
Proving that prBPP = prP is as hard as proving that
“almost NP” is not contained in P/poly∗

Roei Tell †

January 5, 2019

Abstract

What circuit lower bounds are necessary in order to prove that promise-BPP =
promise-P? We show that the recent breakthrough result of Murray and Williams
(STOC 2018) can be used to show a dramatic strengthening of the previously-
known answer to this question. Specifically, we show that if promise-BPP =

promise-P , then NTIME[n f (n)] 6⊆ P/poly, for essentially any f (n) = ω(1).
We also prove several technical strengthenings of this result, which use differ-

ent proof strategies than the one employed by Murray and Williams. In particular:

1. We prove that if promise-BPP = promise-P , then for essentially any s : N →
N it holds that NTIME[sO(1) ◦ sO(1)] 6⊆ SIZE[s]. Moreover, we show that the
failure of size-s circuits to compute the “hard” functions happens in any
interval of length poly(s(poly(n))). (Directly invoking the Murray-Williams
tools yields three compositions of s instead of two, and does not yield the
guarantee of failure in any small interval.)

2. We prove that under the weaker hypothesis BPP = P (i.e., without the
promise), one of the following holds: Either for essentially any s : N → N

it holds that NTIME[sO(1) ◦ sO(1)] 6⊆ SIZE[s], or the permanent of {0, 1}-
matrices over Z does not have polynomial-sized arithmetic circuits. This
uses a well-known idea of Kabanets and Impagliazzo (2004).

Lastly, we present an alternative proof of the main result, which only relies on
a generalization of the well-known lower bound of Santhanam (SICOMP, 2009).

∗The current paper is a revised version of a technical report that appeared online under a slightly
different title (ECCC, TR18-003, Rev 2). The current version includes several additional results as well as
a revised exposition.

†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Email: roei.tell@weizmann.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 3 (2018)

Contents

1 Introduction 1
1.1 The main new result . 1
1.2 Strengthening the conclusion of Theorem 2 3
1.3 Weakening the hypothesis of Theorem 2 4
1.4 The meaning of the results in this paper 4
1.5 Organization . 6

2 Overviews of the proofs 6
2.1 Proof overview for Theorem 2 . 6
2.2 Proof overview for Theorem 3 . 8
2.3 Proof overview for Theorem 4 . 9

3 Preliminaries 10

4 Proof of Theorems 1 and 2 13
4.1 A parametrized “derandomization implies lower bounds” theorem . . . 13
4.2 Theorems 1 and 2 as corollaries . 15

5 Proof of Theorem 3 16

6 Proof of Theorem 4 20

Acknowledgements 22

Appendix A An alternative proof of Theorem 2 24

Appendix B Sufficient conditions for admissibility 27

i

1 Introduction

The BPP = P conjecture asserts that any decision problem that can be efficiently
solved using randomness (while allowing for a small error) can also be efficiently
solved deterministically. In other words, the conjecture asserts that randomness is
not needed to efficiently solve decision problems. This conjecture is central to the
complexity-theoretic study of the role of randomness in computation.

The BPP = P conjecture is often interpreted as an algorithmic problem, namely
the problem of explicitly constructing efficient deterministic algorithms that simulate
randomized algorithms. In fact, a version of the conjecture is equivalent to the conjec-
tured existence of an algorithm for a single, specific problem (i.e., the circuit acceptance
probability problem; see Proposition 7). However, as will be discussed next, it has also
been known for at least two decades that the conjecture is actually intimately related to
circuit lower bounds; that is, to lower bounds for non-uniform models of computation.

Informally, following a very recent breakthrough by Murray and Williams [MW18],
the main result in this paper considerably strengthens the knowns connection between
the BPP = P conjecture and circuit lower bounds. To present the new result, let us
first spell out the previously-known connections:

• On the one hand, any proof of sufficiently strong circuit lower bounds would also
prove the BPP = P conjecture. Specifically, if there is a function in E that requires
exponential-sized circuits, then BPP = P (and even prBPP = prP , i.e. the
promise-problem versions of BPP and of P are equal; see [IW99], which relies
on the hardness-randomness paradigm [Yao82; BM84; NW94]).

• On the other hand, any proof that prP = prBPP implies long-sought circuit lower
bounds. As a prominent example, any proof that prBPP = prP implies that
there exists a function in NEXP that cannot be computed by any polynomial-
sized circuit family [BFT98].1 In fact, the latter circuit lower bound follows even
from much weaker hypotheses (e.g., it follows from the hypothesis that MA 6=
NEXP ; see, e.g., [IKW02; Wil13]).

1.1 The main new result

The starting point of the current work is the observation that an immediate corollary
of a result from the recent work of Murray and Williams [MW18, Thm 1.2] is the fol-
lowing: If prBPP = prP , then there exists a function in NTIME[npoly log(n)] (rather than
NEXP) that cannot be computed by any polynomial-sized circuit family. This is a dra-
matic (almost exponential) strengthening of previously-known results (i.e., of [BFT98;
IKW02]), and we believe that it is a fundamental result that is worth spelling out and
highlighting. Furthermore, this result can even be further strengthened. In particular,

1In [BFT98] it is shown, unconditionally, that MAEXP 6⊆ P/poly. Thus, under the hypothesis
prBPP ⊆ prNP we have that MAEXP = NEXP 6⊆ P/poly (see [IKW02, Rmk. 26]).

1

by using the proof approach of [MW18] while instantiating their technical tools with
different parameters, we get the following:

Theorem 1 (main theorem; informal). If prBPP = prP , then, for essentially any super-
constant function f (n) = ω(1), there exists a set in NTIME[n f (n)] \ P/poly.

One might a-priori hope to strengthen the conclusion of Theorem 1 by improving
the time bound in the non-deterministic class; that is, to prove that “if prBPP = prP ,
then NP 6⊆ P/poly (and P 6= NP)”. However, such a result cannot be proved
without unconditionally proving that P 6= NP , since any proof of the conditional
statement “prBPP = prP =⇒ P 6= NP” would unconditionally imply that P 6= NP
(see Proposition 13). Therefore, the conclusion of Theorem 1 is optimal in this sense.

Theorem 1 is a special case of a more general “derandomization implies lower
bounds” result that follows using the tools of Murray and Williams [MW18]. In this
general result, the circuit lower bound in the conclusion can be parameterized:

Theorem 2 (a generalized version of Theorem 1; informal, see Corollary 16). There exists
ϵ > 0 such that for any time-computable s : N → N satisfying n < s(n) < 2ϵ·n it holds that

prBPP = prP =⇒ NTIME[s′ ◦ s′ ◦ s′] 6⊆ SIZE[s] ,

where s′ = poly(s(O(n))).

Indeed, Theorem 1 follows as a special case of Theorem 2 by using s(n) = nω(1)

(in which case s′ ◦ s′ ◦ s′ = nω(1) and SIZE[s] ⊃ P/poly; see Corollary 18). The
hypothesis of Theorem 2 can also be significantly relaxed, since its proof relies on
Williams’ [Wil13] celebrated proof strategy (which is well-known to support such re-
laxations). For example, the theorem holds under the hypothesis pr-coRP ⊆ prNP ,
and also under the hypothesis that there exists a “non-trivial” algorithm for the Circuit
Acceptance Probability Problem (CAPP) (i.e., an algorithm that approximates the accep-
tance probability of a circuit of size m with v variables in time 2.99·v · poly(m)). See
Section 4 for precise details of these relaxations.

We also show several technical improvements of Theorem 2, using proof approaches
that are different than the one in [MW18]. First, in Section 1.2 we strengthen the con-
clusion of the theorem, by placing the “hard” function in a smaller complexity class
(i.e., placing it in NTIME[s′ ◦ s′] rather than in NTIME[s′ ◦ s′ ◦ s′]), and by deducing
that failure of size-s circuits to compute this “hard” function happens in every “small”
interval of input lengths. Secondly, in Section 1.3, we present a version of Theorem 2
whose hypothesis refers not to the “promise-problem" classes prBPP and prP , but
rather assumes only that P = BPP (note that this hypothesis does not refer to the
CAPP problem); the corresponding conclusion in this case is weaker.

In addition, in Appendix A we present an alternative and relatively simple proof of
Theorem 2, which does not use the results of Murray and Williams, but is based only
on (a generalization of) the well-known circuit lower bound of Santhanam [San09]. The
idea for this alternative proof was suggested to us by Igor Oliveira (after a preliminary
version of this paper appeared online).

2

We note in advance that, similarly to Theorem 2, all the foregoing results hold
not only under hypotheses that refer to deterministic simulation of probabilistic algo-
rithms, but also under weaker hypotheses that refer to non-deterministic simulation of
probabilistic algorithms (i.e., hypotheses in the spirit of prBPP ⊆ prNP ; see Theo-
rems 3 and 4). This phenomenon is indeed similar to previously-known results (e.g.,
to [BFT98; IKW02; Wil13]); for further discussion see Section 1.4.

Readers that are not interested in the foregoing technical improvements of Theo-
rem 2 and alternative simpler proof may skip ahead to Section 1.4, in which we discuss
the meaning of the new results.

1.2 Strengthening the conclusion of Theorem 2

Our first technical strengthening of Theorem 2 is an improvement in the lower bound
in the conclusion of the theorem. Specifically, recall that the “hard” function in the
conclusion of Theorem 2 was in NTIME[sO(1) ◦ sO(1) ◦ sO(1)]. In particular, since there
are three compositions of s, the concluded lower bound becomes trivial when s is
half-exponential or larger (i.e., when s(s(n)) ≥ 2n).2 The current improvement re-
moves this limitation: We prove that if prBPP = prP , then there exists a function in
NTIME[sO(1) ◦ sO(1)] that cannot be computed by circuits of size s.

Moreover, we also improve the concluded lower bound by showing that size-s
circuits fail to compute the “hard” function on a “dense” set of input lengths (the
conclusion in Theorem 2 only guarantees failure on infinitely-many input lengths).
Specifically, for sI(n) = poly(s(poly(n))), we conclude that size-s circuits fail to com-
pute the “hard” function on an input length in any interval of the form [n, sI(n)].

Similarly to Theorem 2, the foregoing (stronger) conclusions follow also from a
hypothesis that is weaker than prBPP = prP . Specifically, the conclusions follow
from the hypothesis that prBPP ⊆ prNP :

Theorem 3 (strengthening the conclusion of Theorem 2; informal, see Theorem 24). There
exists ϵ > 0 such that for any time-computable s : N → N satisfying n < s(n) < 2ϵ·n it
holds that

prBPP ⊆ prNP =⇒ NTIME[s′ ◦ s′] 6⊆ i.o.[sI]-SIZE[s] ,

where s′ = poly(s), and i.o.[sI]-SIZE[s] is the class of problems such that there exists a size-s
circuit that, for infinitely-many intervals of length sI(n) = poly(s(n2)), solves the problem
on some input length in the interval.

The proof of Theorem 3 does not follow the proof approach of Murray and Williams,
and in particular does not use their new “easy witness lemma”. Nevertheless, the
proof crucially relies on one of their technical results, namely their strengthening of
Santhanam’s circuit lower bound [San09]. See Section 2.2 for further details.

2This is since when s(s(n)) ≥ 2n we have that NTIME[sO(1) ◦ sO(1) ◦ sO(1)] ⊇ NTIME[2poly(s(n))],
whereas DTIME[2poly(s(n))] 6⊆ SIZE[s] holds unconditionally (by a diagonalization argument).

3

1.3 Weakening the hypothesis of Theorem 2

The hypothesis in Theorems 1 and 2 refers to classes of promise problems, and is thus
stronger than the hypothesis that BPP = P (which refers only to decision problems
with the trivial promise). Indeed, the promise-problem version of the BPP = P
conjecture is natural and well-studied by itself, and moreover, the strongest evidence
that currently suggests that BPP = P also suggests that prBPP = prP (since it is
based on constructions of pseudorandom generators; see [IW99]).

Nevertheless, it is interesting to ask what are the consequences of the weaker hy-
pothesis that BPP = P . Kabanets and Impagliazzo [KI04] showed that under this
weaker hypothesis, one of the following two conclusions holds: Either the perme-
nant function of {0, 1}-matrices over Z, which is #P-complete [Val79], does not have
polynomial-sized arithmetic circuits over Z (for a precise definition of such circuits,
see Section 3); or NEXP 6⊆ P/poly. By combining their ideas with the new results in
this paper, we obtain the following significant strengthening of their result:

Theorem 4 (weakening the hypothesis of Theorem 2; informal, see Theorem 27). There exists
ϵ > 0 such that the following holds. Under the hypothesis coRP ⊆ NP , at least one of the
following statements is true:

1. The permanent function does not have polynomial-sized arithmetic circuits over Z.

2. The lower bounds in the conclusion of Theorem 3 hold. (That is, NTIME[s′ ◦ s′] 6⊆
i.o.[sI]-SIZE[s] for any s, s′, and sI as in Theorem 3.)

1.4 The meaning of the results in this paper

What is the meaning of the results in this paper? Let us first focus on Theorem 1; that
is, on the statement “prBPP = prP =⇒ NTIME[nω(1)] 6⊆ P/poly”. Note that the
lower bound NTIME[nω(1)] 6⊆ P/poly asserts that polynomial-sized circuits cannot
simulate both “slightly” super-polynomial running time and non-determinism.3

Thus, on the one hand, one may view the lower bound NTIME[nω(1)] 6⊆ P/poly as
a weaker form of NP 6⊆ P/poly. From this perspective, Theorem 1 can be interpreted
as saying that proving that prBPP = prP is as hard as proving a lower bound that is
essentially a precursor of NP ⊆ P/poly. On the other hand, as pointed out by Ryan
Williams, one can alternatively view the lower bound NTIME[nω(1)] 6⊆ P/poly as a
weaker form of the statement DTIME[nω(1)] 6⊆ P/poly. The latter statement asserts
that polynomial-sized circuits cannot simulate algorithms with superpolynomial run-
ning time. From this perspective, Theorem 1 implies that proving that prBPP = prP
is as hard as proving a weak form of a “strengthened time-hierarchy theorem” (in
which we compare uniform algorithms to non-uniform circuits).

3This lower bound can be viewed as a significant strengthening of the (unconditionally-known) lower
bound Σ3[nω(1)] 6⊆ P/poly, which asserts that polynomial-sized circuits cannot simulate both super-
polynomial running time and “several levels” of non-determinism/alterations. (The proof of the lower
bound is a diagonalization argument a-la Kannan’s theorem; see, e.g., [Juk12, Lem. 20.12].)

4

In fact, continuing the latter view, it seems instructive to compare the lower bounds
implied by prBPP = prP to the lower bounds that are known to imply prBPP = prP
(using the results of Impagliazzo and Wigderson [IW99]). Specifically, being slightly
informal,4 we have that:

∀s(n) < 2ϵ·n, DTIME[poly(s)] 6⊆ i.o.-SIZE[s] (1)
⇓ (by [IW99])
prBPP = prP
⇓ (by Thm 3)

∀s(n) < 2ϵ·n, NTIME[s′ ◦ s′] 6⊆ i.o.[sI]-SIZE[s] (2)

where ϵ > 0, s′, and sI are defined as in Theorem 3.
Indeed, the lower bounds in Eq. (1) are stronger than the lower bounds in Eq. (2):

This is both since the “hard” function in Eq. (2) lies in a complexity class that is larger
than that of the “hard” function in Eq. (1) (due to the use of non-determinism and to
the two compositions of s); and since in Eq. (2) failure of size-s circuits to compute the
function is guaranteed only in any “small” interval, whereas in Eq. (1) this failure is
guaranteed almost everywhere. This comparative perspective suggests the following
interpretation of the results in this paper:

The lower bounds implied by prBPP = prP are now significantly stronger
(compared to the lower bounds that were previously known to be implied
by this conjecture); but they are nevertheless still weaker than the lower
bounds that are known to imply that prBPP = prP .

Is prBPP = prP equivalent to a specific circuit lower bound? The circuit lower
bounds implied in Eq. (2) hold not only when prBPP = prP , but also under the
(intuitively) weaker hypothesis prBPP ⊆ prNP . Therefore, one might suspect that
the conclusion in Theorem 2 can be strengthened. Moreover, recall that the question of
whether specific derandomization results are equivalent to specific circuit lower bounds
has been raised several times in the past (see, e.g., [IKW02, Beginning of the Introduc-
tion] and [TV07, Sec. 1.1]). We thus propose the following natural conjecture (we have
found no explicit prior mentions of this conjecture in the literature):

Conjecture 5 (prBPP = prP is equivalent to the [IW99] lower bounds). The statement
that prBPP = prP is equivalent to the statement that for some ϵ > 0 and every s(n) < 2ϵ·n

it holds that DTIME[poly(s)] 6⊆ i.o.-SIZE[s].

The most important gap between Theorem 3 and Conjecture 5 is that in Theorem 3,
the lower bounds implied by prBPP = prP are against non-deterministic classes.
Note that even a modest first step towards proving Conjecture 5, namely proving
that prBPP = prP =⇒ EXP 6⊆ P/poly, already implies that any polynomial-time
derandomization of prBPP requires pseudorandom generators (see [BFN+93]).

4The informality is by ignoring time-computability constraints on s.

5

1.5 Organization

In Section 2 we present high-level overviews of the proofs of all our main theorems. In
Section 3 we present preliminary definitions. In Section 4 we prove Theorems 1 and 2,
in Section 5 we prove Theorem 3, and in Section 6 we prove Theorem 4. Finally, an
alternative proof of Theorem 1 is presented in Appendix A.

2 Overviews of the proofs

In this section we describe the proofs of the main theorems in the paper, in high level.
As mentioned in Section 1, the proof approaches for Theorems 3 and 4 are different
than the proof approach for Theorem 2. Thus, one may read the high-level overviews
of the proofs of Theorems 3 and 4 (in Sections 2.2 and 2.3) without first reading the
proof overview for Theorem 2 (in Section 2.1).

2.1 Proof overview for Theorem 2

The proof of Theorem 2 follows the approach used by Murray and Williams [MW18],
which is based on the celebrated proof strategy of Williams [Wil13]. The main new
component in [MW18] is a new “easy witness lemma”, which allows for flexible scal-
ing of the parameters in the original proof strategy of Williams (see below; this new
lemma improves the original easy witness lemma of [IKW02]). Murray and Williams
stated consequences with two specific parameter settings. We extend their result by stat-
ing a general (parametrized) “derandomization implies lower bounds” result that uses
this proof approach with the new easy witness lemma (see Theorem 15), and deduce
Theorems 1 and 2 as special cases.

Let us now overview the proof of Theorem 2. The point of the overview is to
describe how the (well-known) proof strategy of Williams can be instantiated with
the new easy witness lemma for general parameters in order to deduce Theorem 2.
The starting point for the proof is the Circuit Acceptance Probability Problem (or CAPP,
in short): Given as input the description of a Boolean circuit C, the problem is to
distinguish between the case that the acceptance probability of C is at least 2/3 and
the case that the acceptance probability of C is at most 1/3. It is well-known that a
deterministic polynomial-time algorithm for CAPP exists if and only if prBPP = prP
(see Proposition 7). The current argument relies on the much weaker hypothesis that
CAPP for circuits of size m with v input variables can be solved in time 2.99·v ·poly(m);
for simplicity, let us assume that the CAPP algorithm runs in time 2.99·v · m2.

Fix any time-computable function n < s(n) < 2ϵ·n, where ϵ > 0 is a universal con-
stant. Denoting t = sO(1) ◦ sO(1) ◦ sO(1), our goal is to prove that NTIME[t] 6⊂ SIZE[s].
(The definition of t in this high-level overview is slightly informal; see Definition 10
and Corollary 16 for precise details.) To do so, assume towards a contradiction that
NTIME[t] ⊆ SIZE[s], and let t0(n) = t(n)δ, where δ > 0 is sufficiently small. We will
construct, for any L ∈ NTIME[t0], a non-deterministic machine that decides L in time

6

t1−Ω(1)
0 ; this will contradict the non-deterministic time hierarchy [Coo72].

Using the new easy witness lemma, if NTIME[t] ⊆ SIZE[s] where t = t1/δ
0 , then

for every L′ ∈ NTIME[(t0)2], every (t0)2-time verifier V for L′ and every x ∈ L′, there
exists a circuit Px ∈ SIZE[t.001

0] that encodes a witness πx such that V(x, πx) accepts.5

(Again, our parameters in the overview are informal; see Lemma 11 for a statement
that uses precise parameters.) The point is that witnesses for the verifier V are a-priori
of size (t0)2, but the lemma asserts that (under the hypothesis) every x ∈ L′ has a
witness that can be concisely represented by a circuit of much smaller size t.001

0 . We
note that the main “bottleneck” in the proof that requires using t = sO(1) ◦ sO(1) ◦ sO(1)

(rather than, say, t = poly(s)) is the new “easy witness lemma”.
Let us now construct the non-deterministic machine for L ∈ NTIME[t0], relying

on the existence of the foregoing “compressible” witnesses. We first fix a PCP system
for L with a verifier V that runs in time tV = poly(n, log(t0)) and uses ℓ = log(t0) +
O(log log(t0)) random bits. (For concreteness, we use the PCP of Ben-Sasson and
Viola [BV14], but previous ones such as [BGH+05] also suffice for the proof.) Using
the new easy witness lemma, for every x ∈ L there exists a circuit of size t0(|x|).001

that encodes a valid proof for x in this PCP system.6

Now, given input x ∈ {0, 1}n, the non-deterministic machine M first guesses a
circuit Px of size t0(n).001, in the hope that such a circuit encodes a valid proof for
x. Then, the machine constructs a circuit CPx

x that, when given r ∈ {0, 1}ℓ as input,
simulates the execution of V on x using randomness r when V is given oracle access
to the witness Px (i.e., CPx

x (r) = VPx(x, r)). Finally, the machine M uses the CAPP
algorithm on the circuit CPx

x to determine whether the verifier is accepts x with high
probability over r or rejects x with high probability over r.

Note that if x ∈ L, then for some guess of Px it holds that CPx
x has acceptance

probability one, and thus the machine M will accept x. On the other hand, if x /∈ L,
then for any guess of Px it holds that CPx

x has low acceptance probability (corresponding
to the soundness of the PCP verifier), and thus the machine M will reject x.

The point is that all the operations of the machine happened in time much shorter
than t0(n). Specifically, the size of Px is t0(n).001, and the size of CPx

x is m < tV(n) ·
t0(n).001 < t0(n).002; thus, guessing Px and constructing CPx

x can be done in time
poly(m) �

√
t0(n). Now, note that CPx

x has ℓ = log(t0) + O(log log(t0)) variables;
thus, when the CAPP algorithm is given CPx

x it runs in time

2.99·ℓ · m2 < t0(n).995 ·
(
t0(n).002)2

= (t0(n))1−Ω(1) ,

and we get a contradiction.

5A circuit Px : {0, 1}log(|πx |) → {0, 1} encodes a string πx if for every i ∈ [|πx|] it holds that Px(i) is
the ith bit of πx (equivalently, πx is the truth-table of Px).

6To apply the easy witness lemma, consider the deterministic verifier V′ that, when given input and
a proof, enumerates the random coins of V and decides by a majority vote. This verifier runs in time
2ℓ · tV < (t0)

2, so we can apply the lemma to L with this verifier.

7

As mentioned in the introduction, the hypothesis in this proof strategy can be
further relaxed in various (known) ways. For details of these relaxations, see the
statement of Theorem 15 and the remark following the theorem’s proof.

2.2 Proof overview for Theorem 3

The proof of Theorem 3 is very different than the proof of Theorem 2, and in particular
does not rely on the proof strategy of Williams [Wil13] or on an “easy witness lemma”.
Recall that we assume that prBPP ⊆ prNP , and want to deduce that for essentially
any s : N → N it holds that NTIME[t] 6⊆ i.o.[sI]-SIZE[s], where t = sO(1) ◦ sO(1) and
the prefix i.o.[sI] means that in any interval of length sI(n) = poly(s(n2)) there exists
an input length in which size-s circuits fail to compute the “hard” function.7

The starting point of the proof is Murray and Williams’ strengthening of San-
thanam’s circuit lower bound [San09]. The strengthening asserts (unconditionally)
that there exists a set S ⊆ {0, 1}∗ that can be decided by Merlin-Arthur protocols run-
ning in time t with ℓ = O(log(s)) bits of non-uniform advice (i.e., S ∈ MATIME[t]/ℓ)
such that S /∈ i.o.[poly(s)]-SIZE[s] (see Theorem 20).

The first observation in the proof of Theorem 3 is that if prBPP ⊆ prNP , then the
Merlin-Arthur protocol that decides S with non-uniform advice can be derandomized,
in a straightforward way (see Proposition 21). Hence, under our hypothesis, the set S
is in NTIME[poly(t)]/ℓ, which implies that NTIME[poly(t)]/ℓ 6⊆ i.o.[poly(s)]-SIZE[s].

The second observation is that if NTIME[poly(t)]/ℓ 6⊆ i.o.[poly(s)]-SIZE[s], then
NTIME[poly(t)] (without the advice) is not contained in i.o.[poly(s)]-SIZE[s′], for s′

that is moderately smaller than s. Let us first prove this statement while ignoring the
issue of failure in almost all intervals for a moment. Assuming towards a contradiction
that NTIME[poly(t)] ⊆ SIZE[s′], for any S ∈ NTIME[poly(t)]/ℓ we construct a
family of size-s circuits that decides S. To do so, consider a non-deterministic machine
M that decides S with advice {an}, and let Sadv be the set of pairs (x, σ) such that
|σ| = ℓ(|x|) and M (non-deterministically) accepts x when given advice σ. Note that
Sadv can be decided by a non-determinstic machine that simulates M (and requires no
advice), and thus, by our hypothesis, Sadv can be solved by a circuit family {Cn} of
size s′.8 By hard-wiring the “good” advice an into each Cn, we obtain a circuit family
{C′

n} of size s′ that decides S. Note that the size of the circuit is still s′, but it is now a
function of a smaller input length, since we “hard-wired” the advice in place of input
bits; however, since the advice is relatively short (i.e., ℓ = O(log(s))), the new size
function, denoted s, is not much larger than s′ (see Proposition 23).

This “elimination of advice” argument extends to the setting where failure is guar-
anteed in any “small” interval, with a bit of care. The source of trouble is that now

7The actual lower bound is even slightly stronger, since it asserts that the circuit family fails to compute
S on (at least) one of the “end-points” of the interval. For further details see Section 5.

8Note that the foregoing argument only follows through after the “derandomization” (i.e., for NTIME
and not for MATIME). This is the case since when dealing with probabilistic machines, it is not clear
how to define Sadv in a way that will allow a probabilistic machine without advice to decide it (since a
probabilistic machine that is given a “wrong” advice might not “distinctly” accept or reject some inputs).

8

our “towards-a-contradiction” hypothesis only implies that Sadv ∈ i.o.[poly(s)]-SIZE[s],
which only guarantees the existence of an infinite “dense” set I ⊆ N of input lengths
for which Sadv has small circuits. In particular, we have no guarantee that every n ∈ I
is of the form m + ℓ(m), which is what we need to deduce that Sm = S ∩ {0, 1}m

has small circuits. To overcome this problem, we “embed” all pairs (x, σ) such that
|σ| = ℓ(|x|) and |x|+ |σ| < n into {0, 1}n, and define Sadv

n = Sadv ∩ {0, 1}n such that
deciding Sadv

n allows to determine the output of M on (x, σ) for all pairs satisfying
|x|+ |σ| < n. Thus, for any n ∈ I, a circuit of size s(n) that decides Sadv

n allows us to
solve Sm where m + ℓ(m) < n. And similarly to above, since the advice is relatively
small (i.e., ℓ(m) = O(log(s(m))) < m), both the size s(n) of the circuit and the interval
length poly(s(n)) in which failure is guaranteed are not too large as a function of m.
For precise details see the proof of Proposition 23.

2.3 Proof overview for Theorem 4

In this section, whenever we mention the permanent function we mean the permanent
over Z of matrices with entries in {0, 1}. Also, whenever we mention polynomial-
sized arithmetic circuits we mean circuits with polynomially-many gates labeled by
{+,×, 0, 1}, which are evaluated over Z in the straightforward way.

The basic idea for the proof of Theorem 4 comes from the well-known work of
Kabanets and Impagliazzo [KI04]. Let us first prove the new result under the stronger
hypothesis that P = BPP . By Theorem 3, we know that the hypothesis prBPP ⊆
prNP would imply strong lower bounds, but now we are only guaranteed the “non-
promise” hypothesis P = BPP . We will thus use a win-win argument: One case is
that the permanent cannot be computed by polynomial-sized arithmetic circuits; and
in the other case, we are guaranteed both that P = BPP and that the permanent has
polynomial-sized arithmetic circuits. The core of the proof is showing that in the latter
case it holds that prBPP ⊆ prNP , and thus in the latter case we can deduce strong
lower bounds as in the conclusion of Theorem 2.

To prove that in the second case we have that prBPP ⊆ prNP we rely on an ar-
gument in the spirit of the Karp-Lipton theorem: Specifically, we will use the unlikely
“collapse hypothesis” (i.e., that the permanent has polynomial-sized circuits) and the
derandomization hypothesis to derive the unlikely conclusion NP = PH. The result
will then follow since NP = PH implies that prNP = prPH (by an elementary ar-
gument; see, e.g., Footnote 10), and hence prBPP ⊆ prPH = prNP , where the first
containment uses the classical result of Lautemann [Lau83].

Let us then show that under our hypotheses it holds that NP = PH. By Toda’s
theorem [Tod91], any set L ∈ PH can be decided by a polynomial-time algorithm that
is given oracle access to #P ; and since the permanent is #P-complete [Val79], L can be
decided by a polynomial-time algorithm that is given oracle access to the permanent.
Now, we construct a non-deterministic machine for L as follows: The machine first
guesses a polynomial-sized arithmetic circuit for the permanent (using the hypothesis
that such a circuit exists); then verifies that this circuit indeed computes the permanent

9

function (see below); and finally runs the algorithm from Toda’s theorem to decide
L, while using the circuit for the permanent to answer the algorithm’s oracle queries.
Indeed, the crucial point is that if BPP = P then one can verify in deterministic
polynomial time that a given circuit indeed computes the permanent. This was proved
in [KI04, Lem. 9 & 12], relying on the self-reducibility of the permanent.

To see how the result also follows using the weaker hypothesis coRP ⊆ NP , note
that the only place where we used the hypothesis BPP = P is when verifying that
the polynomial-sized arithmetic circuit computes the permanent function. Now, as
shown in [KI04], if coRP ⊆ NP then we can verify in non-deterministic polynomial-
time that such a circuit computes the permanent. Therefore, the machine above can
first guess a circuit for the permanent, then non-deterministically verify that it indeed
computes the permanent (rejecting otherwise), and finally use the circuit to answer
the algorithm’s oracle queries and decide L.

3 Preliminaries

We assume familiarity with basic notions of complexity theory; for background see,
e.g., [Gol08; AB09]. Throughout the paper, fix any standard model of a Turing machine
(we need a fixed model since we discuss time-constructible functions).

Whenever we refer to circuits (without qualifying which type), we mean non-
uniform circuit families over the De-Morgan basis (i.e., AND/OR/NOT gates) with
fan-in at most two and unlimited fan-out, and without any specific structural restric-
tions (e.g., without any limitation on their depth). The size of a circuit is the number of
its gates. Moreover, we consider some fixed standard form of representation for such
circuits, where the representation size is polynomial in the size of the circuit.

Whenever we refer to arithmetic circuits, we mean non-uniform circuit families of
unlimited fan-out with gates that are labeled by the operations +,×, and edges that
are labeled by integers (the edge labels describe the operation of multiplying the value
of the gate from which they go out by the corresponding integer constant). The size
of an arithmetic circuit is the sum of the labels of its edges. Note that any arithmetic
circuit yields a polynomial over Z in the natural way.

We use the standard notation i.o.-SIZE[s] to denote the class of sets that can be de-
cided by some size-s circuit on infinitely-many input lengths. Extending this notation,
we denote by i.o.[q]-SIZE[s] the class of problems such that there exists a size-s circuit
that, for infinitely-many intervals of the form [n, q(n)], solves the problem on some
input length in the interval. We warn in advance that in Section 5 we slightly abuse
this notation, by writing S /∈ i.o.[q]-SIZE[s] to deduce a slightly stronger conclusion
than failure on some input in almost all intervals of length q (i.e., we use it to denote
failure on one of the end-points in almost all such intervals; see Definition 19).

10

3.1 Circuit acceptance probability problem

We now formally define the circuit acceptance probability problem (or CAPP, in short);
this well-known problem is also sometimes called Circuit Derandomization, Approx
Circuit Average, and GAP-SAT or GAP-UNSAT.

Definition 6 (CAPP). The circuit acceptance probability problem with parameters α, β ∈
[0, 1] such that α > β (or (α, β)-CAPP, in short) is the following promise problem:

• The YES instances are (representations of) circuits that accept at least α of their inputs.

• The NO instances are (representations of) circuits that accept at most β of their inputs.

We define the CAPP problem (i.e., omitting α and β) as the (2/3, 1/3)-CAPP problem.

It is well-known that CAPP is complete for prBPP under deterministic polynomial-
time reductions; in particular, CAPP can be solved in deterministic polynomial time if
and only if prBPP = prP .

Proposition 7 (CAPP is equivalent to prBPP = prP). The circuit acceptance probability
problem can be solved in deterministic polynomial time if and only if prBPP = prP .

For a proof of Proposition 7 see any standard textbook on the subject (e.g. [Vad12,
Cor. 2.31], [Gol08, Exer. 6.14]). In Proposition 7 we considered the complexity of
CAPP as a function of the input size, which is the size of the (description of the)
circuit. However, following [Wil13], it can also be helpful to consider the complexity
of CAPP as a function of both the circuit size m (which corresponds to the input size)
and of the number v of input variables to the circuit. In this case, a naive deterministic
algorithm can solve the problem in time 2v · poly(m), whereas the naive probabilistic
algorithm solves the problem in time v · poly(m) ≤ poly(m).

3.2 Witness circuits and the new easy witness lemma of [MW18]

We now recall the definition of witness circuits for a proof system.

Definition 8 (verifiers and witnesses). Let t : N → N be a time-constructible, non-
decreasing function, and let L ⊆ {0, 1}∗. An algorithm V(x, y) is a t-time verifier for L
if V runs in time at most t(|x|) and satisfies the following: For all strings x it holds that x ∈ L
if and only if there exists a witness y such that V(x, y) accepts.

Definition 9 (witness circuits). Let t : N → N be a time-constructible, non-decreasing
function, let w : N → N, and let L ⊆ {0, 1}∗. We say that a t-time verifier V has witness
circuits of size w if for every x ∈ L there exists a witness yx such that V(x, yx) accepts and
there exists a circuit Cyx : {0, 1}log(|yx |) → {0, 1} of size w(|x|) such that Cyx(i) is the ith

bit of yx. We say that NTIME[t] has witness circuits of size w if for every L ∈ NTIME[t],
every t-time verifier for L has witness circuits of size w.

11

In Definitions 8 and 9 we considered verifiers that are deterministic algorithms
that get the witness as an explicit input. As outlined in Section 2, in the proof we
will consider PCP verifiers (which are probabilistic algorithms, and only get oracle
access to their witness). However, we will not consider witness circuits for these PCP
verifiers, but rather for deterministic verifiers (with explicit inputs) that are derived
from the PCP verifiers (see the proof of Theorem 15 for precise details).

Let us now state the new easy witness lemma of [MW18]. Loosely speaking, the
lemma asserts that for any two functions t(n) � s(n) with sufficient “gap” between
them, if NTIME[poly(t)] ⊆ SIZE[s], then NTIME[t] has witness circuits of size ŝ,
where ŝ(n) > s(n) is the function s with some “overhead”. To more conveniently
account for the exact parameters, we introduce some auxiliary technical notation:

Definition 10 (sufficiently gapped functions). Let γ, γ′, γ′′ ∈ N be universal constants.9

For any function s : N → N, let s′ : N → N be the function s′(n) = (s(γ · n))γ, and let
ŝ : N → N be the function ŝ(n) = (s′(s′(s′(n))))γ′

. We say that two functions s, t : N → N

are sufficiently gapped if both functions are increasing and time-constructible, and s′ is also
time-constructible, and s(n) < 2n/γ/n, and t(n) ≥ (ŝ(n))γ′′

.

Lemma 11 (easy witnesses for low nondeterministic time [MW17, Lem. 4.1]). Let s, t : N →
N be sufficiently gapped functions, and assume that NTIME[O(t(n))γ] ⊂ SIZE[s], where γ
is the constant from Definition 10. Then, NTIME[t] has witness circuits of size ŝ.

3.3 Merlin-Arthur protocols

We recall the standard definition of Merlin-Arthur protocols (i.e., MA verifiers) that
receive non-uniform advice.

Definition 12 (MA verifiers with non-uniform advice). For t, ℓ : N → N, a set S ⊆ {0, 1}∗
is in MATIME[t]/ℓ if there exists a probabilistic machine V, called a verifier, such that the
following holds: The verifier V gets input x ∈ {0, 1}∗, and a witness w ∈ {0, 1}∗, and an
advice string a ∈ {0, 1}∗, and runs in time t(|x|); and there exists a sequence {an}n∈N of
advice such that |an| = ℓ(n) and:

1. For every x ∈ S there exists w ∈ {0, 1}t(|x|) such that Pr[V(x, w, a|x|) = 1] ≥ 2/3.

2. For every x /∈ S and every w ∈ {0, 1}t(|x|) it holds that Pr[V(x, w, a|x|) = 1] ≤ 1/3.

It is common to denote by MATIME[t] the class MATIME[t]/0 (i.e., when the
verifier receives no non-uniform advice). Note that MA =

∪
c∈N MATIME[nc], and

also note that the definition of MA does not change if we insist on perfect completeness
(see, e.g., [Gol08, Exer. 6.12(2)]).

9Specifically, the values of these constants are γ = e and γ′ = 2g and γ′′ = d, where e, g, and d are
the universal constants from Lemma 4.1 in [MW17].

12

3.4 A barrier for proving “prBPP = prP =⇒ P 6= NP”

We note that it is impossible to prove the statement “if prP = prBPP then P 6= NP”
without unconditionally proving that P 6= NP .

Proposition 13 (a barrier for “derandomization implies lower bounds” statements). If the
conditional statement “prBPP = prP =⇒ P 6= NP” holds, then P 6= NP .

Proof. Assume towards a contradiction that P = NP . Then, the polynomial-time hi-
erarchy collapses to P , and similarly the promise-problem version of the polynomial-
time hierarchy collapses to prP .10 Now, since prBPP is contained in the promise-
problem version of the polynomial-time hierarchy (e.g., by adapting the well-known
argument of Lautemann [Lau83]), it follows that prBPP = prP . Finally, we can use
the hypothesized conditional statement to deduce that P 6= NP , which is a contra-
diction.

4 Proof of Theorems 1 and 2

We will first prove a general and parametrized “derandomization implies lower bounds”
theorem. This theorem is obtained by using the proof strategy of Williams [Wil13]
with general parameters, while leveraging the new easy witness lemma of Murray
and Williams [MW18]. We then prove Theorems 1 and 2 as corollaries. Towards pre-
senting the proofs, we first need the following auxiliary definition:

Definition 14 (non-deterministically solving CAPP). We say that (1, 1/3)-CAPP can be
solved in non-deterministic time T : N × N → N if there exists a non-deterministic machine
that, when given as input a circuit C of size m over v variables, runs in time T(m, v) and
satisfies the following: If C has acceptance probability one, then for some non-deterministic
choice the machine accepts; and if C has acceptance probability at most 1/3, then the machine
always rejects (regardless of the non-deterministic choices).

4.1 A parametrized “derandomization implies lower bounds” theorem

Loosely speaking, in the following theorem statement we assume that CAPP can
be solved in non-deterministic time T(m, v), and deduce that for any two functions

t(n) � s(n) such that T
(

poly(n, ŝ(n), log(t(n))), log(t(n))
)

� t(n) it holds that

NTIME[poly(t(n))] does not have circuits of size s(n).

10 To see that this is the case, let Π = (Y, N) ⊆ {0, 1}∗ × {0, 1}∗ be a promise problem in prΣk, for
some k ∈ N. Then, there exists a polynomial-time algorithm A such that for every x ∈ Y it holds
that ∃y1, ∀y2, ..., yk : A(x, y1, ..., yk) = 1, and for every x ∈ N it does not hold that ∃y1, ∀y2, ..., yk :
A(x, y1, ..., yk) = 1. We define a set S = SA that consists of all strings x such that ∃y1, ∀y2, ..., yk :
A(x, y1, ..., yk) = 1. Note that S ⊇ Y, and that S ∩ N = ∅, and that S ∈ Σk (using the algorithm A). By
our assumption that the polynomial-time hierarchy collapses, there exists a polynomial-time algorithm
A′ that decides S. It follows that A′ solves the problem Π.

13

Theorem 15 (derandomization implies lower bounds, with general parameters). There exist
constants c, c′ ∈ N and α < 1 such that the following holds. For T : N × N → N, assume
that (1, 1/3)-CAPP on circuits of size m with at most v input variables can be solved in
non-deterministic time T(m, v). Let s, t : N → N be sufficiently gapped functions such that
s(n) > n and for some constant ϵ > 0 and any constant α > 0 it holds that

T
(
(n · ŝ(n) · log(t(n)))c, α · log(t(n))

)
≤ t(n)(1−ϵ)·α ,

where ŝ is defined as in Definition 10. Then, NTIME[t(n)c′] 6⊆ SIZE[s(n)].

Proof. The starting point of the proof is the non-deterministic time hierarchy [Coo72]:
For an appropriate function t′ = t′(n) (that will be determined in a moment), there
exists a set L ∈ NTIME[t′] that cannot be decided by non-deterministic machines
running in time (t′)1−Ω(1). Specifically, for a sufficiently small constant α > 0, let
t′(n) = (t(n))(1−ϵ/2)·α, and let L ∈ NTIME[t′] \ NTIME

[
(t′)

1−ϵ
1−ϵ/2

]
.11 Now, for a

sufficiently large constant c′, assume towards a contradiction that NTIME[t(n)c′] ⊆
SIZE[s(n)]. Our goal is to construct a non-deterministic machine that decides L in
time (t′)

1−ϵ
1−ϵ/2 , which will yield a contradiction.

To do so, consider the PCP verifier of [BV14] for L, denoted by V. On inputs
of length n, the verifier V runs in time poly(n, log(t′(n))), uses ℓ = log(t′(n)) +
O(log log(t′(n))) bits of randomness, and has perfect completeness and soundness
(much) lower than 1/3. 12 Furthermore, using the hypothesis that NTIME[t(n)c′] ⊆
SIZE[s(n)] and the “easy witness lemma” (i.e., Lemma 11), for every x ∈ L there ex-
ists a circuit Px ∈ SIZE[ŝ(n)] such that Prr[VPx(x, r) accepts] = 1. (We actually apply
Lemma 11 to the deterministic verifier V ′ that enumerates the random coins of V,
which runs in time 2ℓ · poly(n, log(t′)) = poly(t′) = poly(t). We can use the lemma
since we assumed that NTIME[t(n)c′] ⊆ SIZE[s(n)], for a sufficiently large c′.)

Given input x ∈ {0, 1}n, the non-deterministic machine M acts as follows. The
machine non-deterministically guesses a (description of a) circuit Px of size ŝ(n), and
constructs a circuit CPx

x : {0, 1}ℓ → {0, 1} such that CPx
x (r) = VPx(x, r). Then, the

machine feeds the description of CPx
x as input to the machine MCAPP that solves CAPP

in non-deterministic time T and exists by the hypothesis, and outputs the decision of
MCAPP. By the properties of the PCP verifier and of MCAPP, if x ∈ L then for some
guess of Px and for some non-deterministic choices of MCAPP, the machine M will
accept x; and if x /∈ L, then for any guess of Px and any non-deterministic choices of
MCAPP, the machine M will reject x.

To conclude let us upper-bound the running-time of the machine M. The circuit
CPx

x has ℓ = log(t′) + O(log log(t′)) < α · log(t) input bits, and its size is m(n) =
poly(n, log(t′)) · ŝ(n); thus, its representation size is poly(m(n)). Therefore, the circuit

11Such a function exists by standard non-deterministic time hierarchy theorems (e.g., [Coo72]), since
t′(n) > nΩ(1), which implies that the gap between t′ and (t′)1−Ω(1) is sufficiently large.

12Note that the only upper-bound that we need on the number of oracle queries issued by V is the
trivial bound given by the running time of V.

14

CPx
x can be constructed in time poly(m(n)), and the CAPP algorithm runs in time

T(m(n), ℓ). The total running-time of the non-deterministic machine M is thus at most
T ((n · ŝ(n) · log(t(n)))c, α · log(t)), for some constant c. By our hypothesized upper-
bound on T, the running time of M is at most t(n)(1−ϵ)·α = (t′)

1−ϵ
1−ϵ/2 , which yields a

contradiction.

Additional relaxations of the hypothesis in Theorem 15. Since the proof of The-
orem 15 relies on the strategy of [Wil13], it is well-known that the hypothesis of
the theorem can be further relaxed. First, we do not have to unconditionally assume
that the non-deterministic machine for CAPP exists, and it suffices to assume that
the machine exists under the hypothesis that NTIME[t(n)c′] ⊆ SIZE[s(n)] (this is the
case since we are only using the existence of the machine to contradict the latter hy-
pothesis). And secondly, the non-deterministic machine that solves CAPP can use
(sub-linearly many) bits of non-uniform advice; this follows by using a strengthened
non-deterministic time hierarchy theorem, which was proved by Fortnow and San-
thanam [FS16] (see [MW18, Remark 1] for details).

4.2 Theorems 1 and 2 as corollaries

We now prove Theorem 2 as a corollary of Theorem 15. As detailed in Section 2.1,
we start from the hypothesis that (1, 1/3)-CAPP can be solved in non-deterministic
time T(m, v) = 2.99·v · poly(m) (which is weaker than the hypothesis prBPP = prP).
The proof amounts to verifying that, given such a CAPP algorithm, the hypothesis of
Theorem 15 holds for essentially any s and t ≈ sO(1) ◦ sO(1) ◦ sO(1).

Corollary 16 (Theorem 2, restated). Assume that (1, 1/3)-CAPP can be solved in non-
deterministic time T(m, v) ≤ 2(1−ϵ)·v · poly(m), for some constant ϵ > 0. Then, there
exists a constant k ∈ N such that for any two sufficiently gapped functions s : N → N and
t : N → N it holds that NTIME[t(n)k] 6⊆ SIZE[s].

Proof. Let k′ > 1 be such that T(m, v) ≤ 2(1−ϵ)·v · mk′ . We invoke Theorem 15 with the
sufficiently gapped functions s and t1(n) = t(n)k′′ , where k′′ > 1 is a sufficiently large
constant that depends on k′. Note that for any α > 0 it holds that

T
(
(n · ŝ(n)· log(t1(n)))c, α · log(t1(n))

)
≤ (n · log(t1(n)))c·k′ · (t1(n))ϵ/2 · t1(n)(1−ϵ)·α (ŝ(n)c·k′ < t1(n)ϵ/2)

≤ (t1(n))1−ϵ/3 , (nc·k′ < s(n)c·k′ < t1(n)ϵ/12)

where both inequalities relied on the hypothesis that k′′ is sufficiently large. Thus, we
conclude that NTIME[t2] 6⊆ SIZE[s], where t2(n) = t1(n)c′ = t(n)c′·k′′ .

Finally, we prove Theorem 1 as a corollary of Corollary 16. Recall that the con-
clusion in Theorem 1 is that NTIME[n f (n)] 6⊆ P/poly for “essentially” any super-
constant function f . We now specify exactly what this means. Our goal is to deduce

15

that NTIME[n f (n)] 6⊆ SIZE[ng(n)], where g(n) � f (n) and g(n) = ω(1). Therefore,
the proof works for any f such that a suitable g exists. We note in advance that this
minor technical detail imposes no meaningful restrictions on f (see next).

Definition 17 (admissible functions). We say that a function f : N → N is admissible if
f is super-constant (i.e. f (n) = ω(1)), and if there exists another super-constant function
g : N → N that satisfies the following: The function g is super-constant, and t(n) = n f (n)

and s(n) = ng(n) are sufficiently gapped, and ŝ(n) = no(f (n)).

Essentially any increasing function f (n) = ω(1) such that f (n) ≤ n is admissible,
where the only additional constraints that the admissibility condition imposes are
time-constructibility of various auxiliary functions (we require t and s to be sufficiently
gapped, which enforces time-constructibility constraints); for a precise (and tedious)
discussion, see Appendix B. We can now formally state Theorem 1 and prove it:

Corollary 18 (Theorem 1, restated). Assume that (1, 1/3)-CAPP can be solved in non-
deterministic time T(m, v) ≤ 2(1−ϵ)·v · poly(m), for some constant ϵ > 0. Then, for every
admissible function f there exists a set in NTIME[nO(f (n))] \ P/poly.

Proof. Since f is admissible, there exists a function g that satisfies the requirements
of Definition 17. We thus invoke Corollary 16 with the functions t(n) = n f (n) and
s(n) = ng(n), and conclude that there exists a set in NTIME[nO(f (n))] \ SIZE[ng(n)].
Since g(n) = ω(1), the latter set does not belong to P/poly.

5 Proof of Theorem 3

In this section we prove Theorem 3. Throughout the section, for a set S ⊆ {0, 1}∗ and
n ∈ N, we denote Sn = S ∩ {0, 1}n.

Recall that the conclusion in Theorem 3 is that there exists a set S such that for
every polynomial-sized circuit family and sufficiently large n ∈ N, the family fails to
decide S on some input length in the interval [n, sI(n)]. Our actual conclusion will be
slightly stronger: We will conclude that for every sufficiently large n ∈ N, the circuit
family fails on at least one of the “end-points” of the interval; that is, either on input
length n, or on input length sI(n) (or on both). This is equivalent to saying that there
does not exist an infinite set of pairs (n, sI(n)) such that the circuit family correctly
decides S on both input lengths in the pair. This leads to the following definition:

Definition 19 (a stronger notion of infinitely-often computation). For s, q : N → N and
S ⊆ {0, 1}∗, we say that S ∈ i.o.[q]-SIZE[s] if there exists an infinite set I ⊆ N and a circuit
family {Cn}n∈N of size at most s such that for every n ∈ I, it holds that:

1. The circuit Cn : {0, 1}n → {0, 1} computes Sn.

2. The circuit Cq(n) : {0, 1}q(n) → {0, 1} computes Sq(n).

16

Indeed, Definition 19 implies the following: If S /∈ i.o.[q]-SIZE[s], then every circuit
family {Cn} of size s that tries to decide S fails, for every sufficiently large n ∈ N,
either on inputs on size n or on inputs of size q(n) (or on both).

The starting point of the proof of Theorem 3 is Murray and Williams’ [MW17, Thm
3.1] strengthening of Santhanam’s [San09] circuit lower bound. Following [MW18],
we say that a function s : N → N is a circuit-size function if s is increasing, time-
constructible, and for all sufficiently large n ∈ N it holds that s(n) < 2n/(2n).

Theorem 20 (Murray and Williams’ [MW17, Thm 3.1] strengthening of Santhanam’s [San09]
lower bound). Let s be a super-linear circuit-size function, and let t = poly(s(poly(s)))
(for sufficiently large polynomials that do not depend on s). Then, there exists a set S ∈
MATIME[t]/O(log(s)) such that S /∈ i.o.[poly(s)]-SIZE[s].

As mentioned in Section 2.2, the first observation in the proof is that if prBPP =
prP then we can derandomize MA verifiers that receive non-uniform advice. In fact,
we can do so also under the weaker hypothesis that prBPP ⊆ prNP .

Proposition 21 (derandomization of MA with advice). If prBPP ⊆ prNP , then for any
t, ℓ : N → N such that t is time-constructible it holds that MATIME[t]/ℓ ⊆ NTIME[poly(t)]/ℓ.

Proof. Since CAPP is in prBPP , and we assume that prBPP ⊆ prNP , there exists
a non-deterministic polynomial-time machine MCAPP that gets as input a Boolean
circuit C and satisfies the following: If the acceptance probability of C is at most 1/3
then MCAPP rejects, regardless of the non-deterministic choices; and if the acceptance
probability of C is at least 2/3, then for some non-deterministic choices MCAPP accepts.

Let S be a set in MATIME[t]/ℓ, let V be the MATIME[t]/ℓ verifier for S, and
let {an}n∈N be a sequence of “good” advice that allows V to decide S. We want to
construct a non-deterministic machine M that runs in time poly(t) and decides S with
ℓ bits of non-uniform advice. Given input x ∈ {0, 1}n and advice an, the machine M
guesses a witness w ∈ {0, 1}t(n), and constructs a circuit C = CV,x,w,an : {0, 1}t(n) →
{0, 1} that gets as input r ∈ {0, 1}t(n) and computes V(x, w, r, an). Finally, the machine
M feeds C to the machine MCAPP, and outputs the decision of MCAPP.

Since V is a verifier for S and an is the “good” advice for V, if x ∈ S then there
exists w such that the acceptance probability of C is at least 2/3, which means that
there exist non-deterministic choices for MCAPP such that MCAPP will accept C (in
which case M will accept x). On the other hand, if x /∈ S then for any w the acceptance
probability of C is at most 1/3, which means that for any non-deterministic choices
for MCAPP it holds that MCAPP rejects C (in which case M rejects x). The running
time of the machine M is dominated by the running time of MCAPP, which is at most
poly(t(n)).

The second observation in the proof is that if NTIME[t]/ℓ is not contained in a
non-uniform class of circuits, then NTIME[O(t)] (i.e., without non-uniform advice) is
also not contained in a (related) non-uniform class of circuits. Moreover, this assertion
still holds if the “separation” between the classes is in the sense of Definition 19.

17

We first prove a simpler form of this statement, which showcases the main idea
but is much less cumbersome. In the following statement, we only consider a single
bit of advice, and do not refer to separations in the sense of Definition 19.

Proposition 22 (eliminating the advice). Let s0, s, t : N → N such that t is increasing, and
for all sufficiently large n ∈ N it holds that s0(n) ≥ s(n + 1). If NTIME[t]/1 6⊆ SIZE[s0],
then NTIME[O(t)] 6⊆ SIZE[s].

Proof. We prove the contrapositive statement: If NTIME[O(t)] ⊆ SIZE[s], then
NTIME[t]/1 ⊆ SIZE[s0]. To do so, fix any S ∈ NTIME[t]/1, and let us construct
a circuit family of size s0 that decides S.

To construct the circuit family we consider an auxiliary set Sadv, which is defined
as follows. Let M be a t-time non-deterministic machine and let {an} be a sequence of
advice bits such that M correctly decides S when given advice {an}. Let Sadv be the set
of pairs (x, σ), where x ∈ {0, 1}∗ and σ ∈ {0, 1}, such that M (non-deterministically)
accepts x when given advice σ. Note that Sadv ∈ NTIME[O(t)], because a non-
deterministic machine that gets input (x, σ) simulate the machine M on input x with
advice σ and decide according to the output of M.

Relying on the hypothesis that NTIME[O(t)] ⊆ SIZE[s], there exists a circuit
family {Cn} of size s such that each Cn decides Sadv

n . By hard-wiring the “correct”
advice bit an in place of the last input bit into every Cn, we obtain a circuit family {C′

n}
such that each C′

n decides Sn, and its size is at most s(n + 1) ≤ s0(n).

The following proposition is a stronger form of Proposition 22, which considers
possibly long advice strings, and refers to separations in the sense of Definition 19.

Proposition 23 (eliminating the advice). Let s0, s, ℓ, t, q : N → N be functions such that t
is super-linear and increasing, and q, s0 and s are increasing, and the mapping 1n 7→ 1ℓ(n)

is computable in time O(n + ℓ(n)). Assume that for every sufficiently large n ∈ N it holds
that ℓ(n) < n/2 and s0(n) ≥ s(2n) and s0(q(n)) ≥ s(2q(2n)). Further assume that
NTIME[t]/ℓ 6⊆ i.o.[q]-SIZE[s0]. Then, NTIME[O(t)] 6⊆ i.o.[2q]-SIZE[s].

We comment that a statement that is more general than the one in Proposition 23
can be proved, foregoing some of the requirements (e.g., on ℓ) while allowing potential
degradation in the parameters of the conclusion. Since the statement of Proposition 23
suffices for our parameter setting, and for simplicity, we avoid such generalizations.

Proof of Proposition 23. Assuming that NTIME[O(t)] ⊆ i.o.[2q]-SIZE[s], we prove
that NTIME[t]/ℓ ⊆ i.o.[q]-SIZE[s0]. Fixing any S ∈ NTIME[t]/ℓ, let us construct a
circuit family of size s0 that decides S infinitely-often on inputs of length n and q(n).

We first define a set Sadv as follows. Let M be a t-time non-deterministic machine
and let {an} be a sequence of “good” advice strings of length |an| = ℓ(n) such that M
correctly decides S when given advice {an}. For every n ∈ N, the set Sadv

n will include
representations of all pairs (x, σ), where |σ| = ℓ(|x|) and |x|+ 2|σ| < n, such that M
accepts x when given advice σ. Specifically, we define Sadv

n to be the set of all n-bit

18

strings of the form 1t0|σ|1xσ, where t = n − (|x| + 2|σ| + 1), such that M accepts x
when given advice σ.13

Note that Sadv ∈ NTIME[O(t)]. This is the case since a non-deterministic machine
that gets input z ∈ {0, 1}n can first verify that z can be parsed as z = 1t0|σ|1xσ such
that |σ| = ℓ(|x|) (and reject z if the parsing fails); and then simulate the machine M
on input x with advice σ, in time O(t(|x|)) = O(t(n)), and decide according to the
output of M. Now, since we assume that NTIME[O(t)] ⊆ i.o.[2q]-SIZE[s], there exists
an infinite set I ⊆ N and a circuit family {Cn} of size s such that for every n ∈ I:

1. Cn : {0, 1}n → {0, 1} correctly computes Sadv
n ; and

2. C2q(n) : {0, 1}2q(n) → {0, 1} correctly computes Sadv
2q(n).

We transform {Cn} into a circuit family of size s0 that decides S infinitely-often on
inputs of length both n and q(n). To do so, we rely on the following simple claim:

Claim 23.1. Let n, m ∈ N such that m + 2ℓ(m) < n. Assume that there exists a circuit of
size s(n) that decides Sadv

n . Then, there exists a circuit of size s(n) that decides Sm.

Proof. Let Cn be the circuit of size s(n) for Sadv
n . The circuit Cm for Sm is obtained by

hard-wiring into Cn the “correct” advice am instead of the last ℓ(m) input bits, and the
correct initial padding 1n−m−2ℓ(m)−10ℓ(m)1 instead of the first n − m − ℓ(m) input bits.
�

For every n ∈ I, let m = m(n) be the largest integer such that m + 2ℓ(m) + 1 ≤ n.
Let I′ = {m(n)}n∈N, and note that I′ is infinite. For every sufficiently large m ∈ I′,
relying on the fact that m = m(n) for some n ∈ I and on Claim 23.1, we have that:

1. There exists a circuit Cm : {0, 1}m → {0, 1} of size s(n) ≤ s0(dn/2e) ≤ s0(m) that
decides Sm. (We relied on the fact that m ≥ n/2, since ℓ(m) < m/2.)

2. There exists a circuit Cq(m) : {0, 1}q(m) → {0, 1} of size s0(q(m)) that decides
Sq(m). To see this, recall that there exists a circuit C2q(n) of size s(2q(n)) that
decides Sadv

2q(n). We can invoke Claim 23.1 because q(m) + 2ℓ(q(m)) < 2q(m) <

2q(n). Also, relying on the fact that m ≥ n/2 and on the hypotheses regarding
s0, s and q, we have that s(2q(n)) ≤ s(2q(2m)) ≤ s0(q(m)).

It follows that S ∈ i.o.[q]-SIZE[s0].

We now combine the foregoing ingredients into a proof of Theorem 3. The struc-
ture of the theorem that we obtain is similar to the structure of Theorem 15: Assuming
a sufficiently strong derandomization hypothesis (in this case, that prBPP = prP),
and taking two functions t and s with sufficient “gap” between them, we deduce that
NTIME[t] 6⊆ i.o.[s0]-SIZE[s], where s0 is a function moderately larger than s. (The fact
that s0 > s is no coincidence; see discussion after the proof of Theorem 24.)

13The 0|σ| term facilitates the parsing of the suffix of the n-bit string as a pair xσ.

19

Theorem 24 (Theorem 3, restated). There exists a constant ϵ > 0 such that the following
holds.

• Let s : N → N be an increasing, super-linear and time-constructible function such that
for all sufficiently large n ∈ N it holds that s(n) ≤ 2ϵ·n and that s(2n) ≤ s(n)2.

• Let t = poly(s(poly(s))), for sufficiently large polynomials (that do not depend on s).

• Let s0 : N → N be an increasing and time-constructible function such that for all
sufficiently large n ∈ N it holds that s0(n) ≥ s(n2)2 and that s0(2n) ≤ s0(n)2.

Assume that prBPP ⊆ prNP . Then, NTIME[t] 6⊆ i.o.[poly(s0)]-SIZE[s].

Note that if the function s in Theorem 24 satisfies s(n2) < s(n)k, for a sufficiently
large constant k ∈ N, then we can use the function s0(n) = s(n)2k, and deduce that
NTIME[t] 6⊆ i.o.[poly(s)]-SIZE[s].

Proof of Theorem 24. Let t0 = poly(s0(poly(s0))), for sufficiently large polynomials,
and let ℓ = O(log(s0)) (the universal constant hidden in the O-notation is the one from
Theorem 20). By Theorem 20, there exists S ∈ MATIME[t0]/ℓ \ i.o.[(s0)c]-SIZE[s0], for
a sufficiently large constant c ∈ N. By Proposition 21, and relying on the hypothesis
that prBPP ⊆ prNP , it holds that S ∈ NTIME[poly(t0)]/ℓ \ i.o.[(s0)c]-SIZE[s0].

We now want to use Proposition 23 to deduce that NTIME[poly(t0)] is not con-
tained in i.o.[poly(s0)]-SIZE[s], and thus we need to verify that the functions ℓ, s, s0,
and (s0)c satisfy the hypothesis of Proposition 23. This is indeed the case since for all
sufficiently large n ∈ N it holds that ℓ(n) < n/2 (assuming that ϵ is sufficiently small);
and since s0(n) > s(n2)2 ≥ s(2n), and s(2s0(2n)c) ≤ s(s0(n)2c)2 ≤ s0(s0(n)c).

As mentioned before the statement of Theorem 24, the “gap” between the input
lengths n and q(n) = poly(s0(n)) (on which any size-s circuit family is guaranteed to
fail) in Theorem 24 is larger than the function s that bounds the size of the circuits.
This is no coincidence: If the gap function q would have been significantly smaller than
the bound s on the circuit size, then we would have obtained an “almost-everywhere”
lower bound (for circuits of size about s(q−1)).14

6 Proof of Theorem 4

In this section we prove Theorem 4. Towards stating the theorem and proving it, let
us define what it means that the permanent has polynomial-sized arithmetic circuits:

14To see this, assume that S /∈ i.o.[q]-SIZE[s], for q � s. We define a set Semb by “embedding” all strings

in S of length n− 1 and q−1(n− 1) into {0, 1}n: For each n ∈ N, let Sembn consist of all n-bit strings 0n−|x|1x
such that x ∈ S. Since S /∈ i.o.[q]-SIZE[s], for every sufficiently large n ∈ N the circuit complexity of Sembn

is larger either than s(n − 1) or than s(q−1(n − 1)). In natural cases where s(q−1(n − 1)) < s(n − 1), we
obtain an “almost-everywhere” lower bound for circuits of size about s(q−1).

20

Definition 25 (polynomial-sized arithmetic circuits for the permanent). We say that there ex-
ist polynomial-sized arithmetic circuits for the permanent if there exists a family of polynomial-
sized arithmetic circuits such for every n ∈ N, the corresponding circuit Cn gets as input an
n × n matrix with entries in {0, 1}, and outputs its permanent over Z.

The key lemma in the proof of Theorem 4 is the following. Given the hypothesis
that a “non-promise-problem” derandomization holds (i.e., coRP ⊆ NP), and the ad-
ditional (unlikely) hypothesis that that there exist polynomial-sized arithmetic circuits
for the permanent, we deduce that a “promise-problem” derandomization also holds
(i.e., prBPP ⊆ prNP). The proof of this lemma is based on the ideas and technical
results of Kabanets and Impagliazzo [KI04].

Lemma 26 (derandomization and collapse of the permanent imply “promise-problem” deran-
domization). Assume that coRP ⊆ NP , and that there exist polynomial-sized arithmetic
circuits for the permanent. Then, NP = PH, and consequently prBPP ⊆ prNP .

Proof. We first show that our hypotheses imply that NP = PH. The proof of this
statement will rely on the following result from [KI04, Lem. 9 & 12]:

Lemma 26.1. Under our hypotheses, there exists a non-deterministic polynomial-time ma-
chine that decides the set of descriptions of arithmetic circuits that compute the permanent.

Now, let L ∈ PH. Recall that Valiant [Val79] proved that computing the permanent
of a matrix with entries in {0, 1} over Z is #P-complete. Also recall that Toda [Tod91]
proved that PH ⊆ P#P . We thus deduce that L can be decided by a polynomial-time
algorithm AL that is given oracle access to the permanent over Z of matrices with
{0, 1} entrires.

We simulate AL by a non-deterministic machine M, as follows. Given input x, the
machine M first guesses a polynomial-sized arithmetic circuit CPerm for the perma-
nent; then non-deterministically verifies that CPerm indeed computes the permanent,
using the machine from Lemma 26.1 (while rejecting x if the foregoing machine rejects
CPerm); and finally M runs AL on x, while answering each oracle query of AL by eval-
uating CPerm on the query. The point is that whenever M guesses a “correct” circuit
for CPerm in the first step, the decision of M on x is correct; and in any other case (i.e.,
when CPerm does not compute the permanent), M rejects.

To prove the “consequently” part, note that since PH = NP we also have that
prPH = prNP (this follows using essentially the same argument as in Footnote 10).
Recall that by the classical result of Lautemann [Lau83] it holds that prBPP ⊆ prPH
(see, e.g., the presentation in [Gol08, Thm 6.9]). Thus, we deduce that prBPP ⊆
prPH = prNP .

We can now prove Theorem 4, using Lemma 26:

Theorem 27 (Theorem 4, restated). There exists ϵ > 0 such that the following holds. Assume
that coRP ⊆ NP . Then at least one of the following statements is true:

21

1. The permanent function does not have polynomial-sized arithmetic circuits over Z.

2. The lower bounds in the conclusion of Theorem 24 hold. (That is, NTIME[t] 6⊆
i.o.[poly(s0)]-SIZE[s] for any s, t, s0 as in the hypothesis of Theorem 24.)

Proof. If the permanent does not have polynomial-sized arithmetic circuits, we are
finished. Otherwise, relying on Lemma 26, we have that prBPP ⊆ prNP , and thus
we can invoke Theorem 24.

Acknowledgements

The author thanks his advisor, Oded Goldreich, for his close guidance in the research
and writing process, and for very useful comments on drafts of the paper. The author
thanks Ryan Williams for several very helpful email exchanges and conversations, and
in particular for stressing the point that the conclusion in the main theorem can be
interpreted as a weak form of a “strengthened time-hierarchy” theorem (that contrasts
circuits and uniform algorithms), and for suggesting to try and prove an “almost-
everywhere” lower bound as a consequence of prBPP = prP . The author is very
grateful to Igor Oliveira for proposing the alternative proof of Theorem 1 (i.e., the one
presented in Appendix A), and for his permission to include the alternative proof in
this paper. The author is partially supported by Irit Dinur’s ERC-CoG grant 772839.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern ap-
proach. Cambridge University Press, Cambridge, 2009.

[BFN+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP
has subexponential time simulations unless EXPTIME has publishable
proofs”. In: Computational Complexity 3.4 (1993), pp. 307–318.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. “Nonrelativizing
separations”. In: Proc. 13th Annual IEEE Conference on Computational Com-
plexity (CCC). 1998, pp. 8–12.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil Vadhan. “Short PCPs Verifiable in Polylogarithmic Time”. In: Proc.
20th Annual IEEE Conference on Computational Complexity (CCC). 2005, pp. 120–
134.

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically
Strong Sequences of Pseudo-random Bits”. In: SIAM Journal of Computing
13.4 (1984), pp. 850–864.

[BV14] Eli Ben-Sasson and Emanuele Viola. “Short PCPs with projection queries”.
In: Proc. 41st International Colloquium on Automata, Languages and Program-
ming (ICALP). 2014, pp. 163–173.

22

[Coo72] Stephen A. Cook. “A Hierarchy for Nondeterministic Time Complexity”.
In: Proc. 4th Annual ACM Symposium on Theory of Computing (STOC). 1972,
pp. 187–192.

[FS16] Lance Fortnow and Rahul Santhanam. “New non-uniform lower bounds
for uniform classes”. In: Proc. 31st Annual IEEE Conference on Computational
Complexity (CCC). 2016, Art. No. 19, 14.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”.
In: Journal of Computer and System Sciences 65.4 (2002), pp. 672–694.

[IW99] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1999, pp. 220–229.

[Juk12] Stasys Jukna. Boolean function complexity. Springer, Heidelberg, 2012.

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polyno-
mial Identity Tests Means Proving Circuit Lower Bounds”. In: Computa-
tional Complexity 13.1-2 (2004), pp. 1–46.

[Lau83] Clemens Lautemann. “BPP and the polynomial hierarchy”. In: Information
Processing Letters 17.4 (1983), pp. 215–217.

[MW17] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeter-
ministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In:
Electronic Colloquium on Computational Complexity: ECCC 24 (2017), p. 188.

[MW18] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeter-
ministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In:
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

[San09] Rahul Santhanam. “Circuit lower bounds for Merlin-Arthur classes”. In:
SIAM Journal of Computing 39.3 (2009), pp. 1038–1061.

[Tod91] Seinosuke Toda. “PP is as hard as the polynomial-time hierarchy”. In:
SIAM Journal of Computing 20.5 (1991), pp. 865–877.

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case
Complexity Via Uniform Reductions”. In: Computational Complexity 16.4
(2007), pp. 331–364.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[Val79] L. G. Valiant. “The complexity of computing the permanent”. In: Theoreti-
cal Computer Science 8.2 (1979), pp. 189–201.

23

[Wil13] Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial
Lower Bounds”. In: SIAM Journal of Computing 42.3 (2013), pp. 1218–1244.

[Yao82] Andrew C. Yao. “Theory and Application of Trapdoor Functions”. In: Proc.
23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1982, pp. 80–91.

Appendix A An alternative proof of Theorem 2

In this section we present an alternative proof of Theorem 1, which does not rely on the
work of Murray and Williams [MW18], but rather on the work of Santhanam [San09].
The idea for this alternative proof was suggested to us by Igor Oliveira (after a pre-
liminary version of this paper appeared online).

The structure of this alternative proof is very similar to the proof of Theorem 3
(which was described in Section 2.2), but uses as a starting point a generalization
of the circuit lower bound proved by Santhanam [San09], instead of its subsequent
strengthening by Murray and Williams [MW18]. Specifically, the starting point of the
proof is the following:

Theorem 28 (a generalization of [San09, Thm. 1]). Let s : N → N be an increasing, super-
linear and time-computable function such that for all sufficiently large n ∈ N it holds that
s(3n) ≤ s(n)3. Then, for t : N → N such that t(n) = poly(s(poly(s(n)))) it holds that
MATIME[t]/1 6⊆ SIZE[s].

The proof of Theorem 28 imitates the original argument from [San09], but uses
more general parameters. We include the full proof for completeness, but since it
requires no new significant ideas, we defer its presentation to the end of the appendix.
The alternative proof of Theorem 1 follows by combining Theorem 28, Proposition 21
(instantiated with the value ℓ = 1), and Proposition 22.

Theorem 29 (Theorem 1, an alternative technical statement). Let s : N → N be an increas-
ing, super-linear and time-computable function such that for all sufficiently large n ∈ N it
holds that s(3n) ≤ s(n)3, and let t : N → N such that t(n) = poly(s(poly(s(n)))), for
sufficiently large polynomials. Assume that prBPP = prP . Then, NTIME[t] 6⊆ SIZE[s].

Proof. Let s0 = s3, and let t0 = poly(s0(poly(s0))), for sufficiently large polyno-
mials. According to Theorem 28, there exists a set S in MATIME[t0]/1 such that
S /∈ SIZE[s0]. By Proposition 21, and relying on the hypothesis that prBPP = prP ,
it holds that S ∈ NTIME[t1]/1 \ SIZE[s0], where t1 = poly(t0). Using Proposi-
tion 22, it holds that NTIME[t] 6⊆ SIZE[s1], where t = O(t1) = poly(s(poly(s)))
and s1(n) = s0(n − 1). Finally, since s is increasing and s(n) ≤ s(dn/3e)3, we have that
s1(n) = s0(n − 1) ≥ s0(dn/3e) ≥ s(n), and hence NTIME[t] 6⊆ SIZE[s].

It is just left to detail the proof of Theorem 28. The first technical ingredient in
the proof is the PSPACE -complete set of Trevisan and Vadhan [TV07]. We use this

24

set, but instead of relying on the fact that the set is PSPACE -complete, we will use
padding to claim that the set is complete for DSPACE[nω(1)] under nω(1)-time reduc-
tions.

Lemma 30 (scaling the PSPACE -complete set of [TV07]). There exists a set LTV ⊆ {0, 1}∗
and a probabilistic polynomial-time oracle Turing machine M that satisfy the following:

1. Let t : N → N be a super-linear, time-computable function. Then, for every set L ∈
DSPACE[t] there exists a deterministic Turing machine RL that runs in time poly(t)
such that for every x ∈ {0, 1}∗ it holds that x ∈ L ⇐⇒ RL(x) ∈ LTV.

2. On input x ∈ {0, 1}∗, the machine M only issues queries of length |x|.

3. For any x ∈ LTV it holds that Pr[M1LTV (x) = 1] = 1, where 1LTV : {0, 1}n → {0, 1} is
the indicator function of LTV ∩ {0, 1}n.

4. For any x /∈ LTV and any f : {0, 1}n → {0, 1} it holds that Pr[M f (x) = 0] ≥ 2/3.

Proof. We take LTV to be the PSPACE -complete set from [San09, Lem. 12], which
is the same set constructed in [TV07]. Items (2) – (4) follow immediately from the
original statement in [San09].15 Item (1) follows since LTV is PSPACE -complete, and
using a padding argument. Specifically, for any t and L, consider the machine RL
that combines a reduction of L to L′ = {(x, 1t) : x ∈ L} with a reduction of L′ to
LTV. The first reduction maps x 7→ (x, 1t), and since L′ ∈ PSPACE , there exists a
second reduction of L′ to LTV that can be computed in time poly(t + |x|) < poly(t)
(the inequality is since t is super-linear).

Proof of Theorem 28. Let t0 : N → N such that t0(n) = s4(n), and let t1 = poly(t0)
and t = t2 = poly(t0(poly(t0))), for sufficiently large polynomials. Let LTV be the set
from Lemma 30. Our goal is to prove that there exists a set in MATIME[t2]/1 that is
not in SIZE[t1/4

0]. The proof proceeds by a case analysis.

Case 1: LTV ∈ SIZE[t0]. By a standard diagonalization argument, there exists a
set Ldiag ∈ DSPACE[t1] \ SIZE[t0]. 16 Our main goal now will be to prove that
DSPACE[t1] ⊆ MATIME[t2], which will imply that Ldiag ∈ MATIME[t2] \ SIZE[t0].
(Indeed, in this case we are proving a stronger result, since the MA verifiers do not
need advice, and since the circuits are of size t0 rather than s = t1/4

0 .)
To do so, let L ∈ DSPACE[t1], and consider the following MA verifier for L. On

input x ∈ {0, 1}n, the verifier computes x′ = RL(x), where RL is the machine from

15The original statement asserts that any x /∈ LTV is rejected with probability at least 1/2 (rather than
2/3), but this probability can be amplified to 2/3 using standard error-reduction.

16For example, Ldiag = {x : C|x|(x) = 1}, where Cn is the lexicographically-first circuit over n bits
of size at most t2

0(n) that decides a set whose circuit complexity is more than t0(n). The proof that
Ldiag ∈ DSPACE[t1] follows the well-known idea used in Kannan’s theorem (see, e.g., [Juk12, Lem.
20.12]).

25

Lemma 30. Note that n′ = |x′| ≤ poly(t1(n)), and that x ∈ L ⇐⇒ x′ ∈ LTV.
Now, the verifier parses the witness w ∈ {0, 1}poly(t0(n′)) as a description of a circuit
C : {0, 1}n′ → {0, 1} of size t0(n′), and runs the machine M from Lemma 30 on input
x′, while answering each oracle query of M using the circuit C.

Note that, since LTV ∈ SIZE[t0], there exists a circuit C over n′ input bits of size
t0(n′) that correctly computes LTV on inputs of length n′. Therefore, by Lemma 30,
when x ∈ L there exists a witness such that the verifier accepts x with probability one,
whereas the verifier rejects any x /∈ L with probability at least 2/3, regardless of the
witness. The total running time of the verifier is dominated by the time it takes to
simulate M using the circuit C, which is at most poly(n′) · poly(t0(n′)) ≤ t2(n).

Case 2: LTV /∈ SIZE[t0]. In this case we show an explicit set Lpad, which will be a
padded version of LTV, such that Lpad can be decided in MATIME[t2] with one bit of
advice, but cannot be decided by circuits of size s = t1/4

0 . To do so, let szTV : N → N

be such that szTV(n) is the minimum circuit size for LTV
n = LTV ∩ {0, 1}n. Also, for any

integer m, let p(m) = 2blog(m)c be the largest power of two that is not larger than m,
and let n(m) = m − p(m). We think of n(m) as the “effective input length” indicated
by m, and on p(m) as the length of padding. We define the set Lpad as follows:

Lpad =
{
(x, 1p) : x ∈ LTV, and |x| = n(|x|+ p),

and t0(|x|+ p) ≤ szTV(|x|)3 < t0(|x|+ 2p)
}

.

Let us first see that Lpad cannot be decided by circuits of size t1/4
0 . Assume towards

a contradiction that there exists a circuit family {Cm} of size t1/4
0 that decides Lpad

m
correctly for every m. Since LTV /∈ SIZE[t0], there exists an infinite set I ⊆ N such that
for every n ∈ I it holds that szTV(n) > t0(n). For a sufficiently large n ∈ I, we will
construct a circuit C′

n : {0, 1}n → {0, 1} of size less than szTV(n) that computes LTV
n ,

which yields a contradiction to the definition of szTV.
Specifically, consider the circuit C′

n : {0, 1}n → {0, 1} that acts as follows. Let p be
a power of two such that t0(n + p) ≤ szTV

3(n) < t0(n + 2p); there exists such a p since
t0(n + 2dlog(n)e) ≤ t0(n)3 < szTV

3(n). The value of this p is hard-coded into C′
n. Given

x ∈ {0, 1}n, the circuit C′
n pads x with 1p, simulates the circuit Cm on (x, 1p) (where

m = n + p), and outputs Cm(x, 1p). By the definition of Lpad it holds that C′
n correctly

computes LTV
n . The size of C′

n is dominated by the size of Cm, and is thus at most
O(t0(n + p)1/4) = o(t0(n + p)1/3). Since t0(n + p)1/3 ≤ szTV(n) and n is sufficiently
large, the size of C′

n is less than szTV(n), which yields a contradiction.
Let us now see that Lpad can be decided by an MA verifier that runs in time t2

and uses one bit of advice. Given an input z of length m, the advice bit is set to
one if and only if Lpad

m 6= ∅; if the advice is zero, the verifier immediately rejects.
Otherwise, the verifier computes n = n(m) and p = p(m), and parses the input z as
(x, 1p) where |x| = n (if the verifier fails to parse the input, it immediately rejects).
The verifier parses the witness w ∈ {0, 1}poly(t0(n+2p)) as a circuit C : {0, 1}n → {0, 1}

26

of size at most t0(n + 2p)1/3, and emulates the machine M from Lemma 30 on input x,
answering each oracle query of M using the circuit C. The verifier outputs the decision
of M.

Since szTV(n) < t0(n + 2p)1/3, there exists a circuit C of size at most t0(n + 2p)1/3

that computes LTV
n . For any z ∈ Lpad, when the witness represents this circuit, the

verifier accepts z with probability one. Also, for any z /∈ LTV, the verifier rejects x with
probability 2/3, regardless of the witness. Finally, note that the running time of the
verifier is dominated by the time that it takes to run the machine M while simulating
the oracle answers, which is at most poly(n) · poly(t0(2m)) ≤ t2(m).

Appendix B Sufficient conditions for admissibility

The point of the current appendix is to show that essentially any increasing function
f (n) = ω(1) such that f (n) ≤ n is admissible (in the sense of Definition 17).

Claim 31. Let f (n) = ω(1) be any increasing function such that f (n) ≤ n for all n, and
t(n) = n f (n) is time-constructible, and s(n) = nlog(f (log(n))) is time-constructible, and s′(n)
is time-constructible. Then, f is admissible.

Proof. Let g(n) = log(f (log(n))) and let s(n) = ng(n). We need to verify that g is
super-constant (which holds because f is super-constant), and that t and s are suffi-
ciently gapped, and that ŝ(n) = no(f (n)). To see that t and s are sufficiently gapped,
first note that both functions are increasing (since f is increasing, and hence g is also
increasing) and are time-constructible, as is s′ (we assumed time-constructibility in the
hypothesis). Also note that s(n) ≤ nlog log(n) < 2n/γ/n.

Thus, it is left to verify that ŝ(n) = no(f (n)). The proof of this fact amounts to the
following elementary calculation. First note that

s′(n) = (s(γ · n))γ = (γ · n)γ·log(f (log(γ·n))) < nlog2(f (log2(n))) .

Thus, for any function k = k(n) and constant c ≥ 2 such that k(n) ≤ logc(f (log3c(n)))
(which in particular implies that k(n) ≤ logc(n)), we have that

s′(nk) < nk·log2(f (log2(nk))) ≤ nlog2c(f (log3c(n))) . (1)

In particular, using Eq. (1) with k(n) = log2(f (log2(n))) and c = 2, we deduce
that s′(s′(n)) < nlog4(f (log6(n))). Then, using Eq. (1) again with k(n) = log4(f (log6(n)))
and c = 4, we deduce that s′(s′(s′(n))) < nlog8(f (log12(n))). Therefore, we have that
ŝ(n) < nγ′·log8(f (log12(n))) < nγ′·poly log(f (n)) = no(f (n)).

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

