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Abstract

We show that any proof that promise-BPP = promise-P necessitates proving
circuit lower bounds that almost yield that P 6= NP . More accurately, we show
that if promise-BPP = promise-P , then for essentially any super-constant function
f (n) = ω(1) it holds that NTIME[n f (n)] 6⊆ P/poly. The conclusion of the forego-
ing conditional statement cannot be improved (to conclude that NP 6⊆ P/poly)
without unconditionally proving that P 6= NP .

This paper is a direct follow-up to the very recent breakthrough of Murray and
Williams (ECCC, 2017), in which they proved a new “easy witness lemma” for
NTIME[o(2n)]. Following their approach, we apply the new lemma within the
celebrated proof strategy of Williams (SICOMP, 2013), and derive our result by
using a parameter setting that is different than the ones they considered.

1 Introduction

The BPP = P conjecture asserts that any decision problem that can be efficiently
solved using randomness (while allowing for a small error) can also be efficiently
solved deterministically. In other words, the conjecture asserts that randomness is
not needed to efficiently solve decision problems. This conjecture is central to the
complexity-theoretic study of the role of randomness in computation.

The BPP = P conjecture is often interpreted as an algorithmic problem, namely
the problem of explicitly constructing efficient deterministic algorithms that simulate
randomized algorithms. In fact, a version of the conjecture is equivalent to the conjec-
tured existence of an algorithm for a single, specific problem (i.e., the circuit acceptance
probability problem; see Theorem 4). However, as will be discussed next, it has also been
known for at least two decades that the conjecture is actually intimately related to cir-
cuit lower bounds; that is, the conjecture is related to lower bounds for non-uniform
models of computation. The attempts to prove such lower bounds have long been
considered a prominent path to make progress on the P 6= NP conjecture.
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Informally, following a very recent breakthrough by Murray and Williams [MW17],
the main result in this paper considerably strengthens a known connection between
the BPP = P conjecture and circuit lower bounds. To present the new result, let us
first spell out the latter connection. On the one hand, any proof of sufficiently strong
circuit lower bounds will also prove the conjecture; specifically, if there is a function
in E that requires exponential-sized circuits, then BPP = P (see [IW99], which relies
on the hardness-randomness paradigm [Yao82, BM84, NW94]). On the other hand,
any proof that P = BPP (or even of weaker instances of this conjecture) implies
long-sought circuit lower bounds (see, e.g., [IW99, IKW02, KI04, Wil13]).

A specific celebrated example of such a connection is that any proof that prBPP =
prP (i.e., that the promise-problem versions of BPP and of P are equal) implies that
there exists a function in NEXP that cannot be computed by any polynomial-sized
circuit family [IKW02]. Very recently, Murray and Williams [MW17] proved a break-
through result that allows to significantly strengthen this statement: An immediate
corollary of [MW17, Thm 1.2] is that if prBPP = prP , then there exists a function
in NTIME[npoly log(n)] (rather than NEXP) that cannot be computed by any polynomial-
sized circuit family. We believe that this corollary is a fundamental result that is worth
spelling out and highlighting. Furthermore, this result can be further strengthened,
and doing so is the technical contribution in this paper.

Specifically, our main result is that if prBPP = prP , then there exists a function
in NTIME[nω(1)] that cannot be computed by any polynomial-sized circuit family. In
particular, it follows that proving that prBPP = prP necessitates proving a circuit
lower bound that is so strong, that any meaningful improvement of it would imply
that P 6= NP . Thus, very informally, we interpret our main result as saying that
proving that prBPP = prP is at least “almost” as difficult as proving that P 6= NP .

Theorem 1 (main theorem; informal). If prBPP = prP , then for essentially any super-
constant function f (n) = ω(1) there exists a set in NTIME[n f (n)] \ P/poly.

One might a-priori hope to further improve the conclusion of Theorem 1, and
prove a theorem of the form “if prBPP = prP , then NP 6⊆ P/poly (and P 6= NP)”.
However, we note that such a result cannot be proved without unconditionally proving
that P 6= NP . That is, any proof of the conditional statement “BPP = P =⇒ P 6=
NP” would unconditionally imply that P 6= NP (see Proposition 9). Therefore, the
conclusion of Theorem 1 is optimal in this sense.

The hypothesis in the conditional statement in Theorem 1 refers to classes of
promise problems, and is thus stronger than the hypothesis that BPP = P (which
only refers to problems with the trivial promise). However, the promise-problem ver-
sion of the conjecture is natural and well-studied by itself, and moreover, the strongest
evidence that currently suggests that P = BPP also suggests that prP = prBPP
(since it is based on constructions of pseudorandom generators; see [IW99]).

In fact, the hypothesis of Theorem 1 can be further relaxed. Similarly to [MW17]
(which builds on [Wil13]), the main hypothesis that we actually need is that there exists
a deterministic algorithm for the circuit acceptance probability problem (see Definition 3)
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that runs in time noticeably smaller than the naive deterministic algorithm for this
problem. (This hypothesis follows from prBPP = prP ; see Theorem 4.) Specifically,
Theorem 1 is a corollary of the following theorem:

Theorem 2 (main theorem, stronger version; informal). Assume that for some constant ε > 0
there exists an algorithm that gets as input a circuit C of size m over v variables, runs in time
2(1−ε)·v · poly(m), and distinguishes between the case that the acceptance probability of C is
one and the case that the acceptance probability of C is at most 1/3. Then, for essentially any
super-constant function f (n) = ω(1) there exists a set in NTIME[n f (n)] \ P/poly.

Intuitively, Theorem 2 can be considered as a significant strengthening of a cele-
brated result by Williams [Wil13] (in fact, the proof of Theorem 2 relies on the origi-
nal strategy from [Wil13]). Specifically, the original result used a somewhat weaker
hypothesis (i.e., that there exists an algorithm that solves the problem with run-
time (2v/vω(1)) · poly(m)), but derived a significantly weaker conclusion (i.e., that
NEXP 6⊆ P/poly). We stress that the main technical tool that allows to obtain this
new result comes from the recent breakthrough work of [MW17].1 For a discussion of
further relaxations of the hypothesis of Theorem 2 see the end of Section 5.

Organization. We begin the paper by providing a very brief digest of the proof,
which is intended primarily for experts; this digest appears in Section 2, and can be
safely skipped. Readers who wish to skip this part are encouraged to begin by reading
a more detailed overview, which also describes known approaches that are needed for
the proof, and appears in Section 3. Then, in Section 4 we present preliminary formal
definitions, and in Section 5 we formally prove Theorem 2.

2 A brief digest (intended primarily for experts)

The proof of Theorem 2 uses the celebrated proof strategy of Williams [Wil13], who
showed that any non-trivial derandomization of a circuit class implies lower bounds
for that class against NEXP . The key technical ingredient in Williams’ proof strategy
is an “easy witness lemma” (as in [IKW02]): A lemma that asserts that if some un-
expected complexity collapse occurs (e.g., NEXP ⊆ P/poly), then there exist small
circuits that encode large witnesses in proof systems (e.g., for NE ).

Very recently, Murray and Williams [MW17] proved a new easy witness lemma,
with significantly improved parameters. Indeed, this new lemma allows to improve
the results obtained via Williams’ proof strategy. Specifically, Murray and Williams
showed that any non-trivial derandomization of a circuit class implies lower bounds
for this class against NTIME[npoly log(n)]. As mentioned in the introduction, a weak
version of Theorem 1 follows immediately as a corollary of this result (i.e., the result
implies that if prBPP = prP , then NTIME[npoly log(n)] 6⊆ P/poly).

1Moreover, two theorems that are of a form similar to that of Theorem 2 appear in [MW17, Thms 1.1,
1.2], but with somewhat different parameters than the ones of Theorem 2.
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The main observation that paves the path to Theorem 2 is that the proof strategy of
Williams can yield a stronger conclusion when starting from a stronger hypothesis. Specifi-
cally, Williams’ proof strategy is typically used when starting from a “weak” hypoth-
esis (i.e., that a non-trivial derandomization algorithm exists), and it yields weak (but
highly non-trivial) lower bounds. In our parameter setting, we start from a stronger
hypothesis (i.e., that a sufficiently-fast derandomization algorithm exists) and deduce
that NTIME[nω(1)] 6⊆ P/poly. The same approach (of starting from a stronger hy-
pothesis) was taken in [MW17, Thm 1.1], in which they proved that under hypotheses
similar to those of Theorem 2, for all k ∈N it holds that NP 6⊆ SIZE[nk].

For convenience, we state and prove a general and parametrized “derandomization
implies lower bounds” theorem (see Theorem 10), and derive Theorem 2 as a corollary
of this theorem. The proof of the parametrized theorem amounts to applying the new
easy witness lemma within Williams’ proof strategy with flexible parameters.2

3 Proof overview: Easy witnesses for NTIME[nω(1)]

For simplicity, we overview the proof of Theorem 1 (the proof of Theorem 2 is very
similar, just more careful with the parameters). To do so we need to define the circuit

acceptance probability problem (or CAPP, in short): Given as input the description of a
circuit C, the problem is to distinguish between the case that the acceptance probability
of C is at least 2/3 and the case that the acceptance probability of C is at most 1/3. The
problem can be easily solved using randomness (by sampling inputs for C), but it is not
a-priori clear how to solve it deterministically. In fact, a deterministic polynomial-time
algorithm for CAPP exists if and only if prBPP = prP (see Theorem 4). Therefore
(since we assume that prBPP = prP), the starting point of our argument is the
hypothesis that CAPP can be solved in deterministic polynomial time.

The proof closely follows the celebrated proof strategy of Williams [Wil13], but
with a different setting of parameters than is typically used in this proof strategy. Our
goal is to prove that NTIME[nO( f (n))] is not contained in P/poly, where f is some
very small function (e.g., f (n) = log∗(n)). Assuming towards a contradiction that
NTIME[nO( f (n))] ⊆ P/poly, we will construct a non-deterministic algorithm for any
L ∈ NTIME[n f (n)] that runs in time noticeably smaller than n f (n). This will contradict
the non-deterministic time hierarchy [Coo72].

The key technical tool that allows us construct such an algorithm is called an “easy
witness lemma” (see, e.g., [IKW02]). Loosely speaking, such a lemma asserts that un-
der seemingly-unlikely hypotheses (such as NTIME[nO( f (n))] ⊆ P/poly), there exist
small circuits that encode large witnesses in proof systems (e.g., for NTIME[n f (n)]).
Specifically, the proof of Theorem 1 crucially relies on a new easy witness lemma,
which was very recently proved by Murray and Williams [MW17], and has signifi-
cantly better parameters than previous lemmas. Given our hypothesis, the new lemma

2For simplicity, in this paper we do not consider restricted classes of circuits (such as classes with
constant depth or limited fan-out). However, the results in the paper extend to many restricted circuit
classes in a straightforward way, using the PCP of Ben-Sasson and Viola (see discussion in [BV14]).
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implies that for every L ∈ NTIME[nO( f (n))], every verifier V for L and every x ∈ L,
there exists a circuit Px ∈ P/poly that encodes a witness πx such that V(x, πx) accepts
(see Lemma 8 for a precise statement).3 The point is that witnesses for the verifier V
are a-priori of size nO( f (n)), but the lemma asserts that (under the hypothesis) every
x ∈ L has a witness that can be concisely represented by a circuit of much smaller size.

Williams’ idea is to use the existence of such “compressible” witnesses in order to
construct a quick non-deteministic machine for any L ∈ NTIME[n f (n)]. Specifically,
fix any L ∈ NTIME[t], where t(n) = n f (n). Also fix a PCP system for L with a verifier
V that runs in time tV = poly(n, log(t)) = no( f (n)) and uses ` = O(log(t)) random
bits. (For concreteness, we use the PCP of Ben-Sasson and Viola [BV14], but previous
ones such as [BGH+05] also suffice for the proof.)

Given input x ∈ {0, 1}n, the non-deterministic machine M will first guess a witness
for x, and then verify the witness using the verifier V. However, it will perform both
tasks in a very efficient manner. First, instead of guessing a t-bit witness, the machine
M will guess a (much-smaller) description of a circuit Px ∈ P/poly that encodes a
witness; if x ∈ L, then such Px exists by the easy witness lemma.4 Secondly, instead of
directly using the verifier V to verify Px, the machine will construct a circuit CPx

x that,
when given r ∈ {0, 1}` as input, simulates the execution of V on x using randomness
r when V is given oracle access to the witness Px; the machine M will then use the
CAPP algorithm on the circuit CPx

x to determine whether the verifier is likely to accept
x or to reject x. More specifically, the machine M acts as follows:

1. The machine non-deterministically guesses a circuit Px ∈ P/poly (in the hope
that Px represents a proof for x acceptable by V).

2. The machine constructs a circuit CPx
x that gets as input r ∈ {0, 1}`(n), and simu-

lates the execution of the verifier V on input x, randomness r, and with oracle
access to the proof represented by Px; that is, CPx

x (r) = VPx(x, r).

3. The machine runs the CAPP algorithm on the circuit CPx
x , and outputs the deci-

sion of the algorithm.

Note that if x ∈ L, then for some guess of Px it holds that CPx
x has acceptance

probability one, and thus the machine M will accept x. On the other hand, if x /∈ L,
then for any guess of Px it holds that CPx

x has low acceptance probability (corresponding
to the soundness of the PCP verifier), and thus the machine M will reject x. Since Px

is of polynomial size and the verifier runs in time tV(n), the size of CPx
x is at most

tV(n) · poly(n) = no( f (n)). Therefore, the CAPP algorithm that gets CPx
x as input also

3A circuit Px : {0, 1}log(|πx |) → {0, 1} encodes a string πx if for every i ∈ [|πx|] it holds that Px(i)
is the ith bit of πx (equivalently, πx is the truth-table of Px). We mention that in the proof we will
actually assume that NTIME[n f (n)] is not contained in SIZE[ng(n)], for some g(n) � f (n), and deduce
the existence of witness circuits of size ng(n). We ignore this minor issue in the high-level overview.

4Actually, to apply the easy witness lemma we consider the deterministic verifier V′ that, when given
input and a proof, enumerates the random coins of V and decides by a majority vote. This verifier runs in
time 2` · tV = nO( f (n)), and we can invoke the lemma since we assumed that NTIME[nO( f (n))] ⊆ P/poly.
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runs in time no( f (n)). The machine M thus decides L in non-deterministic time no( f (n)),
which contradicts the non-deterministic time hierarchy theorem.

4 Preliminaries

We assume familiarity with basic notions of complexity theory; for background see,
e.g., [Gol08, AB09]. Throughout the paper, fix any standard model of a Turing machine
(we need a fixed model since we discuss time-constructible functions). Whenever we
refer to circuits, we mean non-uniform circuit families over the De-Morgan basis (i.e.,
AND/OR/NOT gates) with fan-in at most two and unlimited fan-out, and without
any specific structural restrictions (e.g., without any limitation on their depth). More-
over, we consider some fixed standard form of representation for circuits, where the
representation size is polynomial in the size of the circuit.

4.1 Circuit acceptance probability problem

We now formally define the circuit acceptance probability problem (or CAPP, in short);
this well-known problem is also sometimes called Circuit Derandomization, Approx
Circuit Average, and GAP-SAT or GAP-UNSAT.

Definition 3 (CAPP). The circuit acceptance probability problem with parameters α, β ∈
[0, 1] such that α > β (or (α, β)-CAPP, in short) is the following promise problem:

• The YES instances are (representations of) circuits that accept at least α of their inputs.

• The NO instances are (representations of) circuits that accept at most β of their inputs.

We define the CAPP problem (i.e., omitting α and β) as the (2/3, 1/3)-CAPP problem.

It is well-known that CAPP is complete for prBPP under deterministic polynomial-
time reductions; in particular, CAPP can be solved in deterministic polynomial time if
and only if prBPP = prP .

Theorem 4 (CAPP is equivalent to prBPP = prP). The circuit acceptance probability
problem can be solved in deterministic polynomial time if and only if prBPP = prP .

For a proof of Theorem 4 see any standard textbook on the subject (e.g. [Vad12,
Cor. 2.31], [Gol08, Exer. 6.14]). In Theorem 4 we considered the complexity of CAPP
as a function of the input size, which is the size of the (description of the) circuit.
However, following [Wil13], it can also be helpful to consider the complexity of CAPP
as a function of both the circuit size m (which corresponds to the input size) and of the
number v of input variables to the circuit. In this case, a naive deterministic algorithm
can solve the problem in time 2v · poly(m), whereas the naive probabilistic algorithm
solves the problem in time v · poly(m) ≤ poly(m).
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4.2 Witness circuits and the new easy witness lemma of [MW17]

We now recall the definition of witness circuits for a proof system.

Definition 5 (verifiers and witnesses). Let t : N → N be a time-constructible, non-
decreasing function, and let L ⊆ {0, 1}∗. An algorithm V(x, y) is a t-time veri�er for L
if V runs in time at most t(|x|) and satisfies the following: For all strings x it holds that x ∈ L
if and only if there exists a witness y such that V(x, y) accepts.

Definition 6 (witness circuits). Let t : N → N be a time-constructible, non-decreasing
function, let w : N → N, and let L ⊆ {0, 1}∗. We say that a t-time verifier V has witness

circuits of size w if for every x ∈ L there exists a witness yx such that V(x, yx) accepts and
there exists a circuit Cyx : {0, 1}log(|yx |) → {0, 1} of size w(|x|) such that Cyx(i) is the ith

bit of yx. We say that NTIME[t] has witness circuits of size w if for every L ∈ NTIME[t],
every t-time verifier for L has witness circuits of size w.

In Definitions 5 and 6 we considered verifiers that are deterministic algorithms
that get the witness as an explicit input. As outlined in Section 3, in the proof we
will consider PCP verifiers (which are probabilistic algorithms, and only get oracle
access to their witness). However, we will not consider witness circuits for these PCP
verifiers, but rather for deterministic verifiers (with explicit inputs) that are derived
from the PCP verifiers (see the proof of Theorem 10 for precise details).

Let us now state the new easy witness lemma of [MW17]. Loosely speaking, the
lemma asserts that for any two functions t(n) � s(n) with sufficient “gap” between
them, if NTIME[poly(t)] ⊆ SIZE[s], then NTIME[t] has witness circuits of size ŝ,
where ŝ(n) > s(n) is the function s with some “overhead”. To more conveniently
account for the exact parameters, we introduce some auxiliary technical notation:

Definition 7 (sufficiently gapped functions). Let γ, γ′, γ′′ ∈ N be universal constants.5

For any function s : N → N, let s′ : N → N be the function s′(n) = (s(γ · n))γ, and let
ŝ : N→N be the function ŝ(n) = (s′(s′(s′(n))))γ′ . We say that two functions s, t : N→N

are su�ciently gapped if both functions are increasing and time-constructible, and s′ is also
time-constructible, and s(n) < 2n/γ/n, and t(n) ≥ (ŝ(n))γ′′ .

Lemma 8 (easy witnesses for low nondeterministic time [MW17, Lem. 4.1]). Let s, t : N →
N be sufficiently gapped functions, and assume that NTIME[O(t(n))γ] ⊂ SIZE[s], where γ
is the constant from Definition 7. Then, NTIME[t] has witness circuits of size ŝ.

4.3 A barrier for proving “BPP = P =⇒ P 6= NP”

We note that it is impossible to prove the statement “if P = BPP then P 6= NP”
without unconditionally proving that P 6= NP .

Proposition 9 (a barrier for “derandomization implies lower bounds” statements). If the
conditional statement “BPP = P =⇒ P 6= NP” holds, then P 6= NP .

5Specifically, the values of these constants are γ = e and γ′ = 2g and γ′′ = d, where e, g, and d are
the universal constants from Lemma 4.1 in [MW17].
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Proof. Assume towards a contradiction that P = NP . Then, we have that P = BPP
(since BPP is contained in the polynomial-time hierarchy [Sip83, Lau83], and the
hierarchy collapses to P if P = NP). However, we can now use the hypothesized
conditional statement to deduce that P 6= NP , which is a contradiction.

5 Proof of Theorem 2

Our first step is to prove a parametrized “derandomization implies lower bounds”
theorem. This theorem is obtained by using the proof strategy of Williams [Wil13]
with general parameters, while leveraging the new easy witness lemma of Murray and
Williams [MW17]. (In their original paper, Murray and Williams [MW17] considered
two specific parameter settings.) We then prove Theorem 2 as a corollary.

Loosely speaking, in the following theorem we assume that CAPP can be deter-
ministically solved in time T(m, v), and deduce that for any two functions t(n)� s(n)

such that T
(

poly(n, ŝ(n), log(t(n))), log(t(n))
)
� t(n) it holds that NTIME[poly(t(n))]

does not have circuits of size s(n).

Theorem 10 (derandomization implies lower bounds, with flexible parameters). There exist
constants c, c′ ∈ N and α < 1 such that the following holds. For T : N ×N → N,
assume that (1, 1/3)-CAPP on circuits of size m with at most v input variables can be solved
in deterministic time T(m, v). Let s, t : N → N be sufficiently gapped functions such that
s(n) > n and for some constant ε > 0 it holds that

T
(
(n · ŝ(n) · log(t(n)))c, α · log(t(n))

)
≤ t(n)(1−ε)·α .

Then, NTIME[t(n)c′ ] 6⊆ SIZE[s(n)].

Proof. The starting point of the proof is the non-deterministic time hierarchy [Coo72]:
For an appropriate function t′ = t′(n) (that will be determined in a moment), there
exists a set L ∈ NTIME[t′] that cannot be decided by non-deterministic machines run-
ning in time (t′)1−Ω(1). Specifically, for a sufficiently small constant α > 0, let t′(n) =
(t(n))(1−ε/2)·α, and let L ∈ NTIME[t′] \ NTIME

[
(t′)

1−ε
1−ε/2

]
.6 Now, for a sufficiently

large constant c′, assume towards a contradiction that NTIME[t(n)c′ ] ⊆ SIZE[s(n)].
Our goal is to construct a non-deterministic machine that decides L in time (t′)

1−ε
1−ε/2 ,

which will yield a contradiction.
To do so, consider the PCP verifier of [BV14] for L, denoted by V. On inputs

of length n, the verifier V runs in time poly(n, log(t′(n))), uses ` = log(t′(n)) +
O(log log(t′(n))) bits of randomness, and has perfect completeness and soundness
(much) lower than 1/3. 7 Furthermore, using the hypothesis that NTIME[t(n)c′ ] ⊆

6Such a function exists by standard non-deterministic time hierarchy theorems (e.g., [Coo72]), since
t′(n) > nΩ(1), which implies that the gap between t′ and (t′)1−Ω(1) is sufficiently large.

7Note that the only upper-bound that we need on the number of oracle queries issued by V is the
trivial bound given by the running time of V.

8



SIZE[s(n)] and the “easy witness lemma” (i.e., Lemma 8), for every x ∈ L there ex-
ists a circuit Px ∈ SIZE[ŝ(n)] such that Prr[VPx(x, r) accepts] = 1. (We actually apply
Lemma 8 to the deterministic verifier V ′ that enumerates the random coins of V, which
runs in time 2` · poly(n, log(t′)) = poly(t′) = poly(t). We can use the lemma since we
assumed that NTIME[t(n)c′ ] ⊆ SIZE[s(n)], for a sufficiently large c′.)

Given input x ∈ {0, 1}n, the non-deterministic machine M acts as follows. The
machine non-deterministically guesses a (description of a) circuit Px of size ŝ(n), and
constructs a circuit CPx

x : {0, 1}` → {0, 1} such that CPx
x (r) = VPx(x, r). Then, the

machine feeds the description of CPx
x as input to the CAPP algorithm that exists by the

hypothesis, and outputs the decision of the algorithm. By the properties of the PCP
verifier and of the CAPP algorithm, if x ∈ L then for some guess of Px the machine
will accept x, and if x /∈ L then for any guess of Px the machine will reject x.

To conclude let us upper-bound the running-time of the machine M. The circuit
CPx

x has ` = log(t′) + O(log log(t′)) < α · log(t) input bits, and its size is m(n) =
poly(n, log(t′)) · ŝ(n); thus, its representation size is poly(m(n)). Therefore, the circuit
CPx

x can be constructed in time poly(m(n)), and the CAPP algorithm runs in time
T(m(n), `). The total running-time of the non-deterministic machine M is thus at most
T ((n · ŝ(n) · log(t(n)))c, α · log(t)), for some constant c. By our hypothesized upper-
bound on T, the running time of M is at most t(n)(1−ε)·α = (t′)

1−ε
1−ε/2 , which yields a

contradiction.

We now prove Theorem 2 as a corollary of Theorem 10. Recall that in Theorem 2 we
asserted that prBPP = prP implies that NTIME[n f (n)] 6⊆ P/poly for “essentially”
any super-constant function f . We now specify exactly what this means. In the proof,
instead of proving that NTIME[n f (n)] 6⊆ P/poly, we will actually prove the stronger
statement NTIME[n f (n)] 6⊆ SIZE[ng(n)], where g(n) � f (n) and g(n) = ω(1). There-
fore, the proof works for any f such that a suitable g exists. We note in advance that
this minor technical detail imposes no meaningful restrictions on f (see next).

Definition 11 (admissible functions). We say that a function f : N → N is admissible if
f is super-constant (i.e. f (n) = ω(1)), and if there exists another super-constant function
g : N → N that satisfies the following: The function g is super-constant, and t(n) = n f (n)

and s(n) = ng(n) are sufficiently gapped, and ŝ(n) = no( f (n)).

Essentially any increasing function f (n) = ω(1) such that f (n) ≤ n is admissible,
where the only additional constraints that the admissibility condition imposes are
time-constructibility of various auxiliary functions (we require t and s to be sufficiently
gapped, which enforces time-constructibility constraints); for a precise (and tedious)
discussion, see Appendix A. We can now formally state Theorem 2 and prove it:

Corollary 12 (Theorem 2, restated formally). Assume that (1, 1/3)-CAPP can be solved by
a deterministic algorithm with running time T(m, v) ≤ 2(1−ε)·v · poly(m), for some constant
ε > 0. Then, for every admissible function f there exists a set in NTIME[nO( f (n))] \ P/poly.
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Recall that by Theorem 4, if prBPP = prP , then there exists a deterministic algo-
rithm for (1, 1/3)-CAPP. Therefore, Theorem 1 follows from Corollary 12.

Proof of Corollary 12. Since f is admissible, there exists a function g that satisfies the
requirements of Definition 11. We use Theorem 10 with the functions t(n) = n f (n) and
s(n) = ng(n).

Let us verify that the hypotheses of Theorem 10 hold. Since f is admissible we
have that s and t are sufficiently gapped, and indeed we also have that s(n) > n. Also,
for any constants c ∈N and α < 1 it holds that

T
(
(n · ŝ(n) · log(t(n)))c, α · log(t(n))

)
< poly(ŝ(n)) · poly log(t(n)) · t(1−ε)·α

< n(1−ε+o(1))· f (n) ,

which is t(n)(1−Ω(1))·α. (The first inequality relies on the hypothesis regarding T and
on the fact that ŝ is super-constant, and the second equality relies on the hypothesis
that f is admissible, which implies that ŝ(n) = no( f (n)).)

Thus, Theorem 10 implies that there exists a set in NTIME[nO( f (n))] \ SIZE[ng(n)].
Since g(n) = ω(1), in particular this set does not belong to P/poly.

Additional relaxations of the hypotheses in Theorem 10. Since the proof of Theo-
rem 10 relies on the strategy of [Wil13], it is well-known that the hypothesis of the
theorem can be further relaxed. We now mention two (known) relaxations, in the
hope that they might be useful in some settings (e.g., when we are interested in prov-
ing lower bounds for restricted circuit classes; see Footnote 2).

First, we do not have to unconditionally assume that the CAPP algorithm exists: It
suffices to assume that the algorithm exists under the hypothesis that NTIME[t(n)c′ ] ⊆
SIZE[s(n)]. And secondly, since we are using the CAPP algorithm as a sub-routine of
a non-deterministic machine, the CAPP algorithm itself can also be non-deterministic.
(However, the non-determinism should help the algorithm accept every circuit with
acceptance probability one, and reject every circuit with low acceptance probability; it
is not a-priori clear how non-determinism can be useful for such a task.)

Acknowledgements

The author thanks his advisor, Oded Goldreich, for his close guidance in the research
and writing process, and for very useful comments on drafts of the paper. The author
also thanks Ryan Williams for a helpful email exchange.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

10



[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal of Computing, 13(4):850–
864, 1984.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. Short pcps verifiable in polylogarithmic time. In Proc. 20th Annual
IEEE Conference on Computational Complexity (CCC), pages 120–134, 2005.

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In
Proc. 41st International Colloquium on Automata, Languages and Programming
(ICALP), pages 163–173. 2014.

[Coo72] Stephen A. Cook. A hierarchy for nondeterministic time complexity. In
Proc. 4th Annual ACM Symposium on Theory of Computing (STOC), pages
187–192, 1972.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, New York, NY, USA, 2008.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of
an easy witness: exponential time vs. probabilistic polynomial time. Journal
of Computer and System Sciences, 65(4):672–694, 2002.

[IW99] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma. In Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC), pages 220–229. 1999.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial
identity tests means proving circuit lower bounds. Computational Complex-
ity, 13(1-2):1–46, 2004.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Information Pro-
cessing Letters, 17(4):215–217, 1983.

[MW17] Cody Murray and Ryan Williams. Circuit lower bounds for nondetermin-
istic quasi-polytime: An easy witness lemma for NP and NQP. Electronic
Colloquium on Computational Complexity: ECCC, 24:188, 2017.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of
Computer and System Sciences, 49(2):149–167, 1994.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proc.
15th Annual ACM Symposium on Theory of Computing (STOC), pages 330–
335, 1983.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

11



[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial
lower bounds. SIAM Journal of Computing, 42(3):1218–1244, 2013.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Proc. 23rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
80–91, 1982.

Appendix A Sufficient conditions for admissibility

The point of the current appendix is to show that essentially any increasing function
f (n) = ω(1) such that f (n) ≤ n is admissible (in the sense of Definition 11).

Claim 13. Let f (n) = ω(1) be any increasing function such that f (n) ≤ n for all n, and
t(n) = n f (n) is time-constructible, and s(n) = nlog( f (log(n))) is time-constructible, and s′(n)
is time-constructible. Then, f is admissible.

Proof. Let g(n) = log( f (log(n))) and let s(n) = ng(n). We need to verify that g is
super-constant (which holds because f is super-constant), and that t and s are suffi-
ciently gapped, and that ŝ(n) = no( f (n)). To see that t and s are sufficiently gapped,
first note that both functions are increasing (since f is increasing, and hence g is also
increasing) and are time-constructible, as is s′ (we assumed time-constructibility in the
hypothesis). Also note that s(n) ≤ nlog log(n) < 2n/γ/n.

Thus, it is left to verify that ŝ(n) = no( f (n)). The proof of this fact amounts to the
following elementary calculation. First note that

s′(n) = (s(γ · n))γ = (γ · n)γ·log( f (log(γ·n))) < nlog2( f (log2(n))) .

Thus, for any function k = k(n) and constant c ≥ 2 such that k(n) ≤ logc( f (log3c(n)))
(which in particular implies that k(n) ≤ logc(n)), we have that

s′(nk) < nk·log2( f (log2(nk))) ≤ nlog2c( f (log3c(n))) . (A.1)

In particular, using Eq. (A.1) with k(n) = log2( f (log2(n))) and c = 2, we deduce
that s′(s′(n)) < nlog4( f (log6(n))). Then, using Eq. (A.1) again with k(n) = log4( f (log6(n)))
and c = 4, we deduce that s′(s′(s′(n))) < nlog8( f (log12(n))). Therefore, we have that
ŝ(n) < nγ′·log8( f (log12(n))) < nγ′·poly log( f (n)) = no( f (n)).
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