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Abstract

What circuit lower bounds are necessary in order to prove that promise-BPP =
promise-P? The main result in this paper is that if promise-BPP = promise-P ,
then polynomial-sized circuits cannot simulate non-deterministic machines that
run in arbitrarily small super-polynomial time (i.e., NTIME[n f (n)] 6⊆ P/poly, for
essentially any f (n) = ω(1)). The super-polynomial time bound in the conclu-
sion of the foregoing conditional statement cannot be improved (to conclude that
NP 6⊆ P/poly) without unconditionally proving that P 6= NP .

This paper is a direct follow-up to the very recent breakthrough of Murray and
Williams (ECCC, 2017), in which they proved a new “easy witness lemma” for
NTIME[o(2n)]. Our main contribution is in highlighting the strong “barriers” for
proving prBPP = prP that can be demonstrated using their results (and, as it turns
out, also using previous results). We include three proofs of the main theorem: Two
proofs that rely on various results from the work of Murray and Williams, and yield
stronger forms of the main theorem (i.e., either use a weaker hypothesis or deduce
a stronger conclusion); and a third proof that only relies on a generalization of the
well-known lower bound of Santhanam (SICOMP, 2009).
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1 Introduction

The BPP = P conjecture asserts that any decision problem that can be efficiently solved
using randomness (while allowing for a small error) can also be efficiently solved de-
terministically. In other words, the conjecture asserts that randomness is not needed to
efficiently solve decision problems. This conjecture is central to the complexity-theoretic
study of the role of randomness in computation.

The BPP = P conjecture is often interpreted as an algorithmic problem, namely the
problem of explicitly constructing efficient deterministic algorithms that simulate ran-
domized algorithms. In fact, a version of the conjecture is equivalent to the conjectured
existence of an algorithm for a single, specific problem (i.e., the circuit acceptance prob-
ability problem; see Proposition 5). However, as will be discussed next, it has also been
known for at least two decades that the conjecture is actually intimately related to circuit
lower bounds; that is, the conjecture is related to lower bounds for non-uniform models
of computation. The attempts to prove such lower bounds have long been considered a
prominent path to make progress on the P 6= NP conjecture.

Informally, following a very recent breakthrough by Murray and Williams [MW17],
the main result in this paper considerably strengthens the knowns connection between
the BPP = P conjecture and circuit lower bounds. To present the new result, let us
first spell out the latter connections. On the one hand, any proof of sufficiently strong
circuit lower bounds would also prove the conjecture; specifically, if there is a function
in E that requires exponential-sized circuits, then BPP = P (and even prBPP = prP ,
i.e. the promise-problem versions of BPP and of P are equal; see [IW99], which relies
on the hardness-randomness paradigm [Yao82; BM84; NW94]). On the other hand, any
proof that prP = prBPP (or even of much weaker instances of this conjecture) implies
long-sought circuit lower bounds (see, e.g., [IW98; IKW02; KI04; Wil13]).

A specific celebrated example of such a connection is that any proof that prBPP =
prP implies that there exists a function in NEXP that cannot be computed by any
polynomial-sized circuit family [IKW02]. Very recently, Murray and Williams [MW17]
proved a breakthrough result that allows to significantly strengthen this statement:
In particular, we observe that an immediate corollary of [MW17, Thm 1.2] is that if
prBPP = prP , then there exists a function in NTIME[npoly log(n)] (rather than NEXP)
that cannot be computed by any polynomial-sized circuit family. We believe that this corollary
is a fundamental result that is worth spelling out and highlighting. Furthermore, this
result can be strengthened, and doing so is the technical contribution in this paper.

Specifically, the main result in the current paper is that if prBPP = prP , then there
exists a function in NTIME[nω(1)] that cannot be computed by any polynomial-sized
circuit family; that is, NTIME[nω(1)] 6⊆ P/poly. Note that this circuit lower bound is
so strong that an improvement in the time bound of the non-deterministic class in this
bound (i.e., in NTIME[nω(1)] 6⊆ P/poly) would immediately imply that P 6= NP . For
further discussion of the meaning of this lower bound, see Section 1.3.

Theorem 1 (main theorem; informal). If prBPP = prP , then, for essentially any super-
constant function f (n) = ω(1), there exists a set in NTIME[n f (n)] \ P/poly.
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One might a-priori hope to further improve the conclusion of Theorem 1, and prove a
theorem of the form “if prBPP = prP , then NP 6⊆ P/poly (and P 6= NP)”. However,
we note that such a result cannot be proved without unconditionally proving that P 6=
NP . That is, any proof of the conditional statement “BPP = P =⇒ P 6= NP” would
unconditionally imply that P 6= NP (see Proposition 11). Therefore, the conclusion of
Theorem 1 is optimal in this sense.

The hypothesis in the conditional statement in Theorem 1 refers to classes of promise
problems, and is thus stronger than the hypothesis that BPP = P (which refers to
decision problems with the trivial promise). However, the promise-problem version of
the conjecture is natural and well-studied by itself, and moreover, the strongest evidence
that currently suggests that P = BPP also suggests that prP = prBPP (since it is
based on constructions of pseudorandom generators; see [IW99]).

We will deduce Theorem 1 as a corollary of (either of two) stronger theorems, which
will be proved relying on various results of Murray and Williams [MW17]. How-
ever, we comment that Theorem 1 can also be proved without relying on the results
of Murray and Williams. In particular, there exists a relatively simple proof for the
theorem that is based on (a generalization of) the well-known circuit lower bound of
Santhanam [San09]. We present this alternative proof of Theorem 1 in Appendix B.1

1.1 Weakening the hypothesis of Theorem 1

We can deduce the conclusion in Theorem 1 from a hypothesis that is much weaker
than prBPP = prP . Specifically, similarly to [Wil13; MW17], it suffices to assume that
there exists a deterministic algorithm for the circuit acceptance probability problem (see
Definition 4) that runs in time noticeably smaller than the naive deterministic algorithm
for this problem. (To see that this follows from prBPP = prP , see Proposition 5.) More
accurately, Theorem 1 is a corollary of the following theorem:

Theorem 2 (main theorem with a weaker hypothesis; informal). Assume that for some constant
ε > 0 there exists an algorithm that gets as input a circuit C of size m over v variables, runs in
time 2(1−ε)·v · poly(m), and distinguishes between the case that the acceptance probability of C
is one and the case that the acceptance probability of C is at most 1/3. Then, for essentially any
super-constant function f (n) = ω(1) there exists a set in NTIME[n f (n)] \ P/poly.

Theorem 2 has a form that is very similar to [MW17, Thms. 1.1 & 1.2], yet its parame-
ters are different. The latter theorems can be considered as significant strengthenings of
the celebrated result of Williams [Wil13], and their proofs in fact follow Williams’ orig-
inal proof strategy. In the original result, the hypothesis is that there exists a “weak”
circuit-analysis algorithm, and the conclusion is a “weak” (yet highly non-trivial) cir-
cuit lower bound. In contrast, in Theorem 2 (as well as in [MW17]) the hypothesis is
somewhat stronger, but the conclusion is considerably stronger. The key new technical
component that allows to improve Williams’ original result [Wil13] is the new “easy
witness lemma” of Murray and Williams [MW17] (see Section 2 for details).

1The idea for the alternative proof was suggested to us by Igor Oliveira after a preliminary version of
this paper appeared online.
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The hypotheses of Theorem 2 can even be further relaxed (since the theorem’s
proof relies on Williams’ proof strategy, which is well-known to support such fur-
ther relaxations). For example, the conclusion of Theorem 2 also follows from “non-
deterministic derandomization”, and in particular follows from the hypothesis that
pr−coRP ⊆ pr−NP . For a discussion of such relaxations see the end of Section 4.

1.2 Strengthening the conclusion of Theorem 1

The previous section (i.e., Section 1.1) demonstrated that Theorem 1 can be deduced as
a corollary of a theorem that uses a weaker hypothesis (i.e., Theorem 2). In this section
we show that Theorem 1 can be deduced as a corollary of a theorem that uses the same
hypothesis (i.e., that prBPP = prP) but that has a stronger conclusion.

Recall that in Theorem 1 we concluded that there exists a set S ∈ NTIME[nω(1)]
such that S /∈ P/poly. The assertion that S /∈ P/poly means that any polynomial-sized
circuit family that tries to decide S fails infinitely often. The following theorem asserts
that if prBPP = prP , there exists S ∈ NTIME[nω(1)] such that any polynomial-sized
circuit family fails to decide S on a “dense” set of input lengths; specifically, in any interval
of size nω(1) there exists some input length on which the family fails to decide S.

Theorem 3 (main theorem with a stronger conclusion; informal). Assume that prBPP =
prP , and let f (n) = ω(1) be essentially any super-constant function. Then, there exists a
set S ∈ NTIME[n f (n)] such that for any polynomial-sized circuit family {Cn}n∈N, where
Cn : {0, 1}n → {0, 1}, and any sufficiently large n ∈ N, there exists m ∈ [n, n f (n)] such that
Cm does not decide S ∩ {0, 1}m. 2

The proof of Theorem 3 is very different from the proof of Theorem 2, and is actually
more similar to the alternative proof of Theorem 1 that is presented in Appendix B.
Recall that the latter proof relies on the circuit lower bound of Santhanam [San09]; the
proof of Theorem 3 relies on a strengthening of Santhanam’s lower bound, which was
proved by Murray and Williams (see [MW17, Thm 3.1], restated in Theorem 16).

The aforementioned strengthened circuit lower bound is a crucial component in the
proof of the new easy witness lemma [MW17]. Since Theorem 3 relies directly on this
lower bound, rather than on the easy witness lemma, its proof may be considered sim-
pler (or more “direct”) than the proof of Theorem 2. Moreover, the technical statement
of Theorem 3 offers some improvements in low-level parameters, compared to the tech-
nical statement of Theorem 2 (see discussion after the proof of Theorem 20).

1.3 Theorem 1 as a “barrier” for proving prBPP = prP
Our main interpretation of Theorem 1 is as posing a strong “barrier” for proving that
prBPP = prP : The theorem implies that proving prBPP = prP is at least as hard as
proving that NTIME[nω(1)] 6⊆ P/poly. The foregoing statement significantly strength-
ens previously-known “barriers” for proving prBPP = prP (cf., e.g., [IKW02]). Let us

2The actual lower bound that we deduce is even slightly stronger, since it asserts that the circuit family
fails on (at least) one of the “end-points” of the interval; see Section 5 for precise details.
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now try to clarify the meaning of this “barrier”; that is, we ask what are the conceptual
implications of proving that NTIME[nω(1)] 6⊆ P/poly. Note that the latter statement
asserts that polynomial-sized circuits cannot simulate both super-polynomial running time
and non-determinism.

On the one hand, one can consider “NTIME[nω(1)] 6⊆ P/poly” to be a weaker form
of “NP 6⊆ P/poly” (i.e., of the assertion that polynomial-sized circuits cannot simulate
polynomial non-determinism). From this view, Theorem 1 implies that proving that
prBPP = prP is as hard as “almost” proving that P 6= NP (as suggested by the title of
the paper). On the other hand, as pointed out by Ryan Williams, one could also view the
statement “NTIME[nω(1)] 6⊆ P/poly” as a weaker form of “DTIME[nω(1)] 6⊆ P/poly”.
The latter statement asserts that polynomial-sized circuits cannot simulate algorithms
with super-polynomial running time; this is a “strengthened time-hierarchy theorem” (in
which we compare uniform algorithms to non-uniform circuits). From this perspective,
Theorem 1 implies that proving prBPP = prP is as hard as proving (a weak form of) a
“strengthened time-hierarchy theorem”. Needless to say, both views imply a “barrier”
for proving prBPP = prP that seems challenging at the current time.

1.4 Organization

In Section 2 we present high-level overviews of the proofs of Theorems 2 and 3. In
Section 3 we present preliminary definitions. In Section 4 we prove Theorem 2, and in
Section 5 we prove Theorem 3. Finally, an alternative proof of Theorem 1 is presented
in Appendix B.

2 Overviews of the proofs

In Section 2.1 we present a very brief digest of the proofs, which is intended primarily
for experts; this digest can be safely skipped. More detailed overviews, which also de-
scribe known approaches that are needed for the proofs, appear in Sections 2.2 and 2.3.

2.1 A brief digest (intended primarily for experts)

Let us first describe the proof of Theorem 2. This proof relies on the celebrated proof
strategy of Williams [Wil13], who showed that any non-trivial derandomization of a
circuit class implies lower bounds for that class against NEXP . The key technical
ingredient in Williams’ proof strategy is an “easy witness lemma” (as in [IKW02]), which
asserts that if some unexpected complexity collapse occurs (e.g., NEXP ⊆ P/poly),
then there exist small circuits that encode large witnesses in proof systems (e.g., for NE ).

Very recently, Murray and Williams [MW17] proved a new easy witness lemma,
with significantly improved parameters. Indeed, this new lemma allows to improve the
results obtained via Williams’ proof strategy. Specifically, Murray and Williams showed
that any non-trivial derandomization of a circuit class implies lower bounds for this
class against NTIME[npoly log(n)]. As mentioned in the introduction, a weak version of
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Theorem 1 follows immediately as a corollary of this result (i.e., the result implies that
if prBPP = prP , then NTIME[npoly log(n)] 6⊆ P/poly).

The main observation that paves the path to Theorem 2 is that the proof strategy of
Williams can yield a stronger conclusion when starting from a stronger hypothesis. (This obser-
vation also underlies [MW17, Thm 1.1].) Accordingly, we state and prove a parametrized
“derandomization implies lower bounds” theorem (see Theorem 12), which uses the
new easy witness lemma within the proof strategy of Williams with general parame-
ters.3 This theorem has the following form: Assuming a sufficiently strong derandom-
ization hypothesis, and taking any two functions t > s that have a sufficient “gap”
between them, it holds that NTIME[t] 6⊆ SIZE[s]. The required “gap” between s and t
is determined (in part) by the strength of the derandomization hypothesis. In particu-
lar, under the hypothesis in Theorem 2, we can take both s and t to be arbitrarily-small
super-polynomial functions (i.e., t(n) = nω(1) and s(n) = nω(1) � t(n)), which allows
us to deduce that NTIME[t] is not contained in SIZE[s] ⊇ P/poly.

The proof of Theorem 3 does not rely on Williams’ proof strategy [Wil13] or on
an easy witness lemma. Instead, the starting point of the proof is the unconditional
existence, for any two functions t > s with sufficient “gap” between them, of a set
S ∈ MATIME[t]/O(log(s)) (i.e., S can be decided by a t-time Merlin-Arthur protocol
with O(log(s)) bits of non-uniform advice) such that S cannot be computed by circuits
of size s, in the strong sense of Theorem 3 (see [MW17, Thm 3.1]).4 Relying on the
hypothesis that prBPP = prP , the Merlin-Arthur protocol can be derandomized, and
thus S ∈ NTIME[poly(t)]/O(log(s)).

The point is that after the derandomization step we can eliminate the advice; that is,
a circuit lower bound against non-deterministic machines with advice implies a closely-
related circuit lower bound against non-deterministic machines without advice. (This
argument relies on a simple reduction that does not follow through for Merlin-Arthur
protocols, and can thus be performed only after the “derandomization” step; see Sec-
tion 2.3 for details.) Moreover, the derandomization and the elimination of advice hold
even if the lower bound is in the strong sense of Theorem 3. Thus, prBPP = prP
implies the existence of a set in NTIME[poly(t)] that cannot be computed by circuits of
size s, in the strong sense of Theorem 3.

2.2 Proof overview for Theorem 2

For simplicity, we overview the proof of Theorem 2 under the stronger hypothesis that
prBPP = prP (i.e., under the hypothesis of Theorem 1; the actual proof of Theorem 2
is very similar, just more careful with the parameters). To do so we need to define
the circuit acceptance probability problem (or CAPP, in short): Given as input the descrip-
tion of a circuit C, the problem is to distinguish between the case that the acceptance
probability of C is at least 2/3 and the case that the acceptance probability of C is at

3For simplicity, in this paper we do not consider restricted classes of circuits (such as classes with
constant depth or limited fan-out). However, the results in the paper extend to many restricted circuit
classes in a straightforward way, using the PCP of Ben-Sasson and Viola (see discussion in [BV14]).

4For a formal definition of the foregoing “strong sense” of failing to compute S, see Definition 15.
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most 1/3. The problem can be easily solved using randomness (by sampling inputs for
C), but it is not a-priori clear how to solve it deterministically. In fact, a deterministic
polynomial-time algorithm for CAPP exists if and only if prBPP = prP (see Propo-
sition 5). Therefore (since we assume that prBPP = prP), the starting point of our
argument is the hypothesis that CAPP can be solved in deterministic polynomial time.

The proof closely follows the celebrated proof strategy of Williams [Wil13], but with
a different setting of parameters than is typically used in this proof strategy. Our
goal is to prove that NTIME[nO( f (n))] is not contained in P/poly, where f is some
very small function (e.g., f (n) = log∗(n)). Assuming towards a contradiction that
NTIME[nO( f (n))] ⊆ P/poly, we will construct a non-deterministic algorithm for any
L ∈ NTIME[n f (n)] that runs in time noticeably smaller than n f (n). This will contradict
the non-deterministic time hierarchy [Coo72].

The key technical tool that allows us construct such an algorithm is called an “easy
witness lemma” (see, e.g., [IKW02]). Loosely speaking, such a lemma asserts that under
seemingly-unlikely hypotheses (such as NTIME[nO( f (n))] ⊆ P/poly), there exist small
circuits that encode large witnesses in proof systems (e.g., for NTIME[n f (n)]). Specifi-
cally, the proof of Theorem 1 crucially relies on a new easy witness lemma, which was
very recently proved by Murray and Williams [MW17], and has significantly better pa-
rameters than previous lemmas. Given our hypothesis, the new lemma implies that for
every L ∈ NTIME[nO( f (n))], every verifier V for L and every x ∈ L, there exists a circuit
Px ∈ P/poly that encodes a witness πx such that V(x, πx) accepts (see Lemma 9 for
a precise statement).5 The point is that witnesses for the verifier V are a-priori of size
nO( f (n)), but the lemma asserts that (under the hypothesis) every x ∈ L has a witness
that can be concisely represented by a circuit of much smaller size.

Williams’ idea is to use the existence of such “compressible” witnesses in order to
construct a quick non-deteministic machine for any L ∈ NTIME[n f (n)]. Specifically, fix
any L ∈ NTIME[t], where t(n) = n f (n). Also fix a PCP system for L with a verifier V
that runs in time tV = poly(n, log(t)) = no( f (n)) and uses ` = O(log(t)) random bits.
(For concreteness, we use the PCP of Ben-Sasson and Viola [BV14], but previous ones
such as [BGH+05] also suffice for the proof.)

Given input x ∈ {0, 1}n, the non-deterministic machine M will first guess a witness
for x, and then verify the witness using the verifier V. However, it will perform both
tasks in a very efficient manner. First, instead of guessing a t-bit witness, the machine
M will guess a (much-smaller) description of a circuit Px ∈ P/poly that encodes a
witness; if x ∈ L, then such Px exists by the easy witness lemma.6 Secondly, instead of
directly using the verifier V to verify Px, the machine will construct a circuit CPx

x that,

5A circuit Px : {0, 1}log(|πx |) → {0, 1} encodes a string πx if for every i ∈ [|πx|] it holds that Px(i) is the
ith bit of πx (equivalently, πx is the truth-table of Px). We mention that in the proof we will actually assume
that NTIME[n f (n)] is not contained in SIZE[ng(n)], for some g(n) � f (n), and deduce the existence of
witness circuits of size ng(n). We ignore this minor issue in the high-level overview.

6Actually, to apply the easy witness lemma we consider the deterministic verifier V′ that, when given
input and a proof, enumerates the random coins of V and decides by a majority vote. This verifier runs in
time 2` · tV = nO( f (n)), and we can invoke the lemma since we assumed that NTIME[nO( f (n))] ⊆ P/poly.
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when given r ∈ {0, 1}` as input, simulates the execution of V on x using randomness r
when V is given oracle access to the witness Px; the machine M will then use the CAPP
algorithm on the circuit CPx

x to determine whether the verifier is likely to accept x or to
reject x. More specifically, the machine M acts as follows:

1. The machine non-deterministically guesses a circuit Px ∈ P/poly (in the hope that
Px represents a proof for x acceptable by V).

2. The machine constructs a circuit CPx
x that gets as input r ∈ {0, 1}`(n), and simulates

the execution of the verifier V on input x, randomness r, and with oracle access to
the proof represented by Px; that is, CPx

x (r) = VPx(x, r).

3. The machine runs the CAPP algorithm on the circuit CPx
x , and outputs the decision

of the algorithm.

Note that if x ∈ L, then for some guess of Px it holds that CPx
x has acceptance prob-

ability one, and thus the machine M will accept x. On the other hand, if x /∈ L, then
for any guess of Px it holds that CPx

x has low acceptance probability (corresponding to
the soundness of the PCP verifier), and thus the machine M will reject x. Since Px

is of polynomial size and the verifier runs in time tV(n), the size of CPx
x is at most

tV(n) · poly(n) = no( f (n)). Therefore, the CAPP algorithm that gets CPx
x as input also

runs in time no( f (n)). The machine M thus decides L in non-deterministic time no( f (n)),
which contradicts the non-deterministic time hierarchy theorem.

2.3 Proof overview for Theorem 3

In Theorem 3 we assume that prBPP = prP , and deduce a lower bound for polynomial-
sized circuits against a set S ∈ NTIME[nω(1)] that is stronger than a standard lower
bound. For the purposes of the high-level overview, we say that a set S is not in the
class i.o.[q]SIZE[s] if for every circuit family of size s, and every sufficiently large n, the
circuit family fails to decide S on some input length in the interval [n, q(n)].7

Fixing t(n) = nω(1) and s(n) = nω(1) � t(n), we want to prove that if prBPP =
prP , then there exists a set S ∈ NTIME[t] \ i.o.[poly(s)]SIZE[s]. The starting point of
the proof is Murray and Williams’ strengthening of Santhanam’s lower bound, which
asserts (unconditionally) that there exists a set S that can be computed by Merlin-
Arthur protocols running in time t with O(log(s)) bits of non-uniform advice (i.e.,
S ∈ MATIME[t]/O(log(s)))8 such that S /∈ i.o.[poly(s)]SIZE[s] (see Theorem 16).

The first observation in the proof is that if prBPP = prP , then Merlin-Arthur proto-
cols can be derandomized, in a straightforward way: Specifically, the residual decision

7As mentioned in Footnote 2, the actual lower bound is even slightly stronger, since it asserts that the
circuit family fails to compute S on (at least) one of the “end-points” of the interval. For further details see
Section 5, in which we also formally define the notation S /∈ i.o.[q]SIZE[s] accordingly (see Definition 15).

8For a standard definition of the class MATIME[t]/O(log(s)), see Definition 10.
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problem that is solved by the probabilistic t-time verifier can be solved deterministi-
cally in time poly(t) (see Proposition 17). Hence, under this hypothesis, the set S is in
NTIME[poly(t)]/O(log(s)) \ i.o.[poly(s)]SIZE[s].

The second observation is that if NTIME[poly(t)]/O(log(s)) 6⊆ i.o.[poly(s)]SIZE[s],
then NTIME[poly(t)] (without the advice) is not contained in i.o.[poly(s)]SIZE[s′], for s′

that is moderately smaller than s (see Proposition 19). This “elimination of advice” uses
a contrapositive argument: Assuming that NTIME[poly(t)] ⊆ i.o.[poly(s)]SIZE[s′], we
construct a circuit family of size s for any S ∈ NTIME[poly(t)]/O(log(s)), as follows.
Consider the non-deterministic machine M that decides S with advice {an}, and let Sadv

be the set of pairs (x, σ) such that |σ| = O(log(s(|x|))), and M (non-deterministically)
accepts x when given advice σ. Note that Sadv can be decided by a non-determinstic
machine that simulates M (and requires no advice), and thus, by our hypothesis, Sadv

can also be decided on infinitely-many intervals of length poly(s(n)) by a circuit family
{Cn} of size s′.9 By hard-wiring the “correct” advice string an into each Cn, we obtain
a circuit family {C′n} of size s > s′ that decides S on infinitely-many intervals of length
moderately smaller than poly(s(n)). (See Propositions 18 and 19 for precise details.)

Let us recap: The initial (unconditional) lower bound asserts that there exists S ∈
MATIME[t]/O(log(s)) such that S /∈ i.o.[poly(s)]SIZE[s]. The first observation, along
with the hypothesis that prBPP = prP , implies that S ∈ NTIME[poly(t)]/O(log(s)) \
i.o.[poly(s)]SIZE[s]. And finally, the second observation implies that NTIME[poly(t)] is
not contained in i.o.[poly(s)]SIZE[s′] ⊇ i.o.[poly(s)]P/poly.

3 Preliminaries

We assume familiarity with basic notions of complexity theory; for background see,
e.g., [Gol08; AB09]. Throughout the paper, fix any standard model of a Turing machine
(we need a fixed model since we discuss time-constructible functions). Whenever we
refer to circuits, we mean non-uniform circuit families over the De-Morgan basis (i.e.,
AND/OR/NOT gates) with fan-in at most two and unlimited fan-out, and without any
specific structural restrictions (e.g., without any limitation on their depth). Moreover,
we consider some fixed standard form of representation for circuits, where the repre-
sentation size is polynomial in the size of the circuit.

3.1 Circuit acceptance probability problem

We now formally define the circuit acceptance probability problem (or CAPP, in short); this
well-known problem is also sometimes called Circuit Derandomization, Approx Circuit
Average, and GAP-SAT or GAP-UNSAT.

9Note that the foregoing argument only follows through after the “derandomization” (i.e., for NTIME
and not for MATIME). This is the case since when dealing with probabilistic machines, it is not clear
how to define Sadv in a way that will allow a probabilistic machine without advice to decide it (since a
probabilistic machine that is given a “wrong” advice might not clearly accept or reject some inputs).

8



Definition 4 (CAPP). The circuit acceptance probability problem with parameters α, β ∈ [0, 1]
such that α > β (or (α, β)-CAPP, in short) is the following promise problem:

• The YES instances are (representations of) circuits that accept at least α of their inputs.

• The NO instances are (representations of) circuits that accept at most β of their inputs.

We define the CAPP problem (i.e., omitting α and β) as the (2/3, 1/3)-CAPP problem.

It is well-known that CAPP is complete for prBPP under deterministic polynomial-
time reductions; in particular, CAPP can be solved in deterministic polynomial time if
and only if prBPP = prP .

Proposition 5 (CAPP is equivalent to prBPP = prP). The circuit acceptance probability
problem can be solved in deterministic polynomial time if and only if prBPP = prP .

For a proof of Proposition 5 see any standard textbook on the subject (e.g. [Vad12,
Cor. 2.31], [Gol08, Exer. 6.14]). In Proposition 5 we considered the complexity of CAPP
as a function of the input size, which is the size of the (description of the) circuit.
However, following [Wil13], it can also be helpful to consider the complexity of CAPP
as a function of both the circuit size m (which corresponds to the input size) and of the
number v of input variables to the circuit. In this case, a naive deterministic algorithm
can solve the problem in time 2v · poly(m), whereas the naive probabilistic algorithm
solves the problem in time v · poly(m) ≤ poly(m).

3.2 Witness circuits and the new easy witness lemma of [MW17]

We now recall the definition of witness circuits for a proof system.

Definition 6 (verifiers and witnesses). Let t : N→N be a time-constructible, non-decreasing
function, and let L ⊆ {0, 1}∗. An algorithm V(x, y) is a t-time veri�er for L if V runs in time
at most t(|x|) and satisfies the following: For all strings x it holds that x ∈ L if and only if there
exists a witness y such that V(x, y) accepts.

Definition 7 (witness circuits). Let t : N → N be a time-constructible, non-decreasing
function, let w : N → N, and let L ⊆ {0, 1}∗. We say that a t-time verifier V has witness

circuits of size w if for every x ∈ L there exists a witness yx such that V(x, yx) accepts and
there exists a circuit Cyx : {0, 1}log(|yx |) → {0, 1} of size w(|x|) such that Cyx(i) is the ith bit
of yx. We say that NTIME[t] has witness circuits of size w if for every L ∈ NTIME[t], every
t-time verifier for L has witness circuits of size w.

In Definitions 6 and 7 we considered verifiers that are deterministic algorithms that
get the witness as an explicit input. As outlined in Section 2, in the proof we will
consider PCP verifiers (which are probabilistic algorithms, and only get oracle access to
their witness). However, we will not consider witness circuits for these PCP verifiers,
but rather for deterministic verifiers (with explicit inputs) that are derived from the PCP
verifiers (see the proof of Theorem 12 for precise details).
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Let us now state the new easy witness lemma of [MW17]. Loosely speaking, the
lemma asserts that for any two functions t(n) � s(n) with sufficient “gap” between
them, if NTIME[poly(t)] ⊆ SIZE[s], then NTIME[t] has witness circuits of size ŝ,
where ŝ(n) > s(n) is the function s with some “overhead”. To more conveniently
account for the exact parameters, we introduce some auxiliary technical notation:

Definition 8 (sufficiently gapped functions). Let γ, γ′, γ′′ ∈ N be universal constants.10 For
any function s : N → N, let s′ : N → N be the function s′(n) = (s(γ · n))γ, and let
ŝ : N→ N be the function ŝ(n) = (s′(s′(s′(n))))γ′ . We say that two functions s, t : N→ N

are su�ciently gapped if both functions are increasing and time-constructible, and s′ is also
time-constructible, and s(n) < 2n/γ/n, and t(n) ≥ (ŝ(n))γ′′ .

Lemma 9 (easy witnesses for low nondeterministic time [MW17, Lem. 4.1]). Let s, t : N→N

be sufficiently gapped functions, and assume that NTIME[O(t(n))γ] ⊂ SIZE[s], where γ is
the constant from Definition 8. Then, NTIME[t] has witness circuits of size ŝ.

3.3 Merlin-Arthur protocols

We recall the standard definition of Merlin-Arthur protocols (i.e., MA verifiers) that
receive non-uniform advice.

Definition 10 (MA verifiers with non-uniform advice). For t, ` : N → N, a set S ⊆ {0, 1}∗
is in MATIME[t]/` if there exists a probabilistic machine V, called a veri�er, such that the
following holds: The verifier V gets input x ∈ {0, 1}∗, and a witness w ∈ {0, 1}∗, and an
advice string a ∈ {0, 1}∗, and runs in time t(|x|); and there exists a sequence {an}n∈N of
advice such that |an| = `(n) and:

1. For every x ∈ S there exists w ∈ {0, 1}t(|x|) such that Pr[V(x, w, a|x|) = 1] ≥ 2/3.

2. For every x /∈ S and every w ∈ {0, 1}t(|x|) it holds that Pr[V(x, w, a|x|) = 1] ≤ 1/3.

It is common to denote by MATIME[t] the class MATIME[t]/0 (i.e., when the ver-
ifier receives no non-uniform advice). Note that MA =

⋃
c∈N MATIME[nc], and also

note that the definition of MA does not change if we insist on perfect completeness (see,
e.g., [Gol08, Exer. 6.12(2)]).

3.4 A barrier for proving “BPP = P =⇒ P 6= NP”

We note that it is impossible to prove the statement “if P = BPP then P 6= NP”
without unconditionally proving that P 6= NP .

Proposition 11 (a barrier for “derandomization implies lower bounds” statements). If the
conditional statement “BPP = P =⇒ P 6= NP” holds, then P 6= NP .

10Specifically, the values of these constants are γ = e and γ′ = 2g and γ′′ = d, where e, g, and d are the
universal constants from Lemma 4.1 in [MW17].
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Proof. Assume towards a contradiction that P = NP . Then, we have that P = BPP
(since BPP is contained in the polynomial-time hierarchy [Sip83; Lau83], and the hier-
archy collapses to P if P = NP). However, we can now use the hypothesized condi-
tional statement to deduce that P 6= NP , which is a contradiction.

4 Proof of Theorem 2

Our first step is to prove a parametrized “derandomization implies lower bounds”
theorem. This theorem is obtained by using the proof strategy of Williams [Wil13]
with general parameters, while leveraging the new easy witness lemma of Murray and
Williams [MW17]. (In their original paper, Murray and Williams [MW17] considered
two specific parameter settings.) We then prove Theorem 2 as a corollary.

4.1 A parametrized “derandomization implies lower bounds” theorem

Loosely speaking, in the following theorem we assume that CAPP can be deterministi-
cally solved in time T(m, v), and deduce that for any two functions t(n) � s(n) such

that T
(

poly(n, ŝ(n), log(t(n))), log(t(n))
)
� t(n) it holds that NTIME[poly(t(n))]

does not have circuits of size s(n).

Theorem 12 (derandomization implies lower bounds, with flexible parameters). There exist
constants c, c′ ∈N and α < 1 such that the following holds. For T : N×N→N, assume that
(1, 1/3)-CAPP on circuits of size m with at most v input variables can be solved in deterministic
time T(m, v). Let s, t : N → N be sufficiently gapped functions such that s(n) > n and for
some constant ε > 0 it holds that

T
(
(n · ŝ(n) · log(t(n)))c, α · log(t(n))

)
≤ t(n)(1−ε)·α .

Then, NTIME[t(n)c′ ] 6⊆ SIZE[s(n)].

Proof. The starting point of the proof is the non-deterministic time hierarchy [Coo72]:
For an appropriate function t′ = t′(n) (that will be determined in a moment), there
exists a set L ∈ NTIME[t′] that cannot be decided by non-deterministic machines run-
ning in time (t′)1−Ω(1). Specifically, for a sufficiently small constant α > 0, let t′(n) =

(t(n))(1−ε/2)·α, and let L ∈ NTIME[t′] \ NTIME
[
(t′)

1−ε
1−ε/2

]
.11 Now, for a sufficiently

large constant c′, assume towards a contradiction that NTIME[t(n)c′ ] ⊆ SIZE[s(n)].
Our goal is to construct a non-deterministic machine that decides L in time (t′)

1−ε
1−ε/2 ,

which will yield a contradiction.
To do so, consider the PCP verifier of [BV14] for L, denoted by V. On inputs of length

n, the verifier V runs in time poly(n, log(t′(n))), uses ` = log(t′(n)) +O(log log(t′(n)))

11Such a function exists by standard non-deterministic time hierarchy theorems (e.g., [Coo72]), since
t′(n) > nΩ(1), which implies that the gap between t′ and (t′)1−Ω(1) is sufficiently large.
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bits of randomness, and has perfect completeness and soundness (much) lower than
1/3. 12 Furthermore, using the hypothesis that NTIME[t(n)c′ ] ⊆ SIZE[s(n)] and the
“easy witness lemma” (i.e., Lemma 9), for every x ∈ L there exists a circuit Px ∈
SIZE[ŝ(n)] such that Prr[VPx(x, r) accepts] = 1. (We actually apply Lemma 9 to the
deterministic verifier V ′ that enumerates the random coins of V, which runs in time
2` · poly(n, log(t′)) = poly(t′) = poly(t). We can use the lemma since we assumed that
NTIME[t(n)c′ ] ⊆ SIZE[s(n)], for a sufficiently large c′.)

Given input x ∈ {0, 1}n, the non-deterministic machine M acts as follows. The
machine non-deterministically guesses a (description of a) circuit Px of size ŝ(n), and
constructs a circuit CPx

x : {0, 1}` → {0, 1} such that CPx
x (r) = VPx(x, r). Then, the

machine feeds the description of CPx
x as input to the CAPP algorithm that exists by the

hypothesis, and outputs the decision of the algorithm. By the properties of the PCP
verifier and of the CAPP algorithm, if x ∈ L then for some guess of Px the machine will
accept x, and if x /∈ L then for any guess of Px the machine will reject x.

To conclude let us upper-bound the running-time of the machine M. The circuit
CPx

x has ` = log(t′) + O(log log(t′)) < α · log(t) input bits, and its size is m(n) =
poly(n, log(t′)) · ŝ(n); thus, its representation size is poly(m(n)). Therefore, the cir-
cuit CPx

x can be constructed in time poly(m(n)), and the CAPP algorithm runs in time
T(m(n), `). The total running-time of the non-deterministic machine M is thus at most
T ((n · ŝ(n) · log(t(n)))c, α · log(t)), for some constant c. By our hypothesized upper-
bound on T, the running time of M is at most t(n)(1−ε)·α = (t′)

1−ε
1−ε/2 , which yields a

contradiction.

4.2 Theorem 2 as a corollary of Theorem 12

We now prove Theorem 2 as a corollary of Theorem 12. Recall that in Theorem 2 we
asserted that prBPP = prP implies that NTIME[n f (n)] 6⊆ P/poly for “essentially”
any super-constant function f . We now specify exactly what this means. In the proof,
instead of proving that NTIME[n f (n)] 6⊆ P/poly, we will actually prove the stronger
statement NTIME[n f (n)] 6⊆ SIZE[ng(n)], where g(n) � f (n) and g(n) = ω(1). There-
fore, the proof works for any f such that a suitable g exists. We note in advance that
this minor technical detail imposes no meaningful restrictions on f (see next).

Definition 13 (admissible functions). We say that a function f : N → N is admissible if
f is super-constant (i.e. f (n) = ω(1)), and if there exists another super-constant function
g : N→N that satisfies the following: The function g is super-constant, and t(n) = n f (n) and
s(n) = ng(n) are sufficiently gapped, and ŝ(n) = no( f (n)).

Essentially any increasing function f (n) = ω(1) such that f (n) ≤ n is admissi-
ble, where the only additional constraints that the admissibility condition imposes are
time-constructibility of various auxiliary functions (we require t and s to be sufficiently

12Note that the only upper-bound that we need on the number of oracle queries issued by V is the trivial
bound given by the running time of V.
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gapped, which enforces time-constructibility constraints); for a precise (and tedious)
discussion, see Appendix A. We can now formally state Theorem 2 and prove it:

Corollary 14 (Theorem 2, restated formally). Assume that (1, 1/3)-CAPP can be solved by
a deterministic algorithm with running time T(m, v) ≤ 2(1−ε)·v · poly(m), for some constant
ε > 0. Then, for every admissible function f there exists a set in NTIME[nO( f (n))] \ P/poly.

Recall that by Proposition 5, if prBPP = prP , then there exists a deterministic
algorithm for (1, 1/3)-CAPP running in time poly(m) (i.e., polynomial in the size of the
circuit). Therefore, Theorem 1 follows from Corollary 14.

Proof of Corollary 14. Since f is admissible, there exists a function g that satisfies the
requirements of Definition 13. We use Theorem 12 with the functions t(n) = n f (n) and
s(n) = ng(n).

Let us verify that the hypotheses of Theorem 12 hold. Since f is admissible we have
that s and t are sufficiently gapped, and indeed we also have that s(n) > n. Also, for
any constants c ∈N and α < 1 it holds that

T
(
(n · ŝ(n) · log(t(n)))c, α · log(t(n))

)
< poly(ŝ(n)) · poly log(t(n)) · t(1−ε)·α

< n(1−ε+o(1))· f (n) ,

which is t(n)(1−Ω(1))·α. (The first inequality relies on the hypothesis regarding T and on
the fact that ŝ is super-constant, and the second equality relies on the hypothesis that f
is admissible, which implies that ŝ(n) = no( f (n)).)

Thus, Theorem 12 implies that there exists a set in NTIME[nO( f (n))] \ SIZE[ng(n)].
Since g(n) = ω(1), in particular this set does not belong to P/poly.

Additional relaxations of the hypotheses in Theorem 12. Since the proof of Theo-
rem 12 relies on the strategy of [Wil13], it is well-known that the hypothesis of the
theorem can be further relaxed. We now mention two (known) relaxations, in the hope
that they might be useful in some settings (e.g., when we are interested in proving lower
bounds for restricted circuit classes; see Footnote 3).

First, we do not have to unconditionally assume that the CAPP algorithm exists: It
suffices to assume that the algorithm exists under the hypothesis that NTIME[t(n)c′ ] ⊆
SIZE[s(n)]. And secondly, since we are using the CAPP algorithm as a sub-routine of
a non-deterministic machine, the CAPP algorithm itself can also be non-deterministic.
(However, the non-determinism should help the algorithm accept every circuit with
acceptance probability one, and reject every circuit with low acceptance probability; it
is not a-priori clear how non-determinism can be useful for such a task.)

5 Proof of Theorem 3

In this section we prove Theorem 3. Throughout the section, for a set S ⊆ {0, 1}∗ and
n ∈N, we denote Sn = S ∩ {0, 1}n.
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Recall that the conclusion in Theorem 3 is that there exists a set S such that for every
polynomial-sized circuit family, and every sufficiently large n ∈ N, the family fails to
decide S on some input length in the interval [n, nω(1)]. Our actual conclusion will be
slightly stronger: We will conclude that for every sufficiently large n ∈ N, the circuit
family fails on at least one of the “end-points” of the interval; that is, either on input
length n, or on input length q(n) = nω(1) (or on both). This is equivalent to saying that
there does not exist an infinite set of pairs (n, q(n)) such that the circuit family correctly
decides S on both input lengths in the pair. This leads to the following definition:

Definition 15 (a stronger notion of infinitely-often computation). For s, q : N → N and
S ⊆ {0, 1}∗, we say that S ∈ i.o.[q]SIZE[s] if there exists an infinite set I ⊆ N and a circuit
family {Cn}n∈N of size at most s such that for every n ∈ I, it holds that:

1. The circuit Cn : {0, 1}n → {0, 1} computes Sn.

2. The circuit Cq(n) : {0, 1}q(n) → {0, 1} computes Sq(n).

Indeed, Definition 15 implies the following: If S /∈ i.o.[q]SIZE[s], then every circuit
family {Cn} of size s that tries to decide S fails, for every sufficiently large n ∈N, either
on inputs on size n or on inputs of size q(n) (or on both).

The starting point of the proof of Theorem 3 is Murray and Williams’ [MW17, Thm
3.1] strengthening of Santhanam’s [San09] circuit lower bound. Following [MW17],
we say that a function s : N → N is a circuit-size function if s is increasing, time-
constructible, and for all sufficiently large n ∈N it holds that s(n) < 2n/(2n).

Theorem 16 (Murray and Williams’ [MW17, Thm 3.1] strengthening of Santhanam’s [San09]
lower bound). Let s be a super-linear circuit-size function, and let t = poly(s(poly(s)))
(for sufficiently large polynomials that do not depend on s). Then, there exists a set S ∈
MATIME[t]/O(log(s)) such that S /∈ i.o.[poly(s)]SIZE[s].

As mentioned in Section 2.3, the first observation in the proof is that if prBPP =
prP then we can derandomize MA verifiers that receive non-uniform advice.

Proposition 17 (derandomization of MA with advice). If prBPP = prP , then for any t, ` :
N→N such that t is time-constructible it holds that MATIME[t]/` ⊆ NTIME[poly(t)]/`.

Proof. Let S be a set in MATIME[t]/`, let V be the MATIME[t]/` verifier for S, and
let {an}n∈N be a sequence of “good” advice that allows V to decide S. We want to
construct a non-deterministic machine M that runs in time poly(t) and decides S with
` bits of non-uniform advice.

Given input x ∈ {0, 1}n and advice an, the machine M guesses a witness w ∈
{0, 1}t(n), and constructs a circuit C = CV,x,w,an : {0, 1}t(n) → {0, 1} that gets as in-
put r ∈ {0, 1}t(n) and computes V(x, w, r, an). Since V is a verifier for S and an is the
“good” advice for V, if x ∈ S then there exists w such that the acceptance probability
of C is at least 2/3, and if x /∈ S then for any w the acceptance probability of C is at
most 1/3. Since prBPP = prP (and using Proposition 5), the machine M can dis-
tinguish between the two foregoing cases using a deterministic polynomial-time CAPP

14



algorithm. The running time of the machine M is dominated by the running time of the
latter algorithm, which is at most poly(t(n)).

The second observation in the proof is that if NTIME[t]/` is not contained in a non-
uniform class of circuits, then NTIME[O(t)] (i.e., without the non-uniform advice) is
also not contained in a (related) non-uniform class of circuits. Moreover, this assertion
still holds if the “separation” between the classes is in the sense of Definition 15.

We first prove a simpler form of this statement, which showcases the main idea but
is much less cumbersome. In the following statement, we only consider a single bit of
advice, and do not refer to separations in the sense of Definition 15.

Proposition 18 (eliminating the advice). Let s0, s, t : N → N such that t is increasing, and
for all sufficiently large n ∈ N it holds that s0(n) ≥ s(n + 1). If NTIME[t]/1 6⊆ SIZE[s0],
then NTIME[O(t)] 6⊆ SIZE[s].

Proof. We prove the contrapositive statement: If NTIME[O(t)] ⊆ SIZE[s], then
NTIME[t]/1 ⊆ SIZE[s0]. To do so, fix any S ∈ NTIME[t]/1, and let us construct a
circuit family of size s0 that decides S.

To construct the circuit family we consider an auxiliary set Sadv, which is defined as
follows. Let M be a t-time non-deterministic machine and let {an} be a sequence of ad-
vice bits such that M correctly decides S when given advice {an}. Let Sadv be the set of
pairs (x, σ), where x ∈ {0, 1}∗ and σ ∈ {0, 1}, such that M (non-deterministically)
accepts x when given advice σ. Note that Sadv ∈ NTIME[O(t)], because a non-
deterministic machine that gets input (x, σ) simulate the machine M on input x with
advice σ and decide according to the output of M.

Relying on the hypothesis that NTIME[O(t)] ⊆ SIZE[s], there exists a circuit family
{Cn} of size s such that each Cn decides Sadv

n . By hard-wiring the “correct” advice bit
an in place of the last input bit into every Cn, we obtain a circuit family {C′n} such that
each C′n decides Sn, and its size is at most s(n + 1) ≤ s0(n).

The following proposition is a stronger form of Proposition 18, which considers
possibly long advice strings, and refers to separations in the sense of Definition 15.

Proposition 19 (eliminating the advice). Let s0, s, `, t, q : N → N be functions such that t
is super-linear and increasing, and q, s0 and s are increasing, and the mapping 1n 7→ 1`(n) is
computable in time O(n + `(n)). Assume that for every sufficiently large n ∈ N it holds
that `(n) < n/2 and s0(n) ≥ s(2n) and s0(q(n)) ≥ s(2q(2n)). Further assume that
NTIME[t]/` 6⊆ i.o.[q]SIZE[s0]. Then, NTIME[O(t)] 6⊆ i.o.[2q]SIZE[s].

We comment that a statement that is more general than the one in Proposition 19
can be proved, foregoing some of the requirements (e.g., on `) while allowing potential
degradation in the parameters of the conclusion. Since the statement of Proposition 19
suffices for our parameter setting, and for simplicity, we avoid such generalizations.
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Proof of Proposition 19. Assuming that NTIME[O(t)] ⊆ i.o.[2q]SIZE[s], we prove that
NTIME[t]/` ⊆ i.o.[q]SIZE[s0]. Fixing any S ∈ NTIME[t]/`, let us construct a circuit
family of size s0 that decides S infinitely-often on inputs of length n and q(n).

The proof follows the same approach as the proof of Proposition 18, but the im-
plementation is more cumbersome. The source of trouble is that we assume that
Sadv ∈ i.o.[2q]SIZE[s] (rather than Sadv ∈ SIZE[s]), which only guarantees the existence
of an infinite set I ⊆ N of input lengths for which Sadv has small circuits. In particular,
we have no guarantee that every n ∈ I is of the form m + `(m), which is what we need
to deduce that Sm has small circuits. To overcome this problem, we will “embed” all
sufficiently short pairs (x, σ) (where |σ| = `(|x|) and |x| + |σ| < n) into {0, 1}n, and
define Sadv

n such that deciding Sadv
n allows to determine the output of M on input x with

advice σ for all sufficiently short pairs (x, σ). Details follow.
Consider the following set Sadv. Let M be a t-time non-deterministic machine and let

{an} be a sequence of advice strings of length |an| = `(n) such that M correctly decides
S when given advice {an}. For every n ∈N, the set Sadv

n will include representations of
all pairs (x, σ), where |σ| = `(|x|) and |x|+ 2|σ| < n, such that M accepts x when given
advice σ. Specifically, we define Sadv

n as the set of all n-bit strings of the form 1t0|σ|1xσ,
where t = n− (|x|+ 2|σ|+ 1), such that M accepts x when given advice σ.13

Note that Sadv ∈ NTIME[O(t)]. This is the case since a non-deterministic machine
that gets input z ∈ {0, 1}n can first verify that z can be parsed as z = 1t0|σ|1xσ such that
|σ| = `(|x|) (and reject z if the parsing fails); and then simulate the machine M on input
x with advice σ, in time O(t(|x|)) = O(t(n)), and decide according to the output of M.
Now, since we assume that NTIME[O(t)] ⊆ i.o.[2q]SIZE[s], there exists an infinite set
I ⊆N and a circuit family {Cn} of size s such that for every n ∈ I:

1. Cn : {0, 1}n → {0, 1} correctly computes Sadv
n ; and

2. C2q(n) : {0, 1}2q(n) → {0, 1} correctly computes Sadv
2q(n).

We transform {Cn} into a circuit family of size s0 that decides S infinitely-often on
inputs of length both n and q(n). To do so, we rely on the following simple claim:

Claim 19.1. Let n, m ∈N such that m + 2`(m) < n. Assume that there exists a circuit of size
s(n) that decides Sadv

n . Then, there exists a circuit of size s(n) that decides Sm.

Proof. Let Cn be the circuit of size s(n) for Sadv
n . The circuit Cm for Sm is obtained by

hard-wiring into Cn the “correct” advice am instead of the last `(m) input bits, and the
correct initial padding 1n−m−2`(m)−10`(m)1 instead of the first n−m− `(m) input bits. �

For every n ∈ I, let m = m(n) be the largest integer such that m+ 2`(m) + 1 ≤ n. Let
I′ = {m(n)}n∈N, and note that I′ is infinite. For every sufficiently large m ∈ I′, relying
on the fact that m = m(n) for some n ∈ I and on Claim 19.1, we have that:

1. There exists a circuit Cm : {0, 1}m → {0, 1} of size s(n) ≤ s0(dn/2e) ≤ s0(m) that
decides Sm. (We relied on the fact that m ≥ n/2, since `(m) < m/2.)

13The 0|σ| term facilitates the parsing of the suffix of the n-bit string as a pair xσ.
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2. There exists a circuit Cq(m) : {0, 1}q(m) → {0, 1} of size s0(q(m)) that decides Sq(m).
To see this, recall that there exists a circuit C2q(n) of size s(2q(n)) that decides
Sadv

2q(n). We can invoke Claim 19.1 because q(m) + 2`(q(m)) < 2q(m) < 2q(n).
Also, relying on the fact that m ≥ n/2 and on the hypotheses regarding s0, s and
q, we have that s(2q(n)) ≤ s(2q(2m)) ≤ s0(q(m)).

It follows that S ∈ i.o.[q]SIZE[s0].

We now combine the foregoing ingredients into a proof of Theorem 3. The theorem
that we obtain is similar in form to Theorem 12: Assuming a sufficiently strong deran-
domization hypothesis (in this case, that prBPP = prP), and taking two functions t
and s with sufficient “gap” between them, we deduce that NTIME[t] 6⊆ i.o.[s0]SIZE[s],
where s0 is a function moderately larger than s. (The fact that s0 > s is no coincidence;
see discussion after the proof of Theorem 20.)

Theorem 20 (Theorem 3, restated). There exists a constant ε > 0 such that the following holds.

• Let s : N → N be an increasing, super-linear and time-constructible function such that
for all sufficiently large n ∈N it holds that s(n) ≤ 2ε·n and that s(2n) ≤ s(n)2.

• Let t = poly(s(poly(s))), for sufficiently large polynomials (that do not depend on s).

• Let s0 : N → N be an increasing and time-constructible function such that for all
sufficiently large n ∈N it holds that s0(n) ≥ s(n2)2 and that s0(2n) ≤ s0(n)2.

Assume that prBPP = prP . Then, NTIME[t] 6⊆ i.o.[poly(s0)]SIZE[s].

Note that if the function s in Theorem 20 satisfies s(n2) < s(n)k, for a sufficiently
large constant k ∈ N, then we can use the function s0(n) = s(n)2k, and deduce that
NTIME[t] 6⊆ i.o.[poly(s)]SIZE[s].

Proof of Theorem 20. Let t0 = poly(s0(poly(s0))), for sufficiently large polynomials,
and let ` = O(log(s0)) (the universal constant hidden in the O-notation is the one from
Theorem 16). By Theorem 16, there exists S ∈ MATIME[t0]/` \ i.o.[(s0)c]SIZE[s0], for a
sufficiently large constant c ∈N. By Proposition 17, and relying on the hypothesis that
prBPP = prP , it holds that S ∈ NTIME[poly(t0)]/` \ i.o.[(s0)c]SIZE[s0].

We now want to use Proposition 19 to deduce that NTIME[poly(t0)] is not contained
in i.o.[poly(s0)]SIZE[s]. To do so, we just need to verify that the functions `, s, s0, and (s0)c

satisfy the hypothesis of Proposition 19. This is indeed the case since for all sufficiently
large n ∈ N it holds that `(n) < n/2 (assuming that ε is sufficiently small); and since
s0(n) > s(n2)2 ≥ s(2n), and s(2s0(2n)c) ≤ s(s0(n)2c)2 ≤ s0(s0(n)c).

One advantage of Theorem 20, in comparison to Theorem 12, is that the required
“gap” between s and t (in order to conclude that NTIME[t] 6⊆ i.o.[poly(s)]SIZE[s]) de-
pends on s in a milder way. In particular (and ignoring polynomial factors, for simplic-
ity), in Theorem 23 we need that t will be larger than s ◦ s (i.e., than two compositions
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of s), whereas in Theorem 12 we need that t will be larger than ŝ ≈ s ◦ s ◦ s (i.e., than
three compositions of s).

As mentioned before the statement of Theorem 20, the “gap” between the input
lengths n and q(n) = poly(s0(n)) (on which any size-s circuit family is guaranteed to
fail) in Theorem 20 is larger than the function s that bounds the size of the circuits. This
is no coincidence: If the gap function q would have been significantly smaller than the
bound s on the circuit size, then we would have obtained an “almost-everywhere” lower
bound (for circuits of size about s(q−1)).14
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Appendix A Sufficient conditions for admissibility

The point of the current appendix is to show that essentially any increasing function
f (n) = ω(1) such that f (n) ≤ n is admissible (in the sense of Definition 13).

Claim 21. Let f (n) = ω(1) be any increasing function such that f (n) ≤ n for all n, and
t(n) = n f (n) is time-constructible, and s(n) = nlog( f (log(n))) is time-constructible, and s′(n) is
time-constructible. Then, f is admissible.

Proof. Let g(n) = log( f (log(n))) and let s(n) = ng(n). We need to verify that g is super-
constant (which holds because f is super-constant), and that t and s are sufficiently
gapped, and that ŝ(n) = no( f (n)). To see that t and s are sufficiently gapped, first note
that both functions are increasing (since f is increasing, and hence g is also increasing)
and are time-constructible, as is s′ (we assumed time-constructibility in the hypothesis).
Also note that s(n) ≤ nlog log(n) < 2n/γ/n.

Thus, it is left to verify that ŝ(n) = no( f (n)). The proof of this fact amounts to the
following elementary calculation. First note that

s′(n) = (s(γ · n))γ = (γ · n)γ·log( f (log(γ·n))) < nlog2( f (log2(n))) .

Thus, for any function k = k(n) and constant c ≥ 2 such that k(n) ≤ logc( f (log3c(n)))
(which in particular implies that k(n) ≤ logc(n)), we have that

s′(nk) < nk·log2( f (log2(nk))) ≤ nlog2c( f (log3c(n))) . (A.1)

In particular, using Eq. (A.1) with k(n) = log2( f (log2(n))) and c = 2, we deduce
that s′(s′(n)) < nlog4( f (log6(n))). Then, using Eq. (A.1) again with k(n) = log4( f (log6(n)))
and c = 4, we deduce that s′(s′(s′(n))) < nlog8( f (log12(n))). Therefore, we have that
ŝ(n) < nγ′·log8( f (log12(n))) < nγ′·poly log( f (n)) = no( f (n)).

Appendix B An alternative proof of Theorem 1

In this section we present an alternative proof of Theorem 1, which does not rely on the
work of Murray and Williams [MW17], but rather on the work of Santhanam [San09].
The proof structure is very similar to the proof of Theorem 3 (which was described
in Section 2.3), but uses as a starting point a generalization of the circuit lower bound
proved by Santhanam [San09], instead of its subsequent strengthening by Murray and
Williams [MW17]. Specifically, the starting point of the proof is the following:

Theorem 22 (a generalization of [San09, Thm. 1]). Let s : N → N be an increasing, super-
linear and time-computable function such that for all sufficiently large n ∈ N it holds that
s(3n) ≤ s(n)3. Then, for t : N → N such that t(n) = poly(s(poly(s(n)))) it holds that
MATIME[t]/1 6⊆ SIZE[s].
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The proof of Theorem 22 imitates the original argument from [San09], but uses more
general parameters. We include the full proof for completeness, but since it requires no
new significant ideas, we defer its presentation to the end of the appendix. The alterna-
tive proof of Theorem 1 follows by combining Theorem 22, Proposition 17 (instantiated
with the value ` = 1), and Proposition 18.

Theorem 23 (Theorem 1, an alternative technical statement). Let s : N→N be an increasing,
super-linear and time-computable function such that for all sufficiently large n ∈ N it holds
that s(3n) ≤ s(n)3, and let t : N→N such that t(n) = poly(s(poly(s(n)))), for sufficiently
large polynomials. Assume that prBPP = prP . Then, NTIME[t] 6⊆ SIZE[s].

Proof. Let s0 = s3, and let t0 = poly(s0(poly(s0))), for sufficiently large polynomials.
According to Theorem 22, there exists a set S in MATIME[t0]/1 such that S /∈ SIZE[s0].
By Proposition 17, and relying on the hypothesis that prBPP = prP , it holds that
S ∈ NTIME[t1]/1 \ SIZE[s0], where t1 = poly(t0). Using Proposition 18, it holds that
NTIME[t] 6⊆ SIZE[s1], where t = O(t1) = poly(s(poly(s))) and s1(n) = s0(n − 1).
Finally, since s is increasing and s(n) ≤ s(dn/3e)3, we have that s1(n) = s0(n − 1) ≥
s0(dn/3e) ≥ s(n), and hence NTIME[t] 6⊆ SIZE[s].

It is just left to detail the proof of Theorem 22. The first technical ingredient in the
proof is the PSPACE -complete set of Trevisan and Vadhan [TV07]. We use this set, but
instead of relying on the fact that the set is PSPACE -complete, we will use padding to
claim that the set is complete for DSPACE[nω(1)] under nω(1)-time reductions.

Lemma 24 (scaling the PSPACE -complete set of [TV07]). There exists a set LTV ⊆ {0, 1}∗
and a probabilistic polynomial-time oracle Turing machine M that satisfy the following:

1. Let t : N → N be a super-linear, time-computable function. Then, for every set L ∈
DSPACE[t] there exists a deterministic Turing machine RL that runs in time poly(t)
such that for every x ∈ {0, 1}∗ it holds that x ∈ L ⇐⇒ RL(x) ∈ LTV.

2. On input x ∈ {0, 1}∗, the machine M only issues queries of length |x|.

3. For any x ∈ LTV it holds that Pr[M1LTV (x) = 1] = 1, where 1LTV : {0, 1}n → {0, 1} is
the indicator function of LTV ∩ {0, 1}n.

4. For any x /∈ LTV and any f : {0, 1}n → {0, 1} it holds that Pr[M f (x) = 0] ≥ 2/3.

Proof. We take LTV to be the PSPACE -complete set from [San09, Lem. 12], which is
the same set constructed in [TV07]. Items (2) – (4) follow immediately from the original
statement in [San09].15 Item (1) follows since LTV is PSPACE -complete, and using a
padding argument. Specifically, for any t and L, consider the machine RL that combines
a reduction of L to L′ = {(x, 1t) : x ∈ L} with a reduction of L′ to LTV. The first
reduction maps x 7→ (x, 1t), and since L′ ∈ PSPACE , there exists a second reduction

15The original statement asserts that any x /∈ LTV is rejected with probability at least 1/2 (rather than
2/3), but this probability can be amplified to 2/3 using standard error-reduction.
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of L′ to LTV that can be computed in time poly(t + |x|) < poly(t) (the inequality is since
t is super-linear).

Proof of Theorem 22. Let t0 : N → N such that t0(n) = s4(n), and let t1 = poly(t0)
and t = t2 = poly(t0(poly(t0))), for sufficiently large polynomials. Let LTV be the set
from Lemma 24. Our goal is to prove that there exists a set in MATIME[t2]/1 that is
not in SIZE[t1/4

0 ]. The proof proceeds by a case analysis.

Case 1: LTV ∈ SIZE[t0]. By a standard diagonalization argument, there exists a set
Ldiag ∈ DSPACE[t1] \SIZE[t0]. 16 Our main goal now will be to prove that DSPACE[t1] ⊆
MATIME[t2], which will imply that Ldiag ∈ MATIME[t2] \ SIZE[t0]. (Indeed, in this
case we are proving a stronger result, since the MA verifiers do not need advice, and
since the circuits are of size t0 rather than s = t1/4

0 .)
To do so, let L ∈ DSPACE[t1], and consider the following MA verifier for L. On

input x ∈ {0, 1}n, the verifier computes x′ = RL(x), where RL is the machine from
Lemma 24. Note that n′ = |x′| ≤ poly(t1(n)), and that x ∈ L ⇐⇒ x′ ∈ LTV. Now,
the verifier parses the witness w ∈ {0, 1}poly(t0(n′)) as a description of a circuit C :
{0, 1}n′ → {0, 1} of size t0(n′), and runs the machine M from Lemma 24 on input x′,
while answering each oracle query of M using the circuit C.

Note that, since LTV ∈ SIZE[t0], there exists a circuit C over n′ input bits of size t0(n′)
that correctly computes LTV on inputs of length n′. Therefore, by Lemma 24, when x ∈ L
there exists a witness such that the verifier accepts x with probability one, whereas the
verifier rejects any x /∈ L with probability at least 2/3, regardless of the witness. The
total running time of the verifier is dominated by the time it takes to simulate M using
the circuit C, which is at most poly(n′) · poly(t0(n′)) ≤ t2(n).

Case 2: LTV /∈ SIZE[t0]. In this case we show an explicit set Lpad, which will be a
padded version of LTV, such that Lpad can be decided in MATIME[t2] with one bit of
advice, but cannot be decided by circuits of size s = t1/4

0 . To do so, let szTV : N → N

be such that szTV(n) is the minimum circuit size for LTV
n = LTV ∩ {0, 1}n. Also, for any

integer m, let p(m) = 2blog(m)c be the largest power of two that is not larger than m, and
let n(m) = m− p(m). We think of n(m) as the “effective input length” indicated by m,
and on p(m) as the length of padding. We define the set Lpad as follows:

Lpad =
{
(x, 1p) : x ∈ LTV, and |x| = n(|x|+ p),

and t0(|x|+ p) ≤ szTV(|x|)3 < t0(|x|+ 2p)
}

.

Let us first see that Lpad cannot be decided by circuits of size t1/4
0 . Assume towards

a contradiction that there exists a circuit family {Cm} of size t1/4
0 that decides Lpad

m

16For example, Ldiag = {x : C|x|(x) = 1}, where Cn is the lexicographically-first circuit over n bits
of size at most t2

0(n) that decides a set whose circuit complexity is more than t0(n). The proof that
Ldiag ∈ DSPACE[t1] follows the well-known idea used in Kannan’s theorem (see, e.g., [Juk12, Lem. 20.12]).
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correctly for every m. Since LTV /∈ SIZE[t0], there exists an infinite set I ⊆ N such that
for every n ∈ I it holds that szTV(n) > t0(n). For a sufficiently large n ∈ I, we will
construct a circuit C′n : {0, 1}n → {0, 1} of size less than szTV(n) that computes LTV

n ,
which yields a contradiction to the definition of szTV.

Specifically, consider the circuit C′n : {0, 1}n → {0, 1} that acts as follows. Let p be
a power of two such that t0(n + p) ≤ szTV

3(n) < t0(n + 2p); there exists such a p since
t0(n + 2dlog(n)e) ≤ t0(n)3 < szTV

3(n). The value of this p is hard-coded into C′n. Given
x ∈ {0, 1}n, the circuit C′n pads x with 1p, simulates the circuit Cm on (x, 1p) (where
m = n + p), and outputs Cm(x, 1p). By the definition of Lpad it holds that C′n correctly
computes LTV

n . The size of C′n is dominated by the size of Cm, and is thus at most
O(t0(n + p)1/4) = o(t0(n + p)1/3). Since t0(n + p)1/3 ≤ szTV(n) and n is sufficiently
large, the size of C′n is less than szTV(n), which yields a contradiction.

Let us now see that Lpad can be decided by an MA verifier that runs in time t2 and
uses one bit of advice. Given an input z of length m, the advice bit is set to one if and
only if Lpad

m 6= ∅; if the advice is zero, the verifier immediately rejects. Otherwise, the
verifier computes n = n(m) and p = p(m), and parses the input z as (x, 1p) where
|x| = n (if the verifier fails to parse the input, it immediately rejects). The verifier
parses the witness w ∈ {0, 1}poly(t0(n+2p)) as a circuit C : {0, 1}n → {0, 1} of size at most
t0(n + 2p)1/3, and emulates the machine M from Lemma 24 on input x, answering each
oracle query of M using the circuit C. The verifier outputs the decision of M.

Since szTV(n) < t0(n + 2p)1/3, there exists a circuit C of size at most t0(n + 2p)1/3

that computes LTV
n . For any z ∈ Lpad, when the witness represents this circuit, the

verifier accepts z with probability one. Also, for any z /∈ LTV, the verifier rejects x with
probability 2/3, regardless of the witness. Finally, note that the running time of the
verifier is dominated by the time that it takes to run the machine M while simulating
the oracle answers, which is at most poly(n) · poly(t0(2m)) ≤ t2(m).
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