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Abstract

Our first theorem in this papers is a hierarchy theorem for the query complexity of testing
graph properties with 1-sided error; more precisely, we show that for every super-polynomial f ,
there is a graph property whose 1-sided-error query complexity is f(Θ(1/ε)). No result of this
type was previously known for any f which is super polynomial. Goldreich [ECCC 2005] asked
to exhibit a graph property whose query complexity is 2Θ(1/ε). Our hierarchy theorem partially
resolves this problem by exhibiting a property whose 1-sided-error query complexity is 2Θ(1/ε).
We also use our hierarchy theorem in order to resolve a problem raised by the second author and
Alon [STOC 2005] regarding testing relaxed versions of bipartiteness.

Our second theorem states that for any function f there is a graph property whose 1-sided-
error query complexity is f(Θ(1/ε)) while its 2-sided-error query complexity is only poly(1/ε).
This is the first indication of the surprising power that 2-sided-error testing algorithms have over
1-sided-error ones, even when restricted to properties that are testable with 1-sided error. Again,
no result of this type was previously known for any f that is super polynomial.

The above two theorems are derived from a graph theoretic result which we think is of indepen-
dent interest, and might have further applications. Alon and Shikhelman [JCTB 2016] recently
introduced the following generalized Turán problem: for fixed graphs H and T , and an integer
n, what is the maximum number of copies of T , denoted by ex(n, T,H), that can appear in an
n-vertex H-free graph? This problem received a lot of attention recently, with an emphasis on
ex(n,C3, C2`+1). Our third theorem in this paper gives tight bounds for ex(n,Ck, C`) for all the
remaining values of k and `.
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1 Introduction

1.1 Background and motivation

Property testers are fast randomized algorithms which can quickly determine if an object satisfies
some predetermined property P or is “far” from satisfying P. The systematic study of such problems
began with the seminal papers of Rubinfeld and Sudan [36] and Goldreich, Goldwasser and Ron [25].
In the past two decades, problems of this type have been studied in so many areas, that it will be
impossible to survey them even briefly in this extended abstract. We refer the reader to the upcoming
book of Goldreich [24] for more background and references on the subject.

Our focus in this paper will be testing graph properties in the dense graph model, introduced in
the aforementioned [25], which was the first model in which property testing problems have been
systematically studied. In this model, the input graph G is given via its n×n adjacency matrix, and
we assume that there is an oracle that can answer queries of the form: is (i, j) an edge of G? We
say that an n-vertex graph G is ε-far from satisfying property P if one should add/remove at least
εn2 edges in order to turn G into a graph satisfying P. An ε-tester for P is an algorithm that can
distinguish with high probability (say, 2/3) between the case that G satisfies P and the case that
G is ε-far from satisfying it. By a result of Goldreich and Trevisan [26], we can always assume that
an ε-tester for P works by sampling a random subset of vertices S of a prescribed size and making
its decision based on (the isomorphism class of) G[S] (the subgraph of G induced by S). We denote
by q = q′P(ε, n) the smallest integer for which there is an ε-tester for n-vertex graphs that works by
randomly selecting a set of vertices S of size q. We say that P is testable if q′P(ε, n) ≤ qP(ε), that is,
if there is an ε-tester which inspects a subgraph of size that depends only on ε and not on |V (G)|.

In this paper we will only consider monotone properties, that is, properties closed under removal
of edges and vertices. Let wP(ε) be the smallest integer so that if G is ε-far from satisfying P, then
a random subset S ⊆ V (G) of wP(ε) vertices is such that G[S] does not satisfy P with probability
at least 2/3. In other words, wP(ε) tells us how many vertices we should sample from a graph that
is ε-far from satisfying P in order to find a witness (hence the notation wP(ε)) to this fact.

A result of Alon and the second author [5] states that a function wP(ε) indeed exists for every
monotone property P. Note that this immediately implies that every monotone graph property is
testable, since we trivially have qP(ε) ≤ wP(ε). In fact, it means that every such property is testable
with 1-sided error, where a tester has 1-sided error if it accepts graphs satisfying the property with
probability 1 (and rejects those that are ε-far from the property with probability at least 2/3).
Actually, it is easy to see that a 1-sided-error tester of a monotone property P cannot reject an input
if G[S] satisfies P. Hence wP(ε) actually equals the query complexity of the optimal 1-sided-error
tester for P. Hence, from now on we use wP(ε) as the measure of the optimal query complexity of
1-sided-error testers of a monotone property P.

We now turn to describe the main problems we will investigate in this paper. The main shortcom-
ing of the result of [5] is that the upper bounds it supplied were of the form wP(ε) ≤ tower(poly(1/ε))
(or worse) where tower(x) is a tower of exponents of height x. Since for many natural graph proper-
ties such as k-colorability one can in fact show that wP(ε) = poly(1/ε) [25], this raised the natural
problem of determining for which properties one has wP(ε) = poly(1/ε). As it turns out, this is
not an easy task since determining wP(ε) even for “simple” properties P such as triangle-freeness, is
equivalent to determining the best bounds for the well-known triangle-removal lemma [35], a famous
open problem in extremal graph theory [13]. To date, the best known results [19, 35] for the triangle
removal lemma, as well as for many similar properties, are (1/ε)c log 1/ε ≤ wP(ε) ≤ tower(O(log 1/ε)),
that is, there is still an enormous gap between the best known lower/upper bounds. Nonetheless,
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prior to this work there was no example of a property that was shown to have query complexity f(ε)
for some super-polynomial1 f . See also Subsection 8.5 of [24] for more on this issue. Motivated by
the above, Goldreich [23, 24] raised the following challenge.

Problem 1 ([23, 24]). Exhibit a (natural) graph property P satisfying qP(ε) = 2Θ(1/ε).

Given the fundamental time/space hierarchy theorems in complexity theory, it is even natural to
go one step further and ask if there are hierarchy theorems for the query complexity of testing graph
properties with 1-sided and 2-sided error. More precisely:

Problem 2. Is it the case that for any f : (0, 1) → N there is a graph property P satisfying
qP(ε) = f(ε)? Is there always a P satisfying wP(ε) = f(ε)?

It is easy to show (see [25, 24]) that there are properties that can be tested with 2-sided error but
cannot be tested with 1-sided error with any query complexity independent2 of n. It is thus more
natural to restrict ourselves to graph properties that can be tested with 1-sided error, and ask:

Problem 3. To what extent are 2-sided testers more powerful than 1-sided testers?

Another motivation to look at this problem (see [24]) is the observation that 1-sided testers have
(for the most part) no algorithmic ideas behind them, and are essentially equivalent to (usually very
hard to prove) statements in extremal combinatorics. On the other hand, 2-sided testers are usually
much more algorithmic in nature. So another motivation for Problem 3 can be colloquially stated
as “are algorithms more powerful than combinatorics in the setting of testing dense graphs”?

We now turn to describe a problem raised by the first author and Alon [5]. For what follows, we
use wk(ε) instead of wP(ε), where P is the k-colorability property. Erdős [16] (implicitly) conjectured
that k-colorability is testable with 1-sided error, that is, that wk(ε) is well defined. This was proved
for k = 2 by Bollobás, Erdős, Simonovits and Szemerédi [10] and for general k by Rödl and Duke
[34]. The proof of [34] relied on the regularity lemma [40] and thus supplied very weak bounds
for wk(ε). A much better bound was obtained by Goldreich, Goldwasser and Ron [25] who proved
that wk(ε) = poly(1/ε). In a recent breakthrough, Sohler [39] obtained the nearly tight bound
wk(ε) = Θ̃(1/ε), as well as similar results for some related problems.

As we mentioned earlier, it was shown by [5] that in fact, every monotone graph property is
testable with 1-sided error, where the bounds for wP(ε) are of tower-type. Goldreich [24] and Alon
and Fox [3] asked to characterize the properties for which wP(ε) = poly(1/ε). Since this problem
currently seems to be out of reach, the following (very) special case was raised as an open problem in
[5]: given a set of integers L, let P(L) be the property of being C`-free for every ` ∈ L. The problem
of [5] then asks the following

Problem 4 ([5]). Characterize the sets of integers L for which wP(L)(ε) = poly(1/ε).

The result of [25] stating that w2(ε) = poly(1/ε) is then equivalent to the statement that if L
consists of all odd integers then wP(L)(ε) = poly(1/ε). Another related result is due to Alon [1]
who proved that wP(L)(ε) is super-polynomial whenever L is a finite set of odd integers and that
wP(L)(ε) = poly(1/ε) if L contains at least one even integer. Thus, the remaining open cases of
Problem 4 are when L is an infinite set of odd integers.

1There are examples of properties that were shown to have query complexity f(ε) for certain polynomials f . See
[7] and its references.

2Consider the property P of having n2/4 edges. It is easy to see that qP(ε) ≤ poly(1/ε) as one can just estimate
the edge density of the input. On the other hand, it is also easy to see that P is not testable with 1-sided error using
a number of queries that is independent of n.
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1.2 New results regarding testing graph properties

In this subsection we describe our main results related to the problems discussed in the previous
subsection. The first theorem gives a positive answer to Problem 2 by establishing a (nearly) tight
query complexity hierarchy for 1-sided-error query complexity. No result of this type was previously
known, for any super-polynomial f .

Theorem 1. There is an absolute constant c such that for every decreasing function f : (0, 1) → N
satisfying f(x) ≥ 1/x, there is a monotone graph property P satisfying f(ε) ≤ wP(ε) ≤ ε−14f(ε/c).

We now describe two applications of Theorem 1. The following immediate corollary gives a partial
positive answer to Problem 1 raised by Goldreich [23, 24].

Corollary 1.1. There is a monotone graph property P satisfying wP(ε) = 2Θ(1/ε) .

We believe that the property P in the above corollary passes the “naturalness” test (pun intended!)
asked for in Problem 1, since it is just the property of not containing cycles of certain (carefully
chosen) lengths. The problem of establishing a hierarchy theorem for 2-sided-error query complexity,
and in particular Problem 1 with respect to 2-sided testers, remains open.

Our second application of Theorem 1 (actually, this will be an application of its proof) gives a
complete answer to Problem 4 raised by the second author and Alon [5]. As mentioned after Problem
4, we can assume that L is an infinite set of odd integers.

Corollary 1.2. Let L = {`1, `2, . . .} be an infinite increasing sequence of odd integers. Then

wP(L)(ε) = poly(1/ε) if and only if lim sup
j−→∞

log `j+1

log `j
<∞.

By the above corollary, as long as `j does not grow faster than 22j , we have wP(L)(ε) = poly(1/ε),
while for any (significantly) faster growing `j this is not the case.

Our second theorem in this paper addresses Problem 3. It is natural to guess that at least for
monotone properties P, 2-sided testers should not have any advantage over 1-sided testers, since
the only way to test P is to find a witness to the fact that the input graph does not satisfy P. As
Theorem 2 below shows, this intuition turns out to be false in a very strong sense. This theorem
shows that 2-sided-error property testers can be arbitrarily stronger than 1-sided-error testers, even
for monotone graph properties. Prior to this work, it was not even known that 2-sided-error testers
can be super-polynomially stronger than 1-sided-error testers.

Theorem 2. For every decreasing function f : (0, 1)→ N satisfying f(x) ≥ 1/x, there is a monotone
graph property P so that

• P has 1-sided error query complexity wP(ε) ≥ f(ε).

• P has 2-sided error query complexity qP(n, ε) = poly(1/ε) for every n ≥ n0(ε).

We note that the first item in the above theorem holds even if one assumes that n (the size of the
input graph) is large enough as a function of ε.
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1.3 A tight bound for a Turán-type problem

We now turn to describe the third theorem of this paper, which gives a tight bound for a Turán-
type problem in extremal graph theory. This theorem (and some of the lemmas related to it) will be
the main tool we will use in order to prove the results stated in the previous subsection.

Very recently, Alon and Shikhelman [6] introduced the following problem; for fixed graphs H
and T , estimate ex(n, T,H), which is the maximum number of copies3 of T in an n-vertex graph
that contains no copy of H. Note that ex(n,K2, H) is just ex(n,H), the classical Turán function,
which is the maximum number of edges in an n-vertex H-free graph. Estimating ex(n,H) for various
graphs H is one of the most well-studied problems in graph theory. We refer the reader to [6] for
more background, motivation, and several examples of well-studied problems which fall into this
framework.

Let Ck denote the k-cycle, that is, the cycle of length k. One of the most well-studied problems
in extremal combinatorics is the estimation of ex(n,Ck). While for odd k it is known [37] that
ex(n,Ck) = bn2/4c (for large enough n), the problem of estimating ex(n,Ck) for even k is still open
with many recent results, see the survey [42] and its references. As discussed in [6], cycles have also

been studied in the setting of ex(n, T,H). Bollobás and Győri [11] proved that ex(n,C3, C5) = Θ
(
n

3
2

)
.

Győri and Li [28] extended this result by considering ex(n,C3, C2`+1). Their bound was subsequently
improved upon by Alon and Shikhelman [6]. At the moment, the best known bounds are

Ω(ex(n, {C4, C6, . . . , C2`})) ≤ ex(n,C3, C2`+1) ≤ O(` · ex(n,C2`)), (1)

where ex(n, {C4, C6, . . . , C2`}) is the maximal number of edges in an n-vertex graph with no copy of
C2t for any 2 ≤ t ≤ `. The lower bound above was proved in [28], and the upper bound in [6]. The
bounds in (1) were also independently obtained by Füredi and Özkahya [20]. The lower and upper
bounds in (1) are known to be of the same order of magnitude, Θ

(
n1+1/`

)
, for ` ∈ {2, 3, 5} (see e.g.

[9, 43]). Another notable recent result is the exact determination of ex(n,C5, C3) by [27, 29].

Our third theorem in this paper, stated as Theorem 3, significantly extends the above results of
[11, 28, 6] by giving asymptotically tight bounds for ex(n,Ck, C`) for all fixed k, `. This theorem
will be the key tool in the proofs of Theorems 1 and 2. We believe this result to be of independent
interest, and hope it will find other applications. In this theorem, as well as later on in the paper, we
write Ok/Ωk/Θk to indicate that the notation hides constants which depend on k. When we write
O/Ω/Θ, we mean that the implicit constants are absolute.

Theorem 3. For distinct k, ` we have

ex(n,Ck, C`) =


Θk

(
nk/2

)
k ≥ 5, ` = 4,

Θk

(
`dk/2enbk/2c

)
` ≥ 6 even, k ≥ 4,

Θk

(
`dk/2enbk/2c

)
k, ` odd, 5 ≤ k < `.

Observe that in the above theorem, our bounds are tight also when only k is fixed. A tight
dependence on ` will be important due to the way we apply Theorem 3 in Section 4. Let us see
which cases are not covered by Theorem 3 or by (1). Observe that if k is even and ` is odd, or if
k and ` are both odd and k > `, then a blow-up of Ck does not contain copies of C`. Therefore,
in these cases we have ex(n,Ck, C`) = Θk(n

k). Thus, the only remaining case is ex(n,C3, C2`), for
which we will prove the following.

3When counting copies of T in G we always mean unlabeled copies.
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Proposition 1.3. For ` ≥ 2 we have Ω
(
ex(n,C4, C6, . . . , C2`)

)
≤ ex(n,C3, C2`) ≤ O`

(
ex(n,C2`)

)
.

As in the case of (1), the lower and upper bounds in Proposition 1.3 are known to be of the same
order of magnitude for ` ∈ {2, 3, 5}.

Paper organization: In Section 2 we give a tight upper bound for ex(n,C2k+1, C2k+3) where
k ≥ 2, which turns out to require a different argument than the one needed to handle all other cases
of Theorem 3. This problem appears to be significantly harder than ex(n,C3, C5) which was resolved
by Bollobás–Győri [11]. This is best evidenced by the fact that while ex(n,C3, C5) = Θ(n3/2), for
the general problem we have ex(n,C2k+1, C2k+3) = Θk(n

k) for k ≥ 2. Section 3 contains the proof
of Theorem 3 and Proposition 1.3. In this section we also prove a tight bound ex(n, Pk, C`) for all
values of k ≥ 2 and `, where Pk is the path with k edges (see Theorem 4). In Section 4 we apply our
bounds for ex(n,Ck, C`) in order to prove Theorems 1 and 2 and Corollary 1.2. Lemma 3.1, which
is the key lemma in the proof of Theorem 3, is proved in Section 5. The main tool used in its proof
is a bound for the skew version of the even-cycle Turán problem, due to Naor and Verstraëte [33].
Finally, in Section 6 we prove the lower bounds in Theorem 3 and Proposition 1.3.

The dependence of our bounds on ` is important due to the way we apply them in Section 4. We
made little effort, however, to optimize their dependence on k. Finally, since in most arguments the
parity of the cycle lengths will be important, we will use 2k or 2k+ 1 (and analogously 2` or 2`+ 1)
to denote the lengths of the cycles.

2 The Case ex(n,C2k+1, C2k+3)

In this section we give a tight upper bound for ex(n,C2k+1, C2k+3) when k ≥ 2. Let us introduce
some notation that we will use throughout the paper. For a graph G and disjoint sets X,Y ⊆ V (G),
we denote by E(X,Y ) the set of edges with one endpoint in X and one endpoint in Y , and set
e(X,Y ) = |E(X,Y )|. For v ∈ V (G) and X ⊆ V (G), denote NX(v) = {x ∈ X : (v, x) ∈ E(G)}.

Let U1, . . . , Us be disjoint vertex sets in a graph. A (U1, . . . , Us)-path is a path u1, . . . , us with
ui ∈ Ui. Similarly, a (U1, . . . , Us)-cycle is a cycle u1, . . . , us, u1 with ui ∈ Ui. Let p(U1, . . . , Us) denote
the number of (U1, . . . , Us)-paths and let c(U1, . . . , Us) denote the number of (U1, . . . , Us)-cycles. We
denote by Pk the path of length k, where the length of a path is the number of edges in it. We will
frequently use the following simple averaging argument.

Claim 2.1. Let G be a graph. If for every partition V (G) = U1∪· · ·∪Uk it holds that c(U1, . . . , Uk) ≤
r, then the number copies of Ck in G is at most 1

2k
k−1r. Similarly, if for every partition V (G) =

U1∪· · ·∪Uk it holds that p(U1, . . . , Uk) ≤ r, then the number of copies of Pk−1 in G is at most 1
2k

kr.

Proof. Let V (G) = U1 ∪ · · · ∪ Uk be a random partition, generated according to P[v ∈ Ui] = 1
k

for each v ∈ V (G) and 1 ≤ i ≤ k, independently. Then E [c(U1, . . . , Uk)] = #Ck(G) · 2k · k−k and
E [p(U1, . . . , Uk)] = #Pk−1(G) · 2 · k−k, where #Ck(G) (resp. #Pk−1(G)) denotes the number of
copies of Ck (resp. Pk−1) in G. Since these expectations are not larger than r, the claim follows. �

In what follows, let us denote the vertices of C2k+1 (the (2k + 1)-cycle) by 1, . . . , 2k + 1, with
edges {1, 2}, . . . , {2k, 2k + 1}, {2k + 1, 1}. For a graph G, denote by I(G) the set of all non-empty
independent sets of G. We will need the following trivial (yet somewhat complicated to state) claim.

Claim 2.2. Let J be a non-empty independent set of C2k+1. Then there is I ∈ I(C2k+1) which
contains J and satisfies the following. Let i1, . . . , ir be the elements of I in the order they appear
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when traversing the cycle 1, . . . , 2k + 1. Then for every 1 ≤ j ≤ r, ij and ij+1 are at distance either
2 or 3, namely ij+1 − ij ≡ 2, 3 (mod 2k + 1), and if ij and ij+1 are at distance 3 then either ij ∈ J
or ij+1 ∈ J .

Proof. If |J | = 1, say without loss of generality J = {1}, then I = {2j − 1 : 1 ≤ j ≤ k} is easily
seen to satisfy the requirements of the claim. Assume then that |J | ≥ 2, and let j1, . . . , jr be the
elements of J , as they appear when traversing the (2k + 1)-cycle 1, . . . , 2k + 1. For each 1 ≤ i ≤ r,
we greedily pick an independent set Ii in the path connecting ji and ji+1, which contains both ji
and ji+1, as follows. In addition to ji and ji+1, we add to Ii the elements ji + 2, ji + 4, . . . until we
reach ji+1 or ji+1− 1. If we reached ji+1, then the distance between every pair consecutive elements
of Ii is 2, and if we reached ji+1 − 1 then this true for all pairs except for ji+1 − 3, ji+1. It is now
easy to see that I =

⋃r
i=1 Ii satisfies the requirements of the claim. �

Lemma 2.3. For every k ≥ 2 it holds that ex(n,C2k+1, C2k+3) ≤ (2k + 1)2k22k+1nk.

Proof. Let G be an n-vertex C2k+3-free graph. By claim 2.1 it is sufficient to prove that for every
partition V (G) = U1 ∪ · · · ∪ U2k+1 we have c(U1, . . . , U2k+1) ≤ 22k+1nk. We will actually prove that

c(U1, . . . , U2k+1) ≤
∑

I∈I(C2k+1)

∏
i∈I
|Ui|. (2)

This will be sufficient, as C2k+1 has at most 22k+1 independent sets, and each of these sets contributes
at most nk to the above sum. Assume by contradiction that (2) is false. Let C denote the set of all
(U1, . . . , U2k+1)-cycles in G. We first show that there is C = (u1, . . . , u2k+1) ∈ C such that for every
I ∈ I(C2k+1) there is C ′ ∈ C\{C} which contains {ui : i ∈ I}. We find C greedily as follows. As long
as there is C = (u1, . . . , u2k+1) ∈ C and I ∈ I(C2k+1) such that C is the only (U1, . . . , U2k+1)-cycle
containing {ui : i ∈ I}, we remove C from C, and we say that C was removed due to {ui : i ∈ I}.
Fixing any I ∈ I(C2k+1) and ui ∈ Ui for i ∈ I, observe that at most one cycle from C was removed
due to {ui : i ∈ I}. Thus, the overall number of cycles removed is not larger than the right-hand
side of (2). Since by our assumption (2) is false, there is a cycle C = (u1, . . . , u2k+1) ∈ C which had
not been removed by the end of the process. Then C satisfies our requirement. Let us fix such a
C = (u1, . . . , u2k+1) for the rest of the proof.

Let J be the set of all 1 ≤ i ≤ 2k + 1 such that there is u′i ∈ Ui \ {ui} which is adjacent to
ui−1 and ui+1. We claim that J is a non-empty independent set (of the (2k + 1)-cycle). To show
that J is an independent set, assume by contradiction that there is 1 ≤ i ≤ 2k + 1 such that
i, i + 1 ∈ J , and let u′i ∈ Ui \ {ui} and u′i+1 ∈ Ui+1 \ {ui+1} be witnesses to i, i + 1 ∈ J . Then
u′i, ui+1, ui, u

′
i+1, ui+2, . . . , ui−1, u

′
i is a (2k + 3)-cycle, a contradiction. We now show that J 6= ∅.

Set I ′ = {2j : 2 ≤ j ≤ k} ∪ {1} and I ′′ = {2j : 3 ≤ j ≤ k} ∪ {1, 3} and note that they are both
independent sets. By our choice of C = (u1, . . . , u2k+1), there is C ′ = (u′1, . . . , u

′
2k+1) ∈ C \ {C}

which contains ui for every i ∈ I ′. Since C ′ 6= C, one of the following holds: either u′i 6= ui for some
i ∈ {2j + 1 : 2 ≤ j ≤ k}, implying that i ∈ J and we are done, or (u′2, u

′
3) 6= (u2, u3). If u′2 = u2

or u′3 = u3 then 3 ∈ J or 2 ∈ J , respectively, and again we are done. We deduce that u′2 6= u2 and
u′3 6= u3. By repeating the same argument with respect to I ′′, we get a cycle C ′′ = (u′′1, . . . , u

′′
2k+1) ∈

C \ {C} such that either u′′i 6= ui for some i ∈ {2j + 1 : 3 ≤ j ≤ k} ∪ {2}, implying that i ∈ J
and we are done, or u′′4 6= u4 and u′′5 6= u5. But now u1, u

′
2, u
′
3, u4, u3, u

′′
4, u
′′
5, u6, . . . , u2k+1, u1 is a

(2k + 3)-cycle, a contradiction. See the top drawing in Figure 1 for an illustration.

We thus proved that J is a non-empty independent set. Apply Claim 2.2 to J to get I ∈
I(C2k+1) with the properties stated in the claim. By our choice of C = (u1, . . . , u2k+1), there is
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C ′ = (u′1, . . . , u
′
2k+1) ∈ C \ {C} which contains ui for every i ∈ I. Let i1, . . . , ir be the elements of I

in the order they appear when traversing the cycle 1, . . . , 2k+1. Since C ′ 6= C, there is 1 ≤ j ≤ r such
that (u′ij+1, . . . , u

′
ij+1−1) 6= (uij+1, . . . , uij+1−1) 4. Assume without loss of generality that j = 1 and

i1 = 2 (so in particular, 2 ∈ I). By the guarantees of Claim 2.2, we have i2− i1 ≡ 2, 3 (mod 2k+ 1),
so either i2 = 4 or i2 = 5. Assume first that i2 = 4. Then u′3 6= u3, implying that 3 ∈ J , which is
impossible as 2 ∈ I, J ⊆ I and I is an independent set. Assume now that i2 = 5. If u′3 = u3 then
u′4 6= u4 and so 4 ∈ J , which is again impossible as 5 ∈ I, J ⊆ I and I is an independent set. So
u′3 6= u3 and similarly u′4 6= u4. By the guarantees of Claim 2.2, we have that either 2 ∈ J or 5 ∈ J ,
say without loss of generality that 2 ∈ J . Then by the definition of J , there is u′′2 ∈ U2\{u2} adjacent
to u1 and u3. But now u1, u

′′
2, u3, u2, u

′
3, u
′
4, u5, . . . , u2k+1, u1 is a (2k + 3)-cycle, a contradiction. See

the bottom drawing in Figure 1 for an illustration. This completes the proof. �

u1

U1

u2

U2

u3

U3

u4

U4

u5

U5

u6

U6

u′2 u′3 u′′4 u′′5

u1

U1

u2

U2

u3

U3

u4

U4

u5

U5

u′′2 u′3 u′4

Figure 1: Illustrations for the proof of Lemma 2.3

3 Proof of Turan-type Results

In this section we prove the upper bounds for all cases in Theorem 3, except for the case of two
consecutive odd integers which was handled in Section 2. The lower bounds will be proven in Section
6. At the end of this section, we give the proof of Proposition 1.3.

3.1 Preliminary Lemmas

Here we introduce several lemmas which will be used in the proof of Theorem 3. We start with
the following key lemma, which is the most important ingredient in the proof of Theorem 3, as it
allows us to obtain tight bounds in terms of n and `. The proof of this lemma appears in Section 5.

Lemma 3.1. Let ` ≥ 3, let G be an n-vertex graph, let X,Y, Z,W ⊆ V (G) be pairwise-disjoint
vertex-sets and assume that the bipartite graphs (X,Y ), (Y, Z) and (Z,W ) are C2`-free. Then there
are subsets Y ′ ⊆ Y and Z ′ ⊆ Z such that

4Here subscripts are taken modulo 2k + 1, while double subscripts are taken modulo r.
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1. e(Y ′, X), e(Y ′, Z), e(Z ′, Y ), e(Z ′,W ) = O(`n).

2. p(X,Y \ Y ′, Z \ Z ′,W ) = O(`2n2).

At the end of Section 5, we explain why the sets Y ′ and Z ′ in the statement of Lemma 3.1 are
required, and why Lemma 3.1 is false for ` = 2. The falsity of Lemma 3.1 for ` = 2 is the reason we
need a separate proof for the case ex(n,C2k+1, C2k+3) (see Section 2).

In what follows we will need a special case of the following theorem, which gives a tight bound
on ex(n, Pk, C2`) for every k ≥ 2. The proof of this theorem appears at the end of this section.

Theorem 4. For every k ≥ 2, we have

ex(n, Pk, C2`) =

{
Θk(n

k/2+1) ` = 2,

Θk(`
b(k+1)/2cnd(k+1)/2e) ` ≥ 3.

To complement Theorem 4, note that ex(n, Pk, C2`+1) = Θk(n
k+1), since a blowup of Pk does not

contain odd cycles. The following lemma also plays a key role in the proof of Theorem 3.

Lemma 3.2. Let s ≥ 2 and λ ≥ 1, let G be an n-vertex graph and let U1, . . . , Us ⊆ V (G) be pairwise-
disjoint sets such that e(U1, U2) ≤ λ(|U1|+ |U2|) and e(NUi+1(ui), Ui+2) ≤ λ(

∣∣NUi+1(ui)
∣∣+ |Ui+2|) for

every 1 ≤ i ≤ s− 2 and ui ∈ Ui. Then

p(U1, . . . , Us) ≤

{
λ(s−1)/2n(s−3)/2 (|U1||Us|+ λn) s is odd,

λs/2ns/2−1(|U1|+ |U2|) s is even.

Proof. The proof is by induction on s. The base case s = 2 is given by our assumption that
e(U1, U2) ≤ λ(|U1|+ |U2|). Let then s ≥ 3. Note that for every u1 ∈ U1, the sets NU2(u1), U3, . . . , Us
satisfy the assumptions of the lemma, so we may apply the induction hypothesis to them. Suppose
first that s is odd. We have

p(U1, . . . , Us) =
∑
u1∈U1

p(NU2(u1), U3, . . . , Us) ≤
∑
u1∈U1

λ(s−1)/2n(s−3)/2(|NU2(u1)|+ |Us|)

= λ(s−1)/2n(s−3)/2 · (e(U1, U2) + |U1||Us|) ≤ λ(s−1)/2n(s−3)/2 · (λ(|U1|+ |U2|) + |U1||Us|)
≤ λ(s−1)/2n(s−3)/2 · (|U1||Us|+ λn),

where in the first inequality we used the induction hypothesis for s− 1, and in the second inequality
we used the assumption e(U1, U2) ≤ λ(|U1|+ |U2|). The induction step for even s is similar. Indeed,

p(U1, . . . , Us) =
∑
u1∈U1

p(NU2(u1), U3, . . . , Us) ≤
∑
u1∈U1

λ(s−2)/2n(s−4)/2(|NU2(u1)||Us|+ λn)

= λ(s−2)/2n(s−4)/2 · e(U1, U2) · |Us|+ λs/2ns/2−1 · |U1|
≤ λ(s−2)/2n(s−4)/2 · λ(|U1|+ |U2|) · |Us|+ λs/2ns/2−1 · |U1| ≤ λs/2ns/2−1 · (|U1|+ |Us|),

where in the first inequality we used the induction hypothesis for s− 1, in the second inequality we
used the assumption e(U1, U2) ≤ λ(|U1|+ |U2|), and in the last inequality we used the trivial bound
|U1|+ |U2| ≤ n. �

We now derive two important corollaries of Lemma 3.2, stated as Lemmas 3.3 and 3.4 below. In
their proof we will use the following well-known theorem of Erdős and Gallai.
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Theorem 5 ([17]). For every t ≥ 1 we have ex(n, Pt) ≤ t−1
2 n.

Lemma 3.3. Let 2 ≤ s < t be integers having the same parity, let G be an n-vertex graph and let
U1, . . . , Us ⊆ V (G) be pairwise-disjoint vertex-sets such that there is no path of length t − 1 inside
U1 ∪ · · · ∪ Us between a vertex in U1 and a vertex in Us. Then

p(U1, . . . , Us) ≤

{(
t−s
2

)(s−1)/2
n(s−3)/2

(
|U1||Us|+ t−s

2 n
)

s is odd,(
t−s
2

)s/2
ns/2−1 (|U1|+ |U2|) s is even.

Proof. We may and will assume that every edge in G is on some (U1, . . . , Us)-path (as deleting all
other edges does not change p(U1, . . . , Us)). It is sufficient to show that the conditions of Lemma 3.2
hold for λ = t−s

2 ≥ 1. We prove the stronger statement that for every 1 ≤ i ≤ s − 1 and for every
U ′i ⊆ Ui and U ′i+1 ⊆ Ui+1, it holds that e(U ′i , U

′
i+1) ≤ t−s

2

(
|U ′i |+ |U ′i+1|

)
. If, by contradiction, this

does not hold, then by Theorem 5 there is a path P = v1, . . . , vt−s+2 of length t−s+1 in the bipartite
graph (U ′i , U

′
i+1). Since t− s+ 1 is odd, we may assume without loss of generality that v1 ∈ U ′i and

vt−s+2 ∈ U ′i+1. By our assumption, the edge (v1, v2) is on some (U1, . . . , Us)-path, implying that
there is a path P ′ ⊆ U1 ∪ · · · ∪Ui between5 U1 and v1. Similarly, since the edge (vt−s+1, vt−s+2) is on
some (U1, . . . , Us)-path, there is a path P ′′ ⊆ Ui+1 ∪ · · · ∪Us between vt−s+2 to Us. Then P ′PP ′′ is a
path of length t− 1 inside U1 ∪ · · · ∪Us between U1 and Us, in contradiction to our assumption. �

Lemma 3.4. Let s, ` ≥ 2, let G be an n-vertex C2`-free graph, let {u0}, U1, . . . , Us ⊆ V (G) be
pairwise-disjoint vertex-sets, and suppose that u0 is adjacent to every vertex in U1. Then

p(U1, . . . , Us) ≤

{
(`− 1)(s−1)/2n(s−3)/2 (|U1||Us|+ (`− 1)n) s is odd,

(`− 1)s/2ns/2−1(|U1|+ |U2|) s is even.

Proof. It is sufficient to show that the conditions of Lemma 3.2 hold with λ = ` − 1 ≥ 1. If
e(U1, U2) > (`− 1)(|U1|+ |U2|) then by Theorem 5, there is a path of length 2`− 1 in the bipartite
graph (U1, U2). This path contains a subpath of length 2`−2 with both endpoints in U1, which closes
a 2`-cycle with u0, in contradiction to the assumption of the lemma. Similarly, if e(NUi+1(ui), Ui+2) >
(`− 1)(

∣∣NUi+1(ui)
∣∣+ |Ui+2|) for some 1 ≤ i ≤ s− 2 and ui ∈ Ui, then by Theorem 5 there is a path

of length 2`− 1 in the bipartite graph with sides NUi+1(ui) and Ui+2. This path contains a subpath
of length 2` − 2 with both endpoints in NUi+1(ui), which closes a 2`-cycle with ui, in contradiction
to the assumption of the lemma. �

The construction in Claim 6.1 shows that the bounds in the above two lemmas, as well as in
Lemma 3.2, are tight (up to the constants depending on the parameters λ, s, t, `). We now derive
the following corollary of the above two lemmas, which will be used later on.

Lemma 3.5. Let k, ` ≥ 2, let G be an n-vertex graph and assume either that G is C2`-free or that
G is C2`+1-free and ` > k. Then for every partition V (G) = V1 ∪ · · · ∪ V2k+1 we have

c(V1, . . . , V2k+1) ≤ `k−1nk−2 · [p(V1, V2, V3, V4) + p(V2k+1, V1, V2, V3)] .

Proof. Fix any (V1, V2, V3)-path v1, v2, v3. We claim that

p
(
NV4(v3), V5, . . . , V2k, NV2k+1

(v1)
)
≤ `k−1nk−2 ·

(
|NV4(v3)|+ |NV2k+1

(v1)|
)
. (3)

5It might be the case that v1 ∈ U1 (if i = 1), in which case P ′ has no edges.
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Indeed, if G is C2`-free then (3) follows from Lemma 3.4, applied with s = 2k − 2, u0 = v3 and the
sets NV4(v3), V5, . . . , V2k, NV2k+1

(v1) as U1, . . . , Us. If G is C2`+1-free and ` > k then there is no path
of length 2`−3 inside V4∪· · ·∪V2k+1 between a vertex in NV4(v3) and a vertex in NV2k+1

(v1), as such
a path would close a (2` + 1)-cycle with the path v1v2v3. So (3) follows from Lemma 3.3, applied
with s = 2k− 2, t = 2`− 2, and the sets NV4(v3), V5, . . . , V2k, NV2k+1

(v1) as U1, . . . , Us. By summing
(3) over all (V1, V2, V3)-paths we get

c(V1, . . . , V2k+1) =
∑

v1,v2,v3

c(v1, v2, v3, V4, . . . , V2k+1) =
∑

v1,v2,v3

p(NV4(v3), V5, . . . , V2k, NV2k+1
(v1))

≤ `k−1nk−2 ·
∑

v1,v2,v3

(
|NV4(v3)|+ |NV2k+1

(v1)|
)

= `k−1nk−2 · [p(V1, V2, V3, V4) + p(V2k+1, V1, V2, V3)] ,

thus completing the proof. �

3.2 Proof of Theorem 3

Here we prove Theorem 3. The proof is split into several parts: Lemma 3.6 handles the case
that both cycle lengths are even; Lemma 3.7 handles the case where the forbidden cycle is even and
the cycle whose number of copies is maximized is odd; finally, Lemma 3.8 handles the case where
the cycle lengths are non-consecutive odd integers. For convenience, we rephrase each of the cases,
denoting the cycle lengths by 2k or 2k + 1 and 2` or 2`+ 1 (rather than k and `).

Lemma 3.6. For every k, ` ≥ 2 we have ex(n,C2k, C2`) = Ok(`
knk).

Proof. Let G be an n-vertex C2`-free graph. By Claim 2.1, it is enough to prove that c(V1, . . . , V2k) =
O(`knk) for every partition V (G) = V1 ∪ · · · ∪ V2k. Consider one such partition. Fixing v1 ∈ V1, we
apply Lemma 3.4 with s = 2k−1, u0 = v1 and the sets NV2(v1), V3, . . . , V2k−1, NV2k(v1) as U1, . . . , Us,
to get

c(v1, V2, . . . , V2k) = p(NV2(v1), V3, . . . , V2k−1, NV2k(v1)) ≤ `k−1nk−2 · (|NV2(v1)| · |NV2k(v1)|+ `n) .

By summing over all v1 ∈ V1, we get

c(V1, . . . , V2k) =
∑
v1∈V1

c(v1, V2, . . . , V2k) ≤ `k−1nk−2 ·

∑
v1∈V1

|NV2(v1)| · |NV2k(v1)|

+ `knk−1 · |V1|

= `k−1nk−2 · p(V2k, V1, V2) + `knk−1 · |V1| = O(`knk) ,

where in the last inequality we used Theorem 4, which gives p(V2k, V1, V2) = O(`n2). �

Lemma 3.7. For every k ≥ 2 we have

ex(n,C2k+1, C2`) ≤

{
Ok(n

k+1/2) ` = 2,

Ok(`
k+1nk) ` ≥ 3.

Proof. We start with the case that ` ≥ 3. Let G be an n-vertex C2`-free graph. By Claim 2.1, it is
enough to prove that for every partition V (G) = V1∪· · ·∪V2k+1 we have c(V1, . . . , V2k+1) = O(`k+1nk).
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By Theorem 4 we have p(V2k+1, V1, V2, V3), p(V1, V2, V3, V4) ≤ O(`2n2). Plugging these estimates into
Lemma 3.5 gives c(V1, . . . , V2k+1) = O(`k+1nk), as required.

The proof for the case ` = 2 is similar. As in the previous case, we consider a partition V (G) =
V1 ∪ · · · ∪ V2k+1 of an n-vertex C4-free graph. The only difference is that for ` = 2, Theorem 4 gives
p(V2k+1, V1, V2, V3), p(V1, V2, V3, V4) = O(n5/2). Plugging this into Lemma 3.5 gives the required
bound c(V1, . . . , V2k+1) = Ok(n

k+1/2). �

Lemma 3.8. For every 2 ≤ k < `− 1 we have ex(n,C2k+1, C2`+1) = O((2k + 1)2k`k+1nk).

Proof. Let G be an n-vertex C2`+1-free graph. By Claim 2.1, we only need to prove that the
bound c(V1, . . . , V2k+1) ≤ O(`k+1nk) holds for every partition V (G) = V1 ∪ · · · ∪ V2k+1. Fix one
such partition. We may and will assume that for every 1 ≤ i ≤ 2k + 1, every edge in E(Vi, Vi+1)
is on some (V1, . . . , V2k+1)-cycle. We claim that the bipartite graph (Vi, Vi+1) is C2`−2k+2-free for
every 1 ≤ i ≤ 2k + 1 (with indices taken modulo 2k + 1). Assume by contradiction that there is a
(2` − 2k + 2)-cycle C in the bipartite graph (Vi, Vi+1), and let e ∈ E(Vi, Vi+1) be an arbitrary edge
of C. By our assumption, there is a (V1, . . . , V2k+1)-cycle C ′ containing e. But now C ∪C ′ \ {e} is a
(2`+ 1)-cycle, a contradiction.

In light of the above, we may apply Lemma 3.1 to (V2k+1, V1, V2, V3) with `− k + 1 ≥ 3 in place
of ` and thus obtain subsets V ′1 ⊆ V1, V ′2 ⊆ V2 satisfying e(V ′1 , V2k+1), e(V ′1 , V2), e(V ′2 , V1), e(V ′2 , V3) =
O(`n) and p(V2k+1, V1 \ V ′1 , V2 \ V ′2 , V3) = O(`2n2). Similarly, applying Lemma 3.1 to V1, V2, V3, V4

gives subsets V ′′2 ⊆ V2 and V ′′3 ⊆ V3 such that e(V ′′2 , V1), e(V ′′2 , V3), e(V ′′3 , V2), e(V ′′3 , V4) = O(`n) and
p(V1, V2 \ V ′′2 , V3 \ V ′′3 , V4) = O(`2n2). Setting W1 = V1 \ V ′1 , W2 = V2 \ (V ′2 ∪ V ′′2 ) and W3 = V3 \ V ′′3 ,
we see that

c(V1, . . . , V2k+1) ≤ c(W1,W2,W3, V4, . . . , V2k+1) + c(V ′1 , V2, . . . , V2k+1)+

c(V1, V
′

2 , V3, . . . , V2k+1) + c(V1, V
′′

2 , V3, . . . , V2k+1) + c(V1, V2, V
′′

3 , V4, . . . , V2k+1).
(4)

By our choice of V ′1 , V
′

2 , V
′′

2 , V
′′

3 via Lemma 3.1 and by the definition of the sets W1,W2,W3, we
have p(V2k+1,W1,W2,W3) = O(`2n2) and p(W1,W2,W3, V4) = O(`2n2). Plugging these bounds into
Lemma 3.5 gives

c(W1,W2,W3, V4, . . . , V2k+1) ≤ `k−1nk−2 ·O(`2n2) ≤ O(`k+1nk).

It remains to bound the other four terms in (4). Consider the term c(V ′1 , V2, . . . , V2k+1). Fixing
any v1 ∈ V ′1 , note that there is no path of length 2` − 1 inside V2 ∪ · · · ∪ V2k+1 between a vertex in
NV2(v1) and a vertex in NV2k+1

(v1), as such a path would close a (2` + 1)-cycle with v1. Thus, we
may apply Lemma 3.3 with s = 2k, t = 2` and NV2(v1), V3, . . . , V2k, NV2k+1

(v1) as U1, . . . , Us, to get

c(v1, V2, . . . , V2k+1) = p(NV2(v1), V3, . . . , V2k, NV2k+1
(v1)) ≤ `knk−1

(
|NV2(v1)|+ |NV2k+1

(v1)|
)
.

By summing the above over all v1 ∈ V ′1 we obtain

c(V ′1 , V2, . . . , V2k+1) =
∑
v1∈V ′1

c(v1, V2, . . . , V2k+1) ≤ `knk−1 ·
∑
v1∈V ′1

(
|NV2(v1)|+ |NV2k+1

(v1)|
)

= `knk−1 ·
(
e(V ′1 , V2) + e(V ′1 , V2k+1)

)
≤ O(`k+1nk) ,

where the last equality relies on the guarantees of Lemma 3.1. The remaining three terms in (4) are
shown to be O(`k+1nk) in the same manner. This completes the proof. �
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Having proven Theorem 3, we summarize our upper bounds on ex(n,C2k+1, C2`+1) in Lemma 3.9
below. This lemma will be used in Section 4. We need the well-known Even Cycle Theorem of Bondy
and Simonovits:

Theorem 6 ([12]). For every ` ≥ 2 we have ex(n,C2`) ≤ O(`n1+1/`).

Lemma 3.9. There is an absolute constant c such that for every 1 ≤ k < ` we have the following.

ex(n,C2k+1, C2`+1) ≤

{
c`2n1+1/` k = 1,

c(2k + 1)2k(2`+ 1)k+1nk k ≥ 2.

Proof. The case k = 1 follows immediately by combining (1) with Theorem 6. As for the case
k ≥ 2, recall that by Lemma 3.8 we have ex(n,C2k+1, C2`+1) ≤ O((2k+ 1)2k(2`+ 1)k+1nk) for every
2 ≤ k < `−1. In light of Lemma 2.3, this bound holds for ` = k+1 as well (as 2`+1 = 2k+3 > 4). �

3.3 Proof of Theorem 4 and Proposition 1.3

Here we prove Theorem 4 and Proposition 1.3. For Theorem 4 we will need the following lemma.

Lemma 3.10. Let ` ≥ 2 and let G be an n-vertex C2`-free graph. Then every v ∈ V (G) is the
endpoint of at most 4(`− 1)n paths of length 2.

Proof. Let v ∈ V (G) and assume, by contradiction, that v is the endpoint of r > 4(`− 1)n paths of
length 2. Let V (G) \ {v} = V1 ∪ V2 be a random partition, obtained by putting each u ∈ V (G) \ {v}
in one of the sets V1, V2 with probability 1

2 , independently. Since E [p(v, V1, V2)] = 1
4r, there is a

choice of V1, V2 for which e(NV1(v), V2) = p(v, V1, V2) ≥ 1
4r > (` − 1)n > (` − 1) (|NV1(v)|+ |V2|).

This stands in contradiction to Lemma 3.4, applied with s = 2, u0 = v, U1 = NV1(v), U2 = V2. �

Proof of Theorem 4. The lower bounds are proved in Section 6: the lower bound for ` = 2 is
given by Lemma 6.4, and the lower bound for ` ≥ 3 is given by Corollary 6.3. Thus, it remains to
prove the upper bounds. We prove both cases simultaneously by induction on k. The base cases are
k = 2, 3. For k = 2, Lemma 3.10 implies that ex(n, P2, C2`) = O(`n2), as required.

Suppose now that k = 3. We first handle the case ` ≥ 3. By Claim 2.1, it is enough to show that
p(X,Y, Z,W ) ≤ O(`2n2) for every vertex-partition X ∪ Y ∪ Z ∪W of an n-vertex C2`-free graph.
Let Y ′ ⊆ Y and Z ′ ⊆ Z be as in Lemma 3.1. In light of Item 2 in Lemma 3.1, it is enough to prove
that p(X,Y ′, Z,W ) = O(`2n2) and p(X,Y, Z ′,W ) = O(`2n2). Fix any y ∈ Y ′. By Lemma 3.10, we
have p(y, Z,W ) = O(`n), and hence p(X, y, Z,W ) ≤ O(`n) · |NX(y)|. By summing over all y ∈ Y ′
and using the guarantees of Lemma 3.1, we get

p(X,Y ′, Z,W ) =
∑
y∈Y ′

p(X, y, Z,W ) ≤ O(`n) ·
∑
y∈Y ′
|NX(y)| = O(`n) · e(Y ′, X) ≤ O(`2n2).

The bound p(X,Y, Z ′,W ) = O(`2n2) is proven similarly.

Now we handle the case ` = 2. Let G be an n-vertex C4-free graph. Observe that the number of
paths of length 3 in a graph G is at most

∑
v∈V (G) #P1(v) ·#P2(v), where #Pi(v) is the number of

paths of length i having v as an endpoint (so #P1(v) is just the degree of v). By combining Lemma
3.10 with Theorem 6, we get that

∑
v∈V (G) #P1(v) ·#P2(v) ≤ O(n) · 2e(G) ≤ O(n5/2), as required.
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Let now k ≥ 4. Let G be an n-vertex C2`-free graph, and observe that the number of paths of
length k in G is at most∑

v∈V (G)

#Pk−2(v) ·#P2(v) ≤ O(`n)
∑

v∈V (G)

#Pk−2(v) ≤ O(`n) · ex(n, Pk−2, C2`),

where in the first inequality we used Lemma 3.10. Thus, ex(n, Pk, C2`) ≤ O(`n) · ex(n, Pk−2, C2`). It
is now easy to see that the theorem follows by induction on k, with the base cases k = 2, 3. �

Proof of Proposition 1.3. We start with the lower bound. For ` ≥ 3, this is the statement of
Claim 6.6. For ` = 2, we get it from Lemma 6.4 and the well-known fact that ex(n,C4) = O(n3/2)
(see Theorem 6). For the upper bound, let G be an n-vertex C2`-free graph, and observe that for
every v ∈ V (G), the neighbourhood of v does not contain a path of length 2` − 2; indeed, such a
path would close a copy of C2` with v. By Theorem 5 we have e(N(v)) ≤ 2`−3

2 · |N(v)|. On the other
hand, the number of triangles containing v is exactly e(N(v)), so the number of triangles in G is

1

3

∑
v∈V (G)

e(N(v)) ≤ 2`− 3

6

∑
v∈V (G)

|N(v)| = 2`− 3

3
· e(G) ≤ 2`− 3

3
· ex(n,C2`) ,

thus completing the proof. �

4 Proof of Property Testing Results

In this section we prove Theorems 1 and 2 and Corollary 1.2. Given a monotone graph property
P and ε ∈ (0, 1), recall that wP(ε) is the minimal positive integer such that for every sufficiently
large graph G which is ε-far from satisfying P, a randomly-chosen induced subgraph of G of order
wP(ε) does not satisfy P with probability at least 2

3 . Recall that for a set of integers L, P(L) is the
property of being L-free, that is, being C`-free for every ` ∈ L. In this section we will only consider
the properties P(L), where L is an infinite set of odd integers. To simplify the notation, we will
write wL(ε) instead of wP(L)(ε). In what follows, c, c′, c′′, c1, c2, . . . are absolute constants which are
implicitly assumed to be large enough.

The following theorem is a special case of the main result of Alon et al. [2]. For a graph G, denote
by maxcut(G) the largest size of a cut in G.

Theorem 7. For every ε ∈ (0, 1/2), for every n-vertex graph G and for every q ≥ cε−4 log(1/ε), a

uniformly chosen set Q ∈
(
V (G)
q

)
satisfies

∣∣∣maxcut(G)
n2 − maxcut(G[Q])

q2

∣∣∣ < ε with probability at least 5
6 .

We now derive the following lemma from Theorem 7.

Lemma 4.1. For every ε ∈ (0, 1) and for every graph G which is ε-far from bipartiteness, it holds that
with probability at least 2

3 , a random induced subgraph of G of order cε−5 is ε
2 -far from bipartiteness.

Proof. Let G be a graph which is ε-far from bipartiteness. Then clearly

maxcut(G) ≤ e(G)− εn2 =

(
e(G)

n2
− ε
)
n2.

Set q = cε−5 and let Q ∈
(
V (G)
q

)
be chosen uniformly at random. Then with probability at least

5
6 we have maxcut(G[Q]) ≤ ( e(G)

n2 − 3ε
4 )q2, where we applied Theorem 7 with ε

4 in place of ε. By
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a standard second-moment-method argument one can easily show that a randomly chosen induced
subgraph of order at least cε−2 has the same edge density as G, up to an additive error of ε. Thus,
(by applying this argument with ε/4 in place of ε), the inequality∣∣∣∣e(G)

n2
− e(G[Q])

q2

∣∣∣∣ < ε

4

holds with probability at least 5
6 . Thus, with probability at least 2

3 we have

maxcut(G[Q]) ≤
(
e(G)

n2
− 3ε

4

)
q2 ≤ e(G[Q])− ε

2
q2,

which implies that G[Q] is ε
2 -far from bipartiteness. This completes the proof. �

The next lemma we will need is Lemma 4.2 below, which relies on Lemma 4.1 and on the following
theorem of Komlós.

Theorem 8 ([30]). For every ε ∈ (0, 1/2), every graph which is ε-far from bipartiteness contains an
odd cycle of length at most cε−1/2.

Lemma 4.2. Let ε ∈ (0, 1), suppose that n ≥ q ≥ c1ε
−11 and let G be an n-vertex graph. If G is

ε-far from being bipartite then there is an odd 3 ≤ s ≤ c1ε
−1/2 such that with probability at least 2

3 ,
a random induced subgraph of G of order q contains at least

(
ε6q/c1

)s
copies of Cs.

Proof. By Theorem 4.1, a uniformly chosen P ∈
(V (G)
cε−5

)
induces a graph which is ε

2 -far from bipartite-
ness with probability at least 2/3. By Theorem 8, such an induced subgraph contains an odd cycle of
length at most c(ε/2)−1/2. Thus, there is 3 ≤ s ≤ c(ε/2)−1/2 such that a random P as above contains

an s-cycle with probability at least ε1/2/c′. Set d = 4c′ε−1/2 and let P1, . . . , Pd ∈
(V (G)
cε−5

)
be chosen

uniformly at random and independently. Setting R = P1 ∪ · · · ∪ Pd, we see that G[R] contains an

s-cycle with probability at least 1−
(
1− ε1/2/c′

)4c′ε−1/2

≥ 1−e−4 ≥ 11/12. Moreover, the probability

that there are 1 ≤ i < j ≤ d for which Pi∩Pj 6= ∅ is at most
(
d
2

)
·n ·(cε−5/n)2 ≤ c′′ε−11/n ≤ 1

2 , where

in the last inequality we used the assumption that n ≥ c1ε
−11. Thus, setting r = d·cε−5 = 4cc′ε−11/2,

we see that P[|R| = r] ≥ 1
2 . Since G[R] contains an s-cycle with probability at least 11

12 , we infer that

at least a 5
6 -fraction of all sets R′ ∈

(
V (G)
r

)
are such that G[R′] contains an s-cycle. Let R be the set

of all R′ ∈
(
V (G)
r

)
having this property, and note that |R| ≥ 5

6

(
n
r

)
.

Fix any q ≥ r. For Q ∈
(
V (G)
q

)
, define the random variable Z(Q) = |

(
Q
r

)
∩ R| (namely, Z(Q) is

the number of sets in R which are contained in Q), and let Q =
{
Q ∈

(
V (G)
q

)
: Z(Q) ≥ 1

2

(
q
r

)}
. By

linearity of expectation, we have E[Z] = |R| ·
(
q
r

)
/
(
n
r

)
≥ 5

6

(
q
r

)
. Since 0 ≤ Z ≤

(
q
r

)
, it is now easy to

deduce (by averaging) that P[Z ≥ 1
2

(
q
r

)
] ≥ 2

3 , implying that |Q| ≥ 2
3

(
n
q

)
.

Now let Q ∈ Q. By the definition of Q, there are at least 1
2

(
q
r

)
r-sets R ⊆ Q such that G[R]

contains a copy of Cs. On the other hand, a copy of Cs in G[Q] is contained in exactly
(
q−s
r−s
)

such
r-sets. Thus, G[Q] contains at least(

q
r

)
2
(
q−s
r−s
) =

(
q
s

)
2
(
r
s

) ≥ 1

2

( q
er

)s
≥
(
ε6q/c1

)s
.

copies of Cs. This completes the proof. �
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Lemma 4.4, stated below, is the main lemma in this section. Its proof uses Lemma 3.9, Lemma
4.2 and the following lemma from [4].

Lemma 4.3 ([4]). Let K be a k-vertex graph, let F be an f -vertex graph which has a homomorphism
into K and let G be the n

k -blowup of K where n ≥ n0(k, f). Then G is 1
2k2

-far from being F -free.

Lemma 4.4. There is a constant c2 ≥ c1 (where c1 is from Lemma 4.2) such that the following holds.
Let (`i)i≥1 be an infinite increasing sequence of odd integers with `1 ≥ 3, and set L = {`i : i ≥ 1}.
Then the following holds.

1. Let ε ∈ (0, 1) be small enough so that c1ε
−1/2 ≥ `1. Let `i be the maximal element of L not

larger than c1ε
−1/2, let n ≥ q ≥ c2ε

−13 · `21 · `i+1, and let G be an n-vertex graph which is ε-far
from being bipartite. Then with probability at least 2

3 , a random induced subgraph of G of order
q is not L-free. Thus, wL(ε) ≤ c2ε

−13 · `21 · `i+1.

2. For every i ≥ 1 we have wL( 1
2(`i+2)2

) ≥ `i+1.

Proof. We start by proving the first assertion of Item 1. Let G be an n-vertex graph which is ε-far
from bipartiteness. By Lemma 4.2, there is an odd 3 ≤ s ≤ c1ε

−1/2 such that for a randomly chosen
Q ∈

(
V (G)
q

)
, the graph G[Q] contains at least (ε6q/c1)s copies of Cs with probability at least 2

3 . We
claim that if G[Q] has this property then G[Q] is not L-free. This will show that a random induced
subgraph of G of order q is not L-free with probability at least 2

3 . This will also prove the upper
bound on wL(ε) stated in Item 1, since every graph which is ε-far from being L-free is also ε-far from
bipartiteness (as L contains only odd integers).

Assume first that s = 3. If `1 = 3 then G[Q] is clearly not L-free, as it contains at least one
triangle. So we may assume that `1 = 2` + 1 > 3. It is easy to see that for c2 large enough, our
choice of q guarantees that

(ε6q/c1)3 > c`21q
3/2 > c`2q1+1/` ≥ ex(q, C3, C2`+1) ,

where in the last inequality we use Lemma 3.9. This means that G[Q] contains more triangles than
ex(q, C3, C2`+1). So G[Q] contains a cycle of length `1 = 2`+ 1 and hence is not L-free.

Assume from now on that s > 3. Observe that for a large enough c2 we have

(ε6q/c1)s > c · (c1ε
−1/2)s · `s/2i+1 · q

s/2 ≥ css`s/2i+1q
s/2 ≥ css`(s+1)/2

i+1 q(s−1)/2 ≥ ex(q, Cs, C`i+1
) ,

where in the first and third inequalities we use our choice of q, in the second inequality we use
s ≤ c1ε

−1/2 and in the last inequality we use Lemma 3.9 with 2k + 1 = s and 2` + 1 = `i+1,
noting that s < `i+1 by our choice of `i and by s ≤ c1ε

−1/2. As G[Q] contains more s-cycles than
ex(q, Cs, C`i+1

), it must contain a cycle of length `i+1. Thus, G[Q] is not L-free.

We now prove the second Item. Fixing i ≥ 1, let n be large enough so that Lemma 4.3 is
applicable to k = `i + 2 and f = `i+1, and let G be the n

`i+2 -blowup of C`i+2. Note that C`i+1
has

a homomorphism into C`i+2, as `i+1 ≥ `i + 2. Thus, by applying Lemma 4.3 with K = C`i+2 and
F = C`i+1

, we conclude that G is 1
2(`i+2)2

-far from being C`i+1
-free and hence also 1

2(`i+2)2
-far from

being L-free. On the other hand, there is no homomorphism from Ck to C`i+2 for any odd k ≤ `i.
Thus, every subgraph of G on less than `i+1 vertices is L-free. Item 2 of the lemma follows. �

The proofs of Theorem 1 and Corollay 1.2 now follow quite easily from the above lemma.
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Proof of Theorem 1. Set `1 = 3 and `i+1 = 2f( 1
2(`i+2)2

) + 1. Then `i is odd for every i ≥ 1,

and (`i)i≥1 is increasing as f satisfies f(x) ≥ 1/x. Setting L = {`i : i ≥ 1}, we will show that the
property of L-freeness satisfies the assertion of the theorem. More precisely, we will show that there
is an absolute constant ε0 > 0 such that wL(ε) ≤ ε−14f(ε/c) for every ε < ε0, and that wL(ε) ≥ f(ε)
for an infinite sequence of values of ε which tends to 0. Let ε ∈ (0, 1) be small enough so that
c1ε
−1/2 ≥ 3 = `1, and let `i be the maximal element of L not larger than c1ε

−1/2. Item 1 of Lemma
4.4 implies that

wL(ε) ≤ c2ε
−13 · `21 · `i+1 = 9c2ε

−13 · `i+1 ≤ 27c2ε
−13 · f(

1

2(`i + 2)2
) ≤ ε−14 · f(ε/c) ,

where in the last inequality we used that `i ≤ c1ε
−1/2, that f is decreasing, and that 1/ε > 27c2

(which can be guaranteed by appropriately choosing ε0). The second part of Lemma 4.4 implies that
for every i ≥ 1, wL( 1

2(`i+2)2
) ≥ `i+1 > f( 1

2(`i+2)2
). So there is a decreasing sequence (εi)i≥1 with

εi → 0 (namely εi = 1
2(`i+2)2

) such that wL(εi) ≥ f(εi). The theorem follows. �

Proof of Corollary 1.2. The first part of Lemma 4.4 implies that for a sufficiently small ε we
have wL(ε) ≤ poly(1/ε) · `i+1, where `i is the maximal element of L not larger than c1ε

−1/2. Thus,
if `i+1 ≤ `di for some d = d(L) and every sufficiently large i, then wL(ε) ≤ poly(1/ε) for every
sufficiently small ε. On the other hand, the second part of Lemma 4.4 implies that unless `i+1 ≤ `di
for some d = d(L) and for every large enough i, the function wL(ε) is super-polynomial in 1/ε for
infinitely many values of ε. We conclude that wL(ε) = poly(1/ε) if and only if `i+1 ≤ `di for every

large enough i, which is equivalent to having lim supj−→∞
log `j+1

log `j
≤ d <∞. �

Lemma 4.5. Let (`i)i≥1 be an infinite increasing sequence of odd integers with `1 ≥ 3, and set
L = {`i : i ≥ 1}. Then every L-free graph is o(1)-close to bipartiteness.

Proof. Our goal is to show that for every sufficiently small ε there is n0(ε) such that every L-free
graph on n ≥ n0(ε) vertices is ε-close to being bipartite. So fix ε > 0 small enough to satisfy
c1ε
−1/2 ≥ `1, and let `i be the maximal element of L not larger than c1ε

−1/2. By (the contrapositive
of) Item 1 in Lemma 4.4, every n-vertex L-free graph is ε-close to bipartiteness, provided that n is
large enough to satisfy n ≥ c2ε

−13 · `21 · `i+1. This completes the proof. �

The quantitative version of Lemma 4.5 states that L-free n-vertex graphs are roughly Θ(`−2
i )-

close to bipartiteness, where i is the maximal integer satisfying n ≥ `i+1 (here we assume that the
sequence (`i)i≥1 grows fast enough). Let us explain why this dependence on the sequence (`i)i≥1 is
unavoidable. For n = `i+1, let G be the n−1

`i+2 -blowup of C`i+2, plus an isolated vertex. Then G is
L-free; it contains neither an odd cycle of length at most `i (as such a cycle is not homomorphic
to C`i+2), nor an odd cycle of length at least `i+1 (as `i+1 > n − 1 and G has an isolated vertex).
Nonetheless, it is easy to see that G is Θ(`−2

i )-far from bipartiteness. This shows that the o(1)-
term in Lemma 4.5 may tend to zero arbitrarily slowly, depending on the family L. For example,
if `i = tower(i) then `i = log2(`i+1), so every L-free n-vertex graph is roughly Θ( 1

log2 n
)-close to

bipartiteness, and this is tight.

Proof of Theorem 2. By (the proof of) Theorem 1, there is an increasing sequence of odd integers
L = {`1 = 3, `2, `3, . . . } such that wL(ε) ≥ f(ε). Thus, it remains to present a 2-sided tester for
L-freeness which has query complexity poly(1/ε). Our ε-tester works as follows: it samples a random
induced subgraph of the input of order q = q(ε) = cε−5 and accepts if and only if this subgraph

16



is ε
2 -close to bipartiteness. Let us prove that this algorithm is indeed a valid ε-tester for graphs of

order n ≥ n0(ε), where n0(ε) will be (implicitly) chosen later. Let G be an n-vertex input graph. If
G is ε-far from L-freeness then it is also ε-far from bipartiteness, so Lemma 4.1 implies that with
probability at least 2

3 , G is rejected. Assume now that G is L-free. By Lemma 4.5, if n is large
enough then G is ε

12 -close to bipartiteness. Hence, there is a set E ⊆ E(G) of size |E| ≤ ε
12n

2 such
that G\E (the graph obtained from G by deleting the edges in E) is bipartite. Let Q = {x1, . . . , xq}
denote the vertex-set sampled by the tester. The expected number of pairs 1 ≤ i < j ≤ q for which
{xi, xj} ∈ E is

(
q
2

)
· 2|E|
n(n−1) ≤

ε
6q

2. By Markov’s inequality, we have |E(G[Q]) ∩ E| ≤ ε
2q

2 with

probability at least 2
3 . Thus, with probability at least 2

3 , G[Q] is ε
2 -close to bipartiteness (as deleting

the edges in E(G[Q]) ∩ E makes G[Q] bipartite), and G is accepted by the tester. �

5 Proof of Lemma 3.1

We will need an upper bound on Zarankiewicz numbers for even cycles, proved by Naor and
Verstraëte [33]. For integers n,m ≥ 1 and ` ≥ 2, let z(n,m,C2`) denote the maximal number of
edges in a C2`-free bipartite graph with sides of size n and m.

Theorem 9 ([33]). For m ≤ n it holds that

z(n,m,C2`) ≤

{
(2`− 3)

(
(nm)1/2+1/(2`) + 2n

)
` is odd,

(2`− 3)
(
n1/2m1/2+1/` + 2n

)
` is even.

The following lemma is an easy corollary of Theorem 9.

Lemma 5.1. Let ` ≥ 2, let G be an n-vertex graph and let X,Y ⊆ V (G) be disjoint sets such that the
bipartite graph (X,Y ) is C2`-free. Let Y ′ be the set of all vertices in Y having at least d neighbours
in X. Then

|Y ′| ≤


max{(6`/d)2`/(`−1)n(`+1)/(`−1), 6`n/d} ` is odd,

max{(6`/d)2`/(`−2)n`/(`−2), 6`n/d} ` is even and ` ≥ 4,

2n/(d− n1/2) ` = 2 and d > n1/2.

Proof. Note that
d|Y ′| ≤ e(Y ′, X) ≤ z(n, |Y ′|, C2`). (5)

Suppose first that ` is odd. We apply Theorem 9 with parameter m = |Y ′|. If (|Y ′|n)1/2+1/(2`) ≥ n
then Theorem 9 gives z(n, |Y ′|, C2`) ≤ 6`(|Y ′|n)1/2+1/(2`), and if (|Y ′|n)1/2+1/(2`) ≤ n then Theorem
9 gives z(n, |Y ′|, C2`) ≤ 6`n. By combining these inequalities with (5) we get that either |Y ′| ≤
(6`/d)2`/(`−1)n(`+1)/(`−1) or |Y ′| ≤ 6`n/d, as required.

Suppose now that ` is even and ` ≥ 4. By Theorem 9, we have z(n, |Y ′|, C2`) ≤ 6`n1/2|Y ′|1/2+1/`

if n1/2|Y ′|1/2+1/` ≥ n and z(n, |Y ′|, C2`) ≤ 6`n otherwise. By combining these inequalities with (5)
we get that either |Y ′| ≤ (6`/d)2`/(`−2)n`/(`−2) or |Y ′| ≤ 6`n/d, as required.

Finally, suppose that ` = 2 and that d > n1/2. Theorem 9 gives z(n, |Y ′|, C4) ≤ n1/2|Y ′|+ 2n. By
combining this with (5) we get that |Y ′| ≤ 2n/(d− n1/2), as required. �

We are now ready to prove Lemma 3.1.
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Proof of Lemma 3.1. We start by considering the case of even ` ≥ 4. Define the sets Y ′ =
{y ∈ Y : |NX(y)| ≥ `n2/(`+2)} and Z ′ = {z ∈ Z : |NW (z)| ≥ `n2/(`+2)}. Apply Lemma 5.1 with
d = `n2/(`+2) to get |Y ′|, |Z ′| ≤ O(n`/(`+2)). By plugging these bounds into Theorem 9, one can
check that e(Y ′, X), e(Y ′, Z), e(Z ′, Y ), e(Z ′,W ) ≤ z(n,O(n`/(`+2)), C2`) = O(`n). Next, note that
by the definitions of Y ′ and Z ′ we have

p(X,Y \ Y ′, Z \ Z ′,W ) < e(Y \ Y ′, Z \ Z ′) · `n2/(`+2) · `n2/(`+2)

≤ z(n, n,C2`) · `2n4/(`+2) ≤ O(`3n1+1/`+4/(`+2)),

where in the last inequality we used Theorem 9. So if `3n1+1/`+4/(`+2) ≤ `2n2 then we get the
required bound p(X,Y \Y ′, Z \Z ′,W ) = O(`2n2), and the proof is complete (for even `). Otherwise,
we have `3n1+1/`+4/(`+2) > `2n2 and hence n < ``(`+2)/(`2−3`−2) = ` · `(5`+2)/(`2−3`−2) ≤ O(`). Since
p(X,Y, Z,W ) ≤ n4, we have p(X,Y, Z,W ) ≤ n4 = O(`2n2), and again we are done.

We now consider the case of odd ` ≥ 3. We define Y ′ = {y ∈ Y : |NX(y)| ≥ `n2/(`+1)} and
Z ′ = {z ∈ Z : |NW (z)| ≥ `n2/(`+1)}. Similarly to the previous case, we apply Lemma 5.1 with
d = `n2/(`+1) to obtain |Y ′|, |Z ′| ≤ O(n(`−1)/(`+1)). We then plug these bounds into Theorem 9 to
get e(Y ′, X), e(Y ′, Z), e(Z ′, Y ), e(Z ′,W ) ≤ z(n,O(n(`−1)/(`+1)), C2`) = O(`n). It remains to bound
p(X,Y \ Y ′, Z \ Z ′,W ). Assume first that ` ≥ 5. By the definitions of Y ′ and Z ′ we have

p(X,Y \ Y ′, Z \ Z ′,W ) < e(Y \ Y ′, Z \ Z ′) · `n2/(`+1) · `n2/(`+1)

≤ z(n, n,C2`) · `2n4/(`+1) ≤ O(`3n1+1/`+4/(`+1)),

where in the last inequality we used Theorem 9. If `3n1+1/`+4/(`+1) ≤ `2n2 then by the above we
have p(X,Y \Y ′, Z \Z ′,W ) = O(`2n2), as required. Otherwise, we have `3n1+1/`+4/(`+1) > `2n2 and
hence n < ``(`+1)/(`2−4`−1) = ` · `(5`+1)/(`2−4`−1) = O(`). But then p(X,Y, Z,W ) ≤ n4 = O(`2n2),
and again we are done.

Thus, it remains to show that p(X,Y \ Y ′, Z \ Z ′,W ) = O(n2) when ` = 3. Recall that in this
case we defined Y ′ = {y ∈ Y : |NX(y)| ≥ 3n1/2} and similarly Z ′ = {z ∈ Z : |NW (z)| ≥ 3n1/2}.
We need some additional definitions. Define Ylow = {y ∈ Y : |NX(y)| < n1/3} and similarly
Zlow = {z ∈ Z : |NW (z)| < n1/3}. Define I = {i : 1

2n
1/3 ≤ 2i < 3n1/2}, and for each i ∈ I set

Yi =
{
y ∈ Y : 2i ≤ |NX(y)| < 2i+1

}
and Zi =

{
z ∈ Z : 2i ≤ |NW (z)| < 2i+1

}
. It is immediate from

these definitions that Y \ Y ′ ⊆ Ylow ∪
⋃
i∈I Yi and similarly Z \ Z ′ ⊆ Zlow ∪

⋃
i∈I Zi. Note that

p(X,Ylow, Zlow,W ) < e(Ylow, Zlow) · n1/3 · n1/3 ≤ z(n, n,C6) · n2/3 ≤ O(n2),

where in the last inequality we used Theorem 9. Hence, in order to finish the proof we need to bound
p(X,

⋃
i∈I Yi, Zlow,W ), p(X,Ylow,

⋃
i∈I Zi,W ) and p(X,

⋃
i∈I Yi,

⋃
i∈I Zi,W ). We start with the first

two terms. Fix any i ∈ I. By Lemma 5.1 with d = 2i, we have |Yi| ≤ max{183 ·2−3i ·n2, 18 ·2−i ·n} =
O(2−3i ·n2), where we used the fact that 9 · 2−3in2 > 2−in, which follows from 2i < 3n1/2. So we get

e(Yi, Zlow) ≤ z(|Yi|, n, C6) ≤ 3 ·
(

(|Yi|n)2/3 + 2n
)
≤ 3 ·

(
O(n22−2i) + 2n

)
≤ O(n2 · 2−2i),

where in the second inequality we used Theorem 9, and in the last inequality we used n2 ·2−2i > n/9
which follows from 2i < 3n1/2. Now we have

p(X,
⋃
Yi, Zlow,W ) =

∑
i∈I

p(X,Yi, Zlow,W ) <
∑
i∈I

e(Yi, Zlow) · 2i+1 · n1/3 ≤
∑
i∈I

O(n2 · 2−2i) · 2i+1 · n1/3
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= O(n7/3) ·
∑
i∈I

2−i ≤ O(n7/3) ·
∑

i: 2i≥ 1
2
n1/3

2−i = O(n7/3) ·O(n−1/3) = O(n2),

where in the first inequality we used the definitions of Zlow and Yi, and in the last inequality we used
the definition of I. The bound p(X,Ylow,

⋃
Zi,W ) = O(n2) is proved similarly.

Finally, we bound p(X,
⋃
Yi,
⋃
Zi,W ). To this end, fix any i, j ∈ I. We showed above that

|Yi| ≤ O(n2 · 2−3i). By the same argument we get |Zj | ≤ O(n2 · 2−3j). Thus we have

e(Yi, Zj) ≤ z(|Yi|, |Zj |, C6) ≤ 3 ·
(

(|Yi||Zj |)2/3 + |Yi|+ |Zj |
)

≤ O(n8/3) · 2−2i · 2−2j +O(n2) · (2−3i + 2−3j) ≤ O(n8/3) · 2−2i · 2−2j ,

where in the second inequality we used Theorem 9, and in the last inequality we used the fact that
18n8/3 · 2−2i · 2−2j ≥ max{n22−3i, n22−3j}, which follows from 1

2n
1/3 ≤ 2i, 2j < 3n1/2. Now we get

p(X,
⋃
Yi,
⋃
Zi,W ) =

∑
i,j∈I

p(X,Yi, Zj ,W ) ≤
∑
i,j∈I

e(Yi, Zj) · 2i+1 · 2j+1

≤
∑
i,j∈I

O(n8/3) · 2−2i · 2−2j · 2i+1 · 2j+1 = O(n8/3) ·
∑
i,j∈I

2−i · 2−j

≤ O(n8/3) ·
∑

2i,2j≥ 1
2
n1/3

2−i · 2−j = O(n8/3) ·O(n−2/3) = O(n2),

where in the first inequality we used the definitions of Yi and Zj , and in the last inequality we used
the definition of I. This completes the proof. �

Let us explain why the sets Y ′ and Z ′ in Lemma 3.1 are required, (namely, that the statement
p(X,Y, Z,W ) = O`(n

2) is generally false). Note that by Theorem 9, the average degree between the
four sets in Lemma 3.1 is O(n1/3). One might thus guess that p(X,Y, Z,W ) = O(n·(n1/3)3) = O(n2).
To see that this is not the case, we can take Y to be a single vertex connected to all the vertices of X
and Z, distribute all other vertices equally among X, Z and W , and take the bipartite graph between
Z,W to be an extremal graph with no C2`. Although this example satisfies p(X,Y, Z,W ) � n2,
by removing the single vertex of Y we can make sure that p(X,Y, Z,W ) = O(n2). This is precisely
what Lemma 3.1 states. What we see in the proof of Theorem 4 is that if one assumes that the
entire graph is C2`-free (and not just the 3 bipartite graphs between the 4 sets) then one no longer
needs to remove vertices in order to guarantee that p(X,Y, Z,W ) = O`(n

2).

Let us note that Lemma 3.1 does not hold for ` = 2. Indeed, in the proof of Lemma 6.4 we
construct an n-vertex C4-free graph, in which every vertex has degree Θ(n1/2) and lies on Θ(n3/2)
paths of length 3. Taking a random vertex partition of this graph into four sets X,Y, Z,W , we
see that with high probability, every vertex y ∈ Y (resp. z ∈ Z) has Θ(n1/2) neighbours in X
(resp. W ), and every vertex in the graph lies on Θ(n3/2) (X,Y, Z,W )-paths. Suppose now, by
contradiction, that the assertion of Lemma 3.1 holds for the sets X,Y, Z,W . Since every y ∈ Y
has Θ(n1/2) neighbours in X, and since e(Y ′, X) = O(n), we must have |Y ′| = O(n1/2). Similarly,
|Z ′| = O(n1/2). As every vertex lies on Θ(n3/2) (X,Y, Z,W )-paths, we have p(X,Y, Z,W ) = Θ(n5/2)
and p(X,Y ′, Z,W ), p(X,Y, Z ′,W ) = O(n2). But this implies that p(X,Y \Y ′, Z \Z ′,W ) = Θ(n5/2),
in contradiction to the statement of Lemma 3.1.
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6 Lower Bound for ex(n,Ck, C`) and ex(n, Pk, C`)

In this section we prove all lower bounds in Theorem 3 and Proposition 1.3. We start with the
following two claims, which handle the case where the forbidden cycle is not C4. Claim 6.1 gives
lower bounds on ex(n,Ck, C`) and ex(n, Pk, C`) with the correct dependence on n, whenever ` 6= 4.
To get the correct dependence on ` for `� k, we need Claim 6.2, which gives a general lower bound
for ex(n, T,H), but is only applicable when H (that is, C`) is somewhat larger than T (that is, Ck
or Pk). To prove the lower bound for all values of k and ` 6= 4, we need to combine these two claims,
which is done in Corollary 6.3. For a graph G, denote by α(G) the independence number of G.

Claim 6.1. For a pair of distinct k ≥ 3 and 4 6= ` ≥ 3 we have ex(n,Ck, C`) = Ωk

(
nbk/2c

)
. For

k ≥ 2 and 4 6= ` ≥ 3 we have ex(n, Pk, C`) = Ωk

(
nd(k+1)/2e).

Proof. We start with the first part of the claim. Let I be a maximum independent set of the k-cycle
1, . . . , k. Replace each i ∈ I with a vertex-set of size m, where different vertices are replaced with
disjoint sets and all of these sets are disjoint from [k] \ I. Edges of Ck are replaced with complete
bipartite graphs. In other words, we take a blowup of Ck in which vertices i ∈ [k] \ I are not blown
up, while vertices i ∈ I are blown up to size m. As |I| = α(Ck) = bk/2c, the resulting graph has
n := bk/2c ·m+ dk/2e vertices and m|I| = mbk/2c = Ωk

(
nbk/2c

)
copies of Ck. It is easy to check that

this graph is C`-free by our assumptions that ` 6= k and ` 6= 4.

We now prove the second part of the claim using a similar construction. Let I be a maximum
independent set of the path Pk on the vertices 1, . . . , k + 1. Replace each i ∈ I with a vertex-set of
size m, where different vertices are replaced with disjoint sets and all of these sets are disjoint from
[k+1]\I. Edges of Pk are replaced with complete bipartite graphs. As |I| = α(Pk) = d(k+1)/2e, the
resulting graph has n := d(k+ 1)/2e ·m+ b(k+ 1)/2c vertices and m|I| = md(k+1)/2e = Ωk(n

d(k+1)/2e)
copies of Pk. It is easy to check that this graph is C`-free by our assumptions that ` 6= 4. �

Claim 6.2. Let T,H be graphs on t and h vertices, respectively, such that h−α(H)− 1 ≥ t−α(T ).
Then for every n ≥ h− α(H)− 1 + α(T ), it holds that ex(n, T,H) ≥ Ωt

(
(h− α(H))t−α(T )nα(T )

)
.

Proof. Suppose that V (T ) = {1, . . . , t} and let I be a maximum independent set of T . Let
U1, . . . , Ut be disjoint vertex-sets such that |U1| + · · · + |Ut| = n and such that the following holds:∑

i∈V (T )\I |Ui| = h−α(H)− 1, these h−α(H)− 1 vertices are divided as equally as possible among
the t−α(T ) sets (Ui)i∈V (T )\I , and the n− h+α(H) + 1 vertices of

⋃
i∈I Ui are divided as equally as

possible among (Ui)i∈I . Then none of U1, . . . , Ut is empty by the assumptions of the claim. Define
a graph G on U1 ∪ · · · ∪ Ut by making (Ui, Uj) a complete bipartite graph if {i, j} ∈ E(T ), and
an empty bipartite graph otherwise (there are no edges inside the sets U1, . . . , Ut). Then G has
Ωt

(
(h− α(H))t−α(T )nα(T )

)
copies of T . It remains to show that G is H-free. Assume by contradic-

tion that there is a copy of H in G. Then this copy contains two adjacent vertices which are both
in
⋃
i∈I Ui, since

∑
i∈V (T )\I |Ui| < h − α(H). But

⋃
i∈I Ui is an independent set in G, as I is an

independent set in T and G is a blowup of T , a contradiction. �

We are now ready to prove the lower bounds in the last two items of Theorem 3 and in the second
item of Theorem 4. In other words, we handle all cases in which the forbidden cycle is not C4.

Corollary 6.3. For a pair of distinct k ≥ 3 and 4 6= ` ≥ 3 we have ex(n,Ck, C`) = Ωk

(
`dk/2enbk/2c

)
.

For k ≥ 2 and 4 6= ` ≥ 3 we have ex(n, Pk, C`) = Ωk(`
b(k+1)/2cnd(k+1)/2e).
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Proof. Note that since our bound hides constants that depend on k, if ` < k+ 3 then the assertion
of the corollary follows from Claim 6.1. So we may assume that ` ≥ k+3, which implies that d`/2e ≥
dk/2e+1. Under this assumption, Claim 6.2 is applicable to (T,H) = (Ck, C`), giving ex(n,Ck, C`) =
Ωk(`

dk/2enbk/2c), and to (T,H) = (Pk, C`), giving ex(n, Pk, C`) = Ωk(`
b(k+1)/2cnd(k+1)/2e). �

When excluding C4, a different construction is required. The construction we use is due to Erdős
and Rényi [18]. The case of ex(n,C3, C4) was handled (using the same construction) in [6]. Via the
following lemma, we get the lower bound in the first item of Theorem 3 and of Theorem 4.

Lemma 6.4. Let q be a prime power and set n = q2 − 1. Then there is an n-vertex C4-free graph

which contains at least
(

1
2k − o(1)

)
n

k
2 copies of Ck for every 4 6= k ≥ 3, and at least

(
1
2 − o(1)

)
n

k
2

+1

copies of Pk for every k ≥ 1. Here, the o(1) term is a function which depends on k and tends to 0 as

n tends to infinity. Hence, ex(n,Ck, C4) ≥
(

1
2k − o(1)

)
n

k
2 for every 4 6= k ≥ 3, and ex(n, Pk, C4) ≥(

1
2 − o(1)

)
n

k
2

+1 for every k ≥ 1.

Proof. The last part of the theorem is deduced from the first part as follows. It is known that for
every large enough x there is a prime in the interval [x − xθ, x] for an absolute constant θ ∈ [1

2 , 1),

see e.g. [8]. Fixing a large enough n, let p be a prime in [x − xθ, x] for x = n1/2. Now take the
construction from the first part of the theorem on p2 − 1 vertices and add isolated vertices to get a
graph on n vertices. This graph gives the required lower bounds on ex(n,Ck, C4) and ex(n, Pk, C4).

From now on we assume that n = q2 − 1, where q is a prime power. Let F be the field with q
elements. The vertex set of G is F2 \ {(0, 0)} and a pair of vertices (a, b), (c, d) are adjacent if and
only if ac + bd = 1. Note that (a, b) ∈ V (G) has a loop if and only if a2 + b2 = 1. The number
of solutions to x2 + y2 = 1 is at most 2q, since for every fixed x ∈ F there are at most 2 solutions
for y. This implies that the number of loops is at most 2q. Note that for every (a, b) ∈ V (G) there
are q solutions (x, y) to ax + by = 1. Thus, the degree of every (a, b) ∈ V (G) is either q − 1 or q,
depending on whether or not (a, b) has a loop. This implies that for every k ≥ 1, G contains at least
1
2n(q − 1)(q − 2) . . . (q − k) =

(
1
2 − o(1)

)
n

k
2

+1 paths of length k.

Observe that for every pair of vertices (a, b), (c, d) ∈ V (G), there is at most one solution to the
system ax+ by = cx+ dy = 1, implying that (a, b) and (c, d) have at most one common neighbour.
This shows that G is C4-free. To finish the proof, it remains to show that the number of k-cycles in
G is as stated. Since this was proved for k = 3 in [6], we may assume from now on that k ≥ 5.

Note that if (a, b), (c, d) ∈ V (G) are linearly independent and have no loops then they have
a common neighbour. Indeed, by linear independence there is a (unique) solution to the system
ax+ by = cx+ dy = 1. As (a, b) and (c, d) do not have loops, this solution is neither (a, b) nor (c, d),
and hence it is a common neighbour of (a, b) and (c, d). As the number of loops in G is at most 2q,
the number of pairs of vertices (a, b), (c, d) ∈ V (G) for which either (a, b) or (c, d) has a loop is at

most 2qn. Furthermore, the number of collinear pairs (a, b), (c, d) ∈ V (G) is (q−1)n
2 . Therefore, all

but 2qn+ (q−1)n
2 ≤ 3nq of the pairs of vertices are linearly independent and do not have loops, and

hence have a common neighbour. We have thus proven the following.

Fact 6.5. All but 3nq of the pairs of vertices in G have a common neighbour.

Note that for every t ≥ 2 and v1, vt+1 ∈ V (G), the number of paths of length t between v1 and
vt+1 is at most qt−2. Indeed, consider a path v1, . . . , vt+1. Since the maximal degree in G is q, the
number of choices of v2, . . . , vt−1 is at most qt−2. Since vt is a common neighbour of vt−1 and vt+1,
there is at most one choice for vt given v2, . . . , vt−1.
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A path is good if its endpoints have a common neighbour which is not on the path, and otherwise
it is bad. To complete the proof, it is enough to show that for every t ≥ 3, the number of bad paths

of length t is O(nqt−1). Indeed, we already proved that G contains at least
(

1
2 − o(1)

)
n

k
2 paths of

length k − 2. Since the number of bad paths of length k − 2 is O(nqk−3) = O
(
n

k−1
2

)
, the number of

good paths of length k − 2 is at least
(

1
2 − o(1)

)
n

k
2 . A good path of length k − 2 can be made into

a k-cycle by adding the (unique) common neighbour of the endpoints of the path. Since every cycle
contains k subpaths of length k − 2, the lemma follows.

It thus remains to show that for every t ≥ 3, the number of bad paths of length t is O(nqt−1).
There are two types of bad paths: those whose endpoints do not have a common neighbour, and
those whose endpoints have a common neighbour which is on the path. First, by Fact 6.5, the
number of pairs of vertices u, v ∈ V (G) which do not have a common neighbour is at most 3nq.
We proved that for each such u, v there are at most qt−2 paths of length t between u and v. Thus,
there are at most O(nqt−1) paths of length t whose endpoints do not have a common neighbour.
Second, let u, v ∈ V (G) be vertices having a common neighbour and let w be their unique common
neighbour. The number of paths of length t from u to v in which w is at distance i from u (and hence
at distance t− i from v) is at most qt−3 if i ∈ {1, t−1} and at most qi−2qt−i−2 = qt−4 if 2 ≤ i ≤ t−2.
By summing over 1 ≤ i ≤ t − 1 we get that the number of paths of length t from u to v which
contain w is at most 2qt−3 + (t − 3)qt−4 = O(qt−3). Since the number of choices for u, v is at most(
n
2

)
, the total number of paths of length t that contain the common neighbour of their endpoints is

O(n2qt−3) = O(nqt−1). In conclusion, the number of bad paths is O(nqt−1), as required. �

We end this section by proving the lower bound in Proposition 1.3.

Claim 6.6. For every ` ≥ 3 we have ex(n,C3, C2`) = Ω
(
ex(n, {C4, C6, . . . , C2`})

)
.

Proof. We use an argument similar to the one used in [28]. Let G′ = (A∪B,E) be a maximum size
n × n bipartite graph with no C4, C6, . . . , C2`. Let G be the graph obtained from G′ by replacing
every vertex of A by an edge (and replacing edges of G′ by copies of K2,1). Then G has 3n vertices,
and one triangle per each edge of G′; so G contains e(G′) ≥ 1

2 · ex(2n, {C4, C6, . . . , C2`}) triangles.
Now assume by contradiction that C is a copy of C2` in G. By contracting the edges of C inside A,
we get a closed walk C ′ in G′ of length at most 2`. For each a ∈ A, let a1 and a2 denote the two
“copies” of a in G. If for every a ∈ C ′ ∩ A, only one of the copies of a is in C, then C ′ = C, in
contradiction to the C2`-freeness of G′. So there is some a ∈ A such that a1, a2 ∈ C. In the cycle C
there are two paths between a1 and a2, and since |C| = 2` ≥ 6, one of these paths must have length
at least 3. Hence, there are distinct b1, b2 ∈ B such that (a1, b1), (a2, b2) ∈ E(G), and there is a path
P in G between b1 and b2 which does not go through a1 or a2. Contracting P gives a path P ′ in G′

between b1 and b2, which does not go through a. Then a, b1, P, b2, a is a cycle in G′ of length at most
2`, in contradiction to the choice of G′. �

Note added: After posting the paper to the Arxiv, weve learned that Proposition 1.3 was obtained
earlier by Füredi and Özkahya [20], and that Lemma 3.6 was obtained independently by Gerbner,
Győri, Methuku and Vizer [21].
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[16] P. Erdős, Problems and results on graphs and hypergraphs: similarities and differences, Mathe-
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[38] M. Simonovits, Paul Erdős’ influence on extremal graph theory, in The mathematics of Paul
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