Proving that $p r B P P=p r P$ is as hard as proving that "almost $N P$ " is not contained in $P /$ poly*

Roei Tell ${ }^{\dagger}$

January 5, 2019

Abstract

What circuit lower bounds are necessary in order to prove that promise- $\mathcal{B P P}=$ promise-P? We show that the recent breakthrough result of Murray and Williams (STOC 2018) can be used to show a dramatic strengthening of the previouslyknown answer to this question. Specifically, we show that if promise- $\mathcal{B P P}=$ promise-P , then NTIME[nf(n)] $\not \subset \mathcal{P} /$ poly, for essentially any $f(n)=\omega(1)$.

We also prove several technical strengthenings of this result, which use different proof strategies than the one employed by Murray and Williams. In particular: 1. We prove that if promise $-\mathcal{B P} \mathcal{P}=$ promise- \mathcal{P}, then for essentially any $s: \mathbb{N} \rightarrow$ \mathbb{N} it holds that $N T I M E\left[s^{O(1)} \circ s^{O(1)}\right] \nsubseteq S I Z E[s]$. Moreover, we show that the failure of size-s circuits to compute the "hard" functions happens in any interval of length $\operatorname{poly}(s(\operatorname{poly}(n)))$). (Directly invoking the Murray-Williams tools yields three compositions of s instead of two, and does not yield the guarantee of failure in any small interval.) 2. We prove that under the weaker hypothesis $\mathcal{B P P}=\mathcal{P}$ (i.e., without the promise), one of the following holds: Either for essentially any $s: \mathbb{N} \rightarrow \mathbb{N}$ matrices over \mathbb{Z} does not have polynomial-sized arithmetic circuits. This uses a well-known idea of Kabanets and Impagliazzo (2004). Lastly, we present an alternative proof of the main result, which only relies on a generalization of the well-known lower bound of Santhanam (SICOMP, 2009).

[^0]
Contents

1 Introduction 1
1.1 The main new result 1
1.2 Strengthening the conclusion of Theorem 2 3
1.3 Weakening the hypothesis of Theorem 2 4
1.4 The meaning of the results in this paper 4
1.5 Organization 6
2 Overviews of the proofs 6
2.1 Proof overview for Theorem 2 6
2.2 Proof overview for Theorem 3 8
2.3 Proof overview for Theorem 4 9
3 Preliminaries 10
4 Proof of Theorems 1 and 2 13
4.1 A parametrized "derandomization implies lower bounds" theorem 13
4.2 Theorems 1 and 2 as corollaries 15
5 Proof of Theorem 3 16
6 Proof of Theorem 4 20
Acknowledgements 22
Appendix A An alternative proof of Theorem 2 24
Appendix B Sufficient conditions for admissibility 27

1 Introduction

The $\mathcal{B P} \mathcal{P}=\mathcal{P}$ conjecture asserts that any decision problem that can be efficiently solved using randomness (while allowing for a small error) can also be efficiently solved deterministically. In other words, the conjecture asserts that randomness is not needed to efficiently solve decision problems. This conjecture is central to the complexity-theoretic study of the role of randomness in computation.

The $\mathcal{B P} \mathcal{P}=\mathcal{P}$ conjecture is often interpreted as an algorithmic problem, namely the problem of explicitly constructing efficient deterministic algorithms that simulate randomized algorithms. In fact, a version of the conjecture is equivalent to the conjectured existence of an algorithm for a single, specific problem (i.e., the circuit acceptance probability problem; see Proposition 7). However, as will be discussed next, it has also been known for at least two decades that the conjecture is actually intimately related to circuit lower bounds; that is, to lower bounds for non-uniform models of computation.

Informally, following a very recent breakthrough by Murray and Williams [MW18], the main result in this paper considerably strengthens the knowns connection between the $\mathcal{B P} \mathcal{P}=\mathcal{P}$ conjecture and circuit lower bounds. To present the new result, let us first spell out the previously-known connections:

- On the one hand, any proof of sufficiently strong circuit lower bounds would also prove the $\mathcal{B P} \mathcal{P}=\mathcal{P}$ conjecture. Specifically, if there is a function in \mathcal{E} that requires exponential-sized circuits, then $\mathcal{B P} \mathcal{P}=\mathcal{P}$ (and even $p r \mathcal{B} \mathcal{P} \mathcal{P}=p r \mathcal{P}$, i.e. the promise-problem versions of $\mathcal{B P} \mathcal{P}$ and of \mathcal{P} are equal; see [IW99], which relies on the hardness-randomness paradigm [Yao82; BM84; NW94]).
- On the other hand, any proof that pr $\mathcal{P}=p r \mathcal{B P} \mathcal{P}$ implies long-sought circuit lower bounds. As a prominent example, any proof that $\operatorname{prB\mathcal {P}\mathcal {P}}=p r \mathcal{P}$ implies that there exists a function in $\mathcal{N E X} \mathcal{P}$ that cannot be computed by any polynomialsized circuit family [BFT98]. ${ }^{1}$ In fact, the latter circuit lower bound follows even from much weaker hypotheses (e.g., it follows from the hypothesis that $\mathcal{M A} \neq$ $\mathcal{N E X}$; see, e.g., [IKW02; Wil13]).

1.1 The main new result

The starting point of the current work is the observation that an immediate corollary of a result from the recent work of Murray and Williams [MW18, Thm 1.2] is the following: If $\operatorname{pr\mathcal {BP}}=p r \mathcal{P}$, then there exists a function in $\left.\operatorname{NTIME[n^{\text {poly}}\operatorname {log}(n)}\right]$ (rather than $\mathcal{N E X P}$) that cannot be computed by any polynomial-sized circuit family. This is a dramatic (almost exponential) strengthening of previously-known results (i.e., of [BFT98; IKW02]), and we believe that it is a fundamental result that is worth spelling out and highlighting. Furthermore, this result can even be further strengthened. In particular,

[^1]by using the proof approach of [MW18] while instantiating their technical tools with different parameters, we get the following:

Theorem 1 (main theorem; informal). If prBPP $=p r \mathcal{P}$, then, for essentially any superconstant function $f(n)=\omega(1)$, there exists a set in NTIME $\left[n^{f(n)}\right] \backslash \mathcal{P} /$ poly.

One might a-priori hope to strengthen the conclusion of Theorem 1 by improving
 then $\mathcal{N P} \nsubseteq \mathcal{P} /$ poly (and $\mathcal{P} \neq \mathcal{N} \mathcal{P}$)". However, such a result cannot be proved without unconditionally proving that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, since any proof of the conditional
 (see Proposition 13). Therefore, the conclusion of Theorem 1 is optimal in this sense.

Theorem 1 is a special case of a more general "derandomization implies lower bounds" result that follows using the tools of Murray and Williams [MW18]. In this general result, the circuit lower bound in the conclusion can be parameterized:

Theorem 2 (a generalized version of Theorem 1; informal, see Corollary 16). There exists $\epsilon>0$ such that for any time-computable s: $\mathbb{N} \rightarrow \mathbb{N}$ satisfying $n<s(n)<2^{\epsilon \cdot n}$ it holds that

$$
p r \mathcal{B P P}=p r \mathcal{P} \Longrightarrow N T I M E\left[s^{\prime} \circ s^{\prime} \circ s^{\prime}\right] \nsubseteq S I Z E[s],
$$

where $s^{\prime}=\operatorname{poly}(s(O(n)))$.
Indeed, Theorem 1 follows as a special case of Theorem 2 by using $s(n)=n^{\omega(1)}$ (in which case $s^{\prime} \circ s^{\prime} \circ s^{\prime}=n^{\omega(1)}$ and SIZE[s] $\supset \mathcal{P} /$ poly; see Corollary 18). The hypothesis of Theorem 2 can also be significantly relaxed, since its proof relies on Williams' [Wil13] celebrated proof strategy (which is well-known to support such relaxations). For example, the theorem holds under the hypothesis $p r-c o \mathcal{R} \mathcal{P} \subseteq p r \mathcal{N} \mathcal{P}$, and also under the hypothesis that there exists a "non-trivial" algorithm for the Circuit Acceptance Probability Problem (CAPP) (i.e., an algorithm that approximates the acceptance probability of a circuit of size m with v variables in time $2^{\cdot 99 \cdot v} \cdot \operatorname{poly}(m)$). See Section 4 for precise details of these relaxations.

We also show several technical improvements of Theorem 2, using proof approaches that are different than the one in [MW18]. First, in Section 1.2 we strengthen the conclusion of the theorem, by placing the "hard" function in a smaller complexity class (i.e., placing it in NTIME $\left[s^{\prime} \circ s^{\prime}\right]$ rather than in NTIME[$\left.s^{\prime} \circ s^{\prime} \circ s^{\prime}\right]$), and by deducing that failure of size-s circuits to compute this "hard" function happens in every "small" interval of input lengths. Secondly, in Section 1.3, we present a version of Theorem 2 whose hypothesis refers not to the "promise-problem" classes $\operatorname{pr\mathcal {BP}}$ and $\operatorname{pr\mathcal {P}}$, but rather assumes only that $\mathcal{P}=\mathcal{B} \mathcal{P} \mathcal{P}$ (note that this hypothesis does not refer to the CAPP problem); the corresponding conclusion in this case is weaker.

In addition, in Appendix A we present an alternative and relatively simple proof of Theorem 2, which does not use the results of Murray and Williams, but is based only on (a generalization of) the well-known circuit lower bound of Santhanam [San09]. The idea for this alternative proof was suggested to us by Igor Oliveira (after a preliminary version of this paper appeared online).

We note in advance that, similarly to Theorem 2, all the foregoing results hold not only under hypotheses that refer to deterministic simulation of probabilistic algorithms, but also under weaker hypotheses that refer to non-deterministic simulation of
 rems 3 and 4). This phenomenon is indeed similar to previously-known results (e.g., to [BFT98; IKW02; Wil13]); for further discussion see Section 1.4.

Readers that are not interested in the foregoing technical improvements of Theorem 2 and alternative simpler proof may skip ahead to Section 1.4, in which we discuss the meaning of the new results.

1.2 Strengthening the conclusion of Theorem 2

Our first technical strengthening of Theorem 2 is an improvement in the lower bound in the conclusion of the theorem. Specifically, recall that the "hard" function in the
 are three compositions of s, the concluded lower bound becomes trivial when s is half-exponential or larger (i.e., when $s(s(n)) \geq 2^{n}$). ${ }^{2}$ The current improvement re-
 NTIME $\left[s^{O(1)}\right.$ o $\left.s^{O(1)}\right]$ that cannot be computed by circuits of size s.

Moreover, we also improve the concluded lower bound by showing that size-s circuits fail to compute the "hard" function on a "dense" set of input lengths (the conclusion in Theorem 2 only guarantees failure on infinitely-many input lengths). Specifically, for $s_{I}(n)=\operatorname{poly}(s(\operatorname{poly}(n)))$, we conclude that size-s circuits fail to compute the "hard" function on an input length in any interval of the form $\left[n, s_{I}(n)\right]$.

Similarly to Theorem 2, the foregoing (stronger) conclusions follow also from a

Theorem 3 (strengthening the conclusion of Theorem 2; informal, see Theorem 24). There exists $\epsilon>0$ such that for any time-computable $s: \mathbb{N} \rightarrow \mathbb{N}$ satisfying $n<s(n)<2^{\epsilon \cdot n}$ it holds that

$$
\operatorname{pr\mathcal {BPP}} \subseteq \operatorname{pr\mathcal {N}\mathcal {P}\Longrightarrow NTIME[s^{\prime }\circ s^{\prime }]\nsubseteq \text {i.o.}[s_{l}]-SIZE[s],~}
$$

where $s^{\prime}=\operatorname{poly}(s)$, and i.o. $\left[s_{I}\right]-$ SIZE $[s]$ is the class of problems such that there exists a size-s circuit that, for infinitely-many intervals of length $s_{I}(n)=\operatorname{poly}\left(s\left(n^{2}\right)\right)$, solves the problem on some input length in the interval.

The proof of Theorem 3 does not follow the proof approach of Murray and Williams, and in particular does not use their new "easy witness lemma". Nevertheless, the proof crucially relies on one of their technical results, namely their strengthening of Santhanam's circuit lower bound [San09]. See Section 2.2 for further details.

[^2]
1.3 Weakening the hypothesis of Theorem 2

The hypothesis in Theorems 1 and 2 refers to classes of promise problems, and is thus stronger than the hypothesis that $\mathcal{B P P}=\mathcal{P}$ (which refers only to decision problems with the trivial promise). Indeed, the promise-problem version of the $\mathcal{B P P}=\mathcal{P}$ conjecture is natural and well-studied by itself, and moreover, the strongest evidence
 based on constructions of pseudorandom generators; see [IW99]).

Nevertheless, it is interesting to ask what are the consequences of the weaker hypothesis that $\mathcal{B} \mathcal{P} \mathcal{P}=\mathcal{P}$. Kabanets and Impagliazzo [KI04] showed that under this weaker hypothesis, one of the following two conclusions holds: Either the permenant function of $\{0,1\}$-matrices over \mathbb{Z}, which is \#P-complete [Val79], does not have polynomial-sized arithmetic circuits over \mathbb{Z} (for a precise definition of such circuits, see Section 3); or $\mathcal{N E X P} \nsubseteq \mathcal{P} /$ poly. By combining their ideas with the new results in this paper, we obtain the following significant strengthening of their result:

Theorem 4 (weakening the hypothesis of Theorem 2; informal, see Theorem 27). There exists $\epsilon>0$ such that the following holds. Under the hypothesis co $\mathcal{R P} \subseteq \mathcal{N} \mathcal{P}$, at least one of the following statements is true:

1. The permanent function does not have polynomial-sized arithmetic circuits over \mathbb{Z}.
2. The lower bounds in the conclusion of Theorem 3 hold. (That is, NTIME $\left[s^{\prime} \circ s^{\prime}\right] \nsubseteq$ i.o. $\left.{ }_{[s]}\right]$ SIZE $[s]$ for any s, s^{\prime}, and s_{I} as in Theorem 3.)

1.4 The meaning of the results in this paper

What is the meaning of the results in this paper? Let us first focus on Theorem 1; that is, on the statement " $\operatorname{pr\mathcal {B}\mathcal {P}=pr\mathcal {P}\Longrightarrow \operatorname {NTIME[n^{\omega (1)}]}\not \subset \mathcal {P}/\text {poly".Notethatthe}}$ lower bound NTIME $\left[n^{\omega(1)}\right] \nsubseteq \mathcal{P} /$ poly asserts that polynomial-sized circuits cannot simulate both "slightly" super-polynomial running time and non-determinism. ${ }^{3}$
 a weaker form of $\mathcal{N} \mathcal{P} \nsubseteq \mathcal{P} /$ poly. From this perspective, Theorem 1 can be interpreted as saying that proving that $p r \mathcal{B P} \mathcal{P}=p r \mathcal{P}$ is as hard as proving a lower bound that is essentially a precursor of $\mathcal{N P} \subseteq \mathcal{P}$ /poly. On the other hand, as pointed out by Ryan Williams, one can alternatively view the lower bound $\operatorname{NTIME[n^{\omega (1)}]\nsubseteq \mathcal {P}/\text {polyasa}}$ weaker form of the statement $\operatorname{DTIME}\left[n^{\omega(1)}\right] \nsubseteq \mathcal{P} /$ poly. The latter statement asserts that polynomial-sized circuits cannot simulate algorithms with superpolynomial running time. From this perspective, Theorem 1 implies that proving that pr $\mathcal{B P} \mathcal{P}=p r \mathcal{P}$ is as hard as proving a weak form of a "strengthened time-hierarchy theorem" (in which we compare uniform algorithms to non-uniform circuits).

[^3]In fact, continuing the latter view, it seems instructive to compare the lower bounds
 (using the results of Impagliazzo and Wigderson [IW99]). Specifically, being slightly informal, ${ }^{4}$ we have that:

$$
\begin{align*}
\forall s(n)<2^{\epsilon \cdot n}, & \operatorname{DTIME}[\operatorname{poly}(s)] \nsubseteq \text { i.o.-SIZE }[s] \tag{1}\\
& \Downarrow \\
& \operatorname{pr\mathcal {BPP}}=p r \mathcal{P} \\
& \Downarrow \\
\forall s(n)<2^{\epsilon \cdot n}, & N T I M E\left[s^{\prime} \circ s^{\prime}\right] \nsubseteq \text { i.o. }\left[s_{I}\right]-S I Z E[s] \tag{2}
\end{align*}
$$

(by [IW99])
(by Thm 3)
where $\epsilon>0, s^{\prime}$, and s_{I} are defined as in Theorem 3.
Indeed, the lower bounds in Eq. (1) are stronger than the lower bounds in Eq. (2): This is both since the "hard" function in Eq. (2) lies in a complexity class that is larger than that of the "hard" function in Eq. (1) (due to the use of non-determinism and to the two compositions of s); and since in Eq. (2) failure of size-s circuits to compute the function is guaranteed only in any "small" interval, whereas in Eq. (1) this failure is guaranteed almost everywhere. This comparative perspective suggests the following interpretation of the results in this paper:
 (compared to the lower bounds that were previously known to be implied by this conjecture); but they are nevertheless still weaker than the lower

 bounds implied in Eq. (2) hold not only when $\operatorname{prBP} \mathcal{P}=p r \mathcal{P}$, but also under the
 the conclusion in Theorem 2 can be strengthened. Moreover, recall that the question of whether specific derandomization results are equivalent to specific circuit lower bounds has been raised several times in the past (see, e.g., [IKW02, Beginning of the Introduction] and [TV07, Sec. 1.1]). We thus propose the following natural conjecture (we have found no explicit prior mentions of this conjecture in the literature):

Conjecture $5(p r \mathcal{B P} \mathcal{P}=p r \mathcal{P}$ is equivalent to the [IW99] lower bounds). The statement
 it holds that DTIME[poly(s)] \nsubseteq i.o.-SIZE[s].

The most important gap between Theorem 3 and Conjecture 5 is that in Theorem 3,
 Note that even a modest first step towards proving Conjecture 5, namely proving

[^4]
1.5 Organization

In Section 2 we present high-level overviews of the proofs of all our main theorems. In Section 3 we present preliminary definitions. In Section 4 we prove Theorems 1 and 2, in Section 5 we prove Theorem 3, and in Section 6 we prove Theorem 4. Finally, an alternative proof of Theorem 1 is presented in Appendix A.

2 Overviews of the proofs

In this section we describe the proofs of the main theorems in the paper, in high level. As mentioned in Section 1, the proof approaches for Theorems 3 and 4 are different than the proof approach for Theorem 2. Thus, one may read the high-level overviews of the proofs of Theorems 3 and 4 (in Sections 2.2 and 2.3) without first reading the proof overview for Theorem 2 (in Section 2.1).

2.1 Proof overview for Theorem 2

The proof of Theorem 2 follows the approach used by Murray and Williams [MW18], which is based on the celebrated proof strategy of Williams [Wil13]. The main new component in [MW18] is a new "easy witness lemma", which allows for flexible scaling of the parameters in the original proof strategy of Williams (see below; this new lemma improves the original easy witness lemma of [IKW02]). Murray and Williams stated consequences with two specific parameter settings. We extend their result by stating a general (parametrized) "derandomization implies lower bounds" result that uses this proof approach with the new easy witness lemma (see Theorem 15), and deduce Theorems 1 and 2 as special cases.

Let us now overview the proof of Theorem 2. The point of the overview is to describe how the (well-known) proof strategy of Williams can be instantiated with the new easy witness lemma for general parameters in order to deduce Theorem 2. The starting point for the proof is the Circuit Acceptance Probability Problem (or CAPP, in short): Given as input the description of a Boolean circuit C, the problem is to distinguish between the case that the acceptance probability of C is at least $2 / 3$ and the case that the acceptance probability of C is at most $1 / 3$. It is well-known that a deterministic polynomial-time algorithm for CAPP exists if and only if $p r \mathcal{B P} \mathcal{P}=p r \mathcal{P}$ (see Proposition 7). The current argument relies on the much weaker hypothesis that CAPP for circuits of size m with v input variables can be solved in time $2 \cdot 99 \cdot v \cdot \operatorname{poly}(m)$; for simplicity, let us assume that the CAPP algorithm runs in time $2.99 \cdot v \cdot \mathrm{~m}^{2}$.

Fix any time-computable function $n<s(n)<2^{\epsilon \cdot n}$, where $\epsilon>0$ is a universal constant. Denoting $t=s^{O(1)} \circ s^{O(1)} \circ s^{O(1)}$, our goal is to prove that NTIME[t] $\not \subset S I Z E[s]$. (The definition of t in this high-level overview is slightly informal; see Definition 10 and Corollary 16 for precise details.) To do so, assume towards a contradiction that $\operatorname{NTIME}[t] \subseteq \operatorname{SIZE}[s]$, and let $t_{0}(n)=t(n)^{\delta}$, where $\delta>0$ is sufficiently small. We will construct, for any $L \in \operatorname{NTIME}\left[t_{0}\right]$, a non-deterministic machine that decides L in time
$t_{0}^{1-\Omega(1)}$; this will contradict the non-deterministic time hierarchy [Coo72].
 for every $L^{\prime} \in N T I M E\left[\left(t_{0}\right)^{2}\right]$, every $\left(t_{0}\right)^{2}$-time verifier V for L^{\prime} and every $x \in L^{\prime}$, there exists a circuit $P_{x} \in S I Z E\left[t_{0}^{001}\right]$ that encodes a witness π_{x} such that $V\left(x, \pi_{x}\right)$ accepts. ${ }^{5}$ (Again, our parameters in the overview are informal; see Lemma 11 for a statement that uses precise parameters.) The point is that witnesses for the verifier V are a-priori of size $\left(t_{0}\right)^{2}$, but the lemma asserts that (under the hypothesis) every $x \in L^{\prime}$ has a witness that can be concisely represented by a circuit of much smaller size t_{0}^{001}. We note that the main "bottleneck" in the proof that requires using $t=s^{O(1)} \circ s^{O(1)} \circ s^{O(1)}$ (rather than, say, $t=\operatorname{poly}(s)$) is the new "easy witness lemma".

Let us now construct the non-deterministic machine for $L \in N T I M E\left[t_{0}\right]$, relying on the existence of the foregoing "compressible" witnesses. We first fix a PCP system for L with a verifier V that runs in time $t_{V}=\operatorname{poly}\left(n, \log \left(t_{0}\right)\right)$ and uses $\ell=\log \left(t_{0}\right)+$ $O\left(\log \log \left(t_{0}\right)\right)$ random bits. (For concreteness, we use the PCP of Ben-Sasson and Viola [BV14], but previous ones such as [BGH+05] also suffice for the proof.) Using the new easy witness lemma, for every $x \in L$ there exists a circuit of size $t_{0}(|x|)^{.001}$ that encodes a valid proof for x in this PCP system. ${ }^{6}$

Now, given input $x \in\{0,1\}^{n}$, the non-deterministic machine M first guesses a circuit P_{x} of size $t_{0}(n)^{.001}$, in the hope that such a circuit encodes a valid proof for x. Then, the machine constructs a circuit $C_{x}^{P_{x}}$ that, when given $r \in\{0,1\}^{\ell}$ as input, simulates the execution of V on x using randomness r when V is given oracle access to the witness P_{x} (i.e., $C_{x}^{P_{x}}(r)=V^{P_{x}}(x, r)$). Finally, the machine M uses the CAPP algorithm on the circuit $C_{x}^{P_{x}}$ to determine whether the verifier is accepts x with high probability over r or rejects x with high probability over r.

Note that if $x \in L$, then for some guess of P_{x} it holds that $C_{x}^{P_{x}}$ has acceptance probability one, and thus the machine M will accept x. On the other hand, if $x \notin L$, then for any guess of P_{x} it holds that $C_{x}^{P_{x}}$ has low acceptance probability (corresponding to the soundness of the PCP verifier), and thus the machine M will reject x.

The point is that all the operations of the machine happened in time much shorter than $t_{0}(n)$. Specifically, the size of P_{x} is $t_{0}(n)^{.001}$, and the size of $C_{x}^{P_{x}}$ is $m<t_{V}(n)$. $t_{0}(n)^{.001}<t_{0}(n)^{.002}$; thus, guessing P_{x} and constructing $C_{x}^{P_{x}}$ can be done in time $\operatorname{poly}(m) \ll \sqrt{t_{0}(n)}$. Now, note that $C_{x}^{P_{x}}$ has $\ell=\log \left(t_{0}\right)+O\left(\log \log \left(t_{0}\right)\right)$ variables; thus, when the CAPP algorithm is given $C_{x}^{P_{x}}$ it runs in time

$$
2^{.99 \cdot \ell} \cdot m^{2}<t_{0}(n)^{.995} \cdot\left(t_{0}(n)^{.002}\right)^{2}=\left(t_{0}(n)\right)^{1-\Omega(1)}
$$

and we get a contradiction.

[^5]As mentioned in the introduction, the hypothesis in this proof strategy can be further relaxed in various (known) ways. For details of these relaxations, see the statement of Theorem 15 and the remark following the theorem's proof.

2.2 Proof overview for Theorem 3

The proof of Theorem 3 is very different than the proof of Theorem 2, and in particular does not rely on the proof strategy of Williams [Wil13] or on an "easy witness lemma".
 any $s: \mathbb{N} \rightarrow \mathbb{N}$ it holds that NTIME[t] \notin i.O. ${ }_{\left[s_{I}\right]}-S I Z E[s]$, where $t=s^{O(1)} \circ s^{O(1)}$ and the prefix i.o. $\left[s_{I}\right]$ means that in any interval of length $s_{I}(n)=\operatorname{poly}\left(s\left(n^{2}\right)\right)$ there exists an input length in which size-s circuits fail to compute the "hard" function. ${ }^{7}$

The starting point of the proof is Murray and Williams' strengthening of Santhanam's circuit lower bound [San09]. The strengthening asserts (unconditionally) that there exists a set $S \subseteq\{0,1\}^{*}$ that can be decided by Merlin-Arthur protocols running in time t with $\ell=O(\log (s))$ bits of non-uniform advice (i.e., $S \in$ MATIME[t]/ $)$ such that $S \notin$ i.o. $[$ poly $(s)]-S I Z E[s]$ (see Theorem 20).
 Merlin-Arthur protocol that decides S with non-uniform advice can be derandomized, in a straightforward way (see Proposition 21). Hence, under our hypothesis, the set S is in NTIME $[\operatorname{poly}(t)] / \ell$, which implies that NTIME $[\operatorname{poly}(t)] / \ell \nsubseteq$ i.o. $[p \operatorname{poly}(s)]-S I Z E[s]$.

The second observation is that if $\operatorname{NTIME[poly}(t)] / \ell \nsubseteq$ i.o. $[$ poly $(s)]-S I Z E[s]$, then $\operatorname{NTIME}[$ poly $(t)]$ (without the advice) is not contained in i.o. $[p \operatorname{poly}(s)]-S I Z E\left[s^{\prime}\right]$, for s^{\prime} that is moderately smaller than s. Let us first prove this statement while ignoring the issue of failure in almost all intervals for a moment. Assuming towards a contradiction that $\operatorname{NTIME}[\operatorname{poly}(t)] \subseteq \operatorname{SIZE}\left[s^{\prime}\right]$, for any $S \in \operatorname{NTIME}[\operatorname{poly}(t)] / \ell$ we construct a family of size-s circuits that decides S. To do so, consider a non-deterministic machine M that decides S with advice $\left\{a_{n}\right\}$, and let $S^{\text {adv }}$ be the set of pairs (x, σ) such that $|\sigma|=\ell(|x|)$ and M (non-deterministically) accepts x when given advice σ. Note that $S^{\text {adv }}$ can be decided by a non-determinstic machine that simulates M (and requires no advice), and thus, by our hypothesis, $S^{\text {adv }}$ can be solved by a circuit family $\left\{C_{n}\right\}$ of size $s^{\prime} .{ }^{8}$ By hard-wiring the "good" advice a_{n} into each C_{n}, we obtain a circuit family $\left\{C_{n}^{\prime}\right\}$ of size s^{\prime} that decides S. Note that the size of the circuit is still s^{\prime}, but it is now a function of a smaller input length, since we "hard-wired" the advice in place of input bits; however, since the advice is relatively short (i.e., $\ell=O(\log (s))$), the new size function, denoted s, is not much larger than s^{\prime} (see Proposition 23).

This "elimination of advice" argument extends to the setting where failure is guaranteed in any "small" interval, with a bit of care. The source of trouble is that now

[^6]our "towards-a-contradiction" hypothesis only implies that $S^{\text {adv }} \in$ i.o. $[p$ poly(s)] -SIZE[s], which only guarantees the existence of an infinite "dense" set $I \subseteq \mathbb{N}$ of input lengths for which $S^{\text {adv }}$ has small circuits. In particular, we have no guarantee that every $n \in I$ is of the form $m+\ell(m)$, which is what we need to deduce that $S_{m}=S \cap\{0,1\}^{m}$ has small circuits. To overcome this problem, we "embed" all pairs (x, σ) such that $|\sigma|=\ell(|x|)$ and $|x|+|\sigma|<n$ into $\{0,1\}^{n}$, and define $S_{n}^{\text {adv }}=S^{\text {adv }} \cap\{0,1\}^{n}$ such that deciding $S_{n}^{\text {adv }}$ allows to determine the output of M on (x, σ) for all pairs satisfying $|x|+|\sigma|<n$. Thus, for any $n \in I$, a circuit of $\operatorname{size} s(n)$ that decides $S_{n}^{\text {adv }}$ allows us to solve S_{m} where $m+\ell(m)<n$. And similarly to above, since the advice is relatively small (i.e., $\ell(m)=O(\log (s(m)))<m$), both the size $s(n)$ of the circuit and the interval length $\operatorname{poly}(s(n))$ in which failure is guaranteed are not too large as a function of m. For precise details see the proof of Proposition 23.

2.3 Proof overview for Theorem 4

In this section, whenever we mention the permanent function we mean the permanent over \mathbb{Z} of matrices with entries in $\{0,1\}$. Also, whenever we mention polynomialsized arithmetic circuits we mean circuits with polynomially-many gates labeled by $\{+, \times, 0,1\}$, which are evaluated over \mathbb{Z} in the straightforward way.

The basic idea for the proof of Theorem 4 comes from the well-known work of Kabanets and Impagliazzo [KI04]. Let us first prove the new result under the stronger hypothesis that $\mathcal{P}=\mathcal{B} \mathcal{P} \mathcal{P}$. By Theorem 3, we know that the hypothesis $\operatorname{pr\mathcal {BPP}} \subseteq$ $\operatorname{pr} \mathcal{N} \mathcal{P}$ would imply strong lower bounds, but now we are only guaranteed the "nonpromise" hypothesis $\mathcal{P}=\mathcal{B} \mathcal{P} \mathcal{P}$. We will thus use a win-win argument: One case is that the permanent cannot be computed by polynomial-sized arithmetic circuits; and in the other case, we are guaranteed both that $\mathcal{P}=\mathcal{B P} \mathcal{P}$ and that the permanent has polynomial-sized arithmetic circuits. The core of the proof is showing that in the latter
 lower bounds as in the conclusion of Theorem 2.
 gument in the spirit of the Karp-Lipton theorem: Specifically, we will use the unlikely "collapse hypothesis" (i.e., that the permanent has polynomial-sized circuits) and the derandomization hypothesis to derive the unlikely conclusion $\mathcal{N P}=\mathcal{P} \mathcal{H}$. The result will then follow since $\mathcal{N P}=\mathcal{P H}$ implies that $p r \mathcal{N} \mathcal{P}=p r \mathcal{P H}$ (by an elementary ar-
 containment uses the classical result of Lautemann [Lau83].

Let us then show that under our hypotheses it holds that $\mathcal{N P}=\mathcal{P H}$. By Toda's theorem [Tod91], any set $L \in \mathcal{P H}$ can be decided by a polynomial-time algorithm that is given oracle access to $\# \mathcal{P}$; and since the permanent is $\# \mathcal{P}$-complete [Val79], L can be decided by a polynomial-time algorithm that is given oracle access to the permanent. Now, we construct a non-deterministic machine for L as follows: The machine first guesses a polynomial-sized arithmetic circuit for the permanent (using the hypothesis that such a circuit exists); then verifies that this circuit indeed computes the permanent
function (see below); and finally runs the algorithm from Toda's theorem to decide L, while using the circuit for the permanent to answer the algorithm's oracle queries. Indeed, the crucial point is that if $\mathcal{B P} \mathcal{P}=\mathcal{P}$ then one can verify in deterministic polynomial time that a given circuit indeed computes the permanent. This was proved in [KI04, Lem. 9 \& 12], relying on the self-reducibility of the permanent.

To see how the result also follows using the weaker hypothesis co $\mathcal{R} \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$, note that the only place where we used the hypothesis $\mathcal{B P} \mathcal{P}=\mathcal{P}$ is when verifying that the polynomial-sized arithmetic circuit computes the permanent function. Now, as shown in [KI04], if co $\mathcal{R P} \subseteq \mathcal{N} \mathcal{P}$ then we can verify in non-deterministic polynomialtime that such a circuit computes the permanent. Therefore, the machine above can first guess a circuit for the permanent, then non-deterministically verify that it indeed computes the permanent (rejecting otherwise), and finally use the circuit to answer the algorithm's oracle queries and decide L.

3 Preliminaries

We assume familiarity with basic notions of complexity theory; for background see, e.g., [Gol08; AB09]. Throughout the paper, fix any standard model of a Turing machine (we need a fixed model since we discuss time-constructible functions).

Whenever we refer to circuits (without qualifying which type), we mean nonuniform circuit families over the De-Morgan basis (i.e., AND/OR/NOT gates) with fan-in at most two and unlimited fan-out, and without any specific structural restrictions (e.g., without any limitation on their depth). The size of a circuit is the number of its gates. Moreover, we consider some fixed standard form of representation for such circuits, where the representation size is polynomial in the size of the circuit.

Whenever we refer to arithmetic circuits, we mean non-uniform circuit families of unlimited fan-out with gates that are labeled by the operations,$+ \times$, and edges that are labeled by integers (the edge labels describe the operation of multiplying the value of the gate from which they go out by the corresponding integer constant). The size of an arithmetic circuit is the sum of the labels of its edges. Note that any arithmetic circuit yields a polynomial over \mathbb{Z} in the natural way.

We use the standard notation i.o.-SIZE[s] to denote the class of sets that can be decided by some size-s circuit on infinitely-many input lengths. Extending this notation, we denote by i.o. $[q]-S I Z E[s]$ the class of problems such that there exists a size-s circuit that, for infinitely-many intervals of the form $[n, q(n)]$, solves the problem on some input length in the interval. We warn in advance that in Section 5 we slightly abuse this notation, by writing $S \notin$ i.o. $[q]-S I Z E[s]$ to deduce a slightly stronger conclusion than failure on some input in almost all intervals of length q (i.e., we use it to denote failure on one of the end-points in almost all such intervals; see Definition 19).

3.1 Circuit acceptance probability problem

We now formally define the circuit acceptance probability problem (or CAPP, in short); this well-known problem is also sometimes called Circuit Derandomization, Approx Circuit Average, and GAP-SAT or GAP-UNSAT.

Definition 6 (CAPP). The circuit acceptance probability problem with parameters $\alpha, \beta \in$ $[0,1]$ such that $\alpha>\beta$ (or (α, β)-CAPP, in short) is the following promise problem:

- The YES instances are (representations of) circuits that accept at least α of their inputs.
- The NO instances are (representations of) circuits that accept at most β of their inputs.

We define the CAPP problem (i.e., omitting α and β) as the ($2 / 3,1 / 3$)-CAPP problem.
It is well-known that CAPP is complete for $p r \mathcal{B P} \mathcal{P}$ under deterministic polynomialtime reductions; in particular, CAPP can be solved in deterministic polynomial time if and only if $p r \mathcal{B P P}=p r \mathcal{P}$.

For a proof of Proposition 7 see any standard textbook on the subject (e.g. [Vad12, Cor. 2.31], [Gol08, Exer. 6.14]). In Proposition 7 we considered the complexity of CAPP as a function of the input size, which is the size of the (description of the) circuit. However, following [Wil13], it can also be helpful to consider the complexity of CAPP as a function of both the circuit size m (which corresponds to the input size) and of the number v of input variables to the circuit. In this case, a naive deterministic algorithm can solve the problem in time $2^{v} \cdot \operatorname{poly}(m)$, whereas the naive probabilistic algorithm solves the problem in time $v \cdot \operatorname{poly}(m) \leq \operatorname{poly}(m)$.

3.2 Witness circuits and the new easy witness lemma of [MW18]

We now recall the definition of witness circuits for a proof system.
Definition 8 (verifiers and witnesses). Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a time-constructible, nondecreasing function, and let $L \subseteq\{0,1\}^{*}$. An algorithm $V(x, y)$ is a t-time verifier for L if V runs in time at most $t(|x|)$ and satisfies the following: For all strings x it holds that $x \in L$ if and only if there exists a witness y such that $V(x, y)$ accepts.

Definition 9 (witness circuits). Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a time-constructible, non-decreasing function, let $w: \mathbb{N} \rightarrow \mathbb{N}$, and let $L \subseteq\{0,1\}^{*}$. We say that a t-time verifier V has witness circuits of size w if for every $x \in L$ there exists a witness y_{x} such that $V\left(x, y_{x}\right)$ accepts and there exists a circuit $C_{y_{x}}:\{0,1\}^{\log \left(\left|y_{x}\right|\right)} \rightarrow\{0,1\}$ of size $w(|x|)$ such that $C_{y_{x}}(i)$ is the $i^{\text {th }}$ bit of y_{x}. We say that NTIME $[t]$ has witness circuits of size w if for every $L \in N T I M E[t]$, every t-time verifier for L has witness circuits of size w.

In Definitions 8 and 9 we considered verifiers that are deterministic algorithms that get the witness as an explicit input. As outlined in Section 2, in the proof we will consider PCP verifiers (which are probabilistic algorithms, and only get oracle access to their witness). However, we will not consider witness circuits for these PCP verifiers, but rather for deterministic verifiers (with explicit inputs) that are derived from the PCP verifiers (see the proof of Theorem 15 for precise details).

Let us now state the new easy witness lemma of [MW18]. Loosely speaking, the lemma asserts that for any two functions $t(n) \gg s(n)$ with sufficient "gap" between them, if $\operatorname{NTIME}[\operatorname{poly}(t)] \subseteq \operatorname{SIZE}[s]$, then $\operatorname{NTIME[t]}$ has witness circuits of size \hat{s}, where $\hat{s}(n)>s(n)$ is the function s with some "overhead". To more conveniently account for the exact parameters, we introduce some auxiliary technical notation:

Definition 10 (sufficiently gapped functions). Let $\gamma, \gamma^{\prime}, \gamma^{\prime \prime} \in \mathbb{N}$ be universal constants. ${ }^{9}$ For any function $s: \mathbb{N} \rightarrow \mathbb{N}$, let $s^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ be the function $s^{\prime}(n)=(s(\gamma \cdot n))^{\gamma}$, and let $\hat{s}: \mathbb{N} \rightarrow \mathbb{N}$ be the function $\hat{s}(n)=\left(s^{\prime}\left(s^{\prime}\left(s^{\prime}(n)\right)\right)\right)^{\gamma^{\prime}}$. We say that two functions $s, t: \mathbb{N} \rightarrow \mathbb{N}$ are sufficiently gapped if both functions are increasing and time-constructible, and s^{\prime} is also time-constructible, and $s(n)<2^{n / \gamma} / n$, and $t(n) \geq(\hat{s}(n))^{\gamma^{\prime \prime}}$.

Lemma 11 (easy witnesses for low nondeterministic time [MW17, Lem. 4.1]). Let s, $: \mathbb{N} \rightarrow$ \mathbb{N} be sufficiently gapped functions, and assume that $\operatorname{NTIME}\left[O(t(n))^{\gamma}\right] \subset S I Z E[s]$, where γ is the constant from Definition 10. Then, NTIME[t] has witness circuits of size $\hat{\text { s. }}$

3.3 Merlin-Arthur protocols

We recall the standard definition of Merlin-Arthur protocols (i.e., $M A$ verifiers) that receive non-uniform advice.

Definition 12 (MA verifiers with non-uniform advice). For $t, \ell: \mathbb{N} \rightarrow \mathbb{N}$, a set $S \subseteq\{0,1\}^{*}$ is in MATIME $[t] / \ell$ if there exists a probabilistic machine V, called a verifier, such that the following holds: The verifier V gets input $x \in\{0,1\}^{*}$, and a witness $w \in\{0,1\}^{*}$, and an advice string $a \in\{0,1\}^{*}$, and runs in time $t(|x|)$; and there exists a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of advice such that $\left|a_{n}\right|=\ell(n)$ and:

1. For every $x \in S$ there exists $w \in\{0,1\}^{t(|x|)}$ such that $\operatorname{Pr}\left[V\left(x, w, a_{|x|}\right)=1\right] \geq 2 / 3$.
2. For every $x \notin S$ and every $w \in\{0,1\}^{t(|x|)}$ it holds that $\operatorname{Pr}\left[V\left(x, w, a_{|x|}\right)=1\right] \leq 1 / 3$.

It is common to denote by MATIME[t] the class MATIME[t]/0 (i.e., when the verifier receives no non-uniform advice). Note that $M A=\bigcup_{c \in \mathbb{N}}$ MATIME[nc $]$, and also note that the definition of $M A$ does not change if we insist on perfect completeness (see, e.g., [Gol08, Exer. 6.12(2)]).

[^7]
3.4 A barrier for proving "pr $\mathcal{B P} \mathcal{P}=\operatorname{pr} \mathcal{P} \Longrightarrow \mathcal{P} \neq \mathcal{N} \mathcal{P}$ "

We note that it is impossible to prove the statement "if $\operatorname{pr\mathcal {P}}=\operatorname{pr\mathcal {B}\mathcal {P}}$ then $\mathcal{P} \neq \mathcal{N} \mathcal{P}$ " without unconditionally proving that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.

Proposition 13 (a barrier for "derandomization implies lower bounds" statements). If the

Proof. Assume towards a contradiction that $\mathcal{P}=\mathcal{N} \mathcal{P}$. Then, the polynomial-time hierarchy collapses to \mathcal{P}, and similarly the promise-problem version of the polynomialtime hierarchy collapses to $\operatorname{pr\mathcal {P}} .{ }^{10}$ Now, since $\operatorname{pr\mathcal {B}\mathcal {P}}$ is contained in the promiseproblem version of the polynomial-time hierarchy (e.g., by adapting the well-known
 the hypothesized conditional statement to deduce that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, which is a contradiction.

4 Proof of Theorems 1 and 2

We will first prove a general and parametrized "derandomization implies lower bounds" theorem. This theorem is obtained by using the proof strategy of Williams [Wil13] with general parameters, while leveraging the new easy witness lemma of Murray and Williams [MW18]. We then prove Theorems 1 and 2 as corollaries. Towards presenting the proofs, we first need the following auxiliary definition:

Definition 14 (non-deterministically solving CAPP). We say that (1,1/3)-CAPP can be solved in non-deterministic time $T: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ if there exists a non-deterministic machine that, when given as input a circuit C of size m over v variables, runs in time $T(m, v)$ and satisfies the following: If C has acceptance probability one, then for some non-deterministic choice the machine accepts; and if C has acceptance probability at most $1 / 3$, then the machine always rejects (regardless of the non-deterministic choices).

4.1 A parametrized "derandomization implies lower bounds" theorem

Loosely speaking, in the following theorem statement we assume that CAPP can be solved in non-deterministic time $T(m, v)$, and deduce that for any two functions $t(n) \gg s(n)$ such that $T(\operatorname{poly}(n, \hat{s}(n), \log (t(n))), \log (t(n))) \ll t(n)$ it holds that NTIME $[\operatorname{poly}(t(n))]$ does not have circuits of size $s(n)$.

[^8]Theorem 15 (derandomization implies lower bounds, with general parameters). There exist constants $c, c^{\prime} \in \mathbb{N}$ and $\alpha<1$ such that the following holds. For $T: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, assume that $(1,1 / 3)$-CAPP on circuits of size m with at most v input variables can be solved in non-deterministic time $T(m, v)$. Let $s, t: \mathbb{N} \rightarrow \mathbb{N}$ be sufficiently gapped functions such that $s(n)>n$ and for some constant $\epsilon>0$ and any constant $\alpha>0$ it holds that

$$
T\left((n \cdot \hat{s}(n) \cdot \log (t(n)))^{c}, \quad \alpha \cdot \log (t(n))\right) \leq t(n)^{(1-\epsilon) \cdot \alpha}
$$

where \hat{s} is defined as in Definition 10. Then, $\operatorname{NTIME}\left[t(n)^{\left.c^{c}\right]} \nsubseteq \operatorname{SIZE}[s(n)]\right.$.
Proof. The starting point of the proof is the non-deterministic time hierarchy [Coo72]: For an appropriate function $t^{\prime}=t^{\prime}(n)$ (that will be determined in a moment), there exists a set $L \in N T I M E\left[t^{\prime}\right]$ that cannot be decided by non-deterministic machines running in time $\left(t^{\prime}\right)^{1-\Omega(1)}$. Specifically, for a sufficiently small constant $\alpha>0$, let $t^{\prime}(n)=(t(n))^{(1-\epsilon / 2) \cdot \alpha}$, and let $L \in \operatorname{NTIME}\left[t^{\prime}\right] \backslash$ NTIME $\left[\left(t^{\prime}\right)^{\frac{1-\epsilon}{1-\epsilon / 2}}\right] . .^{11}$ Now, for a sufficiently large constant c^{\prime}, assume towards a contradiction that $\operatorname{NTIME[t(n)^{c^{\prime }}]\subseteq }$ $\operatorname{SIZE}[s(n)]$. Our goal is to construct a non-deterministic machine that decides L in time $\left(t^{\prime}\right)^{\frac{1-\epsilon}{1-\epsilon / 2}}$, which will yield a contradiction.

To do so, consider the PCP verifier of [BV14] for L, denoted by V. On inputs of length n, the verifier V runs in time poly $\left(n, \log \left(t^{\prime}(n)\right)\right)$, uses $\ell=\log \left(t^{\prime}(n)\right)+$ $O\left(\log \log \left(t^{\prime}(n)\right)\right)$ bits of randomness, and has perfect completeness and soundness (much) lower than $1 / 3 .{ }^{12}$ Furthermore, using the hypothesis that $\operatorname{NTIME}\left[t(n)^{c^{\prime}}\right] \subseteq$ $\operatorname{SIZE}[s(n)]$ and the "easy witness lemma" (i.e., Lemma 11), for every $x \in L$ there exists a circuit $P_{x} \in \operatorname{SIZE}[\hat{s}(n)]$ such that $\operatorname{Pr}_{r}\left[V^{P_{x}}(x, r)\right.$ accepts $]=1$. (We actually apply Lemma 11 to the deterministic verifier V^{\prime} that enumerates the random coins of V, which runs in time $2^{\ell} \cdot \operatorname{poly}\left(n, \log \left(t^{\prime}\right)\right)=\operatorname{poly}\left(t^{\prime}\right)=\operatorname{poly}(t)$. We can use the lemma

Given input $x \in\{0,1\}^{n}$, the non-deterministic machine M acts as follows. The machine non-deterministically guesses a (description of a) circuit P_{x} of size $\hat{s}(n)$, and constructs a circuit $C_{x}^{P_{x}}:\{0,1\}^{\ell} \rightarrow\{0,1\}$ such that $C_{x}^{P_{x}}(r)=V^{P_{x}}(x, r)$. Then, the machine feeds the description of $C_{x}^{P_{x}}$ as input to the machine $M_{\text {CAPP }}$ that solves CAPP in non-deterministic time T and exists by the hypothesis, and outputs the decision of $M_{C A P P}$. By the properties of the PCP verifier and of $M_{C A P P}$, if $x \in L$ then for some guess of P_{x} and for some non-deterministic choices of $M_{C A P P}$, the machine M will accept x; and if $x \notin L$, then for any guess of P_{x} and any non-deterministic choices of $M_{C A P P}$, the machine M will reject x.

To conclude let us upper-bound the running-time of the machine M. The circuit $C_{x}^{P_{x}}$ has $\ell=\log \left(t^{\prime}\right)+O\left(\log \log \left(t^{\prime}\right)\right)<\alpha \cdot \log (t)$ input bits, and its size is $m(n)=$ $\operatorname{poly}\left(n, \log \left(t^{\prime}\right)\right) \cdot \hat{s}(n)$; thus, its representation size is poly $(m(n))$. Therefore, the circuit

[^9]$C_{x}^{P_{x}}$ can be constructed in time poly $(m(n))$, and the CAPP algorithm runs in time $T(m(n), \ell)$. The total running-time of the non-deterministic machine M is thus at most $T\left((n \cdot \hat{s}(n) \cdot \log (t(n)))^{c}, \alpha \cdot \log (t)\right)$, for some constant c. By our hypothesized upperbound on T, the running time of M is at most $t(n)^{(1-\epsilon) \cdot \alpha}=\left(t^{\frac{1-\epsilon}{1-\epsilon / 2}}\right.$, which yields a contradiction.

Additional relaxations of the hypothesis in Theorem 15. Since the proof of Theorem 15 relies on the strategy of [Wil13], it is well-known that the hypothesis of the theorem can be further relaxed. First, we do not have to unconditionally assume that the non-deterministic machine for CAPP exists, and it suffices to assume that the machine exists under the hypothesis that $\operatorname{NTIME}\left[t(n)^{c^{\prime}}\right] \subseteq \operatorname{SIZE}[s(n)]$ (this is the case since we are only using the existence of the machine to contradict the latter hypothesis). And secondly, the non-deterministic machine that solves CAPP can use (sub-linearly many) bits of non-uniform advice; this follows by using a strengthened non-deterministic time hierarchy theorem, which was proved by Fortnow and Santhanam [FS16] (see [MW18, Remark 1] for details).

4.2 Theorems 1 and 2 as corollaries

We now prove Theorem 2 as a corollary of Theorem 15. As detailed in Section 2.1, we start from the hypothesis that $(1,1 / 3)$-CAPP can be solved in non-deterministic time $T(m, v)=2^{\cdot 99 \cdot v} \cdot \operatorname{poly}(m)$ (which is weaker than the hypothesis pr $\mathcal{B P P}=p r \mathcal{P}$). The proof amounts to verifying that, given such a CAPP algorithm, the hypothesis of Theorem 15 holds for essentially any s and $t \approx s^{O(1)} \circ s^{O(1)} \circ s^{O(1)}$.

Corollary 16 (Theorem 2, restated). Assume that (1,1/3)-CAPP can be solved in nondeterministic time $T(m, v) \leq 2^{(1-\epsilon) \cdot v} \cdot \operatorname{poly}(m)$, for some constant $\epsilon>0$. Then, there exists a constant $k \in \mathbb{N}$ such that for any two sufficiently gapped functions $s: \mathbb{N} \rightarrow \mathbb{N}$ and $t: \mathbb{N} \rightarrow \mathbb{N}$ it holds that NTIME $\left[t(n)^{k}\right] \nsubseteq \operatorname{SIZE}[s]$.
Proof. Let $k^{\prime}>1$ be such that $T(m, v) \leq 2^{(1-\epsilon) \cdot v} \cdot m^{k^{\prime}}$. We invoke Theorem 15 with the sufficiently gapped functions s and $t_{1}(n)=t(n)^{k^{\prime \prime}}$, where $k^{\prime \prime}>1$ is a sufficiently large constant that depends on k^{\prime}. Note that for any $\alpha>0$ it holds that

$$
\begin{aligned}
& T\left(\left(n \cdot \hat{s}(n) \cdot \log \left(t_{1}(n)\right)\right)^{c}, \quad \alpha \cdot \log \left(t_{1}(n)\right)\right) \\
& \leq\left(n \cdot \log \left(t_{1}(n)\right)\right)^{\cdot \cdot k^{\prime}} \cdot\left(t_{1}(n)\right)^{\epsilon / 2} \cdot t_{1}(n)^{(1-\epsilon) \cdot \alpha} \quad\left(\hat{s}(n)^{c \cdot k^{\prime}}<t_{1}(n)^{\epsilon / 2}\right) \\
& \leq\left(t_{1}(n)\right)^{1-\epsilon / 3}, \quad\left(n^{c \cdot k^{\prime}}<s(n)^{c \cdot k^{\prime}}<t_{1}(n)^{\epsilon / 12}\right)
\end{aligned}
$$

where both inequalities relied on the hypothesis that $k^{\prime \prime}$ is sufficiently large. Thus, we conclude that $\operatorname{NTIME}\left[t_{2}\right] \nsubseteq S I Z E[s]$, where $t_{2}(n)=t_{1}(n)^{c^{\prime}}=t(n)^{c^{\prime} \cdot k^{\prime \prime}}$.

Finally, we prove Theorem 1 as a corollary of Corollary 16. Recall that the conclusion in Theorem 1 is that $\left.\operatorname{NTIME[n}{ }^{f(n)}\right] \nsubseteq \mathcal{P}$ /poly for "essentially" any superconstant function f. We now specify exactly what this means. Our goal is to deduce
that NTIME[nf(n) $] \nsubseteq S I Z E\left[n^{g(n)}\right]$, where $g(n) \ll f(n)$ and $g(n)=\omega(1)$. Therefore, the proof works for any f such that a suitable g exists. We note in advance that this minor technical detail imposes no meaningful restrictions on f (see next).

Definition 17 (admissible functions). We say that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is admissible if f is super-constant (i.e. $f(n)=\omega(1)$), and if there exists another super-constant function $g: \mathbb{N} \rightarrow \mathbb{N}$ that satisfies the following: The function g is super-constant, and $t(n)=n^{f(n)}$ and $s(n)=n^{g(n)}$ are sufficiently gapped, and $\hat{s}(n)=n^{o(f(n))}$.

Essentially any increasing function $f(n)=\omega(1)$ such that $f(n) \leq n$ is admissible, where the only additional constraints that the admissibility condition imposes are time-constructibility of various auxiliary functions (we require t and s to be sufficiently gapped, which enforces time-constructibility constraints); for a precise (and tedious) discussion, see Appendix B. We can now formally state Theorem 1 and prove it:

Corollary 18 (Theorem 1, restated). Assume that (1,1/3)-CAPP can be solved in nondeterministic time $T(m, v) \leq 2^{(1-\epsilon) \cdot v} \cdot \operatorname{poly}(m)$, for some constant $\epsilon>0$. Then, for every admissible function f there exists a set in NTIME $\left[n^{O(f(n))}\right] \backslash \mathcal{P} /$ poly.

Proof. Since f is admissible, there exists a function g that satisfies the requirements of Definition 17. We thus invoke Corollary 16 with the functions $t(n)=n^{f(n)}$ and $s(n)=n^{g(n)}$, and conclude that there exists a set in NTIME $\left[n^{O(f(n))}\right] \backslash \operatorname{SIZE}\left[n^{g(n)}\right]$. Since $g(n)=\omega(1)$, the latter set does not belong to $\mathcal{P} /$ poly.

5 Proof of Theorem 3

In this section we prove Theorem 3. Throughout the section, for a set $S \subseteq\{0,1\}^{*}$ and $n \in \mathbb{N}$, we denote $S_{n}=S \cap\{0,1\}^{n}$.

Recall that the conclusion in Theorem 3 is that there exists a set S such that for every polynomial-sized circuit family and sufficiently large $n \in \mathbb{N}$, the family fails to decide S on some input length in the interval $\left[n, s_{I}(n)\right]$. Our actual conclusion will be slightly stronger: We will conclude that for every sufficiently large $n \in \mathbb{N}$, the circuit family fails on at least one of the "end-points" of the interval; that is, either on input length n, or on input length $s_{I}(n)$ (or on both). This is equivalent to saying that there does not exist an infinite set of pairs ($n, s_{I}(n)$) such that the circuit family correctly decides S on both input lengths in the pair. This leads to the following definition:

Definition 19 (a stronger notion of infinitely-often computation). For $s, q: \mathbb{N} \rightarrow \mathbb{N}$ and $S \subseteq\{0,1\}^{*}$, we say that $S \in$ i.o. $[q]-S I Z E[s]$ if there exists an infinite set $I \subseteq \mathbb{N}$ and a circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ of size at most s such that for every $n \in I$, it holds that:

1. The circuit $C_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ computes S_{n}.
2. The circuit $C_{q(n)}:\{0,1\}^{q(n)} \rightarrow\{0,1\}$ computes $S_{q(n)}$.

Indeed, Definition 19 implies the following: If $S \notin$ i.o. ${ }_{[q]}-S I Z E[s]$, then every circuit family $\left\{C_{n}\right\}$ of size s that tries to decide S fails, for every sufficiently large $n \in \mathbb{N}$, either on inputs on size n or on inputs of size $q(n)$ (or on both).

The starting point of the proof of Theorem 3 is Murray and Williams' [MW17, Thm 3.1] strengthening of Santhanam's [San09] circuit lower bound. Following [MW18], we say that a function $s: \mathbb{N} \rightarrow \mathbb{N}$ is a circuit-size function if s is increasing, timeconstructible, and for all sufficiently large $n \in \mathbb{N}$ it holds that $s(n)<2^{n} /(2 n)$.

Theorem 20 (Murray and Williams' [MW17, Thm 3.1] strengthening of Santhanam's [San09] lower bound). Let s be a super-linear circuit-size function, and let $t=\operatorname{poly}(s(\operatorname{poly}(s)))$ (for sufficiently large polynomials that do not depend on s). Then, there exists a set $S \in$ MATIME $t] / O(\log (s))$ such that $S \notin$ i.o. $[\operatorname{poly}(s)]^{-S I Z E[s] .}$

As mentioned in Section 2.2, the first observation in the proof is that if $\operatorname{pr\mathcal {BP}\mathcal {P}=}$ $p r \mathcal{P}$ then we can derandomize $M A$ verifiers that receive non-uniform advice. In fact,

Proposition 21 (derandomization of $M A$ with advice). If $\operatorname{pr\mathcal {P}\mathcal {P}\subseteq } \subseteq p r \mathcal{N} \mathcal{P}$, then for any $t, \ell: \mathbb{N} \rightarrow \mathbb{N}$ such that t is time-constructible it holds that MATIME $[t] / \ell \subseteq \operatorname{NTIME}[\operatorname{poly}(t)] / \ell$.
 a non-deterministic polynomial-time machine $M_{C A P P}$ that gets as input a Boolean circuit C and satisfies the following: If the acceptance probability of C is at most $1 / 3$ then $M_{C A P P}$ rejects, regardless of the non-deterministic choices; and if the acceptance probability of C is at least $2 / 3$, then for some non-deterministic choices $M_{C A P P}$ accepts.

Let S be a set in MATIME[t]/ ℓ, let V be the MATIME $[t] / \ell$ verifier for S, and let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of "good" advice that allows V to decide S. We want to construct a non-deterministic machine M that runs in time poly (t) and decides S with ℓ bits of non-uniform advice. Given input $x \in\{0,1\}^{n}$ and advice a_{n}, the machine M guesses a witness $w \in\{0,1\}^{t(n)}$, and constructs a circuit $C=C_{V, x, w, a_{n}}:\{0,1\}^{t(n)} \rightarrow$ $\{0,1\}$ that gets as input $r \in\{0,1\}^{t(n)}$ and computes $V\left(x, w, r, a_{n}\right)$. Finally, the machine M feeds C to the machine $M_{C A P P}$, and outputs the decision of $M_{C A P P}$.

Since V is a verifier for S and a_{n} is the "good" advice for V, if $x \in S$ then there exists w such that the acceptance probability of C is at least $2 / 3$, which means that there exist non-deterministic choices for $M_{C A P P}$ such that $M_{C A P P}$ will accept C (in which case M will accept x). On the other hand, if $x \notin S$ then for any w the acceptance probability of C is at most $1 / 3$, which means that for any non-deterministic choices for $M_{\text {CAPP }}$ it holds that $M_{C A P P}$ rejects C (in which case M rejects x). The running time of the machine M is dominated by the running time of $M_{C A P P}$, which is at most $\operatorname{poly}(t(n))$.

The second observation in the proof is that if NTIME[t]/ ℓ is not contained in a non-uniform class of circuits, then NTIME[O(t)] (i.e., without non-uniform advice) is also not contained in a (related) non-uniform class of circuits. Moreover, this assertion still holds if the "separation" between the classes is in the sense of Definition 19.

We first prove a simpler form of this statement, which showcases the main idea but is much less cumbersome. In the following statement, we only consider a single bit of advice, and do not refer to separations in the sense of Definition 19.

Proposition 22 (eliminating the advice). Let $s_{0}, s, t: \mathbb{N} \rightarrow \mathbb{N}$ such that t is increasing, and for all sufficiently large $n \in \mathbb{N}$ it holds that $s_{0}(n) \geq s(n+1)$. If NTIME[t]/1 $\nsubseteq S I Z E\left[s_{0}\right]$, then NTIME $[O(t)] \nsubseteq S I Z E[s]$.

Proof. We prove the contrapositive statement: If $\operatorname{NTIME}[O(t)] \subseteq S I Z E[s]$, then $N T I M E[t] / 1 \subseteq S I Z E\left[s_{0}\right]$. To do so, fix any $S \in N T I M E[t] / 1$, and let us construct a circuit family of size s_{0} that decides S.

To construct the circuit family we consider an auxiliary set $S^{\text {adv }}$, which is defined as follows. Let M be a t-time non-deterministic machine and let $\left\{a_{n}\right\}$ be a sequence of advice bits such that M correctly decides S when given advice $\left\{a_{n}\right\}$. Let $S^{\text {adv }}$ be the set of pairs (x, σ), where $x \in\{0,1\}^{*}$ and $\sigma \in\{0,1\}$, such that M (non-deterministically) accepts x when given advice σ. Note that $S^{\text {adv }} \in \operatorname{NTIME}[O(t)]$, because a nondeterministic machine that gets input (x, σ) simulate the machine M on input x with advice σ and decide according to the output of M.

Relying on the hypothesis that $\operatorname{NTIME}[O(t)] \subseteq \operatorname{SIZE}[s]$, there exists a circuit family $\left\{C_{n}\right\}$ of size s such that each C_{n} decides $S_{n}^{\text {advv }}$. By hard-wiring the "correct" advice bit a_{n} in place of the last input bit into every C_{n}, we obtain a circuit family $\left\{C_{n}^{\prime}\right\}$ such that each C_{n}^{\prime} decides S_{n}, and its size is at most $s(n+1) \leq s_{0}(n)$.

The following proposition is a stronger form of Proposition 22, which considers possibly long advice strings, and refers to separations in the sense of Definition 19.

Proposition 23 (eliminating the advice). Let $s_{0}, s, \ell, t, q: \mathbb{N} \rightarrow \mathbb{N}$ be functions such that t is super-linear and increasing, and q, s_{0} and s are increasing, and the mapping $1^{n} \mapsto 1^{\ell(n)}$ is computable in time $O(n+\ell(n))$. Assume that for every sufficiently large $n \in \mathbb{N}$ it holds that $\ell(n)<n / 2$ and $s_{0}(n) \geq s(2 n)$ and $s_{0}(q(n)) \geq s(2 q(2 n))$. Further assume that NTIME[t]/ \nsubseteq i.o. ${ }_{[q]}-S I Z E\left[s_{0}\right]$. Then, NTIME[O($\left.\left.t\right)\right] \nsubseteq$ i.o. $[2 q]-S I Z E[s]$.

We comment that a statement that is more general than the one in Proposition 23 can be proved, foregoing some of the requirements (e.g., on ℓ) while allowing potential degradation in the parameters of the conclusion. Since the statement of Proposition 23 suffices for our parameter setting, and for simplicity, we avoid such generalizations.

Proof of Proposition 23. Assuming that NTIME[O(t)] \subseteq i.o. $[2 q]-S I Z E[s]$, we prove that NTIME[t]/ \subseteq i.o. $[q]-S I Z E\left[s_{0}\right]$. Fixing any $S \in N T I M E[t] / \ell$, let us construct a circuit family of size s_{0} that decides S infinitely-often on inputs of length n and $q(n)$.

We first define a set $S^{\text {adv }}$ as follows. Let M be a t-time non-deterministic machine and let $\left\{a_{n}\right\}$ be a sequence of "good" advice strings of length $\left|a_{n}\right|=\ell(n)$ such that M correctly decides S when given advice $\left\{a_{n}\right\}$. For every $n \in \mathbb{N}$, the set $S_{n}^{\text {adv }}$ will include representations of all pairs (x, σ), where $|\sigma|=\ell(|x|)$ and $|x|+2|\sigma|<n$, such that M accepts x when given advice σ. Specifically, we define $S_{n}^{\text {adv }}$ to be the set of all n-bit
strings of the form $\left.1^{t}\right|^{|\sigma|} 1 x \sigma$, where $t=n-(|x|+2|\sigma|+1)$, such that M accepts x when given advice $\sigma .{ }^{13}$

Note that $S^{\text {adv }} \in \operatorname{NTIME}[O(t)]$. This is the case since a non-deterministic machine that gets input $z \in\{0,1\}^{n}$ can first verify that z can be parsed as $z=1^{t} 0^{|\sigma|} 1 x \sigma$ such that $|\sigma|=\ell(|x|)$ (and reject z if the parsing fails); and then simulate the machine M on input x with advice σ, in time $O(t(|x|))=O(t(n))$, and decide according to the
 an infinite set $I \subseteq \mathbb{N}$ and a circuit family $\left\{C_{n}\right\}$ of size s such that for every $n \in I$:

1. $C_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ correctly computes $S_{n}^{\text {adv }}$; and
2. $C_{2 q(n)}:\{0,1\}^{2 q(n)} \rightarrow\{0,1\}$ correctly computes $S_{2 q(n)}^{\text {adv }}$.

We transform $\left\{C_{n}\right\}$ into a circuit family of size s_{0} that decides S infinitely-often on inputs of length both n and $q(n)$. To do so, we rely on the following simple claim:

Claim 23.1. Let $n, m \in \mathbb{N}$ such that $m+2 \ell(m)<n$. Assume that there exists a circuit of

Proof. Let C_{n} be the circuit of size $s(n)$ for $S_{n}^{\text {adv }}$. The circuit C_{m} for S_{m} is obtained by hard-wiring into C_{n} the "correct" advice a_{m} instead of the last $\ell(m)$ input bits, and the correct initial padding $1^{n-m-2 \ell(m)-1} 0^{\ell(m)} 1$ instead of the first $n-m-\ell(m)$ input bits.

For every $n \in I$, let $m=m(n)$ be the largest integer such that $m+2 \ell(m)+1 \leq n$. Let $I^{\prime}=\{m(n)\}_{n \in \mathbb{N}}$, and note that I^{\prime} is infinite. For every sufficiently large $m \in I^{\prime}$, relying on the fact that $m=m(n)$ for some $n \in I$ and on Claim 23.1, we have that:

1. There exists a circuit $C_{m}:\{0,1\}^{m} \rightarrow\{0,1\}$ of size $s(n) \leq s_{0}(\lceil n / 2\rceil) \leq s_{0}(m)$ that decides S_{m}. (We relied on the fact that $m \geq n / 2$, since $\ell(m)<m / 2$.)
2. There exists a circuit $C_{q(m)}:\{0,1\}^{q(m)} \rightarrow\{0,1\}$ of size $s_{0}(q(m))$ that decides $S_{q(m)}$. To see this, recall that there exists a circuit $C_{2 q(n)}$ of size $s(2 q(n))$ that decides $S_{2 q(n)}^{\text {adv }}$. We can invoke Claim 23.1 because $q(m)+2 \ell(q(m))<2 q(m)<$ $2 q(n)$. Also, relying on the fact that $m \geq n / 2$ and on the hypotheses regarding s_{0}, s and q, we have that $s(2 q(n)) \leq s(2 q(2 m)) \leq s_{0}(q(m))$.

We now combine the foregoing ingredients into a proof of Theorem 3. The structure of the theorem that we obtain is similar to the structure of Theorem 15: Assuming a sufficiently strong derandomization hypothesis (in this case, that $\operatorname{pr\mathcal {BP}}=p r \mathcal{P}$), and taking two functions t and s with sufficient "gap" between them, we deduce that $N T I M E[t] \nsubseteq$ i.o. ${ }_{\left[s_{0}\right]}-S I Z E[s]$, where s_{0} is a function moderately larger than s. (The fact that $s_{0}>s$ is no coincidence; see discussion after the proof of Theorem 24.)
[^10]Theorem 24 (Theorem 3, restated). There exists a constant $\epsilon>0$ such that the following holds.

- Let $s: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing, super-linear and time-constructible function such that for all sufficiently large $n \in \mathbb{N}$ it holds that $s(n) \leq 2^{\epsilon \cdot n}$ and that $s(2 n) \leq s(n)^{2}$.
- Let $t=\operatorname{poly}(s(\operatorname{poly}(s)))$, for sufficiently large polynomials (that do not depend on s).
- Let $s_{0}: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing and time-constructible function such that for all sufficiently large $n \in \mathbb{N}$ it holds that $s_{0}(n) \geq s\left(n^{2}\right)^{2}$ and that $s_{0}(2 n) \leq s_{0}(n)^{2}$.

Assume that $\operatorname{pr\mathcal {BPP}} \subseteq \operatorname{pr\mathcal {N}\mathcal {P}}$. Then, NTIME[t] \nsubseteq i.o. $\left.{ }_{\left[\text {poly }\left(s_{0}\right)\right]}\right]^{S I Z E[s]}$.
Note that if the function s in Theorem 24 satisfies $s\left(n^{2}\right)<s(n)^{k}$, for a sufficiently large constant $k \in \mathbb{N}$, then we can use the function $s_{0}(n)=s(n)^{2 k}$, and deduce that NTIME $[t] \nsubseteq$ i. o. $[$ poly $(s)]-S I Z E[s]$.
Proof of Theorem 24. Let $t_{0}=\operatorname{poly}\left(s_{0}\left(\operatorname{poly}\left(s_{0}\right)\right)\right)$, for sufficiently large polynomials, and let $\ell=O\left(\log \left(s_{0}\right)\right)$ (the universal constant hidden in the O-notation is the one from Theorem 20). By Theorem 20, there exists $S \in \operatorname{MATIME}\left[t_{0}\right] / \ell \backslash$ i.o. $\left[\left(s_{0}\right) c\right]-S I Z E\left[s_{0}\right]$, for a sufficiently large constant $c \in \mathbb{N}$. By Proposition 21, and relying on the hypothesis

We now want to use Proposition 23 to deduce that $\operatorname{NTIME}\left[\operatorname{poly}\left(t_{0}\right)\right]$ is not contained in i.o. $\left[\right.$ poly $\left.\left(s_{0}\right)\right]-S I Z E[s]$, and thus we need to verify that the functions ℓ, s, s_{0}, and $\left(s_{0}\right)^{c}$ satisfy the hypothesis of Proposition 23. This is indeed the case since for all sufficiently large $n \in \mathbb{N}$ it holds that $\ell(n)<n / 2$ (assuming that ϵ is sufficiently small); and since $s_{0}(n)>s\left(n^{2}\right)^{2} \geq s(2 n)$, and $s\left(2 s_{0}(2 n)^{c}\right) \leq s\left(s_{0}(n)^{2 c}\right)^{2} \leq s_{0}\left(s_{0}(n)^{c}\right)$.

As mentioned before the statement of Theorem 24, the "gap" between the input lengths n and $q(n)=\operatorname{poly}\left(s_{0}(n)\right.$) (on which any size-s circuit family is guaranteed to fail) in Theorem 24 is larger than the function s that bounds the size of the circuits. This is no coincidence: If the gap function q would have been significantly smaller than the bound s on the circuit size, then we would have obtained an "almost-everywhere" lower bound (for circuits of size about $s\left(q^{-1}\right)$). ${ }^{14}$

6 Proof of Theorem 4

In this section we prove Theorem 4. Towards stating the theorem and proving it, let us define what it means that the permanent has polynomial-sized arithmetic circuits:

[^11]Definition 25 (polynomial-sized arithmetic circuits for the permanent). We say that there exist polynomial-sized arithmetic circuits for the permanent if there exists a family of polynomialsized arithmetic circuits such for every $n \in \mathbb{N}$, the corresponding circuit C_{n} gets as input an $n \times n$ matrix with entries in $\{0,1\}$, and outputs its permanent over \mathbb{Z}.

The key lemma in the proof of Theorem 4 is the following. Given the hypothesis that a "non-promise-problem" derandomization holds (i.e., co $\mathcal{R} \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$), and the additional (unlikely) hypothesis that that there exist polynomial-sized arithmetic circuits for the permanent, we deduce that a "promise-problem" derandomization also holds
 results of Kabanets and Impagliazzo [KI04].

Lemma 26 (derandomization and collapse of the permanent imply "promise-problem" derandomization). Assume that co $\mathcal{R} \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$, and that there exist polynomial-sized arithmetic circuits for the permanent. Then, $\mathcal{N P}=\mathcal{P} \mathcal{H}$, and consequently prßPP $\subseteq p r \mathcal{N P}$.

Proof. We first show that our hypotheses imply that $\mathcal{N P}=\mathcal{P H}$. The proof of this statement will rely on the following result from [KI04, Lem. 9 \& 12]:

Lemma 26.1. Under our hypotheses, there exists a non-deterministic polynomial-time machine that decides the set of descriptions of arithmetic circuits that compute the permanent.

Now, let $L \in \mathcal{P H}$. Recall that Valiant [Val79] proved that computing the permanent of a matrix with entries in $\{0,1\}$ over \mathbb{Z} is $\# \mathcal{P}$-complete. Also recall that Toda [Tod91] proved that $\mathcal{P H} \subseteq \mathcal{P}^{\# P}$. We thus deduce that L can be decided by a polynomial-time algorithm A_{L} that is given oracle access to the permanent over \mathbb{Z} of matrices with $\{0,1\}$ entrires.

We simulate A_{L} by a non-deterministic machine M, as follows. Given input x, the machine M first guesses a polynomial-sized arithmetic circuit $C_{\text {Perm }}$ for the permanent; then non-deterministically verifies that $C_{\text {Perm }}$ indeed computes the permanent, using the machine from Lemma 26.1 (while rejecting x if the foregoing machine rejects $C_{\text {Perm }}$); and finally M runs A_{L} on x, while answering each oracle query of A_{L} by evaluating $C_{\text {Perm }}$ on the query. The point is that whenever M guesses a "correct" circuit for $C_{\text {Perm }}$ in the first step, the decision of M on x is correct; and in any other case (i.e., when $C_{\text {Perm }}$ does not compute the permanent), M rejects.

To prove the "consequently" part, note that since $\mathcal{P H}=\mathcal{N} \mathcal{P}$ we also have that $\operatorname{pr\mathcal {H}}=\operatorname{pr} \mathcal{N} \mathcal{P}$ (this follows using essentially the same argument as in Footnote 10). Recall that by the classical result of Lautemann [Lau83] it holds that pr $\mathcal{B P P} \subseteq p r \mathcal{P H}$ (see, e.g., the presentation in [Gol08, Thm 6.9]). Thus, we deduce that $\operatorname{pr\mathcal {B}\mathcal {P}} \subseteq$ $p r \mathcal{P H}=p r \mathcal{N} \mathcal{P}$.

We can now prove Theorem 4, using Lemma 26:
Theorem 27 (Theorem 4, restated). There exists $\epsilon>0$ such that the following holds. Assume that co $\mathcal{R P} \subseteq \mathcal{N} \mathcal{P}$. Then at least one of the following statements is true:

1. The permanent function does not have polynomial-sized arithmetic circuits over \mathbb{Z}.
2. The lower bounds in the conclusion of Theorem 24 hold. (That is, NTIME[t] \nsubseteq i.o. $\left[\operatorname{poly}\left(s_{0}\right)\right]$ SIZE $[s]$ for any s, t, s_{0} as in the hypothesis of Theorem 24.)

Proof. If the permanent does not have polynomial-sized arithmetic circuits, we are
 we can invoke Theorem 24.

Acknowledgements

The author thanks his advisor, Oded Goldreich, for his close guidance in the research and writing process, and for very useful comments on drafts of the paper. The author thanks Ryan Williams for several very helpful email exchanges and conversations, and in particular for stressing the point that the conclusion in the main theorem can be interpreted as a weak form of a "strengthened time-hierarchy" theorem (that contrasts circuits and uniform algorithms), and for suggesting to try and prove an "almosteverywhere" lower bound as a consequence of $\operatorname{pr\mathcal {B}\mathcal {P}}=\operatorname{pr\mathcal {P}}$. The author is very grateful to Igor Oliveira for proposing the alternative proof of Theorem 1 (i.e., the one presented in Appendix A), and for his permission to include the alternative proof in this paper. The author is partially supported by Irit Dinur's ERC-CoG grant 772839.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cambridge University Press, Cambridge, 2009.
[BFN+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. "BPP has subexponential time simulations unless EXPTIME has publishable proofs". In: Computational Complexity 3.4 (1993), pp. 307-318.
[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. "Nonrelativizing separations". In: Proc. 13th Annual IEEE Conference on Computational Complexity (CCC). 1998, pp. 8-12.
[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. "Short PCPs Verifiable in Polylogarithmic Time". In: Proc. 20th Annual IEEE Conference on Computational Complexity (CCC). 2005, pp. 120134.
[BM84] Manuel Blum and Silvio Micali. "How to Generate Cryptographically Strong Sequences of Pseudo-random Bits". In: SIAM Journal of Computing 13.4 (1984), pp. 850-864.
[BV14] Eli Ben-Sasson and Emanuele Viola. "Short PCPs with projection queries". In: Proc. 41st International Colloquium on Automata, Languages and Programming (ICALP). 2014, pp. 163-173.
[Coo72] Stephen A. Cook. "A Hierarchy for Nondeterministic Time Complexity". In: Proc. 4th Annual ACM Symposium on Theory of Computing (STOC). 1972, pp. 187-192.
[FS16] Lance Fortnow and Rahul Santhanam. "New non-uniform lower bounds for uniform classes". In: Proc. 31st Annual IEEE Conference on Computational Complexity (CCC). 2016, Art. No. 19, 14.
[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New York, NY, USA: Cambridge University Press, 2008.
[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. "In search of an easy witness: exponential time vs. probabilistic polynomial time". In: Journal of Computer and System Sciences 65.4 (2002), pp. 672-694.
[IW99] Russell Impagliazzo and Avi Wigderson. " $\mathrm{P}=$ BPP if E requires exponential circuits: derandomizing the XOR lemma". In: Proc. 29th Annual ACM Symposium on Theory of Computing (STOC). 1999, pp. 220-229.
[Juk12] Stasys Jukna. Boolean function complexity. Springer, Heidelberg, 2012.
[KI04] Valentine Kabanets and Russell Impagliazzo. "Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds". In: Computational Complexity 13.1-2 (2004), pp. 1-46.
[Lau83] Clemens Lautemann. "BPP and the polynomial hierarchy". In: Information Processing Letters 17.4 (1983), pp. 215-217.
[MW17] Cody Murray and Ryan Williams. "Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP". In: Electronic Colloquium on Computational Complexity: ECCC 24 (2017), p. 188.
[MW18] Cody Murray and Ryan Williams. "Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP". In: Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018.
[NW94] Noam Nisan and Avi Wigderson. "Hardness vs. randomness". In: Journal of Computer and System Sciences 49.2 (1994), pp. 149-167.
[San09] Rahul Santhanam. "Circuit lower bounds for Merlin-Arthur classes". In: SIAM Journal of Computing 39.3 (2009), pp. 1038-1061.
[Tod91] Seinosuke Toda. "PP is as hard as the polynomial-time hierarchy". In: SIAM Journal of Computing 20.5 (1991), pp. 865-877.
[TV07] Luca Trevisan and Salil P. Vadhan. "Pseudorandomness and Average-Case Complexity Via Uniform Reductions". In: Computational Complexity 16.4 (2007), pp. 331-364.
[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science. Now Publishers, 2012.
[Val79] L. G. Valiant. "The complexity of computing the permanent". In: Theoretical Computer Science 8.2 (1979), pp. 189-201.
[Wil13] Ryan Williams. "Improving Exhaustive Search Implies Superpolynomial Lower Bounds". In: SIAM Journal of Computing 42.3 (2013), pp. 1218-1244.
[Yao82] Andrew C. Yao. "Theory and Application of Trapdoor Functions". In: Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1982, pp. 80-91.

Appendix A An alternative proof of Theorem 2

In this section we present an alternative proof of Theorem 1, which does not rely on the work of Murray and Williams [MW18], but rather on the work of Santhanam [San09]. The idea for this alternative proof was suggested to us by Igor Oliveira (after a preliminary version of this paper appeared online).

The structure of this alternative proof is very similar to the proof of Theorem 3 (which was described in Section 2.2), but uses as a starting point a generalization of the circuit lower bound proved by Santhanam [San09], instead of its subsequent strengthening by Murray and Williams [MW18]. Specifically, the starting point of the proof is the following:

Theorem 28 (a generalization of [San09, Thm. 1]). Let $s: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing, superlinear and time-computable function such that for all sufficiently large $n \in \mathbb{N}$ it holds that $s(3 n) \leq s(n)^{3}$. Then, for $t: \mathbb{N} \rightarrow \mathbb{N}$ such that $t(n)=\operatorname{poly}(s(\operatorname{poly}(s(n))))$ it holds that MATIME $[t] / 1 \nsubseteq$ SIZE $[s]$.

The proof of Theorem 28 imitates the original argument from [San09], but uses more general parameters. We include the full proof for completeness, but since it requires no new significant ideas, we defer its presentation to the end of the appendix. The alternative proof of Theorem 1 follows by combining Theorem 28, Proposition 21 (instantiated with the value $\ell=1$), and Proposition 22.

Theorem 29 (Theorem 1, an alternative technical statement). Let $s: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing, super-linear and time-computable function such that for all sufficiently large $n \in \mathbb{N}$ it holds that $s(3 n) \leq s(n)^{3}$, and let $t: \mathbb{N} \rightarrow \mathbb{N}$ such that $t(n)=\operatorname{poly}(s(\operatorname{poly}(s(n))))$, for sufficiently large polynomials. Assume that prBPP $=$ pr \mathcal{P}. Then, NTIME $[t] \nsubseteq$ SIZE[s].

Proof. Let $s_{0}=s^{3}$, and let $t_{0}=\operatorname{poly}\left(s_{0}\left(\operatorname{poly}\left(s_{0}\right)\right)\right)$, for sufficiently large polynomials. According to Theorem 28, there exists a set S in MATIME[t $\left.t_{0}\right] / 1$ such that $S \notin \operatorname{SIZE}\left[s_{0}\right]$. By Proposition 21, and relying on the hypothesis that $p r \mathcal{B} \mathcal{P} \mathcal{P}=p r \mathcal{P}$, it holds that $S \in N T I M E\left[t_{1}\right] / 1 \backslash \operatorname{SIZE}\left[s_{0}\right]$, where $t_{1}=\operatorname{poly}\left(t_{0}\right)$. Using Proposition 22, it holds that NTIME[t] $\nsubseteq \operatorname{SIZE}\left[s_{1}\right]$, where $t=O\left(t_{1}\right)=\operatorname{poly}(s(\operatorname{poly}(s)))$ and $s_{1}(n)=s_{0}(n-1)$. Finally, since s is increasing and $s(n) \leq s(\lceil n / 3\rceil)^{3}$, we have that $s_{1}(n)=s_{0}(n-1) \geq s_{0}(\lceil n / 3\rceil) \geq s(n)$, and hence NTIME $[t] \nsubseteq S I Z E[s]$.

It is just left to detail the proof of Theorem 28. The first technical ingredient in the proof is the $\mathcal{P S P A C E}$-complete set of Trevisan and Vadhan [TV07]. We use this
set, but instead of relying on the fact that the set is $\mathcal{P S P A C E}$-complete, we will use padding to claim that the set is complete for DSPACE $\left[n^{\omega(1)}\right]$ under $n^{\omega(1)}$-time reductions.

Lemma 30 (scaling the $\mathcal{P S P A C E}$-complete set of [TV07]). There exists a set $L^{\mathrm{TV}} \subseteq\{0,1\}^{*}$ and a probabilistic polynomial-time oracle Turing machine M that satisfy the following:

1. Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a super-linear, time-computable function. Then, for every set $L \in$ DSPACE $[t]$ there exists a deterministic Turing machine R_{L} that runs in time $\operatorname{poly}(t)$ such that for every $x \in\{0,1\}^{*}$ it holds that $x \in L \Longleftrightarrow R_{L}(x) \in L^{\mathrm{TV}}$.
2. On input $x \in\{0,1\}^{*}$, the machine M only issues queries of length $|x|$.
3. For any $x \in L^{\mathrm{TV}}$ it holds that $\operatorname{Pr}\left[M_{\mathbf{1}^{\mathrm{TV}}}(x)=1\right]=1$, where $\mathbf{1}_{L^{\mathrm{Tv}}}:\{0,1\}^{n} \rightarrow\{0,1\}$ is the indicator function of $L^{\mathrm{TV}} \cap\{0,1\}^{n}$.
4. For any $x \notin L^{\mathrm{TV}}$ and any $f:\{0,1\}^{n} \rightarrow\{0,1\}$ it holds that $\operatorname{Pr}\left[M^{f}(x)=0\right] \geq 2 / 3$.

Proof. We take L^{TV} to be the $\mathcal{P S P A C E}$-complete set from [San09, Lem. 12], which is the same set constructed in [TV07]. Items (2) - (4) follow immediately from the original statement in [San09]. ${ }^{15}$ Item (1) follows since $L^{\text {TV }}$ is $\mathcal{P S P A C E}$-complete, and using a padding argument. Specifically, for any t and L, consider the machine R_{L} that combines a reduction of L to $L^{\prime}=\left\{\left(x, 1^{t}\right): x \in L\right\}$ with a reduction of L^{\prime} to L^{TV}. The first reduction maps $x \mapsto\left(x, 1^{t}\right)$, and since $L^{\prime} \in \mathcal{P S P A C E}$, there exists a second reduction of L^{\prime} to L^{TV} that can be computed in time $\operatorname{poly}(t+|x|)<\operatorname{poly}(t)$ (the inequality is since t is super-linear).

Proof of Theorem 28. Let $t_{0}: \mathbb{N} \rightarrow \mathbb{N}$ such that $t_{0}(n)=s^{4}(n)$, and let $t_{1}=\operatorname{poly}\left(t_{0}\right)$ and $t=t_{2}=\operatorname{poly}\left(t_{0}\left(\operatorname{poly}\left(t_{0}\right)\right)\right)$, for sufficiently large polynomials. Let L^{TV} be the set from Lemma 30. Our goal is to prove that there exists a set in MATIME $\left[t_{2}\right] / 1$ that is not in SIZE $\left[t_{0}^{1 / 4}\right]$. The proof proceeds by a case analysis.

Case 1: $L^{\mathrm{TV}} \in \operatorname{SIZE}\left[t_{0}\right]$. By a standard diagonalization argument, there exists a set $L^{\text {diag }} \in \operatorname{DSPACE}\left[t_{1}\right] \backslash \operatorname{SIZE}\left[t_{0}\right]$. ${ }^{16}$ Our main goal now will be to prove that $D S P A C E\left[t_{1}\right] \subseteq$ MATIME $\left[t_{2}\right]$, which will imply that $L^{\text {diag }} \in \operatorname{MATIME}\left[t_{2}\right] \backslash \operatorname{SIZE}\left[t_{0}\right]$. (Indeed, in this case we are proving a stronger result, since the $M A$ verifiers do not need advice, and since the circuits are of size t_{0} rather than $s=t_{0}^{1 / 4}$.)

To do so, let $L \in \operatorname{DSPACE}\left[t_{1}\right]$, and consider the following $M A$ verifier for L. On input $x \in\{0,1\}^{n}$, the verifier computes $x^{\prime}=R_{L}(x)$, where R_{L} is the machine from

[^12]Lemma 30. Note that $n^{\prime}=\left|x^{\prime}\right| \leq \operatorname{poly}\left(t_{1}(n)\right)$, and that $x \in L \quad \Longleftrightarrow \quad x^{\prime} \in L^{\mathrm{TV}}$. Now, the verifier parses the witness $w \in\{0,1\}^{\text {poly }\left(t_{0}\left(n^{\prime}\right)\right)}$ as a description of a circuit $C:\{0,1\}^{n^{\prime}} \rightarrow\{0,1\}$ of size $t_{0}\left(n^{\prime}\right)$, and runs the machine M from Lemma 30 on input x^{\prime}, while answering each oracle query of M using the circuit C.

Note that, since $L^{\mathrm{TV}} \in S I Z E\left[t_{0}\right]$, there exists a circuit C over n^{\prime} input bits of size $t_{0}\left(n^{\prime}\right)$ that correctly computes L^{TV} on inputs of length n^{\prime}. Therefore, by Lemma 30, when $x \in L$ there exists a witness such that the verifier accepts x with probability one, whereas the verifier rejects any $x \notin L$ with probability at least $2 / 3$, regardless of the witness. The total running time of the verifier is dominated by the time it takes to simulate M using the circuit C, which is at $\operatorname{most} \operatorname{poly}\left(n^{\prime}\right) \cdot \operatorname{poly}\left(t_{0}\left(n^{\prime}\right)\right) \leq t_{2}(n)$.

Case 2: $L^{\mathrm{TV}} \notin S I Z E\left[t_{0}\right]$. In this case we show an explicit set $L^{\text {pad }}$, which will be a padded version of L^{TV}, such that $L^{\text {pad }}$ can be decided in MATIME $\left[t_{2}\right]$ with one bit of advice, but cannot be decided by circuits of size $s=t_{0}^{1 / 4}$. To do so, let $\mathbf{s z}_{\mathrm{Tv}}: \mathbb{N} \rightarrow \mathbb{N}$ be such that $\mathrm{sz}_{\mathrm{TV}}(n)$ is the minimum circuit size for $L_{n}^{\mathrm{TV}}=L^{\mathrm{TV}} \cap\{0,1\}^{n}$. Also, for any integer m, let $p(m)=2^{\lfloor\log (m)\rfloor}$ be the largest power of two that is not larger than m, and let $n(m)=m-p(m)$. We think of $n(m)$ as the "effective input length" indicated by m, and on $p(m)$ as the length of padding. We define the set $L^{\text {pad }}$ as follows:

$$
\begin{aligned}
L^{\mathrm{pad}}=\left\{\left(x, 1^{p}\right): x \in L^{\mathrm{TV}},\right. & \text { and }|x|=n(|x|+p), \\
& \text { and } \left.t_{0}(|x|+p) \leq \mathbf{s z}_{\mathrm{Tv}}(|x|)^{3}<t_{0}(|x|+2 p)\right\} .
\end{aligned}
$$

Let us first see that $L^{\text {pad }}$ cannot be decided by circuits of size $t_{0}^{1 / 4}$. Assume towards a contradiction that there exists a circuit family $\left\{C_{m}\right\}$ of size $t_{0}^{1 / 4}$ that decides L_{m}^{pad} correctly for every m. Since $L^{\mathrm{TV}} \notin S I Z E\left[t_{0}\right]$, there exists an infinite set $I \subseteq \mathbb{N}$ such that for every $n \in I$ it holds that $\mathbf{s z}_{\mathrm{Tv}}(n)>t_{0}(n)$. For a sufficiently large $n \in I$, we will construct a circuit $C_{n}^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}$ of size less than $\mathrm{sz}_{\mathrm{Tv}}(n)$ that computes L_{n}^{TV}, which yields a contradiction to the definition of $\mathrm{sz}_{\mathrm{Tv}}$.

Specifically, consider the circuit $C_{n}^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}$ that acts as follows. Let p be a power of two such that $t_{0}(n+p) \leq \mathbf{s z}_{\mathrm{Tv}}{ }^{3}(n)<t_{0}(n+2 p)$; there exists such a p since $t_{0}\left(n+2^{[\log (n)\rceil}\right) \leq t_{0}(n)^{3}<\mathrm{sz}_{\mathrm{Tv}}{ }^{3}(n)$. The value of this p is hard-coded into C_{n}^{\prime}. Given $x \in\{0,1\}^{n}$, the circuit C_{n}^{\prime} pads x with 1^{p}, simulates the circuit C_{m} on $\left(x, 1^{p}\right)$ (where $m=n+p)$, and outputs $C_{m}\left(x, 1^{p}\right)$. By the definition of $L^{\text {pad }}$ it holds that C_{n}^{\prime} correctly computes L_{n}^{TV}. The size of C_{n}^{\prime} is dominated by the size of C_{m}, and is thus at most $O\left(t_{0}(n+p)^{1 / 4}\right)=o\left(t_{0}(n+p)^{1 / 3}\right)$. Since $t_{0}(n+p)^{1 / 3} \leq \mathbf{s z}_{\mathrm{Tv}}(n)$ and n is sufficiently large, the size of C_{n}^{\prime} is less than $\mathrm{sz}_{\mathrm{Tv}}(n)$, which yields a contradiction.

Let us now see that $L^{\text {pad }}$ can be decided by an $M A$ verifier that runs in time t_{2} and uses one bit of advice. Given an input z of length m, the advice bit is set to one if and only if $L_{m}^{\mathrm{pad}} \neq \varnothing$; if the advice is zero, the verifier immediately rejects. Otherwise, the verifier computes $n=n(m)$ and $p=p(m)$, and parses the input z as $\left(x, 1^{p}\right)$ where $|x|=n$ (if the verifier fails to parse the input, it immediately rejects). The verifier parses the witness $w \in\{0,1\}^{\text {poly }\left(t_{0}(n+2 p)\right)}$ as a circuit $C:\{0,1\}^{n} \rightarrow\{0,1\}$
of size at most $t_{0}(n+2 p)^{1 / 3}$, and emulates the machine M from Lemma 30 on input x, answering each oracle query of M using the circuit C. The verifier outputs the decision of M.

Since $\operatorname{sz}_{\mathrm{Tv}}(n)<t_{0}(n+2 p)^{1 / 3}$, there exists a circuit C of size at most $t_{0}(n+2 p)^{1 / 3}$ that computes L_{n}^{TV}. For any $z \in L^{\mathrm{pad}}$, when the witness represents this circuit, the verifier accepts z with probability one. Also, for any $z \notin L^{\mathrm{TV}}$, the verifier rejects x with probability $2 / 3$, regardless of the witness. Finally, note that the running time of the verifier is dominated by the time that it takes to run the machine M while simulating the oracle answers, which is at $\operatorname{most} \operatorname{poly}(n) \cdot \operatorname{poly}\left(t_{0}(2 m)\right) \leq t_{2}(m)$.

Appendix B Sufficient conditions for admissibility

The point of the current appendix is to show that essentially any increasing function $f(n)=\omega(1)$ such that $f(n) \leq n$ is admissible (in the sense of Definition 17).

Claim 31. Let $f(n)=\omega(1)$ be any increasing function such that $f(n) \leq n$ for all n, and $t(n)=n^{f(n)}$ is time-constructible, and $s(n)=n^{\log (f(\log (n)))}$ is time-constructible, and $s^{\prime}(n)$ is time-constructible. Then, f is admissible.

Proof. Let $g(n)=\log (f(\log (n)))$ and let $s(n)=n^{g(n)}$. We need to verify that g is super-constant (which holds because f is super-constant), and that t and s are sufficiently gapped, and that $\hat{s}(n)=n^{o(f(n))}$. To see that t and s are sufficiently gapped, first note that both functions are increasing (since f is increasing, and hence g is also increasing) and are time-constructible, as is s^{\prime} (we assumed time-constructibility in the hypothesis). Also note that $s(n) \leq n^{\log \log (n)}<2^{n / \gamma} / n$.

Thus, it is left to verify that $\hat{s}(n)=n^{o(f(n))}$. The proof of this fact amounts to the following elementary calculation. First note that

$$
s^{\prime}(n)=(s(\gamma \cdot n))^{\gamma}=(\gamma \cdot n)^{\gamma \cdot \log (f(\log (\gamma \cdot n)))}<n^{\log ^{2}\left(f\left(\log ^{2}(n)\right)\right)} .
$$

Thus, for any function $k=k(n)$ and constant $c \geq 2$ such that $k(n) \leq \log ^{c}\left(f\left(\log ^{3 c}(n)\right)\right)$ (which in particular implies that $k(n) \leq \log ^{c}(n)$), we have that

$$
\begin{equation*}
s^{\prime}\left(n^{k}\right)<n^{k \cdot \log ^{2}\left(f\left(\log ^{2}\left(n^{k}\right)\right)\right)} \leq n^{\log ^{2 c}\left(f\left(\log ^{3 c}(n)\right)\right)} \tag{1}
\end{equation*}
$$

In particular, using Eq. (1) with $k(n)=\log ^{2}\left(f\left(\log ^{2}(n)\right)\right)$ and $c=2$, we deduce that $s^{\prime}\left(s^{\prime}(n)\right)<n^{\log ^{4}\left(f\left(\log ^{6}(n)\right)\right)}$. Then, using Eq. (1) again with $k(n)=\log ^{4}\left(f\left(\log ^{6}(n)\right)\right)$ and $c=4$, we deduce that $s^{\prime}\left(s^{\prime}\left(s^{\prime}(n)\right)\right)<n^{\log ^{8}\left(f\left(\log ^{12}(n)\right)\right)}$. Therefore, we have that $\hat{s}(n)<n^{\gamma^{\prime} \cdot \log ^{8}\left(f\left(\log ^{12}(n)\right)\right)}<n^{\gamma^{\prime} \cdot \operatorname{poly} \log (f(n))}=n^{o(f(n))}$.

[^0]: *The current paper is a revised version of a technical report that appeared online under a slightly different title (ECCC, TR18-003, Rev 2). The current version includes several additional results as well as a revised exposition.
 ${ }^{\dagger}$ Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. Email: roei.tell@weizmann.ac.il

[^1]:

[^2]: ${ }^{2}$ This is since when $s(s(n)) \geq 2^{n}$ we have that $\operatorname{NTIME}\left[s^{O(1)} \circ s^{O(1)} \circ s^{O(1)}\right] \supseteq \operatorname{NTIME}\left[2^{\text {poly }(s(n))}\right]$, whereas $D T I M E\left[2^{\operatorname{poly}(s(n))}\right] \nsubseteq S I Z E[s]$ holds unconditionally (by a diagonalization argument).

[^3]: ${ }^{3}$ This lower bound can be viewed as a significant strengthening of the (unconditionally-known) lower bound $\Sigma_{3}\left[n^{\omega(1)}\right] \nsubseteq \mathcal{P} /$ poly, which asserts that polynomial-sized circuits cannot simulate both superpolynomial running time and "several levels" of non-determinism/alterations. (The proof of the lower bound is a diagonalization argument a-la Kannan's theorem; see, e.g., [Juk12, Lem. 20.12].)

[^4]: ${ }^{4}$ The informality is by ignoring time-computability constraints on s.

[^5]: ${ }^{5}$ A circuit $P_{x}:\{0,1\}{ }^{\log \left(\left|\pi_{x}\right|\right)} \rightarrow\{0,1\}$ encodes a string π_{x} if for every $i \in\left[\left|\pi_{x}\right|\right]$ it holds that $P_{x}(i)$ is the $i^{\text {th }}$ bit of π_{x} (equivalently, π_{x} is the truth-table of P_{x}).
 ${ }^{6}$ To apply the easy witness lemma, consider the deterministic verifier V^{\prime} that, when given input and a proof, enumerates the random coins of V and decides by a majority vote. This verifier runs in time $2^{\ell} \cdot t_{V}<\left(t_{0}\right)^{2}$, so we can apply the lemma to L with this verifier.

[^6]: ${ }^{7}$ The actual lower bound is even slightly stronger, since it asserts that the circuit family fails to compute S on (at least) one of the "end-points" of the interval. For further details see Section 5.
 ${ }^{8}$ Note that the foregoing argument only follows through after the "derandomization" (i.e., for NTIME and not for MATIME). This is the case since when dealing with probabilistic machines, it is not clear how to define $S^{\text {adv }}$ in a way that will allow a probabilistic machine without advice to decide it (since a probabilistic machine that is given a "wrong" advice might not "distinctly" accept or reject some inputs).

[^7]: ${ }^{9}$ Specifically, the values of these constants are $\gamma=e$ and $\gamma^{\prime}=2 g$ and $\gamma^{\prime \prime}=d$, where e, g, and d are the universal constants from Lemma 4.1 in [MW17].

[^8]: ${ }^{10}$ To see that this is the case, let $\Pi=(Y, N) \subseteq\{0,1\}^{*} \times\{0,1\}^{*}$ be a promise problem in $p r \Sigma_{k}$, for some $k \in \mathbb{N}$. Then, there exists a polynomial-time algorithm A such that for every $x \in Y$ it holds that $\exists y_{1}, \forall y_{2}, \ldots, y_{k}: A\left(x, y_{1}, \ldots, y_{k}\right)=1$, and for every $x \in N$ it does not hold that $\exists y_{1}, \forall y_{2}, \ldots, y_{k}$: $A\left(x, y_{1}, \ldots, y_{k}\right)=1$. We define a set $S=S_{A}$ that consists of all strings x such that $\exists y_{1}, \forall y_{2}, \ldots, y_{k}$: $A\left(x, y_{1}, \ldots, y_{k}\right)=1$. Note that $S \supseteq Y$, and that $S \cap N=\varnothing$, and that $S \in \Sigma_{k}$ (using the algorithm A). By our assumption that the polynomial-time hierarchy collapses, there exists a polynomial-time algorithm A^{\prime} that decides S. It follows that A^{\prime} solves the problem Π.

[^9]: ${ }^{11}$ Such a function exists by standard non-deterministic time hierarchy theorems (e.g., [Coo72]), since $t^{\prime}(n)>n^{\Omega(1)}$, which implies that the gap between t^{\prime} and $\left(t^{\prime}\right)^{1-\Omega(1)}$ is sufficiently large.
 ${ }^{12}$ Note that the only upper-bound that we need on the number of oracle queries issued by V is the trivial bound given by the running time of V.

[^10]: ${ }^{13}$ The $0^{|\sigma|}$ term facilitates the parsing of the suffix of the n-bit string as a pair $x \sigma$.

[^11]: ${ }^{14}$ To see this, assume that $S \notin$ i.o. $[q]-S I Z E[s]$, for $q \ll s$. We define a set $S^{\text {emb }}$ by "embedding" all strings in S of length $n-1$ and $q^{-1}(n-1)$ into $\{0,1\}^{n}$: For each $n \in \mathbb{N}$, let $S_{n}^{\text {emb }}$ consist of all n-bit strings $0^{n-|x|} 1 x$ such that $x \in S$. Since $S \notin$ i.o. $[q]-S I Z E[s]$, for every sufficiently large $n \in \mathbb{N}$ the circuit complexity of $S_{n}^{\text {emb }}$ is larger either than $s(n-1)$ or than $s\left(q^{-1}(n-1)\right)$. In natural cases where $s\left(q^{-1}(n-1)\right)<s(n-1)$, we obtain an "almost-everywhere" lower bound for circuits of size about $s\left(q^{-1}\right)$.

[^12]: ${ }^{15}$ The original statement asserts that any $x \notin L^{\mathrm{TV}}$ is rejected with probability at least $1 / 2$ (rather than $2 / 3$), but this probability can be amplified to $2 / 3$ using standard error-reduction.
 ${ }^{16}$ For example, $L^{\text {diag }}=\left\{x: C_{|x|}(x)=1\right\}$, where C_{n} is the lexicographically-first circuit over n bits of size at most $t_{0}^{2}(n)$ that decides a set whose circuit complexity is more than $t_{0}(n)$. The proof that $L^{\text {diag }} \in \operatorname{DSPACE}\left[t_{1}\right]$ follows the well-known idea used in Kannan's theorem (see, e.g., [Juk12, Lem. 20.12]).

