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Abstract

Recently, perfect matching in bounded planar cutwidth bipartite graphs
(BGGM) was shown to be in ACC0 by Hansen et al. [8]. They also conjec-
tured that the problem is in AC0.

In this paper, we disprove their conjecture by showing that the problem
is not in AC0[pα] for every prime p. Our results show that the previous
upper bound is almost tight. Our techniques involve giving a reduction
from Parity to BGGM. A further improvement in lower bounds is difficult
since we do not have an algebraic characterization for AC0[m] where m is
not a prime power. Moreover, this will also imply a separation of AC0[m]
from P. Our results also imply a better lower bound for perfect matching
in general bounded planar cutwidth graphs.

1 Introduction

For a graph G = (V,E) a matching M ⊆ E is a set of edges in G such that no
two edges in M share a common vertex. We say G has a perfect matching if
there exists a matching that matches every vertex in G. Since every graph is
not guaranteed to have a perfect matching, computing a matching of maximum
cardinality is a natural generalization of the perfect matching problem. The
computational complexity of the matching problem is a well-studied problem
particularly in the context of circuit complexity and derandomization.

In 1965, Edmonds showed that computing maximum matching is in P [4].
In 1979, Lovász gave an efficient randomized parallel algorithm for the perfect
matching problem by showing that it is in RNC [10]. The construction version
of the problem was also shown to be in RNC [9, 11]. It is an important open
question whether matching has an efficient deterministic parallel algorithm, that
is, whether it is in NC. Attempts to derandomize the above approaches has
proved elusive so far. Recently there has been some progress on this problem.
Perfect matching was shown to be in quasiNC for bipartite graphs [7] and in a
subsequent paper extended to general graphs [14].
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Stronger results are known for perfect matching in graphs with bounded
treewidth and its subclasses. Elberfeld et al. [5] showed that the problem is
in L for graphs with bounded treewidth by proving the logspace versions of
Bodlaender’s and Courcelle’s theorem. This gives a tight bound on the complexity
of perfect matching in bounded treewidth graphs since it was already known to
be L-hard [3]. In a subsequent paper, Elberfeld et al. showed that given a tree
decomposition of the input graph as a term representation, perfect matching for
bounded treewidth graphs is in uniform NC1 and for bounded tree-depth graphs
is in uniform AC0 [6]. The upper bound of NC1 for bounded treewidth graphs is
tight since Barrington showed that the problem is hard for NC1 under projection
reductions [1].

In 2014, Hansen et al. used the characterization of Barrington and Thérien [2]
and showed that bipartite perfect matching in graphs with bounded planar
cutwidth is in ACC0 [8]. They also gave a lower bound of AC0 for the same
problem. For perfect matching in general bounded planar cutwidth graphs, they
gave a lower bound of AND ◦OR ◦XOR ◦AC0. In their paper, Hansen et al. also
conjectured that perfect matching for bipartite bounded planar cutwidth graphs
is in AC0 and for general bounded planar cutwidth graphs is in AC0[2].

1.1 Our Result and Proof Outline

We refute both the conjectures in this paper by giving improved lower bounds
for perfect matching in bounded planar cutwidth graphs for both bipartite and
general graphs. We show that perfect matching for bounded planar cutwidth
graph is not in AC0[pα] for every prime p and α ∈ N.

To show this improved lower bound we first reduce Parity to perfect matching
in bipartite bounded planar cutwidth graphs using a family of AC0 circuits. This
is done by constructing certain graph gadgets as defined in Section 3. This
reduction and result by Razborov [12] and Smolensky [13] shows the problem is
not in AC0[pα] for odd prime p. To extend the result for the case when p = 2 we
use the monoid word reduction of matching in bipartite bounded planar cutwidth
graphs provided by Hansen et al. [8]. Using this reduction we show that Modq
can be reduced to perfect matching in bipartite bounded planar cutwidth graphs
for some odd prime q. This shows that perfect matching for bipartite bounded
planar cutwidth graphs is not in AC0[2α] as well. We also show similar lower
bound for series-parallel graphs. An upper bound of NC1 for perfect matching
in series-parallel graphs follows from the result of [6].

1.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we will cover the
preliminaries and notations that we will be using throughout the paper. We
also discuss the work of Thérien and Barrington [2] and results from Hansen
et al. [8]. In Section 3 we show the reduction of Parity to perfect matching in
bipartite bounded planar cutwidth graphs. In Section 4 we first discuss the
reduction framework of BGGM to the monoid word problem due to Hansen et
al. [8]. We then use this framework to show that perfect matching in bipartite
bounded planar cutwidth graphs in not in AC0[2α]. In Section 5 we discuss an
application of our result to perfect matching in series-parallel graphs. We also
discuss possible limitations of our approach and future directions.
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2 Preliminaries

In this section, we give the required definitions and notations that we use in this
paper. We also state the results from previous work that we use in our paper.

2.1 Definitions and Notations

Circuits are a non-uniform model of computation where size and depth of the
circuit are two common resources that are usually studied. Additionally, type of
gates used in the circuit and fan-in (indegree of a gate) are also often considered.
AC0 is the class of problems having a family of circuits that have the constant
depth, polynomial size and unbounded fan-in AND, OR and NOT gates. AC0[m]
is an extension of AC0 where the circuits are allowed to have Modm gates in
addition to AND, OR and NOT gates. ACC0 is an extension of AC0[m] where
circuits are allowed to have Modm gates for any m ∈ N. NC1 is the class of
problems having a family of circuits that have logarithmic depth, polynomial
size and bounded fan-in AND, OR and NOT gates. It is easy to see that
AC0 ⊆ AC0[m] ⊆ ACC0 ⊆ NC1. In fact, the first containment is proper. The
reader can refer to the book by Vollmer for more details about these classes and
circuit complexity in general [15]. Let Na(x) be number of times symbol a appears
in string x. We also consider the language Parity = {x ∈ {0, 1}∗ | N1(x) 6≡ 0
mod 2} and its generalization Modp = {x ∈ {0, 1}∗ | N1(x) 6≡ 0 mod p} for any
p ≥ 2, for proving our lower bounds.

A monoid M is a set S along with a binary operator ⊕ such that (i) for
all s1, s2 ∈ S, s1 ⊕ s2 ∈ S (closure property), (ii) for all s1, s2, s3 ∈ S we have
s1 ⊕ (s2 ⊕ s3) = (s1 ⊕ s2) ⊕ s3 (associativity property) and (iii) there exists
e ∈ S such that for all s ∈ S we have e⊕ s = s = s⊕ e (existence of identity).
A subset G of M is a group in M if G is a group with respect to the operation
of M. If every group in a monoid is trivial then the monoid is said to be an
aperiodic monoid. If every group in a monoid is solvable then the monoid is said
to be a solvable monoid. For a monoid M, the monoid word problem is given
x1, x2, . . . , xn ∈M as input, to compute x1 ⊕ x2 ⊕ . . .⊕ xn.

A grid graph is a graph G embedded in an integer lattice such that each edge
is either horizontal or vertical. A grid layered planar graph is a planar graph G
embedded in an integer lattice such that if there is an edge between (a, b) and
(c, d) then |a− c| ≤ 1. Length and width of a grid layered planar graph are the
number of columns and rows in the graph respectively.

For a linear arrangement of vertices of a graph G, the maximum number of
edges cut by any vertical line is called cutwidth of the linear arrangement of G.
Cutwidth of G is the minimum cutwidth of a linear arrangement over all possible
linear arrangements of G. For a linear arrangement of vertices of a graph G
without edge crossings, the maximum number of edges cut by any vertical line
is called planar cutwidth of the linear arrangement. Planar cutwidth of G is
the minimum planar cutwidth of a linear arrangement over all possible planar
linear arrangements of G. If a planar linear arrangement of G is not possible,
for example in non-planar graphs, we define planar cutwidth of G to be infinite.
Note that planar cutwidth of planar graphs is not same as cutwidth of planar
graphs.

Graphs with bounded planar cutwidth can be converted into grid layered
planar graph preserving matching and bipartiteness. Since constructing such
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an embedding is not known to be in NC1 and supposed to be hard for NC1, we
will assume that input is provided as a bipartite grid layered planar graph. This
assumption on input is also made by Hansen et al. [8]. Here we consider the
circuit complexity of perfect matching in bipartite grid layered planar graphs.
Formally BGGM is the set of instances of bipartite grid layered planar graphs
along with their embeddings such that they have a perfect matching.

2.2 Algebraic Characterization of Classes in NC1

We start by describing the definition of bounded width polynomial size programs
over monoids as given in [1]. An instruction I over monoid M is a 3-tuple
〈j, a0, a1〉 where j ∈ N and a0, a1 ∈ M. For some string x ∈ {0, 1}∗, we define
I(x) = axj

. For some n ∈ N, a bounded width polynomial size branching program
(in short BWBP) is a tuple of polynomial number of instruction over some finite
monoid M. If P = (I1, I2, . . . , Il), then for all strings x ∈ {0, 1}n, P (x) =∏l
i=1 Ii(x) where Ii’s are instructions over the monoid M, l is a polynomial in

n and product is the operation over monoid. Given an accepting set A ⊆M, we
say a program P recognizes string x if and only if P (x) ∈ A. We say a language
L is recognized by a family of BWBP, 〈Pn〉 if and only if Pn recognizes exactly
the set of all length n strings in L.

In a seminal work in 1986, Barrington gave the following characterization of
NC1.

Theorem 1. [1] A language L is in NC1 if and only if L is recognized by a
family of BWBP over some finite monoid.

In the following year Barrington and Thérien extended their characterization
to other subclasses in NC1.

Theorem 2. [2] For a language L we have,

1. L is in AC0 if and only if L is recognized by a family of BWBP over an
aperiodic finite monoid,

2. L is in AC0[pα] for a prime p and constant α if and only if L is recognized
by a family of BWBP over a solvable finite monoid in which all groups have
order that divide power of p, and,

3. L is in ACC0 if and only if L is recognized by a family of BWBP over a
solvable finite monoid,

Part 2 of Theorem 2 is not directly stated in [2] but can be derived from
their proof as also claimed in [8]. We will use these results to show that BGGM
is not in AC0[pα] where p is prime and α ∈ N.

3 BGGM is as hard as Parity

In this section we will give an AC0 reduction from Parity to BGGM.
Let x = x1x2 . . . xn ∈ {0, 1}∗ be an instance of Parity. Define a function f(x)

as
f(x) = 0 bd(0x10x20 . . . 0xn0)0.
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where bd is the bit-double function defined as bd(y1y2 . . . yn) = y1y1y2y2 . . . ynyn.
Clearly, f is an AC0 computable function. Note that f(x) always has even length
and we can visualize f(x) as concatenation of pairs of 2 bits. That is, the first
pair contains the first and second bits of f(x), second pair contains the third
and fourth bits of f(x) and so on. We will call these pairs as constituent pairs of
f(x). We note some properties of f(x) that can easily be verified.

Theorem 1. For every string x ∈ {0, 1}∗,

• 11 cannot be a constituent pair of f(x), and

• in f(x), a constituent pair 01 is always succeeded by the constituent pair of
10 and a constituent pair 10 is always preceded by the constituent pair 01.

Using f(x) we construct a bipartite grid layered planar graph Gx, such that,
Gx has a perfect matching if and only if x has even parity. Also, we will show
that Gx can be constructed from f(x) in AC0. This will imply that Parity reduces
to BGGM.

First we define graph blocks G00, G01 and G10 corresponding to the three
constituent pairs 00, 01 and 10 respectively as shown in Figure 1. Note that 11
cannot be a constituent pair hence we do not define a graph corresponding to it.
These graph blocks will be the constituent elements of the graph Gx.

(a) G00 (b) G01 (c) G10

Figure 1: Different types of Graph Blocks

We also define an operator � over these graphs which allows us to define
larger graphs using these graph blocks. � operator is defined in Figure 2.

We now complete the construction of Gx. Let y = f(x) = y1y2 . . . ym. where
m is even. Then

Gx = Gy1y2 �Gy3y4 � . . .�Gym−1ym .

For example if x = 1101, then f(x) = 0bd(010100010)0 = 00011001100000011000
and Gx will be as shown in Figure 3.

Theorem 2. For every string x ∈ {0, 1}∗, Gx is a bipartite grid layered planar
graph. Also, each connected component of Gx is either a single edge or a path
that extends from the first block to the last block of Gx.

Proof. By definition, each of the three graph blocks is grid layered planar graphs.
Moreover, the operator � connects adjacent blocks by preserving planarity and
the overall grid structure. Hence Gx is a grid layered planar graph.
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(a) G00 �G00 (b) G00 �G01 (c) G10 �G00

(d) G01 �G10 (e) G10 �G01

Figure 2: Joining different Blocks with � operation

To show that each connected component of Gx is a path we will use induction
on the number constituent pairs of y = f(x). For the base case note that if y has
only one constituent pair then it must be 00 and G00 contains only paths of even
length (number of vertices). Now consider a graph Gp corresponding to the first
m− 1 constituent pairs of y. Assume that every connected component in Gp is
a path. Let Gp′ be the graph corresponding to the first m constituent pairs of y.
If the last block of Gp is G00 then by Lemma 1, the next block can either be
G00 or G01. By Figure 2a and 2b we have that Gp′ will only be extending the
paths of Gp in addition to two isolated edges. So every connected component in
Gp′ will be a path as well. Similarly if the last block of Gp is G01 then again
by Lemma 1, the next block will be G10 and by Figure 2d we have that every
connected component in Gp′ will be a path as well. Finally if the last block of

Figure 3: Graph Gx corresponding to the string x = 1101
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Gp is G10 then the next block can either be G00 or G01 and by Figure 2c and
2e we have that every connected component in Gp′ will be a path as well. Also,
note that each path in Gp′ extends from the first block to the last one or is of
length one.

This also shows that Gx is bipartite since it does not have any cycles.

Theorem 3. For every string x ∈ {0, 1}∗, Gx has a perfect matching if and
only if x has even parity.

Proof. We claim that Gx has a perfect matching if and only if it has an even
number of G10 blocks. Since the number of G10 blocks in Gx is same as the
number of ones in x, this will complete the proof. To prove our claim we again
use induction on the number constituent pairs of y.

For the base case note that G00 has a perfect matching using all its three
edges. Assume we have a graph Gp corresponding to the first m− 1 constituent
pairs of y such that Gp has a perfect matching if and only if Gp has an even
number of G10 blocks. Now suppose we are extending the graph Gp by one
graph block to get the graph Gp′ . We divide this into two cases.

Case 1: Gp′ = Gp �G00 or Gp′ = Gp �G01. In this case Gp and Gp′ have the
same number of G10 blocks. By construction two paths in Gp′ get extended
by two vertices while others remain the same. Also, an additional new edge
is introduced whose endpoints are matched with each other (see Figure
2). Thus if Gp has a perfect matching then Gp′ will also have a perfect
matching where the two new vertices by which the paths get extended, are
matched with each other. If Gp does not have a perfect matching then at
least one of its paths has an odd number of vertices. Extending this path
by two more vertices preserves its parity and hence Gp′ will also not have
a perfect matching.

Case 2: Gp′ = Gp �G10. In this case Gp′ has an extra G10 block from Gp.
Two paths in Gp′ get extended by three vertices while others remain the
same (see Figure 2d). Also, note that each path is symmetric about a
horizontal axis passing through the centre. Therefore both paths of length
more than one has the same length. If Gp has a perfect matching then the
new graph Gp′ does not have perfect matching as the number of vertices
in the two paths become odd and hence cannot be matched. On the other
hand, if Gp does not have a perfect matching then both the long paths
have an odd number of vertices. Hence in Gp′ these paths will have an
even number of vertices and hence a perfect matching exists in Gp′ .

Theorem 4. For every string x ∈ {0, 1}∗, Gx and its planar embedding is
computable in AC0.

Proof. It is easy to see that Gx can be computed using AC0 circuits when f(x) is
given as input as each vertex depends on at most two bits of f(x) and each edge
depends on at most four bits of f(x). Also the embedding is AC0-computable
as we can compute whether (a, b) is a vertex using just two bits of f(x) and
whether (a, b) and (c, d) have edge between them using just four bits of f(x).
Next we show that Gx and its planar embedding is AC0-computable even when
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x is given as input. For this note that each bit of f(x) is either 0 or a copy of
some bit in x. In circuit taking y as input, we can hardcode some bits to 0 and
pass input from bits of x wherever copy bit of some bit in x are used. Thus, we
get a circuit which computes Gx and its planar embedding using x as input.

Theorem 3. Parity reduces to BGGM in AC0.

Theorem 3 follows from Lemmas 2, 3 and 4. Razborov and Smolensky had
independently shown the following result.

Theorem 4. [12, 13] Let p and q be two distinct prime numbers and α ∈ N.
Modq /∈ AC0[pα].

Now by combining the result of Razborov and Smolensky and applying
Theorem 3 we have the following result.

Theorem 5. BGGM is not in AC0[pα] for every odd prime p and α ∈ N.

4 Lower Bounds for BGGM

Now we will show that BGGM is not in AC0[2α] as well. For this, we will first
describe reduction given in [8] that shows BGGM is in ACC0.

4.1 Reduction of BGGM to Monoid Word Problem

For two relations R,S ⊆ A× B. We define RS = {(x, y) | ∃z such that (x, z) ∈
R and (z, y) ∈ S}. For any grid layered planar graph G, we will first define the
monoid element corresponding to G. We will denote this monoid element by
GM. For any G, GM = (X,Y,R) where X is set of vertices in leftmost layer of
G, Y is set of vertices in rightmost layer of G and R ⊆ 2X × 2Y is a relation.
Let X ′ ⊆ X and Y ′ ⊆ Y then (X ′, Y ′) ∈ R if and only if G \ (X ′ ∪ Y ′) has a
perfect matching. In other words, there is a matching in G which matches every
vertex except those in X ′ and Y ′. We now define the monoid as the set

M = {GM| G is a bipartite grid layered planar graph} ∪ {0, 1}

where 1 is the identity element of the monoid and the operation of the monoid
(denoted as ∗) is defined as

(W,X,R) ∗ (Y,Z, S) =

{
(W,Z,RS) if X = Y

0 if X 6= Y

and for all M ∈M, 0 ∗M = M ∗ 0 = 0. For the remaining part of Section 4 we
will refer to this monoid as M.

Next, we define a concatenation operation on grid layered planar graphs. Let
G1 and G2 be two grid layered planar graphs having same width w and lengths
l1 and l2 respectively. We define G1 · G2 to be the grid layered planar graph
having width w and length l1 + l2, obtained by identifying the vertices in the
rightmost column of G1 and the leftmost column of G2. Here we assume that
there are no vertical edges present in the leftmost or rightmost column of a grid
layered planar graph. This can be assumed without loss of generality because
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given any grid layered planar graph we can convert it to a grid layered planar
graph having the above property by adding additional columns to the left and
right, and adding edges appropriately such that it preserves matching. Then we
have the property that (G1 ·G2)M = G1

M ∗G2
M.

4.2 BGGM is not in AC0[2α]

In this section we show that BGGM is also not in AC0[2α]. First we will show an
algebraic property of the monoid M defined in Section 4.1.

Theorem 5. There exists a cyclic group G in M of order p where p is an odd
prime.

Proof. Since by Theorem 3 BGGM is not in AC0, hence M is not an aperiodic
monoid by the characterisation provided in [2]. Thus a group Gn ⊆ M and
| Gn |= n > 1 exists. Hansen et al. showed that every group contained in M
will have odd order [8]. Thus, some odd prime p|ord(Gn). Thus there exist a
cyclic subgroup of Mn, G, of order p.

Theorem 6. Let G be a cyclic group of order p in M and e is the identity of G.
Then for some generator of G, say x, there exists grid layered planar graphs A
and B such that AM = x, BM = e and A and B have same length.

Proof. We have x, e ∈ M such that x 6= e. Moreover it is easy to see that the
elements 0 and 1 of M are not contained in G. Hence there exists grid layered
planar graphs A′ and B′ such that AM = x and BM = e. If A and B have same
length we are done. Otherwise using A and B we will give the construction of
grid layered planar graphs A′ and B′ such that lengths of A′ and B′ are same,
A′M = y and B′M = e where y is a generator of G. Consider the following cases:

Case 1: Difference between the lengths of A and B is even. Without loss
of generality assume A has smaller length. We construct A′ by adding an
even number of columns to the right hand side of A such that A′ and B
have the same number of columns. Now we add horizontal paths of even
length from each vertex in the rightmost column of A to its correspond-
ing vertex in the rightmost column of A′. Since we have added paths of
even length, therefore there there is a one to one correspondence between
matchings in A and A′. Hence A′M = AM.

Case 2: A has odd length and B has even length. As BM = e we have
(B ·B)M = e2 = e. Also B ·B will have odd length. Hence it reduces to
Case 1.

Case 3: A has even length and B has odd length. Note that if AM = x
has order p then (A · A)M = x2 also have order p. Now A · A has odd
length. Hence it reduces to Case 1 again.

Consider the grid layered planar graphs A and B as obtained by Lemma 6.
Using them we define a function h from the set of all binary strings to the set of
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all grid layered planar graphs. h is defined recursively as follows:

h(ε) = B

h(y0) = h(y) ·B
h(y1) = h(y) ·A

Note that h(z) is essentially the grid layered planar graph obtained by concate-
nating copies of A and B for every 1 and 0 in the string z respectively, together
with an extra B for ε at the leftmost end.

Theorem 7. h is AC0-computable.

Proof. By Lemma 6, for every positive integer n there exists grid layered planar
graphs A and B such that AM = x, BM = e and A and B have the same length
(say m) and same width (say w). We assume that A and B are hardcoded into
the AC0 circuit say Cn. Now given a string z ∈ {0, 1}n, for every bit 0 or 1 of z,
the circuit Cn outputs the corresponding graph B or A respectively in the order
of the input bits. Additionally Cn also outputs a copy of the graph B at the
beginning. Hence the output graph will have width w and length m+ n(m− 1).
Here we will crucially use the fact that A and B have same the length, since
otherwise the length of the output graph would have been variable.

Theorem 8. Let G be the group as obtained in Lemma 5 and let e be the identity
element in G. For all strings z ∈ {0, 1}∗, z ∈ Modp if and only if h(z)M 6= e.

Proof. Let z = z1z2 . . . zn such that zi ∈ {0, 1}. Then,

h(z)M = h(z1z2 . . . zn)M

= (B ·X1 ·X2 · . . . ·Xn)M, such that Xi = A if zi = 1 and Xi = B if zi = 0

= BM ∗XM1 ∗XM2 ∗ . . . ∗XMn
= xt, where t is the number of 1’s in z

Now by Lemma 5 we have xt = e if and only if t ≡ 0 mod p. Hence z ∈ Modp
if and only if h(z)M 6= e.

Theorem 9. Consider the language L = {h(z) | h(z)M = e where z ∈ {0, 1}∗}.
Then L reduces to BGGM in AC0.

Proof. We know that h(z) is a grid layered planar graph having fixed width,
say w. Let e = (X,Y,R) and h(z)M = (X0, Y0, R0). Assume e = (X,Y,R) are
hardcoded in the circuit. We can easily check if X0 = X and Y0 = Y using an
AC0 circuit.

For checking whether R0 = R, we will create 2w instances of BGGM and
infer R0 from their output. For each X ′ ⊆ X and Y ′ ⊆ Y , we create a graph
GX′Y ′ . GX′Y ′ is the graph h(z) with some additional vertices and edges. For
each v ∈ X ′ we add a vertex lv to the left of v and the edge {v, lv}. Similarly,
For each v ∈ Y ′ we add a vertex rv to the right of v and the edge {v, rv}. Note
that (X ′, Y ′) ∈ R0 if and only if GX′Y ′ have a perfect matching. Thus, we can
compute R0. Now R0 if and only if for all X ′ ⊆ X and Y ′ ⊆ Y we have GX′Y ′

contains a perfect matching. So our output graph is essentially a union of all
such graphs GX′Y ′ . Again this can be constructed easily in AC0.
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Theorem 6. Modp reduces to BGGM in AC0.

Proof. Given z ∈ {0, 1}n we first compute h(z) using Lemma 7 and then output
the grid layered planar graph (say Gz) as obtained by the reduction of Lemma
9. By Lemma 8 and 9 it follows that z /∈ Modp if and only Gz has a perfect
matching.

Theorem 7. BGGM is not in AC0[2α] for α ∈ N.

Proof. If BGGM is in AC0[2α] then by combining this circuit with the reduction in
Theorem 6 and appending a NOT gate at the top we would get an AC0[2α] circuit
for Modp. This would contradict Razborov and Smolensky’s result (Theorem 4)
since p is an odd prime.

Finally combining Theorems 5 and 7 we get the following theorem.

Theorem 8. BGGM is not in AC0[pα] for every prime p and α ∈ N.

5 Application of our results

5.1 Circuit Lower Bounds for Series-Parallel Graphs

For series-parallel graphs, it is known that bipartite matching is in NC1 given
transitive closure of tree decomposition as input as well [5]. We show a better
lower bound for this problem using our reduction of Parity to BGGM.

In reduction from Parity to BGGM the final graph we get is also a series-
parallel graph (each connected component is a path or a single edge). Now the
challenge is to construct the transitive closure of the tree decomposition(more
precisely term representation of tree decomposition) for it using AC0 circuits.
For this, we will use the following theorem mentioned in Hansen et al. [8].

Theorem 9. [8] Given as input a linear arrangement of bounded cutwidth k for
some graph G, a tree decomposition of width k for graph G in term representation
can be constructed by an AC0 circuit.

Theorem 10. For every x ∈ {0, 1}∗, a linear arrangement of bounded cutwidth
for Gx can be created by an AC0 circuit.

Proof. We linearize G00, G01 and G10. For G00 it is shown in figure 4. Same
can be done for G01 and G10. This order can be hardcoded in AC0 circuit. We
keep edges same. Clearly to check edge between vi and vj , we will not need more
than 4 bits. It can be shown that such a linear arrangement can be computed in
AC0 using arguments similar to those given in Section 3.

Theorem 10. Parity reduces to series-parallel graph matching with given tree
decomposition in term representation.

Proof. Follows from Theorem 9 and Lemma 10.

Theorem 11. Series-parallel graph matching with given tree decomposition in
term representation is not in AC0[pα] where p is odd prime and α ∈ N.

Proof. Follows from Theorems 10 and 4.
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(a) G00

A BC DE F

(b) G′
00

Figure 4: Linearizing G00

5.2 Future Work

For m ∈ N and not a power of prime we do not know whether AC0[m] = NP. To
extend our results for all m ∈ N or to show that BGGM lies in AC0[m] for some
m ∈ N, algebraic characterization of these classes are needed. Algebraic theory
of subclasses of NC1 developed by [2] does not provide any such characterization.
This is the biggest hurdle in extending our approach to AC0[m].

Our result improves the lower bound for perfect matching in series-parallel
graphs but the bound are not tight. For example, we do not know if perfect
matching in series-parallel graphs is in AC0[2] or ACC0.
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