System Sciences, 57(1):3–19, 1998. 46

[11] O. Ben-Zwi, R. Lavi, and I. Newman. Ascending auctions andWalrasian equilibrium. Working paper,
2013. 81

[12] S. Bikhchandani and J. W. Mamer. Competitive equilibrium in an exchange economy with indivisi-
bilities. Journal of Economic Theory, 74:385–413, 1997. 85

[13] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a Nash equilibrium.
In Proceedings of the 56th Annual Symposium on Foundations of Computer Science (FOCS), pages
1480–1498, 2015. 50

107



[14] A. Blum, M. T. Hajiaghayi, K. Ligett, and A. Roth. Regret minimization and the price of total anarchy.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 373–382,
2008. 106

[15] K. C. Border. Fixed point theorems with applications to economics and game theory. Cambridge
University Press, 1985. 24

[16] K. C. Border. Implementation of reduced form auctions: A geometric approach. Econometrica, 59
(4):1175–1187, 1991. URL http://www.jstor.org/stable/2938181. 87, 90, 91, 93

[17] K. C. Border. Reduced form auctions revisited. Economic Theory, 31:167–181, 2007. 93

[18] M. Braverman, Y. Kun Ko, and O. Weinstein. Approximating the best Nash equilibrium in no (log n)-
time breaks the exponential time hypothesis. InProceedings of the 26thAnnual ACM-SIAMSymposium
on Discrete Algorithms (SODA), pages 970–982. SIAM, 2015. doi: 10.1137/1.9781611973730.66.
54

[19] M. Braverman, Y. Kun Ko, A. Rubinstein, and O. Weinstein. ETH hardness for densest-k-subgraph
with perfect completeness. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1326–1341, 2017. 54

[20] G. W. Brown. Iterative solutions of games by fictitious play. In T. C. Koopmans, editor, Activity
Analysis of Production and Allocation, Cowles Commission Monograph No. 13, chapter XXIV, pages
374–376. Wiley, 1951. 14

[21] Y. Cai, C. Daskalakis, and S. M. Weinberg. An algorithmic characterization of multi-dimensional
mechanisms. In Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 459–478,
2012. 90, 94, 95

[22] Y. Cai, C. Daskalakis, and S. M. Weinberg. Optimal multi-dimensional mechanism design: Reducing
revenue to welfare maximization. In Proceedings of the 53rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 130–139, 2012. 94

[23] Y. Cai, O. Candogan, C. Daskalakis, and C. H. Papadimitriou. Zero-sum polymatrix games: A
generalization of minmax. Mathematics of Operations Research, 41(2):648–655, 2016. 99

[24] O. Candogan, A. Ozdaglar, and P. Parrilo. Iterative auction design for tree valuations. Operations
Research, 63(4):751–771, 2015. 81

[25] O. Candogan, A. Ozdaglar, and P. Parrilo. Pricing equilibria and graphical valuations. ACM Transac-
tions on Economics and Computation, 2017. To appear. 81

[26] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006. 17

[27] N. Cesa-Bianchi, Y. Mansour, and G. Stolz. Improved second-order bounds for prediction with expert
advice. Machine Learning, 66(2–3):321–352, 2007. 16

[28] Y.-K. Che, J. Kim, and K.Mierendorff. Generalized reduced form auctions: A network flow approach.
Econometrica, 81:2487–2520, 2013. 93, 94, 95

108

http://www.jstor.org/stable/2938181


[29] X. Chen and X. Deng. 3-Nash is PPAD-complete. Technical Report TR05-134, ECCC, 2005. 49, 109

[30] X. Chen and X. Deng. Settling the complexity of two-player Nash equilibrium. In Proceedings of the
47th Annual Symposium on Foundations of Computer Science (FOCS), pages 261–270, 2006. 49, 109

[31] X. Chen and X. Deng. On the complexity of 2D discrete fixed point problem. Theoretical Computer
Science, 410(44):4448–4456, Oct. 2009. doi: 10.1016/j.tcs.2009.07.052. 48

[32] X. Chen, X. Deng, and S.-H. Teng. Computing Nash equilibria: Approximation and smoothed
complexity. In Proceedings of the 47th Annual Symposium on Foundations of Computer Science
(FOCS), pages 603–612, 2006. 49, 109

[33] X. Chen, X. Deng, and S.-H. Teng. Sparse games are hard. In Proceedings of the Second Annual
International Workshop on Internet and Network Economics (WINE), volume 4286 of Lecture Notes
in Computer Science, pages 262–273, 2006. 109

[34] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of computing two-player Nash equilibria.
Journal of the ACM, 56(3):14, 2009. doi: 10.1145/1516512.1516516. Journal version of [29], [30],
[32], and [33]. 26, 49, 53, 56

[35] G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of correlated equilibria
of linear congestion games. In Proceedings of the 13th Annual European Symposium on Algorithms
(ESA), pages 59–70, 2005. 106

[36] G. Christodoulou, A. Kovács, and M. Schapira. Bayesian combinatorial auctions. Journal of the
ACM, 63(2):11, 2016. 74

[37] G. Christodoulou, A. Kovács, A. Sgouritsa, and B. Tang. Tight bounds for the price of anarchy of
simultaneous first price auctions. ACM Transactions on Economics and Computation, 4(2):9, 2016.
67, 74, 77

[38] V. Chvátal. Linear Programming. Freeman, 1983. 10, 85, 104

[39] G. B. Dantzig. A proof of the equivalence of the programming problem and the game problem. In T. C.
Koopmans, editor, Activity Analysis of Production and Allocation, Cowles Commission Monograph
No. 13, chapter XX, pages 330–335. Wiley, 1951. 9

[40] G. B. Dantzig. Reminiscences about the origins of linear programming. Technical Report SOL 81-5,
Systems Optimization Laboratory, Department of Operations Research, Stanford University, 1981. 9

[41] C. Daskalakis and Q. Pan. A counter-example to Karlin’s strong conjecture for fictitious play. In
Proceedings of the 55th Annual Symposium on Foundations of Computer Science (FOCS), pages
11–20. IEEE, IEEE Computer Society, 2014. 14

[42] C. Daskalakis and C. H. Papadimitriou. Three-player games are hard. Technical Report TR05-139,
ECCC, 2005. 49, 110

[43] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC),
pages 71–78, 2006. 49, 110

109



[44] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. doi: 10.1137/070699652. Journal
version of [42], [43], and [63]. 26, 49, 53, 56

[45] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. Communications of the ACM, 52(2):89–97, 2009. 49

[46] S. Dobzinski and J. Vondrak. Communication complexity of combinatorial auctions with submodular
valuations. InProceedings of the 24th Annual ACM-SIAMSymposium onDiscrete Algorithms (SODA),
pages 1205–1215, 2013. 77

[47] S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combinatorial auctions with
complement-free bidders. Mathematics of Operations Research, 35(1):1–13, 2010. 72

[48] P. Dütting, V. Gkatzelis, and T. Roughgarden. The performance of deferred-acceptance auctions.
Mathematics of Operations Research, 42(4):897–914, 2017. 65

[49] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points. SIAM
Journal on Computing, 39(6):2531–2597, 2010. 47

[50] U. Feige. On maximizing welfare where the utility functions are subadditive. SIAM Journal on
Computing, 39(1):122–142, 2009. 73, 74

[51] U. Feige and J. Vondrák. The submodularwelfare problemwith demand queries. Theory of Computing,
6(1):247–290, 2010. 77

[52] M. Feldman, H. Fu, N. Gravin, and B. Lucier. Simultaneous auctions are (almost) efficient. In
Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages
201–210, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/2488608.
2488634. URL http://doi.acm.org/10.1145/2488608.2488634. 67, 74

[53] D. P. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games and Economic
Behavior, 21(1–2):40–55, 1997. 102, 103

[54] A. Fréchette, N. Newman, and K. Leyton-Brown. Solving the station repacking problem. InHandbook
of Spectrum Auction Design, chapter 38, pages 813–827. Cambridge University Press, 2017. 63

[55] Y. Freund andR. E. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. 16

[56] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29(1–2):79–103, 1999. 15

[57] D. Fudenberg and D. K. Levine. Consistency and cautious fictitious play. Journal of Economic
Dynamics and Control, 19(5):1065–1089, 1995. 15

[58] D. Gale, H. W. Kuhn, and A. W. Tucker. Linear programming and the theory of games. In T. C.
Koopmans, editor, Activity Analysis of Production and Allocation, Cowles Commission Monograph
No. 13, chapter XIX, pages 317–329. Wiley, 1951. 9

110

http://doi.acm.org/10.1145/2488608.2488634


[59] S. Garg, O. Pandey, and A. Srinivasan. Revisiting the cryptographic hardness of finding a Nash
equilibrium. In Proceedings of the 36th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO), pages 579–604, 2016. 50

[60] J. Geanakoplos. Nash and Walras equilibrium via Brouwer. Economic Theory, 21(2/3):585–603,
2003. 25

[61] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations. Games and
Economic Behavior, 1(1):80–93, 1989. 103

[62] V. Gkatzelis, E. Markakis, and T. Roughgarden. Deferred-acceptance auctions for multiple levels of
service. In Proceedings of the 18th Annual ACM Conference on Economics and Computation (EC),
pages 21–38, 2017. 65

[63] P. W. Goldberg and C. H. Papadimitriou. Reducibility among equilibrium problems. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing (STOC), pages 61–70, 2006. 49, 110

[64] M. Göös. Lower bounds for clique vs. independent set. In Proceedings of the 56th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1066–1076, 2015. 30

[65] M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman. Rectangles are nonnegative juntas.
In Proceedings of 47th Annual ACM Symposium on Theory of Computing (STOC), pages 257–266,
2015. 23

[66] M.Göös, T. Pitassi, and T.Watson. Deterministic communication vs. partition number. InProceedings
of the 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 1077–1088, 2015.
doi: 10.1109/FOCS.2015.70. URL http://dx.doi.org/10.1109/FOCS.2015.70. 31, 32

[67] M. Göös, T. Pitassi, and T. Watson. Query-to-communication lifting for BPP. In Proceedings of the
58th Annual IEEE Symposium on Foundations of Computer Science, pages 132–143, 2017. 23, 31,
32

[68] P. Gopalan, N. Nisan, and T. Roughgarden. Public projects, Boolean functions, and the borders of
Border’s theorem. In Proceedings of the 16th ACM Conference on Economics and Computation (EC),
page 395. ACM, 2015. doi: 10.1145/2764468.2764538. 7, 87, 94, 96

[69] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Economic Theory,
87:95–124, 1999. 81

[70] J. Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume 3, pages 97–139. Princeton University Press,
1957. 14

[71] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68(5):1127–1150, 2000. 102, 103

[72] J. D. Hartline. Mechanism design and approximation. Book draft, July 2017. 89

[73] A. Hassidim, H. Kaplan, Y. Mansour, and N. Nisan. Non-price equilibria in markets of discrete goods.
In Proceedings of the 12th Annual ACM Conference on Economics and Computation (EC), pages
295–296, 2011. 67

111

http://dx.doi.org/10.1109/FOCS.2015.70


[74] M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds for finding Brouwer
fix points. Journal of Complexity, 5(4):379–416, 1989. 24, 29, 34, 35, 37, 38, 50, 53

[75] P. Hubáček and E. Yogev. Hardness of continuous local search: Query complexity and cryptographic
lower bounds. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1352–1371, 2017. 50

[76] P. Hubáček, M. Naor, and E. Yogev. The journey from NP to TFNP hardness. In Proceedings of the
8th Conference on Innovations in Theoretical Computer Science (ITCS), 2017. Article 60. 50, 52

[77] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: derandomizing the
XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC),
pages 220–229, 1997. 52

[78] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001. 53

[79] A. X. Jiang and K. Leyton-Brown. Polynomial-time computation of exact correlated equilibrium in
compact games. Games and Economic Behavior, 91:347–359, 2015. 104

[80] D. S. Johnson. The NP-completeness column: Finding needles in haystacks. ACM Transactions on
Algorithms, 3(2):24, 2007. 49

[81] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal of
Computer and System Sciences, 37(1):79–100, 1988. 46

[82] S. Kakade, M. Kearns, J. Langford, and L. Ortiz. Correlated equilibria in graphical games. In
Proceedings of the 4th ACM Conference on Electronic Commerce, pages 42–47, 2003. 104

[83] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set intersec-
tion. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992. 23

[84] S. Karlin. Mathematical Methods and Theory in Games, Programming, and Economics. Addison-
Wesley, 1959. 14

[85] M. Kearns. Graphical games. In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, chapter 7, pages 159–180. Cambridge University Press, 2007. 99

[86] M. Kearns, M. L. Littman, and S. Singh. Graphical models for game theory. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), pages 253–260, 2001. 103

[87] A. S.Kelso andV. P.Crawford. Jobmatching, coalition formation, and gross substitutes. Econometrica,
50(6):1483–1504, 1982. 81

[88] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20
(1):191–194, 1979. 84, 96, 104

[89] T. H. Kjeldsen. John von Neumann’s conception of theMinimax theorem: A journey through different
mathematical contexts. Archive for History of Exact Sciences, 56:39–68, 2001. 25

[90] D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games. Games
and Economic Behavior, 45:181–221, 2003. 103

112



[91] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf. High-rate locally correctable and locally testable
codes with sub-polynomial query complexity. Journal of the ACM, 64(2):11, 2017. 59

[92] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th Annual
Conference on Theoretical Aspects of Computer Science (STACS), pages 404–413, Berlin, Heidelberg,
1999. Springer-Verlag. URL http://dl.acm.org/citation.cfm?id=1764891.1764944. 67, 73

[93] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1996. 23, 70,
78

[94] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17(4):215–217,
1983. 50

[95] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
Games and Economic Behavior, 55:270–296, 2006. 83

[96] C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. SIAM Journal, 12(2):
413–423, 1964. 19, 47

[97] K. Leyton-Brown, P. Milgrom, and I. Segal. Economics and computer science of a radio spectrum
reallocation. Proceedings of the National Academy of Sciences (PNAS), 114(28):7202–7209, 2017.
63

[98] R. J. Lipton and N. E. Young. Simple strategies for large zero-sum games with applications to
complexity theory. In Proceedings of 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 734–740, 1994. 19

[99] R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In Proceedings
of the 4th ACM Conference on Electronic Commerce (EC), pages 36–41. ACM, 2003. doi: 10.1145/
779928.779933. 20, 76

[100] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and Computation,
108(2):212–261, 1994. 16

[101] E. Maskin and J. Riley. Optimal auctions with risk-adverse buyers. Econometrica, 52:1473–1518,
1984. 90

[102] S. A. Matthews. On the implementability of reduced form auctions. Econometrica, 52:1519–1522,
1984. 90

[103] A. McLennan. Advanced fixed point theory for economics. Book in preparation, 2015. 24

[104] A. McLennan and R. Tourky. From imitation games to Kakutani. Unpublished manuscript, 2006. 38

[105] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and computational
complexity. Theoretical Computer Science, 81(2):317–324, 1991. 44

[106] P. Milgrom. Putting auction theory to work: The simultaneous ascending auction. Journal of Political
Economy, 108(2):245–272, 2000. 81

[107] P. Milgrom. Putting Auction Theory toWork. Churchill Lectures in Economics. Cambridge University
Press, 2004. 65

113

http://dl.acm.org/citation.cfm?id=1764891.1764944


[108] P.Milgromand I. Segal. Deferred-acceptance auctions and radio spectrum reallocation. InProceedings
of the 15th ACM Conference on Economics and Computation (EC), pages 185–186, New York, NY,
USA, 2014. ACM. doi: 10.1145/2600057.2602834. 62, 64

[109] W. D. Morris, Jr. Lemke paths on simple polytopes. Mathematics of Operations Research, 19:
780–789, 1994. 19

[110] H. Moulin and J. P. Vial. Strategically zero-sum games: The class of games whose completely mixed
equilibria cannot be improved upon. International Journal of Game Theory, 7(3–4):201–221, 1978.
101

[111] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981. 89

[112] S. Nasar. A Beautiful Mind: a Biography of John Forbes Nash, Jr., Winner of the Nobel Prize in
Economics, 1994. Simon & Schuster, 1998. 19

[113] J. F. Nash, Jr. Equilibrium points in N-person games. Proceedings of the National Academy of
Sciences, 36(1):48–49, 1950. 19

[114] J. F. Nash, Jr. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951. 19

[115] N. Nisan. The communication complexity of approximate set packing and covering. In Proceedings of
the 29th International Colloquium on Automata, Languages and Programming (ICALP), pages 868–
875. Springer-Verlag, 2002. URL http://dl.acm.org/citation.cfm?id=646255.684594. 70,
71

[116] N. Nisan and I. Segal. The communication requirements of efficient allocations and supporting prices.
Journal of Economic Theory, 129:192–224, 2006. 84

[117] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
Journal of Computer and System Sciences, 48(3):498–532, 1994. 45, 48, 49

[118] C. H. Papadimitriou. The complexity of finding Nash equilibria. In N. Nisan, T. Roughgarden,
É. Tardos, and V. V. Vazirani, editors, Algorithmic Game Theory, chapter 2, pages 29–51. Cambridge,
2007. 49

[119] C. H. Papadimitriou and T. Roughgarden. Computing correlated equilibria in multi-player games.
Journal of the ACM, 55(3):14, 2008. 104

[120] R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403–435,
1999. doi: 10.1007/s004930050062. URL http://dx.doi.org/10.1007/s004930050062. 6,
31, 32

[121] A. A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106
(2):385–390, 1992. 23

[122] J. Robinson. An iterative method of solving a game. Annals of Mathematics, pages 296–301, 1951.
14

[123] A. Rosen, G. Segev, and I. Shahaf. Can PPAD hardness be based on standard cryptographic assump-
tions? In Proceedings of the 15th International Conference on Theory of Cryptography (TCC), pages
173–205, 2017. 50

114

http://dl.acm.org/citation.cfm?id=646255.684594
http://dx.doi.org/10.1007/s004930050062


[124] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005. 67

[125] T. Roughgarden. Computing equilibria: A computational complexity perspective. Economic Theory,
42(1):193–236, 2010. 49

[126] T. Roughgarden. Barriers to near-optimal equilibria. In Proceedings of the 55th Annual Symposium
on Foundations of Computer Science (FOCS), pages 71–80. IEEE Computer Society, 2014. doi:
10.1109/FOCS.2014.16. 7, 68, 75

[127] T. Roughgarden. CS364B lecture notes. Stanford University, 2014. 74

[128] T. Roughgarden. Intrinsic robustness of the price of anarchy. Journal of the ACM, 62(5):32, 2015.
106

[129] T. Roughgarden. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press, 2016.
25, 43, 65, 89, 101

[130] T. Roughgarden. Communication complexity (for algorithm designers). Foundations and Trends in
Theoretical Computer Science, 11(3-4):217–404, 2016. 23, 69, 70

[131] T. Roughgarden and I. Talgam-Cohen. Why prices need algorithms. In Proceedings of the 16th Annual
ACM Conference on Economics and Computation (EC), pages 19–36, 2015. 7, 79, 82, 86

[132] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–259,
2002. 67

[133] T. Roughgarden and O. Weinstein. On the communication complexity of approximate fixed points.
In Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
229–238, 2016. 29, 32

[134] T. Roughgarden, V. Syrgkanis, and É.. Tardos. The price of anarchy in auctions. Journal of Artificial
Intelligence Research, 59:59–101, 2017. 67, 106

[135] A. Rubinstein. Settling the complexity of computing approximate two-player Nash equilibria. In
Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, pages 258–
265, 2016. 7, 24, 34, 38, 43, 48, 49, 53, 54, 57, 59, 60

[136] R. Savani and B. von Stengel. Hard-to-solve bimatrix games. Econometrica, 74(2):397–429, 2006.
19

[137] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986. 96

[138] L. S. Shapley. Some topics in two-person games. In M. Dresher, L. S. Shapley, and A. W. Tucker,
editors, Advances in Game Theory, pages 1–28. Princeton University Press, 1964. 14, 18

[139] E. Solan and R. Vohra. Correlated equilibrium payoffs and public signalling in absorbing games.
International Journal of Game Theory, 31:91–121, 2002. 105

[140] D. A. Spielman. The complexity of error-correcting codes. In Proceedings of the 11th International
Symposium on Fundamentals of Computation Theory, pages 67–84, 1997. 55

115



[141] D. A. Spielman and S.-H. Teng. Smoothed analysis: Why the simplex algorithm usually takes
polynomial time. Journal of the ACM, 51(3):385–463, 2004. 49

[142] N. Sun andZ.Yang. Equilibria and indivisibilities: Gross substitutes and complements. Econometrica,
74(5):1385–1402, 2006. 81

[143] V. Syrgkanis and É. Tardos. Composable and efficient mechanisms. In Proceedings of the 45th ACM
Symposium on Theory of Computing (STOC), pages 211–220, 2013. 77, 106

[144] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865–877,
1991. 96

[145] A. Vetta. Nash equilibria in competitive societies, with applications to facility location, traffic routing
and auctions. In Proceedings of the 43rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 416–425, 2002. 106

[146] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16(1):
8–37, 1961. 87

[147] J. Ville. Sur la theorie générale des jeux ou intervient l’habileté des joueurs. Fascicule 2 in Volume 4
of É. Borel, Traité du Calcul des probabilités et de ses applications, pages 105–113. Gauthier-Villars,
1938. 9

[148] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–320, 1928.
9

[149] J. von Neumann and O.Morgenstern. Theory of Games and Economic Behavior. Princeton University
Press, 1944. 9

[150] B. von Stengel. Equilibrium computation for two-player games in strategic and extensive form. In
N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 3,
pages 53–78. Cambridge University Press, 2007. 19

116

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


