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Abstract

We prove that pseudorandom sets in Grassmann graph have near-perfect expansion as hypothesized
in [14]. This completes the proof of the 2-to-2 Games Conjecture (albeit with imperfect completeness)
as proposed in [34, 13, 14], along with contributions from [39, 9, 33].

The Grassmann graph Grglobal contains induced subgraphs Grlocal that are themselves isomorphic to
Grassmann graphs of lower orders. A set is called pseudorandom if its density is o(1) inside all subgraphs
Grlocal whose order is O(1) lower than that of Grglobal. We prove that pseudorandom sets have expansion
1− o(1), greatly extending the results and techniques in [14].
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1 Introduction

This paper completes the proof of the 2-to-2 Games Conjecture (albeit with imperfect completeness) pro-
posed by Dinur, Kindler, and the authors of this paper [34, 13, 14], along with contributions from Barak,
Kothari, and Steurer [9] and Moshkovitz and the authors of this paper [39, 33]. The 2-to-2 Games Conjecture
has several implications towards approximability of NP-hard problems (and more widely to computational
complexity, optimization, and combinatorics). Its proof is completed by proving a certain combinatorial
hypothesis proposed in [14] regarding the expansion properties of Grassmann graph. While the main focus
of this paper is on the combinatorial hypothesis (stated as Theorem 1.12), we present the broader context
here for reader’s benefit.

1.1 PCPs, Vertex Cover, Independent Set

An approximation algorithm for an NP-hard problem is an efficient algorithm that computes a solution
that is guaranteed to be within a certain multiplicative factor of the optimum (known as the approximation
factor). It turns out that for several NP-hard problems, even computing an approximate solution, within a
certain multiplicative factor of the optimum, remains an NP-hard problem (known as the hardness factor).
The complementary study of approximation algorithms and hardness of approximation aims at character-
izing precise approximation thresholds for NP-hard problems of interest, i.e. the threshold at which the
approximation factor and the hardness factor (essentially) match.

The hardness of approximation results build on a foundational result known as the Probabilistically
Checkable Proofs (PCP) Theorem [18, 3, 2]. The theorem can be viewed from a hardness viewpoint as well
as from a proof checking viewpoint. From the hardness viewpoint, it states that there exists an absolute
constant β < 1 such that, given a 3SAT formula φ, it is NP-hard to distinguish whether it is satisfiable or
whether it is at most β-satisfiable (i.e. no assignment satisfies more than β fraction of the clauses). From the
proof checking viewpoint, it states that every NP-statement has a polynomial size proof that can be checked
efficiently by a probabilistic verifier that reads only a constant number of bits from the proof. The verifier
is complete and sound in the sense that a correct proof of a correct statement is accepted with probability 1
and any proof of an incorrect statement is accepted with probability at most, say 1

2 .

The equivalence between the hardness and the proof checking viewpoints, though not difficult to see,
has led to many illuminating insights and strong hardness results over the last three decades. The proof
checking viewpoint (whose roots go back to the work on interactive proofs) played a decisive role in the
discovery of the PCP Theorem. However, for the sake of uniformity and ease of presentation, we adopt the
hardness viewpoint here. We refer the reader to the surveys [1, 25, 47, 30] for an overview of the extensive
and influential body work on PCPs and hardness results. While we know, by now, optimal hardness results
for a handful of problems, e.g. 3SAT, Clique, Set Cover [23, 24, 17], for a vast majority of problems there
remains a significant gap between the best known approximation factor and the best known hardness factor.

One such problem is Vertex Cover. Given a graph G = (V,E), a subset C ⊆ V is called a vertex cover
if for every edge e = (u, v) ∈ E, either u or v is in C. Finding a minimum vertex cover is a well known
NP-hard problem [27]. It admits a simple 2-approximation, namely an efficient algorithm that outputs a
cover C of size at most twice the minimum. The algorithm picks an arbitrary edge e = (u, v) ∈ E, adds
both u, v toC, removes all edges that are incident on either u or v, and repeats this step. Whether there exists
an algorithm with approximation factor strictly below 2 is among the flagship questions in approximability.
Surprisingly, there is now good reason to believe that no such algorithm exists, i.e. it is conceivable that
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approximating Vertex Cover within factor 2− ε is NP-hard!1

An independent set in a graph is complement of a vertex cover, i.e. a subset of vertices that contains
no edge inside. Towards proving hardness results for Vertex Cover, it is more convenient to prove hardness
results for the Independent Set problem (in the special case where the concern is independent sets of linear
size). Let 0 < s < c 6 1

2 be constants and let GapIS(c, s) be a “promise gap problem” where an n-
vertex graph is given with the promise that either it contains an independent set of size cn or contains no
independent set of size sn and the algorithmic task is to distinguish between the two cases. It is easy to
see that if GapIS(c, s) is NP-hard, then approximating Vertex Cover within factor 1−s

1−c is NP-hard. Thus, to
prove 2− ε hardness result for Vertex Cover, it is sufficient (and turns out necessary)2 to prove hardness of
GapIS(c, s) where s→ 0 and c→ 1

2 .

There is a simple but nice connection between hardness of the Independent Set problem and PCPs that
is worth pointing out. As noted in [11], the hardness of GapIS(c, s) is equivalent to a PCP with “zero free
bits”, namely a PCP where the verifier has completeness c, soundness s, and has exactly one accepting
answer to her queries (and thus “knows” the answer before reading the queries!). This seems contradictory:
if the verifier knows the answer(s) beforehand, why wouldn’t she be able to construct the correct proof by
herself? The subtle point is that the PCP has imperfect completeness (i.e. c < 1), so even for a correct proof
of a correct statement, only a fraction c of the answers that the verifier “knows” are actually correct and the
verifier cannot tell which c fraction of the answers (among polynomially many) are correct. Indeed, the task
of determining which of the answers are correct amounts to finding an independent set in a related graph
(hence the connection).

Håstad, building on the works of Bellare, Goldreich, and Sudan [11] and Raz [45], proved that GapIS(1
4−

ε, 1
8 +ε) is NP-hard, implying a hardness factor 7

6−ε ≈ 1.16 for Vertex Cover. Dinur and Safra [16] proved

that GapIS(p−ε, 4p3−3p4 +ε) is NP-hard for p 6 3−
√

5
2 , implying a hardness factor 10

√
5−21−ε ≈ 1.36

for Vertex Cover. Their paper introduced several techniques, e.g. the Biased Long Code, application of
Fourier analytic theorems on Boolean hypercube, and implicitly, the notion of 2-to-2 Games. Fourier analy-
sis has since become ubiquitous in analysis of PCP constructions. The hardness result of [16] remained the
best hardness result for Vertex Cover (until the present work).

As noted, the quest towards proving optimal hardness results was stalled after the remarkable but rel-
atively few successes. In [29], the author introduced the Unique Games Conjecture as a plausible avenue
to make further progress and presented a hardness result for the Min-2SAT-Deletion problem as a demon-
stration. In addition, motivated by the Dinur-Safra paper (where the 2-to-2 Games appeared implicitly), the
author also introduced the d-to-dConjecture for d > 2 and showed that it implies that GapIS(1−2−1/d−ε, ε)
is NP-hard. For d = 2, this would give a hardness factor of

√
2−ε ≈ 1.42 for Vertex Cover, an improvement

over Dinur-Safra result.3 Subsequently, in [38], it was shown that the Unique Games Conjecture implies
NP-hardness of GapIS(1

2 − ε, ε) and hence hardness of approximating Vertex Cover within 2− ε.
1Unless stated otherwise, ε > 0 will denote an arbitrarily small constant and the statements are meant to hold for every such ε.
2One notes that if a graph contains an independent set of fractional size c > 1

2
+ ε, then by obtaining a 2-approximation for

Vertex Cover and taking the complement, one finds an independent set of fractional size > 2ε. Therefore, the best (c, s) hardness
gap one can hope for Independent Set is c = 1

2
− ε, s = ε.

3For d > 3, while one does not get improvement for Vertex Cover, one does get NP-hardness for GapIS(c, s) for a fixed c and
s→ 0, which in authors’ opinion is a more fundamental issue.
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1.2 The Unique Games Conjecture

For the purposes of this paper, it suffices to define the Unique Game as the following computational problem.
Let F`2 denote the `-dimensional vector space over the binary field F2, considered as an additive group with
the ⊕ operation.

Definition 1.1. An instance U of the UniqueGame[F`2] problem consists of n variables x1, . . . , xn taking
values over (the alphabet) F`2 and m constraints C1, . . . , Cm where each constraint Ci is a linear equation
of form xi1 ⊕ xi2 = bi and bi ∈ F`2. Let OPT(U) denote the maximum fraction of the constraints that can
be satisfied by any assignment to the instance.

The term “unique” refers to the specific nature of the constraints: for every assignment to the variable
xi1 , there is a unique assignment to the variable xi2 that satisfies the constraint and vice versa (the Unique
Game problem was studied earlier by Feige and Lovász in the context of parallel repetition [19]). For con-
stants 0 < s < c < 1, let GapUG[F`2](c, s) be the gap-version where the instance U of the UniqueGame[F`2]
problem is promised to have either OPT(U) > c or OPT(U) 6 s. The Unique Games Conjecture states
that4.

Conjecture 1.2. For every constant ε > 0, there exists a sufficiently large integer ` = `(ε) such that
GapUG[F`2](1− ε, ε) is NP-hard.

The Unique Games Conjecture has since been established as a prominent open question in theoretical
computer science (please see the surveys [48, 30, 28, 31]). The conjecture has facilitated numerous connec-
tions among algorithm design, computational complexity, geometry, and analysis. In particular, assuming
the conjecture, optimal hardness results are known for Vertex Cover, Max Cut, Max Acyclic Subgraph
[38, 32, 21], super-constant hardness results for Sparsest Cut [12, 40], and one can even deduce optimality
of generic approximation algorithms for the entire class of Constraint Satisfaction Problems [43]. In spite
of this rather large body of work, the correctness of the conjecture itself remains open.

Over the last decade, several arguments were put forward against the Unique Games Conjecture. We
sketch these arguments here to the best of our knowledge.5

• There is no known distribution over instances of the Unique Game problem that is plausibly hard
(more on this below). In fact, results in [5, 41] showed that the problem is easy on “semi-random”
instances (for a rather generous interpretation of the term semi-random), thus indicating otherwise.

• No integrality gap instances are known for the Unique Game problem for a constant number, say 10,
of rounds of the Sum-of-Squares (a.k.a. Lasserre, Parrilo) hierarchy of semi-definite programming
relaxation. Stated differently: arguably, a constant number of rounds of the Sum-of-Squares hierar-
chy might already qualify as an efficient algorithm for the problem, disproving the Unique Games
Conjecture.

• Results in [7] showed that the known integrality gap instances of the problem (that hold for a very
basic SDP relaxation) 6 do not survive a few additional rounds of the Sum-of-Squares hierarchy. The

4The original statement in [29] refers to more general constraints. However it follows from [32] that the original conjecture is
equivalent to the statement here, i.e. when the constraints are linear equations over the group F`2.

5Since these arguments were not made by us, we are not taking responsibility as to whether these arguments were indeed made
or whether these are/were considered pressing arguments. We present these only for reader’s benefit.

6Qualitatively speaking, there is just one example, from [40]. Lack of qualitatively different examples might itself have been an
argument against the Unique Games Conjecture.
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authors argued that there is a barrier for the “common” techniques used to construct SDP integrality
gaps (in the spirit of the natural proofs barrier for circuit lower bounds).

• Arora-Barak-Steurer [4] presented an algorithm that solves (1− ε)-satisfiable instances of the Unique
Game problem (i.e. finds say 1

10 -satisfying assignment) in time 2n
ε′

where ε′ depends on ε. The
algorithm was later incorporated into the Sum-of-Squares framework as well [10]. If the running
time of the algorithm is improved so that ε′ → 0 independently of ε, then the Unique Game problem
would not be NP-hard.7 The improvement could arguably come from a quantitative improvement in
the connection between the number of large eigenvalues and expansion of small sets in graphs.

• The Arora-Barak-Steuter algorithm and the Unique Games Conjecture together imply that the Unique
Game problem has “intermediate complexity” (see Section 1.3), a behavior one might not expect for
a constraint satisfaction problem.

Given these arguments, the situation was remedied somewhat (from the viewpoint of a believer in the
Unique Games Conjecture) in the recent works on “PCPs over reals” [36, 35]. The authors therein construct
a candidate explicit family of mildly hard Unique Game instances (the qualifier “candidate” acknowledges
that the authors are unable to provide a soundness analysis for the construction). The construction is best
viewed as a candidate integrality gap for the problem GapUG[F2](1− ε, 1−K(ε) · ε)) for K(ε) rounds of
the Sum-of-Squares relaxation. Here the Unique Game problem is over the binary alphabet and K(ε)→∞
as ε → 0, i.e. the gap is (hypothesized to be) super-constant in terms of the fraction of the unsatisfied
constraints and for a super-constant number of Sum-of-Squares rounds. One notes that even though the
(hypothesized) gap would be mild, it nevertheless would be a big progress. It is known for instance that if
the Unique Game problem were shown NP-hard with a mild gap (1− ε, 1−K(ε) ·

√
ε), the gap could then

be boosted by parallel repetition [45, 26, 44] to the gap (1− ε′, ε′), proving the Unique Games Conjecture
in its fullness.

The context hitherto leads finally to the present line of work: a sequence of papers [34, 13, 14] presented
an approach towards proving the related 2-to-2 Games Conjecture8 (or alternately the Unique Games Con-
jecture with completeness 1

2 , if reader finds it more convenient to think about). In conjunction with a missing
link provided in [9], the approach finally reduced the 2-to-2 Games Conjecture to a concrete combinatorial
hypothesis regarding the expansion properties of the Grassmann graph (stated as Theorem 1.12). In the
present paper, we prove this combinatorial hypothesis, thus completing the proof of the 2-to-2 Games Con-
jecture (now a theorem).9 The 2-to-2 Games Theorem gives, among other things, a strong evidence towards
the Unique Games Conjecture (in our opinion). All the arguments against the Unique Games Conjecture
that we described apply equally well to the 2-to-2 Games Conjecture and in spite of it, the 2-to-2 Games
Conjecture, at the end of the day, does happen to be correct!

1.3 The 2-to-2 Games Theorem and its Significance

We now state the 2-to-2 Games Theorem formally, describe its significance, and sketch the developments
that led to it. This is followed by the description of the Grassmann graph and its role in these developments.

7Under the rather standard hypothesis NP 6⊆ ∩γ>0 DTIME (2n
γ

).
8Albeit with imperfect completeness; we will ignore this issue henceforth.
9As for proving the Unique Games Conjecture itself, in the opinion of the first-named author, the approach in [36, 35] is a more

viable approach.
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Definition 1.3. An instance U2↔2 of the 2-to-2 Game[F`2] problem consists of n variables x1, . . . , xn
taking values over (the alphabet) F`2 and m constraints C1, . . . , Cm where each constraint is of the form
Tijxi ⊕ T ′ijxj ∈ {bij , b′ij}, Tij , T ′ij are `× ` invertible matrices, and bij , b′ij ∈ F`2. Let OPT(U2↔2) denote
the maximum fraction of the constraints that can be satisfied by any assignment to the instance.

The term “2-to-2” refers to the specific nature of the constraints: for every assignment to the variable
xi, there are exactly two assignments to the variable xj that satisfy the constraint and vice versa. For
constants 0 < s < c 6 1, let Gap 2-to-2[F`2](c, s) be the gap-version where the instance U2↔2 of the
2-to-2 Game[F`2] problem is promised to have either OPT(U2↔2) > c or OPT(U2↔2) 6 s. 10 The 2-to-2
Games Theorem is stated below along with an immediate corollary for the hardness of the Unique Game
problem with completeness 1

2 . The latter is obtained by writing each 2-to-2 Game constraint as a pair of
Unique Game constraints so that in the completeness case, there is a 1

2(1 − ε)-satisfying assignment. The
completeness can be increased artificially to precisely 1

2 by adding a small fraction of constraints that are
always satisfied.

Theorem 1.4. For every constant ε > 0, there exists a sufficiently large integer ` = `(ε) such that Gap
2-to-2[F`2](1− ε, ε) is NP-hard.

Theorem 1.5. For every constant ε > 0, there exists a sufficiently large integer ` = `(ε) such that Gap
UG[F`2](1

2 , ε) is NP-hard.

1.3.1 Implications of the 2-to-2 Games Theorem

We now summarize the main implications of the 2-to-2 Games Theorem (with imperfect completeness;
some of these implications depend on its specific proof obtained in the present and previous works). As
before, ε > 0 denotes constant that can be taken as arbitrarily small.

• Hardness Results

The following results were already known based on the 2-to-2 Games Conjecture (as indicated in the
references; perfect completeness in the last two results if 2-to-2 Games Conjecture holds with perfect
completeness). These represent a big progress, in our opinion, on flagship problems in approximabil-
ity.

– [37]: Gap Max Cut
(

1
2 + Ω(ε), 1

2 + ε
log(1/ε)

)
is NP-hard. This is optimal up to the constant in

the Ω-notation.

– [29]: Gap Independent Set
(

1− 1√
2
− ε, ε

)
is NP-hard and as a corollary, Vertex Cover is

NP-hard to approximate within a factor strictly less than
√

2. Between these two implications,
the “correct gap-location” (arbitrarily low soundness) for the Independent Set problem is more
fundamental.

10Comments regarding the original formulation of this conjecture in [29]: (1) It was proposed with perfect completeness, i.e.
stating that Gap 2-to-2[F`2](1, ε) is NP-hard. However, as far as this paper is considered, we view the issue of perfect versus
imperfect completeness as being relatively minor. (2) It was proposed with more general constraints (rather than the special
case with linear structure described herein) and with “2-to-1” constraints (rather than with “2-to-2” constraints described herein;
the conjecture was referred to as the 2-to-1 Conjecture). Both these are non-issues however: the current and preceding works
[34, 13, 14] now prove the conjecture with linear structure and the constraints are easily reinterpreted as being 2-to-1 constraints
(hence proving the 2-to-1 Conjecture as well, which in any case is morally equivalent to the 2-to-2 Conjecture).
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– [15]: It is NP-hard to distinguish whether a graph has four disjoint independent sets of (relative)
size 1

4 − ε each (and hence is almost 4-colorable) or whether there is no independent set of
(relative) size ε (and hence is not almost

(
1
ε

)
-colorable).

– [22]: It is NP-hard to properly color (using k colors) more than a fraction 1− 1
k +O( log k

k2 ) edges
of an almost k–colorable graph. This is optimal up to the constant in the O-notation.

• Integrality Gaps, Plausibly Hard Distributions, Cart before the Horse

The present line of work gives a reduction from the 3Lin problem to the 2-to-2 Game problem and
subsequently to the Unique Game problem with completeness 1

2 and to the graph theoretic problems
mentioned above. Denoting any of these problems by P , the reduction can be used

– To “translate” an integrality gap instance of the 3Lin problem (see below) to an integrality gap
instance of the problem P (the idea to use a reduction to construct integrality gap was used
earlier in [40]).

– To “translate” a distribution over 3Lin instances that is plausibly hard (e.g. random instances
with appropriate parameters) to a distribution over P instances that is plausibly hard.

In both cases, we do not know an alternate construction, i.e. without having to go through a NP-
hardness reduction (and lack of any construction so far was an argument against the Unique Games
Conjecture as discussed before). On the other hand, “logically”, integrality gap construction (and
maybe construction of a plausibly hard distribution as well) ought to precede an NP-hardness reduc-
tion. We find this “cart before the horse” phenomenon quite interesting.

• Sum-of-Squares Integrality Gaps with Perfect Completeness

– If one concerns integrality gap (say up to a polynomial number of rounds of the Sum-of-Squares
relaxation), the previous result for graph coloring holds with perfect completeness. I.e. there is
a graph along with an SDP solution such that (a) the SDP solution pretends as if the graph is
4-colorable whereas (b) in actuality, the graph has no independent set of size ε.

– Integrality gap (say up to a polynomial number of rounds of the Sum-of-Squares relaxation) for
the 2-to-2 Games problem holds with perfect completeness and soundness ε.

These results are a consequence of the integrality gap known for the 3Lin problem with perfect com-
pleteness [20, 46]. The integrality gap instance for 3Lin can be translated via the reduction as re-
marked above.

• Intermediate Complexity Theorem

Barak [6] pointed out that Theorem 1.5, along with the Arora-Barak-Steurer algorithm and the (rather
standard) hypothesis NP 6⊆

⋂
γ>0 DTIME(2n

γ
), implies the Intermediate Complexity Theorem:

For every ε > 0, there exist ε′ > ε′′ > 0 and integer ` such that ε′ → 0 as ε → 0 and the promise
constraint satisfaction problem GapUG[F`2](1

2 , ε) on n variables can be solved in time 2n
ε′

but not in

time 2n
ε′′

.

This is perhaps surprising (and was perhaps cited as an argument against the Unique Games Con-
jecture). The past experience (e.g. the Dichotomy Conjecture/Theorem, the Exponential Time Hy-
pothesis, near-linear sized PCPs etc) perhaps suggested (and if so, incorrectly as it turns out) that
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time complexity of n-variable CSPs ought to be either polynomial or truly exponential, i.e. 2Ω(n)

amounting to a brute-force search over all assignments.

• Evidence towards the Unique Games Conjecture

GapUG(1
2 , ε) is NP-hard, i.e. a weaker form of the Unique Games Conjecture holds with com-

pleteness 1
2 . As far as the authors know (and we have consulted the algorithmic experts), the known

algorithmic attacks on the Unique Game problem work equally well whether the completeness is ≈ 1
or whether it is 1

2 . Thus, the implication that GapUG(1
2 , ε) is NP-hard is a compelling evidence,

in our opinion, that the known algorithmic attacks are (far) short of disproving the Unique Games
Conjecture.

Moreover, as remarked before, all the arguments against the Unique Games Conjecture, sketched in
Section 1.2, apply equally well to its weaker form with completeness 1

2 . In spite of all these arguments,
the GapUG(1

2 , ε) problem, at the end of the day, does happen to be NP-hard, circumventing all the
arguments mentioned!

• Unique Games Conjecture versus the Small Set Expansion Conjecture

Raghavendra and Steurer [42] proposed the Small Set Expansion Conjecture and showed that it im-
plies the Unique Games Conjecture. Roughly speaking, it states that GapSSE(ε, 1− ε), the problem
of distinguishing whether a graph has a small set of expansion at most ε or whether every small set
has expansion at least 1− ε, is NP-hard.

The 2-to-2 Games Theorem arguably supports the authors’ suspicion that the Unique Games Con-
jecture may be correct while the Small Set Expansion Conjecture may be incorrect. An informal
reasoning is as follows.

Raghavendra and Steurer give a reduction from GapSSE[ε, 1 − ε] to GapUG[1 − ε′, ε′]. The same
reduction also shows that GapSSE[β, 1 − ε] reduces to GapUG[1

2 , ε
′] for some absolute constant β

(say β = 3
4 ). If one were to show that the latter problem is NP-hard without concluding anything

about the former, that may support the authors’ suspicion. Indeed, this is precisely what happens
in the proof of the 2-to-2 Games Theorem. One gets a reduction to GapUG[1

2 , ε
′] without getting a

reduction to Gap SSE; the graphs in the reduction always have small non-expanding sets.

1.3.2 Works Leading to the 2-to-2 Games Theorem

As noted, the 2-to-2 Games Theorem is proven in a sequence of works [34, 13, 14] and completed in
the present work. In addition, contributions from [39, 9, 33] have been crucial in the overall proof. We
summarize these developments below. At a high level, the proof involves the chain of implications (all these
are now theorems):

[14] [9] [34, 13]
Grassmann Expansion Hypothesis =⇒ Linearity Testing Hypothesis =⇒ 2 to 2 Games Conjecture.

• The Grassmann graphs and their potential application to the 2-to-2 Game problem were proposed in
[34]. The contributions therein were: (1) introducing a certain linearity testing primitive based on the
Grassmann graph/code (2) using a certain “sub-code covering” property of this code analogous to a
similar property of the Hadamard code, previously introduced in [39] (3) proposing a reduction to the
2-to-2 Game problem (4) proposing a Weak Linearity Testing Hypothesis and showing that it implies,
via the reduction, a Weak 2-to-2 Games Conjecture. We do not elaborate on the qualifier “weak” here.
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It refers to a rather awkward variant that is nevertheless quite natural and useful as far as application
to Independent Set and Vertex Cover is concerned, which was the main motivation in [34].

• In [13], the authors formulated a Linearity Testing Hypothesis (the “right” and clean formulation in
hindsight) and showed that it implied, via a reduction that is very similar to that in [34], the 2-to-2
Games Conjecture (with imperfect completeness).

• In [34, 13], it was already clear that the connectivity and expansion properties of the Grassmann
graph would be crucial towards proving the Linearity Testing Hypotheses therein. In [14], the authors
proposed (let’s call it) Grassmann Expansion Hypothesis (stated as Theorem 1.12 in the present pa-
per), and argued that it would at least be necessary towards proving the Linearity Testing Hypothesis.
The authors presented a Fourier analytic framework and a preliminary set of results (for the first and
second Fourier levels) towards proving the Grassmann Expansion Hypothesis.

• Barak, Kothari, and Steurer [9] proved that the Grassmann Expansion Hypothesis (almost immedi-
ately) implies the Linearity Testing hypothesis. While simple, this link is nevertheless important and
was missed by the authors of [14].

• Finally, the Grassmann Expansion Hypothesis is proved in the present paper, stated as Theorem 1.12.
A similar Johnson Expansion Hypothesis is proved in [33] and the technical insight therein has been
useful in the present paper.

We now discuss the Grassmann Linearity Testing Hypothesis, the Grassmann Expansion Hypothesis,
and indicate how the latter implies the former. We do not attempt here an overview of how the Linearity
Testing Hypothesis is used to analyze a PCP/reduction and prove the 2-to-2 Games Conjecture. The reader
is instead referred to the introductory section of the paper [13].

1.4 The Grassmann Graph/Code/Test and Linearity Testing Hypothesis

In the following, one thinks of the parameter ` as a sufficiently large integer and (after fixing it) the parameter
k as a sufficiently large integer.

Definition 1.6. The Grassmann graph Grk,` is defined as follows. Its vertex set consists of all `-dimensional
subspaces L of Fk2 and (L,L′) is an edge if and only if dim(L ∩ L′) = `− 1.

Associated with the Grassmann graph is the Grassmann code that encodes linear functions f : Fk2 → F2.
The encoding of a linear function f is given by a word/table F [·] that assigns to each vertex L of the graph,
the restriction of f to L, i.e. F [L] = f |L. Since there are 2` linear functions on an `-dimensional space,
the alphabet for the encoding has size 2`. The Grassmann code is equipped with a natural testing primitive
that we call the Grassmann Linearity Test: given a word F [·] (not necessarily a codeword), the test picks
an edge (L,L′) uniformly at random from the graph and checks that F [L]|L∩L′ = F [L′]L∩L′ , i.e. that the
linear functions F [L] and F [L′] are consistent on the common intersection of L,L′.

It is observed immediately that the test is a “2-to-2 test” in the sense that for every assignment/answer
F [L] there are exactly two answers to F [L′] so that the test accepts (and vice versa). This is because a linear
function on L ∩ L′ can be extended to L (and similarly to L′) in exactly two ways (and this is how the test
eventually leads to hardness of 2-to-2 Games). By design, the test has perfect completeness: if F [·] is a
codeword, then the test passes with probability 1 since F [L], F [L′] are then restrictions of the same global
linear function. The question of interest is what about the soundness of the test? I.e. if a given word F [·]
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passes the test with (small) probability > δ, what “decoding” could we infer? Could we infer that the given
word F [·] necessarily has good consistency with some codeword (and if so, list-decode)? Based on the past
experience (e.g. the Low Degree Test and the Blum-Luby-Rubinfeld Test that are well-understood and are
crucial building blocks of PCPs), one is tempted to speculate that the answer is positive, formally stated
below. 11 Here δ, ε are thought of as constants independent of the parameters k, `.

Speculation 1.7. For every δ > 0, there exists ε > 0 such that if a table F [·] passes the Grassmann Linearity
Test with probability δ, then there exists a global linear function f : Fk2 → F2 such that

Pr
L

[F [L] = f |L] > ε.

It turns out however that the speculation is false, the key reason being that the Grassmann graph has
small sets whose (edge-)expansion is strictly bounded away from 1.

Definition 1.8. Let G = (V,E) be an n-vertex, d-regular graph. For a non-empty set of vertices S ⊆ V
with |S| 6 n

2 , its (edge-)expansion is defined as

Φ(S) =

∣∣E(S, S)
∣∣

d · |S|
,

where E(S, S) denotes the set of edges with one endpoint in S and the other in S = V \ S.

Alternately, Φ(S) is the probability that selecting a uniformly random vertex in S and moving along a
uniformly random edge incident on that vertex, one lands outside S. We will be interested in whether a set
S has expansion very close to 1 (near-perfect expansion) or has expansion strictly bounded away from 1.

Counter-example to Speculation 1.7

Consider the following construction (it will be clear soon what the sets Si would be):

1. Let S1, . . . , Sm be disjoint subsets of vertices of the Grassmann graph Grk,`, all of equal size, such
that their union constitutes a constant α fraction of vertices of the graph.

2. The sets Si are very small. Specifically, m = m(k, `)→∞ as k, `→∞.

3. Suppose that Φ(Si) 6 1− β for every 1 6 i 6 m for a constant β.

4. For each 1 6 i 6 m, select a global linear function fi : Fk2 → F2 at random.

5. Define F [L] = fi|L for every L ∈ Si. For L 6∈ ∪mi=1Si, F [L] is defined at random.

We show that the word/table F [·] passes the Grassmann test with probability αβ, but has negligible consis-
tency with any global linear function. Firstly, since Si cover α fraction of vertices and each Si has expansion
at most 1 − β, the fraction of edges of the Grassmann graph that are inside some Si is at least αβ. Since
on each Si, the table F [·] is consistent with the global function fi, the table passes the test for all edges
(L,L′) that are inside some Si. Secondly, since the functions fi on different pieces Si are random and
unrelated to each other, no single global function has non-negligible consistency with F [·]. This completes
the description of the counter-example.

11Moreover, a positive answer would lead to a very straightforward analysis of the PCP/reduction to 2-to-2 Games, avoiding
most of the complications in [34, 13].
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How does one get around this counter-example, i.e. reformulate Speculation 1.7 so that it is correct
as well as sufficient towards analysis of the PCP/reduction to 2-to-2 Games? With regards to the specific
counter-example above, here is a vacuous statement: if we restrict our attention to only the subset of vertices
in say S1, then F [·] indeed has full consistency with a global linear function, namely the function f1.
Moreover, as we will see, a canonical example of a small set with expansion strictly bounded away from 1
is S = Grk,`[A,B] where A ⊆ B ⊆ Fk2 are subspaces with dim(A) + codim(B) 6 r and

S = Grk,`[A,B] = {L | A ⊆ L ⊆ B}.

In this case, φ(S) = 1− 2−r which is strictly bounded away from 1 for small integer r (say r = 4). These
observations motivated the following Linearity Testing Hypothesis in [13].

Hypothesis 1.9. For every constant δ > 0, there exists a constant ε > 0 and an integer r such that for all
sufficiently large integers ` and (after fixing it) for all sufficiently large integer k, the following holds. If a
table F [·] passes the Grassmann Linearity Test with probability δ, then there exist subspaces A ⊆ B ⊆ Fk2
with dim(A) + codim(B) 6 r and a linear function f : B → F2, such that

Pr
A⊆L⊆B

[F [L] = f |L] > ε.

In words, while F [·] need not have good consistency with a global linear function on the entire graph
Grk,`, there must be a structured subgraph Grk,`[A,B] on which it does have good consistency with a global
linear function and moreover this subgraph is of constant “co-order”, defined as dim(A) + codim(B). The
Linearity Testing Hypothesis above was shown to be sufficient towards analysis of the PCP/reduction to
2-to-2 Games in [13]. Towards proving the hypothesis itself, the authors (naturally) proposed to study struc-
ture of sets with expansion strictly bounded away from 1, formulated the Grassmann Expansion Hypothesis
(essentially) characterizing such sets, and then made partial progress towards proving the Expansion Hy-
pothesis [14]. The authors also argued that proving the Expansion Hypothesis is at least necessary towards
proving the Linearity Testing Hypothesis. The missing link, namely that it is also sufficient, was provided
in [9].

1.5 Grassmann Expansion Hypothesis

Definition 1.10. Suppose A ⊆ B ⊆ Fk2 are subspaces. Let dim(A) = a, codim(B) = b and think of a, b
as small constants (say a = b = 2). Then (as introduced before) the subgraph Grk,`[A,B] is an induced
subgraph of Grk,` induced on precisely the set of vertices L such that A ⊆ L ⊆ B. It is easily seen that
Grk,`[A,B] is an isomorphic copy of a lower order Grassmann graph Grk−a−b,`−a. We call a + b as the
co-order of Grk,`[A,B] with respect to Grk,`.

The sets Grk,`[A,B] are natural examples of sets in Grk,` that have expansion strictly bounded away
from 1 (when a, b are small constants). Indeed, the expansion of Grk,`[A,B], when seen as a subset of Grk,`,
has expansion precisely 1 − 2−(a+b) (up to an error O(2−`) which is thought of as negligible and ignored
for the ease of presentation). The reasoning is as follows. For a vertex L ∈ Grk,`[A,B], its random neighbor
L′ is obtained by picking a random subspace T ⊆ L, dim(T ) = ` − 1 and a random point x ∈ Fk2 \ L
and letting L′ = T ⊕ Span(x). Now L′ ∈ Grk,`[A,B] if and only if A ⊆ T and x ∈ B and these events
happen independently with probabilities 2−a and 2−b respectively (up to an error O(2−`)). Thus a random
neighbor of a random vertex in Grk,`[A,B] is also inside it with probability 2−(a+b) and hence its expansion
is 1− 2−(a+b). Furthermore, we observe that if S ⊆ Grk,`[A,B] ⊆ Grk,` is such that

|S|
|Grk,`[A,B]|

= ε,
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then Φ(S) 6 1−ε·2−(a+b). This is because (we skip the easy proof) any set of density ε inside a Grassmann
graph has at least ε2 fraction of the edges inside it (and hence has expansion at most 1 − ε). Therefore, a
random neighbor of a random vertex in S ⊆ Grk,`[A,B] lies inside Grk,`[A,B] with probability 2−(a+b)

as seen above and then inside S with probability at least ε, justifying the observation. We summarize the
overall observation as:

Fact 1.11. (Informal): A subset of constant density inside a constant co-order copy of Grassmann graph
inside a Grassmann graph has expansion strictly bounded away from 1.

(Formal): Let S ⊆ Grk,`[A,B] ⊆ Grk,` be such that dim(A) = a, codim(B) = b and the density of S inside
Grk,`[A,B] is ε. Then Φ(S) 6 1− ε · 2−(a+b).

The authors of [14] hypothesize, essentially, that the converse of the above fact is true. Informally, their
hypothesis is that any set S in the Grassmann graph Grk,` whose expansion is strictly bounded away from 1
has constant density inside some copy of Grassmann graph of constant co-order. A precise statement appears
below (now as a theorem and the main result in this paper):

Theorem 1.12. For every constant 0 < α < 1, there exists a constant ε > 0 and an integer r > 0
such that for all sufficiently large integers ` and (after fixing it) for all sufficiently large integers k, the
following holds. let S ⊆ Grk,` be such that Φ(S) 6 α. Then there exist subspaces A ⊆ B ⊆ Fk2 such that
dim(A) = a, codim(B) = b, a+ b 6 r and

|S ∩ Grk,`[A,B]|
|Grk,`[A,B]|

> ε.

Following [14], Barak-Kothari-Steurer [9] showed that Theorem 1.12 (a hypothesis at the time) implies
Hypothesis 1.9, and by the work of [34, 13] the 2-to-2 Games Conjecture. It remained therefore to prove
Theorem 1.12. Partial progress towards its proof was already made in [14] where the authors prove the
theorem when α < 7

8 , via spectral analysis of the Grassmann graph, introduced therein (the eigenvalues and
eigenspaces of the Grassmann graph were known before). Roughly speaking, given a set S with expansion
at most α < 1− 2−(s+1), it is easily observed that the indicator vector of the set 1S must have a significant
projection onto the eigenspace at “level” at most s (s is a constant when α is strictly bounded away from 1).
The spectral analysis then attempts to use this projection to deduce the desired structure of S. The approach
is worked out in [14] when s = 2, corresponding to α < 7

8 . It already requires rather difficult and lengthy
case analysis. In principle, the same approach could be extended to higher levels s > 3, but the number of
cases to handle seems to explode beyond control. Instead, we are able to argue in a more systematic fashion
and avoid the explosion in potential case analysis (easier said than done of course).

We end this section with some remarks on Theorem 1.12. Firstly, the subspaces A and B therein are
referred to as “zoom-in” and “zoom-out” spaces respectively [34, 13, 14]. This makes sense if one imagines
searching for the appropriate subgraph Grk,`[A,B] where the set S happens to have significant density.
Secondly, we note that if S has density > ε, then the conclusion of the theorem is vacuously true without
any need for a zoom-in or a zoom-out (i.e. a = b = 0, A = {0}, B = Fk2), so the theorem is really about
“small” sets. Thirdly, our proof gives correct dependence of the required zoom-in-out dimension r on the
upper bound on expansion α. For α < 1 − 2−(s+1), one gets a significant projection onto the eigenspace
at level at most s and then in our proof, a combined zooim-in-out dimension of at most r = s is needed.
This is tight (i.e. a lesser zoom-in-out dimension is not sufficient) since we know that subgraphs Grk,`[A,B]
have expansion 1 − 2−(a+b) and the combined zoom-in-out dimension (obviously) a + b. Finally, we note
that towards proving the theorem, it will be easier to work with the contra-positive: a set S that has very
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small density inside every copy of the Grassmann graph with constant co-order (such a set will be called
pseudorandom) has near-perfect expansion (i.e. very near 1).

The phenomena as in Theorem 1.12 occurs also in the Johnson graph and has been analyzed in [33].
In a Johnson graph, the vertices are `-subsets of a k-set and the edges are t-wise intersecting pairs (we are
concerned with the case when t = b `2c). Therein the notion of zoom-out and Fourier analysis are not needed.
The Johnson case can informally be seen as a special case of the Grassmann case and the analysis of the
former in [33] has been insightful in the analysis of the later in the current paper.

2 Preliminaries

In this section, we recall and summarize the high-level plan towards proving Theorem 1.12 (or rather the
contra-positive), developed already in [14]. The task boils down to upper-bounding the fourth moment of
the “projection of the indicator function 1S onto the Fourier level-r”. While this was accomplished in [14]
for r 6 2, the authors therein were unable to extend it further for two reasons:

• It relied on rather ad hoc case analysis.

• The Fourier analysis on Grk,` is unfriendly. It is futile to write down the eigenvectors explicitly
and one instead works with the (eigen)space spanned by all eigenvectors with a specific eigenvalue,
referred to as the “Fourier level”.

– The rth level has eigenvalue very close to 2−r, but there is a error term.

– The “union” of the eigenspaces at levels 0, 1, . . . , r, has a clean description: it is spanned by the
indictor functions of the subgraphs Grk,`[A,B] of co-order at most r. However to get the hands
on precisely the rth eigenspace requires “subtracting” the contribution of the previous levels.
This leads to rather unfriendly inclusion-exclusion type recursive formulas even for r = 2 and it
is not clear how to extend these to higher levels.

For these and additional reasons, authors of [14] worked with approximations to all the quantities and
formulas of interest. Extending these approximate formulas to higher Fourier levels seems to incur
error terms that are unaffordable.

We are able to circumvent both these obstacles (which to some extent go hand in hand). Firstly, while we still
have to consider a large number of elaborate cases, the proof is systematic and works simultaneously for all
Fourier levels r (i.e. without the number of cases exploding with r). Secondly, instead of working with the
Grassmann graph Grk,`, we instead work with a related graph Hk,` (see the definition below). Surprisingly
(or perhaps not so surprisingly in hindsight) we are able to write down exact recursive formulas relating
quantities at successive Fourier levels. The eigenvalues are exactly 2−i providing a hint that things would
fall in place, but it still takes significant effort to develop the full Fourier analytic machinery, described
in Section 3. The recursive formulas therein are systematic extensions, to higher Fourier levels, of the
approximate and ad hoc formulas for the second level in [14].

We now define the new graph Hk,` and show that the task of proving Theorem 1.12 reduces to the task
of proving an analogous theorem for Hk,` (i.e. Theorem 2.6). Then we describe the very basics of Fourier
analysis, just enough to recall the high-level plan (from [14]) that reduces the task further to showing that
the indictor function 1S of a pseudorandom set S ⊆ Hk,` has low Fourier weight on low Fourier levels (see
Section 2.4 and Theorem 2.13). This task is in turn reduced to that of upper-bounding the fourth moment of
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the Fourier level-r component of the indictor function 1S (see Sections 2.5, 2.6), which finally is reduced to
our main technical result, Theorem 2.15, about upper-bounding closely related “4-wise correlations”.

The main contribution of the paper is Section 3 onwards: the full Fourier analytic machinery is developed
in Section 3, upper-bounds on pairwise and 3-wise correlations are presented in Section 4 as a warm-up, and
the heart of the paper, the desired upper-bound on the 4-wise correlations, is presented in Sections 5, 6, 7.

2.1 Switching to the Graph Hk,`

Definition 2.1. Let 2 6 ` 6 k be integers. The vertices of the graph Hk,` are given by ({0, 1}k)`. The
edges of the graph are best described by describing how to sample a uniformly random neighbor z of an
arbitrary vertex x. Fix a vertex x ∈ ({0, 1}k)` and write x = (x1, ..., x`) where x1, ..., x` ∈ {0, 1}k.
Sample y ← {0, 1}k, b1, . . . b` ← {0, 1} independently and uniformly at random. Let the neighbor of x be
z = (x1 + b1 · y, x2 + b2 · y, . . . , x` + b` · y).

The two graphs Hk,` and Grk,` are closely related as follows:

• The vertices of Hk,` are `-tuples of vectors in Fk2 . The vertices of Grk,` are `-dimensional subspaces
of Fk2 , or equivalently, `-tuples of vectors in Fk2 that are linearly independent and two tuples are
considered the same if their vectors have the same linear span.

• When a random vertex x = (x1, . . . , x`) in Hk,` is sampled and then a random edge incident on it
is sampled by sampling y ← {0, 1}k and b1, . . . , b` ∈ {0, 1}, with probability ≈ 2−k + 2−`, either
y = 0 or b = (b1, . . . , b`) = 0, and the edge is a self-loop. Otherwise y 6= 0, b 6= 0 and the other
endpoint is z = (x1+b1 ·y, . . . , x`+b` ·y). Provided that both x, z have full `-dimensional linear span
(which happens with probability except ≈ 2`−k and we think of ` � k), the edge (x, z) corresponds
to a uniformly random edge of the Grassmann graph.

Remark 2.2. Barak, Kothari, and Steuter [9] have made a similar suggestion. They consider a graph whose
vertices are k× ` matrices and the edges are pairs of matrices that differ by a rank 1 matrix. In terms of our
notation, this amounts to an edge (x, z) with z = x ⊕ y ⊗ b, y 6= 0, b 6= 0 and x, z are thought of as k × `
matrices. They seem to be interested in “reducing” the k × ` case to the k × k case; the latter is same as
the graph of the “degree-2 short code test” as in [8].

2.2 It Suffices to Work with Hk,`

We show that Theorem 1.12 for Grk,` follows easily from the corresponding Theorem 2.6 for Hk,` (see
below) and then we work with the graph Hk,` for the rest of the paper. It will be convenient to restate
Theorem 1.12 in the contra-positive and in terms of “pseudo-random sets”.

Definition 2.3. A subset of vertices S ⊆ Grk,` is called (r, ε)-pseudorandom if for any subspaces A ⊆ B ⊆
Fk2 such that dim(A) = a, codim(B) = b, a+ b 6 r, we have

µin(A),out(B)(S)
def
=
|S ∩ Grk,`[A,B]|
|Grk,`[A,B]|

6 ε.

Theorem 2.4. (Theorem 1.12 restated) For every constant ζ > 0, there exists a constant ε > 0 and an
integer r > 0 such that for all sufficiently large integers ` and (after fixing it) for all sufficiently large integers
k, the following holds. If S ⊆ Grk,` is (r, ε)-pseudorandom, then Φ(S) > 1− ζ.
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Now we show how to reduce this theorem to Theorem 2.6 below. The reasoning is straightforward. We
will show that for every S ⊆ Grk,`, there is a natural corresponding set S∗ ⊆ Hk,` such that

• Lemma 2.8 below: If S is (r, ε)-pseudorandom, then S∗ is (r, ε)-pseudorandom (for a similar notion
of being pseudorandom in Hk,` and up to a negligible additive change in the parameter ε).

• Theorem 2.6 below: If S∗ is (r, ε)-pseudorandom, then Φ(S∗) > 1− ζ.

• Lemma 2.7 below: Φ(S) = Φ(S∗) (up to a negligible additive difference) and hence Φ(S) > 1 − ζ
as desired.

We elaborate on each of the three items. The reader may wish to skip the self-evident proofs of Lemmas
2.7 and 2.8. For a set S ⊆ Grk,`, the corresponding set S∗ ⊆ Hk,` is defined naturally as

S∗
def
= {(x1, . . . , x`) | dim(Span(x1, . . . , x`)) = `, Span(x1, . . . , x`) ∈ S}.

We note that S∗ is invariant under change of basis, i.e. if Span(x1, . . . , x`) = Span(y1, . . . , y`), then
(x1, . . . , x`) ∈ S∗ if and only if (y1, . . . , y`) ∈ S∗. We call such subsets of Hk,` basis-invariant. Throughout
the paper, we will only concern ourselves with basis-invariant subsets of Hk,`. We note moreover that tuples
in S∗ are linearly independent (this is a minor issue; the only place where this is used is in the proof of
Lemmas 2.7 and 2.8). The notion of pseudorandom sets in Hk,` is defined in a similar manner.

Definition 2.5. A basis-invariant subset of vertices S∗ ⊆ Hk,` is called (r, ε)-pseudorandom if for any
sequence Q = (x1, . . . , xq) of points in Fk2 and a subspace W ⊆ Fk2 and q + codim(W ) 6 r, we have

µin(Q),out(W )(S
∗)

def
= Pr

zq+1,...,z`∈W
[(x1, . . . , xq, zq+1, . . . , z`) ∈ S∗] 6 ε.

There is a slight difference between Definitions 2.3 and 2.5. In the latter, we allow Q to be a sequence
of points (so there can be linear dependencies among them) and we do not necessarily require that Q ⊆W .
This difference however has no significance and is to be ignored. The following is the main result in the
paper. As noted, together with Lemmas 2.7 and 2.8 below, it implies Theorem 1.12 and hence proves the
2-to-2 Games Conjecture.

Theorem 2.6. For every constant ζ > 0, there exists a constant ε > 0 and an integer r > 0 such that for
all sufficiently large integers ` and (after fixing it) for all sufficiently large integers k, the following holds. If
S∗ ⊆ Hk,` is a basis-invariant (r, ε)-pseudorandom set, then Φ(S) > 1− ζ.

Lemma 2.7.
|Φ(S∗)− Φ(S)| 6 2−` + 2 · 2`−k.

Proof. Towards proving the lemma, let x = (x1, ..., x`) ∈ S∗. Denote its random neighbor by z = (x1 +
b1 · y, . . . , x` + b` · y) and b = (b1, ..., b`). Then

Φ(S∗) = Pr
x∈S∗,y,b

[z 6∈ S∗] = 2−` · 0 + (1− 2−`) Pr
x∈S∗,y,b6=0

[z 6∈ S∗]. (1)

Note that for any x ∈ S∗, the vectors x1, ..., x` are linearly independent. Let L = Span(x1, ..., x`) and
L′ = Span(x1 + b1 · y, . . . , x` + b` · y). Conditioned on y 6∈ L, L′ is `-dimensional subspace. Moreover,
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for b 6= 0, its distribution is uniform over all `-dimensional subspaces that intersect L in dimension ` − 1.
Therefore

Pr
x∈S∗,y,
b 6=0

[z 6∈ S∗] = Pr
x∈S∗,y

[y 6∈ L] · Pr
x∈S∗,y,
b6=0

[z 6∈ S∗ | y 6∈ L] + Pr
x∈S∗,y

[y ∈ L] · Pr
x∈S∗,y,
b 6=0

[z 6∈ S∗ | y ∈ L].

Since choosing x ∈ S∗ uniformly at random corresponds to choosing L ∈ S uniformly at random and
picking a random basis, we have that the first summand equals (1− 2`−k)Φ(S). The second summand is at
most Prx∈S∗,y [y ∈ L] 6 2`−k. Combining everything finishes the proof.

Lemma 2.8. If S is (r, ε)-pseudorandom, then S∗ is (r, ε+ 2`+r−k)-pseudorandom.

Proof. Towards proving the lemma, we recall Definition 2.5 and consider any sequenceQ = (x1, . . . , xq) ⊆
Fk2 and a subspace W ⊆ Fk2 such that q + codim(W ) 6 r. If Q is a linearly dependent set, then
µin(Q),out(W )(S

∗) = 0 and there is nothing to prove. So assume that Q is linearly independent.

µin(Q),out(W )(S
∗) = Pr

zq+1,...,z`∈W
[(x1, . . . , xq, zq+1, . . . , z`) ∈ S∗].

Denoting by E the event that {x1, . . . , xq, zq+1, ..., z`} are linearly independent, we have

µin(Q),out(W )(S
∗) 6 Pr [E ] · Pr

zq+1,...,z`∈W
[ (x1, . . . , xq, zq+1, . . . , z`) ∈ S∗ | E ] + Pr

[
E
]

= Pr [E ] · µin(Span(Q)),out(Q⊕W )(S) + Pr
[
E
]
.

The last equality follows from the fact that conditioned on E , L = Span(x1, . . . , xq, zq+1, . . . , z`) is dis-
tributed uniformly among all `-dimensional subspaces containing Q and contained in Q ⊕W , and L ∈ S
if and only if (x1, . . . , xq, zq+1, . . . , z`) ∈ S∗. We conclude that µin(Q),out(W )(S

∗) 6 ε+ 2`+r−k by noting
that S is (r, ε)-pseudorandom and hence µin(Span(Q)),out(Q⊕W )(S) 6 ε and that

Pr
zq+1,...,z`∈W

[E ] > 1−
`−1∑
i=q

2i−(k−r) > 1− 2`+r−k.

We note moreover that q + codim(Q ⊕ W ) 6 q + codim(W ) 6 r, so we may appeal to the (r, ε)-
pseudorandomness of S.

2.3 The Eigenvectors and Eigenvalues of Hk,` and Fourier Levels

One advantage of working with the graph Hk,` is that its vertex set is the Boolean hypercube ({0, 1}k)`, it
is a Cayley graph, and determining its eigenvectors and eigenvalues is straightforward.

Definition 2.9. For T1, . . . , Tk ∈ {0, 1}k, define χT1,...,T` : ({0, 1}k)` → {−1, 1} by

χT1,...T`(x1, . . . , x`) =
∏̀
i=1

χTi(xi),

where χTi(xi) = (−1)Ti·xi is the standard Fourier character (here ‘·’ is the inner product over F2).

16



We denote by Hk,` also the normalized transition matrix of the graph Hk,` (i.e. its entry (x, z) equals the
probability that a random neighbor of x equals z). We will be interested in the eigenvectors and eigenvalues
of Hk,`. Since Hk,` is a Cayley graph on the Boolean hypercube, its eigenvectors are precisely the characters
χT1,...,T` .

Lemma 2.10. If dim(Span(T1, . . . , T`)) = r, then χT1,...,T` is a eigenvector of Hk,` with eigenvalue 2−r,
i.e.

Hk,` · χT1,...,T` = 2−r · χT1,...,T` .

Proof. Considering a random choice of y ∈ {0, 1}k and b = (b1, . . . , b`) ∈ {0, 1}`,

Hk,` · χT1,...,T`(x) = E
y,b

[ χT1,...,T`(x1 + b1y, . . . , x` + b`(y))]

= χT1,...,T`(x) · E
y,b

[
χ⊕`i=1biTi

(y)
]
.

The expectation over y vanishes if ⊕`i=1biTi 6= 0 and equals 1 otherwise. Since ⊕`i=1biTi is a uniformly
random vector in Span(T1, . . . , T`), the probability over the choice of b that ⊕`i=1biTi = 0 is precisely
2−r.

Definition 2.11. (Clearly) any function F : ({0, 1}k)` → R can be written as

F [x1, . . . , x`] =
∑

T1,...,T`∈{0,1}k
F̂ (T1, . . . , T`) · χT1,...,T`(x1, ..., x`).

Its ith level component is defined as its projection onto the eigenspace with eigenvalue 2−i, i.e.

F=i[x1, . . . , x`] =
∑

T1,...,T`∈{0,1}k
dim(Span(T1,...,T`))=i

F̂ (T1, . . . , T`) · χT1,...,T`(x1, ..., x`).

The decompositionF =
∑`

i=0 F=i into “Fourier levels” satisfies Parseval’s identity: ‖F‖22 =
∑`

i=0 ‖F=i‖22.

Definition 2.12. A function F : ({0, 1}k)` → R is called basis-invariant if for every x1, . . . , x` ∈ {0, 1}k
and an invertible `× ` matrix M over F2, we have that

F [x1, . . . , x`] = F [M(x1, . . . , x`)].

Here M(x1, . . . , x`) = (y1, . . . , y`) such that yi =
∑̀
j=1

Mij xj .

In words, a function is basis-invariant if its value is preserved under invertible linear transformation of
its arguments. All functions that we deal with in this paper are basis invariant and in particular the indicators
of sets S ⊆ Hk,` that “arise” from corresponding sets in Grk,`.
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2.4 Pseudorandomness implies Low Weight at Low Levels implies Near-Perfect Expansion

Fix a basis-invariant set S ⊆ Hk,` = ({0, 1}k)`. Let F : ({0, 1}k)` → {0, 1} be its indicator function.
Let δ = µ(F ) = ‖F‖22 denote its density and let ‖F=i‖22 be its “weight at the ith Fourier level”. We note
that the weight at the 0th level is δ2 and the sum of the weights at all Fourier levels equals δ. Theorem 2.6
requires us to show that if S is pseudorandom, then it has near-prefect expansion. At a high-level, this is
accomplished in two steps:

• One shows that a pseudorandom set must have low (say 6 ζδ) weight at all lower (say up to r) levels.

• One shows that if there is low weight at all lower levels, then the set must have near-perfect expansion
(> 1− ζ(r + 1)− 2−(r+1)).

We include a quick proof of the second step below for the sake of completeness. The main task remains
thereafter to prove the first step. Assume therefore that F has weight at most ζδ at each level up to r. Below
a random neighbor of x is denoted as z ∼ x and the inner product is 〈F1, F2〉 = Ex [F1(x)F2(x)]. We have

1− Φ(S) = Pr
x∈S,z∼x

[z ∈ S] = (1/δ) · Pr
x,z∼x

[x ∈ S ∧ z ∈ S] = (1/δ) · 〈F, Hk,` F 〉.

Using the decomposition F =
∑`

i=0 F=i into mutually orthogonal eigenspaces F=i of eigenvalues 2−i, and
that δ =

∑`
i=0 ‖F=i‖22, we get that

δ(1− Φ(S)) =
∑̀
i=0

2−i‖F=i‖22 6
r∑
i=0

‖F=i‖2 + 2−(r+1)
∑̀
i=r+1

‖F=i‖22 6 ζδ(r + 1) + δ 2−(r+1).

Dividing by δ gives us Φ(S) > 1− ζ(r+ 1)− 2−(r+1) as claimed. To summarize, to prove Theorem 2.6, it
suffices to prove (hence this is our main result):

Theorem 2.13. Let S be a basis-invariant set of vertices in Hk,` that has density δ and is (r, ε) pseudo-
random. Let F : Hk,` = ({0, 1}k)` → {0, 1} be the indicator function of S. Then for any i = 0, 1, . . . , r,

η = ‖F=i‖22 6 27r3+3ε
1
4 δ.

We now summarize the high-level plan to prove Theorem 2.13 as in [14]. The idea is to consider the
fourth moment of F=i and prove both a lower bound and an upper bound on it. Specifically, let S be a set
that has density δ and is (r, ε) pseudo-random as in the statement of the theorem. Let 0 6 i 6 r and let
η = ‖F=i‖22. The theorem follows by showing that (the expectation is over x ∈ ({0, 1}k)`; one cancels η
from both sides, moves 29δ4 on the right and then takes a fourth root)

η5

29 · δ4
6 E

[
F 4

=i

]
6 225r3

ηε. (2)

2.5 Lower-bounding the Fourth Moment of F=i

Lemma 2.14. Under the condition and notation of Theorem 2.13, E
[
F 4

=i

]
> η5

29·δ4 .
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Proof. We note the decomposition F =
∑`

j=0 F=j into mutually orthogonal components and that ‖F‖22 =

δ, ‖F=i‖22 = η. Hence E
[
(F − F=i)

2
]

= δ − η. By Markov’s inequality,

Pr
[
(F − F=i)

2 > 1− η

2δ

]
6 δ − η

2
.

On the other hand, F is Boolean and Pr [F = 1] = δ. Thus with probability at least η
2 , both the events

below occur:
F = 1, (F − F=i)

2 6 1− η

2δ
,

in which case it holds that (1− F=i)
2 6 1− η

2δ and in turn that F=i >
η
4δ . Hence as claimed,

E
[
F 4

=i

]
>
η

2
·
( η

4δ

)4
.

2.6 Upper-bounding the Fourth Moment of F=i

To summarize, the task of proving Theorem 2.13 is now reduced to proving the upper bound in Equation
(2), i.e. under the condition and notation of Theorem 2.13, to prove that, for 0 6 i 6 r,

E
[
F 4

=i

]
6 225r3

ηε, η
def
= E

[
F 2

=i

]
.

Proving this upper bound is really the main result of this paper. We describe the first step of the proof
below, take a lengthy detour in Section 3 to develop the required analytic machinery, and then return to
the proof in Section 5. As shown in Section 3, Lemma 3.13, F=i has an alternate characterization (in
addition to that in Definition 2.11 and the two characterizations are related): there exists a (unique) function
f=i : ({0, 1}k)i → R such that for all x = (x1, . . . , x`) ∈ ({0, 1}k)`,

F=i[x] =
1

βi,i

∑
M∈M[i,`]

f=i(Mx).

Let’s explain the notation: hereM[i, `] is the set of all i× ` matrices over F2 that have full row-rank i. For
M ∈ M[i, `], Mx ∈ ({0, 1}k)i is a i-tuple where (Mx)j =

∑`
t=1Mjtxt. And βi,i is a normalizing factor

that equals the number of invertible i× i matrices. To compute (or rather upper bound) E
[
F 4

=i

]
, we simply

take the sum to the fourth power, expand, and take the expectation over x:

E
[
F 4

=i

]
=

1

β4
i,i

∑
M1,M2,M3,M4∈M[i,`]

E
x

[f=i(M1x)f=i(M2x)f=i(M3x)f=i(M4x)].

We partition the sum according to the direct sum of row spaces of M1, . . . ,M4, that is according to A =
⊕4
s=1rowspan(Ms). We note that A ⊆ {0, 1}` is a subspace and i 6 d = dim(A) 6 4i.

E
[
F 4

=i

]
=

1

β4
i,i

4i∑
d=i

∑
A:dim(A)=d

∑
M1,M2,M3,M4∈M[i,`]
⊕4
s=1rowspan(Ms)=A

E
x

[f=i(M1x)f=i(M2x)f=i(M3x)f=i(M4x)].
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The main task is to upper bound each individual expectation above. A crude upper bound on the sum is
taken thereafter. We note that the number of choices for A is at most 2d` (the number of d-dimensional
subspaces of an `-dimensional space), for fixed A, the number of choices for each of M1,M2,M3,M4 is at
most 2id, and βi,i > 1. Hence to show the desired upper bound of 225r3

ηε on the entire sum, it is sufficient

to show an upper bound of 27r3ηε
2d`

on each individual expectation. The main technical result in the paper is
therefore:

Theorem 2.15 (Main Technical Theorem). Let S be a basis-invariant set of vertices in Hk,` that is (r, ε)
pseudo-random. Let F : Hk,` = ({0, 1}k)` → {0, 1} be the indicator function of S and η = ‖F=i‖22.
Then for any 0 6 i 6 r, i 6 d 6 4i, A ⊆ {0, 1}` of dimension d and M1, . . . ,M4 ∈ M[i, `] such that
⊕4
s=1rowspan(Ms) = A, we have that∣∣∣∣∣ E

x∈({0,1}k)`
[f=i(M1x)f=i(M2x)f=i(M3x)f=i(M4x)]

∣∣∣∣∣ 6 27r3 ηε

2d`
. (3)

3 Analytic Machinery

In this section, we present the Fourier analytic machinery needed towards our main results. Unfortunately,
we are unable to provide extra insight into the statements of various lemmas in addition to what may be
inferred per se from their statements (but please do see Section 3.1 for a high-level picture). In terms of
which of these lemmas are to be considered central and which ones more auxiliary in nature, we recommend
that Lemmas 3.13, 3.19, 3.20 be treated as the key ones, at least in the sense that these will be referred to
and used directly in the main proof.

In what follows, F : ({0, 1}k)` → R is a basis-invariant function in the sense of Definition 2.12. Much
of what is said applies to all such functions and not necessarily Boolean functions that are indicators of a
basis-invariant set S ⊆ Hk,` = ({0, 1}k)`. However, the latter type of functions are the ones that we are
mainly interested in, and the reader may assume that F is of this type. We recall Definition 2.11 of the
Fourier representation and the decomposition into Fourier levels, F =

∑`
r=0 F=r:

F [x1, . . . , x`] =
∑

T1,...,T`∈{0,1}k
F̂ (T1, . . . , T`) · χT1,...,T`(x1, ..., x`).

F=r[x1, . . . , x`] =
∑

T1,...,T`∈{0,1}k
dim(Span(T1,...,T`))=r

F̂ (T1, . . . , T`) · χT1,...,T`(x1, ..., x`).

Lemma 3.1. F̂ (T1, . . . , T`) depends only on Span(T1, . . . , T`).

Proof. Suppose dim(Span(T1, . . . , T`)) = r and letA1, . . . , Ar be a basis for the span. Then there is a r×`
matrix of row-rank r such that (T1, . . . , T`) = MTr(A1, . . . , Ar), where MTr is the `× r transposed matrix.
Moreover, in this case, defining vectors (y1, . . . , yr) such that (y1, . . . , yr) = M(x1, . . . , x`),

∏̀
j=1

χTj (xj) = (−1)⊕
`
j=1Tj ·xj = (−1)⊕

r
s=1As·ys =

r∏
s=1

χAs(ys).
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We extendM to a `×` invertible matrixM ′ by appropriately appending `−r rows. Let (y1, . . . , yr, yr+1, . . . , y`) =
M ′(x1, . . . , x`). It follows, using basis-invariance of F , that

F̂ (T1, . . . , T`) = E
x1,...,x`

F [x1, . . . , x`]
∏̀
j=1

χTj (xj)


= E

x1,...,x`

[
F [x1, . . . , x`]

r∏
s=1

χAs(ys)

]

= E
y1,...,y`

[
F [y1, . . . , y`]

r∏
s=1

χAs(ys)

]
= F̂ (A1, . . . , Ar, 0, . . . , 0).

Thanks to this lemma, we write F̂ (T1, . . . , Tr) instead of F̂ (T1, . . . , T`) if dim(Span(T1, . . . , T`)) = r
and the first r characters T1, . . . , Tr are linearly independent.

3.1 High-level Picture

We recall the goal outlined earlier: to show that for a pseudorandom set S ⊆ Hk,`, its indictor function F
has low Fourier weight at low levels. Clearly, there are two notions of interest here:

• The zoom-in-out densities µin(Q),out(W )(S).

S is (r, ε)-pseudorandom if, by definition, all zoom-in-out densities, for |Q|+ codim(W ) 6 r, are at
most ε.

• The Fourier level functions F=r.

The Fourier weight at level r is, by definition, ‖F=r‖22.

And then there is a third notion: as mentioned in Section 2.6, F=r has an alternate characterization: there
exists a (unique) function f=r : ({0, 1}k)r → R such that for all x = (x1, . . . , x`) ∈ ({0, 1}k)`,

F=r[x] =
1

βi,i

∑
M∈M[i,`]

f=i(Mx).

The functions f=r will play a crucial role in our analysis. We will avoid giving them a name. While these
functions do capture the zoom-in-out densities, unfortunately we do not have a good intuition as to how.

A large part of our Fourier analytic machinery is devoted to relating the three notions, µin(Q),out(W )(S),
F=r, f=r to each other. Interestingly (and rather bafflingly), we only work with zoom-in densities
µin(Q)(S), and not with the zoom-out densities. The zoom-out densities enter the picture only in an in-
direct fashion, as Fourier sums of f=r (see Lemmas 3.19, 3.20). The relationship between f=r and the
zoom-in densities is somewhat clearer, see Definition 3.5. Especially for r = 1, the relationship is immedi-
ate: f=1(x1) is precisely the change in density of the set S after zooming into point x1. For higher levels r,
there is an inclusion-exclusion type formula that relates f=r to densities of the set S after zooming into up
to r points.
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3.2 Zoom-out Restriction Lemma

In this section, we prove a recursive formula that relates the Fourier coefficients of F to those of restrictions
of F to a hyperplane.

Definition 3.2. Let F : ({0, 1}k)` → R be a function. For a subspace W ⊆ {0, 1}k, we define the function
FW : W ` → R to be the restriction of F to W ` (referred to as the zoom-out function).

Definition 3.3. For a character T , the subspace orthogonal to T is WT =
{
x ∈ {0, 1}k

∣∣∣T · x = 0
}
.

Lemma 3.4. Let A, T1, . . . , Tr be linearly independent characters. Then

F̂ (A, T1, . . . , Tr) =
1

2` − 2r

F̂WA
(T1, . . . , Tr)−

∑
D⊆Span(A,T1,...,Tr)

dim(D)=r,A 6∈D

F̂ (D)

 .

Proof. The computation proceeds as below where in the third step we use the Fourier representation of F
and in the fourth step we use the observation that for a character R, the expectation Ey∈WA

[χR(y)] equals
1 when R = 0 or when R = A and vanishes otherwise.

F̂WA
(T1, . . . , Tr) = E

x1,...,x`∈WA

[FWA
(x1, . . . , x`) · χT1,...,Tr(x1, . . . , xr)]

= E
x1,...,x`∈WA

[
F (x1, . . . , x`) ·

r∏
i=1

χTi(xi)

]

= E
x1,...,x`∈WA

 ∑
Q1,...,Q`

F̂ (Q1, . . . , Q`)
r∏
i=1

χTi⊕Qi(xi) ·
∏̀

j=r+1

χQj (xj)


=

∑
16i6r: Qi∈{Ti,Ti⊕A}

∑
r+16j6`: Qj∈{0,A}

F̂ (Q1, ..., Q`)

= (2` − 2r)F̂ (A, T1, . . . , Tr) +
∑

D⊆Span(A,T1,...,Tr)
dim(D)=r,A6∈D

F̂ (D).

The last equality is justified as follows. There are 2` terms in the summation which split into two groups:

• In 2` − 2r terms, there is some j > r + 1 such that Qj = A. In this case Span(Q1, . . . , Q`) is same
as Span(A, T1, . . . , Tr) and since the Fourier coefficients depend only on this span, F̂ (Q1, ..., Q`) =
F̂ (A, T1, . . . , Tr).

• For the remaining 2r terms, for all j > r + 1, Qj = 0. In this case, Span(Q1, . . . , Q`) is same as
Span(Q1, . . . , Qr) which is an r-dimensional subspace of Span(A, T1, . . . , Tr) that does not contain
A. Moreover each subspace of this kind is counted exactly once.
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3.3 Defining f=r and Relating F=r, f=r and Zoom-in Densities

For a (basis-invariant) function F : ({0, 1}k)` → R, we have the decomposition F =
∑`

r=0 F=r where

F=r[x1, . . . , x`] =
∑

T1,...,T`⊆[k]
dim(Span(T1,...,T`))=r

F̂ (T1, . . . , T`) · χT1,...,T`(x1, ..., x`).

As mentioned, we will need an alternate formula for F=r : ({0, 1}k)` → R in terms of related functions
f=r : ({0, 1}k)r → R. Deriving this formula turns out to be rather cumbersome (but quite interesting at
the same time). Next few subsections are devoted to this derivation. Sometimes we write f=r,F to make the
relation to F explicit. We will use the following notations:

• For integers 1 6 i 6 r,M[i, r] denotes the set of i× r matrices over F2 with (row)-rank i. We have

|M[i, r]| =
i−1∏
j=0

(2r − 2j)
def
= βi,r.

• For r > 0, we will pretend that β0,r = 1 and that there is a single matrix {0} inM[0, r].

• For x = (x1, . . . , xr) and M ∈M[i, r], Mx denotes the tuple (y1, . . . , yi) where yj =
∑r

t=1Mjtxt.

Defining f=r in terms of Zoom-in Densities

Definition 3.5. For 0 6 r 6 `, define f=r : ({0, 1}k)r → R inductively as

f=0({0}) = µ(F )
def
= E

x1,...,x`
[F [x1, . . . , x`]],

f=r(x1, . . . , xr) = µin({x1,...,xr})(F )−
r−1∑
d=0

1

βd,d

∑
M∈M[d,r]

f=d(Mx).

We note that

• µin({x1,...,xr})(F ) = Ezr+1,...,z` [F [x1, . . . , xr, zr+1, . . . , z`]] is the zoom-in density.

• The term corresponding to d = 0 in the summation above equals µ(F ).

• In the case r = 1,
f=1(x1) = µin({x1})(F )− µ(F ).

Lemma 3.6. The function f=r is basis-invariant, i.e. for every x = (x1, . . . , xr) ∈ ({0, 1}k)r and M ∈
M[r, r], we have that

f=r(x) = f=r(Mx).

Proof. By induction on r. For r = 0, 1, this is trivial. Let r > 2 and fix x1, . . . , xr and an r × r invertible
matrix M as in the claim. By definition

f=r(Mx) = µin(Mx)(F )−
r−1∑
d=0

1

βd,d

∑
M ′∈M[d,r]

f=d(M
′Mx).
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Observe that for any d > 0, the mapping M ′ → M ′M is a bijection on M[d, r]. Also observe that
µin(Mx)(F ) = µin(x)(F ), since F is basis invariant. Thus the last expression equals

µin(x)(F )−
r−1∑
d=0

1

βd,d

∑
M ′∈M[d,r]

f=d(M
′x) = f=r(x).

Zoom-in Restriction Lemma

Definition 3.7. Let F : ({0, 1}k)` → R be a function and let Q = {a1, . . . , aj} ⊆ {0, 1}k where j 6 `−1.
We define the function FQ : ({0, 1}k)`−j → R (the zoom-in restriction function) by

FQ[x1, . . . , x`−j ] = F [a1, . . . , aj , x1, . . . , x`−j ].

We have the following recursive formula for f=r. Here e1 refers to a vector with the first coordinate 1
and all other coordinates zero.

Lemma 3.8. Let F : ({0, 1}k)` → R and r > 0. Let D = (a, x1, ..., xr) = (a, x). Then

f=r+1,F (D) = f=r,F{a}(x)− 1

βr,r

∑
M ′∈M[r,r+1]
e1 6∈rowspan(M ′)

f=r,F (M ′D).

Proof. The proof is by induction. The case r = 0 is trivial, both sides being µin({a})(F )− µ(F ), so assume
r > 1. For convenience, we write f=r instead of f=r,F , but do write f=r,Fa when it is the zoom-in function
that is concerned. From Definition 3.5,

f=r+1(D) = µD(F )− µ(F )−
r∑
j=1

1

βj,j

∑
M∗∈M[j,r+1]

f=j(M
∗D).

Using D = (a, x), µD(F ) = µin(x)(Fa) and splitting the summation into two parts, we get

f=r+1(D) = µin(x)(Fa)− µ(F )−
r∑
j=1

1

βj,j

 ∑
M∗∈M[j,r+1]
e1∈rowspan(M∗)

f=j(M
∗D) +

∑
M∗∈M[j,r+1]
e1 6∈rowspan(M∗)

f=j(M
∗D)

.
(4)

For fixed j, let’s call the two terms above Γj and ∆j respectively. Below, computation of Γj results in an
“extra” −∆j−1 term that cancels with the previous ∆-term in a telescoping manner.

Γj =
1

βj,j

∑
M∗∈M[j,r+1]
e1∈rowspan(M∗)

f=j(M
∗D) =

βj,r+1

βj,j

2j − 1

2r+1 − 1
· E
M∗∈M[j,r+1]
e1∈rowspan(M∗)

[f=j(M
∗D)]

=
βj−1,r

βj−1,j−1
· E

M∗∈M[j,r+1]
e1∈rowspan(M∗)

[f=j(M
∗D)], (5)
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where we replaced summation by expectation for the sake of convenience with appropriate normalization
factor and then used the definition of the β-parameters. The normalization factor is justified by observing
that there are βj,r+1 matrices inM[j, r+ 1] and a fraction 2j−1

2r+1−1
of them will contain e1 in their row-span

(all non-zero vectors being symmetric in this regard).
Using Lemma 3.9, we see that M∗ can be sampled by sampling M ∈ M[j − 1, r], constructing M ′

from M , sampling M ′′, and then letting M∗ = M ′′ ·M ′. Since M ′′ is invertible and f=j is basis invariant,

f=j(M
∗D) = f=j(M

′′M ′D) = f=j(M
′D) = f=j(M

′(a, x)) = f=j(a,Mx).

Hence the expectation in (5) is same as EM [f=j(a,Mx)]. Applying the induction hypothesis (note that Mx
is a (j − 1)-tuple):

E
M∈M[j−1,r]

f=j−1,Fa(Mx)− 1

βj−1,j−1

∑
M ′′∈M[j−1,j]
e1 6∈rowspan(M ′′)

f=j−1(M ′′(a,Mx))


= E

M∈M[j−1,r]
[f=j−1,Fa(Mx)]− βj−1,j

βj−1,j−1

2j − 2j−1

2j − 1
E

M∈M[j−1,r]

 E
M ′′∈M[j−1,j]
e1 6∈rowspan(M ′′)

[
f=j−1(M ′′(a,Mx))

],
where the normalization factor is justified as before. Using Lemma 3.10, the distribution of M∗ = M ′′M ′

here (M ′ is constructed fromM as in the lemma) is uniform over matrices inM[j−1, r+1] whose row-span
does not contain e1. It is also observed that

f=j−1(M ′′(a,Mx)) = f=j−1(M ′′M ′(a, x)) = f=j−1(M∗D).

Using the definition of the β-parameters, the expression can be re-written as

E
M∈M[j−1,r]

[f=j−1,Fa(Mx)]− 2j−1 E
M∗∈M[j−1,r+1]
e1 6∈rowspan(M∗)

[f=j−1(M∗D)].

Substituting in (5), we get

Γj =
βj−1,r

βj−1,j−1
E

M∈M[j−1,r]
[f=j−1,Fa(Mx)]− βj−1,r

βj−1,j−1
· 2j−1 E

M∗∈M[j−1,r+1]
e1 6∈rowspan(M∗)

[f=j−1(M∗D)]

=
1

βj−1,j−1

∑
M∈M[j−1,r]

f=j−1,Fa(Mx)− 1

βj−1,j−1

∑
M∗∈M[j−1,r+1]
e1 6∈rowspan(M∗)

f=j−1(M∗D)

=
1

βj−1,j−1

∑
M∈M[j−1,r]

f=j−1,Fa(Mx)−∆j−1.

Substituting in (4), telescoping, and noting that ∆0 = µ(F ) (one can think of ∆0 as the “extra” term while
calculating Γ1 as above), we get

f=r+1(D) =

µin(x)(Fa)− µ(F ) + ∆0 −
r−1∑
j=0

1

βj,j

∑
M∈M[j,r]

f=j,Fa(Mx)

−∆r

= f=r,F{a}(x)−∆r,

completing the proof.
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Some Auxiliary Lemmas

Lemma 3.9. A uniformly random matrix M∗ inM[j, r + 1] whose row-span contains the vector e1 can be
sampled as:

• Pick a uniformly random matrix M ∈M[j − 1, r].

• AugmentM to a matrixM ′ ∈M[j, r+1] so thatM ′ has top-left corner entry 1, the rest of the entries
in the first column and the first row are 0 and deleting the first column and the first row yields M .

• Pick a uniformly random matrix M ′′ ∈M[j, j] and output M∗ = M ′′ ·M ′.

Proof. Let W be the r-dimensional subspace of Fr+1
2 consisting of vectors whose first coordinate is 0.

Clearly, a random j-dimensional subspace L′ ⊆ Fr+1
2 that contains e1 is obtained by picking a random

(j− 1)-dimensional subspace L ⊆W and letting L′ = Span(e1)⊕L. Writing a random basis of L as rows
of a matrix yields M . Writing e1 followed by a random basis of L as rows of a matrix yields M ′ and its
row-span equals L′. Thus it follows that the row-span of M ′ is a random j-dimensional subspace of Fr+1

2

containing e1. Now pre-multiplying M ′ by a random invertible matrix M ′′ yields the matrix M∗ whose
rows now form a random basis of a random j-dimensional subspace of Fr+1

2 containing e1 as claimed.

Lemma 3.10. A uniformly random matrix M∗ in M[j − 1, r + 1] whose row-span does not contain the
vector e1 can be sampled as (the two incarnations of e1 in the statement of this lemma are different):

• Pick a uniformly random matrix M ∈M[j − 1, r].

• AugmentM to a matrixM ′ ∈M[j, r+1] so thatM ′ has top-left corner entry 1, the rest of the entries
in the first column and the first row are 0 and deleting the first column and the first row yields M .

• Pick a matrix M ′′ that is uniformly distributed over matrices inM[j− 1, j] whose row-span does not
contain e1 and output M∗ = M ′′ ·M ′.

Proof. Let W,L,L′ be as in the proof of the previous lemma. As therein, L′ is a random j-dimensional
subspace of Fr+1

2 that contains e1 and the row-span of M ′ equals L′ and its rows are v1 = e1 followed by a
basis v2, . . . , vj of L. From Lemma 3.11 below, the rows of M∗ = M ′′ ·M ′ then form a random basis of a
random (j − 1)-dimensional subspace of L′ that does not contain v1 = e1.

Lemma 3.11. Let v1, . . . , vj be vectors that are linearly independent (over F2). Let M ′′ be a uniformly
random matrix inM[j − 1, j] whose row-span does not contain the vector e1. Let

(w1, . . . , wj−1) = M ′′ · (v1, . . . , vj).

Then (w1, . . . , wj−1) is a random basis of a random (j− 1)-dimensional subspace of Span(v1, . . . , vj) that
does not contain v1.

Proof. It is clear that

• Since the rows of M ′′ are linearly independent, so are w1, . . . , wj−1.

• The matrix M ′′ and the tuple (w1, . . . , wj−1) determine each other.

• e1 6∈ rowspan(M ′′) if and only if v1 6∈ Span(w1, . . . , wj−1).

Thus there is a one-to-one correspondence between matrices M ′′ inM[j − 1, j] whose row-span does not
contain the vector e1 and tuples (w1, . . . , wj−1) that span a (j−1)-dimensional subspace of Span(v1, . . . , vj)
that does not contain the vector v1.
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Relating F=r to Zoom-in Densities

Lemma 3.12. For every 0 6 r 6 ` and x1, . . . , x` ∈ {0, 1}k,(
r∑
i=0

βi,r
βr,r

βr,`
βi,`

F=i

)
[x1, . . . , x`] =

1

βr,r

∑
M∈M[r,`]
y=Mx

µin((y1,...,yr))(F ).

Proof. By definition,

F=i[x1, . . . , x`] =
∑

T1,...,T`
dim(T1,...,T`)=i

F̂ (T1, . . . , T`) · χT1,...,T`(x1, . . . , x`)

=
∑

dim(D)=i

F̂ (Q1, . . . , Qi, Qi+1, . . . , Q`)
∑

T1,...,T`
Span(T1,...,T`)=D

∏̀
j=1

χTj (xj),

where the outer summation is over all i-dimensional subspacesD and for givenD, (Q1, . . . , Qi) is a specific
ordered basis for it, and Qi+1 = · · · = Q` = 0. We used the fact that the Fourier coefficient depends only
on the span of its arguments. For given D, consider the inner sum. It is not difficult to see that all `-tuples
(T1, . . . , T`) such that Span(T1, . . . , T`) = D are obtained precisely as

(T1, . . . , T`) = MTr(Q1, . . . , Qi)

where MTr is a ` × i matrix that is a transpose of a matrix M ∈ M[i, `]. Moreover, in that case, defining
vectors (y1, . . . , yi) such that (y1, . . . , yi) = M(x1, . . . , x`) (which we abbreviate as y = Mx)

∏̀
j=1

χTj (xj) = (−1)⊕
`
j=1Tj ·xj = (−1)⊕

i
s=1Qs·ys =

i∏
s=1

χQs(ys).

Thus we can write

F=i[x1, . . . , x`] =
∑

dim(D)=i

F̂ (Q1, . . . , Qi, Qi+1, . . . , Q`)
∑

M∈M[i,`]
y=Mx

i∏
j=1

χQj (yj).

Using the definition of F̂ (Q1, . . . , Qi, Qi+1 = 0, . . . , Q` = 0) and interchanging the order of summation,

F=i[x1, . . . , x`] =
∑

dim(D)=i

E
z1,...,z`

F (z1, . . . , z`)
i∏

j=1

χQj (zj)

 · ∑
M∈M[i,`]
y=Mx

i∏
j=1

χQj (yj)

=
∑

M∈M[i,`]
y=Mx

E
z1,...,z`

F (z1, . . . , z`)
∑

dim(D)=i

i∏
j=1

χQj (yj ⊕ zj)



=
βi,`
βr,`

∑
M∈M[r,`]
y=Mx

E
z1,...,z`

F (z1, . . . , z`)
∑

dim(D)=i

i∏
j=1

χQj (yj ⊕ zj)

.
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Note that in the last line, the summation is over r×`matrices instead of i×`matrices and out of the vectors
(y1, . . . , yr), only the first i vectors are “used”. The normalization factor takes into account the number
of matrices of the two different sizes. For a randomly chosen r × r invertible matrix M ′, consider the
change of basis y = M ′y′, (z1, . . . , zr) = M ′(z′1, . . . , z

′
r) and (A1, . . . , Ar) = M ′Tr(Q1, . . . , Qi, Qi+1 =

0, . . . , Qr = 0). By similar reasoning as before

i∏
j=1

χQj (yj ⊕ zj) =
r∏
j=1

χQj (yj ⊕ zj) =
r∏
j=1

χAj (y
′
j ⊕ z′j).

Since F is basis-invariant and the distribution of y and y′ is the same, we may as well write the above
equation as

F=i[x1, . . . , x`] =
βi,`
βr,`

∑
M∈M[r,`]
y=Mx

E
z1,...,z`

F (z1, . . . , z`)
∑

dim(D)=i

E
M ′

 r∏
j=1

χAj (yj ⊕ zj)

.
In the above expression, first an i-dimensional subspace D is chosen along with a fixed ordered basis
Q1, . . . , Qi and then (A1, . . . , Ar) = M ′Tr(Q1, . . . , Qi, Qi+1 = 0, . . . , Qr = 0) for a random r × r invert-
ible matrix M ′. Up to a factor of 1

βr,r
, one can instead consider a summation over all M ′, and then every

tuple (A1, . . . , Ar) such that dim(A1, . . . , Ar) = i occurs exactly βr,r
βi,r

times. Hence the above equation can
be written as

F=i[x1, . . . , x`] =
βi,`
βr,`

1

βi,r

∑
M∈M[r,`]
y=Mx

E
z1,...,z`

F (z1, . . . , z`)
∑

dim(A1,...,Ar)=i

r∏
j=1

χAj (yj ⊕ zj)

.
Moving the β-factors to the left hand side and summing over i = 0, 1, . . . , r counts every r-tuple (A1, . . . , Ar)
exactly once (irrespective of its dimension). Hence(

r∑
i=0

βi,r
βr,`
βi,`

F=i

)
[x1, . . . , x`] =

∑
M∈M[r,`]
y=Mx

E
z1,...,z`

F (z1, . . . , z`)
∑

A1,...,Ar

r∏
j=1

χAj (yj ⊕ zj)

.
We observe finally that the inner summation equals 2kr if zj = yj for 1 6 j 6 r and vanishes otherwise. In
the former case, we can “fix” zj = yj for 1 6 j 6 r and drop the 2kr factor (since 2−kr is the probability
that randomly chosen zj happens to equal yj for 1 6 j 6 r). This yields(

r∑
i=0

βi,r
βr,`
βi,`

F=i

)
[x1, . . . , x`] =

∑
M∈M[r,`]
y=Mx

E
zr+1,...,z`

[F (y1, . . . , yr, zr+1, z`)].

The proof of Lemma 3.12 is completed by dividing both sides by βr,r and noting that the expectation is
precisely µin(y=Mx)(F ).
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Relating F=r and f=r

Lemma 3.13. For every 0 6 r 6 ` and x1, . . . , x` ∈ {0, 1}k,

F=r[x1, . . . , x`] =
1

βr,r

∑
M∈M[r,`]

f=r(Mx).

Proof. The proof is by induction on r. The case r = 0 is trivial (both sides equal µ(F )). Otherwise, using
Lemma 3.12 we have(

r∑
i=0

βi,r
βr,r

βr,`
βi,`

F=i

)
[x1, . . . , x`] =

1

βr,r

∑
M∈M[r,`]

µin((Mx))(F ).

We note that the coefficient of F=r on the left side is 1. Therefore we get

F=r[x1, . . . , x`] =
1

βr,r

∑
M∈M[r,`]

µin((Mx))(F )−

(
r−1∑
i=0

βi,r
βr,r

βr,`
βi,`

F=i

)
[x1, . . . , x`]. (6)

Using the induction hypothesis, we get that(
r−1∑
i=0

βi,r
βr,r

βr,`
βi,`

F=i

)
[x1, . . . , x`] =

r−1∑
i=0

βi,r
βr,r

βr,`
βi,`

1

βi,i

∑
M∈M[i,`]

f=i(Mx)

=
1

βr,r

∑
A∈M[r,`]

r−1∑
i=0

1

βi,i

∑
Q∈M[i,r]

f=i(QAx). (7)

The last equality follows by observing that a full row-rank i × ` matrix M can be obtained as a product of
full row-rank i× r and r× ` matrices Q and A respectively (in uniform manner). In both summations, each
M is counted exactly βi,rβr,`

βi,`
times. Substituting (7) into (6) yields

F=r[x1, . . . , x`] =
1

βr,r

∑
M∈M[r,`]

µin((Mx))(F )− 1

βr,r

∑
M∈M[r,`]

r−1∑
i=0

1

βi,i

∑
Q∈M[i,r]

f=i(QMx)

=
1

βr,r

∑
M∈M[r,`]

f=r(Mx),

where in the last equality we combined the two sums over M , and used Definition 3.5 of f=r, thereby
finishing the inductive step.

3.4 Relating F=r and f=r in the Fourier Domain

Lemma 3.14. Let 0 6 j 6 r − 1 and let a1, . . . , aj ∈ {0, 1}k. Then

E
yj+1,...,yr∈{0,1}k

[f=r(a1, . . . , aj , yj+1, . . . , yr)] = 0.
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Proof. The proof is by double induction, first by induction on r with j = 0, and then by induction on j (as
long as j 6 r − 1). So assume first that j = 0. In the case r = 1,

E
y1

[f=1(y1)] = E
y1

[
µin(y1)(F )− µ(F )

]
= 0.

Now assume j = 0 and r > 2.

E
y1,...,yr

[f=r(y1, . . . , yr)] = E
y1,...,yr

µin(y1,...,yr)(F )−
r−1∑
i=0

1

βi,i

∑
M∈M[i,r]

f=i(My)


= −

r−1∑
i=1

1

βi,i

∑
M∈M[i,r]

E
y1,...,yr

[f=i(My)],

where we used the fact that in the summation, the term with index i = 0 is µ(F ) and

E
y1,...,yr

[
µin(y1,...,yr)(F )

]
= µ(F )

as well. We note that for any 1 6 i 6 r − 1 and M ∈ M[i, r], the distribution of My is uniform over
({0, 1}k)i and hence by the induction hypothesis

E
y1,...,yr

[f=i(My)] = 0,

proving the inductive step. We now know that the claim is true for j = 0 and all r > 1. In the following, we
consider the case 1 6 j 6 r − 1 and “reduce” it to the case j − 1. Using Lemma 3.8 we see

E
yj+1,...,yr

[f=r(a1, . . . , aj , yj+1, . . . , yr)]

= E
yj+1,...,yr

f=r−1,F{a1}
(a2, . . . , aj , yj+1, . . . , yr)−

1

βr−1,r−1

∑
M∈M[r−1,r]
e1 6∈rowspan(M)

f=r−1(M(a, y))

. (8)

The expectation of the first term vanishes by induction hypothesis. For the second term, fix any matrix M
therein. Since f=r−1 is basis-invariant, we can rewrite the rows of M as long as the row-span is preserved.
By Lemma 3.15 below, as may assume that M is semi-diagonal. Hence

M(a, y) = M(a1, . . . , aj , yj+1, . . . , yr) = (a′2, . . . , a
′
j , y
′
j+1, . . . , y

′
r),

where a′i = ai or ai + a1 (hence fixed) and similarly, y′i = yi or yi + a1 (hence distributed same as yi). By
induction hypothesis

E
yj+1,...,yr

[f=r−1(M(a, y))] = E
y′j+1,...,y

′
r

[
f=r−1(a′2, . . . , a

′
j , y
′
j+1, . . . , y

′
r)
]

= 0,

completing the proof.

Lemma 3.15. A (r − 1) × r matrix is called semi-diagonal if deleting the first column gives a square
matrix that is diagonal and has ones on the diagonal. Then for any matrix M ∈ M[r − 1, r] such that
e1 6∈ rowspan(M), there is a semi-diagonal matrix M ′ ∈M[r − 1, r] with the same row-span.
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Proof. Let D be the row-span of M and for 2 6 s 6 r, let Ws ⊆ {0, 1}r be the subspace of vectors with
the last r− s coordinates zero. Since dim(D) = r− 1, dim(Ws) = s, e1 ∈Ws \D, it must be the case that
dim(D ∩Ws) = s− 1. Thus {D ∩Ws}rs=2 is an “increasing” sequence of subspaces that finally equals D.
Hence a basis forD can be chosen so that its successive members are inW2\{e1},W3\W2, . . . ,Wr\Wr−1

respectively. Moreover, in this process, when we choose a vector vs ∈ Ws \Ws−1, the sth coordinate of v
equals one, and we can zero-out its coordinates 2, . . . , s− 1 by adding to it v2, . . . , vs−1 if necessary.

We now consider the Fourier representation of f=r : ({0, 1}k)r → R:

f=r(x1, . . . , xr) =
∑

T1,...,Tr

f̂=r(T1, . . . , Tr) χT1(x1) · · ·χTr(xr).

Lemma 3.16. f̂=r(T1, . . . , Tr) depends only on Span(T1, . . . , Tr).

Proof. Follows from the basis-invariance of f=r (Lemma 3.6) and a proof identical to that of Lemma 3.1.

Lemma 3.17. Suppose T1, . . . , Tr are linearly dependent. Then f̂=r(T1, . . . , Tr) = 0.

Proof. Suppose w.l.o.g. that Tr depends on T1, . . . , Tr−1. By Lemma 3.16,

f̂=r(T1, . . . , Tr) = f̂=r(T1, . . . , Tr−1, 0)

= E
y1,...,yr

f=r(y1, . . . , yr)
r−1∏
j=1

χTj (yj)


= E

y1,...,yr−1

E
yr

[f=r(y1, . . . , yr−1, yr)]
r−1∏
j=1

χTj (yj)

,
and the inner expectation vanishes according to Lemma 3.14.

Therefore, we may write

f=r(y1, . . . , yr) =
∑

T1,...,Tr
dim(T1,...,Tr)=r

f̂=r(T1, . . . , Tr)χT1(y1) · · ·χTr(yr). (9)

Lemma 3.18. Let 0 6 r 6 ` and let T1, . . . , Tr be characters such that dim(T1, . . . , Tr) = r. Then

f̂=r(T1, . . . , Tr) = F̂ (T1, . . . , Tr).

Proof. For any x1, . . . , x` ∈ {0, 1}k, by Lemma 3.13,

F=r[x1, . . . , x`] =
1

βr,r

∑
M∈M[r,`]

f=r(Mx)

=
1

βr,r

∑
M∈M[r,`]

∑
T1,...,Tr

dim(T1,...,Tr)=r

f̂=r(T1, . . . , Tr)

r∏
j=1

χTj ((Mx)j)

=
1

βr,r

∑
T1,...,Tr

dim(T1,...,Tr)=r

f̂=r(T1, . . . , Tr)
∑

M∈M[r,`]

r∏
j=1

χTj ((Mx)j).
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As we have done previously, if T = (T1, . . . , Tr) and MTr is the transposed matrix, we have

r∏
j=1

χTj ((Mx)j) =
∏̀
i=1

χ(MTrT )i(xi).

Hence,

F=r[x1, . . . , x`] =
1

βr,r

∑
T1,...,Tr

dim(T1,...,Tr)=r

f̂=r(T1, . . . , Tr)
∑

M∈M[r,`]

∏̀
i=1

χ(MTrT )i(xi)

=
∑

P1,...,P`
dim(P1,...,P`)=r

f̂=r(basis(P1, . . . , P`))
∏̀
i=1

χPi(xi),

where it is easily checked that each tuple (P1, . . . , P`) with dimension of the span r is counted exactly once.
On the other hand, by definition

F=r[x1, . . . , x`] =
∑

P1,...,P`
dim(P1,...,P`)=r

F̂ (basis(P1, . . . , P`))
∏̀
i=1

χPi(xi).

By uniqueness of Fourier representation, we conclude the assertion of the lemma.

3.5 Bounding Restricted Fourier Sums of f=r

Lemma 3.19. Let S be a (basis invariant) set of vertices in Hk,` that is (r, ε) pseudo-random. Let 0 6 j 6
r 6 `

2 and F : ({0, 1}k)` → {0, 1} be the indicator function of S. Then for any characters A1, . . . , Aj ,∑
Tj+1,...,Tr

f̂2
=r(A1, . . . , Aj , Tj+1, . . . Tr) 6

24r2

2(r+j)`
ε.

Proof. We will prove an upper bound of Cr
2(r+j)` ε with Cr = 24r2

. We note first that a (r, ε)-pseudorandom
set automatically has density at most ε and hence ‖F‖22 6 ε. For j = r = 0, the upper bound clearly holds
with C0 = 1, so we assume r > 1. The proof is by induction on j. When j = 0, we have (note that non-zero
Fourier coefficients of f=r have linearly independent arguments)∑

T1,...,Tr
dim(T1,...,Tr)=r

f̂2
=r(T1, . . . Tr) =

∑
T1,...,Tr

dim(T1,...,Tr)=r

F̂ 2(T1, . . . Tr)

=
βr,r
βr,`

∑
Q1,...,Q`

dim(Q1,...,Q`)=r

F̂ 2(Q1, . . . Q`),

since for a fixed r-dimensional span of the arguments, there are βr,r terms (T1, . . . , Tr) in the first summation
and βr,` terms (Q1, . . . , Q`) in the second summation. The expression now equals and is then upper bounded
as (Cr = 24r2

),
βr,r
βr,`
‖F=r‖22 6

2r
2

1
2 · 2r`

‖F‖22 6
2r

2+1

2r`
ε 6

Cr
2r`

ε.
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Now assume j > 1. By Lemma 3.18 and 3.4, for any dim(A1, . . . , Aj , Tj+1, . . . , Tr) = r,

f̂2
=r(A1, . . . , Aj , Tj+1, . . . Tr) = F̂ 2(A1, . . . , Aj , Tj+1, . . . Tr)

=
1

(2` − 2r−1)2

F̂WA1
(A2, . . . , Aj , Tj+1, . . . , Tr)−

∑
D⊆Span(A1,...,Aj ,Tj+1,...Tr)

dim(D)=r−1,A1 6∈D

F̂ (D)


2

6
4 · 2r

22`

F̂ 2
WA1

(A2, . . . , Aj , Tj+1, . . . , Tr) +
∑

D⊆Span(A1,...,Aj ,Tj+1,...Tr)
dim(D)=r−1,A1 6∈D

F̂ 2(D)

 , (10)

the last inequality is by Cauchy-Schwarz (there are 2r−1 choices for D). Summing over Tj+1, . . . , Tr, the
first term sums up to at most ∑

Tj+1,...,Tr
dim(A2,...,Aj ,Tj+1,...,Tr)=r−1

F̂ 2
WA1

(A2, . . . , Aj , Tj+1, . . . , Tr)

=
∑

Tj+1,...,Tr
dim(A2,...,Aj ,Tj+1,...,Tr)=r−1

f̂2
=r−1,FWA1

(A2, . . . , Aj , Tj+1, . . . Tr)

6
Cr−1

2(r−1+j−1)`
ε,

using the induction hypothesis and since the (r, ε) pseudorandomness of F implies (r − 1, ε) pseudoran-
domness of FWA1

. For the second term, consider any D ⊆ Span(A1, . . . , Aj , Tj+1, . . . Tr) of dimension
r − 1 not containing A1. By Lemma 3.15, we may assume that D has basis

D = Span(A′2, . . . , A
′
j , T

′
j+1, . . . , T

′
r)

where A′i = Ai + bi ·A1 and T ′i = Ti + bi ·A1 for some b = (b2, . . . , br). In the following calculation, b is
thought of as fixed, determining D. Summing over all Tj+1, . . . , Tr,∑

Tj+1,...,Tr
dim(A1,...,Aj ,Tj+1,...,Tr)=r

F̂ 2(D) 6
∑

T ′j+1,...,T
′
r

dim(A′2,...,A
′
j ,T
′
j+1,...,T

′
r)=r−1

F̂ 2(A′2, . . . , A
′
j , T

′
j+1, . . . , T

′
r)

=
∑

T ′j+1,...,T
′
r

dim(A′2,...,A
′
j ,T
′
j+1,...,T

′
r)=r−1

f̂2
=r−1(A′2, . . . , A

′
j , T

′
j+1, . . . , T

′
r)

6
Cr−1

2(r−1+j−1)`
ε,

using the induction hypothesis. We note that there are 2r−1 choices for b (or equivalently D). Combining
both the upper bounds, gets us an upper bound of( ε

2(r+j)`

)
· (4 · 2r) · (1 + 2r−1) · Cr−1.
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This is upper bounded by Cr
2(r+j)` ε provided Cr > 22r+2Cr−1 (and C0 = 1). Letting Cr = 24r2

proves the
lemma.

Lemma 3.20. Let S be a (basis invariant) set of vertices in Hk,` that is (r, ε) pseudo-random. Let s, t, p, q
be non-negative integers such that s + t + p + q = r 6 `

2 . Let F : ({0, 1}k)` → {0, 1} be the indicator
function of S. Let a1, ..., as be points and A1, . . . , Ap be characters. Define the restriction

ga1,...,as,x1,...,xt(y1, . . . , yp, z1, . . . , zq) = f=r(a1, . . . , as, x1, . . . , xt, y1, . . . , yp, z1, . . . , zq).

Then

E
x1,...,xt∈{0,1}k

 ∑
T1,...,Tq

ĝ2
a1,...,as,x1,...,xt(A1, . . . , Ap, T1, . . . Tq)

 6
22sr2+4r2

2(t+2p+q)`
ε 6

26r3

2(t+2p+q)`
ε.

Proof. We will prove an upper bound of Cs,r
2(t+2p+q)` ε where Cs,r = 22sr2+4r2

. The proof is by induction on
s. First let us consider the case s = 0. The expectation to be upper-bounded equals (we denote by x, y, z
the respective tuples of variables)

E
x

 ∑
T1,...,Tq

(
E
y,z

[
f=r(x, y, z)

p∏
i=1

χAi(yi)

q∏
i=1

χTi(zi)

])2
. (11)

Consider the expectation inside. Expanding f=r into Fourier, it equals

∑
Q1,...,Qt

R1,...,Rp,S1,...,Sq

E
y,z

[
f̂=r(Q,R, S)

t∏
i=1

χQi(xi)

p∏
i=1

χAi⊕Ri(yi)

q∏
i=1

χTi⊕Si(zi)

]

=
∑

Q1,...,Qt

f̂=r(Q,A, T )

t∏
i=1

χQi(xi).

Squaring this, taking the expectation over x, and then summing over T1, . . . , Tq shows that (11) equals,∑
Q1,...,Qt,T1,...,Tq

f̂2
=r(Q1, . . . , Qt, A1, . . . , Ap, T1, . . . , Tq),

which is upper bounded by 24r2

2(t+2p+q)` ε by Lemma 3.19. Now consider the case s > 1. As before, the
expectation to be upper-bounded equals (with an additional argument a = (a1, . . . , as))

E
x

 ∑
T1,...,Tq

(
E
y,z

[
f=r(a, x, y, z)

p∏
i=1

χAi(yi)

q∏
i=1

χTi(zi)

])2
. (12)

Applying Lemma 3.8 we get

f=r(a1, . . . , as, x, y, z) = f=r−1,Fa1
(a2, . . . , as, x, y, z)

+
1

βr−1,r−1

∑
M∈M[r−1,r]
e1 6∈rowspan(M)

f=r−1,Fa1
(M(a, x, y, z)).
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We take expectation over y, z. For the first term, we have

E
y,z

[
f=r−1,Fa1

(a2, . . . , as, x, y, z)

p∏
i=1

χAi(yi)

q∏
i=1

χTi(zi)

]
= ĥa2,...,as,x(A1, . . . , Ap, T1, . . . , Tq), (13)

where ha2,...,as,x is the restriction of the function f=r−1,Fa1
in a manner similar to g is the restriction of f=r.

For the second term, let M ∈ M[r − 1, r] whose row-span does not not contain e1. By Lemma 3.15, we
may assume that M is semi-diagonal and then

M(a, x, y, z) = (a′ = (a′2, . . . , a
′
s), x

′, y′, z′),

where each new coordinate is same as earlier except possibly adding a1. Hence

E
y,z

[
f=r−1(M(a, x, y, z))

p∏
i=1

χAi(yi)

q∏
i=1

χTi(zi)

]
= sign · ĥa′,x′(A1, . . . , Ap, T1, . . . , Tq) (14)

for a sign ∈ {−1, 1} (which takes into account the possible additions of a1 to get the new coordinates
y′, z′). Towards upper-bounding (12), we can now sum up the absolute values of (13) and (14) (the latter
summed over βr−1,r matrices along with the leading coefficient 1

βr−1r−1 ), square the sum, upper bound it
by Cauchy-Schwartz, and finally take the outer summation over T = (T1, . . . , Tq) and expectation over x.
We end up with an overall upper bound(

1 +
βr−1,r

β2
r−1,r−1

)E
x

[∑
T

ĥ2
a2,...,as,x(A, T )

]
+

∑
M∈M[r−1,r]

E
x

[∑
T

ĥ2
a′,x′(A, T )

] .

We may now apply the induction hypothesis since sequences (a2, . . . , as) and a′ have length s− 1, x′ is
distributed the same as x, and furthermore, Fa1 is (r − 1, ε) pseudo-random. Thus we get an upper bound
of

ε

2(t+2p+q)`
· Cs−1,r−1 ·

(
1 +

βr−1,r

β2
r−1,r−1

)
(1 + βr−1,r)) .

Using very crude estimates βr−1,r−1 > 1 and βr−1,r 6 2r
2 − 1, we upper bound by ε

2(t+2p+q)` · Cs,r. It
suffices to have Cs,r > 22r2

Cs−1,r−1 and C0,r = 24r2
, i.e. Cs,r = 22sr2+4r2

.

4 Pair-wise and Three-wise Correlations of f=i

The rest of the paper is devoted to the proof of our main technical result, Theorem 2.15, that upper bounds
the four-wise correlations of f=i. It is natural and instructive to first understand pair-wise and three-wise
correlations of f=i.

4.1 Pairwise Correlations

Studying pairwise correlations is simple. There are two cases depending on whether rowspan(M1), rowspan(M2)
are distinct or the same. In the latter case, due to basis-invariance of f=i, we may assume that the two ma-
trices are the same.

35



Lemma 4.1. Let M1,M2 ∈M[i, `]. If rowspan(M1) 6= rowspan(M2), then

E
x1,...,x`∈{0,1}k

[f=i(M1x)f=i(M2x)] = 0.

Proof. It is clearly possible to choose linearly independent vectors v1, . . . , vs, u1, . . . , ui−s, w1, . . . , wi−s
in {0, 1}` such that

• (v1, . . . , vs) is a basis for rowspan(M1) ∩ rowspan(M2),

• (v1, . . . , vs, u1, . . . , ui−s) is a basis for rowspan(M1), and

• (v1, . . . , vs, w1, . . . , wi−s) is a basis for rowspan(M2).

By the assumption i − s > 1. By the basis-invariance of f=i, we can assume that in the last two items, the
respective sets are in fact the rows of the two matrices. For a row-vector a ∈ {0, 1}` and x = (x1, . . . , x`),
let us denote a′ = 〈a, x〉 =

∑`
j=1 ajxj . Let us define

v′j = 〈vj , x〉, u′j = 〈uj , x〉, w′j = 〈wj , x〉.

Thus {v′j , u′j , w′j} are uniformly and independently distributed over {0, 1}k. Moreover

M1x = (v′1, . . . , v
′
s, u
′
1, . . . , u

′
i−s), M2x = (v′1, . . . , v

′
s, w

′
1, . . . , w

′
i−s).

It follows using Lemma 3.14 that

E
x

[f=i(M1x)f=i(M2x)] = E
v′j ,u

′
j ,w
′
j

[
f=i(v

′
1, . . . , v

′
s, u
′
1, . . . , u

′
i−s)f=i(v

′
1, . . . , v

′
s, w

′
1, . . . , w

′
i−s)

]
= E

v′j ,w
′
j

[
E

u′1,...,u
′
i−s

[
f=i(v

′
1, . . . , v

′
s, u
′
1, . . . , u

′
i−s)

]
· f=i(v

′
1, . . . , v

′
s, w

′
1, . . . , w

′
i−s)

]
= 0.

Lemma 4.2. Let M ∈M[i, `]. Then

E
x1,...,x`∈{0,1}k

[
f2

=i(Mx)
]

=
βi,i
βi,`
‖F=i‖22.

Proof. Denoting (y1, . . . , yi) = Mx, we note that y1, . . . , yi are uniformly and independently distributed in
{0, 1}k and hence the expectation above, call it Γ, does not depend on the choice of M ∈M[i, `]. Also, due
to basis variance, the expectation is the same as Γ = Ex [f=i(M1x)f=i(M2x)] as long as rowspan(M1) =
rowspan(M2). Using Lemma 3.13, squaring, and taking expectation over x,

F=i[x1, . . . , x`] =
1

βi,i

∑
M∈M[i,`]

f=i(Mx).

β2
i,i · ‖F=i‖22 =

∑
M1,M2∈M[i,`]

rowspan(M1)=rowspan(M2)

Γ +
∑

M1,M2∈M[i,`]
rowspan(M1)6=rowspan(M2)

E
x

[f=i(M1x)f=i(M2x)].

The lemma follows by noting that that are βi,`βi,i pairs M1,M2 with the same row-span and by previous
Lemma 4.1, the expectation vanishes when the row-spans are distinct.
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The left hand side in the statement of this Lemma equals ‖f=i‖22 and we have βi,i 6 2i
2−1, βi,` >

1
2 ·2

i`.
We record this very useful fact for future:

Lemma 4.3. ‖f=i‖22 6 2i
2

2i`
‖F=i‖22.

4.2 Three-wise Correlations

Understanding three-wise correlations is more difficult. Here, we will need to use the Fourier analytic
machinery developed in Section 3. Our formal result is:

Theorem 4.4. Let S be a basis-invariant set of vertices in Hk,` that is (r, ε) pseudo-random. Let F : Hk,` =
({0, 1}k)` → {0, 1} be the indicator function of S and η = ‖F=i‖22. Then for any 0 6 i 6 r, i 6 d 6 3i,
A ⊆ {0, 1}` of dimension d and M1,M2,M3 ∈M[i, `] such that ⊕3

s=1rowspan(Ms) = A, we have that∣∣∣∣∣ E
x∈({0,1}k)`

[f=i(M1x)f=i(M2x)f=i(M3x)]

∣∣∣∣∣ 6 24r2 η
√
ε

2d`
. (15)

The rest of this section is devoted to the proof of the above lemma. Fix i, i 6 d 6 3i, A ⊆ {0, 1}` of
dimension d, and M1,M2,M3 ∈M[i, `] whose direct sum of row spaces is A. Since f=i is basis invariant,
we are free to rewrite the rows of each matrix as long as the row-span is preserved. We will spend some
effort into bringing the matrices into a convenient form. We begin with the following simple observation.

Lemma 4.5. Suppose rowspan(M3) 6⊆ rowspan(M1)⊕ rowspan(M2) (or the other two symmetric cases).
Then

E
x∈({0,1}k)`

[f=i(M1x)f=i(M2x)f=i(M3x)] = 0.

Proof. The proof is essentially the same as that of Lemma 4.1. We can choose linearly independent vectors
w1, . . . , wt, v1, . . . , vs such that t > 1 and

• w1, . . . , wt are the first t rows of M3.

• v1, . . . , vs span the remaining i− t rows of M3 as well as rowspan(M1)⊕ rowspan(M2).

We define v′j = 〈vj , x〉 and w′j = 〈wj , x〉 so that {v′j , w′j} are uniformly and independently distributed in
{0, 1}k. Clearly, M1x,M2x depend only on v′j and M3x = (w′1, . . . , w

′
t, y1, . . . , yi−t) where y1, . . . , yi−t

depend only on v′j . Fixing an arbitrary choice of v′j fixes a∗ = M1x, b
∗ = M2x and c∗ = (y1, . . . , yi−t).

The expectation is then
f=i(a

∗)f=i(b
∗) E
w′1,...,w

′
t

[
f=i(w

′
1, . . . , w

′
t, c
∗)
]
,

which vanishes according to Lemma 3.14.

Thanks to Lemma 4.5, we assume henceforth that the row-span of each matrix is contained in the direct
sum of the other two. Let H = ∩3

j=1rowspan(Mj), dim(H) = s, and let g1, . . . , gs be a basis for it. We
may assume w.l.o.g. that the first s rows of each matrix are g1, . . . , gs. Let M ′1,M

′
2,M

′
3 be the matrices

M1,M2,M3 after removing these first s rows. By our assumptions, we have ∩3
j=1rowspan(M ′j) = {0} and

moreover the row-span of each is contained in the direct sum of the other two. We show that one can assume
a strong structure on the row-spans of M ′1,M

′
2,M

′
3 as below. We recommend reading the proof as similar

tricks are used hereafter.
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Lemma 4.6. The row spans of M ′1,M
′
2,M

′
3 have the form

Span(w1, . . . , wt, y1, . . . , yn, yn+1, . . . , yi−s−t)

Span(w1, . . . , wt, z1, . . . , zn, zn+1, . . . , zi−s−t)

Span(y1 + z1, . . . , yn + zn, yn+1, . . . , yi−s−t, zn+1, . . . , zi−s−t)

where the vectors w1, . . . , wt, y1, . . . , yi−s−t, z1, . . . , zi−s−t are linearly independent.

Proof. Let {w1, . . . , wt} be the basis for rowspan(M ′1) ∩ rowspan(M ′2). Let

A = rowspan(M ′1), B = rowspan(M ′2), C = rowspan(M ′3)

so that A ∩ B ∩ C = {0} and each is contained in the direct sum of the remaining two. If we pretend that
w1 = . . . = wt = 0 (which really amounts to working with a quotient space, but we find this informal
description clearer), we can pretend that A ∩ B = {0}. Apply Lemma A.1 to get the desired form. One
caveat however is that each variable yj above (the same goes for zj) is really yj + σ(w) where σ(w)
denotes some arbitrary linear combination of w1, . . . , wt (not necessarily the same for different yj , zj)), a
side effect of “pulling back” from the quotient space. Nevertheless, this can be fixed by simply redefining
yj ← yj + σ(w).

We now turn back to the task of upper bounding the expectation in (15). We make a change of variables:
g′j = 〈gj , x〉 for j = 1, . . . , s, w′j = 〈wj , x〉 for j = 1, . . . , t, and y′j = 〈yj , x〉 and z′j = 〈zj , x〉 for
j = 1, . . . , i − s − t. Since these vectors are linearly independent, we have that our g′, w′, y′, z′ variables
are independent and uniform over {0, 1}k. For notational simplicity, we will just drop the primes in the
superscripts, and relabel these variables as g, w, y, z. Thus the expectation in (15) equals

E
g,w,y,z

[
f=i(g1, . . . , gs, w1, . . . , wt, y1, . . . , yn, yn+1, . . . , yi−s−t)

f=i(g1, . . . , gs, w1, . . . , wt, z1, . . . , zn, zn+1, . . . , zi−s−t)

f=i(g1, . . . , gs, y1 + z1, . . . , yn + zn, yn+1, . . . , yi−s−t, zn+1, . . . , zi−s−t)
]
.

Denote hg1,...,gs(a1, . . . , ai−s) = f=i(g1, . . . , gs, a1, . . . , ai−s). To reduce cumbersome notation, we drop
the subscript from h for now and remember that it is g1, . . . , gs throughout. Then our expectation is

E
g,w,y,z

[
h(w1, . . . , wt, y1, . . . , yn, yn+1, . . . , yi−s−t)

h(w1, . . . , wt, z1, . . . , zn, zn+1, . . . , zi−s−t)

h(y1 + z1, . . . , yn + zn, yn+1, . . . , yi−s−t, zn+1, . . . , zi−s−t)
]
.

For a tuple (b1, b2, . . . , bn) and m1 6 m2, we will denote by b[m1:m2] the sub-tuple (bm1 , bm1+1, . . . , bm2).
Applying the Fourier transform on h and using the expectation over w, y, z, we see that the expectation
equals

E
g

∑
T1,...,Tn
W1,...,Wt

Pn+1,...,Pi−s−t
Qn+1,...,Qi−s−t

[
ĥ(W[1:t], T[1:n], P[n+1:i−s−t]) · ĥ(W[1:t], T[1:n], Q[n+1:i−s−t])

ĥ(T[1:n], P[n+1:i−s−t], Q[n+1:i−s−t])
]
.
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For ease of notation, we will denote by T the tuple (T1, . . . , Tn) and similarly for W,P,Q. Thus the
expression above can be written as

E
g

 ∑
T,W,P,Q

ĥ(W,T, P ) · ĥ(W,T,Q) · ĥ(T, P,Q)

.
For a fixed g and T , the sum over W,P,Q can be upper bounded in absolute value by repeated Cauchy-
Schwartz as (this technique will be very useful; it is summarized as Lemma A.4):

∑
W,P

|ĥ(W,T, P )|

∑
Q

|ĥ(W,T,Q)| · |ĥ(T, P,Q)|


6
∑
W,P

|ĥ(W,T, P )|

√∑
Q

ĥ2(W,T,Q)

√∑
Q

ĥ2(T, P,Q)


=
∑
W

√∑
Q

ĥ2(W,T,Q)

∑
P

|ĥ(W,T, P )| ·
√∑

Q

ĥ2(T, P,Q)


6
∑
W

√∑
Q

ĥ2(W,T,Q)

√∑
P

ĥ2(W,T, P )

√∑
P,Q

ĥ2(T, P,Q)


=

√∑
P,Q

ĥ2(T, P,Q)
∑
W

√∑
Q

ĥ2(W,T,Q)

√∑
P

ĥ2(W,T, P )


6
√∑

P,Q

ĥ2(T, P,Q)

√∑
W,Q

ĥ2(W,T,Q)

√∑
W,P

ĥ2(W,T, P )

def
=
√
A1(T )

√
A2(T )

√
A2(T ),

where we labeled the three expressions inside the square roots as A1(T ), A2(T ), A2(T ) respectively, noting
that the second and the third are really the same. Considering the expectation over g, and further upper
bounding

E
g

[∑
T

√
A1(T ) A2(T )

]
6
√

max
g,T

A1(T ) · E
g

[∑
T

A2(T )

]
.

By Parseval and by Lemma 4.3,

E
g

[∑
T

A2(T )

]
= E

g

 ∑
T,W,P

ĥ2(W,T, P )

 = E
g

[
‖h‖22

]
= ‖f=i‖22 6

2i
2

2i`
η 6

2r
2

2i`
η. (16)

By Lemma 3.20, we have

max
g,T

A1(T ) = max
g,T

∑
P,Q

ĥ2(T, P,Q) 6
26i3

22n+(2·(i−s−t−n))`
ε 6

26r3

22(i−s−t)` ε. (17)
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Combining both upper bounds (16) and (17), and noting that d = 2i− s− t, we get the desired upper bound(
26r3

22(i−s−t)` ε

) 1
2 2r

2

2i`
η 6 24r2 η

√
ε

2(2i−s−t)` .

5 Four-wise Correlations: Getting the Matrices into Convenient Form

We now begin the proof of our main technical Theorem 2.15. This section is devoted to bringing the matrices
M1,M2,M3,M4 into a convenient form and the actual analysis is presented in subsequent sections. We
emphasize again that we can rewrite rows of the four matrices as long as each row-span is preserved. Thanks
to the lemma below, we assume henceforth that the row-span of each matrix is contained in the direct sum
of the remaining three.

Lemma 5.1. Suppose rowspan(M4) 6⊆ ⊕3
j=1rowspan(Mj) (or the other three symmetric cases). Then

E
x∈({0,1}k)`

[f=i(M1x)f=i(M2x)f=i(M3x))f=i(M4x)] = 0.

Proof. Essentially the same as that of Lemma 4.5.

5.1 Removing 4-wise and 3-wise Intersections of Rowspaces

Consider the subspace ∩4
j=1rowspan(Mj). Let H4 be a basis for it and h4 = |H4| be its dimension. We may

assume w.l.o.g. that the first h4 rows of each matrix are precisely H4 and the rest of their rows are linear
combinations of vectors v1, . . . , vr that are linearly independent ofH4. The rowsH4 are removed now from
each matrix; they will only come into play at the very end of the analysis. For notational convenience, we
refer to the matrices with these rows removed also as M1,M2,M3,M4 respectively. We assume henceforth
that ∩4

j=1rowspan(Mj) = {0} and that the row-span of each matrix is contained in the direct sum of the
remaining three.

We handle 3-wise intersections of the row-spaces in the same manner. Suppose there is a non-zero
vector w ∈ ∩3

j=1rowspan(Mj). Since we assumed that the 4-wise intersection of the row-spaces is trivial,
w 6∈ rowspan(M4). We may assume w.l.o.g. that w is the first row of M1,M2,M3 and their rest of the
rows as well as the rows of M4 are linear combinations of vectors v1, . . . , vr (not necessarily the same as
in the previous para) that are linearly independent of w. The row w is removed now from M1,M2,M3; it
will only come into play at the very end of the analysis. For notational convenience, we refer to the matrices
with this row removed also as M1,M2,M3 respectively (and M4 is unaffected). This process is repeated as
long as there is a non-trivial 3-wise intersection of the row-spaces. At the end of this process, let H3 denote
the set of all row-vectors thus removed, h3 = |H3|, and s1, s2, s3, s4 be the number of remaining rows of
the respective matrices. Since the original number of rows was i and h4 were removed in the earlier step,
the number of rows removed from the jth matrix in the current step is i− h4 − sj .

We assume henceforth that the matrices M1,M2,M3,M4 do not have non-trivial 3-wise intersection of
their row-spaces, that the row-space of each is contained in the direct sum of the remaining three, and that
their number of rows is s1, s2, s3, s4 respectively.

40



5.2 Getting M1,M2,M3 into Form

We first write M1,M2,M3 in a convenient form. Letting A = rowspan(M1), B = rowspan(M2), and

C = rowspan(M3) ∩ (rowspan(M1)⊕ rowspan(M2)),

and applying an argument similar to Lemma 4.6 and Lemma A.1, we can write A,B,C as

Span(v1, . . . , vt, p1, . . . , pn, u, y)

Span(v1, . . . , vt, q1, . . . , qn, w, z)

Span(p1 + q1, . . . , pn + qn, u, w)

where u, y, w, z denote tuples of vectors (we do not wish to use an index/subscript to denote their length)
and the vectors {vj , pj , qj , uj , yj , wj , zj) are linearly independent. Now we complete the basis for C to that
of rowspan(M3) by adding linearly independent vectors a = (a1, . . . , ah) from rowspan(M3) \ C. Hence
the row-spans of M1,M2,M3 can be assumed to be in the form (p, q have the same length n):

Span(v, p, u, y)

Span(v, q, w, z)

Span(a, p1 + q1, . . . , pn + qn, u, w). (18)

5.3 Getting M4 into Form: Part I

Now we begin the rather tedious process of getting M4 into a convenient form given the form (18) for the
first three matrices.

We pretend first that v = p = u = q = w = 0 (formally, taking a quotient). The first three row-spaces
now amount to Y = Span(y), Z = Span(z), and A = Span(a). Denoting W = rowspan(M4) (its quotient
to be precise), we have that W ⊆ A ⊕ Y ⊕ Z. Using Lemma A.2, there is a basis for W of the following
form ∪7

s=1As where

A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj | j ∈ Φ6 }
A7 = { zk | k ∈ Ψ7}.

Here σ(yΦ1,Φ5) are arbitrary linear forms in {yj |j ∈ Φ1 ∪Φ5} (possibly different ones, but we hide this fact
as it will be essentially irrelevant). We emphasize that the notation (and similar ones) {ai + yj + zk | i ∈
Σ1, j ∈ Φ1, k ∈ Ψ1} is imprecise, but chosen for the sake of ease. Here |Σ1| = |Φ1| = |Ψ1| and there are
exactly |Σ1| vectors in this set, forming a kind of a perfect matching. We further emphasize the following
observation.

Informally speaking, if all forms σ(yΦ1,Φ5) are ignored, then each a, y, z variable appears in the above
representation exactly once. Formally,
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• Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4 (disjointly) cover all a-variables.

• Φ1 ∪ Φ2 ∪ Φ5 ∪ Φ6 (disjointly) cover all y-variables.

• Ψ1 ∪Ψ3 ∪Ψ5 ∪Ψ7 (disjointly) cover all z-variables.

These three statements are simply consequences of A ⊆ Y ⊕ Z ⊕W , Y ⊆ A⊕ Z ⊕W , Z ⊆ A⊕ Y ⊕W
respectively. Now we “pull back” from the quotient space. This has the effect of adding a σ(v, p, u, q, w)
term to each vector that denotes an arbitrary linear form in those variables (and since these forms would
be essentially irrelevant, we use the same notation for all). This yields a partial basis for rowspan(M4)
summarized below.

Lemma 5.2. rowspan(M4) has a partial basis of the following form ∪7
s=1As where

A1 = { ai + yj + zk +σ(v, p, u, q, w) | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj +σ(v, p, u, q, w) | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk +σ(v, p, u, q, w) | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai +σ(v, p, u, q, w) + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk +σ(v, p, u, q, w) | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj +σ(v, p, u, q, w) | j ∈ Φ6 }
A7 = { zk +σ(v, p, u, q, w) | k ∈ Ψ7}.

Moreover, if all forms σ(yΦ1,Φ5) are ignored, then each a, y, z variable appears in the above representation
exactly once.

5.4 Getting M4 into Form: Part II

In the previous subsection, we obtained a partial basis for rowspan(M4) by pretending that v = p = u =
q = w = 0 (but did add σ(v, p, u, q, w) terms back to account for this). This basis can now be extended to a
basis for rowspan(M4) by adding in a basis for

W = rowspan(M4) ∩ Span(v, p, u, q, w).

We do this in two steps. First, we pretend that v = u = w = 0. Let P = Span(p) and Q = Span(q)
(note that n = dim(P ) = dim(Q)). Since W ⊆ P ⊕ Q, by Lemma A.3, for a partition of the index set
{1, . . . , n} = ∆0 ∪∆1 ∪∆2 ∪ . . . ∪∆m ∪ Ω1 ∪ Ω2, we may assume that W has a basis

A8 = { pi + σ(q) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) | i ∈ Ω1 ∪ Ω2 }
A11 = { qj | j ∈ Ω2 }.

Here Bs =
{
qj + σ(p∆[s+1:m]

)
∣∣∣ j ∈ ∆s

}
. We recall that ∆[s+1:m] = ∆s+1 ∪ . . . ∪ ∆m ∪ Ω1 ∪ Ω2. As

usual σ(·) are linear forms in its inputs that we do not really care about. We “pull back” from the quotient
space by adding σ(v, u, w) to every vector yielding:

Lemma 5.3. A partial basis for rowspan(M4) from Lemma 5.2 can be further extended as A8∪A9∪A10∪
A11 where

A8 = { pi + σ(q) +σ(v, u, w) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) +σ(v, u, w) | i ∈ Ω1 ∪ Ω2 }
A11 = { qj +σ(v, u, w) | j ∈ Ω2 }.
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Here Bs =
{
qj + σ(p∆[s+1:m]

) + σ(v, u, w)
∣∣∣ j ∈ ∆s

}
. Finally, we can complete a basis for rowspan(M4)

by adding a basis for W = rowspan(M4) ∩ Span(v, u, w). This can clearly be done by first pretending
v = w = 0, writing the basis for W ⊆ Span(u), pulling it back by adding forms σ(v, w), and then finally
completing the basis by adding a basis for rowspan(M4) ∩ Span(v, w). We summarize this as:

Lemma 5.4. A partial basis for rowspan(M4) from Lemmas 5.2 and 5.3 can be completed by adding A12 ∪
A13 where (for some index set Γ)

A12 = { ui + σ(v, w) | i ∈ Γ}
A13 = basis(rowspan(M4) ∩ Span(v, w)).

To summarize, basis for rowspan(M4) can be assumed to be ∪13
s=1As where

A1 = { ai + yj + zk +σ(v, p, u, q, w) | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj +σ(v, p, u, q, w) | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk +σ(v, p, u, q, w) | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai +σ(v, p, u, q, w) + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk +σ(v, p, u, q, w) | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj +σ(v, p, u, q, w) | j ∈ Φ6 }
A7 = { zk +σ(v, p, u, q, w) | k ∈ Ψ7}

A8 = { pi + σ(q) +σ(v, u, w) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) +σ(v, u, w) | i ∈ Ω1 ∪ Ω2 }
A11 = { qj +σ(v, u, w) | j ∈ Ω2 }

A12 = { ui + σ(v, w) | i ∈ Γ}
A13 = basis(rowspan(M4) ∩ Span(v, w)). (19)

HereBs =
{
qj + σ(p∆[s+1:m]

) + σ(v, u, w)
∣∣∣ j ∈ ∆s

}
. The variables {ai, yj , zk} appearing inA1, . . . , A7,

the variables {pi, qj} appearing inA8, . . . , A11 and the variables {ui} appearing inA12 will be called pivots
(the reader should ignore the σ(·) forms to clearly understand which variables we are referring to as pivots).

5.5 Getting M4 into Form: Part III

In this section, we make further changes to the basis for rowspan(M4) that are needed towards our final
proof. We recommend however that the reader skips this section and jumps to the next section where we
present a proof in a special but instructive case.

Step 1

We start with the basis in (19). We observe that:

• (v, p, u) variables can be “absorbed into” the pivot y-variables,

• (v, q, w) variables can be absorbed into the pivot z-variables,
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• u-variables can be absorbed into the pivot p-variables, and

• w-variables can be absorbed into the pivot q-variables.

Therefore, if we have a y-variable as a pivot, there is no need to include (v, p, u)-variables in the corre-
sponding σ(·) form (and similarly for the z, p, q pivots). This leads to the simplified σ(·) forms as shown
below.

A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj +σ( q, w) | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk +σ( p, u ) | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai +σ(v, p, u, q, w) + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj +σ( q, w) | j ∈ Φ6 }
A7 = { zk +σ( p, u ) | k ∈ Ψ7}

A8 = { pi + σ(q) +σ(v, w) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) +σ(v, w) | i ∈ Ω1 ∪ Ω2 }
A11 = { qj +σ(v, u ) | j ∈ Ω2 }

A12 = { ui + σ(v, w) | i ∈ Γ}
A13 = basis(rowspan(M4) ∩ Span(v, w)).

Here Bs =
{
qj + σ(p∆[s+1:m]

) + σ(v, u )
∣∣∣ j ∈ ∆s

}
.

Step 2

Consider A7 and its vectors {zk + σ(p, u) | k ∈ Ψ7}. By adding vectors from A8 if necessary, we can
assume that the form σ(·) does not depend on p∆1 (we may need re-absorption of v, q, w into zk). We wish
to make the dependence on p∆0 more restrictive. So our concern is with their zk + σ(p∆0) component.
We can change the matched basis for p∆0 so that for a partition ∆0 = ∆′0 ∪ ∆′′0 , Ψ7 = Ψ7a ∪ Ψ7b, these
components turn into

{zk + ps | k ∈ Ψ7a, s ∈ ∆′0} ∪ {zk + σ(p∆′0
) | k ∈ Ψ7b}.

Further, adding the former to the latter as necessary (which amounts to a change of basis for zΨ7), the latter
components can be made independent of p∆0 altogether. Additionally, for the former we may absorb u and
p∆[2:m]

into ps. Thus we may split A7 into A7a and A7b as shown below. We emphasize that |∆′0| = |Ψ7a|.
With these changes, the basis for rowspan(M4) can be written as:

A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj +σ( q, w) | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk +σ( p, u ) | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai +σ(v, p, u, q, w) + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj +σ( q, w) | j ∈ Φ6 }
A7a = { zk + ps | k ∈ Ψ7a, s ∈ ∆′0}
A7b = { zk +σ( p∆[2:m]

, u ) | k ∈ Ψ7b}
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A8 = { pi + σ(q) +σ(v, w) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) +σ(v, w) | i ∈ Ω1 ∪ Ω2 }
A11 = { qj +σ(v, u ) | j ∈ Ω2 }

A12 = { ui + σ(v, w) | i ∈ Γ}
A13 = basis(rowspan(M4) ∩ Span(v, w)).

Here Bs =
{
qj + σ(p∆[s+1:m]

) + σ(v, u )
∣∣∣ j ∈ ∆s

}
.

Step 3

Finally, we considerA11 and its vectors {qj+σ(v, u )| j ∈ Ω2}. By adding vectors fromA12 if necessary,
we can assume that the form σ(·) does not depend on uΓ (we may need re-absorption of w into qj). In other
words, σ(·) depends only on the remaining variables of u denoted as uΓ. By a change of basis on uΓ

variables, we can write, for some Γ0 ⊆ Γ,

Span(A11) = Span({ui + σ(qΩ2 , v) | i ∈ Γ0})⊕ (Span(A11) ∩ Span(qΩ2 , v)) .

Out of these two component spaces, we retain only the latter as new A11 and merge the former with A12

(redefining new Γ as Γ ∪ Γ0). Thus we reach our final form:

A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj +σ( q, w) | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk +σ( p, u ) | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai +σ(v, p, u, q, w) + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj +σ( q, w) | j ∈ Φ6 }
A7a = { zk + ps | k ∈ Ψ7a, s ∈ ∆′0}
A7b = { zk +σ( p∆[2:m]

, u ) | k ∈ Ψ7b}

A8 = { pi + σ(q) +σ(v, w) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) +σ(v, w) | i ∈ Ω1 ∪ Ω2 }
A11 ⊆ Span(qΩ2 , v).

Here Bs =
{
qj + σ(p∆[s+1:m]

) + σ(v, u )
∣∣∣ j ∈ ∆s

}
.

A12 = { ui + σ(qΩ2 , v, w) | i ∈ Γ}
A13 = basis(rowspan(M4) ∩ Span(v, w)). (20)
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6 Four-wise Correlations: A (somewhat) Simplified Case

We now begin the proof of our main technical Theorem 2.15, i.e. to upper bound the expectation

E
x∈({0,1}k)`

[f=i(M1x)f=i(M2x)f=i(M3x)f=i(M4x)]. (21)

For the benefit of the reader, this section presents the proof in the special case where in the basis for
rowspan(M4) given in (19) (ignore Section 5.5 and modifications therein for now):

• All the linear forms σ(·) are zero.

• A10 = A11 = A13 = ∅. A9 consists of just B2.

• There is no further partition of A7 into A7a and A7b.

Given matrices M1,M2,M3,M4, we note:

• Let H4 = g = {g1, . . . , gh4} be the rows that appeared in all four matrices (and were removed).

• LetH3 = r = {r1, . . . , rh3} be the rows that appeared in (exactly) three matrices (and were removed).
Let r(1), r(2), r(3), r(4) ⊆ H3 be the sets of rows that appeared in the four matrices respectively, so
that |r(1)|+ |r(2)|+ |r(3)|+ |r(4)| = 3 · h3.

• When we take expectation over x ∈ ({0, 1}k)`, if w is a row of a matrix, we make the change of basis
w′ = 〈w, x〉 where w′ is uniformly distributed over {0, 1}k and moreover independently for rows that
are linearly independent. For the ease of notation, we drop the prime from the superscript and call the
new variable w as well.

Thus we assume that:

M1x = g, r(1), v, p, u, y

M2x = g, r(2), v, q, w, z

M3x = g, r(3), a, p1 + q1, . . . , pn + qn, u, w

M4x = g, r(4), A1, . . . , A9, A12. (22)

We recall that (in the present special case):

A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj | j ∈ Φ6 }
A7 = { zk | k ∈ Ψ7}

A8 = { pi | i ∈ ∆1 }
A9 = { qj | j ∈ ∆2 }

A12 = { ui | i ∈ Γ}.
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Lemma 6.1. The dimension d of ⊕4
j=1(rowspan(Mj)) is:

d =|g|+ |r|+ |v|+ (|p|+ |q|) + (|u|) + |w|+ (|a|+ |y|+ |z|)
=|g|+ |r|+ |v|+ (2|∆0|+ 2|∆1|+ 2|∆2|) + (|Γ|+ |Γ|) + |w|+

(3|Σ1|+ 2|Σ2|+ 2|Σ3|+ |Σ4|+ 2|Φ5|+ |Φ6|+ |Ψ7|).

Proof. The number of all the variables appearing above are added up. It is noted that the p and q variables
both equal in number to |∆0|+ |∆1|+ |∆2| . Also, |Σ1| = |Φ1| = |Ψ1| and similar equalities. We note that
the input u is partitioned as (uΓ, uΓ).

We split inputs M1x, . . . ,M4x in (22) into three parts: Fourier analysis will be applied on the third part,
Cauchy-Schwartz on the second part, and the first part will be thought of as a “restriction”. The splits are as
below. To clarify the notation, p∆0 denotes, as before, the variables {pi | i ∈ ∆0}, (p + q)∆0 denotes the
variables {pj+qj | j ∈ ∆0}, and for the ease of notation, (a+y+z)1 denotes the triples {ai+yj+zk ∈ A1}
(and similarly).

L J K

M1x =: {g, r(1), uΓ} {v, p∆1∪∆2 , uΓ, yΦ6} {p∆0 , yΦ1 , yΦ2 , yΦ5}

M2x =: {g, r(2)} {v, q∆1∪∆2 , w, zΨ7} {q∆0 , zΨ1 , zΨ3 , zΨ5}

M3x =: {g, r(3), uΓ} {aΣ4 , (p+ q)∆1∪∆2 , uΓ, w} {aΣ1 , aΣ2 , aΣ3 , (p+ q)∆0}

M4x =: {g, r(4), uΓ} {aΣ4 , yΦ6 , zΨ7 , p∆1 , q∆2} {(a+ y + z)1, (a+ y)2, (a+ z)3, (y + z)5}

Denoting the parts in the splits as (L1, J1,K1), . . . , (L4, J4,K4) respectively, consider the restrictions:

λ1,L1,J1(K1) = f=i(L1, J1,K1), . . . , λ4,L4,J4(K4) = f=i(L4, J4,K4).

Dropping the subscripts (but keeping in mind that they are always there), the goal is to upper bound

E [λ1(K1)λ2(K2)λ3(K3)λ4(K4)], (23)

where for notational ease, we did not write the long list of variables that the expectation is taken over. We
do note that Ls, Js,Ks all depend on the inputs. Writing the Ks explicitly:

λ1( p∆0 , yΦ1 , yΦ2 , yΦ5 , )

λ2( q∆0 , zΨ1 , zΨ3 , zΨ5 , )

λ3( aΣ1 , aΣ2 , aΣ3 , (p+ q)∆0 )

λ4( aΣ1 + yΦ1 + zΨ1 , aΣ2 + yΦ2 , aΣ3 + zΨ3 , yΦ5 + zΨ5 ).
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The notation (and similar ones) aΣ1 + yΦ1 + zΨ1 is imprecise, but we use it for the ease. It really refers
to {ai + yj + zk ∈ A1 | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}. Now writing the λs in the Fourier representation and
taking expectation over its inputs, we see that the expectation in (23) equals (there is a product of four terms
that are written one below the other for visual ease)

E

 ∑
W,Y,Z,S,B

λ̂1(S,W, Y,B)

λ̂2(S,W,Z,B)

λ̂3(W,Y,Z, S)

λ̂4(W,Y,Z,B).

 (24)

To explain the reasoning, we note that the Fourier expansion will have a term (as part of a larger product
term)

· · · · · ·χW (aΣ1 + yΦ1 + zΨ1) χW ′(yΦ1) χW ′′(zΨ1) χW ′′′(aΣ1) · · · · · ·

and taking expectation over aΣ1 , yΦ1 , zΨ1 , the term vanishes unless W = W ′ = W ′′ = W ′′′. Similar
reasoning is applied above to “Fourier tuples” Y, Z, S,B.

For fixed L1, . . . , L4,W, Y, Z, S,B, we consider the expectation over J1, . . . , J4 (or rather inputs in
those sets). The point here is that all inputs in J1, . . . , J4 appear twice:

• Exactly twice, these being {v, uΓ, yΦ6 , w, zΨ7 , aΣ4}.

• Or “effectively” exactly twice, these being p∆1 , p∆2 , q∆1 , q∆2 . What we mean here is that for indices
in ∆1 (and similarly in ∆2), we have inputs p∆1 , q∆1 , (p + q)∆1 , p∆1 appearing in J1, J2, J3, J4

respectively. These can be paired as (p∆1 , q∆1) and ((p + q)∆1 , p∆1). The latter pair is distributed
same as the former and this is what matters for applying Cauchy-Schwarz.

Replacing the Fourier coefficients by their absolute values and using repeated Cauchy-Schwartz (see Lemma
A.4), we see that (24) is upper bounded by

E
g,r,uΓ

 ∑
W,Y,Z,S,B

√
E
J1

[
λ̂2

1,J1
(S,W, Y,B)

]√
E
J2

[
λ̂2

2,J2
(S,W,Z,B)

]
√

E
J3

[
λ̂2

3,J3
(W,Y,Z, S)

]√
E
J4

[
λ̂2

4,J4
(W,Y,Z,B)

]]
.

Again applying Cauchy-Schwartz (note that the pairing is first-third and fourth-second factors) we get an
upper bound

√
Term1 ·

√
Term2 where

Term1 = E
g,r,uΓ

 ∑
W,Y,Z,S,B

E
J1

[
λ̂2

1,J1
(S,W, Y,B)

]
E
J3

[
λ̂2

3,J3
(W,Y,Z, S)

]
Term2 = E

g,r,uΓ

 ∑
W,Y,Z,S,B

E
J4

[
λ̂2

4,J4
(W,Y,Z,B)

]
E
J2

[
λ̂2

2,J2
(S,W,Z,B)

] .
We consider Term1. Noting that W,Y, S appear in both λ̂1(·), λ̂3(·), B appears only in λ̂1(·), Z appears
only in λ̂3(·), and that λ3(·) does not depend on r(1) \ r(3) (so expectation over it can be pushed inside),
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we can rewrite Term1 as:

Term1 = E
g,r,uΓ

 ∑
W,Y,S

(
E

r(1)\r(3),J1

[∑
B

λ̂2
1,J1

(S,W, Y,B)

])(
E
J3

[∑
Z

λ̂2
3,J3

(W,Y,Z, S)

]) .
Finally, using Lemma A.5, we have the upper bound:

Term1 6

 max
g,r(1)∩r(3),uΓ,

W,Y,S

E
r(1)\r(3),J1

[∑
B

λ̂2
1,J1

(S,W, Y,B)

] E
g,r,uΓ,J3

 ∑
W,Y,S,Z

λ̂2
3,J3

(W,Y,Z, S)

 .

The second factor is EL3,J3,K3

[
‖λ3,L3,J3(K3)‖22

]
= ‖f=i‖22 6 2i

2

2i`
η. The first factor is bounded by, using

Lemma 3.20, 26i3 ε
2d1·`

where

d1 = (|J1|+ |r(1) \ r(3)|) + 2(|W |+ |Y |+ |S|) + |B|
= |v|+ |∆1|+ |∆2|+ |Γ|+ |Φ6|+ |r(1) \ r(3)|+ 2|Σ1|+ 2|Σ2|+ 2|∆0|+ |Φ5|.

We similarly re-write Term2 as:

Term2 = E
g,r,uΓ

 ∑
W,Z,B

 E
J4,uΓ,
r(4)\r(2)

[∑
Y

λ̂2
4,J4

(W,Y,Z,B)

](E
J2

[∑
S

λ̂2
2,J2

(S,W,Z,B)

]) .
Here λ2(·) does not depend on uΓ and r(4) \ r(2), so both are pushed inside. As before,

Term2 6

 max
g,r(4)∩r(2),
W,Z,B

E
J4,uΓ,
r(4)\r(2)

[∑
Y

λ̂2
4,J4

(W,Y,Z,B)

]
 E
g,r,uΓ,J2

 ∑
W,Z,B,S

λ̂2
2,J2

(S,W,Z,B)

 .

The second factor is EL2,J2,K2

[
‖λ2,L2,J2(K2)‖22

]
= ‖f=i‖22 6 2i

2

2i`
η. The first factor is bounded by, using

Lemma 3.20, 26i3 ε
2d2·`

where

d2 = (|J4|+ |r(4) \ r(2)|+ |Γ|) + 2(|W |+ |Z|+ |B|) + |Y |
= |Σ4|+ |Φ6|+ |Ψ7|+ |∆1|+ |∆2|+ |r(4) \ r(2)|+ |Γ|+ 2|Σ1|+ 2|Σ3|+ 2|Φ5|+ |Σ2|.

The proof of Theorem 2.15 (in the special case) is complete by recalling that we have an upper bound of√
Term1

√
Term2 and that i 6 r and 1

2((d1 + i) + (d2 + i)) = d as below. One gets an upper bound of
27r3

2d`
ηε in Theorem 2.15.

Lemma 6.2. d1 + i+ d2 + i = 2d.

Proof. We write down expressions for d1, d2 as above followed by expressions for i (= |L3 ∪J3 ∪K3|) and
i (= |L2 ∪ J2 ∪K2|):

d1 = |v|+ |∆1|+ |∆2|+ |Γ|+ |Φ6|+ |r(1) \ r(3)|+ 2|Σ1|+ 2|Σ2|+ 2|∆0|+ |Φ5|.
d2 = |Σ4|+ |Φ6|+ |Ψ7|+ |∆1|+ |∆2|+ |r(4) \ r(2)|+ |Γ|+ 2|Σ1|+ 2|Σ3|+ 2|Φ5|+ |Σ2|.
i = |g|+ |r(3)|+ |Γ|+ |Σ4|+ |∆1|+ |∆2|+ |Γ|+ |w|+ |Σ1|+ |Σ2|+ |Σ3|+ |∆0|.
i = |g|+ |r(2)|+ |v|+ |∆1|+ |∆2|+ |w|+ |Ψ7|+ |∆0|+ |Σ1|+ |Σ3|+ |Φ5|.
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It can be verified that the overall sum is exactly 2d where as in Lemma 6.1,

d = |g|+ |r|+ |v|+ 2|∆0|+ 2|∆1|+ 2|∆2|+ |Γ|+ |Γ|+ |w|+
3|Σ1|+ 2|Σ2|+ 2|Σ3|+ |Σ4|+ 2|Φ5|+ |Φ6|+ |Ψ7|.

One notes that since every element of r = r(1) ∪ r(2) ∪ r(3) ∪ r(4) is contained in precisely three of these
sets, |r| = |r(3)|+ |r(1) \ r(3)| = |r(2)|+ |r(4) \ r(2)|.

7 Four-wise Correlations: the General Case

We now begin the full proof of our main technical Theorem 2.15, i.e. to upper bound the expectation

E
x∈({0,1}k)`

[f=i(M1x)f=i(M2x)f=i(M3x)f=i(M4x)]. (25)

Given matrices M1,M2,M3,M4, we recall:

• Let H4 = g = {g1, . . . , gh4} be the rows that appeared in all four matrices (and were removed).

• LetH3 = r = {r1, . . . , rh3} be the rows that appeared in (exactly) three matrices (and were removed).
Let r(1), r(2), r(3), r(4) ⊆ H3 be the sets of rows that appeared in the four matrices respectively, so
that |r(1)|+ |r(2)|+ |r(3)|+ |r(4)| = 3 · h3.

• When we take expectation over x ∈ ({0, 1}k)`, if w is a row of a matrix, we make the change of basis
w′ = 〈w, x〉 where w′ is uniformly distributed over {0, 1}k and moreover independently for rows that
are linearly independent. For the ease of notation, we drop the prime from the superscript and call the
new variable w as well.

Thus we assume that (given the basis for rowspan(M4) by (20), written again below for convenience):

M1x = g, r(1), v, p, u, y

M2x = g, r(2), v, q, w, z

M3x = g, r(3), a, p1 + q1, . . . , pn + qn, u, w

M4x = g, r(4), A1, . . . , A6, A7a, A7b, A8, . . . , A13. (26)

Lemma 7.1. The dimension d of ⊕4
j=1(rowspan(Mj)) is:

d =|g|+ |r|+ |v|+ (|p|+ |q|) + (|u|) + |w|+ (|a|+ |y|+ |z|)
=|g|+ |r|+ |v|+ (2|∆′0|+ 2|∆′′0|+ 2|∆1|+ 2|∆2|+ . . .+ 2|∆m|+ 2|Ω1|+ 2|Ω2|) + (|Γ|+ |Γ|) + |w|+

(3|Σ1|+ 2|Σ2|+ 2|Σ3|+ |Σ4|+ 2|Φ5|+ |Φ6|+ |Ψ7a|+ |Ψ7b|).

Proof. The number of all the variables appearing above are added up. It is noted that the p and q variables
both equal in number to |∆′0| + |∆′′0| + |∆1| + |∆2| + . . . + |∆m| + |Ω1| + |Ω2| and ∆0 = ∆′0 ∪∆′′0 . We
have |Σ1| = |Φ1| = |Ψ1| and similar equalities. We emphasize that |∆′0| = |Ψ7a|.

We recall for convenience that:
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A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj +σ( q, w) | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk +σ( p, u ) | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai +σ(v, p, u, q, w) + σ(yΦ1,Φ5) | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj +σ( q, w) | j ∈ Φ6 }
A7a = { zk + ps | k ∈ Ψ7a, s ∈ ∆′0}
A7b = { zk +σ( p∆[2:m]

, u ) | k ∈ Ψ7b}

A8 = { pi + σ(q) +σ(v, w) | i ∈ ∆1 }
A9 = B2 ∪ . . . ∪Bm
A10 = { pi + σ(qΩ1) +σ(v, w) | i ∈ Ω1 ∪ Ω2 }
A11 ⊆ Span(qΩ2 , v).

Here Bs =
{
qj + σ(p∆[s+1:m]

) + σ(v, u )
∣∣∣ j ∈ ∆s

}
.

A12 = { ui + σ(qΩ2 , v, w) | i ∈ Γ}
A13 = basis(rowspan(M4) ∩ Span(v, w)).

We split each input in (26) into two parts. The mix of Fourier analysis and Cauchy-Schwartz will not be
very clean. The splits are as below.

J K

M1x =: {g, r(1), v, p∆[2:m]
, uΓ, uΓ} {p∆0∪∆1 , yΦ1 , yΦ2 , yΦ5 , yΦ6}

M2x =: {g, r(2), v, q∆[2:m]
, w, zΨ7b

} {q∆0∪∆1 , zΨ1 , zΨ3 , zΨ5 , zΨ7a}

M3x =: {g, r(3), (p+ q)∆[2:m]
, uΓ, uΓ, w} {a, (p+ q)∆0∪∆1}

M4x =: {g, r(4), zΨ7b
, A9, A10, A11, A12, A13} {(a+ y + z)1, (a+ y)2, (a+ z)3,

aΣ4 , (y + z)5, yΦ6 , zΨ7a + p∆′0
, p∆1

}
.

We are using an imprecise notation: inputs for M4x (except for g, r(4), (a + y + z)1, (y + z)5) have
the additional σ(·) terms that are omitted from the notation for ease. Denoting the parts in the splits as
(J1,K1), . . . , (J4,K4) respectively, consider the restrictions:

λ1,J1(K1) = f=i(J1,K1), . . . , λ4,J4(K4) = f=i(J4,K4).

Dropping the subscripts (but keeping in mind that they are always there), the goal is to upper bound

E [λ1(K1)λ2(K2)λ3(K3)λ4(K4)], (27)
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where for notational ease, we did not write the long list of variables that the expectation is taken over. We
do note that Js,Ks all depend on the inputs. Writing the Ks explicitly:

λ1( p∆′0
, p∆′′0

, p∆1 , yΦ1 , yΦ2 , yΦ5 , yΦ6 )

λ2( q∆′0
, q∆′′0

, q∆1 , zΨ1 , zΨ3 , zΨ5 , zΨ7a )

λ3( aΣ1 , aΣ2 , aΣ3 , aΣ4 , (p+ q)∆′0
, (p+ q)∆′′0

, (p+ q)∆1 )

λ4( aΣ1 + yΦ1 + zΨ1 , aΣ2 + yΦ2 , aΣ3 + zΨ3 , aΣ4 , yΦ5 + zΨ5 , yΦ6 , zΨ7a + p∆′0
, p∆1 ).

Now writing the λs in the Fourier representation and taking expectation over their inputs, we see that
the expectation in (27) equals, up to a caveat to be fixed shortly, (there is a product of four terms that are
written one below the other for visual ease)

E
g,r,v,uΓ,uΓ,w

p∆[2:m]
,q∆[2:m]

,zΨ7b


∑

W,Y,Z,B,P
T,Q,N,S,D,X

sign ·

λ̂1( S +Q, D, X +N, W, Y, P, T )

λ̂2( S, D, X, W, Z, P, Q )

λ̂3( W, Y, Z, B, S, D, X )

λ̂4( W, Y, Z, B, P, T, Q, N ).


(28)

A remark: there are σ(·) terms that were omitted from the notation. They have a two-fold effect. Firstly,
there is a sign ∈ {−1, 1} that depends on (Y,Z,B, T,N, S,D,X; v, u, w, p, q). We will take absolute
values immediately next, so this sign does not really matter. Secondly, there are additional σ(·) terms now
in the Fourier domain, and the form of the Fourier coefficients is not quite as in (28), but actually as below:

λ̂1( S +Q+ D+ X +N+ W+ Y, P T )
σ(B,Z), σ(B,Z), σ(B,Z), σ(B), +σ(B),

λ̂2( S+ D+ X+ W, Z, P, Q )
σ(Y,B, T,N), σ(Y,B, T,N), σ(Y,B, T,N),

λ̂3( W, Y, Z, B, S, D, X )

λ̂4( W, Y, Z, B, P, T, Q, N ).

(29)

Denoting the Fourier coefficients as λ̂1(V1), λ̂2(V2), λ̂3(V3), λ̂4(V4), an upper bound on the desired expec-
tation is:
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E
g,r,v,uΓ,uΓ,w,zΨ7b
p∆[2:m]

,q∆[2:m]

∑
W,Y,Z,B,P
T,Q,N,S,D,X

[
|λ̂1(V1)| · |λ̂2(V2)| · |λ̂3(V3)| · |λ̂4(V4)|

]

= E
g,r,v,uΓ,uΓ,w
p∆[2:m]

,q∆[2:m]

∑
W,Y,Z,B,P
T,Q,N,S,D,X

E
zΨ7b

[
|λ̂1(V1)| · |λ̂2(V2)| · |λ̂3(V3)| · |λ̂4(V4)|

]
.

We note that zΨ7a appears only in J2, J4. Using Cauchy-Schwartz, we get an upper bound

E
g,r,v,uΓ,uΓ,w
p∆[2:m]

,q∆[2:m]

∑
W,Y,Z,B,P
T,Q,N,S,D,X

[
|λ̂1(V1)|

√
E
zΨ7b

[
λ̂2

2(V2)
]
|λ̂3(V3)|

√
E
zΨ7b

[
λ̂2

4(V4)
]]
.

A point to note here is as follows: in λ4, the variables zΨ7b
actually appear along with additional σ(p∆[2:m]

, u)
terms. However the expectation over these additional variables is still not considered and is still at the “outer”
level. Hence the Cauchy-Schwartz over zΨ7b

can be safely applied. Moreover, once Cauchy-Schwartz, i.e.
expectation over zΨ7b

, is applied, we can ignore these σ(·) terms henceforth.12 We will use this trick repeat-
edly.

Next, we consider the variables (p∆2 , q∆2), . . . , (p∆m , q∆m), one pair at a time. Let’s consider (p∆2 , q∆2)
as an illustration. We note that p∆2 appears in J1, q∆2 appears in J2, (p + q)∆2 appears in J3 and q∆2 ap-
pears in J4. We note two points. In J3, the distribution of (p+ q)∆2 is same as that of p∆2 . In J4, there are
additional σ(p∆[3:m]

, v, u) terms but the expectation over these variables is still at the outer level. Thus we
may safely apply Cauchy-Schwartz over (p∆2 , q∆2), pairing the first-second and third-fourth factors, ignore
the σ(·) terms henceforth, and get the upper bound

E
g,r,v,uΓ,uΓ,w
p∆[3:m]

,q∆[3:m]

∑
W,Y,Z,B,P
T,Q,N,S,D,X

[√
E
p∆2

[
λ̂2

1(V1)
]√

E
zΨ7b

,q∆2

[
λ̂2

2(V2)
]√

E
p∆2

[
λ̂2

3(V3)
]√

E
zΨ7b

,q∆2

[
λ̂2

4(V4)
]]
.

We apply the same argument iteratively to get an upper bound

E
g,r,v,uΓ,uΓ,w
pΩ1∪Ω2

,qΩ1∪Ω2

∑
W,Y,Z,B,P
T,Q,N,S,D,X

√√√√ E
p∆2,...,m

[
λ̂2

1(V1)
]√√√√ E

zΨ7b
q∆2,...,m

[
λ̂2

2(V2)
]√√√√ E

p∆2,...,m

[
λ̂2

3(V3)
]√√√√ E

zΨ7b
q∆2,...,m

[
λ̂2

4(V4)
] .

Next, we Cauchy-Schwartz over uΓ. This is possible since it appears explicitly only in J1, J3. It appears in
J4 implicitly as part of several σ(·) terms, but all those terms got “ignored” or “eliminated” in prior steps!
Hence we get an upper bound

E
g,r,v,uΓ,w

pΩ1∪Ω2
,qΩ1∪Ω2

∑
W,Y,Z,B,P
T,Q,N,S,D,X

√√√√ E
uΓ

p∆2,...,m

[
λ̂2

1(V1)
]√√√√ E

zΨ7b
q∆2,...,m

[
λ̂2

2(V2)
]√√√√ E

uΓ
p∆2,...,m

[
λ̂2

3(V3)
]√√√√ E

zΨ7b
q∆2,...,m

[
λ̂2

4(V4)
] .

12 Formally, if one wishes to, by change of variables zΨ7b ← zΨ7b + σ(p∆[2:m]
, u).
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Finally, we apply Cauchy-Schwartz twice (the pairing is first-third and fourth-second factors) to get an upper
bound

√
Term1 ·

√
Term2 where

Term1 = E
g,r,v,uΓ,w

pΩ1∪Ω2
,qΩ1∪Ω2

∑
W,Y,Z,B,P
T,Q,N,S,D,X

 E
uΓ

p∆2,...,m

[
λ̂2

1(V1)
]
· E

uΓ
p∆2,...,m

[
λ̂2

3(V3)
]

Term2 = E
g,r,v,uΓ,w

pΩ1∪Ω2
,qΩ1∪Ω2

∑
W,Y,Z,B,P,
T,Q,N,S,D,X

 E
zΨ7b

q∆2,...,m

[
λ̂2

4(V4)
]
· E

zΨ7b
q∆2,...,m

[
λ̂2

2(V2)
] . (30)

Lemma 7.2. We have the upper bound Term1 6 27i3 ηε

2(d1+i)·` where

d1 = |r(1)\r(3)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |v|+ |Γ|+2|Σ1|+2|Σ2|+2|∆′′0|+ |Ψ7a|+ |∆1|+ |Φ5|+ |Φ6|.

Proof. Let us recall the the definitions of V1, V3:

V1 = (S +Q+ σ(B,Z), D + σ(B,Z), X +N + σ(B,Z), W + σ(B), P + σ(B), Y, T ),

V3 = (W,Y,Z,B, S,D,X).

Since P,Q,N do not appear in V3 and we will only be concerned about summing over all possibilities,
we might as well take V1 as

V1 = (Q, D + σ(B,Z), N, W + σ(B), P, Y, T ).

Further in V1, we may replace D + σ(B,Z) by D and W + σ(B) by W . This will induce a change
in V3, but since B,Z are present therein and the Fourier coefficients are basis invariant, the σ(B,Z), σ(Z)
terms there can be cleared. To summarize, we may assume that V1 and V3 are:

V1 = (Q,D,N,W,P, Y, T ), V3 = (W,Y,Z,B, S,D,X).

Noting that W,Y,D are common to V1 and V3, we may thus write

Term1 = E
g,uΓ
r(3)

∑
W,Y,D


 E

v,r(1)\r(3),pΩ1∪Ω2
p∆2,...,m

,uΓ

 ∑
Q,N,P,T

λ̂2
1(W,Y,D,Q,N, P, T )




 E
qΩ1∪Ω2

,w
p∆2,...,m

,uΓ

 ∑
B,Z,S,X

λ̂2
3(W,Y,D,B,Z, S,X)



 .

The vigilant reader must have noticed that we have pushed several expectations “inside”. This is justified as
follows. λ1 does not depend on qΩ1∪Ω2 and w. λ3 does not depend on v, r(1) \ r(3), and since it depends
only on (p+ q)Ω1∪Ω2 , it is “effectively” independent of pΩ1∪Ω2 . Using Lemma A.5, Term1 is bounded by

 max
g,r(1)∩r(3),uΓ

W,Y,D

E
v,r(1)\r(3),pΩ1∪Ω2

p∆2,...,m
,uΓ

∑
Q,N,
P,T

λ2
1(W,Y,D,Q,N, P, T )



E

 ∑
W,Y,D,
B,Z,S,X

λ̂2
3(W,Y,D,B,Z, S,X)


 .
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The second factor equals (as usual) ‖f=i‖22 6 2i
2

2i`
η. The first factor is bounded, using Lemma 3.20, by

26i3 ε
2d1·`

where

d1 = |r(1) \ r(3)|+ (|∆2,...,m|+ |Ω1|+ |Ω2|) + |v|+ |Γ|+ (2|W |+ 2|Y |+ 2|D|) + |Q|+ |N |+ |P |+ |T |
= |r(1) \ r(3)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |v|+ |Γ|+ 2|Σ1|+ 2|Σ2|+ 2|∆′′0|+ |Ψ7a|+ |∆1|+ |Φ5|+ |Φ6|.

Lemma 7.3. We have the upper bound Term2 6 27i3 ηε
2d2·`

where

d2 = |r(4) \ r(2)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |Γ|+ |Ψ7b|+ 2|Σ1|+ 2|Σ3|+ 2|Φ5|+ 2|Ψ7a|+
|Σ2|+ |Σ4|+ |Φ6|+ |∆1|.

Proof. Let us recall the the definitions of V2, V4.

V2 = (S + σ(Y,B, T,N), D + σ(Y,B, T,N), X + σ(Y,B, T,N), W, Z, P, Q),

V4 = (W,Y,Z,B, P, T,Q,N).

Since S,D,X do not appear in V4, we might as well write V2 = (S,D,X,W,Z, P,Q). Noting that
W,Z, P,Q are common to V2 and V4, we may thus write

Term2 = E
g,v,r(2),w
qΩ1∪Ω2

∑
W,Z,P,Q


 E
r(4)\r(2),uΓ,pΩ1∪Ω2

zΨ7b
,q∆2,...,m

 ∑
Y,B,T,N

λ̂2
4(W,Z, P,Q, Y,B, T,N)




 E
zΨ7b

,q∆2,...,m

 ∑
S,D,X

λ̂2
2(W,Z, P,Q, S,D,X)

 .
We have pushed the expectation over r(4) \ r(2), uΓ, pΩ1∪Ω2 inside as λ2 does not depend on them.

Using Lemma A.5, we upper bound Term2 by max
g,v,r(4)∩r(2),w
qΩ1∪Ω2

,W,Z,P,Q

E
r(4)\r(2),uΓ,p∆Ω1∪Ω2

zΨ7b
,q∆2,...,m

∑
Y,B,
T,N

λ̂2
4

(
W,Z, P,Q,
Y,B, T,N

)

E

 ∑
W,Z,P,Q
S,D,X

λ̂2
2

(
W,Z, P,Q,
S,D,X

)
 .

As before, the second factor equals ‖f=i‖22 6 2i
2

2i`
η. The first factor is bounded, using Lemma 3.20, by

26i3 ε
2d2·`

where

d2 = |r(4) \ r(2)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |Γ|+ |Ψ7b|+ (2|W |+ 2|Z|+ 2|P |+ 2|Q|)+
|Y |+ |B|+ |T |+ |N |

= |r(4) \ r(2)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |Γ|+ |Ψ7b|+ 2|Σ1|+ 2|Σ3|+ 2|Φ5|+ 2|Ψ7a|+
|Σ2|+ |Σ4|+ |Φ6|+ |∆1|.
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We get the overall upper bound
√
Term1

√
Term2, which is at most 27r3 ηε

2d`
(noting i 6 r) provided 1

2((d1 +
i) + (d2 + i)) = d. This is proved below completing the proof of Theorem 2.15.

Lemma 7.4. d1 + i+ d2 + i = 2d.

Proof. We write down expressions for d1, d2 as above followed by expressions for i (from M3) and i (from
M2):

d1 = |r(1) \ r(3)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |v|+ |Γ|+ 2|Σ1|+ 2|Σ2|+ 2|∆′′0|+ |Ψ7a|+ |∆1|+
|Φ5|+ |Φ6|.

d2 = |r(4) \ r(2)|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |Γ|+ |Ψ7b|+ 2|Σ1|+ 2|Σ3|+ 2|Φ5|+ 2|Ψ7a|+
|Σ2|+ |Σ4|+ |Φ6|+ |∆1|.

i = |g|+ |r(3)|+ |Σ1|+ |Σ2|+ |Σ3|+ |Σ4|+ |∆′0|+ |∆′′0|+ |∆1|+ |∆2,...,m|+ |Ω1|+ |Ω2|+
|Γ|+ |Γ|+ |w|.

i = |g|+ |r(2)|+ |v|+ |∆′0|+ |∆′′0|+ |∆1|+ |∆2,...,m|+ |Ω1|+ |Ω2|+ |w|+ |Σ1|+
|Σ3|+ |Φ5|+ |Ψ7a|+ |Ψ7b|.

It can be verified that the overall sum is exactly 2d where as in Lemma 7.1,

d = |g|+ |r|+ |v|+ (2|∆′0|+ 2|∆′′0|+ 2|∆1|+ 2|∆2,...,m|+ 2|Ω1|+ 2|Ω2|) + (|Γ|+ |Γ|) + |w|+
(3|Σ1|+ 2|Σ2|+ 2|Σ3|+ |Σ4|+ 2|Φ5|+ |Φ6|+ |Ψ7a|+ |Ψ7b|).

One notes that since every element of r = r(1) ∪ r(2) ∪ r(3) ∪ r(4) is contained in precisely three of these
sets, |r| = |r(3)|+ |r(1) \ r(3)| = |r(2)|+ |r(4) \ r(2)|. Also as emphasized before |Ψ7a| = |∆′0|.
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A Auxiliary Lemmas

Lemma A.1. Suppose A,B,C are three spaces such that A ∩ B = {0} and C ⊆ A ⊕ B. Then sets of
vectors can be chosen in the following manner:

• a1, . . . , ap, a
′
1, . . . , a

′
r are in A and are linearly independent.

• b1, . . . , bq, b′1, . . . , b′r are in B and are linearly independent.

• (a1, . . . , ap, b1, . . . , bq, a
′
1 + b′1, . . . , a

′
r + b′r) is a basis for C.

Moreover:
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• If in addition, A ⊆ B ⊕ C,B ⊆ A⊕ C,

– a1, . . . , ap, a
′
1, . . . , a

′
r is already a basis for A.

– b1, . . . , bq, b
′
1, . . . , b

′
r is already a basis for B.

• Otherwise, the sets can (clearly) be extended further so that

– a1, . . . , ap, a
′
1, . . . , a

′
r, a
′′
1, . . . , a

′′
m is a basis for A.

– b1, . . . , bq, b
′
1, . . . , b

′
r, b
′′
1, . . . , b

′′
n is a basis for B.

Proof. Let (a1, . . . , ap) be a basis for A ∩ C and (b1, . . . , bq) be a basis for B ∩ C. Let c1, . . . , cr ∈ C be
such that (a1, . . . , ap, b1, . . . , bq, c1, . . . , cr) is a basis for C. Since C ⊆ A ⊕ B, cj = a′j + b′j for some
a′j ∈ A, b′j ∈ B.

We now prove that a1, . . . , ap, a
′
1, . . . , a

′
r are linearly independent. Suppose (on the contrary) that for

some index sets Φ ⊆ {1, . . . , p} and Ψ ⊆ {1, . . . , r}, we have
⊕

j∈Φ aj
⊕

j∈Ψ a
′
j = 0. Consider

v =
⊕
j∈Φ

aj
⊕
j∈Ψ

(a′j + b′j) =

⊕
j∈Φ

aj
⊕
j∈Ψ

a′j

⊕
j∈Ψ

b′j =
⊕
j∈Ψ

b′j .

Thus we have v ∈ C as well as v ∈ B and hence v ∈ B ∩ C. Therefore v =
⊕

j∈Σ bj for some index set
Σ ⊆ {1, . . . , q} and substituting above⊕

j∈Φ

aj
⊕
j∈Σ

bj
⊕
j∈Ψ

(a′j + b′j) = 0.

This contradicts, unless Φ = Σ = Ψ = ∅, the assumption that a1, . . . , ap, b1, . . . , bq, a
′
1 + b′1, . . . , a

′
r + b′r is

a basis for C and hence linearly independent.
Finally, we show that ifA ⊆ B⊕C, then a1, . . . , ap, a

′
1, . . . , a

′
r is in fact a basis forA. Indeed, consider

any a ∈ A. Since A ⊆ B ⊕ C, a = b + c for some b ∈ B, c ∈ C. We write c in the basis for C as⊕
j∈Φ aj

⊕
j∈Σ bj

⊕
j∈Ψ(a′j + b′j) and hence

a = b
⊕
j∈Φ

aj
⊕
j∈Σ

bj
⊕
j∈Ψ

(a′j + b′j).

Since A ∩B = {0}, it follows that a =
⊕

j∈Φ aj
⊕

j∈Ψ a
′
j .

Lemma A.2. Suppose A, Y, Z are independent spaces and W ⊆ A⊕ Y ⊕ Z. Then there is a basis for W
of the following form ∪7

s=1As where

A1 = { ai + yj + zk | i ∈ Σ1, j ∈ Φ1, k ∈ Ψ1}
A2 = { ai + yj | i ∈ Σ2, j ∈ Φ2 }
A3 = { ai + zk | i ∈ Σ3, k ∈ Ψ3}
A4 = { ai + σ | i ∈ Σ4 }
A5 = { yj + zk | j ∈ Φ5, k ∈ Ψ5}
A6 = { yj | j ∈ Φ6 }
A7 = { zk | k ∈ Ψ7}

and we have
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• {ai | i ∈ Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4} are linearly independent vectors in A.

• {yj | j ∈ Φ1 ∪ Φ2 ∪ Φ5 ∪ Φ6} are linearly independent vectors in Y .

• {zk | k ∈ Ψ1 ∪Ψ3 ∪Ψ5 ∪Ψ7} are linearly independent vectors in Z.

• The σ are arbitrary linear forms in {yj | j ∈ Φ1 ∪ Φ5}, not necessarily all same.

Proof. We start choosing a basis for W ⊆ A ⊕ Y ⊕ Z, picking one vector at a time, and adding it to
S = ∪3

s=1As ∪7
s=5 As as below. We note that we do not add vectors to A4 yet (this will be done after the

process below ends):

Initialize A1 = A2 = A3 = A5 = A6 = A7 = ∅. S = ∪3
s=1As ∪7

s=5 As = ∅.

Initialize Σ = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4 = ∅. Φ = Φ1 ∪ Φ2 ∪ Φ5 ∪ Φ6 = ∅. Ψ = Ψ1 ∪Ψ3 ∪Ψ5 ∪Ψ7 = ∅.

Initialize i∗ = j∗ = k∗ = 1.

Repeat as long as possible:

• Pick a vector w ∈W , if possible, that fits any of the six cases below.

• If w = a+ y + z where a 6∈ Span{ai|i ∈ Σ}, y 6∈ Span{yj |j ∈ Φ}, z 6∈ Span{zk|k ∈ Ψ}, then

– Let ai∗ = a, yj∗ = y, zk∗ = z.

– Add w = ai∗ + yj∗ + zk∗ to A1 as well as S.

– add i∗ to Σ and Σ1, j∗ to Φ and Φ1, k∗ to Ψ and Ψ1.

– Increment i∗, j∗, k∗ each.

• · · · · · · 5 more similar cases · · · · · ·

We hope that the process is clear to the reader. The sets of vectors and indices grow as the process continues.
The six cases correspond to the six types of w : a + y + z, a + y, a + z, y + z, y, z, which are added to
A1, A2, A3, A5, A6, A7 respectively. In each case, we pick the vector w only if each of its components is
linearly independent of vectors of the same “kind” that have already been “used” before (i.e. those indexed
in Σ,Φ,Ψ respectively). The indices i∗, j∗, k∗ are the next available indices. The sets Σ,Φ,Ψ maintain all
the indices used so far (of the three kinds respectively).

We assume henceforth that the process above has ended. Let Span(S) ⊆ W be the span of all the
vectors chosen so far. A small modification of the process above ensures that (W ∩ (Y ⊕ Z)) ⊆ Span(S).
This is simply by considering the vectors in W in the order

W ∩ Y, W ∩ Z, W ∩ (Y ⊕ Z), rest,

and using Lemma A.1. Hence we may assume henceforth that (W ∩ (Y ⊕ Z)) ⊆ Span(S).

We now finish the argument by completing the basis for W and showing that every vector remaining in
W \ Span(S) is of A4-type (possibly after adding a vector in Span(S)). Indeed let w = a + y + z be any
“remaining” vector in W \ Span(S). We observe that:

• It must be that a 6∈ Span{ai|i ∈ Σ}. This is because, otherwise we can cancel out a by adding back
appropriate vectors in S. This would result in a vector in W ∩ (Y ⊕ Z) ⊆ Span(S), a contradiction.
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• It must be that y ∈ Span{yj |j ∈ Φ} as well as z ∈ Span{zk|k ∈ Ψ}. This is because, otherwise we
can keep the one (or both) for which this condition fails and cancel out the other (if any) by adding
back appropriate vectors in S. This would result in a vector of the type a + y + z or a + y or a + z,
contradicting the end of the above process.

• Finally, we can cancel out z as well as “part of y that occurs in {yj |j ∈ Φ2 ∪ Φ6}” by adding back
appropriate vectors in S.

Lemma A.3. Suppose P,Q are independent spaces, dim(P ) = dim(Q) = n, and W ⊆ P ⊕ Q. Suppose
moreover that p1, . . . , pn and q1, . . . , qn are given as bases of P,Q respectively. Then there is an n × n
invertible matrix M such that after a change of basis (reusing the names)

(p1, . . . , pn)←M(p1, . . . , pn), (q1, . . . , qn)←M(q1, . . . , qn),

there is a partition of the index set {1, . . . , n} = ∆0 ∪∆1 ∪∆2 ∪ . . . ∪∆m ∪ Ω1 ∪ Ω2 and a basis for W
of the form:

{pi + σ(q) | i ∈ ∆1} ∪B2 ∪ . . . ∪Bm ∪ C1 ∪ C2,

Bk =
{
qj + σ(p∆[k+1:m]

)
∣∣∣ j ∈ ∆k

}
where ∆[k+1:m] = ∆k+1 ∪ . . . ∪∆m ∪ Ω1 ∪ Ω2,

C1 = {pi + σ(qΩ1) | i ∈ Ω1 ∪ Ω2} ,

C2 = {qj | j ∈ Ω2} .

We recall that σ(·) are arbitrary linear forms in respective variables (not necessarily the same).

Proof. The proof is iterative. Let WP ,WQ denote the projections of W onto P and Q respectively, i.e.

WP = {p ∈ P | ∃q ∈ Q, p+ q ∈W},
WQ = {q ∈ Q | ∃p ∈ P, p+ q ∈W}.

It is clearly possible to choose matched bases (p1, . . . , pd, pd+1, . . . , pn) and (q1, . . . , qd, qd+1, . . . , qn) for
P and Q respectively such that

WP = Span of p1, . . . , ps, pt+1, . . . , pd
WQ = Span of q1, . . . , qs, qs+1, . . . , qt

The “unused” indices {d+ 1, . . . , n} are placed in ∆0. We choose arbitrary linear forms σi(q) so that

pt+1 + σt+1(q), . . . , pd + σd(q) ∈W.

These vectors are added to a partial basis for W and the indices {t + 1, . . . , d} are added to ∆1. Letting
W ′ = W ∩ Span(p1, . . . , pt, q1, . . . , qt), clearly

W = W ′ ⊕ Span(pt+1 + σt+1(q), . . . , pd + σd(q)).
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Since the latter are already added to a partial basis, we only need to find a further basis for W ′. Moreover,
our index-space is now reduced to {1, . . . , t} and we can continue iteratively. This process makes progress
unless pt+1, . . . , pd are absent, i.e. if

WP = Span of p1, . . . , ps,
WQ = Span of q1, . . . , qs, qs+1, . . . , qt.

In this case, the iterative process is stopped, and we begin a new iterative process. We set m = 2 and choose

qs+1 + σ(p{1,...,s}), . . . , qt + σ(p{1,...,s}) ∈W.

These vectors are added to a partial basis for W letting ∆m = {s+ 1, . . . , t}. We increment m by one and
iterate the process on W ′ = W ∩ Span(p1, . . . , ps, q1, . . . , qs). We note that W ′Q = Span(q1, . . . , qs) while
W ′P ⊆ Span(p1, . . . , ps) (it may shrink to a proper subspace). After appropriate change of matched basis,
W ′P = Span(p1, . . . , pr) for r 6 s. This process makes progress unless we have

WP = Span of p1, . . . , ps,
WQ = Span of q1, . . . , qs.

At this point, a basis for W is completed by first taking elements

p1 + σ1(q{1,...,s}), . . . , ps + σs(q{1,...,s}) ∈W,

and adding to it qr+1, . . . , qs ∈ W ∩ Q. We can eliminate dependency of the former on the latter by
elimination. The proof is completed by setting Ω1 = {1, . . . , r} and Ω2 = {r + 1, . . . , s}.

Lemma A.4. Let X1, . . . , Xn be uniformly and independently distributed variables over {0, 1}k. Let

λi ( Yij | 1 6 j 6 si) , 1 6 i 6 m,

be real-valued functions of its arguments where:

• Each Yij = Xr for some r ∈ {1, . . . , n}.

• In the collection {Yij | 1 6 i 6 m, 1 6 j 6 si}, each Xr appears exactly twice, as Yi′j′ and Yi′′j′′
for i′ 6= i′′.

• It (therefore) holds that
∑m

i=1 si = 2n.

Then

E
X1,...,Xn

[
m∏
i=1

|λi(Yi1, . . . , Yisi)|

]
6

m∏
i=1

√
E

Yi1,...,Yisi

[
λ2
i (Yi1, . . . , Yisi)

]
.

Proof. By induction. For n = 1, the only scenario and its proof is Cauchy-Schwartz:

E
X1

[|λ1(X1)λ2(X1)|] 6
√

E
X1

[
λ2

1(X1)
]√

E
X1

[
λ2

2(X1)
]
.

Otherwise, we assume w.l.o.g. that n > 2 and Y11 = Y21 = Xn. Applying Cauchy-Schwartz on Xn,

E
X1,...,Xn

[
m∏
i=1

|λi(Yi1, . . . , Yisi)|

]
6 E

X1,...,Xn−1

[√
E
Xn

[
λ2

1(Xn, ·)
]√

E
Xn

[
λ2

2(Xn, ·)
] m∏
i=3

|λi(Yi1, . . . , Yisi)|

]
.
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We get a further desired upper bound by induction hypothesis applied to functions λ′1, λ
′
2, λ3, . . . , λm where

λ′1(Y12, . . . , Y1s1) = E
Xn

[
λ2

1(Xn, Y12, . . . , Y1s1)
]
, λ′2(Y22, . . . , Y2s2) = E

Xn

[
λ2

2(Xn, Y12, . . . , Y1s1)
]
.

Lemma A.5. Suppose x ∈ {0, 1}k is a uniformly distributed input and A,B ⊆ {1, . . . , k} such that
A ∪ B = {1, . . . , k}. Let xA, xB denote the restricted input to A and B respectively. Suppose λ, ψ are
non-negative functions of xA and xB respectively. Then

E
x

[λ(xA)ψ(xB)] 6

(
max
xA∩B

E
xA\B

[λ(xA)]

)
· E
xB

[ψ(xB)].

Proof. This is self-evident. Suppose β is the maximum above. Then

E
x

[λ(xA)ψ(xB)] = E
xA∩B

[
E

xA\B
[λ(xA)] · E

xB\A
[ψ(xB)]

]
6 β · E

xA∩B

[
E

xB\A
[ψ(xB)]

]
= β · E

xB
[ψ(xB)].
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